A Guide to UNICOM, an Inductive Theorem Prover

Based on Rewriting and Completion Techniques

Bernhard Gramlich, Wolfgang Lindner*
Fachbereich Informatik, Universitat Kaiserslautern
Erwin-Schrodinger-Strafie, Postfach 3049
D-6750 Kaiserslautern
Germany
gramlich@informatik.uni-kl.de

December 1991

Abstract

We provide an overview of UNICOM, an inductive theorem prover for equational logic which is
based on refined rewriting and completion techniques. The architecture of the system as well as its
functionality are described. Moreover, an insight into the most important aspects of the internal
proof process is provided. This knowledge about how the central inductive proof component
of the system essentially works is crucial for human users who want to solve non-trivial proof
tasks with UNICOM and thoroughly analyse potential failures. The presentation is focussed
on practical aspects of understanding and using UNICOM. A brief but complete description of
the command interface, an installation guide, an example session, a detailed extended example
illustrating various special features and a collection of successfully handled examples are also
included.

*This work was supported by the 'Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)’.

Contents

1 Introduction and Overview 4
2 The User Interface 5
Commands and their Syntax)
Help Menus 6
The Prompt and Abortions 6
I/O-Logging e 7
System Crashes, Lisp-level Commands 7
Starting UNTCOM 7
3 The Parser 8
4 The Checker 9
5 The Prover 10
The Prover State e 10
The Initialization of the Prover State 11
The Prover Cycle L o e 11
Further Remarks concerning Parameters oL 0oL 13
The Undo Operation e 13
Insertion of Assumptions. 13
Modifying Specifications 14
6 The Printer 14
Appendix
A Some More Prover Facilities 15
Non-Inductive Proofs e 15
Reduction Strategies L 15
B Table of Commands 17
C How to Use UNICOM 19
D An Example Session 25
E A Collection of Examples 37
Preliminaries e 37
Example I: Arithmetic e 41
Example II: Sorting Algorithms oo 44

Example III: Binary Search Trees
Example IV: Two-Three-Trees
Example V: a — f—Pruning
Example VI: A More Complex Induction Scheme

F Installation guide
Acknowledgements

References

61

61

62

1 Introduction and Overview

UNICOM is an experimental term rewriting based system for investigating hierarchically structured
many-sorted algebraic specifications. Input specifications consist of definitions of total functions and of
inductive conjectures (equations to be proved or disproved). The functions are specified equationally
by rewrite programs and operate on domains which are generated by a set of free constructors.

The central tool of UNICOM (UNfailing Inductive COMpletion) is an inductive theorem prover based
on refined unfailing completion techniques (cf. [Gra89], [Gra90b], [Gra90c]).

For the theoretical foundations of the underlying equational logic and implicit inductive theorem
proving approach see e.g. [HO80], [HH80], [JK86], [Pla85], [Fri86], [GOb8T], [Kiic87], [Bac88], [Gra90a]
and [Red90]. Concerning UNICOM the interested reader is referred to [AGG*87], [Sch88], [Gra90b],
[Gra90c]. For other systems based on rewriting and completion techniques and incorporating inductive
theorem proving components see e.g. [KZ89]. In classical ezplicit inductive theorem proving using
schemata the best known and rather successful system is the Boyer-Moore (inductive) theorem prover

NQTHM (see [BMT79], [BM8S]).

Before calling the prover, a specification has to be processed by two other of the tools of UNICOM:
the parser and the checker. The parser checks the syntax of an input specification and generates an
internal representation (intern-file). Then the checker gets this internal representation and examines
function definitions trying to establish required properties like convergence and totality. The prover
finally tries to prove or to disprove the equations (conjectures) of a specification and produces two
output files. The prove-file primarily contains the proved conjectures and rules inferred during the
proving process, together with refinements of the generated term reduction ordering. When ’proving’ a
specification, the prove-files of all subspecifications imported by the specification under consideration

specification:

specs/.spec

/
Input scr.lpt: . UNIC O M . input Iog.:
output/.ilog output/.ilog

Joutput log:
output/.olog

=
COMPILER PARSER P CHECKER[= PROVER PRINTER
=

ler— —]
ler— —]

prove file:
Lisp code: intern file: check file: prove/.prove text file:
adt/.adt intern/.intern | check/.check | proof log file: output/.pout
prove/.plog

File system: <unicom-root-directory>/

Figure 1: The structure of UNICOM.

are read by the prover in order to make available the already proved inductive knowledge about
subspecifications. Secondly, the prover optionally produces proof-log-files in which the proof steps
carried out are recorded. The printer can be used to display logged proofs in some desired readable
form. Moreover, UNICOM includes a compiler (not described here) which is able to translate function
definitions into Lisp code, so that symbolic computations are possible, i.e. normal forms of ground
terms can be computed by a Lisp implementation.

Figure 1 illustrates how UNICOM manipulates the data base of hierarchically structured specifications.

Before treating the tools individually, we will describe the user interface of the system now.

2 The User Interface

Commands and their Syntax

The user interface of UNICOM mainly consists of a command and control language with some ab-
breviation facilities. Interaction between the system and the user is organized as follows. The input
stream is cut into words consisting of non-blank characters. When a point is reached where UNICOM
accepts input, the next word of the input stream is used to identify one of the commands executable at
this point by matching the word with the syntax descriptions of the commands. If this correspondence
is unambiguous, the piece of program code of the selected command is carried out, possibly using the
entered word as parameter.

Besides words the following tokens are extracted from the stream:

’s>t The (optional) command delimiter (the character is separating).

<newline>: The newline character delimits the type-ahead area (while reading commands out of this
area no prompt or menu is displayed). Secondly, it marks the end of a list of words. If 'newline’

is preceded by ’;’, the former is ignored.

\’<rest-of-line>: The backslash and the rest of the line (esp. the closing 'newline’) are ignored (this
is useful e.g. for comments and continuation lines).

<eof> or "\\’: The end-of-file character or equivalently the double-backslash serves as abort com-
mand.

The syntax of commands is described by clauses, some of which may match with a range of words (or
tokens). The syntax of a command may consist of several clauses in order to admit alternative ways
to refer to the command. There are six types of clauses:

keywords: The clause 'keyword k’ (k a word) matches the word w, if the first character of £ and of
w coincide and the remaining characters of & occur in the rest of w in the same order.

codes: The clause 'code ¢’ matches the word c.

switches: There are two variants of switch clauses: "kswitch k&’ and ’cswitch ¢’. A word of the form
"+’|’-’w matches ’kswitch &’ (resp. ’cswitch ¢’), if w matches 'keyword k’ (resp. ’code ¢”).

numbers: All words consisting of digits.
names: All words which do not start with one of the characters 7,+,-,0,..,9.

defaults: The clause 'default’ matches with the command delimiter and 'newline’.

Help Menus

The table of commands that are locally executable can be viewed together with their syntax by
entering ’?’. The table entries are structured as follows:

< name of the command > : < syntazr — clausey >

< syntax — clause, >
[< description of the command >]

If the parameter of a keyword-, code- or switch-clause coincides with the command name, this is
indicated by -*-’. In addition, more general information on the current halting point can be viewed
by entering ’77’.

The Prompt and Abortions

In order to point out that input is expected UNICOM displays a prompt which contains the following
information: The first section of the prompt is the currently active command, 1.e. the command by
means of which UNICOM has reached the current halting point and which was entered at the next
higher point. This is not always the command entered last, and the next higher halting position is

1/O-logging increases level
UNICOM-Toplevel l/> / geing

at a calling level

Prover-Toplevel \
\\ Printer-Toplevel

Change-of-Parameters

Printer-Individual-
Parameters

Pair Selection

Orientation User Driven Reduction

Selection of Coverings

Figure 2: The hierarchy of the main interaction points.

not always the point at which the last command has been entered (see Figure 2). The second part of
the prompt indicates the current point or the expected input.

By entering ’\\’ (resp. an eof-character) one can abort the currently active command. Then the next
higher halting point is reentered. In general, all side effects caused by the aborted command are
undone and the input logged during the execution of the command is discarded.

I/0-Logging

The basic idea of the I/O-logging mechanism is to record all input (or program output) produced dur-
ing a session with UNICOM, i.e. from the first command entered at Unicom-Toplevel to the leaving
‘quit’ (see commands ’log-input’, "log-output’ and ’log-proof’ at Unicom-Toplevel). As the interpre-
tation of input commands (esp. during a call of the prover) depends on the parameter settings,
each input log additionally contains the parameter settings valid at the beginning of the logged com-
mand sequence. When replaying a logged sequence of commands (see command ’execute’ at Unicom-
Toplevel) these parameter settings are first restored. This does not include, however, parameters that
control the output produced by UNICOM (namely: the prover parameters: generation-of-prover-file,
generation-of-proof-log and trace-depth). These may be set as desired before executing a command
script.

System Crashes, Lisp-level Commands

The only cases where UNICOM should enter the (Lisp-) debugger are: a failure in writing a file (e.g.
due to non-existent directories or missing write access rights) and a user’s keyboard interrupt. Besides
the usual ways to continue (in Lisp), there are two Lisp functions to reenter UNICOM:

’(abort-com)’: Aborts the currently active command analogous to aborting by means of "\\’.

’(leave-unicom)’: The current Unicom-level is left directly without undoing side effects (this affects
parameter settings). I/O-logs are closed in the current state.

’(im)’: Enters a menu to call the above functions.

Note: Whether these functions work correctly depends on the used Lisp implementation which is
required to allow that the debugger can be left with the (Lisp) function ‘throw’.

At Lisp-level UNICOM is called with the function ’(unicom)’ or ’(u)’.

When using an Apollo/Sun Lucid Common Lisp environment (Version 3 or 4), a keyboard interrupt
causes an Unicom-specific interrupt handler to be entered. It allows: to continue or to abort the active
command, to leave the current Unicom-level, to enter the debugger and to change the value of the
prover parameter 'trace-depth’.

Starting UNICOM

When starting UNICOM, the program enters Unicom-Toplevel and displays the prompt "unicom(1)>’
(here 17 is the current level at which UNTICOM is working; thus, ’1” indicates that no i/o-logging is
done). The default root directory of the specification data base is ’<working-directory>/system/inout/’.
It can be changed or adapted to some user’s own specification data base by means of the command
‘root-directory’.

3 The Parser

The parser reads in a specification (from a file in directory <root>/specs/ , with suffix ".spec’) and if it
is syntactically correct, produces an internal representation of its contents (saved in a file in directory
<root>/intern/ , with suffix ".intern’). If some syntax error is detected, the parser stops immediately
and displays the error message. The syntax of specifications is defined by the following grammar
rules:!

<specification> = spec <specification-name>
[use <specification-name> { , <specification-name> }]
[sorts <sort-name> { , <sort-name> }]
[ops { <ops-with-arity> }]
[constructors <operator-name> { , <operator-name> }]
[equations { <term> = <term> }]
[rules { <term> --> <term> }]

endspec
<ops-with-arity> = <operator-name> { , <operator-name> } : { <sort-name> } -=> <sort-name>
<term> = <variable-name> | <operator-name> [(<term> { , <term> })]

<specification-name>, <sort-name>, <operator-name>, <variable-name> = <name>
Restrictions and notes:

e There is no distinction between upper-case and lower-case characters.

e A <name> is a sequence of (non-blank) characters not starting with a digit and not containing
characters having a special Lisp interpretation (brackets, quotes, colons, etc.)

e Every <specification-name>, <sort-name> and <operator-name> has to be unique in the hierarchy.

e Every <sort-name> in the ops-clause has to be declared in a sorts-clause of the current or of a
used specification.

e Every <operator-name> in a constructors-clause has to be declared in the ops-clause of the
current specification.

e Every <operator-name> occurring in a term has to be declared in an ops-clause of the current
or of a used specification. When parsing terms, every name which is not a declared operator
name is interpreted as a variable (this is also the case, if the name is followed by an opening
parenthesis; therefore such typing errors often result in unclear error messages).

e All terms, equations and rules have to be well-sorted.

e Any text after the keyword ’endspec’ is ignored.

The equations-clause specifies the inductive conjectures, i.e. the equations to be verified by the prover
and the rules-clause specifies the set of defining rules.

1Here, [...] denotes optional arguments, {...} denotes zero or more repetitions, < ... > denotes non-terminals and
a bold font indicates grammar terminals.

4 The Checker

The checker tests whether the definition part of a specification conforms to some usual kind of con-
structor discipline. In particular, the following checks are performed:

Correctness of left-hand sides

Every left-hand side of a defining rule has to be a linear? term of the form f(t1,...,t,), where f is a
defined function symbol, i.e. not a constructor symbol, and %4, ... ¢, are constructor terms.

Termination

Termination of the system of defining rules is checked by the Lexicographic Recursive Path Ordering
with Status (RPOS). Hence, an appropriate precedence on the function symbols and a status for every
function symbol has to be found. The precedence is generated roughly by the following heuristic
method:

e A function symbol f is greater than a function symbol g, if there is a rule f(t1,...,t,) — ¢,
where g occurs in ¢ and there is no rule g(s1,...,s,) — s, where f occurs in s.
¢ Two function symbols f, g are equivalent, if there are rules f(¢1,...,t,) — t and g(s1,...,8,) —

s, where g occurs in ¢ and f occurs in s.

The status information for every function symbol is generated by comparing the sides of the rules
using each status and choosing a status for which the system is terminating.

Ground Convergence

Local (ground) confluence of the system of defining rules is tried to be established by generating
critical pairs and reducing them to identical normal forms. This (ground) joinability of all critical
pairs together with the termination property implies (ground) convergence which is crucial for the
correctness of the inductive proof procedure described in the next section.

Totality

For every non-constructor symbol f it is checked whether f is totally defined. This is done by verifying
that the tuples (¢1,...,t,) of left-hand side arguments of definition rules f(¢1,...,t,) — ¢ for f ’cover’
all argument tuples (s1,...,s,) of constructor ground terms sy,...,s,. In the case of incompleteness
tuples of argument patterns which are not ’covered’ by some left-hand side of f-rules are computed
and displayed. Moreover, for the case of redundant definition rules for f, the checker is also able
to compute different minimal but complete sets of defining rules for f. Hence, one may provide the
system with alternative function definitions based on different recursion schemes. This information is
exploited and may be crucial when proving inductive conjectures.

2The linearity requirement is not very restrictive in practice for this kind of specification discipline. In fact, it could
be completely dropped. But this would entail a substantially more complicated totality check for the defined function
symbols.

5 The Prover

The core of the prover is a specialized inductive completion algorithm (cf. [Gra89]). We shall describe
the prover by specifying the components of a completion (or prover) state, the inference rules which
are applied by the prover and the strategy the prover follows in doing that.

The Prover State

The prover operates on a number of independent completion environments and a global data base.
Each completion environment (called hypothesis) reflects a stage in the process of proving an inductive
proposition (called conjecture), i.e. an equation or the conjunction of several equations. There are
four sources from which hypotheses are produced:

1. The input specification (initial hypotheses): The equations of the specification may be processed
independently — then the prover forms a completion environment for each equation — or as the
conjunction of equations in one environment.

2. The user creates hypotheses interactively during a call of the prover (command: 'new-hypothesis’
at Prover-Toplevel).

3. The prover generates new conjectures by generalizing given ones.

4. The prover tries to prove a conjecture in several different ways so that there are various hy-
potheses belonging to the same conjecture (variants).

Global w.r.t. the hypotheses, i.e. relevant to all hypotheses, is the base of defining rules and lemmas
(proved equations and assumptions), the ordering underlying the completion process (the precedence of
the RPOS), the interpretation of the operators as AC- or C-Symbols and other parameters controlling
the prover. More precisely, a prover state consists of the following components:

o A set (list) of (open) hypotheses, the proofs of which have not been finished yet.
e A set of hypotheses which have been accepted, i.e. proved.
e A set of hypotheses which have been rejected, i.e. refuted.

e The precedence of the generated RPOS.

A system of defining rules and reduction lemmas.
e A system of cyclic rules, i.e. equations which are not directable or have not been directed.

e The parameter settings.

The current state can be viewed with the command ’show’ at the interaction point Prover-Toplevel
and the show-commands in the change-parameter-menu.

Each hypothesis consists of the following components:

e The corresponding conjecture.
e An identification to indicate the proof variant (a number).

e A set of essential pairs. FEssential pairs are: the equations of the conjecture, critical pairs
resulting from the ’covering’ of essential pairs or ’essentialized’ inessential pairs (see below).
They are, as it were, the equations that remain to be proved.

10

e A set of inductive rules (called ’inductive rules’ due to their correspondence to inductive hy-
potheses in usual inductive proofs) and a set of cyclic inductive rules, i.e. oriented (essential)
pairs which have been covered by critical pairs.

e A set of inessential pairs. Inessential pairs are critical pairs (derived from the conjecture) whose
verification is not necessary for the soundness of the proof procedure. In particular, critical
pairs between inductive rules are inessential. In some cases, computing inessential pairs leads to
interesting auxiliary equations which contribute to the termination of the proof attempt if they
are essentialized, 1.e. inserted into the set of essential pairs.

e A log component in which the actions of the prover concerning the hypothesis are recorded. The
logging mechanism may be switched off (parameter: generate-proof-log(yes|no)).

Furthermore, certain dependencies among the hypotheses are managed using a marking scheme. A
conjecture depends on the conjecture of a hypothesis, if the former is the result of generalizing an
equation belonging to this hypothesis. If the proof attempt for the old conjecture ends or is aborted,
this marking scheme allows the removal of all dependent hypotheses.

The Initialization of the Prover State

When applying the prover to a specification, first the check-file of the specification and all prove-files
of used subspecifications are read providing the appropriate data base of defining rules and lemmas
for the proof attempt.

The initialization of the set of hypotheses is influenced by two parameters: incremental-mode (yes|no)
and independent-proving-of-equations(yes|no). When working in incremental mode, the prover de-
termines by inspecting the prove-file of the specification which equations have already been accepted
or rejected and removes them from the list of equations to be proved. The parameter independent-
proving-of-equations controls whether the (remaining) equations are treated together in one hypothesis
or processed independently in distinct hypotheses. In the latter case, the list of hypotheses is arranged
in the same order as in the specification (see ’selection of pairs’ in the next section).

Additionally, when working in incremental mode, the declarations of operators as AC/C- Symbols are
restored from the prove-file. Thus, these parameters cannot be changed in incremental mode.

Having simplified the hypotheses (v. point 4 below) Prover-Toplevel is reached.

The Prover Cycle

When executing the ’body’ of the provers main loop (i.e. one step), the following operations are carried
out (in this order):

1. Selection of the hypothesis and the essential pair to be processed next:

Relevant parameters: pair-selection (fair | by-user),
processing-of-hypotheses-in-fixed-succession (yes|no).

These parameters define three ways of proceeding:

a) pair-selection = ’by-user’: A browser is entered to view the current list of hypotheses and
to select the next pair.

b) pair-selection = ’fair’ and p-f-s = 'no’: The pair that is composed of the least number of
symbols is selected from all (open) hypotheses. This determines the selected hypothesis
implicitly.

¢) pair-selection = ’fair’ and p-f-s = ’yes”: Like (b), but the pair is selected among the hy-
potheses which belong to the same conjecture as the first hypothesis of the list. In this way
one can focus on proving one specific conjecture.

11

-~

8.

. Orientation of the selected pair:

If the two sides of the pair are comparable w.r.t. the current RPOS or it is recognized that
the pair cannot be directed in a terminating manner (e.g. for permutative equations), then
the corresponding orientation is chosen automatically. Otherwise, the user may extend the
precedence or choose an orientation manually. According to its orientation the pair is added to
one of the sets of inductive rules.

Covering of the selected pair:
Relevant parameter: choice-of-coverings (onelall).

For the oriented pair, minimal coverings (sets of critical pairs) are computed by superposing
defining rules and lemmas which have the form of defining rules (left-linear, form f(¢1,...,#,) —
r, t; constructor terms) into the selected pair at an inductively complete position. The critical
pairs of a covering are inserted into the set of essential pairs. If choice-of-coverings = ’all’; then
for each covering a variant of the hypothesis is generated. Otherwise, the user may select one
of them manually.

. Simplification of the essential pairs of the new hypotheses:

a) Normalization:
Relevant parameter: normalization-mode (automatic|user-driven).
The pairs are normalized using the global base of rules and the local set of inductive rules.
b) Removal of top-level constructors:
Pairs of the form e(t1,...,t,) = ¢(s1, ..., sn) where ¢ is a constructor are simplified to the
conjunction of the pairs #; = s;.
¢) Deletion of trivial pairs.

d) Deletion of subsumed pairs:

Pairs which are subsumed by a global cyclic lemma or a cyclic inductive rule are deleted.

Check for acceptable hypotheses:

If the set of essential pairs of a hypothesis is empty, the corresponding conjecture is accepted.
Accepted conjectures and those conjectures depending on them are removed from the set of
open hypotheses. The global base of rules and cyclic rules is enriched by the inductive rules of
accepted hypotheses.

Check for (obviously) inconsistent hypotheses:

Hypotheses which contain inconsistent pairs, i.e. pairs of the form e(t1,...,%,) = d(s1,...,5m),
z =c(t1,...,t,) or x = y with ¢, d different constructors and z, y different variables are rejected
and the conjecture is removed. (Every sort is assumed to have at least two distinct constructor
ground terms.)

. Computation of inessential pairs for new hypotheses:

Relevant parameter: generation-of-inessential-pairs(yes|no).

a) If generation-of-inessential-pairs = ’yes’, all critical pairs of the oriented pair with defining
rules, reduction lemmas and inductive rules are computed. They are simplified as described
in (4 a-d) and additionally, pairs which are subsumed by essential pairs are removed. The
resulting pairs are added to the set of inessential pairs.

b) Check for (obviously) inconsistent hypotheses.

Essentialization of inessential pairs:

Relevant parameter: use-of-inessential-pairs(no|if-reductive).

12

If use-of-inessential-pairs = ’if-reductive’, those inessential pairs which are directable w.r.t. the
current RPOS and may be used to reduce an essential pair® are inserted into the set of essential
pairs (heuristic decision).

9. Generalization:
Relevant parameter: generation-of-generalizations(yes|no).

If generation-of-generalizations = ’yes’, the prover tries to generalize the oriented pair and the
result is used to form new conjectures. Currently some simple generalization techniques like
removal of equal topsymbols on both sides of an equation and abstraction of several occurrences
of the same subterm (modulo permutative cyclic rules) to a variable are implemented.

Further Remarks concerning Parameters

incremental mode: This option has been implemented to enable the user to extend specifications
with additionally needed lemmas without having to treat already proved equations all over again.
The option should only be applied carefully (see section 'modifying specifications’).

declare-ac/c-symbols: The AC/C assertions for symbols have an effect on nearly all operations of
the prover (normalization, subsumption, trivial pairs, critical pairs). The implemented RPOS,
however, is not an AC-compatible ordering. Thus, when some operators are declared as AC/C-
symbols (or pairs are directed to reduction rules manually or the termination of the defining
rules could not be established by the RPOS), there is in the end no guarantee that accepted
conjectures are correct.

generation-of-prover-file(yes|no): Writing the prove-file at the end of a call of the prover may be
switched off (irrelevant for most applications).

trace-depth(no-trace|trace-pairs|trace-steps|trace-all| trace-all-full): This parameter deter-
mines the quantity of information displayed by the prover to document actions.
trace-pairs: all processed (essential) pairs are displayed.
trace-steps: all actions of the prover are displayed.

trace-all: additionally, for every reduction step the used rule is displayed together with the
depth of the application position.

trace-all-full: additionally, the terms resulting from reduction steps are shown.

The Undo Operation

At the end of each proof step (i.e. processing one essential pair) the current prover state (set of
hypotheses, system of rules, precedence) may be saved (cf. the variants of the commands 'next’ and
‘continue’ at Prover-Toplevel). The command ’step-back’ (at Prover-Toplevel) can be used to restore
one of the former states.

Insertion of Assumptions

At Prover-Toplevel the user may add equations not (yet) proved into the global base of rules. These
assumptions may only be removed by using the undo operation. If the global base contains assumptions
at the end of a call of the prover, no prove-file is written.* A proof log, however, may be produced.

3This property of inessential pairs namely to be useful for modifying (i.e. reducing) essential pairs constitutes the
heuristic criterion for essentialization.

4The main reason for not performing a global update is to maintain consistency of the data base. Whenever there
are assumptions left the result of a proof attempt may still depend on the validity of these assumptions.

13

Modifying Specifications

When the user modifies specifications (esp. by making changes in used subspecifications), correspond-
ing prove-files or input-log-files may become obsolete, i.e. they contain wrong or useless data, e.g.
because:

e accepted equations may no longer be valid due to modified definitions,

e adding (or removing) conjectures may influence the proof process so that execution of input-
log-files may no longer be possible.

These files, however, will not be deleted and may still be used. Hence, the user i1s responsible for
maintaining consistency of the specification data base.

6 The Printer

Every operation of the prover, 1.e. the transformation of a hypothesis, has the same abstract form:
a pair is transformed into a number of successor pairs. As pairs may be produced in more than one
way, the operations define an acyclic, directed graph, whose nodes are pairs and whose edges are the
transformation steps.

When printing a proof, the corresponding proof graph is constructed and optionally reduced (min-
imized), i.e. in accepting (or stopped) proofs, all actions concerning inessential pairs that are not
essentialized are removed and in rejecting proofs, all edges not leading to the inconsistent pair are
removed. The resulting graph is cut into segments, i.e. sequences of actions which produce only one
successor pair (e.g. reduction, orientation). These segments are sorted, indexed and aligned sequen-
tially. There are three orderings which can be used to sort the segments: depthfirst, breadthfirst and
chronological. The latter tries to reproduce the order in which the operations were carried out by the
prover.

In addition, when treating disproofs (i.e. proof attempts leading to an inconsistency) the instances of
the original conjecture are computed which were needed to infer the inconsistent pair.

14

A Some More Prover Facilities

Non-Inductive Proofs

One of the secondary insufficiencies of the prover described in section 5 is the way how cyclic (non-
directed or non-directable) equations are utilized: Only one equation may be applied once to transform
one term of a normalized critical pair into the other (subsumption test). Thus, in order to experiment

with other patterns of subconnectedness proofs (e.g. s S uBrv&tasdSuerSuwd t), we
extended the prover with the following two options. In both cases, however, the ordering condition
for subconnectedness is not tested, and esp. the second option allows the user to produce nonsensical
“proofs”.

1. Multiple Subsumption
Parameter: limit-of-steps-at-subsumption-detection(<number>)

It may happen that a normalized essential pair can only be joined by more than one rewrite step
with cyclic rules. For instance, when proving that the identity of binary trees is commutative,
the induction hypothesis (a necessarily non-directed inductive rule) has to be applied twice in
parallel or, when proving that the identity of lists is commutative, the induction hypothesis and
a lemma stating the commutativity of the identity predicate for the list elements have to be
applied in parallel.

The implemented test for multiple subsumption replaces the test for ordinary subsumption if
the value of the parameter above is greater than one. It checks whether one side of a pair can
be produced by rewriting the other side using at most <limit.> rewrite steps with cyclic (global)
lemmas or cyclic inductive rules in both directions. Cyclic rules with a variable occuring only
one side (e.g. 0 = times(0,z) when non-directed) are treated in a special manner: The variables
of the 'right-hand’ side of the applied equation which are not bound by the 'matching’ of the left-
hand side become term scheme variables in the result of rewriting. Thus, this process actually
rewrites term schemes containing some free variables. The schemes describe sets of terms which
can be produced by rewriting the term started with, namely the set of terms which are instances
of the scheme. The free variables might be instantiated arbitrarily before applying the next
equation. The prover, however, uses a restricted form of instantiation by unifying the left-hand
sides of the rules with (subschemes of) a term scheme.

2. User Driven Rewriting

The command ’equationally-next’ at Prover-Toplevel enables the user to rewrite essential pairs
manually using the rewrite relation on term schemes described above with the whole rule base
(global reduction and cyclic lemmas and inductive rules of the hypothesis, all in both directions).

Reduction Strategies

The standard reduction strategy used for simplifying pairs is a rule priority strategy: Inductive rules
are applied before any lemma and lemmas are applied before definition rules. Additionally, lemmas
of higher specifications are applied before lemmas of imported specifications. The order in which the
rules are actually applied can be viewed with the command ‘show/rules’” at Prover-Toplevel.

Although this heuristic is successful in most cases, severe efficiency problems may arise, esp. when
generating the disjunctive or conjunctive normal form of boolean and/or-expressions because definition
rules as and(false,z) — false are applied at last. This inefficiency affects space - terms grow very
large - and time - many avoidable reduction steps.

To handle this problem a second reduction strategy was implemented which gives higher priority to
rules that “delete something” and postpones applications of rules that “duplicate reduction sequences”.
For this purpose, the rules are divided into three categories: (Let | — r be a rule and V(¢) (resp.
F(t)) be the multiset of variables (resp. function symbols) of a term ¢.)

15

deletion rules: V() JV(r) V(V{) = V(r)AF()3d F(r))
duplication rules:: V() 2 V(r) AV(Il) # V(r)

transformation rules:: otherwise

(C denotes strict inclusion of multisets.)

According to the second strategy, deletion rules are applied before transformation and duplication
rules, and no duplication rule is applied to a subterm which is reducible below toplevel. The remaining
ties are decided with the rule priority described above.

Besides the simple standard method of reduction, two other reduction algorithms have been im-
plemented which are based on marking terms and improved structure sharing. The parameter
‘normalization-mode’ is used to select one of the strategies and methods:

automatic(-unconditional), automatic2a, automatic3a:
standard strategy with standard method, algorithm 2 or 3, resp.
automatic2b, automatic3b:
second strategy with algorithm 2 or 3, resp.

The performance of the methods depend on the considered examples. However, if long sequences of
reductions occur, method 3 or 2 should be used . g

16

B Table of Commands

For the main points of interaction in UNICOM the following tables give an overview of the available
commands. The commands (left column) are classified and roughly described (right column).

| Unicom Toplevel |

parse, silent-parse
check

prove
parse-check-prove
print-proof-logs
(compile, run)

commands to call the tools

log-input

log-prove .

exgéclzl)lte 170 logging

log-output

change-parameter menu to preset prover parameters
edit edit a specification

root-directory

quit technical commands

delete-buffered-prove-files

| Prover Toplevel |

next, Next

continue, Continue | continue or terminate the prover cycle
stop

equational-next user driven rewriting

show

change-parameter
add-assumption
new-hypothesis
step-back

information,
trial and error

command to call the printer (only available

print-proof-logs if <generation-of-proof-log> = ’yes’)

| Printer (toplevel and individual parameter)

selection-of-available-proofs(only-accepted | rejected+open | all)
output-to-file(yes|no)

choice-of-printing-options(individual | uniform)
reduction-steps(print-sequence | print-rules)
equational-steps(print-sequence | print-rules)
proof-graph-sequentialization(chronological | breadthfirst | depthfirst)
proof-graph-minimization(yes|no)

ac-terms-in-flat-form(yes|no)

line-length(<number>)

printer mode
(on toplevel)

printing options

show-options information

continue (on toplevel)

again C

noxt (at individual parameter)

17

| Pair Selection |

up, down

next, previous traversal of the list

forward, back

of hypotheses

goto

mark, return-to-mark

select selection of a pair

print

details information

show-details

jiztg—all deletion of hypotheses

Orientation |

straight
reverse manual orientation | Choice of Coverings
cyclic select | selection
print-precedence details | information
generate-precedence-extensions | precedence extension
extend-prededence

User Driven Rewriting | | User Driven Reduction

show display and execution of reduce .
. .. . application of rules
apply equations applications continue
undo d ti undo undo operation
restart | OO operation restart P
insert stop leave
quit leave details . .
. . information

give-up details-mode

| Prover Parameters |

normalization-mode(automatic {-,2a,2b,3a,3b}, user-driven)
generation-of-inessential-pairs(yes | no)
use-of-inessential-pairs(yes|no)
generation-of-generalizations(yes|no) prove options
declare-ac-symbols(<binary symbols>)
declare-c-symbols(<binary symbols>)
limit-of-steps-at-subsumption-detection(<number>)
pair-selection(fair | by-user)
processing-of-hypotheses-in-fixed-succession(yes | no)
choice-of-coverings(one | all) prove mode
independent-proving-of-equations(yes|no)
incremental-mode(yes|no)

trace-depth(1 — 5)
generation-of-proof-log(yes | no) output control
generation-of-prover-file(yes | no)

show-io
show-strategy
quit

information

18

C How to Use UNICOM

By means of a detailed example we intend to show in this chapter how UNICOM may be used to work
on a specification and verification problem. As a matter of fact, the prover is generally not able to
solve (non-trivial) problems automatically. The user plays an indispensable role in supplying lemmas
and, unfortunately, in orienting equations and sometimes has to control the proof process down to the
last detail by entering a proof step by step. Thus, in order to succeed, the user usually needs most of
the interactive facilities (information and control) of the prover.

The example deals with a union-operation on sets that is designed to be associative and commutative.
For basic specifications and lemmas cf. appendix (E).

Specifying the Problem

First of all, we have to choose a representation for sets. We shall use lists (of numbers) with construc-
tors ’'nil” and ’cons’ for this purpose; so we operate on the sort:

set: nil: — set
cons: nat X set — set

Here the typical problem arises that the identity on constructor ground terms does not correspond
to the intended equality on the sort; so, in this example, the 'rewrite’ equality is not the desired
equality on sets. (The constructor equations cons(n,cons(n,s)) = cons(n,s), cons(n,cons(m,s)) =
cons(m,cons(n,s)) (*) would describe the equality on sets if non-freely constructed sorts were permit-
ted. Then ’union’ would reduce to an append-operation.) The properties to be proved, however, clearly
deal with the equality on sets: union(z,y) = union(y,z), union(z,union(y,2z)) = union(union(z,y),z) in-
tentionally state the equality of sets which are built with ’union’. To make these equations valid, the
union-operation therefore has to normalize the representation of sets. Normalization means that the
identity of normalized lists corresponds to the equality on sets. In the example normalization requires
us to sort lists, as we can derive from the desired AC-property. Moreover, we will remove duplicates,
too:

insert: nat x set — set
insert(n,nil) — cons(n,nil)
insert(n,cons(m,s)) — if-set(n =ngqz m, cons(m,s),
if-set(n <yq: m,cons(n,cons(m,s)),cons(m,insert(n,s))))

normalize: set — set
normalize(nil) — il
normalize(cons(n,s)) — insert(n,normalize(s))
union: set x set — set

union(nil,s) — normalize(s)
union(cons(n,s),t) — insert(n,union(s,t))

Note that ’insert’ transforms normalized lists into normalized ones and as we will see later ’insert’
satisfies the properties (*). So ’insert’ can be seen as a semantic constructor for sets.

Given these definitions, we have to create some specification files. It is recommendable to separate
the definition part form the theorem part and to provide some initially empty specification files to
write in lemmas found during the proof attempts. For example, we start with:

union (use nat) definition

union-ac (use union-ac-lma) the two equations of the theorem

union-ac-Ima (use nat-lma, union-ac-lma-nat, union-if-hom-out, union-if-hom-in, union-if-simpl)
expected lemmas concerning the theorem

union-if-hom-out (use union) lemmas according to (if.8) in section "Preliminaries’ (see page 38)

19

union-if-hom-in (use union) lemmas according to (if.7) in section 'Preliminaries’
union-if-simpl (use union) lemmas according to (if.1-6) in section ’Preliminaries’
union-ac-lma-nat (use Ima-nat) expected lemmas concerning the nat-specification
Ima-nat theorems concering the nat-specification proved earlier

Finding a Proof of the Theorem

Having parsed and checked these specifications (the definition rules are proved to be terminating by
the checker) and generated prover-files for the specifications with empty equations-part by calling the
prover, we apply the prover to the specification containing the theorem to find an adequate base of
lemmas. To this end, the following configuration of the prover has turned out to be suitable:

o trace-depth = ’trace-all’ — to watch all activities of the prover, esp. to determine whether
inductive rules are applied

e pair-selection = ’by-user’ — to select pairs the user is interested in and to observe how hypotheses
are changed

e choice-of-coverings = ’by-user’ — In general, the competent user is able to select an appropriate
covering, variants may be investigated by using the undo operation.

e normalization-mode = ’automatic()’ — one of the implemented reduction strategies, or 'user-
driven’ — if the user wants to take a closer look at the reduction process. For long reduction
sequences, however, the user driven mode is not practicable.

e generation-of-inessential-pairs = use-of-inessential-pairs = generation-of-generalizations = 'no’
— these options are to support the prover when working in a more automatic mode and offer
little aid to the user.

Reaching Prover-Toplevel we proceed as follows: first we select a pair, orient it if necessary, and
choose an inductively complete position for the rule. Then the new set of essential pairs is simplified
and we would be well advised to analyse the results. If we know any rules which may be used to
reduce the pairs further or which generalize the pairs, we add these rules to the (global) rules base as
assumptions. The inserted assumptions are used to simplify pairs and we continue covering left pairs
and adding assumptions. Eventually we have collected several new conjectures which we copy into
(add to) a specification file and try to prove (possibly using incremental mode). If the conjectures
are valid, can be proved and suffice to show the main theorem, we redo the proof of the theorem now
using the proved assumptions instead.

In the example, let us first consider the commutativity of "union’: (1): union(z,y) = union(y,z). The
equation is oriented automatically and there is only one covering. In the following, the unifier of the
superposition corresponding to a critical pair is used to indicate the cases (critical pairs) produced by
a covering. We get the pairs:

z — nil : (1.1): normalize(y) = union(y,nil) , which is oriented as shown and covered again:

y — nil : nil = normalize(nil) = nil

y — cons(mn,y) : insert(n,normalize(y)) = insert(n,union(y,nil)) = insert(n,normalze(y)) , apply-
ing inductive rule (1.1).
The found property (1.1) may be included in a lemma specification file to facilitate future
attempts to prove the theorem.

z — cons(n,z) : insert(n,union(z,y)) = union(y,cons(n,z)) ,
leading to the lemma (1.2): union(y,cons(n,z)) = insert(n,union(y,z)) , which is sufficient to
finish the proof of theorem (1) if inserted as assumption.

20

We then turn to conjecture (2): union(z,union(y,2z)) = union(union(z,y),z) , which we orient to be
cyclic and cover by instantiating the variable z (another orientation or covering may be chosen as
well).

z — nil : (2.1): normalize(union(y,z)) = union(normalize(y),2)

This pair may be generalized to the equations normalize(union(z,y)) = union(z,y) and
union(normalize(z),y) = union(z,y). The proofs of these equations, however, involve the same
lemmas as used below. We continue:

y — nil + (2.1.1): normalize(normalize(z)) = normalize(z)
z — nil 1 trivial
z — cons(n,z) : normalize(insert(n,normalize(z))) = insert(n,normalize(z)) ,

leading to lemma (2.1.1.1): normalize(insert(n,z)) = insert(n,normalize(z)) , stating
that ’insert’ preserves normalization.

y — cons(n,y) : normalize(insert(n,union(y,z))) = union(insert(n,normalize(y)),z) , reduces with
assumption (2.1.1.1), inductive rule (2.1) and
the assumption (2.1.2): union(insert(n,y),z) = insert(n,union(y,z)) to a trivial pair.

z — cons(n,z) : insert(n,union(z,union(y,z))) = union(insert(n,union(z,y)),2)
After applying assumption (2.1.2), the pair is subsumed by the inductive rule (2).

Thus, the first call of the prover leads to the following collection of new conjectures:

(1.1) union(y,nil) = normalize(y)

(1.2) union(z,cons(n,y)) = insert(n,union(z,y))
(2.1.1.1) normalize(insert(n,z)) = insert(n,normalize(z))
(2.1.1) normalize(normalize(z)) = normalize(z)

(2.1.2) union(insert(n,y),z) = insert(n,union(y, z))

(2.1) normalize(union(y,2)) = union(normalize(y),2)
These equations may be treated as follows:

(1.1) : according to the proof found above

(1.2) : z — cons(m,z) : insert(m,union(z,cons(n,y))) = insert(n,insert(m, union(z,y)))
Applying the inductive rule results in:
insert(m,insert(n,union(z,y))) = insert(n,insert(m, union(z,y))) .

A non-trivial generalization of this pair leads to the first fundamental lemma for the con-
sidered validation problem: (1.2.1): insert(n,insert(m,z)) = insert(m,insert(n,z)) , which
in fact holds for non-normalized z, too.

(2.1.1.1) : normalize(insert(n,z)) = insert(n,normalize(z))

z — nil ¢ trivial
z — cons(m,z) : if-set(n =pq¢ m,normalize(cons(m,z)),
if-set(n <yq: m,normalize(cons(n,cons(m,z))),
normalize(cons(m,insert(n,z))))) =
insert(n,insert(m,normalize(z)))

Applying definition rules and the inductive rule results in:

21

if-set(n =pngq: m.insert(m,normalize(z)),
if-set(n <yqt m,insert(n,insert(m,normalize(z2))),
insert(m,insert(n,normalize(z))))) =
insert(n,insert(m,normalize(z))) .

A reformulation of conjecture (1.2.1) reduces the above pair:
(1.2.1b): if-set(b,insert(n insert(m,z)).insert(m,insert(n,z))) = insert(n,insert(m,z)) .
We generalize the result:

if-set(n =nq¢ m,insert(m,normalize(z)),
insert(n,insert(m,normalize(z)))) = insert(n,insert(m,normalize(z)))

and obtain the new conjecture (2.1.1.1.1b):

if-set(n =pnq: m,insert(m,z),
insert(n,insert(m,z))) = insert(n,insert(m,z))

Conjecture (2.1.2) is proved analogously with (2.1.1.1) and the proofs of (2.1.1) and (2.1) have already
been planned. As conjecture (1.2.1b) collapses to equation (1.2.1) when superposing the definition of
'if-set’, we are left with the equations (1.2.1) and (2.1.1.1.1b).

Equation (2.1.1.1.1b) combines properties of 'if-set’," =n4; ' and 'insert’. Tt essentially expresses the
property (2.1.1.1.1): insert(n,insert(n,z)) = insert(n,z) , the second fundamental lemma for our
problem. Tt turns out that equation (2.1.1.1.1b) cannot be proved by induction directly whereas
equation (2.1.1.1.1) is good-natured enough to be verified. By use of lemma (2.1.1.1.1), conjecture

(2.1.1.1.1b) can be proved equationally with three rewrite steps:

if-set(n =nq: m,insert(m,z),
insert(n,insert(m,z)))
= if-set(n =nqt m,insert(m,insert(m,z)), lemma (2.1.1.1.1) reverse
insert(n,insert(m,z)))
= insert(if-nat(n =ngq; m,m,n),insert(m,z)) lemma: insert(if-nat(b,z,y),z) =
if-list(b,insert(z,z),insert(y,z)), reverse
= insert(n,insert(m,z)) lemma: if-nat(n =nq: m,m,n) = n , straight

This proof may be entered manually using the command ’equationally-next’ at Prover-Toplevel pro-
vided that the used rules are available.

So the last equation to be treated is lemma (1.2.1), the reversibility of insertion, and this turns out to
be more difficult than it appears to be in view of the well-statedness of the property. In the induction
step (z — cons(v,z)), the following has to be proved:

if-set(m =nq¢ v.insert(n,cons(v,z)), = if-set(n =pngq: v,insert(m,cons(v,z)),
if-set(m <ngqt v,insert(n,cons(m,cons(v,z))), if-set(n <yq¢ v,insert(m,cons(n,cons(v,z))),
insert(n,cons(v,insert(m,z))))) insert(m,cons(v,insert(n,z)))))

Exhaustive simplification (about 500 reduction steps with about thirty technical rules) and removal
of the leading constructor ’cons’ result in the two equations:

if-nat(v <wygq: m.if-nat(v <ygq: n,v,n), = if-nat(v <yaqr nif-nat(v <yg: m,v,m),
if-nat(m <ygq: n,m,n)) if-nat(n <yjqt m,n,m))

and (*):

22

if-set(m =gt ¥ A ¥ =Nar 0,2, if-set(v =nar 7 A ¥ =Ngt M, T,

if-set(m <nqt v A if-set(n <na: v A
m #Nat U A M =Ngz 0,cons(v,z), n #Nat U A 0 =Ngt m,cons(v,z),
if-set(m #nat v A if-set(n #nat v A
v =Nat B A U <Ngt m,insert(m,z), v =Nat m AV <ngt ninsert(n,z),
if-set((m <wyat v v 0 <Nat ¥) A if-set((n <wat v v m <ngt ¥) A
(v #Nat m v 0 <naz V) A (v <nat n v m <yat n) A
(1) <Nat M v 0 <Nat m), (U #Nat nv m <Nat U),
cons(if-nat(v <ygq: m,v,m), cons(if-nat(v <wgq: n,v,n),
if-set(m =gt v.2, = if-set(n =naqt v,
if-set(m <nqt v,cons(v,z), if-set(n <yqt v,cons(v,z),
insert(m,z)))), insert(n,z)))),
if-set(m =pnq¢ v.insert(n,z), if-set(n =nq¢ v.insert(m,z),
if-set(m <wat v, if-set(n <yat v,
cons(if-nat(v <ygq: n,v,n), cons(if-nat(v <ygq: m,v,m),
if-set(n =nqt v, 2, if-set(m =nqt v,1,
if-set(n <ygq¢ v,cons(v,z), if-set(m <ngq: v,cons(v,z),

insert(n,z)))), insert(m,z)))),

insert(n,insert(m,z)))))))) insert(m,insert(n,z))))))))

or the like, depending on the actual set of reduction rules.

Whereas the first pair is rather reasonable, it is unclear how to overcome the second. ”Feeling” that,
after applying the inductive rule, the remaining problem is to prove the permutational equivalence of
the nested if-expressions, we are lead to the following provable generalization:

if-set(m =Naqt ¥ A ¥ =Nar 1.2, if-set(v =nat # A ¥ =Nat M, T,
if-set(m <wqt v A if-set(n <yat v A
m #Nagt U A M =Nagt T,CVL, N #Nat ¥ A B =Ngt M, VUCE,
if-set(m #nqt v A if-set(n #nat v A
¥V =nNat B AU <pNgt M, IMET, ¥ =nat M AU <pNgt B,INT,
if-set((m <wyat v v 0 <ngt ¥) A = if-set((n <ngt v v m <ngt ¥) A
(1) #Nat m v n <Nat U) A (U <Nat B v m <Nat TL) A
(1) <Nat m v 0 <Nat m), (U #Nat n v m <yNat U),
cifvm, cifon,
if-set(m =pnq¢ v,inz, if-set(n =nqt v.imz,
if-set(m <ngq: v,cifon,inimz)))))) if-set(n <yqt v, cifvm, inimz))))))

Note that the variables in the condition terms of the if-expressions are separated from the variables
of the result terms.

Supplying this lemma yields a rewrite proof of (*) of two steps (the lemma and the inductive rule).
So the proof of (1.2.1) is completed if the parameter ’limit-of-steps-at-subsumption-detection’ is set
to '2’.

In summary, we have found the following lemma hierarchy for proving that ’union’ is commutative
and associative:

Theorem 1: 'Union’ is commutative.
union(z,y) = union(y,z)

(1.1) union(y,nil) = normalize(y)

(1.2) union(z,cons(n,y)) = insert(n,union(z,y))

(1.2.1) insert(n,insert(m,z)) = insert(m,insert(n,z))

23

Theorem 2: 'Union’ is associative.
union(z,union(y,z)) = union(union(z,y),2)

uses 2.1.2
(2.1) normalize(union(y,z)) = union(normalize(y),z)

uses 2.1.1.1
(2.1.1) normalize(normalize(z)) = normalize(z)
(2.1.1.1) normalize(insert(n,z)) = insert(n,normalize(z))
(1.2.1b) if-set(b,insert(n,insert(m,z)),insert(m insert(n,z))) = insert(n,insert(m,z))

(2.1.1.1.1b) if-set(n =nq4t m,insert(m,z) insert(n,insert(m,z))) =
insert(n,insert(m,z))

(2.1.1.1.1) insert(n,insert(n,z)) = insert(n,z)
(2.1.2) union(insert(n,y),z) = insert(n,union(y,z))
uses 1.2.1b, 2.1.1.1.1b

24

D An Example Session

The example treated in the following transcript of a UNICOM session is the proof of the property
of the function ’reverse’ on lists to be self-inverse. The user’s input is typeset bold-underlined and
comments are written italic.

u(1)> root-directory ~/demos

u(1)> pep list Parse, check and prove specification ‘list’.
*#%x Parsing Specification LIST **x*

SPEC list The parser echos input while parsing.
SORTS nat, list-nat
OPS o : --> nat
s : nat --> nat
empty : --> list-nat
cons: nat list-nat --> list-nat
append : list-nat list-nat --> list-nat
reversge : list-nat --> list-nat
CONSTRUCTORS o, s, empty, cons
EQUATIONS

reverse(reverse(x)) = x

RULES append(empty,x) --> x
append(cons(u,x),y) --> cons(u,append(x,y))

reverse (empty) —--> empty
reverse(cons(u,x)) --> append(reverse(x),cons(u,empty))

ENDSPEC

*#%x Checking Specification LIST *#¥=*

Checking left hand sides of rules

All left hand sides of rules are correct !

Checking termination of rules

System is terminating !

Checking confluence

System is confluent !

Checking totality of definitions

Checking totality of APPEND

1 definition for the function symbol APPEND generated !

Checking totality of REVERSE

1 definition for the function symbol REVERSE generated !

A1l functions are totally defined !

*#*x Proving Specification LIST ***

Incremental Mode : no

Independent Proving of Equations : yes
AC-symbols : none
C-symbols : none

parse-check-prove>parameter> dc

ook ok ok ok ok ok o ok ok o o ok okok ok
* *
* 1 APPEND =*
* *
ook ok ok ok ok ok o ok ok o ok ok ok ok ok

declare-c-symbols>symbols>

declare commutative symbols

menu of binary symbols

<return> means emply list

parse-check-prove>parameter> show-strategy

Pair Selection

Processing of Hyps in Fixed Succession :

Choice of Coverings
Normalization Mode

Generation of Inessential Pairs
Use of Inessential Pairs
Generation of Generalizations

Independent Proving of Equations
AC-Symbols

C-Symbols

Subsumption Steps

parse-check-prove>parameter> ps

ook ok ok ok ok ok e ok ke o o ok ok ok ok
* *
* 1 fair *
¥ 2 by-user *
* *
ke ok ok ok ok ok ok o ok ok o ok ok okok ok

parameter>pair-selection> by-user

parse-check-prove>parameter> quit

parse-check-prove>toplevel> continue

Step: 1

: fair

no

: by-user

automatic-unconditional

. no
. no
. no

: yes
! none
: none

parameter 'Pair Selection’

Enter the prover cycle and don’t stop after

each step. At the end of each step,

the prover state is saved. The command Continue
continues without saving states.

1. of 1: There is only one hypothesis and this is the first.

Initial Hypothesis: REVERSE(REVERSE(X)) = X

[[
[[
I I
| Variant: 1 |
[[
| Essential Pairs: 1 REVERSE(REVERSE(X)) = X |
[[

continue>choose pair> 27 second help command

Manual Choice of the Next Pair:

By traversing the current list of hypotheses, one can
- view the hypotheses (brief or detailed information)
- delete single variants of a conjecture
- select the pair to be processed next

VvV V V V V V VYV
A A A AAAANA

continue>choose pair> 1

Processing pair: REVERSE(REVERSE (X)) X

of hypothesis REVERSE(REVERSE(X)) X

Pair inserted as inductive rule: REVERSE(REVERSE(X)) --> X [LIST 5]

New set of essential critical pairs generated: There is only one covering.
REVERSE (EMPTY) = EMPTY
REVERSE (APPEND (REVERSE(Y) , CONS (U,EMPTY))) = CONS(U,Y)

End of step: 1 (state: 1) The current state is saved under name ’'1’.
Step: 2

1. of 1:

Initial Hypothesis: REVERSE(REVERSE(X)) = X

I I
I I
I I
| Variant: 1 |
I I
| Essential Pairs: 1 REVERSE(APPEND(REVERSE(Y) ,CONS(U,EMPTY))) = CONS(U,Y)

I I

continue>choose pair> 1
Processing pair: REVERSE (APPEND (REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)
of hypothesis REVERSE(REVERSE(X)) = X

Pair inserted as inductive rule:
REVERSE (APPEND (REVERSE (Y) ,CONS (U,EMPTY))) --> CONS(U,Y) [LIST 6]

New set of essential critical pairs generated:
REVERSE (APPEND (EMPTY , CONS (U,EMPTY))) = CONS(U,EMPTY)
REVERSE (APPEND (APPEND (REVERSE(X) , CONS(Z ,EMPTY)) ,CONS (U ,EMPTY))) = CONS(U,CONS(Z,X))

End of step: 2 (state: 2)

Step: 3
1. of 1:

Initial Hypothesis: REVERSE(REVERSE(X)) = X

Essential Pairs: 1 REVERSE (APPEND(APPEND(REVERSE(X),CONS(Z,EMPTY)),CONS(U,EMPTY))) =

I I
I I
[[
| Variant: 1 |
[[
[[
I CONS(U,CONS(Z,X))

[[

continue>choose pair> 1

Processing pair: REVERSE(APPEND (APPEND (REVERSE(X) ,CONS(Z,EMPTY)) ,CONS (U,EMPTY))) =
CONS(U,CONS(Z,X))
of hypothesis REVERSE(REVERSE(X)) = X

Pair inserted as inductive rule:
REVERSE (APPEND (APPEND (REVERSE (X) , CONS (Z ,EMPTY)) ,CONS (U,EMPTY))) -->
CONS(U,CONS(Z,X)) [LIST 7]

New set of essential critical pairs generated:
REVERSE (APPEND (APPEND (EMPTY, CONS(Z ,EMPTY)) , CONS(U,EMPTY))) = CONS(U,CONS(Z,EMPTY))
REVERSE (APPEND (APPEND (APPEND (REVERSE(Y) ,CONS (V,EMPTY)) ,CONS(Z,EMPTY)) , CONS (U,EMPTY)))

CONS (U, CONS(Z,CONS(V,Y)))
End of step: 3 (state: 3)
Step: 4

1. of 1:

Initial Hypothesis: REVERSE(REVERSE(X)) = X

Variant: 1

APPEND (APPEND (APPEND (REVERSE(Y) , CONS (V,EMPTY)) , CONS(Z ,EMPTY)),
CONS (U,EMPTY)))

I I
I I
I I
I I
I I
| Essential Pairs: 1 REVERSE(|
I I
I I
I I
| CONS (U, CONS(Z,CONS (V,Y))) |
I I

continue>choose pair> \\ Obuviously the process diverges. We abort the command
‘continue’ and will step back to supply a lemma.

28

Aborting.

parse-check-prove>toplevel> step-back show-states

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k %k %k %k %k 3k %k %k 3k 3k 5k %k %k %k %k %k %k %k k *k

* *
* (3,3) (2,2) (1,1) (0,0) =
* *

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3%k %k 5k %k ok %k %k 3k 3k %k %k %k %k % %k %k %k k *k

step-back>back-to> 1 back to state ’1’ after step 1’
parse-check-prove>toplevel> show hyps

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 5k ok 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 5k ok ok 3k 3k 3k 3k 3k Kk ok 3k 3k 3k 5k ok ok ok ok 3k 3k 3k ok 3k 3k ok ok ok Ak o 3k 3k Kk Kk Kk 3k 3k 3k 5k 3k ok ok A 3k 3k Kk Kk Kk %k %k ko kK k k

* *
*] e *
* | | %
* | Initial Hypothesis: REVERSE(REVERSE(X)) = X [*
* | | %
* | Variant: 1 | *
* | | %
* | Rules: REVERSE(REVERSE(X)) --> X | =
* | Inductively complete position : LHS (1) | *
* | | %
* | Cyclic Rules: none | *
* | | %
* | Inessential Pairs: none | *
* | | *
* | Essential Pairs: REVERSE(APPEND (REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y) | *
* | | %
K e *
* *

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok dk 3k 3k 3k %k ok ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k ok 3k k 3k 3k 3k Kk ok 3k 3k 3k 5k ok ok 3 A 3k 3k 3k Kk Kk 3k 3k 3k 5k ok ok Ak o 3k 3k ok Kk Kk 3k 3k 5k 3k ok ok o 3k 3k Kk Kk Kk %k %k ko Kk k k k

parse-check-prove>toplevel> add-assumptions reverse(append(x,y)) =

append(reverse(y),reverse(x)) \\

reverse (append(x,y)) = echo of the parser
append (reverse(y) ,reverse(x)) END

Inserted rules: The assumption is oriented automatically.

REVERSE (APPEND(X,Y)) --> APPEND(REVERSE(Y) ,REVERSE(X))

Hypothesis accepted:
REVERSE (REVERSE(X)) = X

#

No further hypotheses.

#

parse-check-prove>toplevel> print-proof-logs We call the printer to view the proof.

Available logs:
1 log(s) of accepted hypotheses
0 log(s) of rejected hypotheses
0 log(s) of open hypotheses

Selection of Available Proofs :all

OQutput to File 1 yes
Choice of Printing Options for the Proofs : uniform, with

Reductions : print used set of rules
Equation Applications : print used set of equations
Proof Graph Sequentialization : depthfirst

Proof Graph Minimization T yes

Terms with AC-Symbols in Flat Form 1 yes

Line Length : 120

print-proof-logs>options> continue

Accepted conjectures: output of the printer follows

The conjecture comprises the equation(s):

1 REVERSE (REVERSE(X)) = X

1: essential pair: REVERSE(REVERSE(X)) = X
(conjectured by user)
is oriented to the rule: REVERSE(REVERSE(X)) ——> X

The rule is covered at the inductively complete position
lhs: (1) by the critical pairs:

with rule: REVERSE(EMPTY) := EMPTY
1.1: REVERSE(EMPTY) = EMPTY

with rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
1.2: REVERSE(APPEND(REVERSE(Y) ,CONS(U,EMPTY))) = CONS(U,Y)

1.1: essential pair: REVERSE(EMPTY) = EMPTY
Reduction by the rule(s): (1 steps)

definition rule : REVERSE(EMPTY) := EMPTY
results in: EMPTY = EMPTY

which is trivial.

1.2: essential pair: REVERSE (APPEND (REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)

Reduction by the rule(s): (7 steps)

assumption : REVERSE (APPEND(X,Y)) --> APPEND(REVERSE(Y) ,REVERSE(X))
inductive rule : REVERSE(REVERSE(X)) --> X (see 1)

definition rule : REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
definition rule : REVERSE (EMPTY) := EMPTY

definition rule : APPEND (EMPTY,X) := X

30

definition rule : APPEND(CONS(U,X),Y) := CONS(U,APPEND(X,Y))
results in: CONS(U,Y) = CONS(U,Y)

which is trivial.

This concludes the accepting proof.

#
No further hypotheses. back at Prover-Toplevel
#
parse-check-prove>toplevel> step-back 0 We undo all and try to prove the theorem under

generation of inessential pairs.
parse-check-prove>toplevel> change-parameter +gip +uip show-strategy

Pair Selection : by-user

Processing of Hyps in Fixed Succession : no

Choice of Coverings : by-user

Normalization Mode : automatic-unconditional

Generation of Inessential Pairs 1 yes switched on by +gip’
Use of Inessential Pairs : if-reductive switched on by "+uip’
Generation of Generalizations ! no

Independent Proving of Equations 1 yes

AC-Symbols : none

C-Symbols : none

Subsumption Steps : 1

change-parameter>parameter> td To watch the process we choose a deeper trace level.

3k 3k 3k 2k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k ok %k %k %k %k

no-trace
trace-pairs
trace-steps
trace-all
trace-all-full

* K K K X ¥ ¥
A WN =
* K K K X ¥ ¥

3k 3k 3k 2k 3k 3k 3k 3k 3k 3k k 3k 3k %k %k %k %k %k %k %k %k %k %k

trace-depth>depth> trace-all
change-parameter>parameter> quit

parse-check-prove>toplevel> next do one (the next) step

Step: 1
1. of 1:

I I
| Initial Hypothesis: REVERSE(REVERSE(X)) = X |
I I
| Variant: 1 |
I I
| Essential Pairs: 1 REVERSE(REVERSE(X)) = X |
I I

31

next>choose pair> 1

Processing pair: REVERSE(REVERSE(X)) = X
of hypothesis REVERSE(REVERSE(X)) = X

Pair inserted as inductive rule: REVERSE(REVERSE(X)) --> X [LIST 5]

New set of essential critical pairs generated:
REVERSE (EMPTY) = EMPTY
REVERSE (APPEND (REVERSE(Y) , CONS (U,EMPTY))) = CONS(U,Y)

Normalizing essential pair: REVERSE(EMPTY) = EMPTY
LHS (0), definition rule: REVERSE(EMPTY) := EMPTY
Result of normalization: EMPTY = EMPTY

Normalizing essential pair: REVERSE(APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)
Result of normalization: REVERSE (APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)

Deleting trivial essential pair: EMPTY = EMPTY

New inessential critical pairs: Superpositions into the currently processed pair:
reverse(reverse(z)) = x
So the generated essential pairs are buill again.

with inductive rule: REVERSE(REVERSE(X)) --> X [LIST 5]
at position lhs (1):

REVERSE(Y) = REVERSE(Y)
with definition rule: REVERSE(EMPTY) := EMPTY [LIST 3]
at position lhs (1):

REVERSE (EMPTY) = EMPTY
with definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY)) [LIST 4]
at position lhs (1):

REVERSE (APPEND (REVERSE (Y) ,CONS (U,EMPTY))) = CONS(U,Y)
with inductive rule: REVERSE(REVERSE(X)) --> X [LIST 5]
at position lhs ():

Y=Y

Deleting trivial inessential pair: REVERSE(Y) = REVERSE(Y)
Deleting trivial inessential pair: Y =Y

Normalizing inessential pair: REVERSE(EMPTY) = EMPTY

LHS (0), definition rule: REVERSE(EMPTY) := EMPTY

Result of normalization: EMPTY = EMPTY

Normalizing inessential pair: REVERSE(APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)
Result of normalization: REVERSE (APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)

Deleting trivial inessential pair: EMPTY = EMPTY
Deleting inessential pair: REVERSE(APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)
which is subsumed by (1 steps):

essential pair: REVERSE (APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)

End of step: 1 (state: 4)

parse-check-prove>toplevel> next ; details

Step: 2
1. of 1:

Initial Hypothesis: REVERSE(REVERSE(X)) = X
Variant: 1

Rules: REVERSE(REVERSE(X)) --> X
Inductively complete position : LHS (1)

Cyclic Rules: none
Inessential Pairs: none

Essential Pairs: 1 REVERSE(APPEND(REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)

next>choose pair> 1

Processing pair: REVERSE (APPEND (REVERSE(Y),CONS(U,EMPTY))) = CONS(U,Y)
of hypothesis REVERSE(REVERSE(X)) = X

Pair inserted as inductive rule:
REVERSE (APPEND (REVERSE (Y) ,CONS (U,EMPTY))) --> CONS(U,Y) [LIST 6]

New set of essential critical pairs generated: There is only one covering.
REVERSE (APPEND (EMPTY, CONS (U,EMPTY))) = CONS(U,EMPTY)
REVERSE (APPEND (APPEND (REVERSE (X) , CONS (Z ,EMPTY)) , CONS (U,EMPTY))) = CONS(U,CONS(Z,X))

Normalizing essential pair: REVERSE(APPEND(EMPTY,CONS(U,EMPTY))) = CONS(U,EMPTY)
LHS (1), definition rule: APPEND(EMPTY,X) := X

LHS (0), definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
LHS (1), definition rule: REVERSE(EMPTY) := EMPTY

LHS (0), definition rule: APPEND(EMPTY,X) := X

Result of normalization: CONS(U,EMPTY) = CONS(U,EMPTY)

Normalizing essential pair:

REVERSE (APPEND (APPEND(REVERSE (X) , CONS(Z,EMPTY)) , CONS (U,EMPTY)))
Result of normalization:

REVERSE (APPEND (APPEND(REVERSE (X) , CONS(Z,EMPTY)) , CONS (U,EMPTY)))

CONS(U,CONS(Z,X))

CONS(U,CONS(Z,X))

Deleting trivial essential pair: CONS(U,EMPTY) = CONS(U,EMPTY)

New inessential critical pairs:
with inductive rule: REVERSE (APPEND(REVERSE(Y),CONS(U,EMPTY))) --> CONS(U,Y) [LIST 6]
at position lhs (1 1):
REVERSE (APPEND(CONS (X,Z) ,CONS (U,EMPTY))) = CONS(U,APPEND(REVERSE(Z) ,CONS (X,EMPTY)))
with inductive rule: REVERSE(REVERSE(X)) --> X [LIST 5] birth of the key rule
at position lhs (1 1):
REVERSE (APPEND (X, CONS (U,EMPTY))) = CONS(U,REVERSE(X))
with definition rule: REVERSE(EMPTY) := EMPTY [LIST 3]
at position lhs (1 1):

33

REVERSE (APPEND (EMPTY, CONS (U,EMPTY))) = CONS(U,EMPTY)
with definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY)) [LIST 4]
at position lhs (1 1):

REVERSE (APPEND (APPEND (REVERSE (X) , CONS(Z ,EMPTY)) ,CONS(U,EMPTY))) = CONS(U,CONS(Z,X))
with inductive rule: REVERSE (APPEND (REVERSE(Y),CONS(U,EMPTY))) --> CONS(U,Y) [LIST 6]
at position lhs ():

CONS(X,Z) = CONS(X,Z)

Deleting trivial inessential pair: CONS(X,Z) = CONS(X,Z)

Normalizing inessential pair:
REVERSE (APPEND (CONS (X ,Z) ,CONS (U,EMPTY))) = CONS(U,APPEND(REVERSE(Z) ,CONS (X,EMPTY)))
LHS (1), definition rule: APPEND(CONS(U,X),Y) := CONS(U,APPEND(X,Y))
LHS (0), definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
Result of normalization: APPEND(REVERSE (APPEND(Z,CONS(U,EMPTY))),CONS(X,EMPTY)) =
CONS (U, APPEND (REVERSE (Z) , CONS (X ,EMPTY)))
normalization of the key rule
Normalizing inessential pair: REVERSE (APPEND(X,CONS(U,EMPTY))) = CONS(U,REVERSE(X))
Result of normalization: REVERSE(APPEND(X,CONS(U,EMPTY))) = CONS(U,REVERSE(X))

Normalizing inessential pair: REVERSE(APPEND(EMPTY,CONS(U,EMPTY))) = CONS(U,EMPTY)
LHS (1), definition rule: APPEND(EMPTY,X) := X

LHS (0), definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),bCONS(U,EMPTY))
LHS (1), definition rule: REVERSE(EMPTY) := EMPTY

LHS (0), definition rule: APPEND(EMPTY,X) := X

Result of normalization: CONS(U,EMPTY) = CONS(U,EMPTY)

Normalizing inessential pair:

REVERSE (APPEND (APPEND (REVERSE (X) , CONS (Z ,EMPTY)) , CONS (U,EMPTY)))
Result of normalization:

REVERSE (APPEND (APPEND (REVERSE (X) , CONS (Z ,EMPTY)) , CONS (U,EMPTY)))

CONS(U,CONS(Z,X))

CONS (U, CONS(Z,X))
Deleting trivial inessential pair: CONS(U,EMPTY) = CONS(U,EMPTY)

Deleting inessential pair: REVERSE (APPEND (APPEND (REVERSE(X) ,CONS(Z,EMPTY)) ,CONS (U,EMPTY)))

CONS (U, CONS(Z,X))
which is subsumed by (1 steps):
essential pair: REVERSE (APPEND(APPEND(REVERSE(X),CONS(Z,EMPTY)) ,CONS(U,EMPTY))) =
CONS (U, CONS(Z,X))

Changing status of inessential critical pair(s): ’essentialization’ of the key rule
REVERSE (APPEND (X, CONS (U,EMPTY))) = CONS (U,REVERSE (X))

to ’essential’, the corresponding rules of which may reduce the
essential pair: REVERSE(APPEND (APPEND(REVERSE(X) ,CONS(Z,EMPTY)),CONS(U,EMPTY))) =
CONS(U,CONS(Z,X)) .

End of step: 2 (state: 5)

parse-check-prove>toplevel> next ; details

I I
| Initial Hypothesis: REVERSE(REVERSE(X)) = X I
I I
I I

Variant: 1

34

Rules: REVERSE(APPEND (REVERSE(Y),CONS(U,EMPTY))) --> CONS(U,Y)
Inductively complete position : LHS (1 1)
REVERSE (REVERSE(X)) --> X
Inductively complete position : LHS (1)

Cyclic Rules: none

Inessential Pairs: APPEND(REVERSE(APPEND(Z,CONS(U,EMPTY))),CONS(X,EMPTY)) =
CONS (U, APPEND (REVERSE(Z) ,CONS(X ,EMPTY)))

Essential Pairs: 1 REVERSE(APPEND (X, CONS(U,EMPTY))) = CONS(U,REVERSE(X))
2 REVERSE (APPEND (APPEND (REVERSE (X) ,CONS (Z ,EMPTY)) , CONS (U,EMPTY))) =
CONS(U,CONS(Z,X))

next>choose pair> 1

Processing pair: REVERSE(APPEND(X,CONS(U,EMPTY))) = CONS(U,REVERSE(X))
of hypothesis REVERSE(REVERSE(X)) = X

Pair inserted as inductive rule:
REVERSE (APPEND (X, CONS(U,EMPTY))) --> CONS(U,REVERSE(X)) [LIST 7]
Now the key rule is available
and used to simplify pairs.

Normalizing essential pair:
REVERSE (APPEND (APPEND(REVERSE (X) ,CONS (Z,EMPTY)), CONS(U,EMPTY))) = CONS(U,CONS(Z,X))
LHS (0), inductive rule: REVERSE(APPEND(X,CONS(U,EMPTY))) --> CONS(U,REVERSE(X))
LHS (1), inductive rule: REVERSE(APPEND(X,CONS(U,EMPTY))) --> CONS(U,REVERSE(X))
LHS (2), inductive rule: REVERSE(REVERSE(X)) --> X
Result of normalization: CONS(U,CONS(Z,X)) = CONS(U,CONS(Z,X))

Deleting trivial essential pair: CONS(U,CONS(Z,X)) = CONS(U,CONS(Z,X))

Normalizing inessential pair: APPEND(REVERSE(APPEND(Z,CONS(U,EMPTY))),CONS(X,EMPTY)) =
CONS (U, APPEND (REVERSE(Z) , CONS (X,EMPTY)))
LHS (1), inductive rule: REVERSE(APPEND(X,CONS(U,EMPTY))) --> CONS(U,REVERSE(X))
LHS (0), definition rule: APPEND(CONS(U,X),Y) := CONS(U,APPEND(X,Y))
Result of normalization:
CONS (U, APPEND (REVERSE(Z) , CONS (X,EMPTY)))

CONS (U, APPEND (REVERSE (Z) ,CONS (X ,EMPTY)))

Deleting trivial inessential pair:
CONS (U, APPEND (REVERSE(Z) , CONS (X,EMPTY)))

CONS (U, APPEND (REVERSE (Z) ,CONS (X ,EMPTY)))

New set of essential critical pairs generated: “proof” of the key rule
REVERSE (CONS (U,EMPTY)) = CONS(U,REVERSE (EMPTY))
REVERSE (CONS(Z ,APPEND(V,CONS (U,EMPTY)))) = CONS(U,REVERSE(CONS(Z,V)))

Normalizing essential pair: REVERSE(CONS(U,EMPTY)) = CONS(U,REVERSE(EMPTY))

LHS (0), definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
RHS (1), definition rule: REVERSE(EMPTY) := EMPTY

LHS (1), definition rule: REVERSE(EMPTY) := EMPTY

LHS (0), definition rule: APPEND(EMPTY,X) := X

Result of normalization: CONS(U,EMPTY) = CONS(U,EMPTY)

Normalizing essential pair:

35

REVERSE (CONS(Z, APPEND (V, CONS (U,EMPTY)))) = CONS(U,REVERSE(CONS(Z,V)))
LHS (0), definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
RHS (1), definition rule: REVERSE(CONS(U,X)) := APPEND(REVERSE(X),CONS(U,EMPTY))
LHS (1), inductive rule: REVERSE(APPEND(X,CONS(U,EMPTY))) --> CONS(U,REVERSE(X))
LHS (0), definition rule: APPEND(CONS(U,X),Y) := CONS(U,APPEND(X,Y))
Result of normalization:

CONS (U, APPEND (REVERSE (V) ,CONS (Z ,EMPTY)))

CONS (U, APPEND (REVERSE(V) ,CONS (Z,EMPTY)))

Deleting trivial essential pair:
CONS (U, APPEND (REVERSE (V) ,CONS (Z ,EMPTY)))

CONS (U, APPEND (REVERSE(V) , CONS (Z,EMPTY)))
Deleting trivial essential pair: CONS(U,EMPTY) = CONS(U,EMPTY)
Hypothesis accepted:
REVERSE (REVERSE (X)) = X
End of step: 3 (state: 6)
#
No further hypotheses.

#

parse-check-prove>toplevel> show accepted-hyps

3k 3k 3k 2k 3k 3k 3k 3k 3k 3k 3k 3k 3k Kk 5k 3k 3k k 3k 3k 3k ok k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k k ok 3k 3k ke k k3 3k 3k 3k ok Kk 3k 3k ok ko Ak 3k 3k ok ke 3k 3k ok ok ok ok %k Kk Kk Kk k

* *
I T i e *
* | | %
* | Initial Hypothesis: REVERSE(REVERSE(X)) = X [*
* | | %
* | Variant: 1 | *
* | | %
* | Rules: REVERSE(APPEND(X,CONS(U,EMPTY))) --> CONS(U,REVERSE(X)) | *
* | Inductively complete position : LHS (1) | *
* | REVERSE (APPEND (REVERSE(Y) ,CONS (U,EMPTY))) --> CONS(U,Y) | =
* | Inductively complete position : LHS (1 1) | *
* I REVERSE (REVERSE (X)) --> X | =
* | Inductively complete position : LHS (1) | *
* | | %
* | Cyclic Rules: none | *
* | | %
* | Inessential Pairs: none | *
* | | %
* | Essential Pairs: none | *
* | | %
DI e Tt T T *
* *

3k 3k 3k 2k 2k 3k 3k 3k 3k ok 3k 3k 3k 3k %k ok ok 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 5k ok 3k 3k dk 3k 3k 3k k ok 3k 3k 3k ok ok 3k k 3k 3k ok ok 3k 3k 3k ok ok ok 3k 3k 3k ok ok ok 3k 3k Kk ok %k Kk %k %k ok Kk Kk k

#
No further hypotheses.
#

parse-check-prove>toplevel> next
Writing prover file

Writing proof log file

u(1)>

36

E A Collection of Examples

The following collection contains example specifications and theorems from the domains 'natural
numbers’, ’lists’ and ’trees’ which were treated with the UNICOM system. Although the involved rule
systems are not proved to be terminating by the system in general, the proofs found are correct, i.e.
the generated essential pairs are subconnected with respect to a terminating ordering®. Each example
is divided into two parts. The definition part contains the sort declarations (with constructors) and
function definitions (arity with definition rules). The theorem part contains a collection of theorems
and for each theorem the hierarchy of lemmas used to prove it.

The next section deals with the common basis of all examples.

Preliminaries

Specifications concerning boolean expressions and natural numbers are part of nearly every speci-
fication. Boolean operators are involved both in the definition of functions (esp. in the definition
of predicates (functions into the sort bool)) and clearly, in the formulation of conjectures. Natural
numbers, unless needed directly, often serve as sort parameter, e.g. to ’enumerate’ the elements of a
sort in parameterized specifications (e.g. elements of lists, function symbols in terms). So this section
deals with these fundamental definitions, the lemmas used to normalize boolean expressions, lemmas
concerning the basic functions on natural numbers, and the if-functor and the identity predicate which
are defined schematically for any sort.

Basic Specifications
The specifications concerning boolean expressions and natural numbers consist of the definition of

the usual boolean connectives 'not’, 'and’, 'or’, 'if-bool’ and the basic functions on natural numbers:
ordering, addition, subtraction and predecessor, as follows:

Sorts:
bool: true: — bool
false: — bool
nat: Zero: — nat
suc: nat — nat

Function Definitions:

not: bool — bool

and: bool x bool — bool

or: bool x bool — bool

imply: bool x bool — bool

if-bool: bool x bool x bool — bool

not(false) — true
not(true) — false

and(false,z) — false or(false,z) — =z
and(true,z) — or(true,z) — true

5This can be verified manually using e.g. semantical path orderings (see [KL8&0]).

37

imply(false,z) — true if-bool(true,z,y) — =z
imply(true,z) — =z if-bool(false,z,y) — g
<Ngt : nat X nat — nat
>nNgt ¢ nat X nat — nat

<nNat (zero,z) — true >Nat (zero,z) — false
<Nat (suc(z),zero) — false >nNat (suc(z),zero) — true
<nat (suc(z)suc(y)) — <wat (z.9) >nat (suc(z)suc(y)) — >wnat (z.9)

add: nat x nat — nat
sub: nat x nat — nat
pred: nat — nat

pred(zero) — zero
pred(suc(z)) — =z

sub(zero,z) — zero
sub(z,zero) —

sub(suc(z),suc(y)) — sub(z,y)

add(zero,z) — =z

add(suc(z),y) — suc(add(z,y))

max: nat X nat — nat
min: nat X nat — nat

max(z,zero) — min(zero,z) — zero
max(zero,z) — min(z,zero) — zero
max(suc(z),suc(y)) — suc(max(z,y)) min(suc(z),suc(y)) — suc(min(z,y))

If opportune, will use infix notation for the binary operations: and (A), or (v), imply (—), >nNat .

SNat .

The If-Operator and the Identity Predicate

For each sort s an if-operator and an identity predicate are assumed to be defined according to the
following scheme:

if-s: bool x s x s — s
if-s(true,z,y) — =z
if-s(false,z,y) — g

=,: s X s — bool
=s(c(z1, .., zn)c(yr, .y ¥n)) — L1 =5, YL A o ATy =5, Un
=s(c(z1, ..., 20).d(y1, ..., ym)) — false

for all constructors c#£d of sort s.

Example:
=Nat (zero,zero) — true
=nNat (suc(z),zero) — false
=nNat (zero,suc(z)) — false
=nat (suc(z)suc(y)) — =na (2,y)

In addition, a lot of lemmas related to the if-operators are assumed to be available (to be supplied by

need), e.g.:

(if.1) if(b,z,z) = 26

(if.2) if(b,z.if(a,z,y)) = if(bv a,z,y)

6 An arrow above the '="-symbol indicates the orientation of the rewrite rule corresponding to the equation.

38

(i£.3) if(u,2,if(v,9,if(w,2,2))) = if(uv (= v A w)2if(v,9,2))
(if.4) if(b,z.if(b,y,2)) = if(b.z.2)

(if.5) if(b.z.if(= b,y,2)) = if(b.z.y)

(if.6) if(b,z.if(b A a,y,2)) = i(b.z,2)

(..)

GET) f(. . ifsi(b.z,y),..) = ifs(bf(. .z 2. y..)

where f: ... X s; X ... — s is a defined symbol.

(if.8) if-s(b,c(z1, ..., zn)c(y1, - yn)) = c(if-s1(b,x1,y1).. - if-50(0. 20, yn))

where ¢ is a constructor.

Example:

add(z,if-nat(b,y,2)) if-nat(b,add(z,y),add(z,z))
add(if-nat(b,z,y),2) if-nat(b,add(z,z),add(y,2))
if-nat(b,suc(z),suc(y)) = suc(if-nat(b,z,y))

—
—

The identity predicates should always be declared to be C-symbols.

Boolean Lemmas

The following is the complete list of lemmas used to transform boolean expressions into their con-

junctive normal form. In most examples the disjunctive normal form might be used as well, but it
should be noted that in general, lemmas have to be formulated in a different way when using different
boolean normal forms. I.e. the lemmas base which has been found to prove a theorem using the

rules for generating conjunctive normal form has often to be changed or extended, when the rules for
generating conjunctive normal form are replaced by the rules generating disjunctive normal form, in

order to prove the theorem using the altered rules base.

imply(z,y) = —zvy
if-bool(b,z,y) = imply(b,z) A imply(not(b),y)

)

)
(3) not(not(z)) = z
(4) and(z,z) = =z
(5) or(z,z) = =
(6) or(z,not(z)) = true
(7) and(z not(z)) = false
(8) and(not(z)or(z,y)) = and(not(z).y)
(9) and(z or(not(z),4)) = and(z.y)
(10) and(or(z,y).0r(z.0r(not(y).2))) = and(or(z,y).0r(z,2))
(11) and(or(z,y) or(z.n0t(y))) = #
(12) not(and(z,y)) = or(not(x).not(y))
(13) not(or(z,4)) = and(not(x),not(y))
(14) or(and(z,y).2) = and(or(z,2).0r(y.2))

The operators 'and’, 'or’ are declared to be AC-symbols.

39

Lemmas Concerning Functions on Natural Numbers

The used lemma base for the operators <pa¢ , =nat . add, sub etc. contains about fifty equations
which state their basic properties. This relatively high number of equations is due to the fact that
properties often have to be combined to form applicable reduction rules or properties have to be
formulated in several 'versions’. We restrict ourselves to a list of some examples. In general, it is no
problem to prove equations of that kind:

1) >Nat (I,?J) = - <Nat (y,I)

2) pred(z) = sub(z,suc(zero))

3) 2 <nat T = true

4) 2 <Nat YA Y<Nat £ = Z =Nat ¥

(

(

(

(

(5) 2 <Nat YV ¥y <Nat T = true
(6) 2 <Nat YV Z=Nat ¥y = ¢ <Nat ¥

(7) 2 <Nat YAT =Nat Y = T =Nat ¥

(8) (# SNat YV O)A T =Nat ¥y = T =Nat ¥

(9) # <Nat YA Y <Nat 2 AT <Nat 2 = T <Nat Y A Y <Nat 2

10) 2 <Nat YV ¥y <Nat 2V =T <nag 2 = true

11) sub(sub(z,y).z) = sub(z,add(y,z))

13) add(z,y) =nat add(z,2) = y =nat 2

(
(
(12) add(z,y) =Nat zero = T =pNgat Z€r0 A Y =pNgat ZEFO
(
(14) if-nat(z <na: y,z,y) = if-nat(y <wya: z,y.2)

The operator 'add’ is declared to be an AC-Symbol.

40

Example I: Arithmetic

This example deals with some basic properties of arithmetical functions on natural numbers. The
proofs of most of the theorems are produced by UNICOM without user support — lemmas are needed
rarely.

Function Definitions:

double: nat — nat
half: nat — nat

double(zero) — zero

double(suc(z)) — suc(suc(double(z)))

half(zero) — zero
half(suc(zero)) — zero

half(suc(suc(z))) — suc(half(z))

even: nat — bool

even(zero) — true
even(suc(zero)) — false
even(suc(suc(z))) — even(z)
sum: nat — nat
sum-odd: nat — nat
sum-even: nat — nat

sum(zero) — zero

sum(suc(z)) — add(suc(z),sum(z))

sum-odd(zero) — one

sum-odd(suc(z)) — add(suc(mul(two,suc(z))),sum-odd(z))
sum-even(zero) — zero
sum-even(suc(z)) — add(mul(two,suc(z)),sum-even(z))

mul: nat x nat — nat

square: nat — nat

cube: nat — nat

power4: nat — nat

powerd: nat — nat

exp: nat X nat — nat
mul(zero,z) — zero
mul(suc(z),y) — add(ymul(z,y))
square(z) — mul(z 2)
cube(z) — mul(z mul(z,z))
powerd(z) — mul(square(z),square(z))
powerb(z) — mul(z,mul(z,mul(z,mul(z,z))))

exp(z,zero) — one

exp(z,suc(y)) — mul(z,exp(z,y))
sum-square: nat — nat
sum-cube: nat — nat
sum-power4: nat — nat

sum-square(zero) — zero
sum-square(suc(n)) — add(square(suc(n)),sum-square(n))

41

sum-cube(zero) — zero

sum-cube(suc(z)) — add(cube(suc(z)),sum-cube(z))
sum-powerd(zero) — zero
sum-powerd(suc(z)) — add(powerd(suc(z)),sum-powerd(z))

div: nat x nat — nat
mod: nat x nat — nat

div(zero,y) — zero

div(suc(z),zero) — zero

div(suc(z),suc(y)) — if-nat(z <na: y.zero,suc(div(sub(z,y),suc(y))))
mod(z,zero) — z

mod(zero,suc(y)) — zero

mod(suc(z),suc(y)) — if-nat(z <wa: y.suc(z) mod(sub(z,y).suc(y)))
Note that the definitions of the functions div and mod cannot proved to be terminating by UNICOM.

Theorem 1: ’Add is associative and commutative

add(add(z,y),z) = add(z,add(y,z))
add(z,y) = add(y.z)

Theorem 2: 'Half’ — 'Double’ — ’Add’.

double(z)) = add(z,z)

half(double(m)) = m

half(add(add(m,m),n)) = add(m,half(n))
add(half(y),half(y)) = ifn(even(y),y.dif(y,one))

Theorem 3: 'Even’ — ’Add’, ’Even’ — "Mul’.
even(add(z,z)) = true

even(add(z,add(y.y)))
even(add(z,mul(z,z)))

even(z)
true

—
—_

Theorem 4: 'Sub’ — "Add’.
sub(z,z) = zero
sub(sub(z,y),z) = sub(sub(z,2).y)
sub(add(z,y),z) Yy
sub(z,add(z,¥)) zero

[

Theorem 5: 'Mul’ is associative and commutative.

mul(z,y) = mul(y.z)

mul(mul(z,y),2) mul(mul(z,z),y)
mul(mul(z,y),2) mul(mul(z,y).z)
mul(mul(z,y),2) mul(mul(y,z),2)

e e e

uses ‘add’ 1s associative and commutative.

42

Theorem 6: 'Mul’ distributes over ’Add’.

mul(z,add(y.z)) = add(mul(z,y),mul(z,z))

Theorem 7: Laws of Exponentiation

exp(suc(zero),z) % one

exp(z,add(y,z)) = mul(exp(z,y).exp(z,2))
exp(mul(z,y),2) mul(exp(z,2),exp(y.2))
exp(exp(z,y).2) = exp(exp(z,2),y)
exp(exp(z,y).z) = exp(z,mul(y,z))

—

Theorem 8: 'Mod’ — 'Div’.

add(mod(z,y).mul(div(z,y).y)) = =z

Theorem 9: Sum Formulas

sum(n) = hilf(mul(suc(n),n))

sum-odd(n) = mul(suc(n),suc(n))
sum-even(n) = mul(two,sum(n_))
add(sum-odd(z),sum-even(z)) = sum(suc(2 z))

uses theorems (2),(3)

Theorem 10: Binomial Formulas

square(add(z,y)) = add(square(z),square(y),2 mul(z,y))
cube(add(z,y)) = add(cube(z),cube(y), 3 mul(square(z),y), 3 mul(z,square(y)))

powerd(add(z,y)) = add(powerd(z).4 mul(cube(z),y), powerd(y),
6 mul(square(z),square(y)), 6 mul(z,cube(y)))

uses theorem (6)

Theorem 11: Sum Formulas -2-.

mul(six,sum-square(z)) = mul(mul(z,suc(z)),suc(mul(two,z)))
mul(four,sum-cube(z)) = mul(square(z),square(suc(z)))
add(z,30 sum-powerd(z)) = mul(cube(z),add(6 square(z),15 z,10))

43

Example II: Sorting Algorithms

This example deals with the correctness properties of five sorting algorithms: sorting by insertion,
minimum-sort, merge-sort, bubble-sort and quick-sort. A more detailed discussion of this example

can be found in [Gra90b].
Sorts:

list: empty: — list
cons: nat x list — list

Function Definitions:

nat<list: nat x list — bool
list<nat: list x nat — bool
list<list: list x list — bool

nat<list(z,empty) — true

nat<list(z,cons(y,l)) — = <wat ¥ A nat<list(z,l)

list<nat(empty,z) — true
list<nat(cons(z,),y) — = <wat ¥ A list<nat(l,y)

list<list(empty,!) — true

list<list(cons(z,h),la) — nat<list(z,b) A list<list(l, k)
append: list x list — list

append(empty,[) —

append(cons(z,l1),la) — cons(z,append(l;.b))
member: nat x list — bool
delete: nat x list — list

member(z,empty) — false

member(z,cons(y,l)) — = =nqt y v member(z,l)

delete(z,empty) — empty

delete(z,cons(y,l)) — if-list(z =nas y.{,cons(y, delete(z,()))

butlast: list — list
last: list — nat

butlast(empty) — empty
butlast(cons(n,empty)) — empty
butlast(cons(n,cons(m,l))) — cons(n,butlast(cons(m,!)))
last(empty) — zero

last(cons(n,empty)) — n

last(cons(n,cons(m,l))) — last(cons(m,l))

ordered: list — bool
permp: list x list — bool
count: nat x list — nat

ordered(empty) — true
ordered(cons(z,l)) — nat<list(z,]) A ordered(!)

44

permp(empty,empty) — true
permp(empty,cons(z,l)) — false
permp(cons(z,h),l2) — member(z,k) A permp(l;,delete(z,k))

count(z,empty) — zero
count(z,cons(y,l)) — if-nat(z =nqt y.suc(count(z,l)),count(z,1))
insert: nat x list — list
ins-sort: list — list
cons(z,empty)
if-list(z <nqt y.cons(z,cons(y,l)),cons(y,insert(z,1)))

insert(z,empty) —
insert(z,cons(y,l)) —
ins-sort(empty) — empty

ins-sort(cons(z,l)) — insert(z,ins-sort([))

min-list: list — nat

min-sort: list — list
min-list(empty) — zero
min-list(cons(n,empty)) — n
min-list(cons(n,cons(m,l))) — min(n,min-list(cons(m,!)))

min-sort(empty) — empty
min-sort(cons(n,l)) — cons(min-list(cons(n,!)),min-sort(delete(min-list(cons(n,l)),cons(n,[))))

merge: list x list — list
splitl: list — list
split2: list — list
merge-sort: list — list

merge(empty,{) — 1

merge(l/,empty) — 1

merge(cons(z,l1),cons(y,b)) — if-list(z <nar ¥,
cons(z,merge(l;,cons(y,lz))),cons(y,merge(cons(z,h),2)))

splitl(empty) — empty
splitl(cons(z,empty)) — cons(z,empty)
splitl(cons(z,cons(y,l))) — cons(z,splitl(!))
split2(empty) — empty
split2(cons(z,empty)) — empty
split2(cons(z,cons(y,l))) — cons(y,split2(!))
merge-sort(empty) — empty
merge-sort(cons(z,empty)) — cons(z,empty)

merge-sort(cons(z,cons(y,l))) — merge(merge-sort(splitl(cons(z,cons(y,1)))),
merge-sort(split2(cons(z,cons(y,!)))))

bubble: list — list
bubble-sort: list — list
bubble(empty) — empty
bubble(cons(z,empty)) — cons(z,empty)
bubble(cons(z,cons(y,0))) — if-list(z <na: ¥,
cons(y,bubble(cons(z,1))),cons(z,bubble(cons(y,1))))

bubble-sort(empty) — empty
bubble-sort(cons(z,l)) — cons(last(bubble(cons(z,1))),bubble-sort(butlast(bubble(cons(z,!)))))

lowers: nat x list — list
greaters: nat x list — list
quick-sort: list — list

45

lowers(z,empty) — empty
lowers(z,cons(y,l)) — if-list(y <wat z.cons(y,lowers(z,1)) lowers(z,1))

greaters(z,empty) — empty
greaters(z,cons(y,l)) — if-list(y <yaq¢ z.greaters(z,l),cons(y,greaters(z,0)))

quick-sort(empty) — empty
quick-sort(cons(z,l)) — append(quick-sort(lowers(z,1)),cons(z,quick-sort(greaters(z,[))))

Note that the definitions of the functions 'min-sort’, 'merge-sort’, 'bubble-sort’ and 'quick-sort’ cannot
be proved to be terminating by UNICOM.

Theorem 1a: ’Ins-Sort’ produces ordered lists

ordered(ins-sort(z)) = true

(1a.1) nat<list(n,insert(m,l)) = n <wnqt m A nat<list(n,l)

(1a.2) ordered(insert(n,z)) = ordered(z)

Theorem 1b: ’Ins-Sort’ permutes the list
permp(l,ins-sort(l)) = true

(1b.1) delete(n,insert(n,l)) = 1

(1b.2) member(n,insert(n,l)) = true

Theorem 1c: 'Ins-Sort’ permutes the list (second version)
count(n,ins-sort(z)) = count(n,z)

(1c.1) count(n,insert(m,l)) = count(n,cons(m,l))

Theorem 2a: 'Min-Sort’ produces ordered lists

ordered(min-sort(!)) = true

(2a.1) nat<list(n,min-sort(!)) = nat<list(n,l)
(2a.1.1) n <nqt m A nat<list(n,delete(m,l)) = n <nqt m A nat<list(n,l)
(2a.2) nat<list(n delete(n,l)) = nat<list(n,l)
(2a.3) min-list(cons(n,1)) <ya: m = true
(2a.4) nat<list(min-list(cons(n,{)),l) = true
(2a.4.1) nat<list(min(n,m),2) = nat<list(n,z) v nat<list(m,z)

(2a.5) n <nq min-list(cons(m,l)) = nat<list(n,cons(m,!))

46

Theorem 2b: 'Min-Sort’ permutes the list
permp(min-sort({),l) = true

(2b.1) min(z,y) = ifn(nat<(z,y),z.y)

Theorem 2c¢: 'Min-Sort’ permutes the list (second version)

count(n,min-sort({)) = count(n,l)

Theorem 3a: 'Merge-Sort’ produces ordered lists

—_

ordered(merge-sort(z)) = true

(3a.1) ordered(merge(z,y)) = ordered(z) A ordered(y)
= nat<list(z,z) A nat<list(z,y)

(3a.1.1) nat<list(z,merge(z,¥))
— nat<list(u,l)) = nat<list(z,l)

(3a.1.2) nat<list(z,{) A (z =Naz u
(3a.1.3) nat<list(z,l) A (y <nat ¢ — nat<list(y,l)) = nat<list(z,l)

Theorem 3c: 'Merge-Sort’ permutes the list (second version)
count(m,merge-sort(z)) = count(m,z)

(3¢c.1) count(m,merge(z,y)) = add(count(m,z),count(m,y))

(3¢.2) add(count(m,splitl(z)) count(m,split2(z))) = count(m,z)

Theorem 4a: 'Bubble-Sort’” produces ordered lists

ordered(bubble-sort({)) = true

uses 2a.3-4

(4a.1) nat<list(n,bubble-sort(l)) = nat<list(n,I)

(4a.1.1) n <pnaqt last(l) A nat<list(n,butlast(l)) =
if-bool(! =ris: empty,n =nq¢ zero,nat<list(n,l))

(4a.1.2) bubble(cons(z,y)) =rist empty = false

(4a.2) nat<list(last(!),butlast({)) = nat<list(last({),{)
(4a.3) nat<list(n,bubble({)) = nat<list(n,I)
(4a.4) last(bubble(cons(n,l))) = min-list(cons(n,l))

(4a.4.1) last(cons(z,y)) = if-natn(y =r;st empty,z last(y))

47

Note: User driven reduction is needed here to delay the application of lemma (4a.4).

Theorem 4c: 'Bubble-Sort’ permutes the list (second version)
count(n,bubble-sort(!)) = count(n,l)

(4¢c.1) count(n,butlast(l)) = if-nat(n =nq last(l),pred(count(n,1)),count(n,l))
(4¢c.2) count(n,bubble(l)) = count(n,l)

(4¢.3) count(n,y) =nat zero A n =pngq last(bubble(cons(z,y))) A n #nar z = false

Theorem 5a: 'Quick-Sort’ produces ordered lists
ordered(quick-sort(l)) = true

(5a.1) ordered(append(l;,ls)) = ordered(l;) a ordered(ls) a list<list({,)
(5a.1.1) nat<list(z,append(y,z)) = nat<list(z,y) A nat<list(z,z)
(5a.2) nat<list(n,quick-sort({)) = nat<list(n,l)

uses ba.l.1

(5a.2.1) list<list(lowers(m,),1) list<list(greaters(m,l),l;) = list<list(!,l;)
(5a.3) list<list(z,cons(n,y)) = list<nat(z,n) A list<list(z,y)
(5a.4) list<list(l,quick-sort(y)) = list<list(l,4)

uses ba.3

(5a.4.1) list<list(l,append(z.y)) = list<list(l,z) a list<list(l,y)

(5a.4.2) list<list(} lowers(m,{)) a list<list(}; greaters(m,l)) = list<list({,{)
(5a.5) list<list(quick-sort(h), k) = list<list(l,b)

(5a.5.1) list<list(append(z,y),l) = list<list(z,l) a list<list(y,[)

(5a.5.2) list<list(lowers(m,l),l) A list<list(greaters(m,l),l) = list<list((,])
(5a.6) list<nat(lowers(z,l),z) = true
(5a.7) nat<list(z greaters(z,l)) = true

(5a.8) list<list(lowers(z,y) greaters(z,y)) = true

uses ba.3
(5a.8.1) u <yat z — list<nat(lowers(u,l),z) = true
(5a.8.2a) z <ngq: u — nat<list(z greaters(u,{))
(5a.8.2b) z =ngq¢ u — nat<list(z,greaters(u,!))

Theorem 5c¢: ’Quick-Sort’ permutes the list (second version)

count(n,quick-sort(!)) = count(n,l)

—

(5c.1) count(n,append(z,y)) = add(count(n,z),count(n,y))

(5¢.2) add(count(n lowers(m,l)),count(n,greaters(m,l))) = count(n,l)

48

Example III: Binary Search Trees

This example deals with sorted binary trees of natural numbers, i.e. all numbers in the left-hand child
of a node are less or equal to the node’s number, and all numbers in the right-hand child are greater or
equal to the node’s number. The theorems state properties of an insert operation and of two different
delete operations.

Sorts:

bintree: nil-bt: — bintree
nd: bintree x bintree x nat — bintree

Function Definitions:

greater-all: nat x bintree — bool
less-all: nat x bintree — bool
sorted: bintree — bool
greater-all(z,nil-bt) — true
greater-all(z,nd(u,v,w)) — 2 >nar w A greater-all(z,u) A greater-all(z,v)

less-all(z,nil-bt) — true
less-all(z,nd(u,v,w)) — 2z <nat w A less-all(z,u) A less-all(z,v)

sorted(nil-bt) — true
sorted(nd(u,v,w)) — greater-all(w,u) A less-all(w,v) A sorted(u) A sorted(v)

contains: bintree x nat — bool
search: bintree x nat — bool

contains(nil-bt,z) — false
contains(nd(#,v,w),2) — w =pngq 2 v contains(u,z) v contains(v,z)

search(nil-bt,z) — false
search(nd(u,v,w),z) — if-bool(w =nas 2 true if-bool(w >nq: z,search(u,z), search(v,z))

insert: bintree x nat — bintree

insert(nil-bt,z) — nd(nil-bt,nil-bt,z)

insert(nd(u,v,w),z) — if-bt(w =ngq z,nd(u,v,w),

if-bt(w >nar z,nd(insert(u,z),v,w),nd(u,insert(v,z),w)))

combine: bintree x bintree — bintree
delete: bintree x nat — bintree

combine(z,nil-bt) — =z

combine(z,nd(u,v,w)) — nd(combine(z,u), v, w)

delete(nil-bt,z) — nil-bt
delete(nd(u,v,w),z) — if-bt(w =ngqt z,combine(u,v),
if-bt(w >nq: z,nd(delete(u,z),v,w),nd(u,delete(v,z),w)))

leftmost: bintree — nat

delete-leftmost: bintree — bintree
deletel: bintree x nat — bintree

leftmost(nil-bt) — zero
leftmost(nd(nil-bt,z,y)) — oy
leftmost(nd(nd(u,v,w),z,y)) — leftmost(nd(u,v,w))

49

delete-leftmost(nil-bt) — nil-bt
delete-leftmost(nd(nil-bt,z,y)) — =z
delete-leftmost(nd(nd(u,v,w),z,y)) — nd(delete-leftmost(nd(u,v,w)),z,y)

deletel(nil-bt,z) — nil-bt
deletel(nd(,nil-bt,w),z) — if-bt(w =ngq: z,u,nd(deletel(x,z),nil-bt,w))
deletel(nd(z,nd(u,v,w),y),2) — if-bt(y =na: 2z.nd(z deletel(nd(u,v,w)) leftmost(nd(u,v,w))),
it-bt(y >Nat 2,
nd(deletel(z,z),nd(u,v,w),y),
nd(z,deletel(nd(u,v,w),2),y)))

height: bintree — nat
count: bintree x nat — nat
height(nil-bt) — zero
height(nd(u,v,w)) — suc(max(height(u), height(v)))
count(nil-bt,z) — zero
count(nd(u,v,w),z) — if-nat{w =na =,
suc(add(count(u,z),count(v,2))),
add(count(u,z),count(v,z)))

Theorem 1a: ’Insert’ increases height
height(insert(z,a)) >nqa: height(z) = true

(la.l) z >Nt © = true

(1&2) z ZNat max(yvz) =z ZNat ynz ZNat z

T >Nat 2V Y ZNat 2

[

(1a.3) max(z,y) >nat 2
The order of reduction steps is crucial. The subterms which may be ’deleted’ using the induction
hypothesis make it possible to 'delete’ other subterms which involve the induction hypothesis in some

sense but on which the induction hypothesis cannot be applied directly. Thus, the induction hypothesis
has to be applied after simplifying the term using lemmas.

Theorem 1b: ’Insert’ increases height at most by one
suc(height(z)) >na: height(insert(z,z)) = true

uses la.l-3

(1b.1) = >nqs sub(z,y) = true

Theorem 2: ’Insert’ inserts a number

contains(insert(z,y),y) = true
contains(z,y) — contains(insert(z,2),y) = true
- contains(z,y) A ¥y ZNat 2 — — contains(insert(z,z),y) = true

(2.1) 2 =Nt z = true

Theorem 3a: ’'Insert’ does not change the number of occurences of other elements

50

Y #Nat 2 — count(insert(z,y),z) =nq: count(z,z) = true

(3a.1) add(z,y) =nat add(z,2) = y =nat 2

(3a.2) add(z,y) =nat zero = T =pNgat 2810 A Y =gt ZEIO

Theorem 3b: ’'Insert’ inserts one occurrence

- contains(z,y) — count(insert(z,y),y) =Nt one = true

(3b.1) = contains(z,y) — pred(count(insert(z,y),y)) =na: zero = true
(3b.2) — contains(z,y) — count(insert(z,y),y) ZNa: zero = true
uses 3a.2

(3b.1-2.1) add(z,y) =nat one = (Z =nat1 ONe A ¥ =Nqt zero) v (T =Nat ZErO A T =pgt ONE)

Lemmas which state conditional equalities (s = t if ¢) as (3b.1-2) can only be applied by UNICOM if
the equation and the condition occur together in the pair to be reduced, i.e. the equation to be proved
has to ’contain’ the lemmato be applied explicitly. There is no way to deduce the application condition
from ’contextual’ terms in the considered equation. To produce usable condition terms reduction rules
often have to introduce several cases (e.g. (3b.1-2.1, 10°.1)). However, not every case distinction can
be formulated as a terminating reduction rule and the appropriateness of case distinction rules is
more or less restricted to the situation the rule was intended for - the uncontrolled application of case
distinction rules is rather destructive than fruitfull (cf. the comment on lemma 10°.1). So UNICOM
is only rudimentarily able to realize some kind of nested argumentation.

Theorem 3c: ’'Insert’ does not add already contained numbers in sorted trees

sorted(z) A contains(z,y) — count(insert(z,y),z) =nq¢ count(z,z) = true

(3c.1) less-all(m,u) A n <pyqt m — count(u,n) =nq¢ zero = true

(3¢.2) greater-all(m,u) A n >pNqt m — count(u,n) =nqa: zero = true

Theorem 4: ’Insert’ preserves the sorted property

sorted(z) — sorted(insert(z,y)) = true
sorted(insert(z,y)) = sorted(z)

(4.1) greater-all(z,insert(y,z)) = T >nat 2 A greater-all(z,y)

(4.2) less-all(z,insert(y,z)) = 2z >nat ¢ A less-all(z,y)

Theorem 5a: 'Delete’ removes one occurence of the given number in sorted trees
sorted(z) — count(delete(z,y),y) =nar pred(cound(z,y)) = true

uses 3a.l1-2; 3c.1-2, 3b.1-2.1

51

(5a.1) count(combine(z,y),z) = add(count(z,z),count(y,z))

Theorem 5b: ’Delete’ does not change the number of occurences of other elements
Y #Nat 2 — count(delete(z,2),y) =nqt count(z,y) = true

uses 3a.1-2, 3b.1-2.1, 5a.l

Theorem 6: ’Delete’ preserves the sorted property

sorted(z) — sorted(delete(z,y)) = true

(6.1) greater-all(z,y) — greater-all(z,delete(y,z)) = true
(6.1.1) greater-all(z,combine(u,v)) = greater-all(z,u) A greater-all(z,v)
(6.2) less-all(z,y) — less-all(z,delete(y,2)) = true
(6.1.2) less-all(z,combine(u,v)) = less-all(z,u) A less-all(z,v)
(6.3) sorted(z) a sorted(y) a greater-all(m,z) A less-all(m,y) — sorted(combine(z,y)) = true

uses 6.1.1
(6.1.3) z >nat y A greater-all(y,z) — greater-all(z,z) = true

Theorem 7a: 'Deletel’ decreases height
height(z) >nat height(deletel(z,z)) = true
(This does not hold for ’delete’.)

uses la.2-3, 1b.1
(7a.1) delete-leftmost(nd(u,v,w)) = if-bt(height(u) =na4: zero,v,nd(delete-leftmost(u),v,w))
(7a.2) deletel(nd(u,v,w),z) =
it-bt(w =na: 2,
if-bt(height(v) =nq+ zero, u,nd(u,delete-leftmost(v),leftmost(v))),
if-bt(w >nqt z v height(v) =nqs zero,nd(deletel(u,z),v,w),nd(u,deletel(v,z),w)))

—

(7a.3) max(z,y) =Nat zero T =pNgat ZEIO A Y =Ngy ZErO

(7a.4) height(z) >nat height(delete-leftmost(z)) = true

Theorem 7b: ’Deletel’ decreases height at most by one
suc(height(deletel(z,2))) >nat height(z) = true

uses Ta.l-2, 1a.2-3, 1b.1

52

(7b.1) suc(height(delete-leftmost(z))) >na: height(z) = true

Theorem 8a: 'Deletel’ removes one occurrence of the given number in sorted trees
sorted(z) — count(deletel(z,y),y) =nat pred(cound(z,y)) = true

uses 3a.1-2, 3b.1-2.1, 3¢.1-2, 7a.2
(8a.1) height(u) =nat zero — count(u,y) =nat zero = true
(8a.2) leftmost(u) =nat ¥ A height(u) #nat zero — count(u,y) #na: zero = true

(8a.3) leftmost(u) =nqt ¥ A height(u) #nqt zero — count(delete-leftmost(u),y) =naq: pred(count(u,y))

= true
(8a.4) leftmost(u) #nat y — count(delete-leftmost(u),y) =nas count(u,y) = true

uses 7a.l

—

(8a.1-4.1) leftmost(nd(u,v,w)) = if-nat(height(u) =nq+ zero,w leftmost(u))

The ’reformulation’ of the recursion rules of the functions 'leftmost’, 'delete-leftmost’ and 'deletel’
(lemmas (7a.1-2, 8a.1-4.1) serves for equalizing cases in the definition of symbols occurring in the
theorems (e.g. 'height’, 'count’ and 'leftmost’ in lemma (8a.2)). The rules make it possible to ’expand’
e.g. 'leftmost’ under the case distinction of 'count’. This, however, does not mean that the induction
schemes used 1n these proofs follow the recursion scheme of 'count’.

Theorem 8b: 'Deletel’ does not change the number of occurrences of other elements
Y #Nat 2 — count(deletel(z,2),y) =nat count(z,y) = true

uses 3a.1-2, 3b.1-2.1, 7a.2, 8a.1-4

Theorem 9: ’Deletel’ preserves the sorted property

sorted(z) — sorted(deletel(z,y)) = true

uses 3a.1-2, 3b.1-2.1, 7a.2, 8a.1-4
(9.1) greater-all(z,y) — greater-all(z,deletel(y,z)) = true

uses 7a.2
(9.1.1) greater-all(z,y) — greater-all(z delete-leftmost(y)) = true
(9.1.2) greater-all(y,u) — y >nar leftmost(u) = true

(9.2) less-all(z,y) — less-all(z,deletel(y,z)) = true

uses 7a.2
(9.2.1) less-all(z,y) — less-all(z,delete-leftmost(y)) = true
(9.2.2) less-all(y,nd(u,v,w)) — leftmost(nd(u,v,w)) >nat y = true

(9.3) sorted(z) — sorted(delete-leftmost(z)) = true

53

uses 7a.1,9.1.1

(9.4) greater-all(z,y) less-all(z,2) A height(z) #nat zero — greater-all(leftmost(z),y)
uses 8a.1-4.1,6.1.3

(9.5) sorted(z) — less-all(leftmost(z),delete-leftmost(z)) = true

uses 7a.l,8a.1-4.1,9.1.2
(9.5.1) less-all(w,v) A greater-all(w,u) — less-all(leftmost(u),v) = true

uses 8a.1-4.1
(9.5.1.1) less-all(zero,y) = true
(95.1.2) w >Nat y A less-all(w,v) — less-all(y,v) = true

Theorem 10: ’Search’ is ’contains’ in sorted trees

search(z,y) — contains(z,y) = true
sorted(z) A contains(z,y) — search(z,y) = true

(10.1) less-all(m,y) A contains(y,n) — n >Nt m = true

(10.2) greater-all(m,z) A contains(z,n) — m >na n = true

Theorem 10°: ’Search’ is 'contains’ in sorted trees (second version)

sorted(z) — contains(z,y) = sorted(z) — search(z,y)

—

(10.1) — greater-all(w,u) v search(u,z) v w =gz 2 =

= true

(w >Nat ¢ v — greater-all(w,u)) A (z >nat w v — greater-all(w,u) v search(u,z))

(10’.2) = less-all(w,v) v search(v,z) v z >Ngt w = = less-all(w,v) v 2 >Nt w

Lemma (10°.1) has both a case generating and a case simplifying effect. A more readable proof would
be obtained with the rule w =y, 2 = w <yas T A W >nq; ¢ that generates the cases and with rule
(10°.2) and its pendant for ’greater-all’ that simplify the cases. In general, however, the application of

the above rule above cannot be desirable (cf. theorem (3b)).

54

Example IV: Two-Three-Trees

Two-three-trees are sorted trees where nodes have two or three children. Such trees can always be
balanced in the sense that all leaves in a tree have the same depth. The example is taken from [Pad88].

Sorts:
tree: nil: — tree
nd2: tree X nat X tree — tree
nd3: tree X nat X tree X nat X tree — tree
frozen-tree: freezel: tree — frozen-tree
freeze2: tree X nat x tree — frozen-tree
testobject: tobj: nat bool — testobject

Function Definitions:

insert: nat x tree — frozen-tree
thaw: frozen-tree — tree
insert-and-balance: nat x tree — tree

insert(a,nil) — freeze2(nil, a,nil)
insert(a,nd2(z,n,y)) — if-fttt(a =nqs n.freezel(nd2(z,n,y)),
if-fttt(a >nqr 7, nd2-2(z,n,insert(a,y)), nd2-1(insert(a,z),n,y)))
insert(a,nd3(z,m,y,n,2)) — if-fttt(a =nat 0 v @ =nar m,freezel(nd3(z,m,y,n,2)),
if-fttt(a >nqs n,nd3-3(z,m,y,n,insert(a,z)),
if-fttt(m >nqt a,
nd3-1(insert(a,z),m,y,n,z),
nd3-2(z,m,insert(a,y),n,2))))

thaw(freezel(z)) — =z
thaw(freeze2(z,n,y)) — nd2(z,n,y)

insert-and-balance(a,z) — thaw(insert(a,z))

nd2-1: frozen-tree x nat x tree — frozen-tree
nd2-2: tree x nat x frozen-tree — frozen-tree
nd3-1: frozen-tree x nat x tree x nat x tree — frozen-tree
nd3-2: tree x nat x frozen-tree x nat x tree — frozen-tree
nd3-3: tree x nat x tree x nat x frozen-tree — frozen-tree

nd2-1(freezel(z),n,y) — freezel(nd2(z,n,y))
nd2-1(freeze2(z,m,y),n,z) — freezel(nd3(z,m,y,n,z))
nd2-2(z,n,freezel(y)) — freezel(nd2(z,n,y))

nd2-2(z,m freeze2(y,n,2)) — freezel(nd3(z,m,y,n,z))
nd3-1(freezel(z),m,y,n,z2) — freezel(nd3(z,m,y,n z2))
nd3-1(freeze2(z,l,y), m,z,n,u) — freeze2(nd2(z,l,y), m nd2(z n u))
nd3-2(z,m freezel(y),n,z) — freezel(nd3(z,m,y,n z2))
nd3-2(z,l freeze2(y, m,z),n,u) — freeze2(nd2(z,l,y),m,nd2(z,n,u))
nd3-3(z,m,y,n freezel(z)) — freezel(nd3(z,m,y,n,z))

nd3-3(z,l,y,m freeze2(z,n,u)) — freeze2(nd2(z,l,y),m,nd2(z,n,u))

95

height-left: tree — nat

balanced: tree — bool
height-left(nil) — zero
height-left(nd2(z,n,y)) — suc(height-left(z))
height-left(nd3(z,m,y,n,2)) — suc(height-left(z))
balanced(nil)

balanced(nd2(z,n,y))
balanced(nd3(z,m,y,n,z2))

true

balanced(z) A balanced(y) a height-left(z) =nq: height-left(y)
balanced(z) A balanced(y) A balanced(z) a

height-left(z) =nq: height-left(y)) a

height-left(y) =nq: height-left(z)

Ll

balancedl: tree — bool

balancedl-get: testobject — bool

balancedl-in: tree — testobject

balancedl-out2: testobject x testobject — testobject
balancedl-out3: testobject x testobject x testobject — testobject

balanced1(z) — balancedl-get(balancedl-in(z))
balanced1-get(tobj(z,y)) —

Y

balanced1-in(nil) — tobj(zero,true)

balanced1-in(nd2(z,y,z)) — balancedl-out2(balancedl-in(z),balanced1-in(z))

balanced1-in(nd3(z,y,z,4,v)) — balancedl-out3(
balanced1-in(z),balanced1-in(z),balanced1-in(v))

balanced1l-out2(tobj(z,y) tobj(u,v)) — tobj(suc(z).y A v A T =Nat u)
balanced1-out3(tobj(z,y) tobj(u,v),tobj(z,w)) — tobj(suc(z),
YAVUAWALZ=Ngt UAU=Ngt 2)
freezelp: frozen-tree — bool

freezelp(freezel(z)) — true
freezelp(freeze2(z,y,2)) — false

Theorem 1: ’Insert’ preserves the balanced property

balanced(z) — balanced(insert-and-balance(a,z))

(1.1a) balanced(thaw(nd2-1(z,y,2))) = balanced(thaw(z)) A balanced(z) a
if-bool(freezelp(z),
height-left(thaw(z)) =n4: height-left(z)),
height-left(thaw(z)) =nq4: suc(height-left(z)))

(1.1b) balanced(thaw(nd2-2(z,y,z))) = balanced(z) A balanced(thaw(z)) A
if-bool(freezelp(z),
height-left(thaw(z)) =nq: height-left(z),
height-left(thaw(z)) =nq: suc(height-left(z)))

(1.1c) balanced(thaw(nd3-1(z,y,z,u,v))) = balanced(thaw(z)) A balanced(z) A balanced(v) a
height-left(z) =nq: height-left(v) A
if-bool(freezelp(z),

height-left(thaw(z)) =nq4: height-left(z),
height-left(thaw(z)) =nqa: suc(height-left(z)))

56

(1.1d) balanced(thaw(nd3-2(z,y,z,u,v))) = balanced(thaw(z)) A balanced(z) A balanced(v) a
height-left(z) =nq+ height-left(v) A
if-bool(freezelp(z),

height-left(thaw(z)) =nq: height-left(z),
height-left(thaw(z)) =nq: suc(height-left(z)))

(1.1e) balanced(thaw(nd3-3(z,y,z,u,v))) = balanced(thaw(v)) A balanced(z) a balanced(z) a
height-left(z) =nq: height-left(z) a
if-bool(freezelp(v),

height-left(thaw(v)) =na: height-left(z),
height-left(thaw(v)) =na: suc(height-left(z)))

(1.2) height-left(z) =nat y A — freezelp(insert(u,z)) — height-left(thaw(insert(u,z))) =nas suc(y) =
true
(1.2.1a) freezelp(nd2-1(z,y,2)) = true
(1.2.1b) freezelp(nd2-2(z,y,2)) = true
(1.2.1c) freezelp(nd3-1(z,y,z,u,v)) = freezelp(z)

(1.2.2a) height-left(thaw(nd2-1(z,y,2))) = if-nat(freezelp(z),
suc(height-left(thaw(z))) height-left(thaw(z)))

(1.2.2b) height-left(thaw(nd2-2(z,y,2))) = suc(height-left(z))
(1.2.2¢) height-left(thaw(nd3-1(z,y,2,u,v))) = suc(height-left(thaw(z)))

(1.2.2d) height-left(thaw(nd3-2(z,y,z,u,v))) = if-nat(freezelp(nd3-2(z,y.z,u,v)),
suc(height-left(z)),suc(suc(height-left(z))))

(1.2.2¢) height-left(thaw(nd3-3(z,y,2,u,v))) = if-nat(freezelp(nd3-3(z,y,2,u,v)),
suc(height-left(z)),suc(suc(height-left(z))))

(1.3) height-left(z) =nq: y A freezelp(insert(u,z)) — height-left(thaw(insert(u,z))) =nq: y = true
uses 1.2, 1.2.1a-2e

Theorem 2: ’Balanced1’ implements ’balanced’

balanced(z) = balanced1(z)

(2.1) balancedl-in(z) = tobj(height-left(z) balanced(z))

57

Example V: a — f—Pruning

The Apha-Beta procedure is a well-known algorithm for searching game trees concerning two-person
games. A game trees is explored to determine the next move by analysing possible future situations
(leaves of the tree) that may be reached with legal moves (edges of the tree). Each leave is assigned its
estimated worth. The worths for the next moves are computed by propagating the ’values’ of the leaves
to the root assuming that both players do their best according to the estimation (minimax). This
is realized by the mutually recursive functions 'minimax-max’ and 'minimax-min' (see below) which
operate on arbitrarily expanded (game) trees with variable arity. The leaves of the trees contain
natural numbers — the estimated worth of the situation corresponding to a leave.

The Alpha-Beta procedure can be used to compute the minimax-value (worth of the next move) more
efficiently. The efficiency is gained by introducing some memory in the computation. The parameters
a,b constitute the lower (a) and the upper (4) bound of the minimax-value to be computed, as known
at each stage of the process. Knowing these bounds it is possible to prevent whole subtrees of a game
tree from being explored if the lower bound exceeds the upper bound or vice versa. (For details on

the Alpha-Beta procedure cf. e.g. [Nil80], [KM75].)

Sorts:
nat-omega: omega: — nat-omega
ino: nat — nat-omega
node: entry: nat-omega — node
nd: nodes-list ~ — node
nodes-list: nl-nil: — nodes-list

nl-cons: node x nodes-list — nodes-list

Function Definitions:

<t nat-omega x nat-omega — bool
max,: nat-omega X nat-omega — nat-omega
min,: nat-omega x nat-omega — nat-omega

<w(z,0omega) — true
<w(omega,ino(z)) — false
<.(ino(z).ino(s)) — 7 <var ¥

max,(z,y) — ifu(z2<,9.9.2)
ming(z,y) — ifu(z<uy.2,y)

minimax-max: node — nat-omega
minimax-min: node — nat-omega

minimax-max(entry(z)) —
minimax-max(nd(nl-nil)) — ino(zero)
minimax-max(nd(nl-cons(z,y))) — max,(minimax-min(z),minimax-max(nd(y)))

minimax-min(entry(z)) —
minimax-min(nd(nl-nil)) — omega
—

minimax-min(nd(nl-cons(z,y))) ming(minimax-max(z),minimax-min(nd(y)))

a-b-max: node x nat-omega x nat-omega — nat-omega
a-b-min: node X nat-omega X nat-omega — nat-omega

58

ifu(b<pa v b<,2,b, ify(2<pa,a,2))

a-b-max(entry(z),a,b) —

a-b-max(nd(nl-nil),a,b) — ifu(b<pa,b,a)

a-b-max(nd(nl-cons(z,¥)),a,b) — if,(b<y,a b,a-b-max(nd(y) max,(a,a-b-min(z,a,b)),b))
a-b-min(entry(z),a,b) — ifu(b<pa v z<,a,a, if,(b<,2,b,7))
a-b-min(nd(nl-nil),a,b) — ifu(b<ya,a,b)

a-b-min(nd(nl-cons(z,%)),a,b) — if,(b<na,a,a-b-min(nd(y),a,min,(b,a-b-max(z,a,b))))

Theorem 1: Alpha-Beta implements Minimax

a-b-max(z,ino(zero),omega) = minimax-max(z)
a-b-min(z,ino(zero),omega) = minimax-min(z)

(1.1) a-b-max(z,a,b) = if,(b<ya v b<,minimax-max(z),b,
ity (minimax-max(z)<,,a,a,minimax-max(z)))

(1.2) a-b-min(z,a,b) = if,(b<,a v minimax-min(z)<,qa,a,
if, (6<,minimax-min(z),b,minimax-min(z)))

(1.3) if,(omega<,z,0omega,z) = z

ify(z< zero,zero,z) = 2

The equations of the theorem are far too specialized to be adequate for a proof by induction. The
lemmas (1.1-2) generalize the theorem in that they characterize the roles of the parameters a and § in
the recursion. Note that the base cases of the definition of 'a-b-max/min" had to be redefined to make
these lemmas possible. The original rules were: a-b-max(entry(z),a,b) = z, a-b-max(nd(nl-nil),a,b)
= a (analogous: 'a-b-min’). These rules, however, make it hard to specify exactly what 'a-b-max/min’

compute in the unintended cases and to find an expressible and usable generalization of the theorem.

The proof of the lemmas (1.1-2) involves about thirty (more or less technical) lemmas concering

properties of ’<,’ and 'if,,’ which are verified easily.

99

Example VI: A More Complex Induction Scheme

The function ’sum’ computes the sum of the elements of a tree by use of a stack.

Sorts:
tree: null: — tree
node: tree X nat X tree — tree
stack: empty: — stack

push: tree x stack — stack
Function Definitions:

sum: tree x nat x stack — nat

sum(null,n,empty) —
sum(null,n,push(,s)) — sum(t,n,s)
sum(node(l,n,t),m,s) — sum(l,add(m,n),push(,s))

Note that the definition of the function sum is not proved to be terminating by UNICOM. Instead of
the function ’add’ any other binary function might be used as well.

Theorem 1: Recursion of 'sum’ over the tree argument.

—_

sum(z,n,push(y,s)) sum(y,sum(z,n,empty),s)

Whereas the proof of this theorem is based on structural induction over z, the complete induction
scheme used is more complex and not derivable from the recursion scheme of ’sum’: The inductive
hypothesis is applied three times with different instances. To show this, we display the induction step
section of the proof record:

1.2: essential pair: SUM(L,ADD(M,Z),PUSH(R,PUSH(Y,S))) =
SUM(Y,SUM(NODE(L,Z,R) ,M,EMPTY),S)

Reduction of the pair:
lefthand side:
--> SUM(R,SUM(L,ADD(M,Z) ,EMPTY) ,PUSH(Y,S))

by means of inductive rule: SUM(X,N,PUSH(Y,S)) --> SUM(Y,SUM(X,N,EMPTY),S) (see 1)
--> SUM(Y,SUM(R,SUM(L,ADD(M,Z) ,EMPTY) ,EMPTY),S)
by means of inductive rule: SUM(X,N,PUSH(Y,S)) --> SUM(Y,SUM(X,N,EMPTY),S) (see 1)

righthand side:

--> SUM(Y,SUM(L,ADD(M,Z) ,PUSH(R,EMPTY)),S)

by means of definition rule: SUM(NODE(L,N,R),M,S) := SUM(L,ADD(M,N),PUSH(R,S))

--> SUM(Y,SUM(R,SUM(L,ADD(M,Z) ,EMPTY) ,EMPTY),S)

by means of inductive rule: SUM(X,N,PUSH(Y,S)) --> SUM(Y,SUM(X,N,EMPTY),S) (see 1)

Result: SUM(Y,SUM(R,SUM(L,ADD(M,Z) ,EMPTY) ,EMPTY),S) =
SUM(Y,SUM(R,SUM(L,ADD(M,Z) ,EMPTY) ,EMPTY) ,S)

which is trivial.

60

F Installation guide

UNICOM is implemented and currently running on Apollo/Sun Workstations under Lucid Common
Lisp (version 3/4). Tt should be adaptable to other Common Lisp environments without much effort.
Especially it is prepared to work on Symbolics Machines (Genera 8.0; context: CLtL) and under
AKCL (Austin Kyoto Common Lisp).

An executable Lisp dump may be produced from the UNICOM file tree as follows:

1. Start Lisp at directory 'unicom’:

cd/unicom
<lisp-call>

2. Load the ’install’-file:
(load ”install”)
3. Compile Unicom:
(compile-unicom ”system/source/”)
(quit)
The output of the compiler can be viewed in the file ’.../unicom/compiler-output’.

4. Load UNICOM and save the dump:

<lisp-call>

(load ”install”)

(load-unicom-bin ”system /source/”)

(make-unicom "unicom”) % or any other file name

(quit)
5. Invoke UNICOM:

unicom % starts the executable Lisp dump
(u) % enters the top level of UNICOM
% computing with UNICOM

quit % leave UNICOM

(quit) % leave the Lisp environment

If the edit command (Unicom-Toplevel) does not work correctly, adapt the function ’cm=editor-call’
(file: system/source/unicom-commands.lisp) to your local requirements.

Acknowledgements

We would like to thank Ulrich Kihler and Inger Sonntag for carefully reading earlier versions of this
paper.

61

References

[AGG*8T7] J. Avenhaus, R. Gobel, B. Gramlich, K. Madlener, and J. Steinbach. TRSPEC: A term

[Bac88]

[BM79]
[BMSS]

[Fri86]

[G5b8T]

[Gra89]

[Gra90a]

[Gra90b]

[Gra90c]

[HHS0]

[HOS0]

[TK36]

[KL80]

[KMT75]

[Kiic87]

rewriting based system for algebraic specifications. In S. Kaplan and J.-P. Jouannaud,
editors, Proc. of the 1st Int. Workshop on Conditional Term Rewriting Systems, number
308 in Lecture Notes in Computer Science, pages 245-248. Springer, 1987.

L. Bachmair. Proof by consistency in equational theories. In Proc. 3rd IEEFE Symposium
on Logic in Computer Science, pages 228233, 1988.

R.S. Boyer and J.S. Moore. A Computational Logic. Acadaemic Press, 1979.

R.S. Boyer and J.S. Moore. A Computational Logic Handbook, volume 23 of Perspectives
i Computing. Acadaemic Press, 1988. Formerly: Notes and Reports in Computer Science
and Applied Mathematics.

L. Fribourg. A strong restriction of the inductive completion procedure. In E. Kott, editor,
Proc. of the 13th Int. Conf. on Automata, Languages and Programming, volume 226 of
Lecture Notes in Computer Science, pages 105-116. Springer, 1986.

R. Gobel. Ground confluence. In P. Lescanne, editor, Proc. of the 2nd Int. Conf. on
Rewriting Techniques and Applications, volume 256 of Lecture Notes in Computer Science,

pages 156—167. Springer, 1987.

B. Gramlich. Inductive theorem proving using refined unfailing completion techniques.
SEKI-report SR-89-14, Dept. of Comp. Science, Univ. of Kaiserslautern, 1989.

B. Gramlich. Completion based inductive theorem proving. In L.C. Aiello, editor, Proc.
of the 9th Furopean Conf. on Artificial Intelligence, pages 314-319. Pitman Publishing,
London, 1990.

B. Gramlich. Completion based inductive theorem proving: A case study in verifying sort-
ing algorithms. SEKI Report SR-90-04, Dept. of Comp. Science, Univ. of Kaiserslautern,
1990.

B. Gramlich. Unicom: A refined completion based inductive theorem prover. In M.E.
Stickel, editor, Proc. of the 1oth Int. Conf. on Automated Deduction, volume 449 of Lecture
Notes in Artificial Intelligence, pages 655—656. Springer, 1990.

G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
In Proc. of the 21st Conf. on Foundations of Computer Science, pages 96-107, 1980. also
in JCSS 25(2), pp. 239-266, 1982.

G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In Ronald V. Book,
editor, Formal Languages, Perspectives And Open Problems, pages 349-405. Academic
Press, 1980.

J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories
without constructors. In Proc. Symposium on Logic in Computer Science, pages 358-366.
TEEE, 1986. also in Information and Computation, vol. 82(1), pp. 1-33, 1989.

S. Kamin and J.-J. Levy. Two generalizations of recursive path orderings. unpublished
note, Dept. of Computer Science, Univ. of Illinois, Urbana, Illinois, 1980.

D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence,
6:293-326, 1975.

W. Kiichlin. Inductive completion by ground proof transformation. In Proc. of Coll. on
the Resolution of Equations in Algebraic Structures, 1987.

62

[KZ89]

[Ni180]
[Padss]

[Pla85]

[Red90]

[Sch8s]

D. Kapur and H. Zhang. An overview of RRL: Rewrite rule laboratory. In N. Dershowitz,
editor, Proc. of the 3rd Int. Conf. on Rewriting Techniques and Applications, volume 355
of Lecture Notes in Computer Science, pages 513-529. Springer, 1989.

Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., 1980.

Peter Padawitz. Computing in Horn Clause Theories, volume 16 of Monographs on The-
oretical Computer Science. Springer-Verlag, 1988.

D. Plaisted. Semantic confluence tests and completion methods. Information and Control,

65:182-215, 1985.

U.S. Reddy. Term rewriting induction. In M.E. Stickel, editor, Proc. of the 10th Int. Conf.
on Automated Deduction, volume 449 of Lecture Notes in Artificial Intelligence, pages
162-177. Springer, 1990.

R. Scherer. UNICOM: Ein verfeinerter Rewrite-basierter Beweiser fur induktive Theoreme.
Master’s thesis, Dept. of Comp. Science, Univ. of Kaiserslautern, 1988.

63

