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Abstract

Recently convex optimization models were successfully applied for solving various prob-
lems in image analysis and restoration. In this paper, we are interested in relations
between convex constrained optimization problems of the form argmin{Φ(x) subject to
Ψ(x) ≤ τ} and their penalized counterparts argmin{Φ(x) + λΨ(x)}. We recall general
results on the topic by the help of an epigraphical projection. Then we deal with the
special setting Ψ := ‖L · ‖ with L ∈ R

m,n and Φ := ϕ(H ·), where H ∈ R
n,n and

ϕ : Rn → R∪{+∞} meet certain requirements which are often fulfilled in image process-
ing models. In this case we prove by incorporating the dual problems that there exists a
bijective function such that the solutions of the constrained problem coincide with those
of the penalized problem if and only if τ and λ are in the graph of this function. We
illustrate the relation between τ and λ for various problems arising in image processing.
In particular, we point out the relation to the Pareto frontier for joint sparsity problems.
We demonstrate the performance of the constrained model in restoration tasks of images
corrupted by Poisson noise with the I-divergence as data fitting term ϕ and in inpainting
models with the constrained nuclear norm. Such models can be useful if we have a priori
knowledge on the image rather than on the noise level.

1 Introduction

In this paper, we are interested in the relation between the convex constrained optimization
problem

(P1,τ ) argmin
x∈Rn

{Φ(x) subject to Ψ(x) ≤ τ} (1)

and the non-constrained optimization problem

(P2,λ) argmin
x∈Rn

{Φ(x) + λΨ(x)}, λ ≥ 0. (2)

In the inverse problems and machine learning context these approaches are referred to as
Ivanov regularization and Tikhonov regularization, respectively, see [35, 58].
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Let SOL(P•) denote the set of solutions of problem (P•). While it is rather clear that under
mild conditions on Φ and Ψ a vector x̂ ∈ SOL(P2,λ), λ > 0 is also a solution of (P1,τ ) exactly
for τ = Ψ(x̂), the opposite direction has in general no simple explicit solution. At least it is
known that for x̂ ∈ SOL(P1,τ ) there exists λ ≥ 0 such that x̂ ∈ SOL(P2,λ). This result can
be shown by using that under certain conditions the relation

R+ ∂Ψ(x) = ∂ιlevΨ(x)Ψ(x)

holds true. In this paper, we prove the last equality using an epigraphical projection or briefly
inf-projection, cf. [49, p. 18+], which allows to reduce the intrinsic problem to one dimension.
Then we consider special problems where Ψ := ‖L · ‖ with L ∈ R

m,n and Φ(x) := φ(x1).
Here x1 is the orthogonal projection of x onto a subspace X1 of Rn and φ : X1 → R ∪ {+∞}
is a function which meets the following conditions: (i) domφ is an open subset of X1 with
0 ∈ domφ, (ii) φ is proper, convex and closed as well as strictly convex and essentially smooth,
and (iii) φ has a minimizer. In our imaging applications, we will consider functions of the
form Φ := ϕ(H·) with a linear operator H ∈ R

n,n. This fits into the above setting if X1

is the range of H∗. We use the dual problems to prove that in a certain interval there is a
one-to-one correspondence between τ and λ in the sense that SOL(P1,τ ) = SOL(P2,λ) exactly
for the corresponding pairs. Furthermore, given τ , the value λ is determined by λ := ‖p̂‖∗,
where p̂ is any solution of the dual problem of (P1,τ ).
Models with special functions Φ and Ψ of this kind were recently proposed for solving various
image processing tasks. We will handle the following four example problems:

(E1) joint sparsity problems,

(E2) image restoration in the presence of Gaussian noise,

(E3) image restoration in the presence of Poissonian noise,

(E4) low rank matrix recovery such as matrix completion and tensor inpainting.

In particular, we are interested in the relation between τ and λ, i.e., in the τ -λ curve. For
the numerical solution of the problems we restrict ourselves to forward-backward splitting
(FBS) methods and alternating direction methods of multipliers (ADMM). We are aware of
the various other techniques to speed up the computation, see, e.g. [2, 12, 19, 26, 44]; however
the detection of the fastest algorithm is not the focus of this paper.
For the first task (E1), relations between slightly simpler non-constrained and constrained
models were already stated in [21, 61] from another point of view. We point out the relation
between the Pareto frontier considered in [61] and the τ -λ curve. Image processing results for
the second task (E2) can be found in the recent paper [28]. In this paper we focus on the τ -λ
curve. Since we are not aware of results using the constrained model (P1,τ ) for the restoration
of images corrupted by Poisson noise (E3) with the I-divergence as data fitting term ϕ we
provide a deblurring result for this task in addition to the τ -λ curve. For the fourth task (E4)
we give a numerical example for image inpainting via the constrained model with the nuclear
norm.

This paper is organized as follows: First, we recall the relation between (P1,τ ) and (P2,λ)
for a rather general setting in the next Section 2. In particular, we provide some proofs by
incorporating an epigraphical projection. In Section 3 we restrict ourselves to homogeneous
regularizers and to essentially smooth data terms, which are strictly convex on a certain
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subspace of Rn. We prove a relation between the parameters τ and λ such that the solution
sets of the corresponding constrained and non-constrained problems coincide and determine
λ corresponding to τ by duality arguments. Section 4 contains special examples from image
processing where models of the described type are applied. It is not our intention to find
the qualitatively best method or the fastest algorithm, but to illustrate the τ -λ relation.
Conclusions are drawn in Section 5. Finally, the appendix describes the applied FBS and
ADMM algorithms.

2 Penalizers and Constraints in Convex Problems

In this section we review general relations between constrained and non-constrained prob-
lems which will be specified for special settings appearing in image processing tasks in the
subsequent sections.
Let R+ := [0,+∞) and let Γ0(R

n) denote the space of proper, convex, closed functions
mapping Rn into the extended real numbers R∪{+∞}. For nonempty, affine subsetsX ⊆ R

n,
we define Γ0(X) just analogously. The (lower) level sets of a function Ψ ∈ Γ0(R

n) are given
by levτΨ := {x : Ψ(x) ≤ τ}. Further, the indicator function ιS of a set S is defined by

ιS(x) :=

{
0 if x ∈ S,

+∞ otherwise.

Using the indicator function, the constrained problem (1) can be rewritten as the following
non-constrained one:

argmin
x∈Rn

{Φ(x) + ιlevτΨ(x)}. (3)

For x∗ ∈ R
n the subdifferential ∂Ψ(x∗) of Ψ at x∗ is the set

∂Ψ(x∗) := {p ∈ R
n : Ψ(x∗) + 〈p, x− x∗〉 ≤ Ψ(x) ∀x ∈ R

n}.

If Ψ is proper, convex and x∗ ∈ ri(domΨ), then ∂Ψ(x∗) 6= ∅. Further we will need the Fenchel
conjugate function of Ψ defined by

Ψ∗(p) := sup
x∈Rn

{〈p, x〉 −Ψ(x)}.

For half-spaces, resp., hyperplanes we use the notation H•
p,α := {x ∈ R

n : 〈p, x〉 • α}, where
• ∈ {≤, >,=}.
In Lemma 2.2 we will provide a basic relation for understanding the correspondence between
the constrained and penalized problems. To prove Lemma 2.2 we need the following auxiliary
lemma which simple proof is left to the reader or can be found in [18].

Lemma 2.1. Let Ψ : Rn → R ∪ {+∞} be a proper, convex function, x∗ ∈ int(domΨ) and
S := levΨ(x∗)Ψ. Let p ∈ R

n such that the half-space H≤
p,α with α := 〈p, x∗〉 contains S. Then

we have the equality

inf
x∈H=

p,α

Ψ(x) = Ψ(x∗). (4)

The following lemma will be used in our proof of Theorem 2.4.
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Lemma 2.2. Let Ψ : R
n → R ∪ {+∞} be a proper, convex function, x∗ ∈ domΨ and

S := levΨ(x∗)Ψ. Then we have
R+ ∂Ψ(x∗) ⊆ ∂ιS(x

∗). (5)

Moreover, if x∗ ∈ int(domΨ) and x∗ is not a minimizer of Ψ, then equality in (5) holds true.

A proof of a similar lemma for finite functions Ψ : Rn → R based on cone relations can be
found, e.g., in [34, p. 245]. Here we provide a proof which uses the epigraphical projection,
also known as inf-projection as defined in [49, p. 18+, p. 51]. For a function f : Rn × R

m →
R ∪ {+∞}, the inf-projection is defined by ν(u) := infx f(x, u). The name ’epigraphical
projection’ is due to the following fact: epi ν is the image of epi f under the projection
(x, u, α) 7→ (u, α), if argminx f(x, u) is attained for each u ∈ dom ν. (Note that this is not
the projection onto epigraphs as used, e.g., in [1, p. 427].) The inf-projection is convexity
preserving, i.e., if f is convex, then ν is also convex, cf. [49, Proposition 2.22].

Proof. 1. First we show that R+ ∂Ψ(x∗) ⊆ ∂ιS(x
∗). By definition of the subdifferential we

obtain

q ∈ ∂Ψ(x∗) ⇐⇒ 〈q, x− x∗〉 ≤ Ψ(x)−Ψ(x∗) ∀x ∈ R
n,

=⇒ 〈q, x− x∗〉 ≤ 0 ∀x ∈ S.

Then we obtain the above inclusion by

p ∈ ∂ιS(x
∗) ⇐⇒ 〈p, x− x∗〉 ≤ 0 ∀x ∈ S. (6)

2. Next we prove ∂ιS(x
∗) ⊆ R+ ∂Ψ(x∗) if x∗ is not a minimizer of Ψ and x∗ ∈ int(domΨ).

Let p ∈ ∂ιS(x
∗). If p is the zero vector, then we are done since ∂Ψ(x∗) 6= ∅. In the following

we assume that p is not the zero vector. It remains to show that there exists h > 0 such that
1
h
p ∈ ∂Ψ(x∗). We can restrict our attention to p = (0, . . . , 0, pn)

T with pn > 0. (Otherwise
we can perform a suitable rotation of the coordinate system.) Then (6) becomes

p ∈ ∂ιS(x
∗) ⇐⇒ pnxn ≤ pnx

∗
n ∀x = (x̄, xn) ∈ S. (7)

Hence we can apply lemma 2.1 with p = (0, . . . , 0, pn)
T and obtain

inf
{x∈Rn:xn=x∗

n}
Ψ(x) = Ψ(x∗).

Introducing the inf-projection ν : R → R ∪ {±∞} by

ν(xn) := inf
x̄∈Rn−1

Ψ(x̄, xn).

this can be rewritten as
ν(x∗n) = Ψ(x∗). (8)

Therefore we have

1

h
p = (0, . . . , 0,

1

h
pn)

T ∈ ∂Ψ(x∗) ⇐⇒ Ψ(x) ≥ ν(x∗n) +
1

h
pn(xn − x∗n) ∀x ∈ R

n

⇐⇒ ν(xn) ≥ ν(x∗n) +
1

h
pn(xn − x∗n) ∀xn ∈ R

⇐⇒
1

h
pn ∈ ∂ν(x∗n),
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so that it remains to show that ∂ν(x∗n) contains a positive number. By (8) we verify that
ν(x∗n) is finite. Moreover, x∗ ∈ int(domΨ) implies x∗n ∈ int(domν). Therefore, ∂ν(x∗n) 6= ∅.
Let qn ∈ ∂ν(x∗n), i.e.,

qn(xn − x∗n) ≤ ν(xn)− ν(x∗n) ∀xn ∈ R.

Since x∗ is not a minimizer of Ψ, there exists y ∈ R
n with Ψ(y) < Ψ(x∗) and we get by (7)

that yn ≤ x∗n. Since yn = x∗n would by (8) imply that Ψ(x∗) = ν(yn) ≤ Ψ(y), we indeed have
yn < x∗n. Thus

qn(yn − x∗n) ≤ ν(yn)− ν(x∗n) ≤ Ψ(y)−Ψ(x∗) < 0

which implies qn > 0 and we are done. �

Remark 2.3. i) The condition that x∗ is not a minimizer of Ψ is essential to have equality
in (5) as the following example illustrates. The function Ψ given by Ψ(x) = x2 is minimal at
x∗ = 0. We have S := levΨ(0)Ψ = {0} so that

R+∂Ψ(x∗) = {0} ⊂ R = ∂ιS(x
∗).

ii) In [18] it was shown that if x∗ is not a minimizer of Ψ and x∗ ∈ ri(domΨ), then

∂ιS(x
∗) = R+∂Ψ(x∗).

However the condition x∗ ∈ ri(domΨ) is not sufficient to guarantee equality in (5): consider
the function Ψ : R2 → R ∪ {+∞}, given by

Ψ(x1, x2) :=

{

x1 if x2 = 0,

+∞ if x2 6= 0.

The affine hull aff(domΨ) = R × {0} is a proper subset of R2. We have S := levΨ(x∗)Ψ =
(−∞, x∗1] × {0} for any x∗ = (x∗1, 0) ∈ R × {0} = aff(domΨ) = ri(domΨ) and further
∂Ψ(x∗) = {(1, p2)

T : p2 ∈ (−∞,+∞)} so that

R+∂Ψ(x∗) = {(0, 0)T} ∪ {(p1, p2)
T : p1 ∈ (0,+∞), p2 ∈ (−∞,+∞)}.

On the other hand we get

∂ιS(x
∗) = {(p1, p2)

T : p1 ∈ [0,+∞), p2 ∈ (−∞,+∞)}

so that R+∂Ψ(x∗) ⊂ ∂ιS(x
∗).

Using Lemma 2.2 it easy to prove the following theorem on the correspondence between the
constrained problem (P1,τ ) and the penalized problem (P2,λ).

Theorem 2.4. i) Let Φ,Ψ : Rn → R∪{+∞} be proper, convex functions. Assume that there
exists a point in domΦ ∩ levτΨ where one of the functions Φ or ιlevτΨ is continuous. Let
x̂ ∈ int(domΨ) be a minimizer of (P1,τ ), where x̂ is not a minimizer of Ψ in case Ψ(x̂) = τ .
Then there exists a parameter λ ≥ 0 such that x̂ is also a minimizer of (P2,λ). If x̂ is in
addition not a minimizer of Φ, then λ > 0.
ii) For proper Φ,Ψ : Rn → R∪{+∞} with domΦ∩domΨ 6= ∅, let x̂ be a minimizer of (P2,λ).
If λ = 0, then x̂ is also a minimizer of (P1,τ ) if and only if τ ≥ Ψ(x̂). If λ > 0, then x̂ is
also a minimizer of (P1,τ ) for τ := Ψ(x̂). Moreover, if Φ,Ψ are proper, convex functions and
x̂ ∈ int(domΨ), this τ is unique if and only if x̂ is not a minimizer of Φ.
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Proof. i) Let x̂ ∈ SOL(P1,τ ) ∩ int(domΨ). Then Ψ(x̂) ≤ τ holds true.
In the case Ψ(x̂) < τ , the continuity of Ψ in int(domΨ) assures that Ψ(x) < τ in a neigh-
borhood of x̂. Thus x̂ is a local minimizer of Φ in this neighborhood. Since Φ is convex, x̂ is
also a global minimizer of Φ and hence a solution of (P2,λ) at least for λ = 0.
Consider the case Ψ(x̂) = τ and assume that x̂ is not a minimizer of Ψ. By Fermat’s rule,
the regularity condition and Lemma 2.2 we obtain

0 ∈ ∂
(
Φ+ ιlevτΨ

)
(x̂) = ∂Φ(x̂) + ∂ιlevτΨ(x̂) = ∂Φ(x̂) + R+∂Ψ(x̂). (9)

This means that there exists λ ≥ 0 such that 0 ∈ ∂Φ(x̂) + λ∂Ψ(x̂) ⊆ ∂
(
Φ + λΨ

)
(x̂) so that

by Fermat’s rule x̂ is a minimizer of (P2,λ). If x̂ is not a minimizer of Φ, then clearly λ > 0.

ii) Let x̂ ∈ SOL(P2,λ). Now x̂ can only be a minimizer of (P1,τ ) for τ ≥ Ψ(x̂).
If λ = 0, then x̂ is a minimizer of Φ and consequently of (P1,τ ) for all these values of τ .
If λ > 0, then x̂ ∈ SOL(P1,τ ) at least for τ := Ψ(x̂) by the following reason: if there would
exist x̃ with Φ(x̃) < Φ(x̂) and Ψ(x̃) ≤ τ , then Φ(x̃) + λΨ(x̃) < Φ(x̂) + λΨ(x̂) which contra-
dicts x̂ ∈ SOL(P2,λ). Finally, let in addition Φ,Ψ be convex and x̂ ∈ int(domΨ) be not a
minimizer of Φ. If there exists another τ̃ > τ = Ψ(x̂) such that x̂ is a minimizer of (P1,τ̃ ),
then we see as in the proof of part i) that x̂ is a minimizer of Φ. This yields a contradiction. �

If Ψ : Rn → R is a finite, convex function, then the regularity condition in part i) of the
theorem (and clearly also the other assumptions) is fulfilled if there exists x0 ∈ domΦ such
that Ψ(x0) < τ . In this case, the existence of a Lagrange multiplier λ ≥ 0 is assured by [48,
Corollary 28.2.1].
For our general setting, the assumptions of the theorem are needed since Ψ(x) < τ does not
imply x ∈ ri(levτΨ) as Fig. 1 shows.

Figure 1: Example where Ψ(x) < τ does not imply x ∈ ri(levτΨ).

Remark 2.5. i) Concerning part i) of the theorem, there may exist various parameters λ
corresponding to the same parameter τ also if (P1,τ ) has a unique solution: consider Ψ(x) :=
|x| and

Φ(x) :=

{

(x− 2)2 if x ≥ 1,

m(x− 1) + 1 if x < 1,

where m ≤ −2. The function Φ is differentiable for m = −2. Noting that Φ is strictly
decreasing on (0, 2) we see that

argmin
x∈R

{Φ(x) subject to |x| ≤ τ} = {τ} ∀τ ∈ (0, 2).
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On the other hand, we get

argmin
x∈R

{Φ(x) + λ|x|} =







{2− λ
2} if λ ∈ [0, 2),

{1} if λ ∈ [2,−m),

[0, 1] if λ = −m,

{0} if λ ∈ (−m,+∞),

so that τ = 1 corresponds to λ ∈ [2,−m]. It is known that the set of Lagrange multipliers λ
is a bounded, closed interval under certain assumptions, see [48, Corollary 29.1.5]
ii) Concerning Part ii) of the theorem in case that there are different minimizers of (P2,λ),
say x̂1 and x̂2, we notice that Ψ(x̂1) 6= Ψ(x̂2) can appear as the following example shows: For
Φ(x) := |x− 2| and Ψ(x) := |x| and λ = 1 we have

(P2,1) Φ(x) + Ψ(x) =







−2(x− 1) if x < 0,
2 if x ∈ [0, 2],

+2(x− 1) if x > 2,

i.e., argminx∈R {Φ(x) + Ψ(x)} = [0, 2]. Hence we can choose, e.g., x̂1 = 1 and x̂2 = 3
2 and

obtain Ψ(x̂1) = 1 6= 3
2 = Ψ(x̂2).

Using duality arguments we will specify the relations between (P1,τ ) and (P2,λ) for special
tasks appearing in image processing in the subsequent sections. In particular, we want to
determine λ in part i) of Theorem 2.4. To this end, we need the following known Fenchel
duality relation, compare, e.g., [49, p. 505] and [18].

Lemma 2.6. Let Φ ∈ Γ0(R
n), Ψ ∈ Γ0(R

m), L ∈ R
m,n and µ > 0. Assume that the following

conditions are fulfilled.

i) ri(domΦ) ∩ ri(domΨ(µL·)) 6= ∅,

ii) R(L) ∩ ri(domΨ(µ·)) 6= ∅,

iii) ri(domΦ∗(−L∗·)) ∩ ri(domΨ∗( ·
µ
)) 6= ∅,

iv) R(−L∗) ∩ ri(domΦ∗) 6= ∅.

Then, the primal problem

(P ) argmin
x∈Rn

{Φ(x) + Ψ(µLx)} , µ > 0, (10)

has a solution if and only if the dual problem

(D) argmin
p∈Rm

{
Φ∗(−L∗p) + Ψ∗

(
p

µ

)
}

(11)

has a solution. Furthermore x̂ ∈ R
n and p̂ ∈ R

m are solutions of the primal and the dual
problem, respectively, if and only if

1

µ
p̂ ∈ ∂Ψ(µLx̂) and − L∗p̂ ∈ ∂Φ(x̂). (12)
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3 Homogeneous Penalizers and Constraints

In the rest of this paper, we deal with the functions

Ψ1 := ιlev1‖·‖ and Ψ2 = ‖ · ‖,

where ‖ · ‖ denotes an arbitrary norm in R
m with dual norm ‖ · ‖∗ := max‖x‖≤1〈·, x〉. Con-

straints and penalizers of this kind appear in many image processing tasks. Note that
Ψ1(τ

−1x) = ιlevτ‖·‖(x) = τιlevτ‖·‖(x). The conjugate functions of Ψ1 and Ψ2 are

Ψ∗
1 = ‖ · ‖∗ and Ψ∗

2 = ιlev1‖·‖∗ .

Then the primal problems (P ) in (10) with µ := τ−1 > 0 in the case Ψ = Ψ1 and µ := λ > 0
in the case Ψ = Ψ2 become

(P1,τ ) argmin
x∈Rn

{Φ(x) subject to ‖Lx‖ ≤ τ} ,

(P2,λ) argmin
x∈Rn

{Φ(x) + λ‖Lx‖}

and the dual problems (D) in (11) read

(D1,τ ) argmin
p∈Rm

{Φ∗(−L∗p) + τ‖p‖∗} ,

(D2,λ) argmin
p∈Rm

{Φ∗(−L∗p) subject to ‖p‖∗ ≤ λ} .

We are interested in the relation between τ and λ in particular in the computation of λ
given τ such that the problems have the same solution set. In the following, we suppose an
orthogonal decomposition

R
n = X1 ⊕X2

of Rn into subspaces Xi, i = 1, 2. In our imaging applications we will use the decomposition
R
n = R(H∗)⊕N (H), where H : Rn → R

m is a linear operator with kernel N (H) and R(H∗)
is the range of H∗. We assume that Φ has the special form

Φ(x) = Φ(x1 + x2) = φ(x1), (13)

where φ : X1 → R ∪ {+∞} is a function meeting the conditions

(i) domφ is an open subset of X1 with 0 ∈ domφ,

(ii) φ belongs to Γ0(X1) and is strictly convex and essentially smooth (compare [48, p.251]),

(iii) φ has a minimizer.

By (ii) and [48, p.253] it follows that φ∗ belongs to Γ0(X1) and is essentially smooth and
essentially strictly convex. Straightforward computation gives

∂Φ(x) = ∂Φ(x1 + x2) = ∂φ(x1) (14)

and

Φ∗(x∗) = Φ∗(x∗1 + x∗2) =

{
φ∗(x∗1) if x∗2 = 0,
+∞ otherwise.

(15)
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Further, argminφ consists of just one element and is therefore a nonempty and bounded level
set of φ. Consequently all level sets levαφ, α ∈ R, are bounded, cf., [48, Corollary 8.7.1] which
implies 0 ∈ int(domφ∗) by [48, Corollary 14.2.2]. Since domφ∗ = domΦ∗ we finally obtain

0 ∈ int(domφ∗) and 0 ∈ ri(domΦ∗). (16)

The rest of this section is organized as follows: In Theorem 3.4 we show that the problems
(P1,τ ), (P2,λ), (D1,τ ), (D2,λ) have a solution for τ > 0 and λ > 0, if certain conditions are
fulfilled. In Lemma 3.5 we prove that under the same conditions there are intervals (0, c)
and (0, d) such that SOL(P1,τ ), SOL(P2,λ), SOL(D1,τ ), SOL(D2,λ) have certain localization
properties. This is refined in our main Theorem 3.6, where we obtain that SOL(P1,τ ) =
SOL(P2,λ) if and only if (τ, λ) is in the graph of a certain function g.
The following two lemmas on properties of ’translation invariant’ functions prepare the proofs
of the subsequent theorems.

Lemma 3.1. Let R
n be decomposed as direct sums R

n = U1 ⊕ U2 and R
n = V1 ⊕ V2 of

subspaces U1, U2 and V1, V2, where U2 ∩ V2 = {0}. Let F,G ∈ Γ0(R
n) be functions with

F (x) = F (x+ u2), G(x) = G(x+ v2) (17)

for all x ∈ R
n, u2 ∈ U2 and v2 ∈ V2. Set f := F |U1 and g := G|V1 .

i) If levαf , levβg are bounded for some α, β ∈ R, then levαF ∩ levβG is bounded.

ii) If domF ∩ domG 6= ∅ and levα̃f , levβ̃g are nonempty and bounded for some α̃, β̃ ∈ R,
then F +G attains its finite minimum.

Proof. i) Let levαf , levβg be bounded. Assume that levαF ∩ levβG is unbounded. Then it
contains an unbounded sequence z(k), k ∈ N. Since levαF = levαf⊕U2 and levβG = levβg⊕V2

we obtain z(k) = u
(k)
1 + u

(k)
2 = v

(k)
1 + v

(k)
2 with bounded first components u

(k)
1 ∈ levαf ,

v
(k)
1 ∈ levβg and unbounded second components u

(k)
2 ∈ U2, v

(k)
2 ∈ V2. Further we have

‖u
(k)
2 − v

(k)
2 ‖22 = ‖u

(k)
2 ‖22 + ‖v

(k)
2 ‖22 − 2〈u

(k)
2 , v

(k)
2 〉

=
(

‖u
(k)
2 ‖2 − ‖v

(k)
2 ‖2

)2
+ 2‖u

(k)
2 ‖2‖v

(k)
2 ‖2

(

1−

〈

u
(k)
2

‖u
(k)
2 ‖2

,
v
(k)
2

‖v
(k)
2 ‖2

〉)

≥ 2‖u
(k)
2 ‖2‖v

(k)
2 ‖2

(

1−

〈

u
(k)
2

‖u
(k)
2 ‖2

,
v
(k)
2

‖v
(k)
2 ‖2

〉)

Using U2 ∩ V2 = {0} and the compactness of {x ∈ R
d : ‖x‖2 = 1} ∩ U2 and {x ∈ R

d : ‖x‖2 =
1} ∩ V2, we conclude by the Cauchy–Schwarz inequality for linearly independent vectors that

the right-hand side goes to infinity as k → +∞. Now the unboundedness of the ‖u
(k)
2 − v

(k)
2 ‖

leads to the contradiction

0 = ‖z(k) − z(k)‖2 = ‖u
(k)
1 − v

(k)
1 + u

(k)
2 − v

(k)
2 ‖2 ≥ ‖u

(k)
2 − v

(k)
2 ‖2 − ‖u

(k)
1 − v

(k)
1 ‖2

≥ ‖u
(k)
2 − v

(k)
2 ‖2 − (‖u

(k)
1 ‖2 + ‖v

(k)
1 ‖2) → +∞.

ii) Let the assumptions on F and G be fulfilled. Because of domF ∩ domG 6= ∅ we have
levα(F )∩ levβ(G) 6= ∅ for α, β ∈ R chosen large enough. Due to levαf ⊕U2 = levαF 6= ∅ and
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levβg⊕V2 = levβG 6= ∅ the compact level sets levαf and levβg are nonempty. Since f and g are
proper this implies that f and g are bounded from below. Without loss of generality we may
therefore assume f ≥ 0 and g ≥ 0 so that F ≥ 0 and G ≥ 0. Next we show that levα+β(F+G)
is a nonempty compact set. We have levα+β(F +G) ⊇ levα(F ) ∩ levβ(G) 6= ∅. Furthermore
levα+β(F+G) is closed since F+G is lsc. Since the nonempty level sets levα̃(f) and lev

β̃
(g) are

bounded we obtain that levα+β(f) and levα+β(g) are bounded, cf. [48, Corollary 8.7.1]. Hence,
by i), the nonempty and closed set levα+β(F +G) ⊆ levα+β(F ) ∩ levα+β(G) is also bounded
and thus compact. Therefore the lsc function (F + G)|levα+β(F+G) = F + G + ιlevα+β(F+G)

must be minimized by an ǔ ∈ levα+β(F +G) which clearly also minimizes F +G. �

Lemma 3.2. Let the Euclidean space R
n be decomposed into the direct sum R

n = U1 ⊕U2 of
two subspaces U1, U2 and let F : Rn → R∪{+∞} be a convex function which is strictly convex
on U1 and which inheres the translation invariance F (x) = F (x+u2) for all x ∈ R

n and u2 ∈
U2. Furthermore, let G : Rn → R ∪ {+∞} be any convex function with domF ∩ domG 6= ∅.
Then all x̂, x̃ ∈ argminx∈Rn{F (x) +G(x)} fulfill x̂− x̃ ∈ U2 and F (x̂) = F (x̃), G(x̂) = G(x̃).

Proof. 1. First we prove that for any x, y ∈ domF and the line segment l(x, y) := {x+ t(y−
x) : t ∈ [0, 1]} the following statements are equivalent:

i) F
∣
∣
l(x,y)

is constant,

ii) F
∣
∣
l(x,y)

is affine,

iii) y − x ∈ U2.

We use the unique decompositions x = x1 + x2, y = y1 + y2 with x1, y1 ∈ U1 and x2, y2 ∈ U2.
i) ⇒ ii): This is clear since a constant function is in particular an affine one.
ii) ⇒ iii): If F

∣
∣
l(x,y)

is affine, i.e.,

F (x+ t(y − x)) = F (x) + t(F (y)− F (x)) for every t ∈ [0, 1],

the translation invariance of F yields

F (x+ t(y − x)− x2 − t(y2 − x2)) = F (x− x2) + t(F (y − y2)− F (x− x2)),

F (x1 + t(y1 − x1)) = F (x1) + t(F (y1)− F (x1)) for every t ∈ [0, 1],

so that F
∣
∣
l(x1,y1)

is affine as well. On the other hand F is also strictly convex on l(x1, y1).

Both can be simultaneously only true, if x1 = y1, which just means that y−x = y2−x2 ∈ U2.
iii) ⇒ i): Assume that y − x ∈ U2, i.e. y1 = x1, so that y − x = y2 − x2. Therefore and due
to the translation invariance of F we get

F (x+ t(y − x)) = F (x+ t(y2 − x2)) = F (x)

even for all t ∈ R. In particular F is constant on l(x, y).
2. Now the assertion can be seen as follows: Due to the convexity of F + G the whole
segment l(x̂, x̃) belongs to argmin{F + G} so that F + G is constant on l(x̂, x̃). Thus, the
convex summands F and G must be affine on l(x̂, x̃). Now part 1 of the proof tells us that
x̂− x̃ = −(x̃− x̂) ∈ U2 and F (x̂) = F (x̃). The remaining G(x̂) = G(x̃) follows from the last
equation and from F (x̂) +G(x̂) = F (x̃) +G(x̃) since only finite values occur. �
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Remark 3.3. Provided that the stronger ”overlapping“ condition ri(domF ) ∩ ri(domG) 6= ∅
holds true, the assertion of the lemma is still valid, if F is essentially strictly convex on
U1 and essentially smooth on the affine hull of domF |U1 , cf. [18]. Furthermore we have
argmin{F +G} ⊆ ri(domF ) under these assumptions.

The next theorem shows that the problems (P1,τ ), (D1,τ ), (P2,λ), (D2,λ) have a solution for
τ > 0 and λ > 0 if certain conditions on argminΦ and N (L) = argmin ‖L · ‖ are fulfilled.

Theorem 3.4. Let Φ ∈ Γ0(R
n) be a function fulfilling (13) and let L ∈ R

m,n so that X2 ∩
N (L) = {0} and argminΦ ∩ N (L) = ∅. Then the sets SOL(P1,τ ), SOL(D1,τ ), SOL(P2,λ),
SOL(D2,λ) are nonempty for τ ∈ (0,+∞), λ ∈ (0,+∞) with corresponding finite minima.

Proof. First we note that the requirements i) - iv) of Lemma 2.6 are fulfilled.
1. Let λ > 0. Since Φ∗(−L∗·) is lsc on the compact ball Bλ := {p ∈ R

m : ‖p‖∗ ≤ λ} we obtain
SOL(D2,λ) 6= ∅. By (16) we have 0 ∈ Bλ ∩ dom(Φ∗(−L∗·)) so that the attained minimum is
finite. Lemma 2.6 ensures that also SOL(P2,λ) 6= ∅, where the attained minimum is finite,
since dom(Φ + λ‖L · ‖) = domΦ 6= ∅.
2. Let τ > 0. To get SOL(P1,τ ) 6= ∅, we want to apply Lemma 3.1 ii), with F := Φ,
Ui := Xi, i = 1, 2 and G := ιlevτ‖L·‖, V1 := R(L∗), V2 := N (L). By assumption we

have U2 ∩ V2 = {0}. By domφ ∩ int(levτ‖L · ‖) 6= ∅ we obtain domΦ ∩ levτ‖L · ‖ 6= ∅
which implies levαF ∩ lev0G = levαΦ ∩ levτ‖L · ‖ 6= ∅ for sufficiently large α. Denoting
the unique minimizer of the strictly convex function φ = Φ|X1 by x̌ and setting α̃ := φ(x̌)
we see that levα̃(F |U1) = levα̃(φ) = {x̌} is nonempty and bounded. Finally we have that
lev0(G|V1) = {0} is nonempty and bounded. Thus, by Lemma 3.1 ii), SOL(P1,τ ) 6= ∅ with
corresponding finite minimum. Lemma 2.6 implies SOL(D1,τ ) 6= ∅, where the minimum is
finite since dom(Φ∗(−L∗·) + τ‖ · ‖∗) = domΦ∗(−L∗·) 6= ∅. �

The next lemma states that there are three main areas where SOL(P1,τ ) and SOL(P2,λ) are
located: either they are completely contained in argmin ‖L·‖ = N (L) or argminΦ, or they are
located “between” them, in the sense of SOL(P•) ∩ N (L) = ∅ and SOL(P•) ∩ argminΦ = ∅.
Similar relations hold true for SOL(D•).

Lemma 3.5. Let Φ ∈ Γ0(R
n) be a function fulfilling (13) and let L ∈ R

m,n so that X2 ∩
N (L) = {0} and argminΦ ∩ N (L) = ∅. Then the values

c := inf
x∈argminΦ

‖Lx‖ = min
x∈argminΦ

‖Lx‖, (18)

d := inf
p∈argminΦ∗(−L∗·)

‖p‖∗ = min
p∈argminΦ∗(−L∗·)

‖p‖∗ (19)

are positive, where d := +∞ if argminΦ∗(−L∗·) = ∅ and the following relations hold true:

SOL(P1,τ ) ⊆ N (L), SOL(D1,τ ) ⊆ argminΦ∗(−L∗·), if τ = 0,
{

SOL(P1,τ ) ∩N (L) = ∅

SOL(P1,τ ) ∩ argminΦ = ∅

}

,

{

SOL(D1,τ ) ∩ argminΦ∗(−L∗·) = ∅

SOL(D1,τ ) ∩ {0} = ∅

}

, if τ ∈ (0, c),

SOL(P1,τ ) ⊆ argminΦ, SOL(D1,τ ) ⊆ {0}, if τ ∈ [c,+∞)
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and

SOL(P2,λ) ⊆ N (L), SOL(D2,λ) ⊆ argminΦ∗(−L∗·), if λ ∈ [d,+∞),
{

SOL(P2,λ) ∩ N (L) = ∅

SOL(P2,λ) ∩ argminΦ = ∅

}

,

{

SOL(D2,λ) ∩ argminΦ∗(−L∗·) = ∅

SOL(D2,λ) ∩ {0} = ∅

}

, if λ ∈ (0, d),

SOL(P2,λ) ⊆ argminΦ, SOL(D2,λ) ⊆ {0}, if λ = 0.

Proof. 1. We show that d is a minimum if argminΦ∗(−L∗·) 6= ∅. Let p0 ∈ argminΦ∗(−L∗·)
and set r := ‖p0‖∗. The set argminΦ∗(−L∗·) is closed so that C := argminΦ∗(−L∗·) ∩ Br

is a nonempty compact set, which must provide a minimizer p̌ ∈ argminΦ∗(−L∗·) for the
continuous function ‖ · ‖∗|C . Clearly we also have ‖p̌‖∗ = infp∈argminΦ∗(−L∗·) ‖p‖∗.
2. We show that c is a minimum, i.e., that the function ιargminΦ+ ‖L · ‖ attains its minimum.
Denoting the unique minimizer of φ by x̌1 we obtain argminΦ = {x̌1}⊕X2. Now the assertion
follows by Lemma 3.1 ii) with F := ιargminΦ, U1 := X1, U2 := X2 and G := ‖L·‖, V1 := R(L∗),
V2 := N (L). Concerning the assumption of the lemma note that levαF ∩ levβG 6= ∅ for
α = β := G(x̌1). Further, for α̃ := F (x̌1) = 0, the set levα̃(F |U1) = {x̌1} is nonempty and
bounded. Finally lev

β̃
(G|V1) is nonempty and bounded for any β̃ ≥ 0.

3. Next we prove c > 0 and d > 0. By definition we have c ≥ 0 and d ≥ 0. By

c = 0 ⇔ min
x∈argminΦ

‖Lx‖ = 0 ⇔ argminΦ ∩ N (L) 6= ∅

and assumption we see that c > 0. Concerning d we obtain by Fermat’s rule and the chain
rule which can be applied since 0 ∈ ri(domΦ∗) that

d = 0 ⇔ 0 ∈ argminΦ∗(−L∗·) ⇔ 0 ∈ −L∂Φ∗(−L∗0)

Thus there exists x ∈ Φ∗(−L∗0) such that 0 = −Lx. Since x ∈ ∂Φ∗(x∗) ⇔ x∗ ∈ ∂Φ(x), see
[48, Corollary 23.5.1] this is equivalent to 0 ∈ ∂Φ(x) and x ∈ N (L). Thus, by Fermat’s rule,
x ∈ argminΦ ∩ N (L) which contradicts our assumption on these sets.
4. For the technical proof of the location properties of the solution sets we refer to [18]. �

The following theorem specifies the relations between (P1,τ ), (P2,λ), (D1,τ ) and (D2,λ). We
will see that for every τ ∈ (0, c) there exists a uniquely determined λ such that the solution
sets of (P1,τ ) and (P2,λ) coincide. Note that by Remark 2.5 this is not the case for general
functions Φ,Ψ ∈ Γ0(R

n). Moreover, we want to determine for given τ , the value λ such that
(P2,λ) has the same solutions as (P1,τ ). Here Theorem 2.4 i) was not constructive. By gr g
we denote the graph of the function g.

Theorem 3.6. Let Φ ∈ Γ0(R
n) be of the form (13) and let L ∈ R

m,n such that X2 ∩N (L) =
{0} and argminΦ ∩ N (L) = ∅. Define c by (18) and d by (19). Then, for τ ∈ (0, c)
and λ ∈ (0, d), the problems (P1,τ ), (P2,λ), (D1,τ ), (D2,λ) have solutions with finite minima.
Further there exists a bijective mapping g : (0, c) → (0, d) such that for τ ∈ (0, c) and λ ∈ (0, d)
we have

{

SOL(P1,τ ) = SOL(P2,λ)

SOL(D1,τ ) = SOL(D2,λ)

}

if (τ, λ) ∈ gr g (20)
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and for τ ∈ (0, c), λ ∈ [0,+∞) or λ ∈ (0, d), τ ∈ [0,+∞),
{

SOL(P1,τ ) ∩ SOL(P2,λ) = ∅

SOL(D1,τ ) ∩ SOL(D2,λ) = ∅

}

if (τ, λ) 6∈ gr g.

For (τ, λ) ∈ gr g any solutions x̂ and p̂ of the primal and dual problems, resp., fulfill

τ = ‖Lx̂‖ and λ = ‖p̂‖∗.

Proof. First we note that the requirements i) - iv) of Lemma 2.6 are fulfilled. Further The-
orem 3.4 ensures that for τ ∈ (0, c) and λ ∈ (0, d) all sets SOL(P1,τ ), SOL(P2,λ), SOL(D1,τ ),
SOL(D2,λ) are not empty with corresponding finite minima.
The core of the proof consists of two main steps: in the first step we construct mappings
g : (0, c) → (0, d) and f : (0, d) → (0, c) such that

∀τ ∈ (0, c) :

{

SOL(P1,τ ) ⊆ SOL(P2,g(τ))

SOL(D1,τ ) ⊆ SOL(D2,g(τ))

}

, (21)

∀λ ∈ (0, d) :

{

SOL(P2,λ) ⊆ SOL(P1,f(λ))

SOL(D2,λ) ⊆ SOL(D1,f(λ))

}

. (22)

In the second step we verify that f ◦g = id(0,c) and g◦f = id(0,d) so that g is bijective and (21)
and (22) actually hold true with equality. Finally, we deal in a third part with (τ, λ) 6∈ grg.
1. First we show that for all x̂ ∈ R

n \ N (L), p̂ ∈ R
m \ {0} and for all λ, τ > 0 the following

equivalence holds true:






x̂ ∈ SOL(P1,τ ),

p̂ ∈ SOL(D1,τ ),

λ = ‖p̂‖∗







⇔







x̂ ∈ SOL(P2,λ),

p̂ ∈ SOL(D2,λ),

τ = ‖Lx̂‖







. (23)

On the one hand, we obtain by Lemma 2.6 with Ψ := Ψ1 = ιlev1‖·‖ and µ := τ−1 and the
Fenchel equality [48, Theorem 23.5] the equivalences

x̂ ∈ SOL(P1,τ ), p̂ ∈ SOL(D1,τ )

⇔ τ p̂ ∈ ∂Ψ1(τ
−1Lx̂), − L∗p̂ = ∇Φ(x̂)

⇔ Ψ1(τ
−1Lx̂) + Ψ∗

1(τ p̂) = 〈τ−1Lx̂, τ p̂〉, − L∗p̂ = ∇Φ(x̂)

⇔ ‖Lx̂‖ ≤ τ, τ‖p̂‖∗ = 〈Lx̂, p̂〉, − L∗p̂ = ∇Φ(x̂),

⇔ ‖Lx̂‖ = τ, τ‖p̂‖∗ = 〈Lx̂, p̂〉, − L∗p̂ = ∇Φ(x̂),

⇔ ‖Lx̂‖ = τ, ‖Lx̂‖‖p̂‖∗ = 〈Lx̂, p̂〉, − L∗p̂ = ∇Φ(x̂),

On the other hand, we get similarly for λ > 0 the equivalence

x̂ ∈ SOL(P2,λ), p̂ ∈ SOL(D2,λ)

⇔ ‖p̂‖∗ = λ, ‖Lx̂‖‖p̂‖∗ = 〈Lx̂, p̂〉, − L∗p̂ = ∇Φ(x̂).

Consequently, (23) holds true.
Now we introduce the function g on (0, c) by

g(τ) := ‖p̂‖∗
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for any p̂ ∈ SOL(D1,τ ). Since SOL(D1,τ ) 6= ∅ and Lemma 3.2 or rather Remark 3.3 ensures
‖p̂‖∗ = ‖q̂‖∗ for any other q̂ ∈ SOL(D1,τ ) this function is well-defined. Further, Lemma 3.5
assures for τ ∈ (0, c) that SOL(P1,τ ) ∩ N (L) = ∅, SOL(D1,τ ) ∩ {0} = ∅ and SOL(D1,τ ) ∩
argminΦ∗(−L∗·) = ∅, so that for all x̂ ∈ SOL(P1,τ ), p̂ ∈ SOL(D1,τ ) the relations

‖Lx̂‖ > 0, ‖p̂‖∗ > 0, ‖p̂‖∗ < d (24)

hold true. To verify the last inequality note that Theorem 2.4 ii) ensures p̂ ∈ SOL(D2,‖p̂‖∗). If
‖p̂‖∗ ≥ d, then Lemma 3.5 would imply p̂ ∈ SOL(D2,‖p̂‖) ⊆ argminΦ∗(−L∗·) which results in
the contradiction p̂ ∈ SOL(D1,τ ) ∩ argminΦ∗(−L∗·) = ∅. By the second and third inequality
in (24) we see that g : (0, c) → (0, d). The inclusions (21) follow from (23) which can be
applied by the first and second inequality in (24).
Similarly, we can prove that the function f on (0, d) defined by

f(λ) := ‖Lx̂‖

for any x̂ ∈ SOL(P2,λ) is well-defined, maps into (0, c) and gives rise to (22).
2. First we prove that

SOL(P1,τ ) ∩ SOL(P1,τ ′) = ∅, (25)

SOL(D2,λ) ∩ SOL(D2,λ′) = ∅ (26)

for all distinct τ, τ ′ ∈ (0, c) and all distinct λ, λ′ ∈ (0, d), respectively. Assume that there
exist λ, λ′ ∈ (0, d) with λ < λ′ and p̂ ∈ SOL(D2,λ) ∩ SOL(D2,λ′). Then ‖p̂‖∗ ≤ λ < λ′ and
p̂ ∈ argmin{Φ∗(−L∗·) subject to ‖p̂‖∗ ≤ λ′} implies that p̂ is a local minimizer of Φ∗(−L∗·)
and hence, by the convexity of Φ∗(−L∗·), a global minimizer of p̂ ∈ argminΦ∗(−L∗·). This
contradicts argminΦ∗(−L∗·) ∩ SOL(D2,λ′) = ∅ in Lemma 3.5. Similarly, we can show (25).
Next we prove the bijectivity of g : (0, c) → (0, d) by showing f ◦ g = id(0,c) (injectivity) and
g ◦ f = id(0,d) (surjectivity). Let τ ∈ (0, c) be arbitrarily chosen and set τ ′ := f(g(τ)). Then
(21) and (22) with λ = g(τ) yields

SOL(P1,τ ) ⊆ SOL(P2,g(τ)) ⊆ SOL(P1,τ ′),

SOL(D1,τ ) ⊆ SOL(D2,g(τ)) ⊆ SOL(D1,τ ′).

Since SOL(P1,τ ) 6= ∅ we must have τ = τ ′ in order to avoid a contradiction to (25). Similarly
we can prove for an arbitrarily chosen λ ∈ (0, d) and λ′ := g(f(λ)) that λ = λ′.
3. It remains to show SOL(P1,τ ) ∩ SOL(P2,λ) = ∅ and SOL(D1,τ ) ∩ SOL(D2,λ) = ∅ for
(τ, λ) ∈ [(0, c)× [0,+∞)]∪ [[0,+∞)× (0, d)] with (τ, λ) 6∈ gr g. By Lemma 3.5 we can restrict
us to those (τ, λ) 6∈ gr g with (τ, λ) ∈ (0, c) × (0, d). For such τ , λ we have τ 6= g−1(λ) and
λ 6= g(τ). Therefore we have by (25) and (26) that SOL(P1,τ ) ∩ SOL(P1,g−1(λ)) = ∅ and
SOL(D2,λ) ∩ SOL(D2,g(τ)) = ∅. By (20) we can replace SOL(P1,g−1(λ)) by SOL(P2,λ) and
SOL(D2,g(τ)) by SOL(D1,τ ) and we are done. �

By the following corollary the function g is decreasing.

Corollary 3.7. Let the assumptions of Theorem 3.6 be fulfilled. Then the bijection g : (0, c) →
(0, d) is strictly decreasing and continuous.

Proof. Since decreasing bijections between open intervals are strict decreasing and continuous
we need only to show that f = g−1 : (0, d) → (0, c) is decreasing. Let 0 < λ1 < λ2 < d and
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x̂i ∈ SOL(P2,λi
), i = 1, 2. Then f(λi) = ‖Lx̂i‖, i = 1, 2. Assuming that f(λ1) < f(λ2) we

obtain with λ2 = λ1 + ε, ε > 0 the contradiction

Φ(x̂2) + λ2‖Lx̂2‖ = Φ(x̂2) + λ1‖Lx̂2‖+ ε‖Lx̂2‖

≥ Φ(x̂1) + λ1‖Lx̂1‖+ εf(λ2)

> Φ(x̂1) + λ1‖Lx̂1‖+ εf(λ1)

= Φ(x̂1) + λ2‖Lx̂1‖. �

Remark 3.8. The function g is in general neither differentiable nor convex as the following
example shows: The strictly convex function Φ, given by

Φ(x) :=

{

(x− 4)2 for x ≤ 2

2(x− 3)2 + 2 for x > 2

has exactly one minimizer, namely x0 = 3. For τ ∈ (0, x0) we have

argmin
x∈R

{Φ(x) subject to |x| ≤ τ} = {τ} =: {x̂}.

By theorem 3.6 there is only one λ ≥ 0 with argmin(Φ(·) + λ| · |) = {τ}, namely λ = g(τ).
Fermat’s rule gives 0 ∈ ∂(Φ(·) + g(τ)| · |)|τ = ({Φ′(·)}+ g(τ)∂| · |)|τ = {Φ′(τ) + g(τ)}, so that

g(τ) = −Φ′(τ) =







2(4 − τ) for 0 < τ < 2

4 for τ = 2

4(3 − τ) for 2 < τ < x0







Obviously g is neither differentiable nor convex.

4 Problems from Image Processing

In our imaging applications the function Φ ∈ Γ0(R
n) has the form

Φ(x) = ϕ(Hx), (27)

where ϕ is a shifted squared Euclidean norm or the I-divergence with domϕ = R
n and

domϕ = R
n
>0, respectively. Thus ϕ fulfills

• domϕ is an open subset of Rn with 0 ∈ domϕ

• ϕ ∈ Γ0(R
n) is strictly convex and essentially smooth.

• ϕ has a minimizer.

Moreover, H must be chosen such that R(H) ∩ domϕ 6= ∅ in order to guarantee Φ 6≡ +∞.
Noting that H|R(H∗) : R(H∗) → R(H) is bijective, it is not hard to check that Φ is of the
form (13) with X1 := R(H∗), X2 := N (H) and φ(x1) := ϕ(Hx1) for x1 ∈ X1.
For a simple matrix-vector notation we assume images to be column-wise reshaped as a vector.
Thus, having an image x ∈ R

N,M we use the vectorized image vec(x) ∈ R
n with n = MN .

We retain the notation x for both the original and the reshaped image. We will consider four
different models, where the mixed ℓ1 and ℓ∞ norms ‖ | · | ‖1 and ‖ | · | ‖∞ are used. These

15



norms are the ℓ1 and ℓ∞ norms applied to the vector |p| ∈ R
n which follows from the actual

vector p ∈ R
m with m = κn, κ ∈ N by

|p| :=
(
‖pj‖2

)n

j=1
, pj = (pkn+j)

κ−1
k=0. (28)

For κ = 1 these are the ordinary ℓ1 and ℓ∞ norms. The mixed ℓ1 and ℓ∞ norms are dual to
each other. Moreover, they have the useful property that the orthogonal projections onto the
balls Bα,r := {p ∈ R

m : ‖ |p| ‖α ≤ r}, α ∈ {1,∞} can be computed in a simple way:

• The projection onto B∞,r of p ∈ R
m is given separately for the subvectors pj by

PB∞,r(pj) := min
{ r

‖pj‖2
, 1
}
pj, j = 1, . . . , n.

This projection is related to the (coupled) soft shrinkage operator Sr by Sr = I−PB∞,r ,
i.e.,

Sr(pj) = max
{
1−

r

‖pj‖2
, 0
}
pj , j = 1, . . . , n.

• The projection onto B1,r is given by

PB1,r (p) :=

{
p if‖ |p| ‖1 ≤ r,
Sµ(p) otherwise

with µ :=
‖pπ(1)‖2+...+‖pπ(ν)‖2−r

ν
, where ‖pπ(1)‖ ≥ . . . ≥ ‖pπ(n)‖2 ≥ 0 are the sorted

norms of the vectors pj and ν ≤ n is the largest index such that ‖pπ(ν)‖2 > 0 and

‖pπ(1)‖2 + . . .+ ‖pπ(ν)‖2 − r

ν
≤ ‖pπ(ν)‖2,

see [24, 54].

Next we consider four models.

4.1 Joint Sparsity Problems

The following task arises in (joint) sparsity problems in the presence of white Gaussian noise
[42]. Here one is looking for a minimizer p̂ of one of the problems

(D2,λ) argmin
p∈Rm

{
1

2
‖Ap − b‖22 subject to ‖ |p| ‖1 ≤ λ

}

,

(D1,τ ) argmin
p∈Rm

{
1

2
‖Ap − b‖22 + τ‖ |p| ‖1

}

where A ∈ R
n,m, n ≪ m and 0 6= b ∈ R(A). We are interested in obtaining τ for given λ.

Problem (D2,λ) is also known as LASSO (least absolute shrinkage and selection operator) [57]
and can be also tackled by basis pursuit [16, 60]. The above problems can be seen as dual
problems of the primal problems

(P2,λ) argmin
x∈Rn

{
1

2
‖x− b‖22 + λ‖ |A∗x| ‖∞

}

,

(P1,τ ) argmin
x∈Rn

{
1

2
‖x− b‖22 subject to ‖ |A∗x| ‖∞ ≤ τ

}

.
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These problems fit into the setting of the previous section with L := A∗, H := I and the
strictly convex function Φ(x) := 1

2‖x − b‖22 which has Φ∗(p) = 1
2‖p + b‖22 − 1

2‖b‖
2
2 as dual

function. By (12) the solutions x̂ and p̂ of the primal and dual problems, resp., are related
by

x̂ = b−Ap̂. (29)

Now Theorem 3.6 implies the following corollary.

Corollary 4.1. Let
c := ‖ |A∗b| ‖∞ and d := min

Ap=b
‖ |p| ‖1. (30)

Then, for λ ∈ (0, d), a solution p̂ of (D2,λ) is also a solution of (D1,τ ) iff

τ = ‖ |A∗(b−Ap̂)
︸ ︷︷ ︸

=:q̂

| ‖∞ = ‖q̂j‖2 for all j with p̂j 6= 0

where q̂j := (q̂kn+j)
κ−1
k=0 as in (28).

Relations between the above problems were also considered in another way for κ = 1 in [21],
see also [40]. The problem of finding d or better a minimizer of the right-hand side problem
in (30) appears, e.g., in compressed sensing [23]

Proof. By Theorem 3.6 and (29), we know that SOL(D1,τ ) = SOL(D2,λ) if and only if

τ = ‖ |A∗x̂| ‖∞ = ‖ |A∗(b−Ap̂)| ‖∞.

To prove the rest of the assertion we use that p̂ is also a solution of (D1,τ ). Solving (D1,τ ) with
the FBS algorithm described in the Appendix A.1 with f1 := 1

2‖A · −b‖22 and f2 := τ‖ | · | ‖1
for which ∇f1(p) = A∗(Ap − b) and proxηf2 = Sητ , cf., [20, 62], we see that p̂ solves

p̂ = Sητ (p̂+ ηA∗(b−Ap̂)) = Sητ (p̂+ ηq̂)

for any η ∈ (0, 2/‖A‖22). By definition of the coupled soft thresholding operator we distinguish
two cases: If ‖p̂j + ηq̂j‖2 ≤ ητ for some η then p̂j = 0. If ‖p̂j + ηq̂j‖2 > ητ for all η, then

p̂j = p̂j + ηq̂j − ητ
p̂j + ηq̂j

‖p̂j + ηq̂j‖2
,

q̂j = τ
p̂j + ηq̂j

‖p̂j + ηq̂j‖2
.

Since η > 0 can be chosen arbitrarily small, we see that q̂j = τ
p̂j

‖p̂j‖2
. Taking the ℓ2 norm at

both sides, we obtain the rest of the assertion. �

Example 4.2. We want to illustrate the graph of the function g−1 which maps λ to τ for a
sparsity problem with κ = 1, i.e., for the ordinary ℓ1 norm. We use the matrix A obtained
by taking 200 rows of the (1000,1000) DCT-II matrix and b resulting from a noisy vector
Ax, where x has 25 nonzero random entries of dynamical range 100. To find the values τ
corresponding to λ ∈ {1, 2, 3, . . . , ⌊d⌋} we have computed a solution p̂ of (D2,λ) for each λ
by the FBS algorithm described in Appendix A.1 with f1 := 1

2‖A · −b‖22 and f2 := ιB1,λ
for

which ∇f1(p) = A∗(Ap − b) and proxηf2 = PB1,λ
. We have d ≈ 563. Since ‖A‖2 = 1 we can

choose η ∈ (0, 2). Then, by Corollary 4.1, we have set τ := ‖A∗(b−Ap̂)‖∞. Fig. 2 shows the
corresponding function g−1 : (0, d) → (0, c).
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Figure 2: Function g−1 from Theorem 3.6 for the described joint sparsity problem.

In [61] problem (D2,λ) was considered with the ordinary ℓ1-norm. The authors were interested
in the Pareto frontier or rather curve with respect to ‖p‖1 and ‖Ap−b‖2. Except for endpoints,
that Pareto frontier is the graph of the function χ : (0, d) → R, given by

χ(λ) := inf
‖p‖1≤λ

‖Ap − b‖2 = inf
‖p‖1=λ

‖Ap− b‖2. (31)

This function is related to the above λ− τ curve f = g−1 by

f(λ) = −‖Apλ − b‖2χ
′(λ), pλ ∈ SOL(D2,λ).

Fitting more to the origins of g, we also have a look at the Pareto frontier with regard to ‖p‖1
and 1

2‖Ap− b‖22. Except for endpoints it is the graph of the function ψ : (0, d) → R, given by

ψ(λ) := inf
‖p‖1≤λ

1

2
‖Ap − b‖22 =

1

2
(χ(λ))2 , λ ∈ (0, d). (32)

This function is related to f by
f(λ) = −ψ′(λ). (33)

In [61] it was proved that χ is convex and continuously differentiable which holds also true
for ψ. Thus, by (33), the function f is continuous and decreasing; this is in agreement with
the statement of Corollary 3.7 for the special setting in the current subsection. However, in
general the function f is not differentiable. To see this fact we prove the following lemma on
the derivative of ψ which also shows that ψ is continuously differentiable.

Lemma 4.3. For A ∈ R
m,n, b ∈ R(A)\{0} and d := minAp=b ‖p‖1, let ψ : (0, d) → R be

given by (32). Then ψ is differentiable with derivative

ψ′(λ) = 2λ (1h)

(
b

λ

)

−
1

λ
‖b‖22 +

〈
PAB1,1

(
b

λ

)

, b
〉
, (34)

where 1h(v) := infu{
1
2‖u − v‖22 + ιAB1,1(u)} denotes the Moreau envelope to parameter 1 of

the function h := ιAB1,1 and PAB1,1 the orthogonal projector onto AB1,1.

Proof. We rewrite ψ as

ψ(λ) = inf
s∈AB1,λ

1

2
‖s− b‖22 = λ2 inf

q∈AB1,1

1

2
‖q −

b

λ
‖22

= λ2(1h)

(
b

λ

)

.
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Since h is proper, closed and convex its Moreau envelope 1h has a Lipschitz continuous gradient
which is given by

∇(1h)(v) = v − proxh(v) = v − PAB1,1(v),

see, e.g., [1, Proposition 12.29]. Using this relation, we obtain

ψ′(λ) = 2λ(1h)

(
b

λ

)

+ λ2
〈
∇(1h)

(
b

λ

)

, b
〉(

−
1

λ2
)

= 2λ(1h)

(
b

λ

)

−
1

λ
‖b‖22 +

〈
PAB1,1

(
b

λ

)

, b
〉
. �

While the first two summands in (34) are again continuously differentiable for λ ∈ (0, d), the
third summand is in general not differentiable as the following example shows.

Example 4.4. Let m = n = 2, A = I and 1
2 < b1 < 1, b2 = 1 − b1. Then d = b1 + b2 = 1

and we obtain by straightforward computation that

PB1,1

(
b

λ

)

=

(
b1−b2
2λ + 1

2
b2−b1
2λ + 1

2

)

for λ ∈ (b1 − b2, 1)

and PB1,1

(
b
λ

)
= (1, 0)T for λ ∈ (0, b1 − b2]. Consequently,

〈
PB1,1

(
b

λ

)

, b
〉
=

{

b1 for λ ∈ (0, b1 − b2],
b1+b2

2 + (b1−b2)2

2λ for λ ∈ (b1 − b2, 1)

which is not differentiable at λ = b1 − b2 ∈ (0, 1) = (0, d).

4.2 Restoration of Images Corrupted by Gaussian Noise

In this subsection, we are interested in problems of the form

(P1,τ ) argmin
x∈Rn

{
1

2
‖Hx− b‖22 subject to ‖ |Lx| ‖1 ≤ τ

}

,

(P2,λ) argmin
x∈Rn

{
1

2
‖Hx− b‖22 + λ‖ |Lx| ‖1

}

,

where L ∈ R
m,n, H ∈ R

n,n and b := Hxorig+η is the transformed original image corrupted by
white Gaussian noise. Model (P2,λ) arises from Bayesian statistical inference, i.e., the MAP
(maximum a posteriori) approach, see, e.g., [14, Section 2.4] and [3]. The model incorporates
the noise statistics in the data term and some information on the image in the regularizing
term. In the literature there appear for example the following settings:

(H1) Denoising with H = I.

(H2) Deblurring with an invertible, component–by–component non-negative matrix H which
is diagonalizable by the DCT-II transform [47] and fulfills H∗1n = 1n. Here 1n ∈ R

n is
the vector with all entries one.

(H3) Inpainting with a diagonal matrix H having only the values zero and one at its diagonal.
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Image restoration models frequently use the regularizing term introduced by Rudin, Osher
and Fatemi (ROF) [50] or ”ROF-like” regularizers as:

(L1) The discrete gradient L := ∇ = (∂x, ∂y)
T which belongs indeed to a discrete ROF

model, see [10].

Here m = 2n, i.e., κ = 2.

(L2) The operator associated with the Frobenius norm of the Hessian L := (∂xx, ∂yy, ∂xy, ∂yx)
T

in [55] – here m = 4n, i.e. κ = 4 – and some of its relatives, see, e.g., [7, 13, 41, 37].

(L3) Operators L arising from nonlocal means, see [31, 32, 56].

For invertible H, the dual problems read

(D1,τ ) argmin
p∈Rm

{
1

2
‖(H−1)∗L∗p− b‖22 + τ‖ |p |‖∞

}

,

(D2,λ) argmin
p∈Rm

{
1

2
‖(H−1)∗L∗p− b‖22 subject to ‖ |p| ‖∞ ≤ λ

}

.

By Remark A.1, for general H, the dual problems can be expressed in their saddle point
formulation

argmax
p∈Rm

min
x∈Rn

{
1

2
‖Hx− b‖22 + 〈p, Lx〉 − τ‖ |p |‖∞

}

,

argmax
p∈Rm

min
x∈Rn

{
1

2
‖Hx− b‖22 + 〈p, Lx〉 − ιB∞,λ

(p)

}

.

By Theorem 3.6 we obtain the following corollary.

Corollary 4.5. Let L ∈ R
m,n and H ∈ R

n,n such that N (L)∩N (H) = {0}. Assume further
that there does not exist x ∈ N (L) with H∗(Hx− b) = 0. Set

c := min
H∗(Hx−b)=0

‖ |Lx| ‖1

which reduces to c = ‖ |LH−1b| ‖1 if H is invertible. Then, for τ ∈ (0, c), a solution x̂ of
(P1,τ ) is also a solution of (P2,λ) iff λ = ‖ |p̂| ‖∞, where p̂ is any solution of (D1,τ ).

While the model (P2,λ) was considered in many papers, we have found the treatment of the
non-constrained problem (P1,τ ) only in [28]. In the following example, we just illustrate the
relation between τ and λ for a denoising problem and an inpainting model. For applications
in image processing we refer to [28] and the references therein.

Example 4.6. First, we consider a denoising problem with H := I, L := ∇ and b shown in
Fig. 3 a). Here c ≈ 795. In order to find the values λ corresponding to τ ∈ {1, 10, 20, 30, . . . , 790, 800}
we have computed a solution p̂ of (D1,τ ) for each τ by the FBS algorithm described in Ap-
pendix A.1 with f1 := 1

2‖L
∗ · −b‖22 and f2 := τ‖ | · | ‖∞ for which ∇f1(p) = L(L∗p − b) and

proxηf2 = I − PB1,τ . Since ‖∇‖22 < 8 we can choose η ∈ (0, 1/4) and have used η = 1/8. Fig.
3 b) shows the result of the curve g .
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(a) Input b.
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(b) Plot of the function g for b shown in Fig. 3 a).

Figure 3: Function g from Theorem 3.6 for the described denoising problem.

Example 4.7. Next, we deal with an inpainting problem with a diagonal matrix H hav-
ing zero diagonal entries corresponding to the mask in Fig. 4 (a) and ones otherwise and
L := ∇. We do not intend to provide the qualitatively best inpainting model among the
large number of methods in this field, but to present a restoration example with a matrix H
which is not invertible. Moreover, it may be interesting to see the difference to the tensor
inpainting method in Fig. 8. The corrupted image b given by the Fig. 4 (a). For com-
parison, we denote by xorig the original image and use the abbreviation TV (x) := ‖ |∇x| ‖1.
Fig. 4 shows the inpainting result by solving (P1,τ ) by the scaled ADMM algorithm described
in Appendix A.2 with the splitting Lx = y and γ = 10. Note that the first step of the
algorithm requires the solution of a linear system with coefficient matrix H∗H + γL∗L =
H + γL∗L, γ > 0 which is invertible since the matrix is irreducible diagonal-dominant. To
illustrate the relation between τ and λ we have computed a solution p̂ of the dual prob-
lem of (P1,τ ) with reduced input image b(201:300,201:300) from Fig. 4(a) for each τ ∈
{1, 10, 20, 30, . . . , 990, 1000, 1500, 2000, . . . , 9500, 10000}. Here we have c ≈ 95200. Note that
p̂ = γq̂ with q̂ computed by the scaled ADMM algorithm. Fig. 5 shows the graph of the
function g.

4.3 Restoration of Images Corrupted by Poisson Noise

Next we are interested in restoration problems for images corrupted by Poisson noise, more
precisely we focus on the denoising and deblurring problems withH as in (H1) and (H2). Note
that in both cases H is invertible. Then b is just the transformed original image corrupted
by Poisson noise. In particular we have that b > 0. In the MAP approach we have to replace
the squared ℓ2 data term from the previous subsection by the discrete I-divergence

I(b, x) :=

{
〈1n, b log

b
x
− b+ x〉 if x > 0,

+∞ otherwise.

The I-divergence is also known as generalized Kullback-Leibler divergence and is the Bregman
distance of the Boltzman-Shannon entropy. The Fenchel conjugate of ϕ(x) := I(b, ·) is given
by

ϕ∗(p) =

{
−〈b, log(1n − p)〉 if p < 1n,
+∞ otherwise.

21



(a) Corrupted image b. (b) x̂ with TV (x̂) ≈ TV (xorig).

(c) x̂ with TV (x̂) ≈ 1
2
TV (xorig). (d) x̂ with TV (x̂) ≈ 1

4
TV (xorig).

Figure 4: Solutions of the described TV-inpainting problem (P1,τ ) for various values of τ .
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Figure 5: Function g from Theorem 3.6 for the described TV-inpainting problem.

Using the same regularizers (L1) - (L3) as in the previous subsection, the minimization prob-
lems read
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(P1,τ ) argmin
Hx>0

{〈1n,Hx− b log(Hx)〉 subject to ‖ |Lx| ‖1 ≤ τ} ,

(P2,λ) argmin
Hx>0

{〈1n,Hx− b log(Hx)〉 + λ‖ |Lx| ‖1}.

Model (P2,λ) was considered, e.g., in [29, 53, 56]. So far we have not seen model (P1,τ ) in
the literature. Note that very recently, in [17], the authors have dealt with a constrained
minimization model which data term consists of a mixed norm instead of the I-divergence.
Interestingly, they have used projections onto epigraphs for the solution. For invertible H the
dual problems are given by

(D1,τ ) argmin
1n+(H−1)∗L∗p>0

{
−〈b, log(1n + (H−1)∗L∗p)〉 + τ‖ |p| ‖∞

}
,

(D2,λ) argmin
1n+(H−1)∗L∗p>0

{
−〈b, log(1n + (H−1)∗L∗p)〉 subject to ‖ |p| ‖∞ ≤ λ

}
,

and by (12) the solutions x̂ and p̂ of the primal and dual problems, resp., are related by

x̂ = H−1

(
b

1n + (H−1)∗L∗p̂

)

.

By Theorem 3.6 we obtain the following relation.

Corollary 4.8. Let L ∈ R
m,n and H ∈ R

n,n be given by (H2) and c := ‖ |LH−1b| ‖1. Assume
further that H−1b 6∈ N (L). Then, for τ ∈ (0, c), a solution x̂ of (P1,τ ) is also a solution of
(P2,λ) iff λ = ‖ |p̂| ‖∞, where p̂ is any solution of (D1,τ ).

Since we are not aware of the application of model (P1,τ ) for image processing tasks in the lit-
erature, we provide an image processing example together with the illustration of the function
g which maps τ to λ. Of course model (P1,τ ) makes sense if we have some a priori knowl-
edge, e.g., on the (discrete) total variation of the original image rather than on the noise level.

Example 4.9. Fig. 6 shows deblurring results by solving (P1,τ ) for different values of τ .
Remember that τ = ‖ |Lx̂| ‖1 for the solution x̂. To this end, we have blurred the original image
xorig by a Gaussian kernel with standard deviation σ = 1 and mirror (Neumann) boundary
conditions which results in the operator H. Then we have corrupted the blurred image by
Poisson noise by scaling the image by the factor 3000bmax/10

12, where bmax is the maximal
value of the blurred input image and using the MATLAB function imnoise(3000,’poisson’).
Then we have restored the image by applying the scaled ADMM for the multi-splitting in (41)
with γ = τ/30. Note that for L in (L1) and (L2), the linear system of equations arising in the
first step of the ADMM algorithm can be solved in a fast way by the DCT-II. In this example
we have used L := ∇ and the abbreviation TV (x) := ‖ |∇x| ‖1.
Next we have computed the corresponding curve g which maps τ to λ for the above image part
b(40 : 80, 100 : 140) and τ ∈ {1, 10, 60, 110, . . . , 910, 960, 1500, 2000, 2500, . . . 270000}. We
have used the ADMM algorithm for the multi-splitting (41), where we have set p̂ := γq̂2 by
Remark A.1. The curve is plotted in Fig. 7.
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(a) Noisy and blurry image b. (b) x̂ with TV (x̂) ≈ 1
2
TV (xorig).

(c) x̂ with TV (x̂) ≈ 1
4
TV (xorig). (d) x̂ with TV (x̂) ≈ 1

8
TV (xorig).

Figure 6: Solutions of the described deblurring problem (P1,τ ) with Gaussian blur and Poisson
noise for various values of τ .
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Figure 7: Function g from Theorem 3.6 for the described deblurring problem with Poisson
noise for different scales of τ .
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4.4 Matrix Completion and Tensor Inpainting Problems

Finally, we consider minimization problems involving unitarily invariant matrix norms, i.e.,
matrix norms ‖ · ‖• fulfilling

‖X‖• = ‖UXV T ‖•

for all unitary matrices U ∈ R
N,N , V ∈ R

M,M . By a result of von Neumann (1937) the
unitarily invariant matrix norms are exactly those matrix norms which can be written in the
form

‖X‖• = s•(σ(X)), (35)

where σ(X) is the vector of singular values of X and s• is a symmetric gauge function, see
[63] and for Hermitian matrices [38]. Note that a symmetric gauge function s : Rn → R

+

is a norm satisfying s(ε1xi1 , . . . , εnxin) = s(x), where εi = ±1 for all i and i1, . . . , in is a
permutation of 1, . . . , n. We are interested in the Schatten-p norms for p = 1, 2,∞ which are
defined for X ∈ R

N,M and t := min{N,M} by

‖X‖n :=

t∑

i=1

σi(X) = s∗(σ(X)) = ‖σ(X)‖1 (nuclear norm),

‖X‖F := (

N∑

i=1

M∑

j=1

x2ij)
1
2 = (

t∑

i=1

σ2i (X))
1
2 = sF (σ(X)) = ‖σ(X)‖2 (Frobenius norm),

‖X‖2 := max
i=1,...,t

σi(X) = s2(σ(X)) = ‖σ(X)‖∞, (spectral norm).

Let A : RN,M → R
N,M be a linear operator and B ∈ R

N,M be not contained in N (A∗). We
are interested in the minimization problems

(D2,λ) argmin
P∈RN,M

{
1

2
‖A(P )−B‖2F subject to ‖P‖n ≤ λ

}

,

(D1,τ ) argmin
P∈RN,M

{
1

2
‖A(P )−B‖2F + τ‖P‖n

}

.

Problem (D1,τ ) with the identity operator A was considered in connection with low rank
matrix recovery such as matrix completion [59, 8]. With a pointwise multiplication operator
A with entries in {0, 1} it appears in tensor inpainting [39]. We are not aware of applications of
model (D2,λ) in the literature. Using von Neumann’s characterization (35) we can check that
the dual norm of a unitarily invariant matrix norm is just given by the dual gauge function.
Thus, the dual norm of the nuclear norm is the spectral norm, ‖X‖2 and the corresponding
primal problems can be written as

(P2,λ) argmin
X∈RN,M

{
1

2
‖X −B‖2F + λ‖A∗(X)‖2

}

,

(P1,τ ) argmin
X∈RN,M

{
1

2
‖X −B‖2F subject to ‖A∗(X)‖2 ≤ τ

}

.

These problems fit into our setting with H := I, L := A∗ and Φ(X) := 1
2‖X − B‖2F which

has Φ∗(P ) := 1
2‖P + B‖2F − 1

2‖B‖2F as dual function. By (12) the solutions X̂ and P̂ of the
primal and dual problems, resp., are related by

X̂ = B −A(P̂ ). (36)
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Now Theorem 3.6 implies the following corollary.

Corollary 4.10. Let

c := ‖A∗(B)‖2 and d := min
A∗(B)=A∗A(P )

‖P‖n.

Then, for λ ∈ (0, d), a solution P̂ of (D2,λ) is also a solution of (D1,τ ) iff τ = ‖A∗(B −

A(P̂ ))‖2.

For solving (D2,λ) we can use the following proposition.

Proposition 4.11. Let B = UBΣBV
T

B be a singular value decomposition of B. Then the
minimizer of the proximity problem

argmin
P∈RN,M

{1

2
‖B − P‖2F + ιlevλ‖·‖•(P )

}
(37)

is given by P̂ = UBΣP̂
V T

B , where the singular values σ(P̂ ) in Σ
P̂

are determined by

σ(P̂ ) = argmin
σ∈Rt

{
1

2
‖σ(B)− σ‖22 + ιlevλs•(σ)} (38)

with the symmetric gauge function s• corresponding to ‖ · ‖•.

The proof follows by the duality relation (36) (with A = I) and a known relation for the dual
problem of the proximity problem (37), see, e.g., [54, Proposition 2.2]. Note that a numerical
solution of (D1,τ ), resp. (P1,τ ) without singular value decomposition was proposed in [9].

Example 4.12. Fig. 8 shows solutions of the inpainting problem modeled by (D2,λ) for
different values λ. The operator A is determined by the mask in Fig. 8 (a). For solving (D2,λ)
we have used the FBS algorithm in Appendix A.1 with f1 := 1

2‖A(·) − B‖2F and f2 := ιB∗,λ

for which ∇f1(P ) = A∗(A(P ) − B) and proxηf2 = Plevλ‖·‖∗. Here Plevλ‖·‖∗ can be computed
by solving the proximity problem (37) in Proposition 4.11 via (38). Further, we have chosen
η := 1 ∈ (0, 2). The original image of the facade without corruption is denoted by Porig.
Finally, we want to illustrate the relation between λ and τ given by Corollary 4.10, i.e., the
curve g−1. To this end, we have used the same settings as in Fig. 8 but with a part of the facade
image. More precisely, the input is given by the MATLAB command B(101:200,101:200).
Fig. 9 shows the function g−1 for
λ ∈ {1, 10, 20, 30, . . . , 990, 1000, 1500, 2000, 2500, 3000, . . . , 26500, 27000}.
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(a) Corrupted image B. (b) P̂ with ‖P̂ ‖n ≈ ‖Porig‖n.

(c) P̂ with ‖P̂‖n ≈ 2
3
‖Porig‖n. (d) P̂ with ‖P̂‖n ≈ 1

2
‖Porig‖n.

Figure 8: Solutions of the described inpainting problem (D2,λ) for various values of λ.

1 2
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Figure 9: Function g−1 from Theorem 3.6 for the described tensor inpainting problem.
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5 Conclusions

In this paper we have considered relations between convex problems with constrained homo-
geneous functions and their penalized versions together with various old and new examples
from image restoration. These constrained optimization problems can be solved directly by
using first order primal dual methods together with an appropriate splitting to decouple the
involved variables. The models are useful if we have a priori knowledge on the image or the
class of images rather than on the noise statistics. Recently bilevel optimization approaches
for parameter learning in variational models based, e.g., on solving

min
λ

‖x(λ) − b‖22 subject to x(λ) = argmin
x

{

1

p

c∑

k=1

λk‖Kkx‖
p
p +

1

2
‖x− b‖22

}

were proposed in [36, 46, 51]. Here b is a collection of images from a certain class.

If the noise level can be estimated it would be also interesting to consider constrained problems
where we change the roles of Φ and Ψ, i.e., the data misfit term is in the constraint. For the
continuous L2 - TV model the relations between these models were examined in [11, Theorem
2.1]. One can attempt to find a minimizer of such a constrained functional by solving the
corresponding penalized problem or a sequence of penalized problems. This goes back to
the Morozov discrepancy principle [43]. For image restoration tasks such approaches were
recently successfully applied in connection with first order primal dual methods in [45, 64]. For
’sparsity’ models the reader may again consider [61, 40]. Further modifications for spatially
adapted regularization parameter selection as in [15, 22] are also of interest. However, one of
the main topics is still the estimation of the noise statistics.

A Appendix: Algorithms

In this section we describe the convex optimization algorithms used in Section 4 to find the
minimizers of the various functionals, namely the forward-backward splitting algorithm (FBS)
and the alternating direction method of multipliers (ADMM).

A.1 Forward-Backward Splitting

Let f1, f2 ∈ Γ0(R
n). Assume that there exists β > 0 such that f1 is 1/β-Lipschitz differentiable

on R
n. We are looking for solutions of

x̂ ∈ argmin
x∈Rn

{f1(x) + f2(x)}. (39)

For f ∈ Γ0(R
n) the proximity operator is given by

proxf (x) := argmin
y∈Rn

{
1

2
‖x− y‖22 + f(y)}.

The iterates of the following algorithm converge to a solution of (39), see, e.g., [1, 27].

Algorithm (FBS)
Initialization: x(0) ∈ R

n, η ∈ (0, 2β).
For k = 0, . . . repeat until a stopping criterion is reached

x(k+1) := proxηf2(I − η∇f1)(x
(k)).
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A.2 Alternating Direction Method of Multipliers

We briefly introduce the alternating direction method of multipliers (ADMM) for problems
of the form

argmin
x∈Rn,y∈Rm

{f1(x) + f2(y)} subject to Kx = y (40)

with f1 ∈ Γ0(R
n), f2 ∈ Γ0(R

m) and K ∈ R
m,n. With the augmented Lagrangian

Lγ(x, y, p) := f1(x) + f2(y) + 〈p,Kx− y〉+
γ

2
‖Kx− y‖22, γ > 0

the ADMM algorithm reads

Algorithm (ADMM)
Initialization: y(0), p(0) ∈ R

m and γ > 0.
For k = 0, . . . repeat until a convergence criterion is reached:

x(k+1) = argmin
x∈Rn

Lγ(x, y
(k), p(k))

y(k+1) = argmin
y∈Rm

Lγ(x
(k+1), y, p(k))

p(k+1) = p(k) + γ(Kx(k+1) − y(k+1)).

Replacing p by q := p/γ one obtains a scaled ADMM version, see [6].

Algorithm (Scaled ADMM)
Initialization: y(0), b(0) ∈ R

m and γ > 0.
For k = 0, . . . repeat until a convergence criterion is reached:

x(k+1) = argmin
x∈Rn

{

f1(x) +
γ

2
‖q(k) +Kx− y(k)‖22

}

y(k+1) = argmin
y∈Rm

{

f2(y) +
γ

2
‖q(k) +Kx(k+1) − y‖22

}

q(k+1) = q(k) +Kx(k+1) − y(k+1)

Note that for our kind of problems, the ADMM coincides with the alternating split Bregman

method [33] and the Douglas-Rachford splitting method applied to the dual problem, see,
e.g., [6, 25, 26, 30, 52]. The values p(k) converge to a solution of the dual problem of (40).
Convergence of x(k) to a solution of (40) is ensured if there is a unique minimizer in the
first step of the algorithm, see [52], which is the case in all our examples. Note that a useful
adaptation strategy for choosing γ is contained in [6].
We have applied the splitting idea from the PIDSplit algorithm in [29, 53] to the setting

(P1,τ ) argmin
x∈Rn

{〈1n,Hx− b log(Hx)〉 subject to ‖ |Lx| ‖1 ≤ τ} ,

which can be rewritten as

argmin
x∈Rn,y∈Rn+m

{

〈0, x〉
︸ ︷︷ ︸

=:f1(x)

+ 〈1, y1 − b log(y1)〉+ ιB1,τ (y2)
︸ ︷︷ ︸

:=f2(y1,y2)

subject to

(
H
L

)

︸ ︷︷ ︸

K

x =

(
y1
y2

)}

. (41)
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Application of the scaled ADMM results in the following algorithm.

Scaled ADMM for (41)

Initialization: q
(0)
1 = q

(0)
2 = 0, y

(0)
1 = Hb, y

(0)
2 = Lb.

For k = 0, . . . repeat until a stopping criterion is reached

x(k+1) = argmin
x∈Rn

{
‖q

(k)
1 +Hx− y

(k)
1 ‖22 + ‖q

(k)
2 + Lx− y

(k)
2 ‖22

}
,

y
(k+1)
1 = argmin

y1∈Rn

{
〈1, y1 − b log(y1)〉+

γ

2
‖q

(k)
1 +Hx(k+1) − y1‖

2
2

}
,

y
(k+1)
2 = argmin

y2∈R2n

{
ιB1,τ (y2) +

γ

2
‖q

(k)
2 + Lx(k+1) − y2‖

2
2

}
,

q
(k+1)
1 = q

(k)
1 +Hx(k+1) − y

(k+1)
1 ,

q
(k+1)
2 = q

(k)
2 + Lx(k+1) − y

(k+1)
2 .

We have that y
(k+1)
2 = PB1,τ

(
q
(k)
2 + Lx(k+1)

)
. The other steps of the algorithm can be per-

formed as in [53, 56].

To see how (a part of) the dual variable q̂ computed in the scaled ADMM algorithm is related
to the dual variable p̂ in the Fenchel relation in Lemma 2.6 and in the computation of λ we
need the following remark.

Remark A.1. An alternative formulation of the primal and dual problems in Lemma 2.6 can
be given by the help of the Lagrangian. We rewrite (P ) as

argmin
x,y

{Φ(x) + Ψ(µy) subject to Lx = y}

which has the Lagrangian L(x, y, p) = Φ(x) +Ψ(µy) + 〈p, Lx− y〉. Then the primal and dual
problems can be written as

(P ) argmin
x∈Rd

min
y∈Rm

max
p∈Rm

{Φ(x) + Ψ(µy) + 〈p, Lx− y〉} ,

(D) argmax
p∈Rm

min
x∈Rd,y∈Rm

{Φ(x) + Ψ(µy) + 〈p, Lx− y〉} ,

see [4, 5]. Since miny∈Rm{Ψ(µy)− 〈p, y〉} = −Ψ∗(p/µ) the dual and the primal problems can
be rewritten as

(P ) argmin
x∈Rd

max
p∈Rm

{
Φ(x)−Ψ∗

(
p

µ

)

+ 〈p, Lx〉
}
,

(D) argmax
p∈Rm

min
x∈Rd

{
Φ(x)−Ψ∗

(
p

µ

)

+ 〈p, Lx〉
}
.

To obtain the curve g from Corollary 4.8 we have to compute

λ = ‖ |p̂| ‖∞ = γ‖ |q̂2| ‖∞

which can be seen as follows: By the above considerations problem (P1,τ ) can be written as

argmin
x∈Rn

max
p∈Rm

{
〈1,Hx− b log(Hx)〉+ 〈p, Lx〉 − ι∗B1,τ

(p)
}
.
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On the other hand, the saddle point formulation of (41) reads

argmin
x∈Rn

max
p1,p2

{
− ψ∗

1(p1)− ι∗B1,τ
(p2) + 〈p1,Hx〉+ 〈p2, Lx〉

}

= argmin
x∈Rn

max
p2∈Rm

{
ψ1(Hx)− ι∗B1,τ

(p2) + 〈p2, Lx〉
}

with ψ1(x) := 〈1, x − b log(x)〉.

References

[1] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer, New York, 2011.

[2] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. IEEE Transactions on Image Processing,
18(11):2419–2434, 2009.

[3] M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging. IOP Publish-
ing, Bristol, 1998.
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