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Preface

The idea of a vector bundle is one of the key notions of contemporary mathematics.
It appears in algebraic geometry, algebraic topology, differential geometry, in the
theory of partial differential equations.

The theory of vector bundles and the mathematical formalism developed over
the years for the study of vector-bundle related concepts leads to the clarification
or solution of many mathematical problems. The language of vector bundles is
extremely fruitful. The notion of a vector bundle is very natural in physics. For
example it appears in field theory: various field theories are described in terms of
connections on principal vector bundles. Transformation groups of vector bundles
arise in many physical problems, in asymptotic methods of partial differential equa-
tions with small parameter, in elliptic operator theory, in mathematical methods of
classical mechanics and in mathematical methods in economics.

Some of vector-bundle related concepts are generalizations of well-known classical
notions. For instance the notion of a section of a vector bundle over a space X is a
generalization of vector valued functions on X.

One of the important problems is the problem of classification of bundles. The
problem of classification is of great importance for mathematics and for applications.

The problem of classification of vector bundles over an elliptic curve has been
started and completely solved by Atiyah in [At]. Atiyah showed that for a fixed
indecomposable vector bundle F of rank r and degree d every other indecomposable
vector bundle of the same rank and degree is of the form E® L, where L € Pic’(X).

The aim of this paper is to interpret some results obtained by Atiyah in [At] in the
language of factors of automorphy. Namely, this papers aims to prove Proposition 1
in [Pol], which states that all vector bundles on an elliptic curve over C are obtained
as push forwards of vector bundles of certain type with respect to finite coverings.

Every algebraic subvariety of an algebraic variety over C defines an associated
analytic subvariety. In the case of a projective algebraic variety the converse is
also true. It is known that the classification of holomorphic vector bundles on
a projective variety over C is equivalent to the classification of algebraic vector
bundles.! Therefore, we can use the results obtained by Atiyah(in the algebraic
situation) in the analytic case. So we do not make any difference between algebraic
and analytic cases. The considerations in this paper are mainly analytic.

The paper is organized as follows. In order to give the necessary background we
present in Section 1l some necessary statements about vector bundles and complex

! For more detailed information see [Serre] and [Gr].
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tori. In Section 2/ the results of Atiyah are considered. The proofs of main theorems
are also presented.

Section 3 is devoted to the classification of vector bundles on a complex torus
in terms of factors of automorphy. We develop the language of factors of automor-
phy, prove the statement of Polishchuk and Zaslow in [Pol] mentioned above, and
give a description of vector bundles of fixed rank and degree in terms of factors of
automorphy:

An r-dimensional factor of automorphy on a complex manifold Y is a holomor-
phic function f: I'x Y — GL,.(C) satistying f(Au,y) = f(\, py) f(p,y). Here T is a
group acting on Y. We introduce an equivalence relation on the set of r-dimensional
factors of automorphy on Y. We consider coverings Y — X. For a normal cover-
ing p:Y — X and for I' equal to the group of deck transformations Deck(Y/X)
there is a one-to-one correspondence between equivalence classes of r-dimensional
factors of automorphy on Y and isomorphism classes of vector bundles on X with
trivial pull back with respect to p. If all vector bundles on Y are trivial, which
is for example the case for non-compact Riemann surfaces, we obtain a one-to-one
correspondence between isomorphism classes of vector bundles of rank r on X and
equivalence classes of r-dimensional factors of automorphy on Y. This gives a de-
scription of vector bundles on X in terms of factors of automorphy. The main result
is stated in Theorem 13.37, where we give a classification of vector bundles of fixed
rank and degree in terms of factors of automorphy on C* (C). It gives also a normal
form for factors of automorphy.



I thank my adviser Prof. Dr. Gilinther Trautmann, who provided the theme of this
Diploma Thesis, for his support and attention.
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1 Basic notions and facts

1.1 Complex manifolds and sheaves

We assume the notions of sheaf and complex manifold to be known. Cohomology
theory of sheaves is assumed to be known also. Here we only recall two important
results.

Definition 1.1. A sheaf F of Ox-modules on a ringed space X is called locally free

of rank n if it is locally isomorphic to the sheaf O% := @@ Oy, i. e., if there exists
1

an open covering {U, };ez of X such that F|y, ~ O%|y,.

Theorem 1.1. Let f: (X,0x) — (Y, Oy) be a morphism of ringed spaces. Let F
be an Ox-module and let £ be a locally free sheaf of Oy -modules. Then there exists
a natural isomorphism (projection formula):

[o(F ®ox [7E) = fuF ®o, E.
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Theorem 1.2 (Serre’s duality). Let X be an n-dimensional complex manifold. Let
F be a locally free sheaf on X. Let Kx be a canonical sheaf on X. Then there are
canonical isomorphisms

H(X,F) ~ H" (X, Kx @ F*)".

In particular it follows that H'(X,F) and H" (X, Kx ® F*) have the same dimen-
si0m.

1.2 Vector bundles
All the spaces here are complex manifolds.

Definition 1.2. A holomorphic map p : E — X of complex manifolds is called a
complex vector bundle of rank n if it satisfies the following conditions.

1) For any point * € X the preimage E, := p~!'(z) has a structure of n-
dimensional C-vector space.

2) pislocally trivial, i. e., for any point € X there exist an open neighbourhood
U containing x and a biholomorphic map ¢y : p~(U) — U x C" such that the
diagram

UxCr

\/

commutes. Moreover, oyl @ £, — {y} x C™ is an isomorphism of vector spaces
for any point y € U.

Notation. Following Atiyah’s paper [At] we denote by E(r,d) = Ex(r,d) the set of
isomorphism classes of indecomposable vector bundles over X of rank r and degree
d.

Definition 1.3. Let U be an open set in X. A holomorphic map s : U — E is called
a holomorphic section of E over U if ps = idy. The set of all holomorphic sections
of E over U is denoted by I'(U, E). Sections over X are called global sections of F.
The set of global holomorphic sections of E is also denoted by I'(E).

Definition 1.4. Let p: F — X and p' : ' — X be two complex vector bundles on
X. A holomorphic map f : E — E’is called a morphism of vector bundles if the
diagram
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commutes and for each point x € X the map f|g, : £, — E. is a homomorphism
of vector spaces.

Consider a vector E bundle of rank n. Let {U;} be an open covering such that
E is trivial over each U;. This means that there exist biholomorphic maps

w:p 1 (U;) = U x C"
For each pair (7, j) consider the map
goigoj_l UNU; xC"—=U;NU; xC",  (x,v) = (x,g;(x)v).

We get a family of holomorphic maps g¢;; : U; N U; — GL,,(C) satisfying the cocycle
conditions:

i) gii(x) =iden, x € Us;

Vice versa, any cocycle defines a vector bundle. Suppose we have a cocycle {g;;}.
Define £ = | |(U; x C")/~., where (z,v) ~ (z,g;;(v)). Since the cocycle conditions
guarantee that F is a Hausdorff space, one concludes that E is a complex manifold.
It is easy to see that E is trivial over U;. Therefore, E is a complex vector bundle.

Theorem 1.3. Let E and E' be vector bundles over X . Let {U;} be an open covering
such that E and E' are trivial over U; for each i. Then there is a one-to-one

correspondence between morphisms f : E — E’ and sets of holomorphic functions
{fi : Uy = Mat,,,.(C)} satisfying

9iifilvin; = figij, (1)
where gi; and g;; are cocycles defining E and E' respectively.

Proof. Let f : E — E’ be a map of vector bundles over X. Let {U;} be an open
covering such that F and E’ are trivial over U; for each i. Then for each i there is
a map

U xC = U xC", (z,v) (z, fi(z)v).

It is easy to see that holomorphic maps f; : U; — Mat,«,.(C) satisfy (1)).

Vice versa, suppose a set of holomorphic functions {f; : U; — Mat.,.(C)}
satisfies (1)). Then these functions define a map between the vector bundles defined
by gi; and g;; respectively. O

Remark. Note that a set of functions { f;} defines an isomorphism of vector bundles
if and only if f;(x) are invertible matrices for all ¢ and =.

Thus we obtain the following:
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Theorem 1.4. Two n-dimensional cocycles {gi;} and {g;;} corresponding to the
open covering {U,;}ier of X define isomorphic vector bundles if and only if there
exist holomorphic functions f; : Uy — GL,(C) such that for each pair (i,j) € T x T

9i5(x) fi(x) = fi(x)gz/‘j<x)7 r e U;NUj. (2)

Proof. 1f {gi;} and {g;;} define isomorphic vector bundles, then by previous theorem
and remark there exist holomorphic functions f; : U; — GL, (C) satisfying (2).
Vice versa, let two cocycles {g;;} and {g;;} corresponding to an open covering
{U;} satisfy (2). Then the functions f; define an isomorphism between vector bundles
defined by {gi;} and {g;;} respectively.
[

Corollary 1.5. A cocycle {gi; : U; N U; — GL,(C)} defines a trivial vector bundle
if and only if there exist holomorphic functions f; : Uy — GL,(C) such that for each
pair (i,j) € T x T

gl](.%) = fi(l')fj(,f)_l, x € Uz N Uj.

Theorem 1.6. Let E be a vector bundle of rank n over X, let {U;} be an open
covering of X such that E is trivial over U;, and let g;; be a cocycle defining E.
Then any global holomorphic section s of E defines a set of holomorphic functions
s; : Up = C™ that satisfy

si(x) = gii(x)sj(x), zeUNU;. (3)
Vice versa, any such a set of functions defines a global holomorphic section of E.

Proof. Let s : X — E be a holomorphic section of E. Let ¢; : E|y, = U; x C" be a
trivialization corresponding to the cocycle g;;. Then ¢;s(z) = (z, s;(x)), where s; is
a holomorphic function. Consider € U; N U;. Then one obtains

o; (,85(2)) = @) tpis(x) = @ tpys(x) = o)t (x, 55(x)).

Applying ¢;, we obtain (z,s;(x)) = @ip; (2, 5;(x)) = (2, g;(x)s;(x)) or in other
words s;(x) = g;j(x)s;(x).

Vice versa, let s; : U; — C" be holomorphic functions satisfying (3). We define
s: X — E by s(z) := ¢; (z,s(r)) for x € U;. From (,s;(z)) = (v, gi;(z)s;(x))
applying ¢; ' we obtain ¢; ' (z, s;(x)) = ¢, ' (2, s;(x)), which means that s is well-
defined. It is clear that s is a holomorphic global section of E. m

Theorem 1.7. There is a one-to-one correspondence between isomorphism classes
of vector bundles of rank n and isomorphism classes of locally free sheaves of rank
n.
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Proof. Consider a vector bundle p : E — X of rank n. For any open set U C X
define £(U) to be a set of holomorphic sections of F over U. & is clearly a sheaf of
Ox-modules.

By the definition of a vector bundle, there exists an open covering {U;};er of
X such that E is trivial over U; for each i € Z. Therefore, I'(U;, E) ~ O%|y, for
each ¢ € Z. This proves that £ is a locally free sheaf of rank n. It is clear that two
isomorphic vector bundles have isomorphic sheaves of holomorphic sections.

Vice versa, let £ be a locally free sheaf of rank n. This means that there exist
an open covering {U; };e7 of X and isomorphisms of sheaves

Pi 5|Uz — OSL('Uq
For each pair 7, 7 we define
gij(z) = (gpigpj_l)(x) C" — C™.
Clearly g;; : U; N U; — GL,(C) defines a cocycle, i. e., g;i(x) = iden for z € Uj,

9595k (x) = gix(x) for x € U;NU; NUj,. This defines a complex vector bundle of rank
n.

If ) : Ely, = O%|u, is another trivialization of &, then there exist invertible
n X n matrices of holomorphic functions f;(x) such that ¢, = fip;. Therefore, the
cocycle corresponding to ¢} is

—1 1 _
9i(@) = (g1 (@) = (fupsp [ ) (@) = (figisf;)().

The last means that the cocycles g;; and g;; define the same up to isomorphism
vector bundle. We obtained a well-defined map from the set of isomorphism classes
of locally free sheaves of rank n to the set of isomorphism classes of vector bundles
of rank n.

It is easy to see that the described correspondences between isomorphism classes

of vector bundles and isomorphism classes of locally free sheaves are inverse to each
other. O]

Notation. Usually we denote by £ the sheaf corresponding to a vector bundle F.

Let V and W be finite dimensional vector spaces. Let n = dimW and m =
dim V. Then the set Hom(V,W) = Homg¢(V,W) has a structure of a complex
manifold since it can be identified with the set of all n x m matrices.

By Vect we denote the category of finite dimensional vector spaces. The category
of vector bundles of finite rank over X is denoted by Vectby.

Definition 1.5. Let F : Vect” — Vect be a functor. F is called a holomorphic
functor if the map

Hom(Vy, W;) x -+ x Hom(Vy, W;) — Hom(F(Vy, ..., V), F(Wy,...,W,))
is a holomorphic map for any V;, W; € Ob Vect.
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Note that there is an obvious embedding of categories
Vect — Vectby, Vi (X xV 5 X).

Theorem 1.8. Let F : Vect” — Vect be a holomorphic functor. Then the functor
F can be canonically extended to the category Vectbx. In other words there exists
a functor Fx : Vectby — Vectbx such that the restriction of Fx to Vect coincides
with F and Fx(Ev, ..., Ey)e = F(Fig, ..., Ene). By abuse of notation Fx is also
denoted by F.

Proof. We give the construction of Fx. Let p, : E, — X, a = 1,n be vector bundles
with rank £, = r,. One can choose an open covering {U;} of X such that each E, is
trivial over U; for all i. Let {gf; : U;NU; — GL,,(C)} be a set of transition functions
defining E,. Suppose that the functor F is covariant in the first p variables and
contravariant in the last n — p variables. One defines

1 n
9ij (@) = F (g5, g5 g5 gl ().

Clearly, for any vector spaces Vi, ..., V, the dimension of F(V;,...,V,,) is a func-
tion only of dimensions of V;,...,V,. Since gf;(a:) are isomorphisms, one concludes
that g;;(z) is also an isomorphism. Combining these two observations and using
that F is a holomorphic functor, one obtains that all the g;; are holomorphic maps
gij - UiNU; = GL,(C) for some r. Moreover, g;; is also a cocycle since

1 n 1 n
gz](l')gjkCU) :F(gllja s 7.gfjagjp+ Yo 79]1)(:U>F<gjlk> te 79301;;79%;_ 3 7gk:j)<x> =
1 n n
F(giljgjl'kv e »9Z9§k> gﬁjlgfj yee agkjgji)(m) =

Then Fx(E, ..., E,) is the vector bundle defined by g;;.
Let f = {f? : Ui — Mat,, »,.,(C)}2_, be a morphism in Vectb%. Then one
defines

Fx(f) ={F(fL ..., ") : Uy = Hom(F(C™,...,C™), F(C™,...,C™))}.

It remains to show that this definition of Fx is independent of the choice of covering
{U;} and that Fx is a functor. O

Definition 1.6. Let f : X — Y be a morphism of complex manifolds. Let p: E —
Y be a vector bundle over Y. Then

['E=Xxy E={(z,e) € X x E| f(z) = ple)}
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is a vector bundle over X. Moreover: if {U;} is an open covering of Y such that £
is trivial over Us, then f*E is trivial over f~H(U;). If g} : U; NU; — GL,(C) is a
cocycle defining F, then

gX THU) N HU;) = GLAC), g (x) = g) f(2)
is a cocycle defining f*FE.

Theorem 1.9. Let £ be a locally free sheaf on Y, let f: X — Y be a morphism of
complex manifolds. Then f*E is a locally free sheaf.

Proof. Let U be an open set in Y such that E|y ~ Oy |y. Let ¢ : £y — O} be
an isomorphism. Then f*¢ : f*E[;1y — f*OF|p-1(vy is also an isomorphism of
sheaves. But f*Oy is isomorphic to O% via

frOy = f1O) @10, Ox = O%, s®@h h-(sof).
Therefore, we obtain an isomorphism
O fYE ) = Oxlprwy, o®@h=h-(p(o)of).
O

Remark. Note that if £ is the sheaf corresponding to a vector bundle F, then f*E
is exactly the vector bundle corresponding to f*&.

Proof. We prove that the morphism of sheaves
n:ff&—=G, oc®h—h-(cof)

is an isomorphism.
Let U be an open set such that there is an isomorphism ¢ : €|y >~ O} |y. Then
there is an isomorphism

q):f*5|f—1(U)—>O§(|f—1(U)a og®@h— h-(p(c)of).
On the level of vector bundles the map corresponding to ¢ is
p:E—=UxC", e, (y,0y)ey),

where e, € E,.
Let G be the sheaf of sections of the vector bundle f*E. Then there is an
isomorphism of sheaves

U Gliw) = Oxlvy, (2= 5(2)) = (2= o(f(7))s(z)),
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where we identify sections of f*E over f~1(U) with maps s : f~}(U) — E such that
s(x) € Ef(z). The inverse U~ is

U Oy = Gliwy, 9= (20 o7 (f(2))(9(@) )

The composition U'® : f*E| -1y = Glp-11y is

o®h h(p(o)o f) = (2= o7 (f(2)( h@)e(o)(f(2)) ) = h(z)o(f(2)) ),

therefore, W~'®(c @ h) = h - (0 o f) = n(c @ h). We conclude that 7 is locally an
isomorphism. Therefore, the morphism

n:f*&—=G, o®h—h-(ocof).
is an isomorphism of sheaves. O

Remark. Note that for a locally free sheaf £ on Y and for a morphism f: Y — X
the push forward f.£ is not a locally free sheaf in general. This is true only by some
additional assumptions on f.

In particular the following theorem holds true.

Theorem 1.10. Let Y — X be a finite covering, i. e., a morphism of complex
manifolds such that for any point x € X there exists an open neigbourhoud U of x

with the property that f~(U) = || Vi and fly, : V; = U is a biholomorphism for all
i=1

V;. Let £ be a locally free sheaf of rank r on'Y. Then f.E is a locally free sheaf of

rank rn on X.

Proof. Consider an open set U C X such that f~1(U) = | | Vi, f restricted to each
i=1

V; is a biholomorphism, and &|y; is isomorphic to O |y, for each Vi.
Since V; is biholomorphic to U, we get an isomorphism of sheaves

fmi : OX|U — Oy

vio s (sf)lvi
Therefore,

FEU) =E(f71U) =& Vi) = ®E(V;) ~ @05 |y, ~ ©0% |y ~ OF.

Definition 1.7. A sequence of morphisms of vector bundles over a space X

0=-ELESE S0
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is an exact sequence of vector bundles if
0> E 5B 5E -0

is an exact sequence of vector spaces for all x € X. E’ is called a sub-bundle of F,
and E” is called a factor bundle of FE.
We say also that an exact sequence

0—>F —-FE—=FE =0

is an extension of E” by E’. In this case F is also called an extension of E” by FE'.

Remark. Note that 0 - E' — E — E” — 0 is an exact sequence of vector
bundles if and only if 0 = & — & — &£” — 0 is an exact sequence of locally free
sheaves, where &', £, £” denote the sheaves of holomorphic sections of E’, E, and
E" respectively.

Let 0 — & % & be an injective morphism of locally free sheaves. Let E’ and
E be the corresponding to £ and £ vector bundles. Then f induces an injective
morphism of vector bundles 0 — E' — FE (or equivalently E’ is a subbundle of FE)
if and only if the cokernel of f is also a locally free sheaf. In other words if there
exists an exact sequence

O—>5’i>£—>5”—>0,
where £” is a locally free sheaf.
Equivalently, 0 — &’ 1y € defines a subbundle E in E if and only if the corre-
sponding morphism of dual sheaves £* IS eris surjective.

Definition 1.8. Two extensions £ and Fy of E” by E’ are called equivalent if there
is an isomorphism of exact sequences

O E/ El E/l O
0 £ Ey B 0.

If the exact sequence
0—>FE —-FE—E"—>0

splits we say that the extension is trivial. Clearly trivial extensions are exactly the
extensions equivalent to a direct sum

0—>F —-F&FE"— E"—0.

The following theorem gives a parametrization of the equivalence classes of ex-
tensions of E” by E'.
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Theorem 1.11. The equivalence classes of extensions of E” by E' are in a one-
to-one correspondence with the elements of HY(X, Hom(E",E")), where £, £ are
the sheaves corresponding to the vector bundles E' and E" respectively. The trivial
extension corresponds to the zero element.?

Definition 1.9. A vector bundle of rank 1 is called a line bundle.

Remark. The set Pic(X) of isomorphism classes of line bundles over a complex
manifold X is a group with respect to the operation of tensoring. The trivial line
bundle is the neutral element. For any line bundle L its dual L* is the inverse, i. e.,
L®L*~1. We write L™ := L*.

Note also that for an open covering {U;}, the set Z'({U;}, O%) of l-cocycles
gi; corresponding to this covering is an abelian group. The map mapping a cocy-
cle g;; to the vector bundle defined by g;; is therefore a homomorphism of groups.
By Corollary [1.5 the kernel of this homomorphism is the set B'({U;}, O%) of co-
cycles of the type f;/f;, where f;, f; € O%. Therefore, Pic(X) is isomorphic to
ZY{U;}, 0%)/BY({U;}, O%). But the last is by definition H'(X,0%). We obtain
the following:

Theorem 1.12. There is an isomorphism

H'(X,0%) ~Pic(X), [gij] = vector bundle defined by g;;.

1.3 Vector bundles over Riemann surfaces

The following result will be important in the sequel.

Theorem 1.13. Any holomorphic vector bundle on a non-compact Riemann surface
is trivial.?

Definition 1.10. Let X be a Riemann surface. A divisor D on X is an element of
the free abelian group Div(X) generated by all the points of X. In other words, D
is a finite linear combination » a;x;, where a; € Z, x; € X.

Divisors can also be thought as functions with finite support from X to Z.

A divisor D = ) a;x; is called effective if a; > 0 for all .. We write D > 0 for D
effective.

Let f be a meromorphic function on X having finitely many poles and zeros
on X. We define div(f)(z) := ord,(f). This divisor is a divisor associated to the
meromorphic function f. Divisors of the type div(f) are called principal divisors.

Zsee [At2], Proposition 2.
3see [Forst], page 204, Satz 30.4
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Remark. Note that a holomorphic function always has finitely many poles and
zeros if X is a compact Riemann surface.

Theorem 1.14. Let M7 denote the multiplicative sheaf of meromorphic functions
on X, which are not identically zero. Let O% be the subsheaf of holomorphic func-
tions that are nowhere zero. Then Div(X) ~ I'(X, M%/O%), i. e., divisors are
global sections the sheaf M /O%.

Proof. Consider a global section of MY /O% given by an open covering {U;} and
meromorphic functions f; # 0 in U; with f;/f; € O%(U; NU;). Then for any point
x € U;NU; we have ord,(f;) = ord,(f;). We can define the divisor

D = Z ord, ( fi(z))x,

zeX

where for each x € X we choose i(x) such that & € Uy).

Vice versa, let D = > a;z; be a divisor on X. One can find an open covering
{U;} of X such that in each U; for every x; there exists a local defining function
gij € Ox(U;), 1. e., z; N U;j is the set of zeros of g;;. (Note that locally any point
has a defining function z — z, where z is a local coordinate at z.)

Define f; :=[]gi;. Since (f;/fi)|v,nv, € O%(U; NUk), the set of functions {f;}

defines a section of M% /O%.
Clearly the described correspondences are inverse to each other and define an
isomorphism of abelian groups Div(X) and T'(X, M%/O%) O

Definition 1.11. Let D be a divisor on X and let {f;} be functions defining the
corresponding to D section of M% /O%. Then f;’s are called local defining functions
of D.

Let D be a divisor on X with local defining functions {f;} over some open

covering {U;}. Then g;; = fi/f; € O%(U; NU;). Moreover g¢;;g;x = Jf:—”{—i = J]:—k = Gk,
i. e., gi; is a cocycle.

If {f!} are other defining functions of D, then clearly h; = f;/f! € O%(U;) and
Gij = Jf—; = ZJ—’; = Z—;ggj, which means that g;; and ggj define isomorphic line bundles.

The line bundle given by g;; is called the associated line bundle of D. Its iso-
morphism class is denoted by [D]. By the above this definition is well-defined. The
sheaf corresponding to [D] is denoted by Ox (D).

If D and D’ are two divisors given by local defining functions {f;} and {f/}

respectively, then clearly D + D’ is defined by f; f/.

On the other hand, [D] ® [D'] is defined by the cocycle g;;g;; = %;—{, which

implies that [D] @ [D’'] is defined by D + D'. Therefore, [D + D'| = [D] ® [D’] and
the map
[]:Div(X) — Pic(X)
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is a homomorphism of abelian groups.

Theorem 1.15. The line bundle associated to a divisor [D] is trivial if and only
if D is a principal divisor, 1. e., there exists a meromorphic function f on X such

that D = div(f).

Proof. If D = div(f), take as local defining functions for D for any covering {U;}
fi = flu,- Then f;/f; =1 and [D] is trivial.

Vice versa, if [D] is trivial and D is given by local defining functions {f;} for an
open covering {U;}, then there exist functions h; € O%(U;) such that g;; = fi/f; =
hi/h;. But this means f;/h; = f;/h;. Therefore, f(x) = fi(x)/hi(x) for x € U; is a
well-defined global meromorphic function on X with divisor D. Il

Remark. Let D be a divisor. One can show that Ox (D) is isomorphic to the sheaf
F(U) ={f|f is a meromorphic function on U with div(f) + D > 0}.

Definition 1.12. Let L be a line bundle given by a cocycle g;; over an open covering
{U;}. A meromorphic section of L over an open set U is a section of the sheaf
L ®o, M over U.

As in Theorem [1.6/ we obtain that global meromorphic sections of L are given by
meromorphic functions s; € Mx(U;) such that s;(x) = g;;(x)s;(x) for x € U; N U;.
This can be also taken as a definition of a holomorphic section of L.

Definition 1.13. Let L be a line bundle given by a cocycle g;; over {U;}. Let
s be a global meromorphic not identically zero (non-trivial) section of L given by
meromorphic functions s; € M x(U;). Then ;’—J vinu; = 9i5 € Ox(UiNUj). Therefore,
ord,(s;) = ord,(s;) for all z € U; N Uj, and the divisor

div(s)(z) := ord,(s;), =z €U;
is well-defined. It is called a divisor associated to the meromorphic section s = {s;}.

Theorem 1.16. For a divisor D there exists a non-trivial meromorphic section s
of [D] with div(s) = D.
For any non-trivial meromorphic section s of L, L ~ [div(s)].

Proof. Let D be a divisor given by local defining functions f; € M3 (U;). Then [D]

is defined by the cocycle g;; = % Since f; = g;;f;, we obtain that the functions f;
define a meromorphic section of [D].
Conversely, let L be a line bundle defined by a cocycle g;;. Let s = {s;} be

a global meromorphic section of L. Then j—;|UimUJ- = ¢;;, which means that div(s)

defines L, i. e., L ~ [div(s)]. O
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Corollary 1.17. Let L be a line bundle over X. Then L is of the form [D] for
some divisor D € Div(X) if and only if L has a non-trivial meromorphic section.

Theorem 1.18. Any vector bundle over a compact Riemann surface has a non-
trivial meromorphic section.*

From this theorem using Corollary 1.17 we obtain the following corollary.

Theorem 1.19. On a compact Riemann surface any line bundle is of the form [D]
for some divisor D € Div(X).

It is known that on a compact Riemann surface X any meromorphic function
has the same number of zeros and poles counted with multiplicity.” Therefore,
deg D = 0 for any principal divisor D on X. Since by Theorem [1.15 a line bundle
[D] is trivial if and only if D is a principal divisor, we conclude that [D] = [D’]
implies deg D = deg D’. Therefore, the following definition makes sense.

Definition 1.14. Let L be a line bundle on a compact Riemann surface. We define
the degree of L by deg L := deg D, where D is a divisor on X such that L = [D].

For a vector bundle F of rank » > 1 one defines the degree of F/ by deg I/ :=
deg(ATE).

Definition 1.15. Let X be a compact Riemann surface. Then H*(X, Ox) is finite
dimensional. The number g := dim H'(X, Ox) is called the genus of X.

Theorem 1.20 (Riemann-Roch). Let E be a vector bundle of rank r over a compact
Riemann surface X of genus g. Denote h'(X,€) := dim H'(X,E). Then

ROU(X,E) — WYX, E) =7(1 — g) +deg E,

where £ denotes the sheaf of holomorphic sections of E.

1.4 Some facts about tori

Definition 1.16. Consider two linear independent over R complex numbers w;
and wy. Consider the additive subgroup I' in C generated by w; and ws, i. e.,
I' = Zwy + Zws. Consider the quotient group C/I'" and the canonical projection
m:C — C/I'. We equip C/T" with the quotient topology, i. e., a set U C C/T" is
open if and only if its preimage 7—!(U) under 7 is an open set in C.

For each a € C consider the set V, = {a + aw; + fws| o, € R, 0 < o, < 1}.
V, is called the standard parallelogram constructed at point a. Clearly,

mly, Vo = (V) = U,

4see [Forst|, Corollar 29.17.
®see [Forst], Corollar 4.25.
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is a bijection. It is moreover a homeomorphism. Define the maps
0o = (m|y,)': U, = V, CC.

We claim that {¢, : U, — V,}eec is a complex atlas of C/I". Clearly, for each
a,b € C we have U, N U, # (). For the map

Gab = Py |onwarty) + 6(Ua NU) = 0o (Us N T,)

we have Tou(z) = moup, (z) = ¢, ' (z) = m(x). Therefore, ¢pu(z) = z + y(z),
where v(z) € I'. Since ¢gp is a continuous map, we conclude that (z) should be
constant on each connected component of U, N U,. This means that ¢, is a locally
constant map. Therefore, it is holomorphic. This proves that {¢, : Uy, = V,}aec is
a complex atlas. Thus C/T" is a Riemann surface (1-dimensional complex manifold).
Riemann surfaces C/I" are called complex tori.

Remark. Note that for any u € C* the lattices I' = Zw; + Zwsy and ul’ = Zuw, +
Zuws define isomorphic in complex sense tori. Therefore, after rescaling it is always
possible to choose wy = 1. Since Zws = Z(—w,), we can choose moreover Im wy > 0.

Remark. It is known that complex tori correspond to elliptic curves, i. e., to
non-singular projective curves of genus one.

Theorem 1.21 (Abel). Let X be a complex torus, let D = > a;x; be a divisor.
Then a meromorphic function f on X such that div(f) = D ewxists if and only if
deg D =0 and Y a;x; =0 as an element of X.

Theorem 1.22. Let L be a line bundle of degree d # 0 on a torus X. Then there
exists a unique point p € X such that L = [dp].

Proof. By Theorem [1.19 there exists a divisor D = Y a;x; such that L = [D]. Since
X is a divisible group, there exist a unique solution p of the equation

D:Zaixi:dp

in X. The divisor D" := D —dp has degree zero and > a;xz;—dp = 0 in X. Therefore,
by Abel’s theorem there exists a meromorphic function f with div(f) = D’. By
Theorem [1.15/ [D'] is a trivial bundle. Therefore, L = [D] = [D'+dp| = [D'|®[dp] =
[dp).

Suppose that there exists another point p’ such that L = [dp] = [dp']. Then
1 = [dp] ® [=dp'] = [dp — dp/]. By Theorem [1.15 there is a meromorphic function
h with div(h) = dp — dp’. By Abel’s theorem we conclude dp = dp’ in X, hence

p=yp. O
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Recall that for a complex manifold X we denote by Pic’(X) = £(1,0) the set of
isomorphism classes of line bundles over X of degree zero. This set is a subgroup in
the group Pic(X) of isomorphism classes of line bundles over X.

For any point 0 € X we can "put” the zero of X in o. Namely we define the
group operation by z 4+ y := x +y — 0. The neutral element is then o, the inverse of
x is —x. When we say that we fix a point o we usually consider X with this changed
group structure.

Theorem 1.23. For any fized point o € X we define a map from X to Pic’(X)
X — Pic’(X), x~ [z—o].

It is an isomorphism of groups (with respect to the group structure with o as the
neutral element).

Proof. Clearly this map is a homomorphism. Suppose now that [p — o] = 1. Then
by Abel’s theorem p = 0. This proves the injectivity.

Let L be a line bundle of degree zero. Then L & [o] is a line bundle of degree
1. By Theorem [1.22] there exists a unique point z € X such that L ® [o] = [z].
Therefore, L = [z — o]. This proves the surjectivity. O

This allows us to introduce a structure of a complex manifold on Pic’(X).

Since X is a divisible group it follows that Pic’(X) is also a divisible group. The
last means that for any L' € £(1,0) and for any n € N there exists an L € £(1,0)
such that L™ ~ L.

For z € X there is the map of translation by x:
t, : X=X, ymax+y.

Theorem 1.24. Let A € £(1,1). Then for any L' € E(1,0) there exists a unique
x € X such that L' ~t(A) @ A~

Proof. Any A € £(1,1) is of the form A ~ Ox(o) for a unique 0 € X. We know
that L' ~ Ox([y — o]) for a unique point y € X. Take z = 0o—y € X. Since t,y = o
we obtain t£(Ox(0)) ~ Ox(y). This implies

L'~ Ox([ly — o) ~ Ox(y) ® Ox(0)™" = t;(Ox(0)) ® A =~ 13 (A) @ A"
O

Theorem 1.25. Let A € E(1,1) and let L' € £(1,d). Then there exists a unique
L € &(1,0) such that L' ~ AY® L.

Proof. Define L = L' ® A~ L has degree zero. O
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2 Results of Atiyah

In this section we present results of Atiyah. Here X is an elliptic curve over an
algebraically closed field of characteristic zero. Recall that by E(r,d) = Ex(r,d) we
denote the set of isomorphism classes of indecomposable vector bundles over X of
rank r and degree d.

2.1 Necessary definitions and lemmas

Definition 2.1. Let E be a vector bundle on X. One says that E has sufficient
sections if the canonical homomorphism I'(E') — E, is an epimorphism for all z € X.

Consider an embedding X — P? of X in P?. Recall that the sheaf Op2(1) is
defined by the cocycle g;; = zj/z; corresponding to the open covering {Uy, Uy, Us}
of P?, where

U= {(20:21:2) Pz #0}, i=0,1,2.
Let H be a line bundle corresponding to H = Ox(1) := Op2(1)|x. For a vector
bundle E on X we denote E(n) = E® H", where H" := Q) H. Atiyah uses the
1

following:

Theorem A. For sufficiently large n(depending on E) the vector bundle E(n) has
sufficient sections.®

Moreover, if E has sufficient sections, then E/E" also has sufficient sections for
all subbundles £/ C E.

Definition 2.2. Let E be a vector bundle of rank r. Suppose there exists a series
of subbundles of E:

O=FkEKCE CEC...CE.=F,

where L; = E;/F;_ is a line bundle. Such a series is called a splitting of E. We
write £ = (Ll, Lg, ce Lr)

The results obtained by Atiyah in [At] are based on the existence of a splitting
for a vector bundle E over X.

Lemma 2.1. Let E be a vector bundle over X, then there exists a splitting of E.

bsee [Serre].
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Proof. By Theorem A E(n) has sufficient sections for sufficiently large n. If E(n) =
(Li,...,L,), then E = (Ly(—n),..., L.(—n)). Therefore, it is enough to construct
a splitting in case when E has sufficient sections.

Assume that F has sufficient sections. Consider a non-zero section ¢ € I'(E). It
defines the morphism of sheaves

p:0x =&, 1 ¢,
which induces the morphism of dual sheaves
" E = O, (s:&— Ox)— so.

The cokernel of ¢* is Oy(4), where Z(¢) denotes the set of zeros of ¢ counted with
multiplicities. We get an exact sequence

5 0% B Oy — 0.

The kernel of 7 (the ideal sheaf of Oy(4)) is isomorphic to Ox (— div ¢) ~ Ox (div ¢)*.
Therefore, the image of ¢* is Ox (div ¢)*. We get an exact sequence

£ — Ox(dive)* — 0,

which means that the sheaf Ox(div¢) defines a subbundle of E. We denote this
subbundle by [¢].

Since F has sufficient sections, one gets that £’ = E/[¢]| also has sufficient
sections. Proceeding by induction we obtain a series of subbundles

0=E,CE,C---CE,=E,
where L; = E;/FE;_; is a line bundle (L, = [¢]). O

We denote deg ¢ := deg[¢] = deg(div ). Clearly ¢(X) C [¢] and so ¢ can be
treated as a section of [¢].

For a fixed splitting 0 = Ey C £y C --- C E, = E of E there exists ¢ such
that [¢] C E; and [¢] ¢ E;—;. Therefore, we obtain a non-zero morphism [¢| —
L; = E;/FE;_; and thus by Riemann-Roch theorem deg[¢] < deg L;. We get that the
integers deg ¢ are bounded above by sup(deg ;).

Definition 2.3. If 0 # ¢ € I'(E) has the maximal degree we call ¢ a maximal
section and [¢] a maximal line bundle of E.

Definition 2.4. A splitting (Lq, Lo, ..., L,) is a maximal splitting if
(i) L; is a maximal line bundle of E,
(ii) (Lg, ..., L,) is a maximal splitting of E/L;.
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Lemma 2.2. If a vector bundle EE over X has sufficient sections, then there exists
a mazximal splitting of E.

Proof. The proof is the same as the proof of Lemma 2.1. One should only take
maximal sections on each step. Il

Lemma 2.3. Let E an indecomposable vector bundle over X, and let 0 — E; —
E — Ey — 0 be an exact sequence. Then I'Hom(E;, Ey) # 0.

Proof. By Theorem [1.11 the classes of extensions of Ey by FE; are in one-to-one
correspondence with elements of H'(X, Hom(&,, 1)) By Serre duality this is dual
to the vector space I' Hom(FE,, E; ® K), where K is the canonical line bundle on X.
But K =1, since X is an elliptic curve. As F is indecomposable, we conclude that
r HOIIl(E17 EQ) 7£ 0. O

Recall that there is a relation > on the set of vector bundles: E; > Es if there
exists a non-trivial morphism F, — F;. Note that for line bundles L; > L, by
Riemann-Roch theorem implies deg L.; > deg L.

Lemma 2.4. Let E be an indecomposable vector bundle on X with T'(E) # 0. Then
E has a mazimal splitting (L, ..., L,) with L; > L > 1.

Proof. Since I'(E) # 0, one concludes that E has a maximal line bundle L; > 1.
We proceed now inductively. Suppose there exists a sequence

0=E,CE C-CE,

where L; = E;/F;_; is a maximal line bundle of E/E;_; for j =1,...,4, and such
that all the L,’s satisfy the requirements of the lemma. Denote E} = E/E;, then by
Lemma 2.3 we get a non-zero element f € Hom(E;, E}). There exists an integer j,
1 < j < isuch that f(E;_;) = 0 and f(E;) # 0. We obtain a non-zero morphism
f: L; — E;. By inductive hypothesis there exists a non-zero section ¢; of L;. Thus
f®; is a non-zero section of E! and div f¢; > div ¢;, which implies [f¢] > L;.

If f¢ is a maximal section we take L;,, = [f¢]. If not let L;,; be a maximal
line bundle of E!. Then deg L;; > deg[f¢] and thus deg([f#]* ® Ljy;) > 0. Since
X is an elliptic curve, by Riemann-Roch theorem we get dim I'([f¢]* ® L;1) > 0.
This implies L;y; > [f¢]. Using [f¢] > L; and inductive hypothesis, we obtain
Liy1 2 Lj > L. So we have a maximal line bundle L;;; in E]. Take E;;; C E such
that E;y1/F; = Liy1. This establishes the induction and proves the lemma. O

Lemma 2.5. Let E = (Ly,...,L,), then

dimT(E) < ) dimT(L;).
=1
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Proof. We have a series of subbundles 0 = Ey C Fy C F5 C ... C E, = FE such that
L; ~ E;/E;_1. We proceed by induction.
From the exact sequence

0—=Li = FEy— Ly —0
we obtain the exact sequence

Therefore, dimI'(Ey) < dim (L) 4+ dim I'(Ls).

j
Suppose now that we proved that dimI'(E;) < Z dimI'(L;). From the exact
sequence =
0—>Ej—>Ej+1—>Lj+1—>0

as above we obtain the exact sequence
0= I'(E;) = I(Ej1) = T'(Ljn)
and dimI'(Ej41) < dimI'(£;) + dimI'(L,44). Using inductive hypothesis one gets
j+1

dimT(E; ) < dimT(E;) + dim (L 1) Zdlmr

which proves the statement of the lemma. Il

Lemma 2.6. Let £ € £(r,d), 0 < d <r, and let s =dimI'(E) > 0. Then E has a
trivial subbundle I.

Proof. By Lemma 2.4 F has a maximal splitting (Ly, ..., L,) with L; > L, > 1. If
deg L1 > 0, then

d=degF = ZdegL rdeg Ly >,
which is a contradiction. So deg L; = 0, and since L; > 1, we get L; = 1. Since
L, is a maximal line bundle we obtain deg¢ = 0 for all ¢ € I'(E). But div(¢) > 0

for all x € X. Therefore, divg = 0 for all ¢ € I'(E). Hence I'(E) — E, is a
monomorphism for all z and T'(F) generates a trivial subbundle I, of E. O

Lemma 2.7. Let E € E(r,r). Then E has a splitting (L, L, ..., L) where deg L = 1.
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Proof. By Riemann-Roch theorem
s =dim[(E) = dim H'(X,&) + deg E = dim H (X, &) +r > 7.

By Lemma 2.4 there exists a maximal splitting £ = (L1, ..., L,) with L; > L; > 1.
If deg L; = 0 as in Lemma 2.6 we obtain that E has a trivial subbundle /. Since
s > r, this implies E = I, a contradiction, since F is indecomposable. So deg L1 >
1. But from

r=degE = ZdegLi >rdegly >,
1

one gets deg L; = deg Ly = 1 for all 7. From L; > Ly we get L; = L;. This proves
the statement of the lemma. O

The following two key lemmas are used in the sequel to establish a one-to-one
correspondence between E(r,d) and E(r — d, d).

Lemma 2.8. Let E € E(r,d), d > 0. Then

d f d
(i) s =dimT'(F) = Zf >0
0orl fd=0;
(i1) if d < r, E contains a trivial sub-bundle Iy and E' = E/I is indecomposable;

moreover dimT'(E') = s.

Lemma 2.9. Let E' € £(r',d), d > 0, and if d = 0 we suppose I'(E’) # 0. Then

there exists a vector bundle E € E(r,d), unique up to isomorphism, given by an

d ifd>0

extension 0 — Iy, - E — E' — 0, where r = 1"+ s and s = ) Zj:d 0
if d=0.

2.2 Main results

Theorem 2.10. (i) There exists a vector bundle F,. € E(r,0), unique up to isomor-
phism, with T'(F,) # 0. There ezists an exact sequence

0—=1—F.— F._1—0,

which uniquely determines F.
(ii) Let E € £(r,0), then there exists a unique up to isomorphism line bundle L such
that E ~ L ® F,.. Moreover det E ~ L".

Proof. (i) Denote by &(r,0) the set of isomorphism classes of vector bundles £ €
E(r,0) with I'(E) # 0. We proceed by induction on r. For r = 1 the set £(r,0)
contains only the trivial bundle, because every non-trivial section has no zeros.
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Suppose we proved the statement for all ' < r. By Lemma 2.9 there is a unique
up to isomorphism vector bundle F, given by the extension

0—=1—=F.— F._1—0.

Therefore, the set E(r,0) is not empty. It remains to prove that there is no other
bundle in £(r,0). But by Lemma 2.8 for any £ € &(r,0) there exists an exact
sequence

0—-1—FE—E —0,

where E' € E(r — 1,0). By inductive hypothesis one obtains E ~ F,_; and thus by
Lemma 2.9 F ~ F,.
(ii) Let £ € £(r,0). Then E® A € E(r,r). By Lemma 2.7

E@A:(Ll,...,Ll)
for some line bundle L, € £(1,1). Therefore,
E®ARL =(1,...,1),

and hence F ® A ® L} has sections. We obtain E ® A® L; € £(r,0) and by (i)
E® AR L} ~ F,. Therefore, E ~ F, ® Li ® A* = F, ® L, where L = L; ® A*. Since
F, is an extension of F,._; by the trivial line bundle, one gets det F}. ~ det F,._; and
by induction det F, ~ 1. We obtain

det E =det(F, ® L) = det(F,) ® L" ~ L".

Suppose E ~ F, ® L ~ F, ® L'. We shall show L ~ L'. Since F, L ~ F, ® L'
is equivalent to F, ~ F, ® L' ® L* it is enough to prove that F, ® L ~ F, implies
L~1.

As F. = (1,...,1), one obtains F, ® L = (L,...,L). Clearly deg L = 0. If L is
not a trivial bundle, then I'(L) = 0. Using Lemma 2.5, one gets

dimI'(F,) = dimI'(F, ® L) < rdimI'(L) = 0.
This is a contradiction, since I'(F,.) # 0. Therefore, L is the trivial line bundle. [

Theorem 2.11. Let A be a line bundle of degree 1 on X. Then A determines a
bijective map a,.q : E(h,0) — E(r,d), where h = (r,d). Moreover, det a,.4(F) =~
det E @ A? and o, 4 is uniquely determined by the following properties:

(Z) Oro = L,

(i1) argir(E) ~ a,q(E) ® A,

(111) if 0 < d < r, there exists an exact sequence 0 — Iy — oy 4(E) = a,_qqa(E) — 0.
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Proof. Note, that A determines a bijection
E(r,d) = E(ryd+r), E—E®A

Therefore, it is sufficient to consider 0 < d < r. Clearly h = r if d = 0. In this case
we put g = a9 = 1. If d > 0, then by Lemma 2.8 for each E € £(r,d) there
exists an exact sequence

0—1I;,—-FE—FE —0,

where £/ € E(r — d, d).
Conversely let E' € £(r — d,d). By Lemma 2.9 there is a unique up to isomor-
phism vector bundle E € £(r,d) which is given by the exact sequence

0—-I,—-FE—FE —0.

This gives a bijection between £(r, d) and £(r—d, d). Using this together with (ii) one
obtains a bijection a,. 4 : £(h,0) — &(r,d). The procedure given here corresponds
to the Euclidean algorithm for determining the greatest common divisor of  and d.

If d=gqr+d,0<d <d, then repeating |g| times (ii) we obtain a one-to-one
correspondence

E(ryd) < E(ryd—r) ... E(ryd—qr)=E(r,d).

If r = qd+1r,0 <1 < r, then repeating |q| times (iii) we get a one-to-one
correspondence

Er,d) < E(r—d,d) < ... E(r —qd,d) =E(r',d).

Proceeding according to the divisions with rest from Euclidean algorithm, we obtain
the required bijection a4 : E(h,0) = E(r,d). O

Following Atiyah we put E4(r,d) := o, 4(Fp).

Theorem 2.12. Let X be an elliptic curve, let A correspond to a fixed point on
X, i e, Ae&(1,1). We may regard X as an abelian variety with A as the zero
element. Fach E(r,d) can be identified with X in such a way that the map

det : E(r,d) — £(1,d)

corresponds to the map
H:X—X, xw— hzx,

where h = (r,d).
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Proof. By Theorem .11 we have a bijection a,.4 : £(h,0) — &£(r,d). By Theo-
rem 2.10) (ii) there is a bijection

Bg:E(M,0) —E&(1,0), Fr®Lw— L.
But £(1,0) can be identified with X itself by the map
X = £(1,0), o [z]®A"
The map H under this identification corresponds to the map
H':£(1,0) = £(1,0), L~ L"

Combining § and «,4 we obtain a bijection between £(r,d) and X. Now the
statement of the theorem is clear from the commutative diagram

Elr,d) <=L £(h,0) 2> £(1,0),  apalFr® L)< B0 L1,

o o | wl o a detl Hl

E(1,d) <21 £(1,0) == £(1,0) Lh@ Al <"1 Lt

Corollary 2.13. Let h = (r,d) = 1. Then if E € £(r,d)
(i) The map det : E(r,d) — E(1,d) is a bijection,

(ii)) E ~ E4s(r,d) ® L for some L € £(1,0),

(111) Ea(r,d) ® L ~ E4(r,d) if and only if L" ~ 1,

(iv) Ea(r,d)* =~ Ea(r,—d).

Proof. (i) is a consequence of Theorem 2.12, because the map H in this case is the
identity:.

(ii) Since det(E4(r,d) ® L) ~ A% @ L" and since there exists an L such that
det E ~ L"® A%, we conclude det E ~ det(E4(r,d)® L) and by (i) E ~ E,(r,d)® L.

(iii) Ea(r,d)® L ~ E(r,d) if and only if det(E4(r,d) ® L) ~ det(E(r,d)). But
the last is the same as A?® L™ ~ A% or as L" ~ 1.

(iv) is clear, since

det(EA(r,d)*) ~ (det E4(r,d))* ~ (AY)* ~ A~ ~ det E4(r, —d).

We need two important lemmas.

2

Lemma 2.14. Let E € £(r,d), where (r,d) = 1. Then End E ~ & L;, where the
i=1
L; are all the line bundles of order dividing r, i. e., L" ~ 1 and L; % L; for i # j.
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Lemma 2.15. Let (r,d) =1, then Ea(r,d) ® F}, is indecomposable.
Theorem 2.16. Let (r,d) =1, then Es(r,d) ® Fj, ~ Es(rh,dh).

Proof. We prove the theorem by double induction on r and h. More precisely we
assume the theorem true (for h,r > 2)

(i) for h — 1 and all r,

(ii) for h and all s < r — 1.

First we observe that if h = 1, then Fj, = 1, and so the lemma is true for all r.
Also if 7 = 1, Es(r,d) = A4, Ea(rh,dh) = A? @ F), by definition. This starts the
induction.

Now we have the exact sequence

0—1—=F,— F,_1 —0. (4)
(4) @ E4(r,d) gives the exact sequence
0— Es(r,d) = Ea(r,d) ® F, = Ea(r,d) @ Fj,_1 — 0. (5)

Since Ea(r,d) @ A ~ E4(r,r + d) it suffices to consider the range 0 < d < r. Then
also 0 < dh <rh and 0 < d(h —1) <r(h —1). For brevity we write (5) as

0— FE — FEy — B3 — 0,

and we put d; = degF;, r; = dim FE;. Then 0 < d; < r; and by Lemma 2.15
E; € E(r;,d;). Hence, by Lemma 2.8 dimI'(E;) = d; and I'(E;) generates a trivial
subbundle I, of E;; moreover, if E! = E;/I,, then E! € E(r; — d;,d;), and E; ~
EA(r;,d;) if and only if E! ~ E',(r; — d;, d;)(this follows from Lemma 2.9 and from
the construction of the map «, 4 in Theorem 2.11). Thus we have an exact sequence
diagram

0 0 0

0 I, 14, Lg, 0
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Applying inductive hypothesis (i) in the last column of the diagram, we find F3 =~
EA(rs,ds), hence E} ~ E4(rs — ds,ds) and so again by (i)

Ey~ FEa(r —d,d) ® F,_1.
We have also E ~ E4(r — d,d), hence
dimT'Hom(FE7, E5) = dimT(End Ex(r — d,d) @ Fj,_1) =1

by Lemma 2.14, Theorem 2.10, and Lemma 2.8 In fact, by Lemma 2.14/ we have
that End E4(r —d, d) is a direct sum of line bundles L;. Since L] ~ 1, one concludes
that all the L; have degree zero. Therefore, End E4(r—d, d) ® F},_ is the direct sum
of vector bundles Fj,_; ® L; of degree zero, only one of which (namely the tensor
product of Fj_; with the trivial line bundle) by Theorem 2.10/ has sections. By
Lemma 2.8, dimension of I'(F},_1) is 1.

Now, by Theorem [1.11, the extension classes of £} by Ej correspond to the el-
ements of H'(X, Hom(&},&])), and the extensions corresponding to a, Aa, where
a € HY (X, Hom(&},E])) and \ is a non-zero constant, define isomorphic vector bun-
dles. In the present case this vector space is of dimension one, because by Serre
duality H' (X, Hom(&}, E7)) ~ T'Hom(E}, E}). So any two non-trivial extensions of
E! by FEY define isomorphic vector bundles. Now the bottom row of the diagram is
one extension and (4) ® E4(r—d, d) is another. Moreover, both are non-trivial exten-
sions since E} and E4(r — d, d) ® F}, are indecomposable (the latter by Lemma 2.15
or by (ii)). Hence Ef >~ Ea(r—d,d)® Fy, ~ Es(h(r—d), hd) by inductive hypothesis
(ii). Thus Fy ~ E(rh,dh), and the induction is established. O

Lemma 2.17. Let (r,d) =1, 0 < d < r and let L be a line bundle of degree zero.
Then we have an exact sequence

0 — Iyn — Ea(rh,dh) ® L — Ea(rh — dh,dh) @ L' — 0,
where L' is any line bundle such that L'C~% ~ LT

Theorem 2.18. Let E € &E(r,d). Then there exists a line bundle L such that
B~ EA<7‘7 d) ® L.

Proof. We proceed by induction on r. One can assume 0 < d < r, since for d = 0
we already have Theorem 2.10. By Lemma 2.8 there exists an exact sequence

01, FE—FE —0.

By inductive hypothesis E' ~ E4(r — d,d) ® L’ for some L'. Let L be any line
bundle such that L™ ~ L[/0"=9/" where h = (r,d). Then by Lemma 2.17 we have
the exact sequence

0—1;— Es(r,d)®@ L - E' — 0.

By Lemma 2.9 E ~ E4(r,d) ® L. O
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In particular this theorem means that for any two indecomposable vector bundles
E, and Es of rank r and degree d there exists a line bundle L of degree zero such
that E1 = E2 ® L
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3 Language of factors of automorphy

3.1 Basic correspondence between vector bundles and fac-
tors of automorphy

Let X be a complex manifold and let p : Y — X be a covering of X. Let I' C

Deck(Y/X) be a subgroup in the group of deck transformations Deck(Y/X) such

that for any two points y; and ys with p(y;) = p(y2) there exists an element v € T
such that v(y;) = yo. In other words, I' acts transitively in each fiber. We call this

property (T) .

Remark. Note that for any two points y; and y, there can be only one v €
Deck(Y/X) with v(y1) = v (see [Forst], Satz 4.8). Therefore, I' = Deck(Y/X)
and the property (T) simply means that p: Y — X is a normal (Galois) covering.

We have an action of I on Y:
[xY =Y, y=() =y

Definition 3.1. A holomorphic function f : I' x Y — GL,(C), r € N is called an
r-dimensional factor of automorphy if it satisfies the relation

FOwy) = fFOS py) [, y).

Denote by Z'(T',r) the set of all r-dimensional factors of automorphy.

We introduce the relation ~ on Z!(T',r). We say that f is equivalent to f’ if
there exists a holomorphic function h : Y — GL,(C) such that

hAy)f (A y) = (A y)h(y).
We write in this case f ~ f’.
Claim. The relation ~ is an equivalence relation on Z*(T,r).

Proof. f is clearly equivalent to itself because h(A\y)f(\,y) = f(A, y)h(y) for the
constant map h(y) = I.. Therefore, reflexivity holds true.
Consider f ~ f' i. e., h(\y)f(\,y) = f'(\,y)h(y) for some h. Define h/ = h™1,
then
W) (A y) = FN )R (y),
which means f’ ~ f.

Let f ~ £ with h(\g) f(\ ) = F'(\ y)h(y) and let £/ ~ 7 with K () f'(\, y) =
f"(\, y)R (y). Multiplying the first equality by h'(),y) from the left one obtains

WOy h(Ay) fOy) = 1O y) f/ (O y)h(y) = /(A 9 () h(y),

which means that f is equivalent to f” and proves that ~ is symmetric. O
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We denote the set of equivalence classes of Z*(T', ) with respect to ~ by H'(T',r).

Consider f € Z'(T',r) and a trivial vector bundle Y x C" — Y. Define a
holomorphic action of I' on Y x C":

'xY xC =Y xC"
Ay v) = (Mg, f(A y)v) = Ay, v).

Denote E(f) =Y xC"/T" and note that for two equivalent points (y,v) ~r (¢, v')
with respect to the action of I" on Y x C” it follows that p(y) = p(y/). In fact,
(y,v) ~r (y',v') implies in particular that y = ~y’ for some v € T' and by the
definition of deck transformations p(y) = p(vy’) = p(y'). Hence the projection
Y x C" — Y induces the map

T:E(f) > X
[y, v] = p(y).

We equip F(f) with the quotient topology.

Theorem 3.1. E(f) inherits a complex structure from Y x C" and the map w :
E(f) — X is a holomorphic vector bundle on X.

Proof. First we prove that 7 is a topological vector bundle. Clearly 7 is a continuous
map. Consider the commutative diagram

Y x C"—— E(f)

L,

Y X.

Let x be a point of X. Since p is a covering, one can choose an open neighbourhood
U of x such that its preimage is a disjoint union of open sets biholomorphic to U, i.
e, p Y (U) = || Vi, pi :=plv, : V; = U is a biholomorphism for each i € Z. For each
1€l
pair (i,7) € Z x T there exists a unique \;; € I such that \;;p; ' (z) = p; ' (z) for all
x € U. This follows from the property (T) .
We have 7= 1(U) = ((| | V;) x C")/T.

i€l
Choose some iy € Z. Consider the holomorphic map

SO/U : (I_l ‘/;) xC" — U x Cra (yi,'U) = (p<yz)>f()\zUzayz)U)a Yi € V;

ieT
Suppose that (y;,v") ~r (y;,v). This means

(yi,v") = Ni(yz,v) = (Nijyzs f(Nigs y5)v).
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Therefore,

(i, v") =), fNigis i)0") = (0(Nigys)s fNigis Mgy | (Nigs yi)v) =
(P(Y))s [N y5)0) = @17 (y5,v).-
Thus ¢}, factorizes through ((| ] V;) x C")/I', i. e., the map

€T

Yu - ((|_| VZ) X Cr)/r — U X (Cra [(yiav)] = (p(yi)af(AiUi7yi>v)7 Yi S Vz

i€T
is well-defined and continuous. We claim that ¢y is bijective.

Suppose oy ([(vi,v")]) = u([(y;,v)]), where y; € V;, y; € V;. By definition this

is equivalent to (p(vi), f(Niyi, ¥:)v") = (P(y;), f(Xiyjsy5)v), which means y; = Aj;y;
and

FXigi> My )" =F(Nigi ¥i)v' = fF(Nigjr yj)v =
Figidig, yi)v = f(Nigi, Nijys) f (Mg, ys)v-

We conclude v = f(\i;,y;)v and [(y;,v")] = [(y;,v)], which means injectivity of ¢yp.
At the same time for each element (y,v) € U x C" one has

eu (e (1), FNigin v () 710)]) =
(pi ' () f iy 2 W) i i () ™1 0) = (9, 0),

i. e., py is surjective and we obtain that ¢y is a bijective map.

This means, that ¢ is a trivialization for U and that 7 : E(f) — X is a (con-
tinuous) vector bundle. If U and V are two neighbourhoods of X defined as above
for which E(f)|v, E(f)|v are trivial, then the corresponding transition function is

wuey (UNV)xC = (UNV)xC"
(z,v) — (2, guv(z)v),

where gyy : UNV — GL,.(C) is a cocycle defining E(f). But from the construction
of ¢y it follows that

ng(.T) = f()‘iuivapi_vl(x))‘

Therefore, gy is a holomorphic map, hence @Ugo(,l is also a holomorphic map. Thus
the maps ¢y give E(f) a complex structure. Since 7 is locally a projection, one sees
that 7 is a holomorphic map.

O
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Remark. Note that p*E(f) is isomorphic to Y x C". An isomorphism can be given
by the map

PE(f) > Y xC
(y, [, v]) = (v, FN, 9)v), AJ =y.

Now we have the map from Z'(T,r) to the set K, = {[E]|p*(E) ~Y x C"} of
isomorphism classes of vector bundles of rank r over X with trivial pull back with
respect to p.

¢ ZN(0yr) = Koy f = [E(f)):

Theorem 3.2. Let K, denote the set of isomorphism classes of vector bundles of
rank v on X with trivial pull back with respect to p. Then the map

HYT,7) = K., [f] = [E(f)]
1S a bijection.

Proof. © Consider the map ¢' : ZY(I',7) — K, and let f and f’ be two equivalent
r-dimensional factors of automorphy. It means that there exists a holomorphic
function h : Y — GL,(C) such that

F'Ny) =h(Ay) fy)h(y)

Therefore, for two neighbourhoods U, V' constructed as above we have the following
relation for cocycles corresponding to f and f’.

gov (@) =f' Qov, pi,) (2)) = h(Aovp; (@) f Qov, pi) (@) hlp;,) ()7 =
h(py,, (2))guv (@)h(p;,) ()™ = hu(z)guv(2)hv(2)
where Apy = iy, hu(z) = h(p;,! (z)) and hy(x) = h(p; ' (z)). We obtained
guv = huguvhy',

which is exactly the condition for two cocycles to define isomorphic vector bundles.
Therefore, F(f) ~ E(f’) and it means that ¢’ factorizes through H*(T',r), i. e., the
map

¢ H'(D,r) = Ky [f] = [E(f)]
is well-defined.

"This proof generalizes the proof from [Lange] given only for line bundles.
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It remains to construct the inverse map. Suppose E € K, in other words p*(E)
is the trivial bundle of rank r over Y. Let a : p*E — Y x C" be a trivialization.
The action of I" on Y induces a holomorphic action of I on p*FE :

My, e) := (\y,e) for (y,e) Ep"E =Y xx E.

Via a we get for every A € I' an automorphism 1, of the trivial bundle Y x C".
Clearly 1, should be of the form

@DA(?A U) = (Aya f()‘> y)v),

where f : ' x Y — GL,(C) is a holomorphic map. The equation for the action
Yy, = U2, implies that f should be an r-dimensional factor of automorphy.

Suppose ' is an another trivialization of p*E. Then there exists a holomorphic
map h : Y — GL,(C) such that o/a™(y,v) = (y,h(y)v). Let f’ be a factor of
automorphy corresponding to /. From

Ay, f'(N y)v) =Ui(y,v) = /A"y, v) = /o ada ' (y,v) =
d'a”n(d'a™) T (y,v) = d/aT ey, hly) ) =
‘o™ Oy, fOL)R(y) o) = Ay, () f (N 9)h(y) ),

we obtain f'(\,y) = h(Ay)f(A,y)h(y)~!. The last means that [f] = [f’], in other
words,

the class of a factor of automorphy in H'(T',r) does not depend on the trivial-
ization and we get a map K, — H'(T',r). This map is the inverse of ¢. ]

Let X be a connected complex manifold, let p : X — X be a universal covering
of X, and let I' = Deck(Y/X). Since universal coverings are normal coverings, I'
satisfies the property (T) .® Moreover, I' is isomorphic to the fundamental group
71 (X) of X An isomorphism is given as follows.

Fix 2o € X and &y € X with p(Z) = 2o. We define a map

® : Deck(X /X)) — (X, o)

as follows. Let o € Deck(X/X) and v : [0;1] = X be a curve with v(0) = &, and
v(1) = o(Zp). Then a curve

v:[0:1] = X, t—pu(t)

is such that pv(0) = pv(1) = xy. Define ®(o) := [pv], where [pv] denotes a homotopy
class of pv. The map ® is well defined and is an isomorphism of groups.

8see [Forst], Satz 5.6.
9see [Forst], Satz 5.6.
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So we can identify I' with m;(X). Therefore, we have an action of 7;(X) on X
by deck transformations.

Consider an element [w] € 71 (X, zo) represented by a path w : [0;1] — X. We
denote o = @~ !([w]). Consider any ¥y € X such that p(Zy) = w(0) = w(1), then
the path w can be uniquely lifted to the path

v:[0;1] = X

with v(0) = %o (see [Forst], Satz 4.14). Denote #; = v(1). Then o is a unique
element in Deck(X /X) such that o(Z) = Z;. This gives a description of the action

of m (X, z0) on X.
Now we have a corollary to Theorem 13.2.

Corollary 3.3. Let X be a connected complex manifold, let p : X — X be the
universal covering, let T be the fundamental group of X naturally acting on X by
deck transformations. As above, H*(T',r) denotes the set of equivalence classes of
r-dimensional factors of automorphy

I'x X — GL,(C).
Then there is a bijection
H'(T,r) = K., [f] = E(f),

where K, denotes the set of isomorphism classes of vector bundles of rank r on X
with trivial pull back with respect to p.
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3.2 Properties of factors of automorphy

Definition 3.2. Let f : I'xY — GL,(C) be an r-dimensional factor of automorphy.
A holomorphic function s : Y — C" is called an f-theta function if it satisfies

s(vy) = f(v,y)s(y) forally e I, y € Y.

Theorem 3.4. Let f: T'x Y — GL,(C) be an r-dimensional factor of automorphy.
Then there is a one-to-one correspondence between sections of E(f) and f-theta
functions.

Proof. Let {V;}ier be a covering of Y such that p restricted to V; is a homeomor-
phism. Denote ¢; := (p|y,)™", U; := p(V;). Then {U,;} is a covering of X such that
E(f) is trivial over each U;.

Consider a section of E(f) given by functions s; : U; — C" satisfying

si(z) = gi;(x)sj(x) for x € U; N U,

where

9ii(®) = fQuu,, p(2), v €UinU;
is a cocycle defining E(f) (see the proof of Theorem 3.2). Define s : ¥ — C"
by s(pi(z)) := s;(z). To prove that this is well-defined we need to show that
si(x) = sj(w) when o;(z) = ¢;(x). But since p;(x) = ¢;(r) we obtain A\y,y; = 1.
Therefore,

si(®) = gij(x)si(x) = f(Avy;, 0(2))s;(@) = f(1,05(2))s;(x) = s;(x).
For any v € I for any point y € Y take ¢, € 7 and = € X such that y = ¢;(z) and
vy = v@;j(x) = @i(r). Thus v = Ay,y, and one obtains
s(vy) =s(wi(r)) = si(z) = gij(z)s;(z) =
Qv 0i(@))s;(@) = f(v,y)s(e; (@) = f(7,2)s(y).
In other words, s is an f-theta function.
Vice versa, let s : Y — C" be an f-theta function. We define s; : U; — C” by
si(x) := s(pi(x)). Then for a point x € U; N U; we have
si(x) =s(pi()) = s(Av,u,¢5(2)) =
FQu,, 5(x))s((x)) = gij(x)s;(x),

which means that the functions s; define a section of E(f). The described corre-
spondences are clearly inverse to each other. O]

The following statement will be useful in the sequel.
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/
Theorem 3.5. Let f(\,y) = (f (?)7 y) ff”(()‘/\’ y;)) be an r' + r"-dimensional factor
of automorphy, where f'(\,y) € GL.(C), f"(\,y) € GL.»(C). Then

(a)f T xY — GL.(C) and f" :T' x Y — GL.»(C) are r' and r"-dimensional
factors of automorphy respectively;

(b) there is an extension of vector bundles

0—=E(f) —E(f) —=E(f") —0.

Proof. The statement of (a) follows from straightforward verification. To prove (b)
we define maps ¢ and 7 as follows.

B > B, el b () vee’ (§) e

(Y
w

r E(f) = E(f"), [y,( )] Ll veC. wec”

0 0
concludes that ¢ is well-defined. Analogously, since [Ay, f”(\, y)w] = [y, w] one sees
that m is well-defined. Using the charts from the proof of (3.1) one easily sees that
the defined maps are holomorphic.

Notice that ¢ and 7 respect fibers, ¢ is injective and 7 is surjective in each fiber.
This proves the statement. [

Since [Ay, f'(A,y)v] is mapped via i to [\y, (f’()\,y)v>] = My, f(\y) (U)], one

Now we recall one standard construction from linear algebra. Let A be an m xn
matrix. It represents some morphism C" — C™ for fixed standard bases in C™ and
(Cm

Let F : Vect” — Vect be a covariant functor. Let A;,..., A, be the matrices
representing morphisms C} EEN cr,....C} L C,' in standard bases.

If for each object F(C™) we fix some basis, then the matrix corresponding to
the morphism F(f1,..., f,) is denoted by F(A;,...,A,). Clearly it satisfies

f(AlBl, B ,Apo) - JE(Al, cee ,AP)F(Bl, ey Bp)
In this way A® B, S%(A), A?(A) can be defined. As F one considers

_® _:Vect® — Vect,
S™ :Vect — Vect,
A :Vect — Vect

respectively.
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Theorem 3.6. Let F : Vect" — Vect be a covariant holomorphic functor. Let
fi,-- -, fn be ri-dimensional factors of automorphy. Then f = F(f1,...,fn) is a
factor of automorphy defining F(E(f1),-.., E(fs)).

Proof.

F(froo ) O y) =F(fr(Aw, ), -5 fa(A,y)) =

(frO py) Fr(ps y)s - ooy fa(\ 1y) fu(ps y) =

(fr(As py), - fn(A uy)) (fr(y)s -y fa(psy)) =
(fl;---afn)()‘ p)F (fro - fo) (1)

Since (fi,..., fn) represents an isomorphism in Vect", F(fi,..., f») also repre-
sents an isomorphism C" — C” for some r € N. Therefore, f is an r-dimensional
factor of automorphy.

Since f = F(f1,..., fa), the same holds for cocycles defining the corresponding
vector bundles, i. e., gv,v, = F (910,05 - - - » Gnuryv,)» Where giyr gy, s a cocycle defining
E(f;). This is exactly the condition E(f) = F(E(f1),..., E(fn)). O

S TS

For example for F = _® _: Vect® — Vect we get the following obvious corollary.

Corollary 3.7. Let f' : I'xY — GL(C) and f”" : I' x Y — GL»(C) be two
factors of automorphy. Then f = f'® f" :T'xY — GLyw(C) is also a factor of
automorphy. Moreover, E(f) ~ E(f") @ E(f").

It is not essential that the functor in Theorem 3.6/ is covariant. The following
theorem is a generalization of Theorem 3.6.

Theorem 3.8. Let F : Vect” — Vect be a holomorphic functor. Let F be covari-
ant in k first variables and contravariant in n — k last variables. Let fi,..., f, be
ri-dimensional factors of automorphy. Then f = F(fi,..., fx, fk_+117 ) s a
factor of automorphy defining F(E(f1),..., E(fa))-

Proof. The proof is analogous to the proof of Theorem 3.6. O]
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3.3 Vector bundles on complex tori
3.3.1 One dimensional complex tori

Let X be a complex torus, i. e, X = C/T, T' = Zr + Z, Im7 > 0. Then the
universal covering is X = C, namely

pr:C—C/I', z~ [z]
We have an action of I" on C:
I'xC—=C, (vy)=r+y.

Clearly T" acts on C by deck transformations and satisfies the property (T) .

Since C is a non-compact Riemann surface, by Theorem [1.13, there are only
trivial bundles on C. Therefore, we have a one-to-one correspondence between
classes of isomorphism of vector bundles of rank r on X and equivalence classes of
factors of automorphy

f:T x C = GL,(C).

As usually, V, denotes the standard parallelogram constructed at point a, U,
is the image of V, under the projection, ¢, : U, — V, is the local inverse of the
projection.

Remark. Let f be an r-dimensional factor of automorphy. Then

gar(®) = f(pa(®) = @1(2), pu(7))

is a cocycle defining E(f). This follows from the construction of the cocycle in the
proof of Theorem 13.2.

Example. There are factors of automorphy corresponding to classical theta func-
tions. For any theta-characteristic £ = a7 +0b, where a,b € R, there is a holomorphic
function ¢ : C — C defined by

Oc(2) = Z exp(mi(n + a)>7)exp(27mi(n + a)(z + b)),

ne’l

which satisfies
Oc(y + 2) = exp(2miay — mip*t — 2mip(z + €))0e(2) = ee(, 2)0¢(2),
where v = pr + q and e¢(7, 2) = exp(2miay — wip*t — 27wip(z + £)). Since
ec(11 + 72, 2) = ee(1,72 + 2)ec(r2, 2),

we conclude that eg(7, z) is a factor of automorphy.
By Theorem 3.4/ 0(z) defines a section of E(e¢(7, 2)).
More on classical theta functions see in [Mum].



3.3 Vector bundles on complex tori 37

Theorem 3.9. deg E(e¢) = 1.

Proof. We know that sections of E(e¢) correspond to e - theta functions. The
classical eg-theta function ¢(z) defines a section s¢ of E(e¢). Since 6 has only
simple zeros and the set of zeros of 0¢(z) is 3 + 7 + & + I, we conclude that s¢ has
exactly one zero at point p = [1 + % +¢] € X. By Theorem 1.16/ we get E(eg) ~ [p]
and thus deg E(e¢) = 1. O

Theorem 3.10. Let & and n be two theta-characteristics. Then
Eleg) ~ t7, g E(en),
where ty_¢g : X = X, x— x4+ [n—¢&] is the translation by [n — &].

Proof. As in the proof of Theorem 3.9 E(e¢) ~ [p] and E(e,)) = [q] for p = [1 + T +¢]
and ¢ = [3 + § +n]. Since t,_gp = ¢, we get

E(e¢) ~ [p] ~ th—g] [q] ~ trn—g]E@n)'

Now we are going to investigate the extensions of the type
0—-0x—>E€—=0x—0

or equivalently 0 = X xC - F — X x C — 0. In this case the transition functions
are given by matrices of the type

1 %

0 1)°

and E is isomorphic to E(f) for some factor of automorphy f of the form f(\, %) =

L p(A, )
0 1
case is equivalent to the condition

). Note that the condition for f to be a factor of automorphy in this

(A + N, ) = p(A, A+ ) + :u()‘/v ),
where we use the additive notation for the group operation since I' is commutative.

Theorem 3.11. f defines trivial bundle if and only if p(\,z) = £(A\x) — &(T) for
some holomorphic function £ : C — C.
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Proof. We know that E is trivial if and only if A(AZ) = f(A ) for some holo-
morphic function h : X — GLy(C). Let h = ( %) 2 * ) then the last condition
is
a(AZ) b(AZ)\ (1 p(\2) b(z)\
c(A\z) d(Az)) \O 1 c( j j N
)

(+0 S2WOE) UG+ DB
c(Z) d( )
In particular it means c(A\Z) = ¢(7) and d(\7) = d(Z), i. e., c and d are doubly
periodic functions on X = C, so they should be constant, i. e., ¢(\,Z) = ¢ € C,
d(\,z)=deC.
Now we have
a(Z) + cp(A, &) = a(A\T)
b(z) + du(\, &) = b(A\T)
which implies
(N, T) = a(Ax) — a()
du(X, T) = b(AT) — b(Z).
Since det h() # 0 for all # € X = C one of the numbers ¢ and d is not equal to
zero. Therefore, one concludes that u(\, z) = £(A\%) — £(Z) for some holomorphic

function £ : X = C — (C
Now suppose (A, ) = E(A\T () for some holomorphic function £ : C — C.

Clearly for h(z) ( (2 ) one has that det h(Z) = 1 # 0 and

FOu () = ((1) M(Al )) ((1) 5(1 ))
(1 S0+ p00) (10

We have shown, that f defines the trivial bundle. This proves the statement of the

theorem. []
- 1 p(\ ) SN~
Theorem 3.12. Two factors of automorphy f(\, T) = 0 1 and f'(\,Z) =
1 v(\7) : . : , ,
0 1 defining non-trivial bundles are equivalent if and only if

for some holomorphic function &€ : C = X — C.
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0 1
(1 V()\’:B)) are equivalent. This means that f(\, Z)h(Z) = h(A\T)f(\, ) for some

Proof. Suppose the factors of automorphy f(\, &) = 1 MO\J)) and f'(\,x) =

0 1
holomorphic function h : C = X — GLy(C). Let

L p\2)\ (a(z) b(@)\  [a(AZ) b(AZ) 1 v(\7)
(0 ") (60 ) = (o aom) (6 757)
(a(ﬁz) +c(@)pu(N, 7)) b(T) +d(j)u(/\,j)> _ (a()\:i) a(AT)v(\, T) +b()\5:)>
c(T) d(x) c(AZ) c(A\T)v(\,Z) + d(\T)
This leads to the system of equations

a(T) + c(T)p(A, 2) = a(AT)

b(Z) + d(Z)u(N, T) = a(Az)v(A, T) + b(AT)

c(Z) = ¢(A\T)

d(z) = c(A\T)v(\, &) + d(A\T)

The third equation means that ¢ is a double periodic function. Therefore, ¢ should
be a constant function.
If ¢ # 0 from the first and the last equations using Theorem 3.11] one concludes

that f and f’ define the trivial bundle.
In the case ¢ = 0 one has

a(Z) = a(\T)
b(z) + d(@)u(N, 2) = a(AZ)v(\, &) + b(AT)
d(z) = d(A\T),

i. e., as above, a and d are constant and both not equal to zero since det(h) # 0.
Finally one concludes that

du(\, ) — av(\, &) = b((AZ) — b(#), a,d € C, ad#0 (6)

a b(x)

Vice versa, if p and v satisfy (6) for h(z) = (0 g

) we have
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This means that f and f’ are equivalent.
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3.3.2 Higher dimensional complex tori

One can also consider higher dimensional complex tori. Let I' C CY be a lattice,
=TIy x---xIy, I'=2Z+%Zr;, Im7>0.

Then as for one dimensional complex tori we obtain that X = C9/T" is a complex
manifold. Clearly the map

C!'-CIT=X, x|z

is the universal covering of X. Since all vector bundles on CY are trivial, we obtain
a one-to-one correspondence between equivalence classes of r-dimensional factors of

automorphy
f:TxC— GL,.(C)

and vector bundles of rank r on X.
Let I' = Z9 4+ QZ9, where () is a symmetric complex g X g matrix with positive
definite real part. Note that 2 is a generalization of 7 from one dimensional case.
For any theta-characteristic & = Qa + b, where a € R9, b € RY there is a
holomorphic function ¢ : C¢ — C defined by

Oc(2) = 05(2,Q) = Z exp( mi(n + a)'Q(n + a)7 Jexp( 2wi(n + a)'Q(z +b) ),

n€ezs
which satisfies
Oc(y + 2) = exp(2mia'y — mip'Qp — 2mip' (2 + €))0e(2) = eg(7, 2)0¢(2),
where v = Qp + ¢ and eg(7, z) = exp(2mialy — wip'Qp — 2mwip'(z + §)). Since
ec(1 + 2, 2) = (11,72 + 2)ec(y2, 2),

we conclude that eg(, z) is a factor of automorphy.
As above 6¢(z) defines a section of E(eg(7, 2)).
For more detailed information on higher dimensional theta functions see [Mum].
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3.4 Factors of automorphy depending only on the 7-direction
of the lattice I

Here X is a complex torus, X = C/T, T' = Z7 + Z, Im7 > 0. Denote ¢ = e*'".
Consider the canonical projection

pr:C—=C"/<qg> u—fu=u<qg>.

Clearly one can equip C*/ < ¢ > with the quotient topology. Therefore, there is a
natural complex structure on C*/ < g >.
Consider the homomorphism

(Cfig(c* E)(C*/ < q >7 Z'_>e27riz — [627riz}'

It is clearly surjective. An element z € C is in the kernel of this homomorphism
if and only if e = ¢* = €™ for some integer k. But this holds if and only if
2z — kT € Z or, in other words, if z € I'. Therefore, the kernel of the map is exactly
I', and we obtain an isomorphism of groups

2miz

iso:C/T — C*/ < q>~C*/Z, [z] — [e*™].
Since the diagram

Cc—>~C/T

exPi ziso

C-—5C /2L ——C") < q>

is commutative, we conclude that the complex structure on C*/ < ¢ > inherited
from C/T" by the isomorphism iso coincides with the natural complex structure on
C*/ < q >. Therefore, iso is an isomorphism of complex manifolds. Thus complex
tori can be represented as C*/ < ¢ >, where ¢ = ¢*™", 7 € C, Im7 > 0.
So for any complex torus X = C*/ < ¢ > we have a natural surjective holomor-
phic map
C"—-C/<qg>=X, u—lu.

This map is moreover a covering of X. Consider the group Z. It acts holomorphically
on X =C*

ZxC"—=C* (n,u)— q"u.
Moreover, since pr(¢"u) = pr(u), Z is naturally identified with a subgroup in the

group of deck transformations Deck(X/C*). It is easy to see that Z satisfies the
property (T) . We obtain that there is a one-to-one correspondence between classes
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of isomorphism of vector bundles over X and classes of equivalence of factors of
automorphy

f:Z xC— GL,(C).
Consider the following action of I' on C*:
I xC* = C*  (\u)— \u=: ey
Let A:T'x C* — GL,(C) be a holomorphic function satisfying
AN+ N u) = AN Nu) AN, u) (%)

for all A, \ € T'. We call such functions C*-factors of automorphy. Consider the
map .
idr xexp: IT'x C =T x C*, (A, ) = () e*™)

Then the function
fa= Ao (idr xexp) : T' x C — GL,(C)
is an r-dimensional factor of automorphy, because
fad+ X, 2) = AN+ N, 2™7) = AN, 2™V ™) A(N, 277 =
A, NN AN 7™7) = fa(A N+ 2) fa(N, 2).

So, factors of automorphy on C* define factors of automorphy on C.
We restrict ourselves to factors of automorphy f : I' x C — GL,.(C) with the

property
f(mr +n,z) = f(mr,x), m,n € Z. (7)
It follows from this property that f(n,z) = f(0,2) = idcr. Therefore,
fOA+kx)=fNEk+z)f(k,z)=f(Nk+x)forall \eT, keZ
and it is possible to define the function
Ap: T x C* = GL.(C), (A, e*™) — f(\ z),

which is well-defined because from €™ = 272 follows x; = x5 + k for some k € Z
and f(Aaxl) = f()‘va + k) = f()\ax2>

Consider A with the property A(m7+n,u) = A(m7,u) =: A(m,u). Then clearly
fa(mt+n,u) = fa(mr,u). So for any C*-factor of automorphy A : I'xC* — GL,(C)
with the property A(m7 4+ n,u) = A(m7,u) one obtains the factor of automorphy
fa satisfying (7). We proved the following
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Theorem 3.13. Factors of automorphy f : ' x C — GL,(C) with the property (7)
are in a one-to-one correspondence with C*-factors of automorphy with property
A(mT 4+ n,u) = A(mt,u).

Now we want to translate the conditions for factors of automorphy with the
property (7) to be equivalent in the language of C*-factors of automorphy with the
same property.

Theorem 3.14. Let f, f' be r-factors of automorphy with the property (7). Then
f ~ f"if and only if there exists a holomorphic function B : C* — GL,.(C) such
that

Ag(m,u)B(u) = B(¢"u)Ap(m, u))

for q := €*™7, where A(m,u) := A(mt,u). In this case we also say Ay is equivalent
to Ap and write Ay ~ Ay,

Proof. Let f ~ f’. By definition it means that there exists a holomorphic func-
tion h : C — GL,(C) such that f(\ z)h(x) = h(Az)f'(A\ x). Therefore, from
f(n,x)h(z) = hin + z)f'(n,xz) and f(n,z) = f'(n,z) = ider it follows h(z) =
h(n + x) for all n € Z. Therefore, the function

B:C* — GL,(C)

2Ty h(x)
is well-defined. We have

Ap(m, ™) B(e*™) =f(mT,z)h(x) = h(mT + 2)f' (m7,2) =
B(627ri(m7'+;v))f/(m’ 627riac) _ B<qm627rix)Afl (m’ 627riac).

Vice versa, let B be such that Af(m,u)B(u) = B(¢™ A (m,u)). Define h = Boexp.
We obtain

f(mT +n,2)h(x) = Ap(mT + n, > ) B(e*™) =
B(qme%m)Af/(mT + n, 62m‘9c) _ B(627ri(mfr+a:)>Af,(m7_ +n, 62m‘x) _
B(e>™ Mt A (mr + n, €Y = h(mT +n + 2) f'(mT + n, x).

]

Remark. The last two theorems allow us to embed the set Z'(Z,r) of factors of
automorphy Z x X — GL,(C) to the set Z'(T",7). The embedding is

U ZNZ,r) — Z'T,r), frg, gt +m,z):= f(n,z).
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Two factors of automorphy from Z!(Z,r) are equivalent if and only if their images
under W are equivalent in Z'(T',r). That is why it is enough to consider only factors
of automorphy

I'x C— GL,(C)

satisfying (7).

Corollary 3.15. A factor of automorphy f with property (7) is trivial if and only
if Ap(m,u) = B(¢™u)B(u)™" for some holomorphic function B : C* — GL,(C).

Theorem 3.16. Let A be a C*-factor of automorphy. A(m,u) is uniquely deter-
mined by A(u) := A(1,u).

A(m,u) = A(¢" ) ... Alqu)A(u), m >0 (8)
A(=m,u) = Alg™u) ™ .. A(g )™, m > 0. (9)

A(m,u) is equivalent to A'(m,u) if and only if
A(u)B(u) = B(qu)A'(u) (10)

for some holomorphic function B : C* — GL.(C). In particular A(m,u) is trivial
iff A(u) = B(qu)B(u)™".

Proof. Since A(1,u) = A(u) the first formula holds for m = 1. Therefore,
Afm +1,u) = A(L g"u) A(m, u) = A(g™) A(m, u)

and we prove the first formula by induction.
Now id = A(0,u) = A(m — m,u) = A(m,q¢ "u)A(—m,u) and hence

A(=m,u) =A(m, ¢ "u)" = (A(g™ ¢ ™) . .. Algg " u)Alg ™))t =
A(=m,u) = A(g™u) ... A(g  u) !

which proves the second formula.
If A(m,u) ~ A’'(m,u) then clearly (10) holds.
Vice versa, suppose A(u)B(u) = B(qu)A’(u). Then

A(m,u)B(u) = A(¢™ 'u) ... A(qu)A(u) B(u) =
A"ty . Alq) Blgw) A'(n) = - = Bg™u) A (™) ... A'(qu) A'(u) =
B(q™u)A (m, u)

for m > 0.
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Since A(—m,u) = A(m,q ™u)~! we have

which proves the statement. Il

Theorem 3.17. Let A : C* — GL,(C), B : C* — GL,,(C) be two holomorphic
maps. Then E(A) ®@ E(B) ~ E(A® B).

Proof. By theorem 3.7 we have
E(A)® E(B) ~ E(A(n,u)) ® E(B(n,u)) ~ E(A(n,u) ® B(n,u)).

Since A(1,u) ® B(1,u) = A(u) ® B(u), we obtain E(A)® E(B) ~ E(A® B). O
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3.5 Classification of vector bundles over a complex torus

Here we work with factors of automorphy depending only on 7, i. e., with holomor-
phic functions C* — GL,(C).

3.5.1 Vector bundles of degree zero

We return to extensions of the type 0 — Iy — E — I; — 0, where I; denotes the
trivial vector bundle of rank 1.
Theorem 13.11/ can be rewritten as follows.

1 a(u)
0 1
if a(u) = b(qu) — b(u) for some holomorphic function b: C* — C.

Theorem 3.18. A function A(u) = ( ) defines the trivial bundle if and only

Corollary 3.19. A(u) = <1 1) defines a non-trivial vector bundle.

01

Proof. Suppose A defines the trivial bundle. Then 1 = b(qu) — b(u) for some holo-

+o00
morphic function b : C* — C. Considering the Laurent series expansion Y byu” of

b we obtain 1 = by — by = 0 which shows that our assumption was false. B O
. : : 1 a(u)
Let a : C* — C be a holomorphic function such that Ay(U) = 0 1 defines

non-trivial bundle, i. e., by Theorem 3.18, there exists no holomorphic function
b: C* — C such that

a(u) = b(qu) — b(u).
Let F5 be the bundle defined by A;. Then by Theorem 3.5 there exists an exact

sequence
0—-1L —>F—1—0.

For n > 3 we define A,, : C* — GL,(C),

where empty entries stay for zeros.
Let F, be the bundle defined by A,. By (3.5) one sees that A, defines the
extension
0—>1 —F,— F,_1—0.
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Theorem 3.20. F,, is not the trivial bundle. The extension
0—-0L —>F,— F,_1—0.

18 non-trivial for all n > 2.

Proof. Suppose F,, is trivial. Then A,(u)B(u) = B(qu) for some B = (b;;)ijn-
- +00 .

In particular it means by,;(u) = by;(qu) for i = 1,n. Let by = > b,(cm)uk be the

expansion of b,i in Laurent series. Then b,;(u) = b,;(qu) implies b,(cm) = qkb,gni) for

all k.
Note that |g| < 1 because 7 =& +in, n > 0 and

‘Q| — |627ri7'| _ |627ri(§+i77)| _ ‘627ri§€—27r77| _ 6—271—7] <1

Therefore, b,(cm) = 0 for k # 0 and we conclude that b,; should be constant functions.
We also have

by—1i(u) + bpia(n) = by—1;(qu).

Since at least one of b,; is not equal to zero because of invertibility of B, we obtain

1

a(u) = b—m(bn—u(qu) = bp-1i(u))

for some 7, which contradicts the choice of a. Therefore, F), is not trivial.
Assume now, that for some n > 2 the extension

0—->I —F,—~F,_1—0

is trivial(for n = 2 it is not trivial since F5 is not a trivial vector bundle). This means

A, ~ ((1) AO ), i. e., there exists a holomorphic function B : C* — GL,(C),
n—1

B = (b;;);; such that

A (w)B(u) = B(qu) (é Ag_l) |

Considering the elements of the first and second columns we obtain for the first
column

bn1(u) = bn1(qu),
bil (u) + bi+11(u)a(u) = bil (qu), 1< n
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and for the second column

bz (u) = bz (qu),
bZQ(U) + bi+12(U)CL<U) = bzg(qu), 1 < n.

For the first column as above considering Laurent series we have that b,; should be
a constant function. If b,; # 0 it follows

a(t) = 2 (b1r(qu) — bus (1)),

bnl
which contradicts the choice of a. Therefore, b,; = 0 and b,_11(qu) = b,_11(u), in
other words b,,_1; is a constant function. Proceeding by induction one obtains that
b11 is a constant function and b;; = 0 for ¢ > 1.
For the second column absolutely analogously we obtain a similar result: b5 is
constant, bz = 0 for ¢ > 1. This contradicts the invertibility of B(u) and proves the
statement. O

Corollary 3.21. The vector bundle F,, is the only vector bundle of rank n and degree
0 that has non-trivial sections.

Proof. This follows from Theorem 2.10. O]

So we have that the vector bundles F,, = FE(A,) are exactly F,’s defined by
Atiyah in [At].

Remark. Note that constant matrices A and B having the same Jordan normal
form are equivalent. This is clear because A = SBS~! for some constant invertible
matrix S, which means that A and B are equivalent.

Consider an upper triangular matrix B = (b;;)} of the following type:

bis =1, biip # 0. (11)
It is easy to see that this matrix is equivalent to the upper triangular matrix A,
@i = a1 =1, a;=0, j#Fi+1l, j#i (12)

In fact, these matrices have the same characteristic polynomial (¢ — 1)™ and the
dimension of the eigenspace corresponding to the eigenvalue 1 is equal to 1 for both
matrices. Therefore, A and B have the same Jordan form. By Remark above we
obtain that A and B are equivalent. We proved the following:

Lemma 3.22. A matrixz satisfying (11) is equivalent to the matriz defined by (12).
Moreover, two matrices of the type (11) are equivalent, i. e., they define two iso-
morphic vector bundles.
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Theorem 3.23. F, ~ S"1(F).

Proof. We know that F3 is defined by the constant matrix A, = (1) i) We
know by Theorem 3.6/ that S™(F3) is defined by S™(Az). We calculate S™(f3) for
n € Ny. Since f, is a constant matrix, S™(f;) is also a constant matrix defining a
map S™(C?) — S™(C?). Let ey, ey be the standard basis of C?, then S"(C) has a
basis
{eber ™™ k=n,n—1,...,0}.
k n—k

Since As(e1) = ey and As(es) = e + ez, we conclude that ejel, ™ is mapped to

n—k n—k n—k n—k
Ag(e))PAg(e))" ™ = ef(e; 4+ ep)"F = €F ( . )e’f_k_ieg = Z ( . )e?‘ieé.
i=0 i=0

Therefore,

(n)

(1)

()],
()

where empty entries stay for zero. In other words, the columns of S"(As) are columns

of binomial coefficients. By Lemma 3.22] we conclude that S™(As) is equivalent to
A, 1. This proves the statement of the theorem. O

—
—_ =
_— N =

5"(Az) =

ce 0 3~ 303

Let E be a 2-dimensional vector bundle over a topological space X. Then there
exists an isomorphism

SP(E)® SYE) ~ SPT(E) @ (det E® SPHE) ® ST 1(E)).

This is the Clebsch-Gordan formula. If det E is the trivial line bundle, then we have
SP(E) ® SU(F) ~ SPT(E) & SP~1(F) ® S91(E), and by iterating one gets

SME)® SUE) =~ S"M(E) & SPHE) @ e SUE), pzq. (13)
Theorem 3.24. F,Q [y~ F, ;1 @ Fpiqgs3® - D Fp_gp1 forp=>q.
Proof. Using Theorem 3.23 and (13) we obtain

F,® F, ~SP"HFy) @ ST (Fy) ~ SPT2(F) @ SPTTYE) @ - @ SPUF,) ~
Forg1 D Fprg3@ - D Fpgpa-
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Remark. The possibility of proving the last theorem using Theorem 3.23/is exactly
what Atiyah states in remark (1) after Theorem 9.1

We have already given (Corollary 3.21) a description of vector bundles of degree
zero with non-trivial sections. We give now a description of all vector bundles of
degree zero.

Consider the function pg(z) = exp(—mit — 2miz) = ¢ 2u™! = p(u), where
u = 2™ It defines the factor of automorphy

2

eo(pT +q,2) = eXp(—?TZ'pzT — 2mizp) = q_%u_p
corresponding to the theta-characteristic & = 0.

Theorem 3.25. deg E(yg) = 1, where as above po(z) = exp(—mit — 2mwiz) =
0V = ().

Proof. Follows from Theorem 3.9 for £ = 0.

Theorem 3.26. Let L' € £(1,d). Then there exists v € X such that L' ~ t:E(pg)®
E(po)™ 1.

Proof. Since E(pg)? has degree d, we obtain that there exists L € £(1,0) such that
L' ~ E(pg)? ® L. We also know that L ~ t*FE(pg) @ E(po)~! for some z € X.
Combining these one obtains

L'~ E(0)* ® t:E(po) ® E(po) ™" = tiE(po) ® E(p)* ™"

Theorem 3.27. The map
C*/ < q>— Pic’(X), ar> E(a).
18 well-defined and is an isomorphism of groups.

Proof. Let po(z) = exp(—miT — 2mwiz) as above. For € X consider tFE(¢y), where
the map

t,: X > X, y—y+zx

is the translation by z. Let £ € C be a representative of x. Clearly, t*F(¢o) is
defined by

Poe(2) = tepo(2) = pol(z + &) = exp(—miT — 2miz — 2mi) = o(2)exp(—2mif).

Wgee [At], page 439.
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(Note that if 7 is another representative of x, then ¢, and g, are equivalent.)
Therefore, the bundle t* E(pg) ® E(pg)~! is defined by

(voepo™ ) (2) = wolz)exp(—2mi&)po " (2) = exp(—2mif).

Since for any L € £(1,0) there exists x € X such that L ~ t:FE(p) ® FE(p)~t, we
obtain L ~ E(a) for a = exp(—27if) € C*, where ¢ € C is a representative of z. We
proved that any line bundle of degree zero is defined by a constant function a € C*.

Vice versa, let L = E(a) for a € C*. Clearly, there exists £ € C such that
a = exp(—2mi). Therefore,

L ~ E(a) ~ L(poepo ") ~ tiE(po) @ E(po) ",

where z is the class of ¢ in X, which implies that E(a) has degree zero. So we
obtained that the line bundles of degree zero are exactly the line bundles defined by
constant functions.

We have the map

¢:C* = Pic®(X), a+~ E(a),

which is surjective. By Theorem 3.17 it is moreover a homomorphism of groups.
We are looking now for the kernel of this map.

Suppose F(a) is a trivial bundle. Then there exists a holomorphic function
f: C* — C* such that f(qu) = af(u). Let f = > f,a” be the Laurent series
expansion of f. Then from f(qu) = af(u) one obtains

af, = f,q" for all v € Z.

Therefore, f,(a —¢") =0 for all v € Z.

Since f # 0, we obtain that there exists v € Z with f, # 0. Hence a = ¢” for
some v € Z.

Vice versa, if a = ¢¥, for f(u) = u” we get

flqu) = ¢"u” = af(u).

This means that E(a) is the trivial bundle, which proves Ker ¢ =< ¢ >. We obtain
the required isomorphism

C*/ < q>— Pic®(X), aw E(a).
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Theorem 3.28. For any F' € £(r,0) there exists a unique a € C*/ < q > such that
F ~ E(A,(a)), where

Proof. By Theorem 2.10/ F' ~ F, ® L for a unique L € £(1,0). Since F, ~ E(A,)
and L ~ E(a) for a unique a € C*/ < g > we get F' ~ F(A, ® a). So F is defined
by the matrix

where empty entries stay for zeros. It is easy to see that the Jordan normal form of
this matrix is

This proves the statement of the theorem. O]
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3.5.2 Vector bundles of arbitrary degree
Denote by E, = C/T';, where I', = Z7 + Z. Consider the r-covering
T B — Er o [z] [z

Theorem 3.29. Let F' be a vector bundle of rank n on E. defined by A(u) =
A(l,u) = A(r,u). Then 7t (F) is defined by

A(rr,u) = A(u) = A(Lu) == A(rr,u) = A(g" ) ... A(qu)A(u).

Proof. Consider the following commutative diagram.

Consider the map
C x C"JA = B(A) - n2(E(A)) = Eyr x5, B(A) = {({Zr, [2.0],) € Err x E(A)}
(2, 0]pr = ([2]er, [2,0]7).

It is clearly bijective. It remains to prove that it is biholomorphic. From the

construction of F(A) and F(A) it follows that the diagram

E(A)
\\\
T (E(A)) — E(A)
! |
locally looks as follows
U xCr (2,0)
\ \
AU xU)xCr—U x C", ((z,2),v) — (2,0).
| | L
U U e — ]

This proves the statement.
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Theorem 3.30. Let F' be a vector bundle of rank n on E,.. defined by fl(u) =

A(rr,u). Then .. (F) is defined by A(u) = (fl?u) I(rol)")

Proof. Consider the following commutative diagram.

C
v X
ET“I‘ ia ET

Let z € C. Consider y = p,,(z) € E,; and © = p,(z) = m.pr(2) € E..

Choose a point b € C such that z € V}, where V}, is the standard parallelogram
at point b. Clearly = € U, = p,(V}) and we have the isomorphism ¢y, : U, — V}, with
op(x) = 2.

Consider 7, 1 (Uy) = Wy ||+ - || Wit (r—1)r, where y € W, and 7, |w,,,. : Wyyir —
U, is an isomorphism for each 0 <7 < r.

We have

T (E(A)(Uy) =E(A) (m, 1 (Uy)) = EAY W |-+ | |[Whsironyr) =
EAWy) @ -+ @ EA) Wi 1)),

where £(A) is the sheaf of sections of E(A).
Choose a € C such that z € V,, z € V,.,. We have ¢,(z) = 2+ 7. As above,
7T_1(Ua) = Wa |_| to |_| W(l“r(?"*l)ﬂ' and

7+ (E(A)(Ua) =E(A) (' (U) = EA)Wa |-+ || Warir-nyr) =
S(A)(WCJ ©---D S(A)(WaJr(rfl)T)'
Since gup(x) = A(pa() — @p(T), wo(x)), we obtain
gan(x) = A(pa(z) — @u(2), po(2)) = Az + 7 — 2,2) = A(T, 2).

Therefore, to obtain A(r, z) it is enough to compute gap(z).

Note that m.(E(A)). = E(A)y & -+ @ S(A)err 1)r- Note also that ga, is a
map from Wr*(g(A))(Ub) = E(A) W) ® - ® E(A) Whsr-1yr) t0 T (E(A)(Us) =
5(A)(W ) - D E(A)<Wa+(r 1)7)

One easﬂy sees that y € Wy, y € Woy(r—1)r and y+i7 € Wopir, y+17 € Woiimn)r
for 0 < ¢ < r. Therefore,

0 ga b+7(y + T)
gab<x) =

~ 0 ga-i—(r—?)'r b-l—(r—a)‘r(y + (T - 1)7—)
Ja+(r—1)7 b(y) 0 s 0
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It remains to compute the entries of this matrix. Since

Gartr=7 5(4) = AlGar—1)r(y) = @o(y), Do(y)) = Az + 17 — 2,2) = A(r7, 2) and

Gat(i-1)r brir(Y +197) = A(Pat(im1)r (Y +9T) = Pogir (Y +97), Gpyir (y +17)) =

A(z+it — (z+1i1) = A0, 2z +i7) = I,

one obtains

0o I,
Jab(T) = 0 I,
A(z) 0 0
0 I,
: " I
Therefore, A(z) = 0 ' ol ( fl?u) r 01)"). This proves the state-
A(z) 0 0
ment. [l

Lemma 3.31. Let A; € GL,(R), i =1,...,n. Then

- 0 ](rfl)n T
H(Ai 0 >—d1ag(AT,...,A1)

i=1
Proof. Straightforward calculation. m
From Theorem 3.29 and Theorem 13.30/ one obtains the following:

Corollary 3.32. Let E(A) be a vector bundle of rank n on E,.., where A : C* —
GL,(CV) is a holomorphic function. Then w'm..E(A) is defined by

diag(A(g" ), ..., Alqu), A(w)).
In other words wim,.E(A) is isomorphic to the direct sum
r—1
D E(Ag'w)).
i=0

Proof. We know that 7fm,..E(A) is defined by B(r,u), where

B(1,u) = (81 I(T(—)l)n> ‘
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Therefore, using Lemma 3.31, one obtains

B(r,u) = ( Al qf.)lu) 1“61)") ( ) &L) f(rann) (A(Ou) f(rann) -
diag(A(g" ), ..., Alqu), A(w)).

Corollary 3.33. Let L € £(r,0), then mim.L = L.
1

Proof. Clear, since L = E(A) for a constant matrix A by Theorem [3.28| O

Note that for a covering w, : E,., — FE. the group of deck transformations
Deck(E,./E.) can be identified with the kernel Ker(,). But Ker, is cyclic and
equals {1,[q],...[q]" "'}, where [g] is a class of ¢ = €*™" in E,,. Clearly

[4]"(E(A(w))) = E(A(qu)).

Therefore, we get one more corollary.

Corollary 3.34. Let € be a generator of Deck(E,./E.). Then for a vector bundle
E on E,. we have
T E=EQ&E®-- @ (€ Y)E.

To proceed we need the following result from [Oda](Theorem 1.2, (i)):

Theorem. Let ¢ : Y — X be an isogeny of g-dimensional abelian varieties over a
field k, and let L be a line bundle on'Y such that the restriction of the map

A(L):Y = Pic”(Y), y— Lo L,
to the kernel of v is an isomorphism. Then End(p.L) = k and p.L is an indecom-
posable vector bundle on X.
Theorem 3.35. Let L € £(1,d) and let (r,d) = 1. Then m..(L) € E(r,d).

Proof. 1t is clear that 7,.L has rank r and degree d. It remains to prove that 7, L
is indecomposable.

We have the isogeny =, : E,., — E,.. Since Y = E,, is a complex torus (elliptic
curve), Y ~ Pic’(Y) with the identification y < t E(@o) ® E(po)~". We know that
L = E(po)? ® L for some L = E(a) € £(1,0), a € C*. Since t;(ﬁ) = ti(E(a)) =
E(a) = L, as in the proof of Theorem [3.27 one gets

AL)(y) =t (L) @ L™ = t5(E(po)* ® L) ® (E(po)’ @ L)™'

ty(E(po)!) @ t,(L) @ B(po) ™ & L' = t,(E(yp ))®E(soo)d=
(B(pp)(2)) ® E(pg?) = (900(2+?7))®E( ) =
( ) = t,(E(v0)) ® E(po) ™",

ty

E(§(z +n)gy“(2)) = E(exp(—2midn)
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where 7 € C is a representative of y. This means that the map A(L) corresponds to
the map
dy ' E.; — E.., y~—dy.

Since Ker 7, is isomorphic to Z/rZ, we conclude that the restriction of dy to Kerr,
is an isomorphism if and only if (r,d) = 1. Therefore, using Theorem mentioned
above, we prove the required statement. Il

Now we are able to prove the following main theorem:

Theorem 3.36. (i) Every indecomposable vector bundle F' € Eg_(r,d) is of the form
(L' @ Fy), where (r,d) = h, r =71'h, d=d'h, L' € Eg, (1,d').

(i) Every vector bundle of the form m..(L' ® Fy,), where L' and v’ are as above,
is an element of Eg_(r,d).

Proof. ™' (i) By Theorem 2.18 we obtain F' ~ E4(r,d) ® L for some line bundle
L € £(1,0). By Theorem 2.16/ we have Es(r,d) ~ E4(r',d') ® Fj, hence F' ~
Es(r',d)® F, ® L.

Consider any line bundle L e &g, (1,d"). Since by Theorem 13.35 moe(L) €
E(r',d), it follows from Theorem 2.18 that there exists a line bundle L” such that
E (', d)® L ~ o (L) ® L".

Using the projection formula, we get

F ~ WT/*(E) X L// &® Fh ~ WTI*(i X W:/(L//) X T:/(Fh)) ~ 7TT/*<L/ & W:/(Fh))

for L' = L ® 7% (L").

Since F}, is defined by a constant matrix we obtain by Theorem [3.29 that 7 (£},)
is defined by f[;’, which is has the same Jordan normal form as f,. Therefore,
7% (Fp) ~ Fj, and finally one gets F' ~ 7. (L' ® Fy).

(ii) Consider F' = m(L' ® F},). As above Fj, = 7% (F},). Using the projection
formula we get

F = Wr/*(L/ (%9 Fh) = 7Tr/*<L/ X W:/(Fh)) = Wr/*(L/) ® Fh-

By Theorem 3.35 m.(L') is an element from Eg (1',d'). Therefore, m. (L) =
EA(r',d") ® L for some line bundle L € £g_(1,0). Finally we obtain

F = Wr/*(L,) ® F, = EA(T,,d/) QKL F,= EA(T’,h, d/h) QL= EA(T, d) ® L,

which means that F' is an element of Eg_ (7, d). O

1 The proof of this theorem uses the ideas from lectures presented by Bernd KreuBler at Uni-
versity of Kaiserslautern.
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Remark. Since any line bundle of degree d’ is of the form t*E(pg) ® E(pg)* !

Theorem [3.36(i) takes exactly the form of Proposition 1 from the paper of Polishchuk
and Zaslow.

?

Any line bundle of degree d’ over E,, is of the form F(a)® E(p?), where a € C*.
Therefore, L' @ F}, = E(a) @ E(¢l) @ E(Ay) = E(p% Ap(a)). Using Theorem 3.30
we obtain the following:

Theorem 3.37. Indecomposable vector bundles of rank r and degree d on E, are
exactly those defined by the matrices

( / 0 [(r’—l)h)
@ Ap(a) 0 )7

where (r,d) = h, ' =r/h, d = d/h, po(u) = ¢ 2u~", ¢ = €™, a € C*, and
a 1
Ap(a)=| | e e
a

Note that if d =0, we get h =r, " =1, and d’ = 0. In this case the statement
of Theorem 13.37 is exactly Theorem 3.28.
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