
Quadrature for Path-dependent
Functionals of Lévy-driven

Stochastic Differential Equations

Felix Heidenreich

Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation.

1. Gutachter: Prof. Dr. Klaus Ritter

2. Gutachter: Prof. Dr. Michael Giles

Tag der Einreichung: 30. Mai 2012

Tag der Disputation: 26. Oktober 2012

D 386

Contents

1 Introduction 5

1.1 Notation . 10

2 Lévy processes 13

2.1 Definition . 13

2.2 The Lévy-Itô decomposition . 15

2.3 The Blumenthal-Getoor index . 17

2.4 Itô isometry . 18

2.5 SDEs driven by Lévy processes . 19

2.6 Examples . 20

3 Strong approximation 27

3.1 The approximation scheme . 27

3.2 Strong error estimates . 29

3.3 Examples . 42

4 The multilevel algorithm 49

4.1 Classical Monte Carlo and multilevel Monte Carlo 50

4.2 The coupled approximation . 55

4.3 Main results . 56

4.4 Lower bound for Lévy processes . 71

4.5 Asymptotic choice of parameters . 73

4.6 Examples . 75

5 Numerical simulations 79

5.1 Bias and variance estimation for MLMC 79

5.2 Lookback option and truncated stable processes 86

3

Contents

5.3 Geometric Asian option in the Barndorff-Nielsen Shephard (BNS)

model . 90

6 Appendix 99

Bibliography 103

4

1 Introduction

The main topic of this thesis is to define and analyze a multilevel Monte Carlo

algorithm for path-dependent functionals of the solution of a stochastic differential

equation (SDE)

dYt = a (Yt−) dXt, t ∈ [0, 1],

Y0 = y0,
(1.1)

which is driven by a Lévy process X. To be more precise, we work with standard

Lipschitz assumptions for the diffusion coefficient a, the driving process X is dX-

dimensional and square integrable and Y = (Yt)t∈[0,1] is the dY -dimensional strong

solution process of (1.1) with deterministic initial value y0 ∈ R
dY . We investigate

the computation of expectations

S(f) = E[f(Y)],

where f : D[0, 1] → R is a measurable function mapping from the path space of

the solution process Y to the reals and is Lipschitz continuous with respect to the

supremum norm. The entire assumptions of the underlying problem are defined in

more detail in Chapter 3 in Assumptions A (3.2).

Problems of the above kind arise, for instance, in financial mathematics in the

context of option pricing of European options. There, (the logarithm of) the under-

lying stock price is modeled by an SDE, and the function is given by the (discounted)

payoff function of the considered option. We emphasize, that our setting allows to

consider path-dependent options like Asian, lookback or barrier options.

We are interested in the relation of the error and the computational cost of ran-

domized algorithms Ŝ, which approximately compute this value for the considered

class of functions. For a given SDE we consider as error criterion the worst case of

5

1 Introduction

the root mean square error over the given class of functionals F , i.e., we define the

error e(Ŝ) of an algorithm Ŝ by

e2
(
Ŝ
)
= sup

f∈F
E

[∣∣∣S(f)− Ŝ(f)
∣∣∣
2
]
. (1.2)

The computational cost of an algorithm Ŝ, denoted cost(Ŝ), should represent

the runtime of the algorithm on a computer. We work in the real number model

of computation, which means that we assume that arithmetic operations with real

numbers and comparisons can be done in one time unit. We further suppose that

evaluations of a are possible at any point y ∈ R
dY in constant time and evaluations

of f are possible for piecewise constant functions in time units according to its

number of breakpoints plus one. We also assume that sampling from the uniform

distribution on [0, 1] and from the suitably restricted Lévy measure are possible in

constant time. Here, the Lévy measure is restricted to regions bounded away from

the origin by open balls of radius h > 0 and rescaled to a probability measure.

The most natural choice of an algorithm for the computation of S(f) is the clas-

sical Monte Carlo simulation SMC , whose output SMC(f) for a function f is the

average over the function evaluations of an i.i.d. sequence (Yi)i=1,...,n with distri-

bution PY . The root mean square error of the latter is given by n−1/2 times the

standard deviation of f(Y). In most computational problems, the distribution of

Y is only implicitly given, e.g. in terms of the solution of an SDE, and has to be

suitably approximated by a random element Ŷ whose distribution can be simulated.

The corresponding Monte Carlo algorithm ŜMC has the output

ŜMC(f) =
1

n

n∑

i=1

f
(
Ŷi

)
,

for a given function f , where (Ŷi)i=1,...,n is an i.i.d. sequence with distribution PŶ .

The resulting root mean square error can then be decomposed into

e2
(
ŜMC(f)

)
=

∣∣∣∣E [f(Y)]− E
[
f
(
Ŷ
)]

︸ ︷︷ ︸
=bias(ŜMC(f))

∣∣∣∣
2

+
1

n
var
(
f
(
Ŷ
))

.

6

The first term is due to the usage of an approximation Ŷ and is called the bias

of the algorithm, while the second term is the statistical error of the Monte Carlo

algorithm itself.

A standard idea to improve the trade-off between error and cost in this Monte

Carlo algorithm setting is to find good approximations of Y , i.e., to find approxi-

mations Ŷ with a small bias with respect to its computational cost, and to apply

standard Monte Carlo. There are various weak approximation results available for

the case that f depends only on the endpoint marginal of Y , see [36] for the stan-

dard Euler and [23] for the approximate Euler method. Both provide explicit error

expansions in the first moments of the inverse of the step size. In this cases, the

convergence order can be further improved by the Romberg extrapolation technique

as described in [43] for the classical diffusion case. There are other higher-order weak

approximation results available, e.g., in [44] via an Markov operator approach, in [46]

for a jump-adapted scheme with Gaussian correction for the neglected small jumps

and an additional approximation for the SDE between the jump times, or in the

recent article [45] for a similar jump-adapted scheme with non-Gaussian correction

for the neglected small jumps with matching first three or more moments.

In our setting of global errors, i.e., considering the supremum norm on the path

instead of the endpoint, there are no higher order weak approximation schemes

available such that we use a multilevel approach originating from an idea of Stefan

Heinrich in [18] for parametric integration. A special case of such a multilevel scheme

with only two levels appearing has been used in [26]. There, a control variate type

variance reduction technique, called the statistical Romberg method, is used. The

multilevel scheme for a Brownian SDE has then been defined and analyzed in [16] and

a complexity analysis of the scheme can be found in [34]. The results demonstrate

its superiority to all known Monte Carlo methods so far, by reaching convergence

order 1/2 in terms of the computational cost up to some logarithmic terms.

For the multilevel scheme, one needs a hierarchy of approximation schemes for

the solution of the SDE, denoted Ŷ (1), Ŷ (2), . . ., with accuracy increasing with the

upper index. The idea is to split the expectation of a fixed accuracy level m into a

7

1 Introduction

telescoping sum of all approximations with lower accuracy by

E
[
f
(
Ŷ (m)

)]
= E

[
f
(
Ŷ (1)

)]
+

m∑

k=2

E
[
f
(
Ŷ (k)

)
− f

(
Ŷ (k−1)

)]
,

and to compute the expectations on the right hand side by independent classical

Monte Carlo methods. The resulting multilevel scheme features the bias of the high-

est accuracy, while the variance is given by the sum of variances of the right hand

side variables. If we now properly couple the approximations of Ŷ (k) and Ŷ (k−1) for

k = 2, . . . ,m, the variance of (f(Ŷ (k)) − f(Ŷ (k−1))) decreases in k and the number

of replications needed to guarantee a desired precision decreases as well. Along this

way, we can substantially reduce the computational effort.

We will use an approximate Euler scheme, i.e. an Euler scheme with a compound

Poisson approximation X̂ (h,ǫ) of the driving process on a non-deterministic grid. The

latter arises from X by neglecting jumps smaller h > 0 and taking a random time

discretization including all times where X jumps with magnitude greater h and

having step size at most ε > 0. For this scheme, strong error estimates are provided

in Chapter 3, and we will take as weak error the one induced by the strong one.

The Euler scheme for a Lévy-driven SDE has already been analyzed in a variety

of articles. In [27], the more general case of a semimartingale as driving process has

been considered and the global strong approximation has been investigated to show

uniform convergence on compacts in probability of the scheme. For Lévy processes

the convergence rate obtained is approximately 1/2 in terms of the step size of the

Euler scheme. As the explicit simulation of increments of X is only possible in a

few cases, there has quite recently been articles on the approximate Euler scheme,

which uses a compound Poisson approximation of X. In [39], this scheme has been

analyzed in terms of a limit theorem, showing convergence in law of the error process

multiplied with a rate function of the right order, depending amongst other things

on the Lévy measure. The weak approximation of the approximate Euler scheme

has been analyzed in [23] while a strong approximation error recently has been

presented in [15], where an additional Gaussian term compensating the neglected

small jumps is considered, following the idea of [2]. The above references for the

approximate Euler scheme are again only covering the case of endpoint marginals

in the weak error case and the error appearing in the discretization points in the

8

strong approximation case.

Together with the strong error estimates from Chapter 3, the multilevel algo-

rithm leads to upper bounds for the error of the underlying quadrature problem

by considering for F the Lipschitz class of measurable functionals on the Skorohod

space D[0, 1] of càdlàg functions, that are Lipschitz continuous with coefficient 1

with respect to supremum norm. We can summarize the main results of Chapter 4

in terms of the Blumenthal-Getoor index of the driving Lévy process, denoted by

β ∈ [0, 2], which measures the frequency of occurrence of small jumps with sizes

around the origin. For β < 1 and no Brownian component present, we almost reach

convergence order 1/2, which means, that there exists a sequence of multilevel algo-

rithms (Ŝn)n∈N with cost(Ŝn) ≤ n such that e(Ŝn) - n−1/2. Here, by -, we denote a

weak asymptotic upper bound, i.e. the inequality holds up to an unspecified positive

constant. If X has a Brownian component, the order has an additional logarithmic

term, in which case, we reach e(Ŝn) - n−1/2 (log(n))3/2.

The higher β is, the more frequent the small jumps appear and the worse is our

approach of neglecting them. For β ≥ 1, we come arbitrary close to the convergence

order 1/β − 1/2, which unfortunately tends to zero for β → 2. For this case, an

improved algorithm is already defined in [12]. There, an additional Gaussian cor-

rection term, which recovers the covariance structure of the neglected small jumps,

improves the weak error estimate such that a convergence order, which is arbitrary

close to (4− β)/(6β), can be obtained.

For the special subclass of Y being the Lévy process itself, we also provide a

lower bound, which, up to a logarithmic term, recovers the order 1/2, i.e. neglecting

logarithmic terms, the multilevel algorithm is order optimal for β < 1.

The multilevel Monte Carlo algorithm was first introduced by Stefan Heinrich in

[18] in a different setting, namely parametric integration of integral equations, and

further presented in a special article on these algorithms in [19]. In 2006, Mike Giles

introduced the multilevel scheme in [16] in the context of financial mathematics for

the calculation of expectations with respect to (marginals of) diffusion processes

given by the solution of an SDE with Brownian motion as driving process. Since

then, there has been a wide range of applications and new fields of research, where

the multilevel idea has been successfully installed. In the case of a Brownian SDE,

we mention [4], where discontinuous functions are considered, [9], where the compu-

9

1 Introduction

tation of Greeks via multilevel is outlined as well as [21] for the calculation of mean

exit times. In [11], the authors show the asymptotical optimality of the multilevel

scheme in a variety of computational problems where the desired distribution of Y

is in a suitable scale of Gaussian distributions. Furthermore, the multilevel scheme

also applies in the quadrature problem on the sequence space in [20], where it can

also be combined with quasi Monte Carlo methods as already considered in [17], as

well as in the context of SPDEs in [6].

In the case of a Lévy driven SDE, the results of [16] has been extended in [31],

combining the strong approximation result of [15] and the weak approximation of

[23]. The results hold for expectations with respect to marginals of the solution

process and the assumptions on F and the diffusion coefficient are more restrictive

than those presented here. The statement itself remains pretty similar to [16] up

to the possibility of a non-linear growth of the computational cost with respect to

the step-size of the deterministic grid of the Euler scheme. The particular case of a

jump-diffusion as driving process is studied in [48], where, in contrast to our case,

the jump-intensity also may depend on the value of the solution process.

This thesis is organized as follows: In Chapter 2, we shortly review the charac-

teristics and some basic facts on Lévy processes needed in the following. We also

introduce some examples of driving Lévy processes, which will be revisited after each

chapter to apply the received results. In Chapter 3, we define the Euler approxima-

tion scheme with random time discretization used in our multilevel scheme. Strong

error estimates for the latter with respect to the second moment of the supremum

norm on [0, 1] are presented. With their help, we define and analyze the multilevel

scheme in Chapter 4. The asymptotic choice of parameters in the multilevel scheme

as occurring in the proof, are separately stated. A different semi-heuristic method

to implement the multilevel algorithm is outlined in Chapter 5 together with two

numerical examples recovering our theoretical results.

1.1 Notation

Throughout this thesis, we will denote by 〈., .〉 the standard scalar product on R
d

and by |.| the corresponding Euclidean norm for vectors and the Frobenius norm

for matrices, i.e. for A ∈ R
m×n we set |A|2 =∑m

i=1

∑n
j=1 |ai,j|2. The operator norm

10

1.1 Notation

will be denoted by |.|op and for h > 0, the open ball around the origin with radius

h is given by Bh = {x ∈ R
d : |x| < h}. Furthermore, the space of R

d-valued

càdlàg functions on [0, 1] is denoted by D[0, 1], endowed with the Borel-σ-field of

the Skorohod topology, which is equivalent to the trace of the product-σ-field on R
[0,1]

in D[0, 1] or the σ-field induced by the projections on finite-dimensional marginals.

We are interested in the global error of our approximations in the interval [0, 1],

which is given by the sup norm, which we denote by ‖X‖ = supt∈[0,1] |Xt|. We

further denote by Lip(1) the class of Borel measurable functions f : D[0, 1] → R

which are Lipschitz continuous with coefficient 1 with respect to supremum norm.

The indicator function of a set A ∈ R
d will be written by 1lA : Rd → {0, 1}. We

will further consider the following definitions of asymptotic relations. For positive

functions f and g, we write f - g if lim supx→a f(x)/g(x) < ∞, i.e. if there exists a

constant κ > 0 such that f(x) ≤ κ · g(x) for x → a, where typically a = 0 or a = ∞.

If both f - g and g - f holds, we write f ≍ g. The strong asymptotic equivalence

lim f/g = 1 will be denoted by f ≈ g and for a strong asymptotic upper bound we

write f . g, which means lim f/g ≤ 1.

11

2 Lévy processes

In this chapter, we will give a very brief introduction to Lévy processes and present

useful and neccessary results for the definition and the error analysis of our multilevel

scheme. Most of the proofs and ideas can be found in monographs, in which cases the

references are outlined in the text. Popular reading references for the introduction

to Lévy processes are [1], [37], [41], [7] and [29] as well as for the use in finance the

monographs [42] and [10].

2.1 Definition

In the sequel, (Ω,F , (Ft)t≥0, P) always denotes a filtered probability space satisfying

the usual hypthesis of right-continuity and completeness.

Definition 1 (Lévy process). On (Ω,F , (Ft)t≥0, P), an adapted stochastic process

X = (Xt)t≥0 is called a Lévy process if

• X0 = 0 P -a.s.,

• X is P -a.s. càdlàg (right-continuous with left limits),

• X has independent increments, i.e. for all n ∈ N and all sequences 0 = t0 ≤
t1 < t2 < . . . < tn < ∞, Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent,

• X has stationary increments, i.e. for all 0 ≤ s < t < ∞, Xt−Xs is distributed

like Xt−s.

Remark 1. The augmented natural filtration (FX
t)t≥0 of a Lévy process X, i.e. the

natural filtration of X with FX
0 containing all sets of F with P -measure zero, always

satisfies the usual hypothesis of right-continuity and completeness, see [37, p. 22] or

[1, p. 88].

13

2 Lévy processes

For an R
dX -valued Lévy process X = (Xt)t≥0, the marginals Xt are always in-

finitely divisible for all t ≥ 0. Due to the independent and stationary increments,

the characteristic function can thus be given in terms of the characteristic exponent

Ψ : RdX → C of X1, which is Ψ(u) = log(E[exp(i〈u,X1〉)]). It clearly holds

E [exp (i〈u,Xt〉)] = exp (tΨ(u)) (2.1)

for all t ≥ 0 and all u ∈ R
dX . Furthermore, the Lévy-Khintchine formula, see [1,

p. 29] provides an explicit form for the characteristic exponent Ψ of this infinitely

divisible random variable. We denote by b ∈ R
dX a vector, by A ∈ R

dX×dX a positive

semidefinit symmetric matrix and by ν a Lévy measure on R
dX , that is a Borel

measure on R
dX which satisfies ν({0}) = 0 and

∫

R
dX

|x|2 ∧ 1 ν(dx) < ∞.

Then, for the infinitely divisible random variable X1, there exist b, A and ν as above

such that for all u ∈ R
dX

Ψ(u) = i〈b, u〉 − 1

2
〈u,Au〉+

∫

RdX

[exp(i〈u, x〉)− 1− i〈u, x〉1lB1(x)] ν(dx). (2.2)

Clearly, the distribution of X is completely determined by the three parameters b, A

and ν. Here, b is called the drift, A is called the Gauss coefficient and ν is called the

Lévy measure of X.

The inverse implication holds as well, i.e. for every infinitely divisible distribution

µ on R
dX , there exists an R

dX -valued Lévy processX with distribution µ as marginal

distribution at time t = 1, see [1, p. 65].

Observe that the truncation function 1lB1(x) assures the integrability of the in-

tegral in (2.2). In the literature, this truncation function is sometimes chosen in

slightly different ways, e.g. by a continuous function which approximates the indi-

cator function. This change has an obvious impact on the drift b.

In this work, we deal with square integrable Lévy processes, in which case the

truncation function can be ommited as the Lévy measure then fulfills
∫
|x|2 ν(dx) <

∞. In the sequel, we assume b to be the drift with no truncation function in the

Lévy-Khintchine-representation, i.e. the characteristic function from (2.2) changes

14

2.2 The Lévy-Itô decomposition

to

Ψ(u) = i〈b, u〉 − 1

2
〈u,Au〉+

∫

R
dX

[exp(i〈u, x〉)− 1] ν(dx).

2.2 The Lévy-Itô decomposition

To obtain a better feeling for the parameters of X, we provide here a sketch of

the Lévy-Itô decomposition for Lévy processes. Roughly speaking, we can split any

Lévy process into the sum of three independent parts, namely a Wiener process,

an L2 jump-martingale and a compound Poisson part with drift. In our case of

square integrability, the compound Poisson part can as well be written as part of

the L2 jump-martingale part. A proof of this decomposition can be found, e.g., in

the monographs of Protter [37, p. 31] or Applebaum [1, p. 126].

To be more precise, we at first take a closer look at the jumps of the Lévy process

X. Therefore, we denote by

∆Xt = Xt − lim
sրt

Xs

the jump of X at time t > 0. For simplicity, we suppose the Lévy process to have

càdlàg paths for all ω ∈ Ω. Now we count the jumps of X by defining the random

measure

N(t, A)(ω) = #{s ∈ [0, t] : ∆Xs(ω) ∈ A} (2.3)

for ω ∈ Ω, A ∈ B(RdX) and t ≥ 0. Clearly, for fixed ω ∈ Ω and s ≥ 0, N(s, .)(ω) is

a counting measure on B(RdX) counting the jumps of the realization (Xt(ω))t≥0 in

the time interval [0, s] with size in the set A. It turns out, that the average number

of jumps with size in A ∈ B(RdX) in the unit time interval is given by the value of

the Lévy measure

ν(A) = E[N(1, A)]

for the set A. As the paths of X are càdlàg, we deduce that there exist only finitely

many jumps with size greater than some threshold greater zero in any finite time

interval. This yields for a set A that is bounded below, i.e. 0 /∈ Ā, that N(t, A) < ∞.

Furthermore, for any set A with ν(A) < ∞, the process (N(t, A))t≥0 is a Poisson

15

2 Lévy processes

process with intensity ν(A) and the integral
∫
A
xN(t, dx) then is a random finite

sum, which gives rise to a compound Poisson process.

More specifically, we now consider complements of balls Bh = {x ∈ R
dX : |x| < h}

with sufficiently small h > 0 such that ν(Bc
h) > 0. We put µ(h)(dx) = ν|Bc

h
(dx)/ν(Bc

h)

to be the Lévy measure restriced to the above complement and normalized. Then

µ(h) defines a Borel probability measure on R
dX that determines the law of the jumps

of the above mentioned compound Poisson process which consists of large jumps.

More precisely, it holds ∫

Bc
h

xN(t, dx)
d
=

Nt∑

i=1

ξi, (2.4)

where
d
= denotes equality in distribution, (Nt)t≥0 is a Poisson process with intensity

ν(Bc
h) and (ξi)i∈N is an i.i.d. sequence of random variables with distribution µ(h) and

independent of (Nt)t≥0. To make sense of the jump process consisting of possibly

countably infinitely many small jumps as well, we investigate the limit for h → 0.

Therefore, we want to switch to the complete space of L2-martingales by subtracting

the expectation which calculates to E
[∫

Bc
h
xN(t, dx)

]
= F0(h)t, where we set

F0(h) =

∫

Bc
h

x ν(dx).

We then consider the compensated process L(h) = (L(h)

t)t≥0, given by

L(h)

t =

∫

Bc
h

xN(t, dx)− tF0(h), (2.5)

which is an L2-Lévy process with zero mean and thus an L2-martingale. It turns out

that for h → 0, L(h) forms a Cauchy sequence, such that the jump part of X can be

defined by its L2-limit L = (Lt)t≥0, which also holds P -a.s., see, e.g., Applebaum [1,

p. 121 ff.]. To further investigate the structure of X, we subtract the jump process

L as well as the deterministic drift b = E[X1] from the original process X. It turns

out, that the remaining process

Bt = Xt − Lt − bt, t ≥ 0,

16

2.3 The Blumenthal-Getoor index

is a Brownian motion with covariance matrix A = ΣΣ∗, which is independent of

the process L. Altogether, with W denoting a dX-dimensional Brownian motion

independent of L, we can decompose a given Lévy process X into the sum

Xt = ΣWt + Lt + bt (2.6)

for t ≥ 0. We add that the Lévy-Itô decomposition guarantees that every L2-Lévy

process has a representation (2.6).

2.3 The Blumenthal-Getoor index

For a Lévy process X, the Blumenthal-Getoor index β measures the frequency in

which the infinitely many small jumps appear. As it is a characteristic for the jump

part, it depends on the Lévy measure ν of X and is defined by

β = inf

{
p > 0 :

∫

|x|<1

|x|p ν(dx) < ∞
}
. (2.7)

For a Lévy measure ν we always have
∫
|x|<1

|x|2 ν(dx) < ∞ such that β only takes

values in [0, 2]. For a standard Brownian motion, the Lévy measure is zero and

thus has Blumenthal-Getoor index 0. Processes with finitely many jumps in finite

time intervals, i.e. compound Poisson processes, also have β = 0, while the inverse

implication is not true in general, which we will see later in the examples.

There are other equivalent ways of defining β that fit into our setting regarding

the function
∫ |x|2

h2 ∧ 1 ν(dx). The latter will be a crucial quantity in our main re-

sults, which links the strong approximation rate with the computational cost of the

algorithm. More explicitly, with

g(h) =

∫

|x|>h

1 ν(dx) +
1

h2

∫

|x|≤h

|x|2 ν(dx) + 1

h

∣∣∣∣b−
∫

h<|x|≤1

x ν(dx)

∣∣∣∣

≥
∫ |x|2

h2
∧ 1 ν(dx),

we can write the Blumenthal-Getoor index as the asymptotic size of the singularity

17

2 Lévy processes

of g in the origin in terms of functions h−p for p > 0, namely,

β = inf

{
p > 0 : lim sup

hց0
hpg(h) = 0

}
.

For proofs and further reading on the B-G index, we refer to the paper [8] of

Blumenthal and Getoor from 1961, where the index was first mentioned.

2.4 Itô isometry

For our strong error estimates in Chapter 3, we state here a consequence of the Itô

isometry for Lévy processes, which itself can be found, e.g., in [37, p. 161 ff.]. To

this end, for a square integrable RdX -valued Lévy martingale L = (Lt)t≥0 with Lévy

measure ν and covariance matrix of its Brownian component A = ΣΣ∗, we define

the self-adjoint operator Q : RdX → R
dX by

Qx = Ax+

∫
〈x, y〉y ν(dy),

for x ∈ R
dX . Then, for a previsible R

dY ×dX valued process (Hs)s≥0 and a stopping

time τ with

E

[∫ τ

0

∣∣∣HsQ
1
2

∣∣∣
2

op
ds

]
< ∞,

the stopped process (
∫ τ∧t
0

HsdLs)t≥0 is a uniformly square integrable R
dY -valued

martingale with

E

[∣∣∣∣
∫ τ

0

Hs dLs

∣∣∣∣
2
]
= E

[∫ τ

0

∣∣∣HsQ
1
2

∣∣∣
2

op
ds

]
.

Observe, that for the operator norm of a self-adjoint operator T it holds

|T |op = sup
|x|≤1

|〈Tx, x〉| ,

see [47, p.239], such that we have |Q 1
2 |2op = |Q|op and we can estimate the above

18

2.5 SDEs driven by Lévy processes

expectation by

E

[∫ τ

0

∣∣∣HsQ
1
2

∣∣∣
2

op
ds

]
≤ E

[∫ τ

0

|Hs|2op ·
∣∣∣Q 1

2

∣∣∣
2

op
ds

]

≤ E

[∫ τ

0

|Hs|2 · |Q|op ds
]
.

The operator norm of Q is bounded from above by

|Q|op = sup
|x|≤1

〈Qx, x〉

= sup
|x|≤1

〈
Ax+

∫
〈x, y〉y ν(dy), x

〉

≤ sup
|x|≤1

〈ΣΣ∗x, x〉+ sup
|x|≤1

∫
〈x, y〉2ν(dy)

≤ |Σ|2 +
∫

|y|2 ν(dy),

where we have used linearity of the integral, the Cauchy Schwarz inequality and the

fact that the Frobenius norm dominates the operator norm induced by the Euclidean

norm.

Altogether we can bound the L2-norm of the above stochastic integral by

E

[∣∣∣∣
∫ τ

0

Hs dLs

∣∣∣∣
2
]
≤ E

[∫ τ

0

|Hs|2 ·
(
|Σ|2 +

∫
|y|2 ν(dy)

)
ds

]
. (2.8)

2.5 SDEs driven by Lévy processes

Recall from (1.1) that in this thesis we consider SDEs of the form

dYt = a (Yt−) dXt, t ∈ [0, 1],

Y0 = y0,

on a filtered probability space with deterministic initial value y0 ∈ R
dY , a diffusion

coefficient a : RdY → R
dY ×dX and a Lévy process X, adapted to the filtration F .

Theory for this kind of SDEs can be found, e.g., in [1, p. 377 ff.] or in [37, p. 255 ff.],

where the more general case of a semimartingale is considered as driving process. We

19

2 Lévy processes

define a process Y = (Yt)t∈[0,1] to be a strong solution to the SDE, if Y is adapted

to F and satisfies the integral equation

Yt = y0 +

∫ t

0

a(Ys−) dXs,

P -a.s. for all t ∈ [0, 1]. This of course implies that the stochastic integral on the

right hand side exists. For this specific case of deterministic finite initial value y0, a

sufficient condition for a strong solution process to exist is the following Lipschitz

condition on a. For all y, y′ ∈ R
dY , it holds

|a(y)− a(y′)| ≤ K|y − y′|,

for a constant K > 0, where you should recall that |.| denotes the Euclidean norm

for vectors and the Frobenius norm for matrices, respectively. Under this condition,

a strong solution Y , exists. Furthermore, this solution is càdlàg and unique P -a.s.

in the pathwise sense.

2.6 Examples

Next we will show some interesting examples of Lévy processes different from a

simple Poisson process or a Brownian motion. Here, we introduce these processes

and after each of the following chapters, the results will be applied to these processes.

Stable Lévy processes

We begin with the definition of a strictly stable distribution. A random variable Z

is called strictly stable if there exists a sequence (cn)n∈N with cn > 0 such that for

each n ∈ N it holds

Z1 + Z2 + . . .+ Zn
d
= cnZ, (2.9)

where Z1, . . . , Zn are i.i.d. copies of Z. It turns out that cn = n1/α for α ∈ (0, 2].

We thus call the distribution of Z strictly α-stable. These distributions have been of

interest in modelling, e.g., for telephone noise and in finance, because of their heavy

20

2.6 Examples

tails and their scaling property. Stable laws are also of interest in the context of limit

theorems as the distribution of the limits. Clearly, the strictly stable distributions

are infinitely divisible and thus provide possible choices for the marginal distribution

of a Lévy process at time t = 1. We call a Lévy process X with X1 being strictly

α-stable distributed an α-stable Lévy process. The latter is a subclass of stable

processes, which are not neccessarily of Lévy type and which are thoroughly studied

in [40].

Resulting from the scaling property (2.9) with cn = n1/α, strictly stable processes

possess self-similarity, i.e. for any a > 0

(
Xat

a1/α

)

t≥0

d
= (Xt)t≥0.

Recall that a standard Brownian motionW provides self-similarity with α = 2 which

yields that a Brownian motion is the special case of a strictly stable Lévy process

with stability index α = 2. In the following, we restrict ourselves to α ∈ (0, 2),

because we are mainly interested in processes besides Brownian motions.

The Blumenthal-Getoor index of an α-stable process with α ∈ (0, 2) is β = α,

while, due to the frequency of large jumps, only moments of order less than α exist.

The Lévy measure ν of a one-dimensional α-stable process can be represented via a

Lebesgue density, denoted in the following by fν , by

ν(dx) =
(
1l(0,∞](x)

A+

|x|1+α
+ 1l[−∞,0)(x)

A−
|x|1+α

︸ ︷︷ ︸
:=fν(x)

)
dx,

for x ∈ R\{0}, where A+, A− ≥ 0 with A+ + A− > 0. We will apply our numerical

scheme to this one-dimensional stable processes, where we slightly change the Lévy

measure such that its second moment exists, but the stable like behaviour of X

remains valid for the small jumps. One such possibility is to temper the large jumps

with an exponential decay, i.e. by multiplying the Lebesgue density with exp(−λ|x|)
with some λ > 0. For the index of stability varying in {0.5, 0.8, 1.2}, we show some

approximations of the trajectories of tempered stable processes with A+ = A− =

λ = 2 in Figures 2.1, 2.2 and 2.3.

21

2 Lévy processes

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

time t

X
t

Figure 2.1: Tempered stable process with α = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

time t

X
t

Figure 2.2: Tempered stable process with α = 0.8.

22

2.6 Examples

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

time t

X
t

Figure 2.3: Tempered stable process with α = 1.2.

Inverse Gaussian process (IG)

We first define the distribution, which literally should be the inverse of a Gaussian

distribution, denoted by IG(a, b), with parameters a, b > 0. Therefore, for W de-

noting a standard Brownian motion, we define by T (a,b) the time, when the process

(Wt + bt) reaches the level a for the first time, i.e.

T (a,b) = inf{t > 0 : Wt + bt ≥ a}.

Then the distribution of T (a,b) is called inverse Gaussian with parameters a and b,

abbreviated by IG(a, b). Thus, it does not describe the inverse of a Gaussian distri-

bution literally, but it describes the distribution, when, for a Wiener process, instead

of considering the level at a certain time, we consider the time at which a certain

level is reached. It turns out, that T (a,b) is infinitely divisible with characteristic

function

E
[
exp(iuT (a,b))

]
= exp

(
−a
(√

−2iu+ b2 − b
))

.

It thus leads to a Lévy process X with X1 having an inverse Gaussian distribution

with parameter a and b. It furthermore has the following scaling property. For c >

0 and an IG(a, b) random variable X the random variable cX is IG(
√
ca, b/

√
c)

distributed. The Lévy measure of an inverse Gaussian process can be given in terms

23

2 Lévy processes

of a Lebesgue density by

νIG(dx) =
a√

2πx3/2
· exp

(
−1

2
b2x

)
· 1lx>0 · dx

for x ∈ R. The inverse Gaussian process is a Lévy subordinator, i.e. a pure jump

Lévy process having only positive jumps and non-negative drift, which is equivalent

for being entirely positive. An approximation of a trajectory of an IG process with

a =
√
2π and b = 2 is given in Figure 2.4. Such processes can be used to create

new processes by substituting the time of a given Lévy process by the subordinator,

see e.g. [10]. This leads to a new Lévy process. Especially in finance, this method is

used, e.g., to model the logarithm of the stock price by a Brownian motion observed

in ”business time”, which is then given by the subordinator. A Brownian motion

subordinated by an inverse Gaussian process is then called a normal inverse Gaussian

process. Another special case of subordination is the following example.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

time t

X
t

Figure 2.4: Inverse Gaussian process with a =
√
2π and b = 2.

Variance Gamma process (VG)

The interest in this process arised within the work [30], where it was proposed as

a new source of uncertainty for the logarithm of the stock price besides Brownian

motion in an own market model. It came along with advantages like heavy tailed-

ness and a good empirical fit while preserving nice technical properties like, e.g., the

24

2.6 Examples

possibility to a multivariate extension. A Variance Gamma process (Xt)t≥0 is a Lévy

process resulting from subordinating a Brownian motion with a Gamma subordina-

tor. More explicitly, a Brownian motion (Wt)t≥0 is timeshifted by an independent

Gamma Lévy process (Tt)t≥0. The latter is the Lévy process T with T1 being Gamma

distributed, which is of course an infinitely divisible distribution. We will use the

following parametrization: For a, b > 0 the Lebesgue density of the distribution of

T is given by

fTt(x) =
bat

Γ(at)
xat−1 exp(−bx),

for x > 0, where Γ denotes the Gamma function. The name arises from the fact that

the variance of the process X is conditionally determined by the Gamma process T .

The VG process is then given by (Xt)t≥0 = (WTt)t≥0. The Lévy measure ν of a VG

process X can be given in terms of the Lebesgue density

fν(x) =
a

|x| exp(−
√
2b|x|)

for x ∈ R\{0}.

25

3 Strong approximation

Crucial for the error analysis of the multilevel Monte Carlo scheme will be a weak

error result as well as the variance of the estimator, for which we need a strong error

result of the underlying approximation schemes. Here, we only consider the weak

error, that is implicitly given by the strong one using the Lipschitz continuity of

the functionals. In the following we will at first define the underlying approximation

scheme, which essentially consists of an Euler scheme on a random time discretiza-

tion where the Lévy process will be approximated by a compound Poisson process.

After that, we will state strong convergence results for these approximation schemes.

3.1 The approximation scheme

We first recall to the reader the SDE (1.1), from whose solution process Y the

computational problem arises.

dYt = a(Yt−)dXt, t ∈ [0, 1],

Y0 = y0,

with a Lipschitz continuous function a : RdY → R
dY ×dX and a deterministic initial

value y0 ∈ R
dY . The driving Lévy process X is supposed to be square integrable,

i.e. the Lévy measure ν satisfies

∫
|x|2 ν(dx) < ∞,

and thus X decomposes to

Xt = Lt + ΣWt + bt,

27

3 Strong approximation

for t ≥ 0, where b ∈ R
dX , ΣW is a dX-dimensional Brownian motion with covariance

matrix ΣΣ∗, which is independent of the L2-jump martingale L. Remember, that

the drift b is chosen such that L is a martingale, i.e. with no truncation function in

the integral of the Lévy-Khintchine-formula (2.2).

As we are not able to simulate the process L on a given time discretization in

many cases, we will approximate it by a compound Poisson process L(h), arising by

neglecting the jumps smaller than some threshold h > 0. Thereby, the underlying

idea to avoid huge global errors is to choose a random time discretization which

includes at least all times, where L jumps with absolute size greater h, such that all

big jumps are simulated at the right position. Along this way, the discretization has

to incorporate at least the following stopping times (T (h)

j)j≥0 given by T (h)

0 = 0 and

T (h)

j = inf{t > T (h)

j−1 : |∆Lt| ≥ h}, j ≥ 1.

Up to now, the discretization is completely random and so we have no determinis-

tic control on the mesh size of our grid. Because of the Brownian component, which

can cause errors of size according to the size of the gap in between two discretization

times, we refine the given time discretization such that two consecutive discretiza-

tion points are at most ε > 0 apart. This new time grid (T (h,ε)

j)j≥0 is defined by

T (h,ε)

0 = 0 and

T (h,ε)

j = inf{T (h)

k > T (h,ε)

j−1 : k ∈ N} ∧ (T (h,ε)

j−1 + ε) (3.1)

for j ≥ 1.

Summarizing,X is approximated at the discretization times Tj = T (h,ε)

j by X̂ (h,ǫ)

0 =

0 and

X̂ (h,ǫ)

Tj
= X̂ (h,ǫ)

Tj−1
+ Σ(WTj

−WTj−1
) + ∆L(h)

Tj
+ (b− F0(h))(Tj − Tj−1)

for j ≥ 1, where we recall that F0(h) =
∫
Bc

h
x ν(dx). Observe that with this choice

X̂ (h,ǫ)

Tj
= ΣWTj

+ L(h)

Tj
+ bTj,

28

3.2 Strong error estimates

i.e., by X̂ (h,ǫ), we essentially consider the process defined by

X (h)

t = ΣWt + L(h)

t + bt

for t ≥ 0 on the random grid (Tj)j∈N. For the SDE (1.1) the resulting approximate

Euler scheme is defined by Ŷ (h,ǫ)

0 = y0 and

Ŷ (h,ǫ)

Tj
= Ŷ (h,ǫ)

Tj−1
+ a(Ŷ (h,ǫ)

Tj−1
)(X̂ (h,ǫ)

Tj
− X̂ (h,ǫ)

Tj−1
) (3.2)

for j ≥ 1. Between two discretization points, we define the process Ŷ (h,ǫ) to be piece-

wise constant by setting Ŷ (h,ǫ)

t = Ŷ (h,ǫ)

Tj
for t ∈ [Tj , Tj+1). It is of course also possible

to choose interpolation schemes of higher order between the grid points, e.g., the

piecewise linear interpolation. We focus on the piecewise constant approximations as

these higher order interpolation schemes can only improve our strong approximation

results in terms of constants, while the evaluation of functionals of the solution path

becomes more difficult.

3.2 Strong error estimates

All restrictions on the SDE needed for the strong error estimates are summarized in

the following

Assumption (A). For a fixed K < ∞, the function a : RdY → R
dY ×dX satisfies

|a(y)− a(y′)| ≤ K|y − y′|

for all y, y′ ∈ R
dY . Furthermore, we have

|a(y0)| ≤ K, 0 <

∫
|x|2 ν(dx) ≤ K2, |Σ| ≤ K and |b| ≤ K.

To prove error bounds for approximations of Y under Assumption (A), we will

need the following lemma showing the boundedness of the solution process by some-

thing only depending on K. The proof of this lemma is a standard way to prove

estimates of moments of stochastic differential equations. Essentially, it is a combi-

nation of Doob’s inequality and Gronwall’s lemma.

29

3 Strong approximation

Lemma 1. Under Assumption (A), there exists a constant κ > 0 depending only

on K, such that

E

[
sup
t∈[0,1]

|Yt − y0|2
]
< κ.

Proof. The idea is to use Gronwall’s inequality like it is stated in the Appendix 8.

Therefore define

z(t) = E

[
sup
s∈[0,t]

|Ys − y0|2
]
, (3.3)

for t ∈ [0, 1]. Then z(t) < ∞ for t ∈ [0, 1] by a result of [1, p. 373] together with

our assumption of second moments of X. Remembering the definition of Y , we

decompose the integral equation into the martingale part and the drift part. For

t ∈ [0, 1],

Yt = y0 +

∫ t

0

a(Ys−) dXs

= y0 +

∫ t

0

a(Ys−)b ds+

∫ t

0

a(Ys−) d(ΣWs + Ls).

Then with the inequality (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0 we derive

z(t) = E

[
sup
s∈[0,t]

∣∣∣∣
∫ s

0

a(Yu−)b du+

∫ s

0

a(Yu−) d(ΣWu + Lu)

∣∣∣∣
2
]

≤ 2E

[
sup
s∈[0,t]

∣∣∣∣
∫ s

0

a(Yu−)b du

∣∣∣∣
2
]
+ 2E

[
sup
s∈[0,t]

∣∣∣∣
∫ s

0

a(Yu−) d(ΣWu + Lu)

∣∣∣∣
2
]
.

The next step is to bound the above two expectations by integrals of z(s) w.r.t. the

Lebesgue measure. Therefore observe for the first expression, that due to Jensen’s

30

3.2 Strong error estimates

inequality and Fubini’s theorem, we have

E

[
sup
s∈[0,t]

∣∣∣∣
∫ s

0

a(Yu−)b du

∣∣∣∣
2
]
≤ E

[
sup
s∈[0,t]

∫ s

0

|a(Yu−)b|2 du

]

≤ E

[∫ t

0

|a(Yu−)|2 · |b|2 du

]

≤ K2

∫ t

0

E
[
|a(Yu−)|2

]
du,

where we have used the assumptions to bound the absolute value of the drift b.

Furthermore, we derive again due to the assumptions, that

E
[
|a(Yu−)|2

]
≤ E

[
|a(Yu−)− a(y0)|2 + |a(y0)|2

]

≤ K2 E
[
|Yu− − y0|2

]
+K2

≤ K2 (z(u) + 1).

Altogether, the first expression can be bounded by

E

[
sup
s∈[0,t]

∣∣∣∣
∫ s

0

a(Yu−)b du

∣∣∣∣
2
]
≤ K4

∫ t

0

(z(u) + 1) du

≤ K4 +K4

∫ t

0

z(u) du.

For the second expression, we use Doob’s supremum inequality for L2-martingales

to only consider the second moment in the endpoint, see, e.g., [24, p. 225]. Then

the upper bound (2.8) coming from the Itô isometry, Assumptions (A) and Fubini’s

31

3 Strong approximation

theorem yield as upper bound

E

[∣∣∣∣
∫ t

0

a(Yu−) d(ΣWu + Lu)

∣∣∣∣
2
]
≤ E

[∫ t

0

|a(Yu−)|2
(
|Σ|2 +

∫
|y|2 ν(dy)

)
du

]

≤ 2K2 E

[∫ t

0

|a(Yu−)|2 du
]

= 2K2

∫ t

0

E
[
|a(Yu−)|2

]
du

≤ 2K4

∫ t

0

(z(u) + 1) du

≤ 2K4 + 2K4

∫ t

0

z(u) du.

Inserting both estimates into the upper bound of z(t), we get

z(t) ≤ 2K4 + 2K4

∫ t

0

z(u) du+ 16K4 + 16K4

∫ t

0

z(u) du

= 18K4 + 18K4

∫ t

0

z(u) du.

Gronwall’s lemma then implies

E

[
sup
s∈[0,1]

|Ys − y0|2
]
= z(1) ≤ 18K4 · exp(18K4),

which finishes the proof.

Before we consider our piecewise constant approximation process Ŷ (h,ǫ), we need

the error analysis of another approximating process Ȳ = Ȳ (h,ε), which will be the

solution to the integral equation

Ȳt = y0 +

∫ t

0

a(Ȳι(s)−)dX
(h)

s ,

with ι(t) = sup([0, t] ∩ T), and T = (Tj)j∈Z+ . The strong error estimates for our

32

3.2 Strong error estimates

approximation schemes will always be given in terms of the function

F (h) =

∫

Bh

|x|2 ν(dx)

for h > 0. Roughly speaking F (h) measures the L2-error which occurs by neglecting

jumps of size smaller than h. Recall that we use this compound Poisson approxima-

tion of the jump part of the driving process X. Clearly, F is monotone increasing

in h and bounded by K2 by our Assumption (A). Furthermore, we always have

limh↓0 F (h) = 0 with asymptotic behavior determined by the B-G index β. More

precisely, we have for any β′ > β that F (h) - h2−β′

for h ↓ 0.

Theorem 1. If Assumption (A) from Chapter 3.2 holds, there exists a constant

κ > 0 depending only on K such that for all ε ∈ (0, 1] and h > 0 with ν(Bc
h) ≤ 1/ε,

we have

E

[
sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ(ε+ F (h)) (3.4)

in the general case and

E

[
sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ(F (h) + |b− F0(h)|2ε2) (3.5)

in the case without a Brownian component, i.e. Σ = 0.

Proof. We will use a similar idea as in Lemma 1. Therefore, we put Zt = Yt − Ȳt

and Z̄t = Yt − Ȳι(t) for t ≥ 0. Then, for a fixed stopping time τ we define the error

in [0, t] up to the stopping time by

zτ (t) = E

[
sup

s∈[0,t∧τ]
|Zs|2

]
. (3.6)

The stopping time τ provides zτ (t) < ∞ for t ∈ [0, 1] by stopping for too large

values of |Zt|. The goal now is to derive an estimate for zτ (t) in the way it is needed

to apply Gronwall’s inequality, i.e. for constants α1, α2 > 0, not depending on the

33

3 Strong approximation

choice of τ , and all t ∈ [0, 1], we want

zτ (t) ≤ α2 + α1

∫ t

0

zτ (s)ds.

Then, using a localizing sequence, i.e. an increasing sequence of stopping times

(τn)n≥1 with τn → ∞ P -a.s. and each τn satisfying zτn(1) < ∞, we can deduce with

a montone convergence argument that

E

[
sup
s∈[0,1]

|Ys − Ȳs|2
]
= E

[
sup
s∈[0,1]

|Zs|2
]
= lim

n→∞
zτn(1) ≤ α2 exp(α1). (3.7)

So we now start to derive an estimate for (3.6). We define by L̄t = Lt−L(h)

t for t ≥ 0

the remaining term of the driving process not occurring in the compound Poisson

approximation. Essentially, L̄ then is the jump martingale of compensated jumps

smaller h. Then we can decompose Z in a local martingale and a finite variation

part by

Zt = Mt + M̄t + Vt,

for t ≥ 0. Hereby, the local martingales M and M̄ are given by

Mt =

∫ t

0

(a(Ys−)− a(Ȳι(s)−)) d(ΣWs + L(h)

s)

and

M̄t =

∫ t

0

a(Ys−) dL̄s,

respectively. The remaining finite variation process V is then given by

Vt =

∫ t

0

(a(Ys−)− a(Ȳι(s)−))b ds.

34

3.2 Strong error estimates

Now using the inequality (a+ b+ c)2 ≤ 4(a2+ b2+ c2) for a, b, c ≥ 0, we clearly have

zτ (t) ≤ 4E

[
sup

s∈[0,t∧τ]
|Ms|2

]
+ 4E

[
sup

s∈[0,t∧τ]
|M̄s|2

]
+ 4E

[
sup

s∈[0,t∧τ]
|Vs|2

]
,

and it remains to bound the three expectations on the right hand side.

For the first one, Doob’s supremum inequality, (2.8), Assumption (A) and Fubini’s

theorem imply

E

[
sup

s∈[0,t∧τ]
|Ms|2

]
≤ 4E

[
|Mt∧τ |2

]

≤ 4E

[∫ t∧τ

0

∣∣a(Ys−)− a(Ȳι(s)−)
∣∣2 (|Σ|2 +

∫

Bc
h

|y|2 ν(dy)) ds
]

≤ 8K2 E

[∫ t∧τ

0

∣∣a(Ys−)− a(Ȳι(s)−)
∣∣2 ds

]

≤ 8K4 E

[∫ t∧τ

0

∣∣Ys− − Ȳι(s)−
∣∣2 ds

]

= 8K4

∫ t

0

E
[
1l{s≤τ}|Z̄τ

s−|2
]
ds,

where Z̄τ denotes the process Z̄ stopped at τ , i.e., Z̄τ
t = Z̄τ∧t. For the second

expectation, we derive with similar arguments, that

E

[
sup

s∈[0,t∧τ]
|M̄s|2

]
≤ 4E

[
|M̄t∧τ |2

]

≤ 4E

[∫ t∧τ

0

|a(Ys−)|2
∫

Bh

|y|2 ν(dy) ds
]

≤ 8F (h)K2 E

[∫ t∧τ

0

(|Ys− − y0|2 + 1) ds

]

≤ 8F (h)K2

∫ t

0

(E
[
|Ys− − y0|2

]
+ 1) ds.

By Lemma 1, E [|Ys− − y0|2] is bounded by a constant depending only on K such

that we can essentially bound the second expectation by a constant multiple of F (h).

35

3 Strong approximation

The third expectation can be estimated by

E

[
sup

s∈[0,t∧τ]
|Vs|2

]
= E

[
sup

s∈[0,t∧τ]

∣∣∣∣
∫ s

0

(a(Yu−)− a(Ȳι(u)−))b du

∣∣∣∣
2
]

≤ E

[
sup

s∈[0,t∧τ]

∫ s

0

∣∣(a(Yu−)− a(Ȳι(u)−))b
∣∣2 du

]

≤ E

[∫ t∧τ

0

∣∣(a(Yu−)− a(Ȳι(u)−))
∣∣2 |b|2 du

]

≤ K4

∫ t

0

E
[
1l{u≤τ}

∣∣Z̄τ
u−
∣∣2
]
du.

Putting the three estimates together, we conclude that there exists a constant κ1 > 0

depending only on K such that for t ∈ [0, 1],

zτ (t) ≤ κ1

(
F (h) +

∫ t

0

E
[
1l{s≤τ}

∣∣Z̄τ
s−
∣∣2
]
ds

)
. (3.8)

For Gronwall’s lemma we need an upper bound in terms of an integral of s 7→ zτ (s).

Therefore observe that Z̄s = Zs + Ȳs − Ȳι(s) to derive

E
[
1l{s≤τ}

∣∣Z̄τ
s−
∣∣2
]
= E

[
1l{s≤τ}

∣∣Zτ
s− + Ȳs− − Ȳι(s)−

∣∣2
]

≤ 2E
[
1l{s≤τ}

∣∣Zτ
s−
∣∣2
]
+ 2E

[
1l{s≤τ}

∣∣Ȳs− − Ȳι(s)−
∣∣2
]
.

We have Ȳs− − Ȳι(s)− = a(Ȳι(s)−)(X
(h)

s− −X (h)

ι(s)) and thus

E
[
1l{s≤τ}

∣∣Ȳs− − Ȳι(s)−
∣∣2
]
≤ E

[
1l{s≤τ}

∣∣∣a(Ȳι(s)−)
(
X (h)

s− −X (h)

ι(s)

)∣∣∣
2
]

≤ E

[
1l{s≤τ}

∣∣a(Ȳι(s)−)
∣∣2
∣∣∣X (h)

s− −X (h)

ι(s)

∣∣∣
2
]

≤ 2K2 E

[(∣∣Ȳ τ
ι(s)− − y0

∣∣2 + 1
) ∣∣∣X (h)

s− −X (h)

ι(s)

∣∣∣
2
]

= 2K2 E
[∣∣Ȳ τ

ι(s)− − y0
∣∣2 + 1

]
E

[∣∣∣X (h)

s− −X (h)

ι(s)

∣∣∣
2
]

by the strong Markov property of X, see, e.g. [1, p. 97]. The first term can be further

36

3.2 Strong error estimates

bounded, using |Ȳι(s)− − y0| ≤ |Yι(s)− − y0|+ |Zι(s)−|, by

E
[∣∣Ȳ τ

ι(s)− − y0
∣∣2
]
≤ 2

(
E
[
|Y τ

ι(s)− − y0|2
]
+ E

[
|Zτ

ι(s)−|2
])

,

where E
[
|Y τ

ι(s) − y0|2
]
is bounded by a constant depending on K by Lemma 1. For

the second term, observe, that in]ι(s), s[no jumps of X (h) occur, i.e.,

X (h)

s− −X (h)

ι(s) = Σ
(
Ws −Wι(s)

)
+ (b− F0(h)) (s− ι(s)),

such that the expectation calculates to

E

[∣∣∣X (h)

s− −X (h)

ι(s)

∣∣∣
2
]
= E

[∣∣Σ
(
Ws −Wι(s)

)
+ (b− F0(h))(s− ι(s))

∣∣2
]

≤ 2E
[∣∣Σ

(
Ws −Wι(s)

)∣∣2
]
+ 2E

[
|b− F0(h)|2 |s− ι(s)|2

]

≤ 2
(
|Σ|2 ε+ |b− F0(h)|2 ε2

)
,

where we used that W is independent of the stopping times in T. Further notice,

that the last term is uniformly bounded in h as by the Cauchy-Schwarz inequality

|F0(h)|2 =
∣∣∣∣∣

∫

Bc
h

x ν(dx)

∣∣∣∣∣

2

≤ ν(Bc
h)

∫
|x|2 ν(dx) ≤ K2/ε.

Clearly, we can bound E
[
1l{s≤τ}|Zτ

s−|2
]
and E

[
|Zτ

ι(s)−|2
]
by zτ (s), respectively. Then

putting the estimates together we get for a constant κ2 > 0 depending only on K

that

E
[
1l{s≤τ}

∣∣Z̄τ
s−
∣∣2
]
≤ κ2

(
zτ (s) + |Σ|2 ε+ |b− F0(h)|2 ε2

)
.

Inserting this into (3.8), we get

zτ (t) ≤ κ3

(
F (h) + |Σ|2 ε+ |b− F0(h)|2 ε2 +

∫ t

0

zτ (s) ds

)

37

3 Strong approximation

for a constant κ3 depending only on K. By (3.7) we thus derived the upper bound

E

[
sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ4

(
F (h) + |Σ|2 ε+ |b− F0(h)|2 ε2

)
,

i.e., if Σ = 0, the second term cancels and we are done. For the general case, observe

that

|Σ|2 ε+ |b− F0(h)|2 ε2 ≤ K2ε+ (|b|2 + |F0(h)|2)ε2 ≤ K2(ε2 + 2ε) ≤ κ5ε, (3.9)

for a constant κ5 depending only on K. The result then follows immediately.

Now we come back to the actual approximation process Ŷ (h,ǫ). Essentially, the

difference to Ȳ is, that Ŷ (h,ǫ) is taken piecewise constant between two discretization

points T (h,ε)

j and T (h,ε)

j+1 , i.e. the approximation scheme Ȳ is some kind of continuous

Euler scheme. Under the same assumptions on the process X, the approximation

parameter h and ε, and the coefficients a and b in terms of a universal constant K

given in the Assumptions (A), we get a global approximation result similar to the

result of Theorem 1. The changes are due to the error induced by the Brownian

motion between two discretization points. More precisely we get the following

Theorem 2. If Assumption (A) from Chapter 3.2 holds, there exists a constant

κ > 0 depending only on K such that for all ε ∈ (0, 1] and h > 0 with ν(Bc
h) ≤ 1/ε,

we have

E

[
sup
t∈[0,1]

|Yt − Ŷ (h,ǫ)

t |2
]
≤ κ

(
ε log

(
exp(1)

ε

)
+ F (h)

)
(3.10)

in the general case and

E

[
sup
t∈[0,1]

|Yt − Ŷ (h,ǫ)

t |2
]
≤ κ(F (h) + |b− F0(h)|2ε2) (3.11)

in the case without a Brownian component, i.e., Σ = 0.

Remark 2. The Euler scheme for a Lévy-driven SDE has already been analyzed in

[27]. The authors consider semimartingales as driving processes and show uniform

38

3.2 Strong error estimates

convergence on compacts in probability with the help of a global strong approxi-

mation. For the case of X being a Lévy process the convergence rate obtained is

approximately 1/2 in terms of the step size of the Euler scheme. Observe that this

Euler scheme employs increments of the driving semimartingale.

As the explicit simulation of increments of X is only possible in a few cases, there

has been a rising interest in the approximate Euler scheme, which uses a compound

Poisson approximation of X. In [39], this scheme has been analyzed in terms of a

limit theorem, showing convergence in law of the error process multiplied with a rate

function of the right order, depending amongst other things on the Lévy measure.

A strong approximation error then very recently has been presented in [15]. The

author studies the L2-error appearing in the discretization points under an approxi-

mate Euler scheme in the one-dimensional case, where an additional Gaussian term

compensating the neglected small jumps is considered, following the idea of [2]. The

resulting error bounds are approximately of the same size as those from Theorem 2.

Proof. For the proof, we will write Ŷ for Ŷ (h,ǫ). By

E

[
sup
t∈[0,1]

|Yt − Ŷt|2
]
≤ 2

(
E

[
sup
t∈[0,1]

|Yt − Ȳt|2
]
+ E

[
sup
t∈[0,1]

|Ȳt − Ŷt|2
])

,

and Theorem 1 it suffices to find a upper bound for the second term. Therefore

observe that for each discretization point Tj ∈ T we have ȲTj
= ŶTj

. Furthermore,

as Ŷ is chosen piecewise constant between two points in T, we conclude, that

Ȳt − Ŷt = Ȳt − Ȳι(t) = a(Ȳι(t))(b− F0(h))(t− ι(t))︸ ︷︷ ︸
=:At

+ a(Ȳι(t))Σ(Wt −Wι(t))︸ ︷︷ ︸
=:Bt

. (3.12)

With (3.12), the problem splits into

E

[
sup
t∈[0,1]

∣∣∣Ȳt − Ŷt

∣∣∣
2
]
= E

[
sup
t∈[0,1]

|At + Bt|2
]

≤ 2

(
E

[
sup
t∈[0,1]

|At|2
]
+ E

[
sup
t∈[0,1]

|Bt|2
])

39

3 Strong approximation

The first expression can be bounded by

E

[
sup
t∈[0,1]

|At|2
]
≤ E

[
sup
t∈[0,1]

∣∣a(Ȳι(t))
∣∣2 |b− F0(h)|2 |t− ι(t)|2

]

≤ 2K2E

[
sup
t∈[0,1]

∣∣Ȳι(t) − y0
∣∣2 + 1

]
|b− F0(h)|2 ε2

≤ κ1 |b− F0(h)|2 ε2,

with a constant κ1 only depending on K, as we have the boundedness of

E

[
sup
t∈[0,1]

∣∣Ȳι(t) − y0
∣∣2
]
≤ E

[
sup
t∈[0,1]

∣∣Ȳt − y0
∣∣2
]

≤ 2

(
E

[
sup
t∈[0,1]

∣∣Ȳt − Yt

∣∣2
]
+ E

[
sup
t∈[0,1]

|Yt − y0|2
])

by a constant depending on K by Theorem 1 and Lemma 1, respectively.

For the second term, we derive

E

[
sup
t∈[0,1]

|Bt|2
]
≤ E

[
sup
t∈[0,1]

∣∣a(Ȳι(t))
∣∣2 |Σ|2

∣∣Wt −Wι(t)

∣∣2
]

≤ 2K2 |Σ|2 E
[
sup
t∈[0,1]

(∣∣Ȳι(t) − y0
∣∣2 + 1

) ∣∣Wt −Wι(t)

∣∣2
]

= 2K2 |Σ|2 E
[
max
j∈N

((
1l{Tj<1}

∣∣ȲTj
− y0

∣∣2 + 1
)
Vj

)]
,

where we denote for every j ∈ N the relative supremum of W between Tj and Tj+1

by

Vj = sup
t∈[Tj ,Tj+1∧1)

∣∣Wt −WTj

∣∣2 ,

and used that for t ∈ [Tj, Tj+1) we have ι(t) = Tj. Observe that Vj = 0 for every

j with Tj ≥ 1. For the expectation of the maximum of the latter products we

can now apply Lemma 3 from the Appendix for a fixed but arbitrary number r of

stopping times. Here we choose as filtration Gj = FTj
, and the random variables

40

3.2 Strong error estimates

Uj = 1l{Tj<1}
∣∣ȲTj

− y0
∣∣2 + 1, which is Gj measurable and Vj as above, which is Gj+1

measurable and independent of Gj. Letting the number r tend to infinity, we can

use a monotone convergence argument to obtain the upper bound

E

[
sup
t∈[0,1]

|Bt|2
]
≤ κ2 |Σ|2 E

[
max
j∈N

1l{Tj<1}
∣∣ȲTj

− y0
∣∣2 + 1

]
E

[
max
j∈N

Vj

]
.

Here, κ2 is a constant depending on K. The first expectation has already been

discussed and is known to be bounded by a constant depending only on K. For the

second expectation, we need to bound the second moment of the maximal fluctuation

of a standard Brownian motion for a step size tending to zero. Therefore, for a

function f : [0, 1] → R
d we denote by wf its modulus of continuity, i.e., for δ ∈ [0, 1],

we define

wf (δ) = sup
t,s∈[0,1]
|t−s|≤δ

|f(t)− f(s)|.

For the Brownian motion, Lévy’s modulus of continuity states that

lim
δ→0

wW (δ)√
2δ log(1/δ)

= 1 P − a.s.,

and can be found, e.g. in [38] or [25]. Here we need to bound the second moment

of the latter, which is one of the topics of [14]. They show for p-th moments of the

modulus of continuity of a standard Brownian motion that

E [wW (δ)p] ≤ c(p)(δ log(2/δ))p/2,

for all δ ∈ (0, 1], where c(p) > 0 is a constant depending on p. We denote by ϕ the

monotone increasing function

ϕ : [0, 1] → [0,∞), δ 7→
√
δ log

(
exp(1)

δ

)
.

41

3 Strong approximation

Then with [14], we can deduce, that there exist a constant κ3 > 0 such that

E
[
wW (δ)2

]
≤ κ3ϕ(δ)

2,

for all δ ∈ (0, 1]. We derive

E

[
max
Tj∈T

sup
t∈[Tj ,Tj+1)

∣∣Wt −WTj

∣∣2
]
≤ E

 sup

t,s∈[0,1]
|t−s|≤ε

|Wt −Ws|2

= E
[
wW (ε)2

]
≤ κ3ϕ(ε)

2.

Inserting this into our inequalities we deduce that there exists a constant κ4

depending on K such that

E

[
sup
t∈[0,1]

|Bt|2
]
≤ κ4 |Σ|2 ϕ(ε)2.

By putting together the estimates, we conclude that there exists a constant κ

depending only on K such that

E

[
sup
t∈[0,1]

∣∣∣Ȳt − Ŷt

∣∣∣
2
]
≤ κ

(
|b− F0(h)|2 ε2 + |Σ|2 ϕ(ε)2

)

= κ

(
|b− F0(h)|2 ε2 + |Σ|2 ε log

(
exp(1)

ε

))
.

Together with the result from Theorem 1, we are done in the case Σ = 0. For

the general case, observe that we already derived a bound for |b − F0(h)|2ε2 by

the Cauchy-Schwarz inequality and our Assumptions (A) which is linear in ε in

(3.9). Observe further that ε ≤ ε log(exp(1)/ε) for ε sufficiently small to finish the

proof.

3.3 Examples

We continue here with the examples of driving Lévy processes presented in Chap-

ter 2. We apply the adaptive approximation scheme from above and show how to

42

3.3 Examples

simulate the various resulting compound Poisson processes on a computer.

Stable Lévy processes

Remember from Section 2.6, that the Lévy measure ν of an α-stable process has the

Lebesgue density

fν(x) = 1l(0,∞](x)
A+

|x|1+α
+ 1l[−∞,0)(x)

A−
|x|1+α

,

for x ∈ R\{0}, where A+, A− ≥ 0 with A+ + A− > 0 and α ∈ (0, 2). To apply

our strong approximation results, the process has to be square integrable. One way

to ensure square integrability is to temper the big jumps of our process with an

exponential decay, another one is to neglect the jumps above a given size. The process

then only possesses stable like behavior for the small jumps with sizes around the

origin.

Truncated α-stable processes

We first consider the truncation method to ensure the square integrability of an α-

stable process. Therefore we truncate the jumps bigger than some given size u > 0

in absolute value. The Lévy measure is then given by

ν(dx) =

(
1l(0,u](x)

A+

|x|1+α
+ 1l[−u,0)(x)

A−
|x|1+α

)
· dx,

for x ∈ R\{0}. For a fixed h > 0 the simulation of the restricted and normalized

Lévy measure ν|Bc
h
/ν(Bc

h) is done by inversion as its cumulative distribution function

can be explicitly calculated.

We first consider the case of a non-symmetric Lévy measure ν. The jump in-

43

3 Strong approximation

tensity for jumps greater or equal to h then calculates to

ν(Bc
h) =

∫ −h

−u

A−
|x|1+α

dx+

∫ u

h

A+

|x|1+α
dx

= A−

[
− 1

α
x−α

]u

h

+ A+

[
− 1

α
x−α

]u

h

=
A+ + A−

α
(h−α − u−α).

Here, we assume of course, that h < u. Otherwise ν(Bc
h) = 0.

For simulations via inversion, we have to calculate the distribution function of

the desired distribution and the inverse function thereof. Therefore, we put Ā =

A−/(A+ + A−). Then the distribution function is given by

1

ν(Bc
h)
ν|Bc

h
(]−∞, t]) =

A−((−t)−α − u−α)/(ν(Bc
h)α) ,−u ≤ t ≤ −h,

Ā ,−h ≤ t ≤ h,

Ā+ A+(h
−α − t−α)/(ν(Bc

h)α) , h ≤ t ≤ u.

As this distribution function is not bijective, we cannot directly formulate the in-

verse function. Instead, we distinguish two cases in our simulation. For a uniform

distributed U ∼ U([0, 1]), we get Z ∼ ν|Bc
h
/ν(Bc

h) by defining

Z =

−
((

ν(Bc
h)αU+A−u−α

A−

)− 1
α
)

, U ≤ Ā,
(
−
(

ν(Bc
h)α(U−Ā)−A+h−α

A+

))− 1
α

, U > Ā.

For the case of a symmetric Lévy measure ν, i.e. A+ = A− = c > 0, the intensity

of jumps bigger than h for 0 < h < u is given by

ν(Bc
h) =

2c

α
(h−α − u−α).

For the simulation, due to symmetry, it suffices to sample from ν|[h,∞)/ν([h,∞))

which is done by inversion and to multiply this with an independent Bernoulli ran-

dom sign, i.e., a random variable V with P (V = 1) = 1/2 = P (V = −1). For

U ∼ U([0, 1]) being uniformly distributed on [0, 1] and V distributed as above and

44

3.3 Examples

independent of U , we obtain

V · (h−α − U · (h−α − u−α))−1/α ∼ ν|Bc
h
/ν(Bc

h).

Tempered symmetric α-stable processes

For simplicity, we only consider the symmetric case, i.e. A+ = A− = c > 0. For some

λ > 0 the Lévy measure is then given by the Lebesgue density

fν(x) =
c

|x|1+α
exp(−λ|x|),

for x ∈ R\{0}. The simulation of the approximating compound Poisson process is

then done by rejection. Therefore observe that ν is symmetric and the Lebesgue

density of ν|[h,∞) is bounded by a constant multiple of the density of an exponential

distribution with

fν |Bc
h
(x) ≤ c

h1+α
exp(−λ|x|) =: u(x).

Due to the symmetry, it suffices to simulate ν|[h,∞)/ν([h,∞)) and an independent

Bernoulli random sign as above. For V ∼ Exp(λ) and U ∼ U([0, 1]) independent of
V , consider Z = u(V) ·U . If V < h or fν(V) < Z we reject, otherwise, if fν(V) ≥ Z

we take V as output.

Using integration by parts, the frequency of jumps calculates to

ν(Bc
h) = 2c

∫ ∞

h

1

x1+α
exp(−λx) dx

= 2c

(
exp(−λh)

αhα
− λ

α

∫ ∞

h

1

xα
exp(−λx) dx

)

= 2c

(
exp(−λh)

αhα

(
1 +

λ

1− α
h

)
− λ2

1− α

∫ ∞

h

1

xα−1
exp(−λx) dx

)
.

Thus, repeating integration by parts, we inductively derive

ν(Bc
h) = 2c

exp(−λh)

αhα

(∞∑

n=0

(λh)n∏n
i=1(i− α)

)
.

The calculations of ν(Bc
h) for the finite number of values for h > 0 needed in the

45

3 Strong approximation

algorithm are done numerically by deterministic quadrature rules.

The Variance Gamma process

Remember from Section 2.6 that the Lévy measure ν of a VG process X can be

represented via a Lebesgue density by

ν(dx) =
a

|x| exp(−
√
2b|x|) · dx

for x ∈ R\{0}. For h > 0 we now want to simulate the approximating compound

Poisson process that arises by neglecting the jumps with size smaller than h. There-

fore we have to calculate ν(Bc
h) and simulate the probability measure ν|Bc

h
/ν(Bc

h).

The latter is again done by the rejection method. As before in the tempered stable

case, the measure ν is symmetric and the Lebesgue density of ν|(h,∞) is bounded by

a constant multiple of the density of an exponential distribution

fν |Bc
h
(x) ≤ a

h
exp(−

√
2b|x|) =: u(x).

We again use symmetry such that only realizations of ν|[h,∞)/ν([h,∞)) and an

independent Bernoulli random sign are needed. For V ∼ Exp(
√
2b) and U ∼ U([0, 1])

independent of V , we consider Z = u(V) · U . If V < h or fν(V) < Z we reject,

otherwise, if fν(V) ≥ Z we take V as output.

For the simulation of the jump times we have to calculate the exponential integral

ν(Bc
h) = 2

∫ ∞

h

a

x
exp(−

√
2bx) dx.

This value is as before approximated numerically for a given size h > 0.

Remark 3. For the acceptance rejection simulations in the tempered stable and

the VG case, observe that the average cost per jump simulation is given by the

ratio of the total measure on [h,∞) for the bounding density to the total measure

on [h,∞) for the original density. Taking into account the considerations about the

computational cost in the next chapter, this ratio has to be uniformly bounded in

46

3.3 Examples

h for h → 0. To this end, the bounding densities have to be changed to

u(x) =

c
x1+α exp(−λh), h ≤ x < λ−1,

cλ1+α exp(−λx), λ−1 < x,

for α ∈ (0, 2) in the tempered stable case and with α = 0, c = a and λ =
√
2b in

the VG case. With these choices, the computational cost for one jump simulation

is uniformly bounded by a constant, where the simulations with respect to the

bounding densities are done by suitable inversion methods.

47

4 The multilevel algorithm

We will at first recall the considered quadrature problem. We want to compute

expectations of a class F of functions f : D[0, 1] → R with respect to the distribution

of the strong solution Y to the SDE (1.1). We denote these expectations by

S(f) = E [f(Y)] ,

and consider for F the class of measurable functions f : D[0, 1] → R that are

Lipschitz continuous with coefficient 1 with respect to the supremum norm, denoted

by Lip(1). To compute S(f), we consider randomized algorithms Ŝ with output Ŝ(f)

for a function f from the Lipschitz class Lip(1).

We measure the error e(Ŝ) of the algorithm Ŝ by a worst case of the root mean

square error over all f ∈ Lip(1), i.e., by

e2
(
Ŝ
)
= sup

f∈Lip(1)
E

[∣∣∣S(f)− Ŝ(f)
∣∣∣
2
]
. (4.1)

Our goal is to relate the error with the computational cost of the algorithm,

denoted by cost(Ŝ). Here, we as well take the worst case over all functions f ∈ Lip(1)

and average the random computational cost for f ∈ Lip(1), denoted by cost(Ŝ, f),

i.e.,

cost
(
Ŝ
)
= sup

f∈Lip(1)
E
[
cost

(
Ŝ, f

)]
.

The computational cost represents, up to constants, the expected runtime of the al-

gorithm on a computer. Therefore recall, that we suppose that arithmetic operations

with real numbers and comparisons can be done at cost one. We further suppose

that evaluations of a are possible at any point y ∈ R
dY at cost one and evaluations

49

4 The multilevel algorithm

of f are possible for piecewise constant functions at cost given by their number of

breakpoints. We also assume that sampling from the uniform distribution on [0, 1]

and from suitably restricted Lévy measures are possible at cost one.

For a Monte Carlo algorithm Ŝ, we denote the bias of Ŝ(f) by

bias
(
Ŝ(f)

)
= E

[
S(f)− Ŝ(f)

]
.

The mean square error of Ŝ can always be decomposed into the squared bias and

the variance, namely

E

[∣∣∣S(f)− Ŝ(f)
∣∣∣
2
]
=
(
bias

(
Ŝ(f)

))2
+ var

(
Ŝ(f)

)
. (4.2)

In a typical application of an MC algorithm, the bias is the error induced by ap-

proximating a desired distribution Y by an approximation Ŷ and so making sys-

tematically at least the error of the bias. Additionally, we have a statistical error by

using a randomized algorithm for the desired expectation. In the following, we will

recall the classical Monte Carlo approach, which will be helpful for the numerical

experiments of this work. We then motivate the introduction of multilevel in this

setting.

4.1 Classical Monte Carlo and multilevel Monte

Carlo

For a better understanding of these concepts, we will present the classical Monte

Carlo approach for the case, that we have to approximate Y . Therefore, we consider

a sequence of approximations (Ŷ (k))k≥1 that can be simulated and that converge to

Y in a suitable way specified later. We then choose one approximation Ŷ = Ŷ (k)

and take n independent copies Ŷ1, . . . , Ŷn thereof. The latter means that Ŷ1, . . . , Ŷn

form an i.i.d. sequence with each Ŷi having the distribution of Ŷ . The Monte Carlo

output is defined by the arithmetical mean

ŜMC(f) =
1

n

n∑

i=1

f
(
Ŷi

)

50

4.1 Classical Monte Carlo and multilevel Monte Carlo

based on this n independent copies of Ŷ . In this case the bias is given by

bias
(
ŜMC(f)

)
= E

[
f(Y)− f(Ŷ)

]

and the variance of this arithmetical mean of independent copies is given by

var
(
ŜMC(f)

)
=

1

n
var
(
f(Ŷ)

)
.

The variance of the random variable f(Ŷ) is a constant value depending on the

approximation scheme Ŷ . Due to the definition of ŜMC(f), there are only two possi-

bilities to calibrate the algorithm, namely by the number of replications n to change

the statistical error, and by the choice of the approximation Ŷ from our sequence of

approximations to change the bias. Thus, it is a standard approach to create approx-

imation schemes with a small bias for all f ∈ F and then choose n asymptotically

optimal in the following way.

For a sequence of approximation schemes (Ŷ (k))k≥1, we say that (Ŷ (k))k≥1 has weak

convergence order γ > 0 if there exists a constant κ > 0 such that

sup
f∈F

∣∣∣E
[
f(Y)− f(Ŷ (k))

]∣∣∣ ≤ κ ·
(
sup
f∈F

E
[
cost

(
f(Ŷ (k)), f

)])−γ

, (4.3)

for all k ≥ 1. For simplicity, we suppose as well var
(
f(Ŷ (k))

)
≤ κ2 for all f ∈ F

and k ≥ 1. If we now choose an approximation Ŷ (k) with computational cost m from

the above sequence, the worst case mean squared error of the classical Monte Carlo

algorithm becomes

e2
(
ŜMC

)
≤ κ2

(
m−2γ +

1

n

)
.

The overall computational cost is then given by cost(ŜMC) = m ·n. For a given cost

bound N , we can asymptotically choose the replication number n and the cost m

for one approximation to be

m = N
1

1+2γ and n = N
2γ

1+2γ ,

51

4 The multilevel algorithm

such that we obtain a worst case mean square error of order 1/(2+1/γ). Being more

explicit, there exists a sequence of classical Monte Carlo algorithms (ŜMC
N)N∈N using

approximation schemes with weak convergence order γ with cost(ŜMC
N) ≤ N and

e
(
ŜMC
N

)
- N− 1

2+1/γ . (4.4)

Remark 4. Even with an approximation scheme of higher order, we cannot reach

the order 1/2 with the classical Monte Carlo algorithm in the biased case. Moreover,

the approximation schemes with a sufficiently large γ, which are needed here, come

along with more assumptions on the functionals f and the diffusion coefficient a.

This essentially means that we have to simplify the problem by considering smaller

classes F and fewer possibilities for the SDE to reach the above orders of convergence.

The other rather classical way to improve the error of a biased Monte Carlo algo-

rithm in relation to its computational effort, is to reduce the variance by changing

the estimator, i.e. by not taking the classical Monte Carlo estimator. The multilevel

algorithm is such a variance reduction technique. In the case of X being a standard

Brownian motion, it has been shown by [16] that up to some logarithmic terms, the

convergence order 1/2 in terms of the computational cost can be achieved. A further

advantage of this method is that it assumes f and a to be only Lipschitz whereby

for the approximation Ŷ , it suffices to choose a simple Euler scheme.

Multilevel Monte Carlo

For the multilevel algorithm, we use a whole hierarchy of approximation schemes

Ŷ (1), . . . , Ŷ (m) with accuracy and computational effort increasing with the upper

index. For threshold parameters (hk, εk)k=1,...,m we will use the non-linear approxi-

mation schemes defined in Chapter 3 by setting Ŷ (k) = Ŷ (hk,εk). It is clear from the

above, that threshold parameters with h1 ≥ . . . ≥ hm ≥ 0 and ε1 ≥ . . . ≥ εm > 0 are

a reasonable choice. The expectation of the approximation with the highest accuracy

can be written by the following telescoping sum

E
[
f
(
Ŷ (m)

)]
= E

[
f
(
Ŷ (1)

)]
+

m∑

k=2

E
[
f
(
Ŷ (k)

)
− f

(
Ŷ (k−1)

)]
. (4.5)

52

4.1 Classical Monte Carlo and multilevel Monte Carlo

Each expectation on the right hand side can now be estimated independently by

the standard Monte Carlo approach, i.e., by independently averaging independent

copies (D(k)

i)i=1,...,nk
of

D(k) =

f
(
Ŷ (1)

)
for k = 1,

f
(
Ŷ (k)

)
− f

(
Ŷ (k−1)

)
for k ≥ 2,

Here, it is important, that for k ≥ 2, the approximation schemes (Ŷ (k), Ŷ (k−1)) in

D(k) are coupled via X in a way that the variances of the Dk decrease with k. The

coupling of Ŷ (k) and Ŷ (k−1), such that they suitably depend on the same realization

of the driving Lévy process X, is shown in detail in Section 4.2. Altogether, the

multilevel Monte Carlo estimator is given by

ŜML(f) =
m∑

k=1

1

nk

nk∑

i=1

D(k)

i . (4.6)

Due to the telescoping sum (4.5), this estimator has the bias of the approximation

scheme with the highest accuracy

bias
(
ŜML(f)

)
= E

[
f(Y)− f(Ŷ (m))

]
,

and the variance decomposes due to Bienaymé’s formula to

var
(
ŜML(f)

)
=

m∑

k=1

1

nk

var (D(k)) .

With this decomposition, we can use the decreasing variances to reduce the error in

relation to the computational cost. Therefore observe that, while we have to spend

more independent copies of D(k) for the lower levels, which are computationally

cheap, we need less independent copies of D(k) for the higher levels near the highest

accuracy m to obtain the same variance contribution to the error. Balancing this

out, we can optimize the upper bound of the convergence order, i.e. the relation of

error and cost.

Essentially this algorithm is very familiar to a known variance reduction technique,

namely it is some kind of a repeated control variate method. Usually, in the control

53

4 The multilevel algorithm

variate method, we split the desired random variable Z into Z − Z ′ and Z ′ such

that E[Z] = E[Z − Z ′] + E[Z ′], where E[Z ′] can be calculated directly or at least

with little computational effort, and the remaining part Z − Z ′ has a considerably

smaller variance than Z.

To use our results of Chapter 3, we will work with the following upper bounds

for the bias and the variance of the multilevel algorithm to properly choose the

approximations Ŷ (k) as well as the parameters m and n1, . . . , nm. Observe that for

every functional f from the Lipschitz class F , we have

bias
(
ŜML(f)

)2
=
∣∣∣E
[
f(Y)− f(Ŷ (m))

]∣∣∣
2

≤ E

[∣∣∣f(Y)− f(Ŷ (m))
∣∣∣
2
]

≤ E

[∥∥∥Y − Ŷ (m)

∥∥∥
2
]
,

where we used Jensen’s inequality and the Lipschitz continuity of f . For the variance,

we also deduce with the Lipschitz continuity of f , that

var
(
ŜML(f)

)
=

m∑

k=1

1

nk

var(D(k))

≤ 1

n1

var
(
f(Ŷ (1))− f(y0)

)
+

m∑

k=2

1

nk

E

[∣∣∣f(Ŷ (k))− f(Ŷ (k−1))
∣∣∣
2
]

≤ 1

n1

E

[∥∥∥Ŷ (1) − y0

∥∥∥
2
]
+

m∑

k=2

1

nk

E

[∥∥∥Ŷ (k) − Ŷ (k−1)

∥∥∥
2
]

Both upper bounds hold for all f ∈ F such that the worst case error defined in (1.2)

is bounded by

e2
(
ŜML

)
≤ E

[∥∥∥Y − Ŷ (m)

∥∥∥
2
]
+

1

n1

E

[∥∥∥Ŷ (1) − y0

∥∥∥
2
]

+
m∑

k=2

1

nk

E

[∥∥∥Ŷ (k) − Ŷ (k−1)

∥∥∥
2
]
.

(4.7)

54

4.2 The coupled approximation

Remember the considerations about the cost of an algorithm Ŝ in the beginning

of this chapter. If we apply the Euler schemes Ŷ (k), an important number for the

computational cost is the number of breakpoints of the piecewise constant approx-

imation process Ŷ (k) of Y , denoted in the following by Υ(Ŷ (k)). By summing the

cost for arithmetic operations, simulations and function evaluations, we deduce that

Ŷ (k) has computational cost proportional to Υ(Ŷ (k)). We now conclude that the

computational cost of the multilevel algorithm is given by

cost
(
ŜML

)
= κ

m∑

k=1

nk E
[
Υ
(
Ŷ (k)

)]
, (4.8)

for a constant κ > 0, as the cost for simulations, function evaluations and arith-

metical operations for D(k) are given in terms of constant multiples of Υ(Ŷ (k)). The

latter is the finer approximation scheme on this level and induces the coarser one.

Before we present our main results, we first discuss in the next chapter, how to sim-

ulate coupled Euler schemes (Ŷ (h,ǫ), Ŷ (h′,ε′)) for h′ > h > 0 and ε′ > ε > 0 in a way

that given Ŷ (h,ǫ) we can deduce Ŷ (h′,ε′) based on the same realization of X with no

additional simulation effort. This coupling is the most important ingredient of the

algorithm as well for the variance of the D(k) to decrease as for the cost reduction

in the simulation of the algorithm.

4.2 The coupled approximation

We obtain the coupled approximations (Ŷ (h,ǫ), Ŷ (h′,ε′)) by applying the Euler scheme

(3.2) to the coupled driving processes X̂ (h,ǫ) and X̂ (h′,ε′) with their random discretiza-

tion times T (h,ε)

j and T (h′,ε′)

j , respectively. Thus we need a coupled simulation of the

approximation schemes X̂ (h,ǫ) and X̂ (h′,ε′), where the threshold parameters satisfy

h′ > h > 0 and ε′ > ε > 0, which means that X̂ (h,ǫ) is the finer approximation

scheme. The jump processes ∆L(h′) and ∆(L(h) − L(h′)) are independent with values

in {0}∪Bc
h′ and {0}∪Bc

h\Bc
h′ , respectively, see [1, p. 116], i.e., the jumps of L(h) are

given by the independent sum ∆L(h) = ∆L(h′) + ∆(L(h) − L(h′)), and therefore the

jumps of the process L(h′) can be obtained from those of L(h) by taking

∆L(h′)

t = ∆L(h)

t · 1{|∆L
(h)
t |>h′}.

55

4 The multilevel algorithm

We conclude that the simulation of the joint distribution of (L(h), L(h′)) only requires

samples from the jump times and jump heights T (h)

k and ∆L(h)

T
(h)
k

, respectively, which

amounts to sampling from ν|Bc
h
/ν(Bc

h) and from an exponential distribution. To

simulate the Brownian components of the coupled processes (X̂ (h,ǫ), X̂ (h′,ε′)), we refine

the sequence of jump times T (h)

k to get (T (h,ε)

j)j∈N0 and (T (h′,ε′)

j)j∈N0 , respectively. Since

W and L are independent, the process W is easily simulated at all times (T (h,ε)

j)j∈N0

and (T (h′,ε′)

j)j∈N0 that are in [0, 1] by sampling from a normal distribution.

4.3 Main results

Our main findings are summarized in the following Theorems 3, 4 and 5. The

choices of the parameters m and (nk, εk, hk)k=1,...,m for the algorithm ŜML to satisfy

Theorems 3, 4 and 5 are stated separately in Chapter 4.5, but can as well be

found in the course of the proofs. For the main results, we will use a decreasing and

invertible function g : (0,∞) → (0,∞), which satisfies

∫ |x|2
h2

∧ 1 ν(dx) =
F (h)

h2
+ ν(Bc

h) ≤ g(h), (4.9)

for all h > 0. Essentially, this function provides a properly scaled relation of error

and cost for the jump threshold parameter h. Then, we can optimize the error by

choosing h in relation to the maximal step size ε via the inverse of g such that

Theorem 2 is applicable, i.e. such that ν(Bc
h) ≤ 1/ε holds.

Theorem 3. Let g : (0,∞) → (0,∞) denote the decreasing and invertible function

satisfying (4.9). If the driving process X has no Brownian component, i.e., Σ = 0,

and if there exists γ > 0 such that

g(h) -
1

h (log(1/h))1+γ (4.10)

as h → 0, then there exists a family (Ŝn)n∈N of multilevel algorithms satisfying

cost(Ŝn) ≤ n and

e(Ŝn) -
1√
n
.

56

4.3 Main results

Proof. We choose the step size approximately dyadically decreasing by taking

εk = 2−k and hk = g−1(2k) = g−1(ε−1
k),

for k = 0, . . . ,m. Here, the parameters h0 and ε0 does not appear in the algorithm

itself but are chosen only for the proof. With this choice and the definition of g in

(4.9) we have

ν(Bc
hk
) ≤ F (hk)

h2
k

+ ν(Bc
hk
) ≤ g(hk) = g

(
g−1(ε−1

k)
)
=

1

εk
,

and εk ≤ 1 for all k = 1, . . . ,m as required for the results of Theorem 2. For Σ = 0,

we deduce for the terms appearing in (4.7) for the worst case mean square error of

ŜML that

1

n1

E

[∥∥∥Ŷ (1) − y0

∥∥∥
2
]
≤ 1

n1

2

(
E

[∥∥∥Ŷ (1) − Y
∥∥∥
2
]
+ E

[
‖Y − y0‖2

])

≤ 1

n1

κ1

(
F (h1) + |b− F0(h1)|2ε21

)
,

for a constant κ1 depending on K, where we have used Theorem 2 and Lemma 1.

The latter term can be uniformly bounded as done before in the proof of Theorem 1

such that we have an estimate in terms of a constant multiple of 1/n1. For the terms

with k ≥ 2, observe that we always have

F (hk) =

∫

Bhk

|x|2 ν(dx) ≤
∫

Bhk−1

|x|2 ν(dx) = F (hk−1)

as it holds hk−1 ≥ hk > 0. Furthermore the step size parameter are also ordered

descending in k such that ε2k−1 ≥ ε2k > 0. The term |b − F0(h)|2 can be bounded

uniformly by using |b|2 ≤ K2, which is one of the Assumptions (A), and by an

57

4 The multilevel algorithm

estimate for |F0(h)|2. For v ∈ (0, 1) we have

|F0(h)| =
∣∣∣∣∣

∫

Bc
h

x ν(dx)

∣∣∣∣∣ ≤
∫

Bc
h

|x| ν(dx)

≤
∫

|x|v
v
ν(dx) ≤ 1

v

∫
|x|(v ∨ |x|) ν(dx)

≤ 1

v

∫

Bc
v

|x|2 ν(dx) +
∫

Bv

|x| ν(dx)

≤ 1

v

∫
|x|2 ν(dx) +

∫ v

0

ν(Bc
u) du

for any h > 0. The first term is finite for a fixed v ∈ (0, 1) as the integral is finite by

Assumption (A). For the second term, we now use the assumptions on the function

g such that for a constant κ2, we have

∫ v

0

ν(Bc
u) du ≤

∫ v

0

g(u) du ≤ κ2

∫ v

0

1

u(log(1/u))1+γ
du,

where the latter integral is finite. Thus, we can bound each term with k = 2, . . . ,m

by

1

nk

E

[∥∥∥Ŷ (k) − Ŷ (k−1)

∥∥∥
2
]
≤ 1

nk

2

(
E

[∥∥∥Y − Ŷ (k)

∥∥∥
2
]
+ E

[∥∥∥Y − Ŷ (k−1)

∥∥∥
2
])

≤ 1

nk

κ3

(
F (hk−1) + ε2k−1

)
,

where we have used Theorem 2, the observations above and κ3 is a constant depend-

ing only on K. A similar bound holds for the first term in (4.7) for a constant κ4

by

E

[∥∥∥Y − Ŷ (m)

∥∥∥
2
]
≤ κ4(F (hm) + ε2m).

We again used Theorem 2 and the assumption (4.10) for the boundedness of |b −
F0(h)|2. Altogether we have an estimate for (4.7) for a constant κ5 depending on K

58

4.3 Main results

in terms of

e2(ŜML) ≤ κ5

m+1∑

k=1

1

nk

(F (hk−1) + ε2k−1),

where we set nm+1 = 1 for the proof, which is not appearing as parameter in the

algorithm itself. To set the two terms in the same size, observe, that (4.10) implies

for the inverse of g, that

1

y3/2
- g−1(y) -

1

y(log(y))1+γ
(4.11)

for y → ∞. Then we have on the one hand, that

F (hk) ≤ g(hk)h
2
k = 2k(g−1(2k))2,

and on the other hand with (4.11) we have

ε2k = ε−1
k (2−k)3 = ε−1

k

(
1

(2k)3/2

)2

- ε−1
k (g−1(2k))2 = 2k(g−1(2k))2.

We end up with the error bound

e2(ŜML) ≤ κ6

m+1∑

k=1

1

nk

2k−1(g−1(2k−1))2

for a constant κ6.

To get the relation of error and cost, we have to set the parameter m and

(nk)k=1,...,m appropriately. Therefore we choose for a fixed C ≥ 1/g−1(1) the repli-

cation parameter by

nk = nk(C) = ⌊g−1(2k−1)C⌋

and to ensure nk ∈ N we set m = m(C) = inf{k ∈ N : g−1(2k)C < 1}− 1. With this

59

4 The multilevel algorithm

choice and (4.11), we derive with 1/nk ≤ 2/(g−1(2k−1)C) that

1

nk

2k−1(g−1(2k−1))2 ≤ 2k−1g−1(2k−1)
2

C

-
2k−1

2k−1(log(2k−1))1+γ

1

C

-
1

(k − 1)1+γ

1

C

where the last term is summable in k and thus the resulting sum is uniformly

bounded. This implies for the error that there exists a constant κ7 depending on K

and the function g, such that

e2(ŜML) ≤ κ7
1

C

Next we consider the computational cost of ŜML. Therefore observe that the

expected number of breakpoints of Ŷ (k) is bounded by

E
[
Υ(Ŷ (k))

]
≤ 1

εk
+ ν(Bc

hk
) ≤ 2k+1.

Then we can derive the cost bound

cost
(
ŜML

)
=

m∑

k=1

nkE
[
Υ(Ŷ (k))

]

≤
m∑

k=1

g−1(2k−1)C 2k+1

= 4C
m∑

k=1

2k−1g−1(2k−1).

The latter sum is bounded as observed before by (4.11) such that for a constant κ8

depending on g and K we have

cost
(
ŜML

)
≤ κ8C.

Altogether we obtain a sequence of multilevel algorithms with cost bound C and

an asymptotic worst case root mean square error of size 1/
√
C as proposed in the

60

4.3 Main results

Theorem.

The result of Theorem 3 covers all cases, where the driving Lévy process has

Blumenthal-Getoor index smaller than 1 and does not comprise a Gaussian compo-

nent, i.e., it holds Σ = 0. This essentially is equivalent for the Lévy process to have

paths of finite variation, see, e.g., [10]. Next, we investigate the cases with Gaussian

component, i.e. Σ 6= 0, while we keep the Blumenthal-Getoor index small.

Theorem 4. Let g : (0,∞) → (0,∞) again denote the decreasing and invertible

function satisfying (4.9). If there exists γ ≥ 1/2 such that

g(h) -
(log(1/h))γ

h
,

as h → 0, then there exists a family (Ŝn)n∈N of multilevel algorithms satisfying

cost(Ŝn) ≤ n and

e(Ŝn) -
1√
n
(log(n))γ+1.

Proof. The idea of the proof is the same as for the proof of Theorem 3. This time

we can modify the assumptions wlog to

√
log(1/h)

h
- g(h) -

(log(1/h))γ

h
(4.12)

for h → 0 and some γ ≥ 1/2. We choose the threshold parameter as before by

εk = 2−k and hk = g−1(2k) = g−1(ε−1
k),

for k = 0, . . . ,m such that the results of Theorem 2 hold and we can use the general

ones, i.e. the case with arbitrary Σ. We again search estimates for the terms in (4.7).

As before we have the term with the coarsest approximation to be bounded by a

constant multiple of 1/n1 by noticing that

1

n1

E

[∥∥∥Ŷ (1) − y0

∥∥∥
2
]
≤ 1

n1

2

(
E

[∥∥∥Ŷ (1) − Y
∥∥∥
2
]
+ E

[
‖Y − y0‖2

])
≤ 1

n1

κ1

for a constant κ1 which depends on K because of Lemma 1 and because the term

61

4 The multilevel algorithm

(F (h1)+ε1 log(exp(1)/ε1)) obtained from Theorem 2 is as well bounded by a constant

depending on K. The terms with k ≥ 2 are approximated by

1

nk

E

[∥∥∥Ŷ (k) − Ŷ (k−1)

∥∥∥
2
]
≤ 1

nk

2

(
E

[∥∥∥Y − Ŷ (k)

∥∥∥
2
]
+ E

[∥∥∥Y − Ŷ (k−1)

∥∥∥
2
])

≤ 1

nk

κ2

(
F (hk−1) + εk−1 log

(
exp(1)

εk−1

))
,

for a constant κ2 depending on K. Here we used that

εk log

(
exp(1)

εk

)
≤ εk−1 log

(
exp(1)

εk−1

)

by the monotonicity of ε 7→ ε log(exp(1)/ε) together with εk ≤ εk−1, and, as we

observed before, that F (hk) ≤ F (hk−1). Putting things together and setting again

nm+1 = 1 we obtain as upper bound for the worst case error

e2(ŜML) ≤ κ3

m+1∑

k=1

1

nk

(
F (hk−1) + εk−1 log

(
exp(1)

εk−1

))
,

where κ3 is again a constant depending on K. By the choice of εk and hk we have

as before F (hk) ≤ 2k(g−1(2k))2 and now

εk log

(
exp(1)

εk

)
≤ 2−k log(2k exp(1)).

The assumption (4.12) implies for the inverse of g that

√
log(y)

y
- g−1(y) -

(log(y))γ

y
(4.13)

for y → ∞. With this we derive

√
log(2k exp(1)) - 2kg−1(2k)

62

4.3 Main results

such that the worst case error can be bounded like in the proof of Theorem 3 by

e2(ŜML) ≤ κ4

m+1∑

k=1

1

nk

2k−1(g−1(2k−1))2

for a constant κ4. Thus we choose the parameter in a similar way as in the proof

before by

m = m(C) = inf{k ∈ N : g−1(2k)C < 1} − 1

and nk = nk(C) = ⌊g−1(2k−1)C⌋ for k = 1, . . . ,m. This time we restrict the param-

eter C ≥ exp(1) ∨ 1/g−1(1). With this choice and (4.13) we obtain

e2(ŜML) ≤ κ5

C

m+1∑

k=1

2k−1g−1(2k−1)

-
1

C

m+1∑

k=1

2k−1 (log(2
k−1))γ

2k−1

-
1

C

m∑

k=0

kγ ≤ 1

C
mγ+1

for a constant κ5. Remembering the choice of m as the largest natural number such

that Cg−1(2m) ≥ 1. The latter is equivalent to 2m ≤ g(1/C) which implies

m ≤ log
(
g
(
1
C

))

log(2)
- log(C)

for C → ∞ by the assumption (4.12) where we can asymptotically neglect the double

log term. With this observation we conclude that

e2(ŜML) -
1

C
(log(C))γ+1.

For the cost we obtain with the cost bound of the last proof and the just derived

63

4 The multilevel algorithm

asymptotic upper bound that for a constant κ6, we have

cost
(
ŜML

)
≤ 4C

m∑

k=1

2k−1g−1(2k−1)

≤ κ6C (log(C))γ+1 .

To compute the decay of the error with respect to the computational cost, we define

another parameter n, which shall be asymptotically linear with respect to the cost.

Therefore we define n such that

C =
n

κ6(log(n))γ+1

for sufficiently large n ≥ exp(1). Then we conclude to have

cost
(
ŜML

)
≤ κ6C (log(C))γ+1

= κ6
n

κ6(log(n))γ+1

(
log

(
n

κ6(log(n))γ+1

))γ+1

≤ n

(log(n))γ+1
(log(n))γ+1 = n

for sufficiently large n. Inserting n into our error bound, we derive

e2
(
ŜML

)
-

1

C
(log(C))γ+1

=
κ6 (log(n))

γ+1

n

(
log

(
n

κ6(log(n))γ+1

))γ+1

-
(log(n))2(γ+1)

n
.

Now taking the square root, we obtain the proposed error of e(ŜML) - (log(n))γ+1
√
n

with computational cost cost(ŜML) ≤ n.

The two previous theorems apply for β < 1. Thereby, Theorem 4 shows, that if X

has a Gaussian component, the error is bounded by n−1/2(log(n))3/2, which matches

the result of [16] in the Brownian diffusion case. It is also possible to consider

γ ≤ 1/2 with the same computations, if there is no Gaussian component present.

64

4.3 Main results

For the remaining cases with Σ 6= 0, i.e. for β ≥ 1, the following Theorem applies.

Theorem 5. Let g : (0,∞) → (0,∞) again denote the decreasing and invertible

function satisfying (4.9). If, for all sufficiently small h > 0, there exists γ > 1 with

g
(γ
2
h
)
≥ 2g(h), (4.14)

then there exists a family (Ŝn)n∈N of multilevel algorithms with cost(Ŝn) ≤ n and

e(Ŝn) -
√
n g−1(n).

Proof. By defining εk and hk as before by

εk = 2−k and hk = g−1(2k) = g−1(ε−1
k),

for k = 1, . . . ,m, our setting so far is identical to the one of Theorem 4 such that

the cost bound

cost(ŜML) ≤
m∑

k=1

nk2
k+1

remains valid. The same holds true for the error bound

e2(ŜML) ≤ κ1

m+1∑

k=1

1

nk

(
F (hk−1) + εk−1 log

(
exp(1)

εk−1

))

with nm+1 = 1 and a constant κ1, where we have F (hk) ≤ 2k(g−1(2k))2 and

εk log

(
exp(1)

εk

)
≤ 2−k log

(
2k exp(1)

)
.

We can find an equivalent formulation for assumption (4.14) in terms of g−1 by

inserting g−1(u) instead of h which tends to zero as well for u → ∞. Then we have

for u > 0 sufficiently large that

γ

2
g−1(u) ≤ g−1(2u). (4.15)

65

4 The multilevel algorithm

We will use this to bound the right hand-side of the error estimate uniformly. There-

fore observe at first, that with (4.15), we have for l, k ∈ N with l ≥ k that

g−1(2k) ≤ κ2

(
2

γ

)l−k

g−1(2l) (4.16)

for a constant κ2 depending on g. Furthermore it is clear that the asymptotic be-

havior of g−1 is given in terms of

(γ
2

)k
- g−1(2k)

for k → ∞. For γ > 1 we can thus bound the second term of the error estimate by

2−k log
(
2k exp(1)

)
≤
(γ
2

)k
log
(
2k exp(1)

)

- g−1(2k) k - g−1(2k)γk

- 2k
(
g−1(2k)

)2
.

Putting this into our error estimate there exists a constant κ3 such that

e2(ŜML) ≤ κ3

m+1∑

k=1

1

nk

2k−1
(
g−1(2k−1)

)2
.

We choose the nk in a similar way as in the proof before by

nk = nk(C) = ⌊g−1(2k−1)C⌋

for k = 1, . . . ,m, where this time

m = m(C) = inf{k ∈ N : g−1(2k)C < 2} − 1

66

4.3 Main results

for a parameter C with C ≥ 2/g−1(1). With this choice and (4.16) we obtain

e2(ŜML) ≤ κ3
2

C

m+1∑

k=1

2k−1g−1(2k−1)

≤ κ3κ2
2

C

m+1∑

k=1

2k−1

(
2

γ

)m+2−k

g−1(2m+1)

≤ κ3κ2
2

C
2m+1g−1(2m+1)

m+1∑

k=1

γ−(m+2−k)

≤ κ4
1

C
2m+1g−1(2m+1)

for a constant κ4. Remembering the definition of m as the largest integer for which

Cg−1(2m) ≥ 2 holds, we get for sufficiently large m with (4.15) that

Cg−1(2m+1) ≥ γ

2
Cg−1(2m) ≥ γ > 1,

which yields

e2(ŜML) ≤ κ4
1

C
2m+1g−1(2m+1) ≤ κ42

m+1
(
g−1(2m+1)

)2
.

For the cost bound similar reasoning implies

cost(ŜML) ≤ 4
m∑

k=1

Cg−1(2k−1)2k−1

≤ κ5Cg−1(2m+1)2m+1 ≤ 2κ52
m+1,

where we additionally use the fact that for k > m, we have Cg−1(2k) < 2 by the

definition of m.

Like in the proof of Theorem 4, what remains to do is to define a parameter n,

which is asymptotically linear in the cost of ŜML such that we can calculate the

asymptotic error with respect to n. Therefore, for n ≥ 2κ5 we choose C > 0 such

that

m =

⌊
log2

(
n

2κ5

)⌋
− 1.

67

4 The multilevel algorithm

Then it holds cost(ŜML) ≤ n and the error calculates to

e2(ŜML) ≤ κ42
m+1

(
g−1(2m+1)

)2

≤ κ4
n

2κ5

(
g−1

(
n

2κ5

))2

≤ γκ4

4

n

κ5

(
g−1

(
n

κ5

))2

- n(g−1(n))2

for n → ∞, where we once again used (4.15). Taking the square root finishes the

proof.

Next we present a corollary, which helps to apply the theorems stated so far by

only knowing the Blumenthal-Getoor index β of the driving Lévy process. Therefore,

recall the definition of β for a Lévy process X with non-zero Lévy measure ν as

already defined in (2.7) by

β = inf

{
p > 0 :

∫

B1

|x|p ν(dx) < ∞
}
.

Clearly β ∈ [0, 2]. Now, instead of calculating the decreasing, invertible function g

dominating
∫ |x|2

h2 ∧1 ν(dx) for each Lévy process, we present Corollary 1, which sets

a relation between β of the driving Lévy process X and the order of convergence

of our computational problem with respect to the computational cost. It is clearly

not surprising that the higher the Blumenthal-Getoor index is, the smaller is the

order of convergence. This relies on the fact that β expresses the frequency of the

occurrence of small jumps. The higher this index is, the harder is the approximation

problem itself. The result can be expressed as follows.

Corollary 1. Let the driving Lévy process X have Blumenthal-Getoor index β. Then

there exists a family (Ŝn)n∈N of multilevel algorithms with cost(Ŝn) ≤ n such that

sup{γ ≥ 0 : e(Ŝn) - n−γ} ≥
(
1

β
− 1

2

)
∧ 1

2
.

Before we present the proof of the corollary, we comment on the result as it is

very compactly stated.

68

4.3 Main results

Remark 5. The statement presents a lower bound for the supremum of the order of

convergence, which means that we do not necessarily reach this order of convergence,

but at least come arbitrary close to the term on the right hand-side. Thus Corollary

1 can be reformulated in the following way: For β ≤ 1, there exists a sequence of

multilevel algorithms (Ŝn)n∈N with cost(Ŝn) ≤ n such that for any γ < 1/2 we have

e(Ŝn) - n−γ. For β > 1, the order of convergence decreases, but we still reach for

any γ < 1/β − 1/2 that there exists a sequence of multilevel algorithms (Ŝn)n∈N

with cost(Ŝn) ≤ n such that e(Ŝn) - n−γ .

Proof. For β = 2, the assertion is trivial and thus we consider β < 2. For fixed such

β, we analyze the function

g̃(h) =

∫ |x|2
h2

∧ 1 ν(dx)

for small h > 0 to apply one of the theorems above. Observe that for h ∈ (0, 1], we

can decompose g̃ into

g̃(h) =

∫

Bh

|x|2
h2

ν(dx) +

∫

B1\Bh

1 ν(dx) +

∫

Bc
1

1 ν(dx).

The third integral is bounded, as

∫

B1

1 ν(dx) = ν(B1) < ∞, (4.17)

independent of the value of h, such that it is asymptotically negligible. For the other

two integrals, we take β′ ∈ (β, 2). Then by the definition of β, we have

∫

B1

|x|β′

ν(dx) < ∞.

Using this, we can bound the other two integrals by

∫

Bh

|x|2
h2

ν(dx) ≤
∫

Bh

|x|β′

hβ′
ν(dx) ≤ h−β′

∫

B1

|x|β′

ν(dx) ≤ Ch−β′

(4.18)

69

4 The multilevel algorithm

and

∫

B1\Bh

1 ν(dx) ≤
∫

B1\Bh

|x|β′

hβ′
ν(dx) ≤ h−β′

∫

B1

|x|β′

ν(dx) ≤ Ch−β′

(4.19)

for the same constant C > 0, respectively. With β′ as above and (4.17),(4.18) and

(4.19), we can always find a decreasing and invertible function g : (0,∞) → (0,∞)

that dominates g̃ and such that

g(h) = Ch−β′′

(4.20)

for all sufficiently small h > 0 and any β′′ > β′. In this case, we can use Theorem 5,

where the assumption on g is to satisfy

g
(γ
2
h
)
≥ 2g(h)

for some γ > 1 and all sufficiently small h > 0. For g as in (4.20), these assumption

are equivalent to

1 < γ ≤ 2
1− 1

β′′ .

Here, β′′ > 1 implies the existence of γ = 21−1/β′′

> 1 and thus we take β′′ ∈ ((β′ ∨
1, 2]. Theorem 5 now implies that there exists a sequence of multilevel algorithms

(Ŝn)n∈N with cost(Ŝn) ≤ n and

e(Ŝn) -
√
ng−1(n).

For g given by (4.20) we derive g−1(y) =
(
y
C

)−1/β′′

for sufficiently large y > 0, which

yields

e(Ŝn) -
√
n
(n
C

)− 1
β′′

= n
1
2 C

1
β′′ n

− 1
β′′ - n

−
(

1
β′′

− 1
2

)

.

For β > 1, we can now choose β′′ > β arbitrary close to β such that the infimum

over those β′′ is β. It follows that the supremum over 1/β′′−1/2 is given by 1/β−1/2.

For β < 1, we can choose β′ = 1 and can then again choose the β′′ > 1 arbitrary

70

4.4 Lower bound for Lévy processes

close to one which yields order of convergence 1/β′′ − 1/2 < 1/2 such that with the

same considerations as above we deduce that the supremum of convergence orders

is 1/2.

For β = 1, one can again choose the value β′′ > β arbitrary close to β and still

find a β′ with β′′ > β′ > β such that the conclusions above hold and result in a

supremum of convergence orders of value 1/2, which finishes the proof.

4.4 Lower bound for Lévy processes

Now the natural question arises, if it is possible to construct algorithms that perform

better then the multilevel algorithm in the above sense. Therefore, we are interested

in a lower bound for the error in relation to the computational cost, i.e. an error,

which occurs for any randomized algorithm for the computational problem outlined

at the beginning of this chapter. Therefore, to combine already existing results of [11]

and [3], we will relax the computational problem by taking a one dimensional Lévy

process itself as desired distribution, i.e. Y = X, and we will weaken the definition

of the cost by only counting the number of function evaluations. To be more precise,

we shortly present the setting of [11]. Here, the worst case error of any randomized

algorithm Ŝ, that terminates in finite time, is defined as in our setting by

e
(
Ŝ
)
= sup

f∈F

(
E

[∣∣∣S(f)− Ŝ(f)
∣∣∣
2
]) 1

2

.

We are interested in the so-called full sampling case, where the algorithm is allowed

to evaluate any functional f ∈ F at any point x ∈ X at constant computational

cost 1. Here, X is the underlying Banach space in which the desired distribution Y

has its values in, i.e. in our setting X = D([0, 1]) and the evaluation of any kind

of approximation Ŷ (k) has unit cost. Thus, in the case of full sampling, we count as

cost the number of function evaluations of f in Ŝ, denoted by costfull

(
Ŝ, f

)
. The

computational cost of the algorithm Ŝ is given as before by the worst case of the

average cost over the function class F ,

costfull

(
Ŝ
)
= sup

f∈F
E
[
costfull

(
Ŝ, f

)]
.

71

4 The multilevel algorithm

The resulting n-th minimal error is defined by

en = inf
{
e
(
Ŝ
)
: costfull

(
Ŝ
)
≤ n

}
.

Clearly, as we have costfull(Ŝ) ≤ cost(Ŝ) for our computational cost function given

in (4.8), it holds

inf
{
e(Ŝ) : cost

(
Ŝ
)
≤ n

}
≥ en,

and thus, the lower bound in the setting of [11] provides a lower bound for our

setting. The latter is given in terms of m-th quantization numbers of order r = 1.

Before we can define these, we have to define the L1-Wasserstein distance W (1)

between two probability measures µ and µ̂. As a consequence of the Kantorovich-

Rubinstein theorem and the fact, that we consider F = Lip(1) on the separable

space X = D[0, 1], the L1-Wasserstein distance can be defined by

W (1)(µ, µ̂) = sup
f∈F

∣∣∣∣
∫

X
f(x)µ(dx)−

∫

X
f(x) µ̂(dx)

∣∣∣∣ .

Then the m-th quantization number of order r = 1 for a probability measure µ on

X is defined by

q(1)

m = inf {W (1)(µ, µ̂) : |supp(µ̂)| ≤ m} ,

Given the above definitions, we can now state Corollary 2 from [11] which will imply

the lower bound of interest.

Theorem 6. Let f : [0,∞) → (0,∞) be convex and differentiable. If

lim sup
n→∞

q(1)
n

f(n)
≥ 1 and lim

n→∞
q(1)

n = 0,

then we have

lim sup
N→∞

eN/
(
N

1
2 · |f ′|(4N + 3)

)
≥ 1

8
.

Now observe that with the results from Theorem 1.5 in [3], for non-vanishing

72

4.5 Asymptotic choice of parameters

Gaussian component, i.e. Σ 6= 0 we have

q(1)

n % (log(n))−
1
2 .

With the same result and the assumption that the integral from (4.9) prevails the

following asymptotic lower bound,
∫ |x|2

h2 ∧ 1 ν(dx) % h−α for α ∈ (0, 2), we have

q(1)

n % (log(n))−
1
α .

For the first case taking α = 2, we can now define the convex and differentiable

function f needed in the result above by

f(n) = C (log(n))−
1
α

with a constant C > 0 such that lim supn→∞ q(1)
n /f(n) ≥ 1 is fulfilled. Then the

asymptotic of the derivative is |f ′|(4N + 3) ≍ (log(N))−(1+ 1
α
) · N−1 and the result

above yields the following

Theorem 7. For Y being a real-valued Lévy process satisfying
∫ |x|2

h2 ∧1 ν(dx) % h−α

for α ∈ (0, 2) or having non-vanishing Gaussian component in which case we set

α = 2, the N -th minimal error eN fulfills

lim sup
N→∞

N
1
2 (log(N))1+

1
α · eN > 0. (4.21)

Thus, in the case of Blumenthal-Getoor index β < 1 the multilevel algorithm

achieves optimal order up to logarithmic terms. For the case β ≥ 1 the multilevel

algorithm can be further improved, see [12], but no asymptotic optimal algorithms

are known so far.

4.5 Asymptotic choice of parameters

For the convenience of the reader, we now summarize the parameters which achieve

the asymptotic orders of convergence provided in Theorem 3, 4 and 5 and which

are hidden in the proofs. The choices will always correspond to algorithms with

computational cost at most n.

73

4 The multilevel algorithm

Remember, that the algorithm ŜML is completely determined by the parameters

m and (nk, εk, hk)k=1,...,m. Further recall that all theorems depend on an invertible

and decreasing function g : (0,∞) → (0,∞) satisfying

∫ |x|2
h2

∧ 1 ν(dx) ≤ g(h),

for all h > 0. We always define our threshold parameters for any k ∈ N by

εk = 2−k and hk = g−1(2k).

For the remaining, we introduce an auxiliary parameter C, which differs in the three

theorems, but is always determined in terms of the cost size n. With respect to this

parameter C, the replication parameters nk are chosen to be

nk = ⌊C g−1(2k−1)⌋ = ⌊C hk−1⌋,

for k = 1, . . . ,m. The choice of the highest level m also differs in the three theorems.

For Theorem 3, we set C = n and the highest level m is set to

m = inf{k ∈ N : C hk < 1} − 1.

Here we additionally assume without loss of generality, that h−2/3 - g(h).

In Theorem 4, the relation of n and C is given by

C =
n

(log(n))γ+1
,

while the finest approximation level again is m = inf{k ∈ N : C hk < 1} − 1. Here,

we have an additional assumption on the asymptotic behavior of g in terms of the

lower bound h−1
√

log(1/h) - g(h). This can also be made without loss of generality.

In the last Theorem 5, the assumption on g is given in terms of a scaling decay

and not by a pure asymptotic, so that the parameter C as well depends on g by

C = 1/g−1(n).

74

4.6 Examples

The corresponding highest level is given by

m = inf{k ∈ N : C hk < 2} − 1.

These parameters optimize, up to constant multiples, the error estimate given by

equation (4.7) together with the strong approximation results of Theorem 2 and the

computational cost for multilevel algorithms given in (4.8) which are a consequence

of our algorithmic setting given in Chapter 1 and at the very beginning of this

chapter.

4.6 Examples

We now apply our results of Theorems 3, 4 and 5 to our examples of driving Lévy

processes and to jump-diffusions. Here, a jump-diffusion is the independent sum of a

Brownian motion and a compound Poisson process. Numerical results for an example

with truncated stable processes and an example in the Barndorff-Nielsen Shephard

model are presented in an own chapter after the theoretical results. There, we will

also introduce a way to choose the parameters of the algorithm during the course of

computation by suitable bias and variance estimations, which approximately ensure

to reach a desired precision.

Jump-diffusions

In finance, special cases of jump-diffusions are used, e.g., in the Merton or the Kou

model, to model the log price process, see [28] and [32] for details. The compound

Poisson process has finite Lévy measure and thus the integral
∫ |x|2

h2 ∧ 1 ν(dx) is

bounded by a constant. Hence, the trade-off between cost and error is the same

as in the pure Gaussian case, i.e. there exists a sequence of multilevel algorithms

(Ŝn)n∈N with cost(Ŝn) ≤ n and e(Ŝn) - n−1/2(log(n))3/2.

75

4 The multilevel algorithm

Stable Lévy processes

First recall that the Lévy measure of an α-stable process is given by

ν(dx) =

(
1l(0,∞](x)

A+

|x|1+α
+ 1l[−∞,0)(x)

A−
|x|1+α

)
· dx,

for x ∈ R\{0} and α ∈ (0, 2), with A+, A− ≥ 0 such that A+ + A− > 0. Due to

the assumption of second moments, we consider processes where the jumps have

α-stable behavior around 0 while the big jumps are either truncated at some given

size u > 0 or tempered with an exponential decay. Then the influence of the big

jumps to the function g as defined in (4.9) is only a constant, independent of h > 0.

For small h → 0, we thus derive the asymptotic bound

∫ |x|2
h2

∧ 1 ν(dx) = h−2

∫

Bh

|x|2 ν(dx) +
∫

B1\Bh

1 ν(dx) + ν(Bc
1)

- h−2

∫

Bh

|x|1−α dx+ h−α

∫

B1\Bh

|x|−1 dx

- h−α + h−α log

(
1

h

)
- h−α′

,

for any α′ > α, where the constants neglected by the asymptotic treatment only

depend on the parameters of the Lévy density. With these asymptotic bounds for

g, we can now apply our theoretical results.

For α < 1 Theorem 3 can be used because (4.10) is fulfilled for γ > 0 and

h → 0. The asymptotic error for a sequence of multilevel algorithms (Ŝn)n∈N with

cost(Ŝn) ≤ n thus behaves like e(Ŝn) - n− 1
2 .

In the case with α > 1 Theorem 5 can be used with γ = 2
α′

−1
α′ > 1 which ensures

the existence of a sequence of multilevel algorithms (Ŝn)n∈N with cost(Ŝn) ≤ n which

fulfill e(Ŝn) - n−(1
α′

− 1
2
) for α′ > α arbitrary close.

The case α = 1 can be treated via Theorem 4 with γ = 1 which yields e(Ŝn) -

n− 1
2 (log(n))2 for a sequence of multilevel algorithms (Ŝn)n∈N with cost(Ŝn) ≤ n.

76

4.6 Examples

Variance Gamma processes

We first recall that the Lévy measure of a VG process is given by

ν(dx) =
a

|x| exp
(
−
√
2b|x|

)
· dx,

for x ∈ R\{0}.

To apply our results and obtain the order of convergence for the case of a VG

process as driving Lévy process, we need an asymptotic upper bound for
∫ |x|2

h2 ∧
1 ν(dx). Therefore, observe that we can decompose the latter integral for 0 < h ≤ 1

like in the proof of Corollary 1 into

∫ |x|2
h2

∧ 1 ν(dx) =

∫

Bh

|x|2
h2

ν(dx) +

∫

B1\Bh

1 ν(dx) +

∫

Bc
1

1 ν(dx).

Inserting the density of the Lévy measure, the first term can be estimated by

∫

Bh

|x|2
h2

a

|x| exp
(
−
√
2b|x|

)
dx ≤ h− 1

22

∫ h

0

a√
x
exp

(
−
√
2bx
)
dx

= h− 1
24

∫ √
h

0

a exp
(
−
√
2bx2

)
dx

≤ h− 1
24a

∫ 1

0

exp
(
−
√
2bx2

)
dx ≤ C h− 1

2

for a constant C > 0. For the second term we derive for the same constant C that

∫

B1\Bh

a

|x| exp
(
−
√
2b|x|

)
dx ≤

∫

B1\Bh

(|x|
h

) 1
2 a

|x| exp
(
−
√
2b|x|

)
dx

= h− 1
24

∫ 1

√
h

a exp
(
−
√
2bx2

)
dx

≤ h− 1
24a

∫ 1

0

exp
(
−
√
2bx2

)
dx ≤ C h− 1

2 .

77

4 The multilevel algorithm

The last term can be approximated analogously by

∫

Bc
1

a

|x| exp
(
−
√
2b|x|

)
dx ≤

∫

Bc
1

a

|x| 12
exp

(
−
√
2b|x|

)
dx

≤ 2

∫ ∞

1

a

x
1
2

exp
(
−
√
2bx
)
dx

≤ 4a

∫ ∞

0

exp
(
−
√
2bx2

)
dx = 4a

√
π (2b)

1
4

2
,

where the latter integral is determined as an integral with respect to a Gaussian

distribution with variance (2
√
2b)−1. Putting together the estimates from above, we

can bound the integral by

∫ |x|2
h2

∧ 1 ν(dx) - h− 1
2 ,

for h → 0. Thus, having no Brownian component occurring, we can use Theorem 3

and deduce as order of convergence 1/2, i.e., there exists a sequence of multilevel

algorithms (Ŝn)n∈N with cost(Ŝn) ≤ n such that e(Ŝn) - n− 1
2 .

78

5 Numerical simulations

In Chapter 3, we have already explained ways to simulate the processes under inves-

tigation. What remains to do in the implementation of a multilevel algorithm on a

computer is to determine the parameters m, (hk, εk)k=1,...,m and (nk)k=1,...,m. By the

theoretical results of Chapter 4, this can be done asymptotically for a given upper

bound of the computational cost by the choices of Section 4.5. However, in most

applications, we are interested in first place in bounding the error of the multilevel

algorithm, and in second place, but still of great importance, to have an idea of

the computational cost. In the following, we present a way to implement the multi-

level algorithm such that the latter should be achieved. Hereby, we fix the choice of

threshold parameters (hk, εk)k∈N for the levels while the choices of m and the replica-

tion parameters nk are done during the course of computation via bias and variance

estimations. Along this way, we are also abled to approximate the remaining time

of the algorithm to terminate.

5.1 Bias and variance estimation for MLMC

In the following, δ > 0 denotes the precision we want to achieve with our algorithm,

e.g. δ = 10−p for p ∈ N. Remember, that we have to determine the highest level m as

well as the various threshold parameter (hk, εk)k=1,...,m and the replication numbers

(nk)k=1,...,m to run the multilevel algorithm. At first we fix our level parameters

(hk, εk)k∈N such that

εk = 2−k and ν(Bc
hk
) = 2k, (5.1)

if possible, and in an approximate way if the Lévy measure itself has to be ap-

proximated numerically. With this choice the average number of jumps we have to

79

5 Numerical simulations

simulate on level k is 2k as it has already been proposed in the classical setting in

[16] for M = 2. For our first example of truncated symmetric α-stable processes

with parameters c, u > 0 and α ∈ (0, 2), the Lévy measure of jump sizes greater h

can be directly calculated to

ν (Bc
h) =

2c

α

(
h−α − u−α

)
,

and so it is possible to choose

hk =

(
2kα

2c
+ u−α

)−1/α

according to (5.1). Observe, that in the case of variance gamma, inverse Gaussian

or tempered stable processes the threshold parameters are chosen approximately

fulfilling (5.1). This can be done independently of the algorithm itself. The integrals

involved are handled by suitable deterministic quadrature rules.

Remembering the decomposition of our L2-error into the bias and the variance of

ŜML(f) via

E

[∣∣∣S(f)− ŜML(f)
∣∣∣
2
]
=
∣∣∣E
[
f(Y)− f

(
Ŷ (m)

)]

︸ ︷︷ ︸
=bias(ŜML(f))

∣∣∣
2

+ var
(
ŜML(f)

)
,

the next step to implement the algorithm is the determination of the highest level

m and the replication numbers n1, . . . , nm. Given the desired precision δ for the root

mean square error, the algorithm should fulfill

∣∣∣bias
(
ŜML(f)

)∣∣∣
2

≤ δ2

2
(5.2)

and

var
(
ŜML(f)

)
≤ δ2

2
. (5.3)

In applications we usually do not have a reference solution, so we have to estimate

the remaining bias after level m. To do so, we use a heuristic argument explained

in the following. We will frequently use the following notation for the expectations

80

5.1 Bias and variance estimation for MLMC

of the differences on consecutive levels:

biask :=

E
[
f
(
Ŷ (k)

)
− f

(
Ŷ (k−1)

)]
, k ≥ 2,

E
[
f
(
Ŷ (1)

)]
, k = 1.

Due to Jensen’s inequality and our strong approximation result we have conver-

gence of the approximations in L1, i.e. E[f(Ŷ
(k))] → E[f(Y)] for k → ∞ such that

we can decompose the latter into

S(f) = E[f(Y)] =
∞∑

k=1

biask.

Consequently, the bias of our multilevel estimator has the representation

bias
(
ŜML(f)

)
= bias

(
f
(
Ŷ (m)

))
= E

[
f(Y)− f

(
Ŷ (m)

)]

=
∞∑

k=m+1

E
[
f
(
Ŷ (k)

)
− f

(
Ŷ (k−1)

)]
=

∞∑

k=m+1

biask.

Monte Carlo simulations for the latter expectations suggest the hypothesis that

there exist constants κbias ∈ R and ̺bias ∈]0, 1[such that eventually

|biask| ≤ κbias · ̺kbias.

In fact, the strong approximation result of Theorem 2 assures this hypothesis asymp-

totically. This decay implies

bias
(
ŜML(f)

)
≤

∞∑

k=m+1

|biask| ≤
∞∑

k=m+1

κbias · ̺kbias,

which yields the following upper bound for the bias:

bias
(
ŜML(f)

)
≤ κbias · ̺m+1

bias ·
∞∑

k=0

̺kbias =
κbias

1− ̺bias
̺m+1
bias .

With the above estimate, we can choose the highest level m fulfilling (5.2) for

81

5 Numerical simulations

given δ > 0 approximately by

m =

⌈
log((1− ̺bias)δ)− log

(√
2 · κbias

)

log(̺bias)
− 1

⌉
. (5.4)

To estimate the parameters κbias and ̺bias of the exponential decay of the bias we

apply a classical log-linear regression, i.e. we apply a best linear L2-fit to the depen-

dence of the logarithm of the absolute values of the empirical means of (biask)k≥2

against the levels on the first few levels with k ≥ 2. We then choose κbias and ̺bias

to be the exponential of the intercept and the slope of the regression, respectively.

To run the multilevel algorithm we still have to define the number of replications

on each of the levels, namely the parameters (nk)k=1,...,m. Our goal here is to minimize

the cost of the algorithm under the constraint (5.3) for the given δ > 0. Similar to

the bias considerations, we at first fix some notation for reasons of simplicity. We

denote by

vark :=

var
(
f
(
Ŷ (k)

)
− f

(
Ŷ (k−1)

))
, k ≥ 2,

var
(
f
(
Ŷ (1)

))
, k = 1

the variances of the differences of coupled consecutive approximations. Then con-

straint (5.3) is given by

var
(
ŜML(f)

)
=

m∑

k=1

vark
nk

≤ δ2

2
.

The computational cost of the algorithm is given as before by

cost
(
ŜML

)
=

m∑

k=1

nkE
[
Υ(Ŷ (k))

]

with Υ(Ŷ (k)) as before, denoting the number of breakpoints of Ŷ (k).

The cost can be estimated while simulating the trajectories by counting the num-

ber of breakpoints and taking the mean, or, in the case without Brownian component

in the Lévy process, it can be directly calculated by E[Υ(Ŷ (k))] = ν(Bc
hk
) + 2 which

is approximately 2k + 2 by the choice of hk. Here the additional 2 originates from

82

5.1 Bias and variance estimation for MLMC

always taking 0 and the endpoint T = 1 as discretization points as well, although

there exists no jump at these points almost surely. By the choices of (εk, hk), we also

always have at least the cost bound E[Υ(Ŷ (k))] ≤ 2k+1.

The values for vark are estimated on the first few levels by the empirical variances

of the means of biask. With the hypothesis that

vark ≤ κvar · ̺kvar, (5.5)

we once again solve a log-linear regression of the empirical values for vark against

the levels for k ≥ 2. With the resulting values for κvar and ̺var we can calculate

estimators for vark for the bigger levels up to level m using (5.5).

Given values for (vark)k=1,...,m and (E[Υ(Ŷ (k))])k=1,...,m, the replication parameters

(nk)k=1,...,m should solve the minimization problem

min
n∈Nm

f(n) =
m∑

k=1

nkE
[
Υ(Ŷ (k))

]

s.t. g(n) =
m∑

k=1

vark
nk

≤ δ2

2
.

For simplicity, we solve this problem for n ∈ R
m and equality in the constraint. Then

the method of Lagrange multipliers can be used with Lagrange function Λ(λ, n) =

f(n) + λ(g(n) − δ2

2
). Setting ∇Λ = 0 we obtain the following necessary conditions

for the extremum

nk =

√
λvark

E[Υ(Ŷ (k))]
, k = 1, . . . ,m,

with

√
λ =

2

δ2

m∑

k=1

√
vark · E

[
Υ(Ŷ (k))

]
.

83

5 Numerical simulations

This yields the choice of

nk =

⌈
2

δ2

√
vark

E[Υ(Ŷ (k))]

m∑

k=1

√
vark · E

[
Υ(Ŷ (k))

]⌉

to ensure that the constraint in the optimization is fulfilled, and that on the finest

level we still have nm ≥ 1.

Before we now present the results of numerical simulations of the multilevel algo-

rithm, we remember how to choose asymptotic confidence intervals in the classical

Monte Carlo setting. The latter appears for instance in the estimation of the root

mean square error of our algorithm as well as in the variance and bias estimation

procedure. In this cases, confidence intervals are given in the following way.

Asymptotic confidence intervals for classical MC

We consider the problem of computing the expectation of a r.v. Z. In our setting,

reasonable choices of Z are given by Z = (f(Ŷ (k)) − f(Ŷ (k−1)))p for p = 1, 2 or

Z = (Ŝ(f) − S(f))2, where the latter is, e.g., used to estimate the mean squared

error of an algorithm Ŝ for a given functional f . We can then always consider the

classical Monte Carlo estimator

Ẑ =
1

n

n∑

i=1

Zi,

where (Zi)i∈N is an i.i.d. sequence of copies of Z. With the central limit theorem, we

can conclude that for large n, the arithmetical mean Ẑ is approximately Gaussian.

The unknown variance is estimated by the empirical variance

σ̂2 =
1

n− 1

n∑

i=1

(Zi − Ẑ)2.

Then an asymptotic confidence interval with confidence level 0.95 is given by

[
Ẑ − σ̂√

n
· 1.96, Ẑ +

σ̂√
n
· 1.96

]
,

84

5.1 Bias and variance estimation for MLMC

where 1.96 is the 0.975-quantile of the standard normal distribution N (0, 1). Proofs

and references for classical confidence intervals can be found in most textbooks

on statistics. For this setting we refer to the recent monograph on Monte Carlo

algorithms [33].

Treatment of the examples

Before we present the specific examples, we will describe our general procedure.

We will always start with the exact description of the problem, i.e., we define the

parameters of the SDE and the functional under consideration. After that, we start

the bias and variance estimation procedure as described in Section 5.1. To this end,

we have to choose the threshold parameters for the Euler scheme. This is always

done such that (approximately)

εk = 2−k and ν(Bc
hk
) = 1/εk = 2k.

For small levels k we estimate biask and vark by the empirical mean of 1000 simu-

lations and proceed our log-linear regression. If the confidence intervals chosen ac-

cording to the section before are not convincing for the regression lines, we perform

more simulations until the confidence regions match the corresponding regression

lines.

With the estimates for the decay of (biask)k≥2 and (vark)k≥2, we can determine

the parameters m and (nk)k=1,...,m depending on δ. Then, for several values of δ, the

corresponding choices of replication numbers are determined and plotted.

The goal of our simulation experiment is to recover the relation between the

root mean square error (E[S(f) − ŜML(f)]2)1/2 and the computational cost of the

multilevel algorithm E[cost(ŜML(f), f)]. Therefore, we average the squared error and

the cost of 1000 independent multilevel Monte Carlo simulations for the different

precisions and corresponding replication numbers. Here, the unknown value S(f)

is replaced by the output of a master computation, given in terms of a multilevel

output with an accuracy that is approximately one digit higher than the smallest δ.

The results are presented in a log-log plot together with the linear regression lines

whose slopes determine the empirical orders of convergence.

We then compare the multilevel algorithm with the classical Monte Carlo one. In

85

5 Numerical simulations

the latter case, we do not have a heuristic control of the bias and so, if possible, we

use the strong approximation error of Theorem 2 as an upper bound. All unknown

constants appearing in the error estimate as well as the unknown variance are as-

sumed to be 1. With this considerations, we determine the parameters h, ε and the

replication number n in order to reach precision δ > 0 for the root mean square

error. The empirical orders of convergence of the classical Monte Carlo algorithm

are also obtained from 1000 simulations where the error is again determined with

respect to the output of the master computation.

Observe that for small precisions δ > 0 all simulations from the bias and variance

estimation procedure can be included in our Euler scheme not yielding any additional

cost. This can be easily seen in the graphics showing the replication numbers in

Figure 5.2 and 5.5.

5.2 Lookback option and truncated stable

processes

Our first numerical example will be a lookback option with strike K = 1, that is

f(Y) =

(
sup
t∈[0,1]

Yt − 1

)

+

.

The process Y thereby satisfies the following stochastic differential equation

dYt = Yt− dXt, t ∈ [0, 1],

Y0 = 1,

with X being a symmetric, truncated α-stable Lévy process as defined in Section 3.3

with index of stability α varying in {0.5, 0.8, 1.2}, while u = 1 and c = 0.1.

We choose the threshold parameters for the Euler scheme by

εk = 2−k and hk =

(
2kα

2c
+ u−α

)−1/α

,

which is the unique value with ν(Bc
hk
) = 2k. Then, to reach a desired precision δ

86

5.2 Lookback option and truncated stable processes

measured in the root mean square error, we apply our bias and variance estimation

procedure as defined in Section 5.1, i.e. we estimate biask and vark for small levels

k (here k ≤ 4 or k ≤ 5) by the empirical mean of 1000 simulations and proceed

our log-linear regression, which can be seen in Figure 5.1. The corresponding decay

parameter are κbias = 0.06652732, ̺bias = 0.3097419, κvar = 0.0161213 and ̺var =

0.1561709 for α = 0.5, κbias = 0.08665627, ̺bias = 0.472498, κvar = 0.02141904 and

̺var = 0.3830893 for α = 0.8 and κbias = 0.09401562, ̺bias = 0.6638959, κvar =

0.03301414 and ̺var = 0.6731316 for α = 1.2. With this estimates for the decay

of the bias and the variance, we can determine the parameters m and (nk)k=1,...,m.

For several values of δ, the corresponding choice of replication numbers is shown in

Figure 5.2.

Next, we average the squared error and the cost of 1000 independent multilevel

Monte Carlo simulations for the precisions and corresponding replication numbers

given in Figure 5.2. Here, the unknown values for S(f) are replaced by outputs of

master computations. For α = 0.5, a multilevel algorithm with accuracy δ = 0.00002

provides as master computation output the value 0.1530069. In the case α = 0.8, we

compute 0.2120798 and for α = 1.2 we obtain 0.3388049 for accuracies δ = 0.0001

and 0.001, respectively. The results are presented in a log-log plot in Figure 5.3

together with the linear regression lines whose slopes determine the empirical orders

of convergence. Thereby, the multilevel experiments are represented by the solid lines

and corresponding points. In these experiments, the empirical orders of convergence

are close to the asymptotic results from Corollary 1. For α = 0.5 and α = 0.8,

the empirical orders are 0.47 and 0.46, where in both cases the asymptotic result

is 1/2 − ε. For stability index α = 1.2, the orders are 0.38 empirically and 1/3 − ε

according to Corollary 1.

Let us now compare the multilevel Monte Carlo algorithm with the classical Monte

Carlo scheme. In the latter case, we do not have a heuristic control of the bias and

so we use the strong approximation error of Theorem 2 as an upper bound. All

unknown constants appearing in the error estimate as well as the unknown variance

are assumed to be 1. With this considerations, we determine the parameters h, ε

and the replication number n in order to reach precision δ > 0 for the root mean

87

5 Numerical simulations

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−5

−4

−3

−2

−1

Bias and variance estimation for α=0.5

Level l

lo
g 1

0(b
ia

s l
) a

nd
 lo

g 1
0(v

ar
l)

= bias
= var

1 2 3 4 5

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

Bias and variance estimation for α=0.8

Level l

lo
g 1

0(b
ia

s l
) a

nd
 lo

g 1
0(v

ar
l)

= bias
= var

1 2 3 4 5

−2.0

−1.5

−1.0

Bias and variance estimation for α=1.2

Level l

lo
g 1

0(b
ia

s l
) a

nd
 lo

g 1
0(v

ar
l)

= bias
= var

Figure 5.1: Estimates of biask and vark with corresponding regression lines.

88

5.2 Lookback option and truncated stable processes

1 2 3 4 5

3

4

5

6

replication numbers for α = 0.5

Level l

lo
g 1

0(n
l)

precisions:

= 0.003
= 0.002
= 0.001
= 6e−04
= 3e−04

1 2 3 4 5 6 7

2

3

4

5

6

replication numbers for α = 0.8

Level l

lo
g 1

0(n
l)

precisions:

= 0.01
= 0.004
= 0.002
= 0.001
= 7e−04

2 4 6 8 10

2.0

2.5

3.0

3.5

4.0

4.5

5.0

replication numbers for α =1.2

Level l

lo
g 1

0(n
l)

precisions:

= 0.02
= 0.01
= 0.007
= 0.005
= 0.0035

Figure 5.2: Replication numbers for different precisions δ.

89

5 Numerical simulations

square error to

h =

(
(2− α)

4c
δ2
) 1

2−α

, ε =
1

ν(Bc
h)
, and n =

⌈
2

δ2

⌉
.

The empirical orders of convergence obtained from 1000 simulations of the classical

Monte Carlo algorithm are given by 0.43, 0.31 and 0.23 for α = 0.5, 0.8 and 1.2,

and are given in terms of the dashed regression lines and corresponding points in

Figure 5.3. Here you can also see, that the convergence orders as well as the absolute

errors are always worse than those of the corresponding multilevel algorithms. Dur-

ing the bias and variance estimation step, we obtain the following empirical orders

of convergence of the bias, see (4.3), of our approximation schemes. For α = 0.5,

the order is approximately 1.7, while for α = 0.8 and 1.2 we obtain orders 1.1 and

0.6. These weak orders of convergence partially explain the root mean square con-

vergence orders received by our experiments via result (4.4). Then, a well-balanced

Monte Carlo experiment could already receive orders of 0.39, 0.34 and 0.27 for the

worst case setting, respectively. The higher the Blumenthal-Getoor index is, i.e. the

harder the problem is itself, the more we benefit from the multilevel idea, since

higher levels are needed to reach a desired precision, whereby the latter of course

induce higher computational cost.

5.3 Geometric Asian option in the

Barndorff-Nielsen Shephard (BNS) model

This choice of financial model and option is considered in [35] and a semi-explicit

pricing formula for it has been developed in [22]. The option of interest is a con-

tinuously monitored average price geometric Asian option, i.e., we are interested

in

f(X) =

(
S0 exp

(
1

T

∫ T

0

Xt dt

)
−K

)

+

,

for a fixed strike K > 0 and a fixed endpoint T .

90

5.3 Geometric Asian option in the Barndorff-Nielsen Shephard (BNS) model

4.5 5.0 5.5 6.0 6.5 7.0

−3.5

−3.0

−2.5

−2.0

Error and cost of MLMC and classical MC

log10(cost)

lo
g 1

0(e
rr

or
)

= MLMC
= MC

α
= 0.5
= 0.8
= 1.2

Figure 5.3: Cost and error of multilevel (MLMC) and classical (MC) Monte Carlo.

91

5 Numerical simulations

Definition of the BNS model

Suppose to be given a subordinator (Zt)t≥0 called the background driving Lévy

process (BDLP) and an independent standard Brownian motion (Wt)t≥0.

The financial market is modeled by a stock (St)t≥0 and a bond (Bt)t≥0 satisfying

St = S0 exp(Xt) and Bt = exp(rt),

where r ≥ 0 and S0 > 0. The logarithmic stock price X is modeled by the SDE

dXt = (µ+ βVt−)dt+
√
Vt−dWt + ̺dZλt,

X0 = 0,
(5.6)

where µ, β ∈ R and ̺ ≤ 0. Hereby, the volatility term is given by a stochastic process

V which satisfies the Langevin equation

dVt = −λVt−dt+ dZλt,

V0 = v0,
(5.7)

with deterministic reals v0, λ > 0.

Properties

• The parameters of the model are r, S0, µ, β, ̺, λ, v0 and the BDLP Z, as there

is a direct correspondence between Z and the distribution of V .

• The volatility process, i.e. the solution V of the Langevin equation, can be

explicitly calculated and is the Ornstein-Uhlenbeck (OU) process

Vt = exp(−λt)v0 +

∫ t

0

exp(−λ(t− s))dZλs.

As Z is a subordinator, the process V is strictly positive, more precisely, for

any t ≥ 0, it holds Vt ≥ exp(−λt)v0. With this fact, we can change the square

root in (5.6) to a globally Lipschitz function which leads to the same solution,

but fits perfectly into our assumptions on the SDE.

92

5.3 Geometric Asian option in the Barndorff-Nielsen Shephard (BNS) model

• If we change to an equivalent martingale measure the parameters in the dy-

namics in (5.6) change to

dXt =

(
r − λκ(̺)− 1

2
Vt−

)
dt+

√
Vt− dWt + ̺ dZλt, (5.8)

where κ(u) = log(E[exp(uZ1)]) is the cumulant generating function of Z.

Remark 6. During the simulation, the approximating Euler Scheme for the volatil-

ity can become negative, which yields numerical problems for the square root of the

latter. As explained above, the process V up to time T is always greater or equal to

the deterministic part C = exp(−λT)v0. Thus, we can substitute the square root in

(5.6) by a function that is continuous and equal to the square root for values greater

or equal to C. A candidate for this is e.g. the function φ, which is defined constant

for values smaller equal to C, namely

φ(x) =

√
x, x ≥ C,

√
C, otherwise.

Choice of the BDLP

There are two notions of OU processes defined by Barndorff-Nielsen and Shephard

in [5]. The first one is defined in terms of the infinitely divisible distribution D

characterizing the BDLP, which means Z1
d
= D. In this case we call V an OU-D

process.

We will use the following second notion. Therefore, it is used that the process V is

strictly stationary, i.e. there exists a distribution D, called the stationary law, such

that, if the starting point V0 has distribution D, then the law of all marginals Vt

for t ≥ 0 is also D. The process V with stationary distribution D is then called a

D-OU process. It turns out, that the only candidates for D are self-decomposable

distributions. The latter form a subclass of infinitely divisible distributions that

furthermore fulfill

φ(u) = φ(cu) · φc(u)

for all u ∈ R and all c ∈ (0, 1), where φ is the characteristic function of D and

{φc : c ∈ (0, 1)} is some family of characteristic functions.

93

5 Numerical simulations

The Inverse Gaussian (IG)-OU process

For the definition of an inverse Gaussian Lévy process we refer to Section 2.6 and

just remember that the Lévy measure of an IG(a, b)-process is given by

νIG(dx) =
a√

2πx3/2
· exp

(
−1

2
b2x

)
· 1lx>0 · dx.

As the IG distribution is self-decomposable, it can be chosen as the stationary

distribution of an IG-OU process. The corresponding BDLP Z than has Lévy mea-

sure

νZ(dx) =
a

2
√
2π

·
(

1

x
3
2

+
b2

x
1
2

)
· exp

(
−1

2
b2x

)
· 1lx>0 · dx,

see [42], and is thus the sum of two independent Lévy processes, namely

Zt = Z
(1)
t + Z

(2)
t , t ≥ 0,

where (Z
(1)
t)t≥0 is an IG(a/2, b) process and (Z

(2)
t)t≥0 has Lévy measure

νZ(2)(dx) =
ab2

2
√
2π

· x− 1
2 · exp

(
−1

2
b2x

)
· 1lx>0 · dx.

The latter is a compound Poisson process with distribution given by

Z
(2)
t

d
=

1

b2
·

Nt∑

n=1

V 2
n ,

where (Nt)t≥0 is a Poisson process with parameter ab/2, independent of the i.i.d. se-

quence (Vn)n≥1 of standard normal random variables, see Lemma 2 in the Appendix.

The cumulant generating function κ(̺) of Z, needed in the drift coefficient of the

SDE (5.8) is given by κ(̺) = a̺/
√
b2 − 2̺.

Numerical results

The parameters of the SDE (5.8) are chosen according to the fitted parameters of

[35] by ̺ = −4.7039, λ = 2.4958, b = 11.98, a = 0.0872, v0 = 0.0642622 and

r = 0.0319. The remaining parameters are not explicitly stated such that we cannot

94

5.3 Geometric Asian option in the Barndorff-Nielsen Shephard (BNS) model

use their solutions as references and we choose T = 1 and K = S0 = 80. The

threshold parameters are chosen approximately such that νZ(B
k
hk
) = 2k with the help

of a quadrature rule from the GNU Scientific library, namely gsl integration qag.

This function applies a 41 point Gauss-Kronrod rule, which is a Gauss quadrature

rule, adaptively bisecting the largest error contributing interval, such that the error

should be at most 10−7 after stopping. We then choose εk = 1/νZ(B
c
hk
). The bias

and variance estimation step is performed as before on the first five levels with 1000

simulations each. The results are shown in Figure 5.4, where the decay parameter are

given by κbias = 1.231289, ̺bias = 0.4658864, κvar = 9.155878 and ̺var = 0.3499452.

Resulting from this, we obtain the empirical order of convergence 1.1 for the bias

1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

Bias and variance estimation

Level l

lo
g 1

0(b
ia

s l
) a

nd
 lo

g 1
0(v

ar
l)

= bias
= var

Figure 5.4: Estimates of biask and vark with corresponding regression lines.

of our approximation, which yields approximately the convergence order 0.34 for

the well-balanced classical Monte Carlo algorithm, while due to the Blumenthal-

Getoor index of the driving process being β = 1/2, we expect a convergence order of

approximately 1/2 for our multilevel algorithm. We again perform 1000 simulations

95

5 Numerical simulations

of both the multilevel and the classical Monte Carlo scheme. As reference solution,

we perform a multilevel algorithm with accuracy δ = 0.002 to receive as master

computation the value 1.71108 and estimate the root mean square error of the

algorithms by the arithmetical means of the squared errors with respect to this

master computation. The desired precisions and corresponding replication numbers

for the multilevel scheme are shown in Figure 5.5. In the Monte Carlo setting, we

choose the highest level with the help of the bias estimation step from the multilevel

algorithm, although the classical algorithm has no direct bias information available.

The unknown variance is supposed to be 1 and thus the number of replications

are chosen by n = ⌈2/δ2⌉. The result of the simulation experiment is shown in

1 2 3 4 5 6 7

2.5

3.0

3.5

4.0

4.5

5.0

replication numbers

Level l

lo
g 1

0(n
l)

precisions:

= 0.08
= 0.05
= 0.03
= 0.02
= 0.015

Figure 5.5: Replication numbers for different precisions δ.

a log-log plot of the estimated root mean square error against the computational

cost with corresponding regression lines in Figure 5.6. As one can see, the multilevel

algorithm is always superior to the Monte Carlo algorithm, although we used the bias

information from the multilevel scheme for the latter. This has been done because our

96

5.3 Geometric Asian option in the Barndorff-Nielsen Shephard (BNS) model

approximation result is not necessarily true for this problem. Due toX only modeling

the log-price, the functional is not Lipschitz continuous in general. Nonetheless, the

slopes of the regression lines replicate the theoretical orders of convergence perfectly

with empirical order 0.49 for the multilevel Monte Carlo algorithm and 0.34 for the

standard Monte Carlo scheme.

4.5 5.0 5.5 6.0

−
1.

8
−

1.
6

−
1.

4
−

1.
2

Error and Cost of MLMC and classical MC

log10(Computational cost)

lo
g 1

0(
E

rr
or

)

= MLMC
= MC

Figure 5.6: Cost and error of multilevel (MLMC) and classical (MC) Monte Carlo.

97

6 Appendix

Theorem 8 (Gronwall’s inequality). Let z : [0,∞) → [0,∞) be integrable such that

z(s) ≤ α2 + α1 ·
∫ s

0

z(u) du < ∞

for 0 ≤ s ≤ t and reals α1, α2 > 0. Then

z(t) ≤ α2 · exp(α1 · t).

Proof: Define for 0 ≤ s ≤ t

g(s) = exp(−α1 · s) ·
∫ s

0

z(u)du.

Differentiating yields

g′(s) = exp(−α1 · s)
(
z(s)− α1 ·

∫ s

0

z(u) du

)
≤ exp(−α1 · s)α2,

and thus

g(t) =

∫ t

0

g′(s) ds ≤
∫ t

0

exp(−α1 · s)α2 ds =
α2

α1

− α2

α1

exp(−α1 · t).

Altogether we have

z(t) ≤ α2 + α1 exp(α1 · t)g(t) ≤ α2 · exp(α1 · t).

99

6 Appendix

Lemma 2. A pure jump Lévy process with Lévy measure

ν(dx) =
ab2

2
√
2π

· x− 1
2 · exp

(
−1

2
b2x

)
· 1lx>0 · dx.

is of compound Poisson type. It is of the form

Zt =
1

b2
·

Nt∑

n=1

V 2
n ,

where (Vn)n≥1 is an i.i.d. sequence of standard normal random variables, independent

of the Poisson process (Nt)t≥0 with parameter ab/2.

Proof: First, we show, that the Lévy measure is finite and equal to ab/2, which

already yields the compound Poisson structure.

ν(R) =

∫ ∞

0

ab2

2
√
2π

· x− 1
2 · exp

(
−1

2
b2x

)
dx

=
ab2

2
√
2π

∫ ∞

0

exp
(
−1

2
b2y2

)

y
· 2y dy

=
ab2√
2π

∫ ∞

0

exp

(
−1

2
b2y2

)
dy =

ab2√
2π

·
√
2π

2b
= ab/2,

What remains to show is that

ν(R)−1 · ν(dx) = b√
2π

· exp
(
−1

2
b2x
)

x
1
2

· 1lx>0 dx

is the distribution of V 2/b2 for a standard normal variable V ∼ N (0, 1). We show

that the distributions coincide on the system of half-open intervals. As this system

is stable w.r.t. intersections and generates the Borel σ-field B(R) the distributions

then coincide on the whole B(R). Therefore consider sets of the form]c.d] with

100

0 ≤ c ≤ d < ∞ and observe that

P ({V 2/b2 ∈]c, d]}) = 2 · P ({V ∈]b√c, b
√
d]})

= 2 ·
∫ b

√
d

b
√
c

1√
2π

exp

(
−1

2
x2

)
dx

= 2 ·
∫ √

d

√
c

b√
2π

exp

(
−1

2
b2x2

)
dx

=

∫ d

c

b√
2π

· exp
(
−1

2
b2x
)

x
1
2

dx.

Lemma 3. Let r ∈ N and (Gj)j=0,1,...,r denote a filtration. Moreover, let, for j =

0, . . . , r − 1, Uj and Vj denote non-negative random variables such that Uj is Gj-

measurable, and Vj is Gj+1-measurable and independent of Gj. Then one has

E
[

max
j=0,...,r−1

UjVj

]
≤ E

[
max

j=0,...,r−1
Uj

]
· E
[

max
j=0,...,r−1

Vj

]
.

Proof: See [13].

101

Bibliography

[1] David Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Stud.

Adv. Math. Cambridge University Press, second edition, 2009.

[2] S. Asmussen and J. Rosiński. Approximations of small jumps of Lévy processes

with a view towards simulation. J. Appl. Probab., 38(2):482–493, 2001.

[3] F. Aurzada and S. Dereich. The coding complexity of Lévy processes. Found.

Comput. Math., 9:359–390, 2009.

[4] R. Avikainen. On irregular functionals of SDEs and the Euler scheme. Finance

Stoch., 13(3):381–401, 2009.

[5] O.E. Barndorff-Nielsen and N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-

based models and some of their uses in financial economics. J. R. Statist. Soc.

B, 63:167–241, 2001.

[6] A. Barth, A. Lang, and C. Schwab. Multi-level Monte Carlo finite element

method for parabolic stochastic partial differential equations. Research Report

No. 2011-30, ETH Zürich, 2011.

[7] J. Bertoin. Lévy processes. Cambridge University Press, 1998.

[8] R.M. Blumenthal and R.K. Getoor. Sample functions of stochastic processes

with stationary independent increments. J. Math. Mech., 10:493–516, 1961.

[9] S. Burgos and M.B. Giles. Computing Greeks using multilevel path simula-

tion. In L. Plaskota and H. Wozniakowski, editors, Monte Carlo and Quasi-

Monte Carlo Methods 2010, volume 23 of Springer Proceedings in Mathematics

& Statistics, pages 281–296. Springer Berlin Heidelberg, 2012.

103

Bibliography

[10] R. Cont and P. Tankov. Financial modelling with jump processes. Financ.

Math. Ser. Chapman & Hall/CRC, London, 2004.

[11] J. Creutzig, S. Dereich, Th. Müller-Gronbach, and K. Ritter. Infinite-

dimensional quadrature and approximation of distributions. Found. Comput.

Math., 9:391–429, 2009.

[12] S. Dereich. Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaus-

sian correction. Ann. Appl. Probab., 21(1):283–311, 2011.

[13] S. Dereich and F. Heidenreich. A multilevel Monte Carlo algorithm for Lévy-

driven stochastic differential equations. Stochastic Process. Appl., 121(7):1565–

1587, 2011.

[14] M. Fischer and G. Nappo. On the moments of the modulus of continuity of Itô

processes. Stoch. Anal. Appl., 28:103–122, 2010.

[15] N. Fournier. Simulation and approximation of Lévy-driven stochastic differen-

tial equations. ESAIM Probab. Stat., 15:233–248, 2011.

[16] M.B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607–617,

2008.

[17] M.B. Giles and B.J. Waterhouse. Multilevel quasi-Monte Carlo path simula-

tion. In H. Albrecher, W.J. Runggaldier, and W. Schachermayer, editors, Ad-

vanced Financial Modelling, Radon Ser. Comput. Appl. Math., pages 165–181.

de Gruyter, 2009.

[18] S. Heinrich. Monte Carlo complexity of global solution of integral equations.

J. Complexity, 14:151–175, 1998.

[19] S. Heinrich. Multilevel Monte Carlo methods. In P. Yalamov S. Argenov,

J. Wasniewski, editor, Large Scale Scientific Computing, pages 58–67. Lecture

Notes in Comput. Sci. 2179, Springer, Berlin, 2001.

[20] F.J. Hickernell, Th. Müller-Gronbach, B. Niu, and K. Ritter. Multi-level Monte

Carlo algorithms for infinite-dimensional integration on R
N. J. Complexity,

26(3):229–254, 2010.

104

Bibliography

[21] D.J. Higham, X. Mao, M. Roj, Q. Song, and G. Yin. Mean exit times and the

multi-level Monte Carlo method. Technical Report 5, Department of Mathe-

matics and Statistics, University of Strathclyde, 2011.

[22] F. Hubalek and C. Sgarra. On the explicit evaluation of the geometric Asian

options in stochastic volatility models with jumps. J. Comput. Appl. Math.,

235(11):3355–3365, 2011.

[23] J. Jacod, Th. G. Kurtz, S. Méléard, and Ph. Protter. The approximate Euler

method for Lévy driven stochastic differential equations. Ann. Inst. Henri

Poincaré Probab. Stat., 41(3):523–558, 2005.

[24] J. Jacod and P. Protter. Probability Essentials. Springer, Berlin, second edition,

2003.

[25] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus, volume

113 of Grad. Texts in Math. Springer, Berlin, second edition, 1991.

[26] A. Kebaier. Statistical Romberg extrapolation: A new variance reduction

method and applications to option pricing. Ann. Appl. Probab., 15(4):2681–

2705, 2005.

[27] A. Kohatsu-Higa and P. Protter. The Euler scheme for SDE’s driven by semi-

martingales. In H. Kunita and H. Kuo, editors, Stochastic analysis on infinite

dimensional spaces, volume 310 of Pitman Research Notes in Mathematics Se-

ries, pages 141–151. Longman Scientific & Technical, Harlow, 1994.

[28] S.G. Kou. A jump-diffusion model for option pricing. Manage. Sci., 48(8):1086–

1101, 2002.

[29] Andreas E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes

with Applications. Universitext. Springer, Berlin, 2006.

[30] C.B. Madan and E. Senata. The Variance Gamma (v.g.) model for share market

returns. J. Bus., 63(4):511–524, 1990.

[31] H. Marxen. The Multilevel Monte Carlo method used on a Lévy driven SDE.

Monte Carlo Methods Appl., 16(2):167–190, 2010.

105

Bibliography

[32] R.C. Merton. Option pricing when underlying stock returns are discontinuous.

J. Financ. Econ., 3:125–144, 1976.

[33] Th. Müller-Gronbach, E. Novak, and K. Ritter. Monte Carlo-Algorithmen.

Springer, Berlin, 2012.

[34] Th. Müller-Gronbach and K. Ritter. Variable subspace sampling and multi-

level algorithms. In P. L’ Ecuyer and A.B. Owen, editors, Monte Carlo and

Quasi-Monte Carlo Methods 2008, pages 131–156. Springer Berlin Heidelberg,

2009.

[35] E. Nicolato and E. Venardos. Option pricing in stochastic volatility models of

the Ornstein-Uhlenbeck type. Math. Finance, 13(4):445–466, 2003.

[36] Ph. Protter and D. Talay. The Euler scheme for Lévy driven stochastic differ-

ential equations. Ann. Probab., 25(1):393–423, 1997.

[37] Philip E. Protter. Stochastic Integration and Differential Equations, volume 21

of Applications of Mathematics (New York), Stochastic Modelling and Applied

Probability. Springer, Berlin, 2004.

[38] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, volume

293 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, third

edition, 1999.

[39] S. Rubenthaler. Numerical simulation of the solution of a stochastic differential

equation driven by a Lévy process. Stochastic Process. Appl., 103(2):311–349,

2003.

[40] G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian random processes:

Stochastic models with infinite variance. Chapman & Hall/CRC, New York,

1994.

[41] Ken-iti Sato. Lévy processes and infinitely divisible distributions, volume 68 of

Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 1999.

[42] W. Schoutens. Lévy Processes in Finance: Pricing Financial Derivatives. John

Wiley & Sons, Ltd., 2003.

106

Bibliography

[43] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes

solving stochastic differential equations. Stoch. Anal. Appl., 8(4):483–509, 1990.

[44] H. Tanaka and A. Kohatsu-Higa. An operator approach for Markov chain weak

approximations with an application to infinite activity Lévy driven SDEs. Ann.

Appl. Probab., 19(3):1026–1062, 2009.

[45] P. Tankov. High order weak approximation schemes for Lévy-driven SDEs. In

L. Plaskota and H. Wozniakowski, editors,Monte Carlo and Quasi-Monte Carlo

Methods 2010, volume 23 of Springer Proceedings in Mathematics & Statistics,

pages 667–683. Springer Berlin Heidelberg, 2012.

[46] P. Tankov and A. Kohatsu-Higa. Jump-adapted discretization schemes for

Lévy-driven SDEs. Stochastic Process. Appl., 120:2258–2285, 2010.

[47] D. Werner. Funktionalanalysis. Springer, Berlin, 6th edition, 2007.

[48] Y. Xia and M.B. Giles. Multilevel path simulation for Jump-diffusion SDEs. In

L. Plaskota and H. Wozniakowski, editors,Monte Carlo and Quasi-Monte Carlo

Methods 2010, volume 23 of Springer Proceedings in Mathematics & Statistics,

pages 695–708. Springer Berlin Heidelberg, 2012.

107

Scientific career

June 2001 Abitur at the Max-Planck-Gymnasium Rüssels-
heim

October 2002 Beginning to study Mathematics at the TU Darm-
stadt

August 2004 Vordiplom in Mathematics at the TU Darmstadt

March 2008 Diploma in Mathematics at the TU Darmstadt.
Diploma Thesis: ”The Coding Complexity of Lévy
Processes”

April 2008 - April 2010 Scientific assistant at the TU Darmstadt in the
Stochastic research group, partially supported by
the DFG within the priority program SPP 1324

May 2010 - September 2012 Scientific assistant at the TU Kaiserslautern in the
research group Computational Stochastics, par-
tially supported by the DFG within the priority
program SPP 1324

109

Wissenschaftlicher Werdegang

Juni 2001 Abitur am Max-Planck-Gymnasium Rüsselsheim

Oktober 2002 Beginn des Studiums der Mathematik mit Neben-
fach Informatik an der Technischen Universität
Darmstadt

August 2004 Vordiplom in Mathematik an der TU Darmstadt

März 2008 Diplom in Mathematik an der TU Darmstadt.
Diplomarbeit: ”Die Kodierungskomplexität von
Lévyprozessen”

April 2008 - April 2010 Wissenschaftlicher Mitarbeiter an der TU Darm-
stadt in der AG Stochastik, unterstützt durch die
DFG im Schwerpunktprogramm SPP 1324

Mai 2010 - September 2012 Wissenschaftlicher Mitarbeiter an der TU Kai-
serslautern in der AG Computational Stochastics,
unterstützt durch die DFG im Schwerpunktpro-
gramm SPP 1324

111

