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Introduction

As an important special case of Gaussian Analysis, the framework of White Noise Anal-

ysis was developed to a tool used in various fields in Mathematical Physics as Statistical

Mechanics, Quantum Field Theory, Quantum Mechanics and Polymer Physics as well as

in Applied Mathematics and Stochastic Analysis, Dirichlet Forms, Stochastic (Partial)

Differential Equations and Financial Mathematics. With the help of Gaussian Analysis

problems from these fields can be represented and solved in a mathematical rigorous way.

The mathematical framework offers many generalizations of methods and concepts known

from finite dimensional analysis as differential operators and Fourier transform. Detailed

information concerning White Noise Analysis and Gaussian Analysis can be found in the

monographs [40, 6, 57, 64] and the articles [50, 81, 78].

This thesis is separated into three main parts:

- Development of Gaussian and White Noise Analysis.

- Hamiltonian Path Integrals as White Noise Distributions.

- Numerical methods for polymers driven by fractional Brownian motion.

Gaussian Analysis and generalized functions

Based on its rapid development in structure and applications, Gaussian Analysis and White

Noise Analysis became more and more interesting in the last 30 years. The progress in the

development of the mathematical concepts is based on various characterization theorems.

These theorems and their succeeding variants and corollaries were the starting point for

a deep analysis of the structure of smooth and generalized random variables in the white

noise spaces, or more generally Gaussian spaces. For detailed information we refer to

[40, 6, 64] and [57]. The main idea in the development of the theory is the use of test and

distribution spaces. There are various triples of test and generalized functions which can be
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used dependent on the application. We give a brief introduction into the characterization

and construction of these spaces in Chapter 2. Preliminaries are given in Chapter 1.

Throughout this thesis we will mainly use the following spaces:

The Hida spaces: We will sketch the construction of the Gel’fand triple

(N ) ⊂ L2(µ) ⊂ (N )′

and give the characterization and topological properties of these spaces in Section 2.2.2. and

2.2.3, respectively.

The spaces G and M: In Section 2.2.4. the spaces of regular test and generalized func-

tions are discussed. As introduced in [87] we also introduce the spaceM and its dual space

M′. The spaces M′ and G ′ are of interest, since their kernels in the chaos decomposition

are from the underlying Hilbert space. We have the chain

G ⊂M ⊂ L2(µ) ⊂M′ ⊂ G ′.

The triple G ⊂ L2(µ) ⊂ G ′ was first introduced by [68] and characterized via the Bargmann-

Segal space in [30].

Throughout this thesis the Donsker’s delta function plays a key role. We investigate this

generalized function also in Chapter 2. Moreover we show by giving a counterexample,

that the general definition for complex kernels is not true as stated in [87]. Furthermore

we fix this mistake by strengthen the requirements on the kernel of the monomial.

In Chapter 3 we take a closer look to generalized Gauss kernels. The results from

this chapter are based on [41] and [34]. Here we generalized these results to the case of

vector-valued White Noise. These results are the basis for Hamiltonian path integrals of

quadratic type. The core result of this chapter is Lemma 3.2.6, which gives conditions un-

der which pointwise products of generalized Gauss kernels and certain Hida distributions

have a mathematical rigorous meaning as distributions in the Hida space.

In Chapter 4 we discuss operators which are related to applications for Feynman Inte-

grals as differential operators, scaling, translation and projection. We show the relation of

these operators to differential operators as in [86], which leads to the notion of so called

convolution operators, introduced by [65]. We generalize the central homomorphy theorem

in [65] to regular generalized functions from G ′. This leads to crucial simplifications in the

following calculations.
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We generalize the concept of complex scaling to scaling with bounded operators. Further-

more for this generalized scaling we discuss the relation to generalized Radon-Nikodym

derivatives. This is done to sum up a toolbox to investigate products of generalized func-

tions in chapter 5. At the end of the chapter, as a special case, we show that the projection

operator from [86, 36] and [87] is not closable on L2(µ). This leads to an ambiguity for

approximations with the Wick formula beyond this space.

In Chapter 5 we discuss products of generalized functions. Moreover the Wick formula

from [86, 36] is revisited. We investigate under which conditions and on which spaces the

Wick formula can be generalized to. At the end of the chapter we consider the products of

Donsker’s delta function with a generalized function with help of a measure transformation.

Here also problems as measurability are concerned.

Hamiltonian Path Integrals

As an alternative approach to quantum mechanics Feynman introduced the concept of path

integrals ([23, 24, 25]), which was developed into an extremely useful tool in many branches

of theoretical physics. In this thesis we develop the concepts for realizing Feynman integrals

in phase space in the framework of White Noise Analysis. This also called Hamiltonian

path integral for a particle moving from y0 at time 0 to y at time t under the potential V

in coordinate space representation is given by

N

∫
x(0)=y0,x(t)=y

∫
exp

(
i

~

∫ t

0

pẋ− p2

2
− V (x, p) dτ

) ∏
0<τ<t

dp(τ)dx(τ), ~ =
h

2π
. (1)

Here h is Planck’s constant, and the integral is thought of being over all position paths

with x(0) = y0 and x(t) = y and all momentum paths. The missing restriction on the

momentum variable at time 0 and time t is an immediate consequence of the Heisenberg

uncertainty relation, i.e. the fact that one can not measure momentum and space variable

at the same time.

The measure is thought to be a flat measure on the infinite dimensional space of paths

in phase space. Since such a measure does not exist the Hamiltonian path intgral as it

stands is an object which is not mathematical justified. On the other hands its relevance

in physics is outstanding.

The path integral to the phase space has several advantages. Firstly the semi-classical

approximation can be validated easier in a phase space formulation and secondly that
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quantum mechanics are founded on the phase space, i.e. every quantum mechanical

observable can be expressed as a function of the space and momentum. A discussion about

phase space path integrals can be found in the monograph [2] and in the references therein.

In the last fifty years there have been many approaches for giving a mathematically rigorous

meaning to the phase space path integral by using e.g. analytic continuation, see [45,

46] or Fresnel integrals [2, 1]. The idea of realizing Feynman integrals within the white

noise framework goes back to [41]. There the authors used exponentials of quadratic

(generalized) functions in order to give meaning to the Feynman integral in configuration

space representation

N

∫
x(0)=y0,x(t)=y

exp

(
i

~
S(x)

) ∏
0<τ<t

dx(τ), ~ =
h

2π
,

with the classical action S(x) =
∫ t

0
1
2
mẋ2 − V (x) dτ . We use these concepts of quadratic

actions in White Noise Analysis, which were further developed in [34] to give a rigorous

meaning to the Feynman integrand in phase space.

Hamiltonian Path Integral in coordinate space First we introduce the space

trajectories involving a Brownian motion B(τ) starting in 0.

x(τ) = x0 +

√
~
m
B(τ), 0 ≤ τ ≤ t.

Furthermore the momentum variable is modeled with help of white noise, i.e.

p(τ) =
√
~mωp(τ), 0 ≤ τ ≤ t.

This is a meaningful definition, since a path has always start and end points which a noise

does not have. Moreover since we have that if the initial and end conditions are fully

known, the momentum is completely uncertain, which means has variance infinity. The

white noise process is intrinsically fulfilling the no boundary condition property and has

as well infinite variance. Furthermore one can think of for a potential just depending on

the space variable the momentum to be p = mẋ, which in our approach would correspond

to a noise in terms of derivative of the Brownian path.

The model for the space path can be found in [40] to model the momentum path we take

a closer look to the physical dimensions of x(τ).

x(τ) has as a space variable the dimension of a length, i.e. also
√

~
m
B(τ) has to have the
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dimension of a length. We have[√
~
m

]
=

√
Js

kg
=

√
kgm2

skg
=

m√
s
.

Thus since the norm of the Brownian motion gives again a
√
t which has the dimension

√
s we have that x(τ) has the dimension of a length.

Considering the momentum variable we have to obtain that the dimension is the dimension

of a momentum. We have

[
√
~m] =

√
Nmskg =

√
kg2m2s

s2
=
kgm√
s
,

hence ωp has the dimension 1√
s
, such that p(τ) has the dimension of a momentum.

A definition which goes in the same direction using the momentum as a kind of derivative

of the path can also be found in [2] and [1]. Here the authors modeled the path space as

the space of absolutely continuous functions and the momentum to be in L2(R). Then we

propose the following formal ansatz for the Feynman integrand in Phase space with respect

to the Gaussian measure µ,

IV = N exp

(
i

~

∫ t

t0

p(τ)ẋ(τ)− p(τ)2

2m
dτ +

1

2

∫ t

t0

ẋ(τ)2 + p(τ)2dτ

)
(2)

× exp

(
− i
h

∫ t

t0

V (x(τ), p(τ), τ) dτ

)
· δ(x(t)− y)

In this expression the sum of the first and the third integral is the action S(x, p), and the

Donsker’s delta function serves to pin trajectories to y at time t. The second integral is

introduced to simulate the Lebesgue measure by compensation of the fall-off of the Gaus-

sian measure in the time interval (t0, t). Furthermore, as in Feynman’s formula we need a

normalization which turns out to be infinity and is implemented by the use of a normalized

exponential as in chapter 3.

Hamiltonian path integral in momentum space If we know the initial and the

end momentums it is clear by Heisenbergs uncertainty principle that we have no certain

information about the corresponding space variables. This means we model the momentum
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trajectories as a Brownian fluctuation starting in the initial momentum p0.

p(τ) = p0 +

√
~m

t− t0
B(τ), 0 ≤ τ ≤ t. (3)

Furthermore the space variable is modeled by white noise, i.e.

x(τ) =

√
~
m
· (t− t0)ωx(τ), 0 ≤ τ ≤ t. (4)

The Hamiltonian path integral for the momentum space propagator is formally given by,

see e.g. [48]

K(p′, t′, p0, t0) = N
∫
p(t0)=p0,p(t)=p′

exp(
i

~

∫ t

t0

−q(s)ṗ(s)−H(p, q) ds)DpDq. (5)

This path integral can be obtained by a Fourier transform of the coordinate space path

integral in both variables, see e.g. [47]. Then we propose the following formal ansatz for

the Feynman integrand in Phase space with respect to the Gaussian measure µ,

IV = N exp

(
i

~

∫ t

t0

−x(τ)ṗ(τ)− p(τ)2

2m
dτ +

1

2

∫ t

t0

ωx(τ)2 + ωp(τ)2dτ

)
(6)

× exp

(
− i
h

∫ t

t0

V (x(τ), p(τ), τ) dτ

)
· δ(p(t)− p′)

In Chapter 6 we characterize Hamiltonian path integrands for the free particle, the har-

monic oscillator and the charged particle in a constant magnetic field as Hida distributions.

Partially the results can also be found in [10]. This is done in terms of the T -transform

and with the help of Lemma 3.2.6. For the free particle and the harmonic oscillator we

also investigate the momentum space propagators. At the same time, the T -transform of

the constructed Feynman integrands provides us with their generating functional. Finally

using the generating functional, in Chapter 7, we can show that the generalized expectation

(generating functional at zero) gives the Greens function to the corresponding Schrödinger

equation.

Here for the charged particle we used an ansatz for the integrand using an upper trian-

gular block operator matrix. Since the corresponding quadratic form coincides with the

quadratic form from a symmetric approach, this ansatz is also justified physically. By the

easy form, calculations can be done explicitly, such that not only the propagator, but also

6



the generating functional can be obtained. The charged particle plays a central role in this

thesis, since for a velocity dependent potential it is crucial to prove the physical meaning

of our ansatz. In this case the momentum is not equivalent to the velocity but differs from

it by a non-trivial additional term.

Moreover, with help of the generating functional we can show that the canonical commu-

tation relations for the free particle and the harmonic oscillator in phase space are fulfilled.

This confirms on a mathematical rigorous level the heuristics developed in [25].

In Chapter 8 we give an outlook, how the scaling approach which is successfully applied

in the Feynman integral setting in [35, 37, 36, 86] can be transferred to the phase space

setting. Here we just list the ideas and go the way of [86, 36]. We give a mathematical

rigorous meaning to an analogue construction to the scaled Feynman-Kac kernel. It is

open if the expression solves the Schrödinger equation. At least for quadratic potentials

we can get the right physics.

Off-lattice Simulation of the Discrete Edwards model

for polymer chains driven by fractional Brownian mo-

tion

In the last part and the last chapter of this thesis, we focus on the numerical analysis of

polymer chains driven by fractional Brownian motion.

The Edwards model for polymer chains [22] describes a nearest neighbour interaction in-

cluding the effect, that two monomers, e.g. molecules cannot be at the same place in a

polymer. This excluded-volume effect can be modeled by a density involving the so called

interaction local time and is still in the focus of mathematical research, see e.g.[85, 33].

Here we focus on a numerical simulation of such polymers with an off-lattice discretization.

Instead of complicated lattice algorithms, see e.g.[53] our discretization is based on the cor-

relation matrix or the Hamiltonian. Using fBm one can achieve a long-range dependence

of the interaction of the monomers inside a polymer chain. We use a Metropolis algorithm

to create the paths of a polymer driven by fractional Brownian motion taking the excluded

volume effect in account.

This is the first step to a deeper analysis of this model.

Recently Bornales, Oliveira, and Streit [14] have proposed a generalization of Flory’s con-

7



jecture to the fractional case with general Hurst index H:

υH =


1 if d = 1 and H > 1/2

H if dH > 2
2H+2
d+2

if otherwise.

First numerical results basing on the joint research with L. Streit(Universidade Madeira),

S. Eleuterio and M. J. Oliveira (both Lissabon), as well as J.Bornales et. al. from Iligan,

Philippines are presented.
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Part I

White Noise Analysis
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Chapter 1

Preliminaries

In this chapter we list facts on nuclear triples which we need throughout this thesis. In fact

the notion of a nuclear triple can be described more general than in this chapter. For this

we refer to [26, 75, 66]. Here we consider such nuclear spaces which are generated by chains

of Hilbert spaces and end up with so called countably Hilbert spaces or CH-spaces (see

e.g. [57]). These spaces have the advantage that we can use the underlying Hilbert space

structure. Furthermore the abstract kernel theorem is listed and the complexification of

nuclear spaces and the Boson Fock space are defined.
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1.1 Facts about nuclear triples

Initial point of a nuclear triple is a real separable Hilbert space H with inner product (·, ·)
and corresponding norm |·|H. For a given separable nuclear Fréchet space N (in the sense

of Grothendieck, see e.g. [66, 26, 27]), which is densely topologically embedded in H we

can construct the nuclear triple

N ⊂ H ⊂ N ′.

Here we identified the Hilbert space H with its dual space H′ via Riesz isomorphism. N ′

denotes the topological dual of N , i.e. the space of linear and continuous mappings from

N to R. As an extension of the scalar product on H one realizes the dual pairing 〈·, ·〉 of

N and N ′, i.e.

〈ξ, f〉 = (ξ, f), f ∈ H, ξ ∈ N .

Nuclear spaces can be characterized conveniently in terms of projective limits of Hilbert

spaces, see e.g. [75]. Since we use this fact throughout this thesis we will not give an

abstract definition of nuclear spaces.

Theorem 1.1.1. The nuclear Fréchet space N can be represented as

N =
⋂
p∈N

Hp := proj lim
p∈N

Hp,

where {Hp, p ∈ N} is a family of Hilbert spaces such that for all l, k ∈ N there exists a

p ∈ N such that the embeddings Hp ↪→ Hl and Hp ↪→ Hk are Hilbert-Schmidt embeddings.

The topology in N is given by the projective limit topology, i.e. the coarsest topology on N
such that the canonical embeddings N ↪→ Hp are continuous for all p ∈ N.
Note that one can choose the family {Hp

∣∣∣p ∈ N} such that for p < q the spaces Hq is

densely embedded in Hp.

We denote the inner product norms on Hp by |·|p. We can suppose that the system of

norms is ordered, i.e. |·|p ≤ |·|q, if p < q and thus |ξ|H ≤ |ξ|p , for all p ∈ N.

Also the dual space of N , the co-nuclear space N ′ can be written in a convenient way

by using a chain of Hilbert spaces. Indeed by general duality theory one has

N ′ =
⋃
p∈N

H−p := indlim
p∈N

H−p,

where we use the dual family of spaces {H−p := H′p, p ∈ N}. The inductive limit topology

12



τind corresponding to that family of Hilbert spaces is the finest topology on N ′ such that

the embeddings H−p ↪→ N ′ are continuous for all p ∈ N. We denote the inner product

norms on H−p by |·|−p.
Next we list some facts about the inductive limit topology, see e.g. [75, 40]

Proposition 1.1.2. In the above mentioned setting one has

a) τind coincides with the Mackey topology τ(N ′,N ), i.e. the finest topology which is

dual continuity preserving.

b) τind coincides with the strong topology β(N ′,N ), i.e. the topology with the most open

sets on a dual pair.

c) The dual pair 〈N ,N ′〉 is reflexive if N ′ is equipped with the strong topology.

d) A sequence converges in the in the strong topology β(N ′,N ) if and only if it converges

in the weak topology σ(N ′,N ).

We introduce tensor powers of nuclear spaces via tensor powers of the Hilbert spaces

H⊗np , n ∈ N. If there is no danger of confusion we denote the norms for the tensor powers

of Hp and H−p also by |·|p and |·|−p, respectively. Then we define

N⊗n := proj lim
p∈N

H⊗np .

It is possible to show, that indeed N⊗n is a nuclear space, see e.g. [75], which is denoted

by the nth tensor power of N . Again by general duality theory we obtain the dual space

of N⊗n: (
N⊗n

)′
= indlim

p∈N
H⊗n−p .

The well-known Schwartz kernel theorem states that every continuous bilinear form b(·, ·) :

N ×N → R can be written in the form

b(ξ, ψ) = 〈ξ ⊗ ψ,Φ〉,

where Φ ∈ N ′⊗2.

A bilinear form b(·, ·) : Hp × Hp → R can be identified with Φ ∈ (Hp ⊗π Hp)
′ where ⊗π

denotes the tensor product w.r.t the π-topology, see e.g. [26]. Since we consider chains of

Hilbert spaces, it is important to find a q ∈ Z, such that we can identify Φ as an element of

Hq ⊗Hq. This is stated in the following ”kernel theorem” for multlinear forms, see e.g. [6]

13



Theorem 1.1.3. Let ξ1, . . . , ξn 7→ Fn(ξ1, . . . , ξn) be a Hp-continuous n-linear form on N n,

i.e.,

|Fn(ξ1, . . . ξn)| ≤ C
n∏
k=1

|ξk|p ,

for some p ∈ N and C > 0.

Then for all q > p, where the embedding iq,p : Hq ↪→ Hp is Hilbert-Schmidt, there exists a

unique Φ(n) ∈ H⊗n−q such that

Fn(ξ1, . . . , ξn) = 〈ξ1 ⊗ · · · ⊗ ξn,Φ(n)〉, ξ1, . . . ξn ∈ N

with ∣∣Φ(n)
∣∣
−q ≤ ‖iq,p‖

n
HS,

where ‖iq,p‖HS denotes the Hilbert-Schmidt norm of the embedding iq,p.

The next corollary can be found in e.g. [87, 6, 86].

Corollary 1.1.4. Let ξ1, . . . , ξn 7→ Fn(ξ1, . . . , ξn) be a H−p-continuous n-linear form on

N n, i.e.,

|Fn(ξ1, . . . ξn)| ≤ C
n∏
k=1

|ξk|−p ,

for some p ∈ N and C > 0.

Then for all q < p, where the embedding ip,q : Hp ↪→ Hq is Hilbert-Schmidt, there exists a

unique Φ(n) ∈ H⊗nq such that

Fn(ξ1, . . . , ξn) = 〈ξ1 ⊗ · · · ⊗ ξn,Φ(n)〉, ξ1, . . . ξn ∈ N

with ∣∣Φ(n)
∣∣
q
≤ ‖ip,q‖nHS.

If in Theorem 1.1.3 and Corollary 1.1.4 we consider symmetric n-linear forms Fn

on N⊗n, i.e. for every permutation π of the set {1, . . . , n} we have Fn(ξπ1 , . . . ξπn) =

Fn(ξ1, . . . ξn), the corresponding kernel Φ(n) is in the nth symmetric tensor power of Hq,

denoted by H⊗̂nq ⊂ H⊗nq . By ⊗̂ we denote the symmetrization of the tensor product

f1⊗̂ · · · ⊗̂fn :=
1

n!

∑
π

fπ1 ⊗ · · · ⊗ fπn ,

14



for f1, . . . fn ∈ H and where the sum extends over all permutations of n letters.

The theorems mentioned above also hold for the complexified spaces, NC and N ′C, respec-

tively. By definition every element χ ∈ NC can be decomposed into χ = ξ+ iψ, ξ, ψ ∈ N .

The corresponding complexified Hilbert spaces Hp,C are equipped with the inner product

(χ1, χ2)Hp,C := (ξ1, ξ2)Hp + (ψ1, ψ2)Hp + i(ψ1, ξ2)Hp − i(ξ1, ψ2)Hp ,

where χ1, χ2 ∈ Hp,C, with χ1 = ξ1 + iψ1 and χ2 = ξ2 + iψ2, ξ1, ξ2, ψ1, ψ2 ∈ Hp. Finally we

obtain the nuclear triple

N⊗nC ⊂ H⊗nC ⊂
(
N⊗nC

)′
.

The dual pairing on the complexified spaces is chosen to be bilinear, which means that an

additional complex conjugation is required to relate it to the inner product, i.e.

〈ξ, η〉 = (ξ, η)HC , ξ, η ∈ HC.

Remark 1.1.5. In many monographs concerning White Noise Analysis, the dual pairing

is defined by

〈·, ·〉 : D′ ×D → C, (1.1)

i.e. the test function is on the right hand side of the dual pairing. This is based on physics

notation, see e.g. [40, 64, 57]. Throughout this thesis, we use the representation

〈·, ·〉 : D ×D′ → C, (1.2)

i.e. the test function is on the left hand side, which is the common notation in functional

analysis, see e.g. [3].

All the spaces we use in the following are reflexive (i.e. D′′ = D), hence (1.1) can be

considered as the bidual pairing, i.e.

〈ξ, ω〉 = 〈ω, ξ〉, ξ ∈ D, ω ∈ D′,

where the left hand side is the dual and the right hand side the bidual pairing.

We also introduce the Fock space Γ(H). The next definition can be found in [64].

Definition 1.1.6. Let H be a Hilbert space with norm |·|. Let Γ(H) be the space of

all sequences f = (fn)∞n=0, fn ∈ H⊗̂nC , (with the convention that H⊗̂0
C = C) such that
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∞∑
n=0

n! |fn|2 <∞. Equipped with the norm

‖f‖2
Γ(H) =

∞∑
n=0

n! |fn|2 ,

the Hilbert space Γ(H) is called the (Boson or symmetric) Fock space over H.

1.2 Facts on CH-spaces

1.2.1 The Schwartz Spaces

Standard White Noise Analysis is based on the nuclear real countably Hilbert space (CH-

space) of rapidly decreasing functions (Schwartz test functions) S := S(R,R). The topol-

ogy of S is induced by the family of seminorms

‖f‖α,β =

∥∥∥∥xα dβdxβ f
∥∥∥∥
∞
, α, β ∈ N.

More adapted to White Noise analysis is the reconstruction of the Schwartz test func-

tion space S by an equivalent system of seminorms, which is based on the so called N -

representation of S(R,R), see [70, Appendix to V.3, p. 141ff.]. For technical reasons we

need an operator H such that inf σ(H) > 1. The topology of S is induced by the positive

(unbounded) self-adjoint Operator

H = − d2

dx2
+ x2 + 1

on the space H = (L2(R, dt,R), dx) of (equivalence classes of) real-valued square integrable

functions w.r.t. Lebesgue measure. The (point) spectrum of H is given by

σ(H) = {2n+ 2 | n ∈ N}

, hence inf σ(H) > 1. The eigenfunctions of H are the so-called Hermite functions

hn, n ∈ N with

Hhn = λnhn := (2n+ 2)hn, n ∈ N.
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Note that the operator H has a Hilbert-Schmidt inverse H−1 . We have ‖H−1‖OP = 1
2

and

denote δ := ‖H−1‖HS. The complexification SC is equipped with the Hilbertian norms

|ξ|p := |Hpξ|0 ,

for p ∈ R. We denote HC := L2(R, dt,C) and HC,p :=
{
ξ ∈ S ′C| |ξ|p <∞

}
for p ∈ R,

respectively, where Hp :=
{
ξ ∈ S ′| |ξ|p <∞

}
, respectively. In the case of the standard

CH-space S(R) one often uses the notation Sp instead of Hp and Sp,C instead of Hp,C. Next

we list some properties of the SC, which are used in calculations throughout the following

chapters.

Proposition 1.2.1.

(i) For p ≤ q we have

|·|p ≤
1

2(q−p) |·|q .

(ii) Let ξ ∈ S ′C. Then

lim
p→∞

|ξ|−p = 0.

(iii) For any p ≥ 0, the embedding Sp+1 ↪→ Sp is of Hilbert-Schmidt type.

(iv) For ξ ∈ S ′C, we have

ξ =
∞∑
n=0

〈hi, ξ〉hi,

where the sum converges in S ′C.

(v) The Hermite functions (hi)i∈N is a family of functions which are orthogonal in every

Hilbert space Sp,C.

1.2.2 Facts about Trace operators

The general construction of CH-spaces, has the advantage of being manifestly independent

of the choice of any concrete system of Hilbertian norms topologizing N , see [87, Remark,

p. 48]. But by the lack of a property like 1.2.1(i) we cannot conclude that

lim
q→∞
‖iq,p‖HS = 0 or lim

n→∞
|ξ|−p = 0, ξ ∈ S ′C
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.

Since we have no knowledge about the inner structure of the Hilbert spaces Hp, it is not

possible to assume the existence of a sequence (ei)i∈N, which fulfills the properties (iv) and

(v) of Proposition 1.2.1.

The standard CH-space S has the advantage that many questions can be answered more

precisely by an explicit calculation while in the general case the use of abstract theorems

as e.g. the abstract kernel theorem as in the previous section is needed.

We state some general facts on CH-spaces.

Lemma 1.2.2. Let B ∈ L(NC,NC). Then for all p ∈ N there exists a q ∈ N such that

B∗ ∈ L(HC,−p,HC,−q)

Proof. Let p ∈ N. Then there exists C > 0, q ∈ N, such that for all ξ ∈ NC we have

|B(ξ)|p ≤ C · |ξ|q

Hence B ∈ L(HC,q,HC,p) and consequently

B∗ ∈ L(HC,−p,HC,−q).

Proposition 1.2.3. Let B ∈ L(NC,NC) and n ∈ N, n > 0. Then for all p ∈ N there

exists a K > 0 and q1, q2 ∈ N, with p < q1 < q2 such that for all θ ∈ N⊗nC we have

∣∣B⊗nθ∣∣
p
≤
(
K ‖B‖q2,q1 ‖iq1,p‖HS

)n
· |θ|q2 .

Proof. Choose q1, q2 ∈ N with q2 > q1 > p and

B ∈ L(HC,q1 ,HC,p) and B ∈ L(HC,q2 ,HC,q1).

For a shorter notation we write eJ for ej1⊗· · ·⊗ejn . Now let (eJ)J be an orthonormal basis

of H⊗np . Further let Ip : (H⊗nC,p)
′ → H⊗nC,p be the Riesz isomorphism. Then for θ ∈ N⊗nC

∣∣B⊗nθ∣∣2
p

=
∑
J

∣∣(B⊗nθ, eJ)p
∣∣2 =

∑
J

∣∣∣〈B⊗nθ, I−1
p (eJ)

〉∣∣∣2
18



=
∑
J

∣∣〈B⊗nθ, I−1
p (eJ)

〉∣∣2 =
∑
J

∣∣〈θ, (B∗)⊗nI−1
p (eJ)

〉∣∣2
≤ |θ|2q2 ·

∑
J

∣∣(B∗)⊗nI−1
p (eJ)

∣∣2
−q2

,

We can estimate this with the norm of B∗ : HC,−q1 → HC,−q2 , denoted by ‖B∗‖−q1,−q2 .

Then for a K > 0 we have

|θ|2q2 ·
∑
J

∣∣(B∗)⊗nI−1
p (eJ)

∣∣2
−q2
≤ |θ|2q2 ·K

2n ‖B∗‖2n
−q1,−q2

∑
J

∣∣I−1
p (eJ)

∣∣2
−q1

,

= |θ|2q2 ·K
2n ‖B∗‖2n

−q1,−q2 ‖i−p,−q1‖
2n
HS

= |θ|2q2 ·K
2n ‖B‖2n

q1,q2
‖iq1,p‖

2n
HS ,

where the last equation is due to [72, Theorem 4.10(2), p. 93]

Definition 1.2.4. By the canonical correspondence between the bilinear forms B(NC,NC)

and (NC ⊗NC)′, the trace operator tr is uniquely defined via the formula:

〈ξ ⊗ η, tr〉 = 〈ξ, η〉 = 〈ξ, Id(η)〉 , ξ, η ∈ NC.

Lemma 1.2.5. The trace operator tr is an element of NC ⊗N ′C and N ′C ⊗NC.

Proof. By definition, the corresponding operator under the isomorphism L(NC,NC) h
N ′C ⊗ NC is the identity, compare [64, Theorem 1.3.10(Kernel Theorem), p. 11]. Hence

tr ∈ N ′C ⊗NC. Using the isomorphism N ′C ⊗NC −→ NC ⊗N ′C, ω ⊗ η 7→ η ⊗ ω, we obtain

the desired result. Compare to the proof of [64, Proposition 5.3.2, p. 121]).

Proposition 1.2.6. The trace operator can be represented by

tr =
∞∑
n=0

en ⊗ en,

where (en)n∈N is an arbitrary orthonormal basis of H.

Proof. For an elementary proof, see [64, Proposition 2.2.1, p. 24] Note that this proof is

independent of the internal structure of the Hilbert spaces which define the CH-space.

We give another example, where a representation by a basis is possible even in the case

of a general CH-space.
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Definition 1.2.7. Let B ∈ L(NC,N ′C). By trB we denote the element in N ′C ⊗N ′C, which

is defined by

∀ξ, η ∈ NC : trB(ξ ⊗ η) := 〈ξ, Bη〉 .

Note that trB is not symmetric. Further there exists a q ∈ Z such that trB ∈ HC,q ⊗HC,q.

Proposition 1.2.8. Let B ∈ L(HC,HC) be a Hilbert-Schmidt operator. Then trB ∈
HC ⊗HC. Further for each orthonormal basis (ej)j∈N of HC it follows:

trB =
∞∑
i=0

Bei ⊗ ei.

Proof.

∣∣∣∣∣ ∞∑i,j=0

〈ei, Bej〉 ei ⊗ ej

∣∣∣∣∣
2

0

=
∞∑

i,j=0

|〈ei, Bej〉|2 =
∞∑
j=0

|Bej|20 = ‖B‖2
HS < ∞. Hence the

sum is a well-defined element in HC ⊗ HC. The identity follows by verifying the formula

for {ek ⊗ el}k,l∈N:〈
ek ⊗ el,

∞∑
i=0

Bei ⊗ ei

〉
= (ek, Bel)H(el, el)H = (ek, Bel)H = 〈ek, Bel〉.

Proposition 1.2.9. In the case N = S(R) and B ∈ L(SC(R), S ′C(R)) we have

trB =
∞∑
i=0

Bhi ⊗ hi

Proof. By the continuity of the bilinear form 〈·, B·〉 on S(R)C × S(R)C there exists p ≥ 0

such that B ∈ L(Hp,C,H−p,C). Let q > p+ 1. Then

|
∞∑
n=0

Bhn ⊗ hn|2−q =
∞∑
n=0

|Bhn|2−q · |hn|2−q ≤ K

∞∑
n=0

|hn|2p · |hn|2−q,

for some K > 0. For the last expression we have

K

∞∑
n=0

|hn|2p · |hn|2−q ≤ K

∞∑
n=0

(
1

2n+ 2

)2

<∞.
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Then as in the proof of Proposition 1.2.8 we obtain

trB =
∞∑
n=0

Bhn ⊗ hn,

since

span{hn ⊗ hl}n,l
S(R)⊗S(R)

= S(R)⊗ S(R).
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Chapter 2

Gaussian Analysis and White Noise

Analysis

In this chapter we give a brief introduction into the theory of White Noise Analysis. This

framework generalizes structures known from finite dimensional analysis to the infinite di-

mensional setting. Basis of the calculus are spaces of generalized functions on which, by the

theorem of Bochner and Minlos, a Gaussian measure is defined. Beneath powerful tools as

Fourier transform and differential operators also a distribution theory can be found in the

framework. Various triples of test and generalized functions and corresponding test func-

tions could be characterized with the help of spaces of analytic functions by transforming

them via the Gauss-Fourier or Gauss-Laplace transform. These characterization theorems

also give the possibility to consider sequences and integrals of generalized functions, such

that also these can be characterized as generalized functions of White Noise Analysis.
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2.1 White Noise measure

Consider the Gel’fand triple or nuclear triple (compare to section 1.1)

N ⊂ H ⊂ N ′.

A standard example for such a triple is the so-called White Noise triple

S(R) ⊂ L2(R, dx) ⊂ S ′(R),

where S(R) := {f ∈ C∞(R) | ∀k, n ∈ N0∃C ∈ R+ : supx∈R |xkDnf | ≤ C} is the space of

Schwartz test functions and S ′(R) := {ω : S(R) → R | linear and continuous} its topolog-

ical dual, the space of tempered distributions. Central space in this triple is the Hilbert

space of (equivalence classes of) R-valued square integrable functions w.r.t. the Lebesgue

measure (equipped with its canonical inner product (·, ·) and norm | · |) , more detailed see

e.g. [87, 70].

It is not possible to construct a flat, i.e. translation invariant measure on an infinite di-

mensional space see e.g. [42]. Nor is it possible to construct a Gaussian measure on a

separable Hilbert space.

Remark 2.1.1. Assume that µ is a Gaussian measure on a separable Hilbert space H. Let

(en)n∈N be an orthonormal basis for H. One then has∫
H

exp(i(h, en)) dµ(h) = exp(−1

2
(en, en)) = exp(−1

2
).

for all n ∈ N.

Since for every h ∈ H one has that

h =
∞∑
n=0

(h, en)en

it is known, that ((h, en))n∈N is a zero sequence for all h ∈ H. Then, by the theorem of

Lebesgues dominated convergence the integral tends to 1 as n tends to infinity, since µ is

a probability measure. In the limit the equation yields

1 = exp(−1

2
),
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which is a contradiction.

To overcome this, we construct a Gaussian measure on the space N ′ (or S ′(R) in the

White Noise framework). Therefore we consider the σ-algebra generated by cylinder sets:

Cξ1,...,ξnF1,...,Fn
=
{
ω ∈ N ′

∣∣〈ξ1, ω〉 ∈ F1, . . . , 〈ξn, ω〉 ∈ Fn,

ξi ∈ N , Fj ∈ B(R), j = 1, . . . , n, n ∈ N,
}

(2.1)

where B(R) denotes the σ-algebra of Borel sets in R. We denote

Cσ(N ′) := σ(Cξ1,...,ξnF1,...,Fn
).

The next proposition can be found in [40] or for the proof [4].

Proposition 2.1.2. Let N be a nuclear CH-space, then we have

Cσ(N′) = Bw(N′) = Bs(N′),

where Bw(N′) (resp. Bs(N′)) is the Borel σ-algebra generated by the weak (resp. strong)

topology.

The existence of a probability measure on N ′ is given via the Theorem of Bochner and

Minlos, see e.g. [61, 27, 6, 57].

Theorem 2.1.3 (Theorem of Bochner and Minlos). Let N be a real nuclear space. A

complex-valued function C on N is the characteristic function of a unique probability mea-

sure ν on N′,i.e.

C(ξ) =

∫
N′

exp(i〈ξ, ω〉) dν(ω), ξ ∈ N,

if and only if the following is fulfilled:

a) C(0) = 1,

b) C is continuous,

c) C is positive definite, i.e.

n∑
j=1

n∑
k=1

zjzkC(ξj − ξk) ≥ 0, for all z1, . . . , zn ∈ C and ξ1, . . . , ξn ∈ N.
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Via the theorem of Bochner and Minlos one introduces the canonical Gaussian measure

µ on N ′ by giving its characteristic function

C(ξ) =

∫
N ′

exp(i〈ξ, ω〉) dµ(ω) = exp

(
−1

2
〈ξ, ξ〉

)
, ξ ∈ N .

For a measurable function f defined on N ′ and which is integrable w.r.t. µ, i.e.∫
N ′
|f(ω)| dµ(ω) <∞,

we define the expectation of f (denoted by Eµ(f)) by

Eµ(f) =

∫
N ′
f(ω) dµ(ω).

The space of integrable functions w.r.t µ we denote by L1(µ) := L1(N ′, Cσ,µ(N ′), µ).

For the use of test and generalized functions it is necessary to consider the square-integrable

functions w.r.t µ, since in this case we end with a Hilbert space and obtain - as we will see

later - a Gel’fand triple of spaces. The space of square-integrable functions we denote by

L2(µ) := L2(N ′, Cσ,µ(N ′), µ).

This space becomes a Hilbert space with the inner product

((f, g)) :=

∫
N ′
f(ω)g(ω) dµ(ω), f, g ∈ L2(µ).

Example 2.1.4.

a) For φ(n) ∈ N ⊗̂nC , n ∈ N, and φ0 ∈ C we define the smooth Wick monomials of order

n corresponding to the kernels φ(n) by

I
(
φ(n)

)
(x) :=

〈
φ(n), : ω⊗n :

〉
, ω ∈ N ′, n ∈ N.

Here : ω⊗n :∈
(
N ⊗̂n

)′
are the so-called Wick powers of ω of order n, n ∈ N. For

this we have the following recursion formula, compare to [40]

: ω⊗0 : = 1

: ω⊗1 : = ω
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: ω⊗n : = : ω⊗n−1 : ⊗̂ω − (n− 1) : ω⊗n−2 : ⊗̂τ,

where tr ∈ N ′⊗̂2 is the trace operator defined by

〈f ⊗ g, tr〉 = 〈f, g〉, f, g ∈ N .

Note that smooth Wick monomials of different order are orthogonal in L2(µ), see

e.g.[40, 57, 64].

b) Let (fn)n∈N, fn 6= 0 be a sequence in N converging to f ∈ H. Then we have∫
N ′
〈fn, ω〉2 dµ(ω) =

1√
2π〈fn, fn〉

∫
R
x2 exp(− 1

2〈fn, fn〉
x2) dx

=
1√

2π〈fn, fn〉
〈fn, fn〉 ·

√
2π〈fn, fn〉 = 〈fn, fn〉.

This gives the so-called Wiener-Itô-Segal-isometry which enables us to extend the

dual pairing from N to H, i.e. we define 〈f, ·〉 ∈ L2(µ) by

〈f, ·〉 := lim
n→∞
〈fn, ·〉.

Since fn converges in H we have 〈fn, ·〉 converges in L2(µ) by the Wiener-Itô-Segal-

isometry and is thus a well-defined object as an L2(µ)-limit.

c) By approximation we also can construct Wick monomials I(f (n)) with kernels f (n) ∈
H⊗̂nC . Since we have for sequences (f

(n)
k )k∈N ⊂ N ⊗̂nC , (g

(m)
k )k∈N ⊂ N ⊗̂mC converging to

f (n) in H⊗̂nC and g(m) in H⊗̂mC , respectively, we obtain((
I(f

(n)
k ), I(g

(m)
k )

))
=

∫
N ′

〈
f

(m)
k , : ω⊗m :

〉〈
g

(n)
k , : ω⊗n :

〉
dµ(ω) = δn,m

(
f

(n)
k , g

(n)
k

)
,

where δn,m is the Kronecker symbol. Thus again, convergence in H⊗̂nC ensures con-

vergence in L2(µ) and I(f (n)) and I(g(m)) are rigorously defined as L2(µ)-limits.

d) Important examples of L2(µ)-functions are the so-called coherent states or Wick ex-

ponentials

: exp(〈ξ, ·〉) : = exp(−1

2
〈ξ, ξ〉) · exp(〈ξ, ·〉), ξ ∈ N
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and the exponential vectors

exp(i〈ξ, ·〉), ξ ∈ N .

They also play a key role in the characterization of White Noise spaces. We will see

later, that they are even more regular than mentioned here.

If we choose special nuclear spaces N and Hilbert spaces H we can give more examples

and also related to stochastic processes as Brownian motion. This is the case for the White

Noise triple.

Example 2.1.5.

a) The Gel’fand triple for vector valued white noise is given by Sd(R) ⊂ L2
d(R, dx) ⊂

S ′d(R) of the Rd-valued, Schwartz test functions and tempered distributions with

the Hilbert space of (equivalence classes of) Rd-valued square integrable functions

w.r.t. the Lebesgue measure as central space (equipped with its canonical inner prod-

uct (·, ·) and norm | · |), more detailed see e.g. [87, Exam. 11]. Sd(R) is a nuclear

space and can be represented as projective limit of a decreasing chain of Hilbert spaces

(Hp)p∈N.

Sd(R) =
⋂
p∈N

Hp,

we have that Sd(R) is a countably Hilbert space in the sense of Gel’fand and Vilenkin

[27]. Note that S ′d(R) =
⋃
p∈N

H−p, i.e. S ′d(R) is the inductive limit of the increasing

chain of Hilbert spaces (H−p)p∈N, see e.g. [27]. We denote the dual pairing of Sd(R)

and S ′d(R) also by 〈·, ·〉. Note that its restriction on Sd(R) × L2
d(R, dx) is given by

(·, ·). The space (S ′d(R), Cσ(S ′d(R)), µ) is the basic probability space in our setup. The

central Gaussian spaces in this framework are the Hilbert spaces (L2) := L2(S ′d(R),

Cσ(S ′d(R)), µ), d ∈ N, of complex-valued square integrable functions w.r.t. the Gaus-

sian measure µ. Here Cσ(S ′d(R)) is the σ-algebra generated by cylinder sets. Within

this formalism a version of a d-dimensional Brownian motion is given by

B(t,ω) := (〈1[0,t), ω1〉, . . . 〈1[0,t), ωd〉), ω = (ω1, . . . ωd) ∈ S ′d(R), t ≥ 0, (2.2)

in the sense of an (L2)-limit. Here 1A denotes the indicator function of a set A.

b) For d = 1 in a), we have the classical one-dimensional White Noise triple. Here a
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version of a Brownian motion is given by B(t, ω) := 〈1[0,t), ω〉. Note that if we just

consider ω ∈ L2(R, dx) the dual pairing can be written as an integral and we obtain

〈1[0,t), ω〉 =

∫
R
1[0,t)(s)ω(s) ds =

∫ t

0

ω(s) ds.

Thus one can formally consider ω as the derivative of Brownian motion. Since the

corresponding process is called White Noise process, we call this triple White Noise

triple. White Noise Analysis uses this White Noise process as infinite-dimensional

coordinate system.

2.2 Spaces of test and generalized functions

2.2.1 Polynomials and Wiener-Itô-Segal decomposition

To characterize subspaces of L2(µ) we start with an easy but very important subspace of

L2(µ), the space of so-called smooth polynomials on N ′.

Definition 2.2.1. We call the space

P(N ′) :=

{
φ
∣∣∣φ(ω) =

N∑
n=0

〈
φ̃(n), ω⊗n

〉
, with φ̃(n) ∈ N ⊗̂nC , ω ∈ N ′, N ∈ N

}

=

{
φ
∣∣∣φ(ω) =

N∑
n=0

〈
φ(n), : ω⊗n :

〉
, with φ(n) ∈ N ⊗̂nC , ω ∈ N ′, N ∈ N

}

the space of smooth polynomials on N ′. Note that the equality yields, since every smooth

polynomial can be expressed in terms of a sum of smooth Wick monomials of the same

order. Furthermore the smooth polynomials are dense in L2(µ), i.e. P(N ′)
L2(µ)

= L2(µ).

Consequently the space L2(µ) of equivalence classes of µ-square integrable complex

valued functions onN ′ has a well-known Wiener-Itô-Segal chaos decomposition [63, 79, 77].

Within this decomposition there exists the so-called Segal isomorphism I mapping between

the symmetric complex Fock space Γ(HC) over the complexificationHC ofH and L2(µ). To

construct spaces of more regularity on N ′ one can use special mappings of proper subspaces

of Γ(H) into L2(µ) via the unitary map I : Γ(H)→ L2(µ), see e.g. [6, 40].
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Theorem 2.2.2 (Wiener-Itô-Segal decomposition). For each φ ∈ L2(µ) there exists a

unique element (fn)∞n=0 ∈ Γ(HC) such that

φ(ω) =
∞∑
n=0

〈
fn, : ω

⊗n :
〉
, (2.3)

in L2(µ)-sense. On the other side every (fn)∞n=0 ∈ Γ(HC) defines a function in L2(µ) via

(2.3). Then we have

‖φ‖2
L2(µ) =

∞∑
n=0

n! |fn|2 = ‖(fn)∞n=0‖Γ(HC).

We introduce the Gauss-Laplace transform also called S-transform on the space L2(µ).

Definition 2.2.3. Let f ∈ L2(µ) and ξ ∈ HC. We define the S-transform of f in ξ by

S(f)(ξ) :=
(
: exp(〈ξ, ·〉) :, f

)
L2(µ)

= exp(−1

2
|ξ|L2(R,dx))

∫
N ′
f(ω) exp(〈ξ, ω〉) dµ(ω).

the S-transform is well defined since : exp(〈ξ, ·〉) :∈ L2(µ) for ξ ∈ HC.

Remark 2.2.4. For ξ ∈ H the Wick-ordered exponential : exp(〈ξ, ·〉) : is the Radon-

Nikodym derivative of the measure µξ := µ(· − ξ) w.r.t. the standard White Noise measure

µ, i.e.

: exp(〈ξ, ·〉) :=
dµξ
dµ

.

Then for f ∈ L2(µ) and ξ ∈ H∫
N ′
f(ω)· : exp(〈ξ, ω〉) : dµ(ω) =

∫
N ′
f(ω) dµξ(ω) =

∫
N ′
f(ω + ξ) dµ(ω),

compare [40, 64, 57]. This shows the quasi-translation invariance of the standard White

Noise measure.

The S-transform is important since it enables us to determine the chaos decomposition

of an L2(µ) function, see e.g. [40, 64, 57]. This can be seen in the following, by applying

the definition of Wick monomials.

S(f)(ξ) =
∞∑
n=0

〈ξ⊗n, f (n)〉, ξ ∈ N , (2.4)
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where f (n) is the nth kernel in the Wiener-Itô-Segal chaos decomposition of f ∈ L2(µ).

Furthermore the S-transform has an entire extension in ξ ∈ N , i.e.

S(f)(ξ) =
∞∑
n=0

〈ξ⊗n, f (n)〉), ξ ∈ NC.

2.2.2 Hida test functions and Hida distributions

We introduce spaces of test and generalized functions in infinite dimensional Gaussian

analysis. Before we introduce the famous and important spaces of Hida and Kondratiev

distributions, we come once more back to the smooth polynomials and their dual space,

as a starting point for the construction of more applicable triples. The idea of using these

spaces goes back to Kristensen et al., see e.g. [54]. In that work, the authors also discuss

in which sense the space could be seen as minimal. The space of smooth polynomials

P(N ′) together with a natural topology is a nuclear space, see [6]. This topology is chosen

such that we obtain an isomorphy between P(N ′) and the topological direct sum of tensor

powers N ⊗̂nC , see e.g. [75]. Then we have

P(N ′) '
∞⊕
n=0

N ⊗̂nC .

The isomorphism is the Wiener-Itô-Segal isomorphism mentioned in the previous section.

I.e.

P(N ′) 3 φ, φ(ω) =
∞∑
n=0

〈φ(n), : ω⊗n :〉, ω ∈ N ′ ↔
{
φ(n)|n ∈ N

}
∈
∞⊕
n=0

N ⊗̂nC ,

where just a finite number of φ(n) is non-zero, since φ is a polynomial.

Definition 2.2.5. A sequence P(N ′) ⊃ (φj)j∈N with

φj :=

N(φj)∑
n=0

〈φ(n)
j , : ·⊗n :〉

converges to an element

P(N ′) 3 φ =

N(φ)∑
n=0

〈φ(n), : ·⊗n :〉

if the set {N(φj}|j ∈ N} is bounded and for all n ∈ N one has that φ
(n)
j → φ(n) as j tends

to infinity.
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Consider the Gel’fand triple

P(N ′) ⊂ L2(µ) ⊂ P ′(N ′),

where P ′(N ′) is the topological dual space of P(N ′) w.r.t L2(µ). Then the bilinear dual

pairing 〈〈·, ·〉〉 between P(N ′) and P ′(N ′) is an extension of the sesquilinear inner product

on L2(µ), i.e. 〈〈f, g〉〉 = ((f, g)), for g ∈ L2(µ) and f ∈ P(N ′). Since the constant 1-function

is a smooth polynomial, we can then generalize the notion of expectation to distributions

from P ′(N ′) via the dual pairing. Since the dual pairing is an extension of the L2(µ) inner

product, i.e. the integral w.r.t. µ we define

Eµ(Φ) := 〈〈1,Φ〉〉, Φ ∈ P ′(N ′).

As mentioned above the space P ′(N ′) is for applications often too large. To overcome

this one considers projective and inductive limits of Hilbert spaces to obtain distribution

spaces with higher regularity. To construct these spaces we consider the systems of Hilber-

tian norms on P(N ′).

Definition 2.2.6. Let φ =
∑∞

n=0〈φ(n), : ·⊗n :〉 ∈ P(N ′). Then we define the Hilbertian

norm ‖ · ‖p,q,β on P(N ′) by

‖φ‖2
p,q,β :=

∞∑
n=0

(n!)1+β2nq
∣∣φ(n)

∣∣2
p
,

for p, q ∈ Z and −1 ≤ β ≤ 1. We denote the completion of P(N ′) w.r.t ‖ · ‖p,q,β by (H)βp,q.

The spaces (H)βp,q are Hilbert spaces with the inner product

((Ψ,Φ)) :=
∞∑
n=0

(n!)1+β2nq(ψ(n), φ(n))p,

with Ψ =
∑∞

n=0〈ψ(n), : ·⊗n :〉 and Φ =
∑∞

n=0〈φ(n), : ·⊗n :〉 ∈ P(N ′). In the following we also

use the shorter notation

‖ · ‖p := ‖ · ‖p,p,0.

Definition 2.2.7. We define spaces of test functions (N )β as

(N )β := proj lim
p,q∈N

(H)βp,q,
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for 0 ≤ β ≤ 1. By duality theory we define the corresponding generalized functions via the

inductive limit, i.e.

((N )β)′ := (N )−β := indlim
p,q∈N

(H)β−p,−q.

The following properties of the constructed test and generalized function spaces can be

found e.g. in [87, 57, 40, 50]

Proposition 2.2.8. (i) (N )β is nuclear for 0 ≤ β ≤ 1.

(ii) The topology on (N ) := (N )0 is uniquely determined by the topology on N .

Definition 2.2.9. (i) In the case β = 0 the above mentioned construction gives the

well-known triple of Hida test functions and distributions, i.e.

(N ) ⊂ L2(µ) ⊂ (N )′.

For a different construction, see also [57] and the references therein.

(ii) The triple

(N )1 ⊂ L2(µ) ⊂ (N )−1

is called the Kondratiev triple of Kondratiev test and generalized functions. We will

see in the characterization, that this triple gives the largest distribution space via this

construction, see e.g.[87, 51].

Example 2.2.10. (i) Consider again the case of vector-valued Schwartz test functions

and tempered distributions. In this case the generalized function

Wt := 〈δt, ·〉 ∈ (N )′ := (S)′,

where δt ∈ S ′d(R) is the Dirac delta distribution.

If we consider the parameter t ∈ R as time, Wt gives in a weak sense the time

derivative of a Brownian motion. The process Wt exists in a limit sense as a gener-

alized function in (S)′. This can be seen by the characterization theorem for test and

generalized functions in the following section.

The next theorem is very important for the following chapters. It says that every test

function has a continuous version. The theorem can be found in [64, Thm. 3.2.1, p.38].
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Theorem 2.2.11 (Continuous version theorem). For each ϕ ∈ (N ) there exists a unique

continuous function ϕ̃ on N ′ such that ϕ(ω) = ϕ̃(ω) for µ−a.e. ω ∈ N ′. Moreover ϕ̃ is

given by the absolutely continuous series

ϕ̃ =
∞∑
n=0

〈fn, : ·⊗n :〉,

where (fn)n∈N are the corresponding kernels of ϕ.

2.2.3 Characterization of Test and Generalized Functions

The S-transform mentioned in the beginning of the chapter in Definition 2.2.3 can be used

to characterize the generalized functions constructed in the subsection before. Therefore

we have to make sure, that the function : exp(〈ξ, ·) : for ξ ∈ N is an appropriate test

function. Indeed we have

‖ : exp(〈ξ, ·〉) : ‖2
p,q,β =

∞∑
n=0

(n!)1+β2nq
∣∣∣∣ 1

n!
ξ⊗n
∣∣∣∣2
p

=
∞∑
n=0

(n!)β−12nq |ξ|2np . (2.5)

The last expression in (2.5) is finite for all β < 1, thus the Wick exponential : exp(〈ξ, ·〉) :∈
(N )β. Then it is clear that a dual pairing between a generalized function from (N )−β

and the Wick exponential with ξ ∈ N is well-defined. Therefore the S-transform extends

naturally to elements from (N )−β. I.e. , for Ψ ∈ (N )−β with kernels Ψ(n), n ∈ N we have

S(Ψ)(ξ) := 〈〈: exp(〈ξ, ·〉) :,Ψ〉〉 =
∞∑
n=0

〈ξ⊗n,Ψ(n)〉,

for all ξ ∈ N .

Remark 2.2.12. In the special case of Kondratiev distributions, i.e. β = 1 the norm in

(2.5) is finite if and only if 2q |ξ|2p < 1. In this case the series is convergent and thus the

dual pairing is finite. In this case therefore, we have that Kondratiev test functions fulfill

|ξ|2p < 2−q, i.e. : exp(〈ξ, ·) :∈ (H)1
p,q with |ξ|2p < 2−q.

Since every distribution is of finite order, for all Ψ ∈ (N )−1 there exist some p, q ∈ N such

that Φ ∈ (H)−1
−p,−q. Then we can define the S-transform of Ψ ∈ (N )−1 for all ξ ∈ N with
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2q |ξ|p < 1 . Then we have

S(Ψ)(ξ) := 〈〈: exp(〈ξ, ·〉) :,Ψ〉〉 =
∞∑
n=0

〈ξ⊗n,Ψ(n)〉.

In this case the S-transform is defined for the set

Up,q := {θ | |θ|2p < 2−q} p, q ∈ N,

which is a neighborhood of zero.

By this remark, we see why the case β = 1 is extremal. For even larger β the above set

is equal to zero, thus the S-transform can just be defined for ξ = 0. The Wick exponentials

are in this case no longer in (H)βp,q.

Another transformation which is useful for the characterization of generalized functions

is the so called T -transform, which is an analogue to the Fourier transform, see e.g. [40,

64, 57] .

Definition 2.2.13. We define the T -transform of Ψ ∈ (N )−β for 0 ≤ β < 1 by

TΨ(ξ) := 〈〈exp(i〈ξ, ·〉),Ψ〉〉, ξ ∈ N .

Remark 2.2.14. (i) Since exp(i〈ξ, ·〉) ∈ (N )β for all 0 ≤ β < 1, ξ ∈ N , the T -

transform is well-defined, see e.g. [40, 57].

(ii) For ξ = 0 the above expression yields 〈〈Ψ,1〉〉, thus TΨ(0) is the generalized expecta-

tion of Ψ ∈ (N )−β.

(iii) For ξ ∈ N and Ψ ∈ (N )−β we have

T (Ψ)(ξ) = exp(−1

2
〈ξ, ξ〉)(S(Ψ)(iξ)).

The T - and S-transform enable us to characterize Hida distributions by entire functions.

These functionals are called U -functionals, see also [40, 67, 57, 64, 87]

Definition 2.2.15. A mapping F : N → C is called a U-functional if it satisfies the

following conditions:
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U1. For all ξ, η ∈ N the mapping R 3 λ 7→ F (λξ + η) ∈ C has an analytic continuation

to λ ∈ C (ray analyticity).

U2. There exist constants 0 < K,C <∞ and a p ∈ N such that

|F (zξ)| ≤ K exp(C|z|2‖ξ‖2
p),

for all z ∈ C and ξ ∈ N (growth condition).

This is the basis of the following characterization theorem. For the proof we refer to

[67, 49, 40, 50].

Theorem 2.2.16. A mapping F : N → C is the T -transform (or S-transform) of an

element in (N )′ if and only if it is a U-functional.

Since by Theorem 2.2.16 the product of two U -functionals is still a U -functional, the

following definitions make sense as a well-defined objects in (N )′. Compare to [57, Chap.7].

Definition 2.2.17. Let Ψ,Φ ∈ (N )′.

(i) We define the Wick-product � : (N )′ × (N )′ → (N )′ by

Φ �Ψ = S−1(S(Φ) · S(Ψ)).

(ii) We define the convolution ∗ : (N )′ × (N )′ → (N )′ by

Φ ∗Ψ = T−1(T (Φ) · T (Ψ)).

Theorem 2.2.16 enables us to discuss convergence of sequences of Hida distributions by

considering the corresponding T -transforms (or S-transforms), i.e. by considering conver-

gence on the level of U-functionals. The following corollary is proved in [67, 40, 50].

Corollary 2.2.18. Let (Φn)n∈N denote a sequence in (N )′ such that

(i) For all ξ ∈ N , ((TΦn)(ξ))n∈N is a Cauchy sequence in C.

(ii) There exist constants 0 < C,D <∞ such that for some p ∈ N one has

|(TΦn)(zξ)| ≤ D exp(C|z|2‖ξ‖2
p)

for all ξ ∈ N , z ∈ C, n ∈ N.
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Then (Φn)n∈N converges strongly in (N )′ to a unique Hida distribution.

This theorem also holds for the S-transform.

Based on the above theorem, we introduce the following Hida distribution.

Example 2.2.19 (Normalized exponential). Consider the formal expression

Jc = exp (c · 〈ω, ω〉) , ω ∈ N ′, c ∈ C \ {1

2
}.

As it stands, the expression makes no mathematical sense, since the dual paining of two

generalized functions is not defined. We will try to give a meaning to Jc as a Hida distri-

bution with the help of Corollary 2.2.18. For this, we use Parseval equation to obtain the

formal equality

c · 〈ω, ω〉 = c
∞∑
n=0

(〈en, ω〉)2,

where (en)n ∈ N is a complete orthonormal system of the separable Hilbert space H. Now

we define

ΦN := exp

(
c

N∑
n=0

(〈en, ω〉)2

)
.

Then for ξ ∈ N we obtain for the S-transform of ΦN :

S(ΦN)(ξ) = Eµ

(
exp

(
c

N∑
n=0

(〈en, ω〉)2

)
· exp(〈ξ, ω〉) · exp(−1

2
〈ξ, ξ〉)

)

= Eµ

(
exp

(
c

N∑
n=0

(〈en, ω〉)2

)
· exp(

N∑
n=0

〈ξ, en〉 · 〈en, ω〉) · exp(−1

2

N∑
n=0

(〈en, ξ〉)2)

)

× Eµ
(

exp(〈ξ⊥, ω〉) · exp(−1

2
(〈ξ⊥, ξ⊥〉)

)
= Eµ

(
exp

(
c

N∑
n=0

(〈en, ω〉)2
)
· exp

( N∑
n=0

〈ξ, en〉 · 〈en, ω〉
)
· exp

(
− 1

2

N∑
n=0

(〈en, ξ〉)2
))

=
N∏
n=0

Eµ
(

exp(c〈en, ω〉2 + 〈ξ, en〉 · 〈en, ω〉 −
1

2
(〈en, ξ〉)2)

)

=
N∏
n=0

(
1√

2c− 1

)
exp

(
c

1− 2c

N∑
n=0

〈en, ξ〉2
)

Since the prefactor in front either converges to zero or diverges, we renormalize the expres-
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sion and define

SΦren(ξ) = lim
N→∞

SΦN(f)

E(ΦN)
= lim

N→∞
exp

( c

1− 2c

N∑
n=0

〈en, ξ〉2
)

= exp(
c

1− 2c
〈ξ, ξ〉) = S

(
Nexp (c · 〈ω, ω〉)

)
(ξ).

We call this expression the normalized exponential and denote it by Jc or Nexp. Is it

obvious that the S-transform is a U-functional and hence Nexp ∈ (N )′. Here we just used

complex numbers c inside the exponential. We will generalize this to bounded operators in

the last section of this chapter.

Remark 2.2.20. Normalized exponentials of the kind sketched in this example belong to

the special class of Generalized Gauss kernels. Indeed we have

T (Nexp (c · 〈ω, ω〉) (ξ) = T (Jc)(ξ) exp(− 1

(1− 2c)
|ξ|2), c ∈ (−∞, 1

2
)

which corresponds to the characteristic function of a Gaussian measure µc with covariance

kernel 1
1−2c

. The normalized exponential plays therefore the role of a generalized Radon-

Nikodym derivative of the measure µc w.r.t. the standard Gaussian measure µ, see e.g. [87].

Another useful corollary of Theorem 2.2.16 concerns integration of a family of general-

ized functions, see [67, 40, 50].

Corollary 2.2.21. Let (Λ,A, ν) be a measure space and Λ 3 λ 7→ Φ(λ) ∈ (N )−β a

mapping. We assume that its T–transform TΦ satisfies the following conditions:

(i) The mapping λ 7→ T (Φ(λ))(ξ) is measurable for all ξ ∈ N .

(ii) There exists a p ∈ N and functions C ∈ L∞(Λ, ν) and D ∈ L1(Λ, ν) such that

|T (Φ(λ))(zξ)| ≤ D(λ) exp(C(λ) |z|2 ‖ξ‖2
p),

for a.e. λ ∈ Λ and for all ξ ∈ N , z ∈ C.

Then, in the sense of Bochner integration in H−p,−q,−β ⊂ (N )−β for a suitable q ∈ N, the

integral of the family of Hida distributions is itself a Hida distribution, i.e.

∫
Λ

Φ(λ) dν(λ) ∈
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(N )−β and the T–transform interchanges with integration, i.e.

T

(∫
Λ

Φ(λ) dν(λ)

)
=

∫
Λ

T (Φ(λ)) dν(λ).

This theorem also holds for the S-transform.

Based on the above theorem, we introduce the following Hida distribution.

Definition 2.2.22. We define Donsker’s delta at x ∈ R corresponding to 0 6= η ∈ H by

δx(〈η, ·〉) :=
1

2π

∫
R

exp(iλ(〈η, ·〉 − x)) dλ (2.6)

in the sense of Bochner integration, see e.g. [40, 59, 87]. Its T–transform in ξ ∈ N is

given by

T (δx(〈η, ·〉)(ξ) =
1√

2π〈η, η〉
exp

(
− 1

2〈η, η〉
(i 〈η, ξ〉 − x)2 − 1

2
〈ξ, ξ〉

)
. (2.7)

Remark 2.2.23. The Donsker’s delta function serves to pin processes in a given point.

Consider the vector-valued White Noise triple

Sd(R) ⊂ L2
d(R, dx) ⊂ S ′d(R),

then the Donsker’s delta function at 1 corresponding to (1[0,t), 0, . . . 0), serves to ’pin’ Brow-

nian motion in 1 at time 0 < t <∞.

If one considers equation (2.6) one can formally see Donsker’s delta function as the compo-

sition of the Dirac delta distribution and the process 〈η, ·〉 or as above a Brownian motion.

Clearly, as can be seen in (2.7), Donskers delta function is a Hida distribution.

The S-transform of Donsker’s delta function at x ∈ R corresponding to 0 6= η ∈ H is given

by

S(δx(〈η, ·〉))(ξ) =
1√

2π(η, η)
exp

(
− 1

2〈η, η〉
(
〈η, ξ〉 − x

)2
)
,

for all ξ ∈ N .

If we expand the S-transform in terms of Hermite polynomials we obtain as in [87],

S(δx(〈η, ·〉))(ξ) =
1√

2π〈η, η〉
exp

(
− 1

2〈η, η〉
(
〈η, ξ〉 − x

)2
)
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=
1√

2π〈η, η〉
exp

(
− x2

2〈η, η〉

) ∞∑
n=0

1

n!
Hn

(
x√

2〈η, η〉

)
(2〈η, η〉)−

n
2 〈η⊗n, ξ⊗n〉.

Hence, its chaos decomposition is given by

δx(〈η, ·〉) =
∞∑
n=0

〈f (n), : ·⊗n :〉,

where the kernels f (n) are given by

f (n) =
1

n!
√

2π〈η, η〉
exp(− x2

2〈η, η〉
Hn

(
x√

2〈η, η〉

)
(2〈η, η〉)−

n
2 η⊗n.

2.2.4 The spaces M and G

Next we introduce spaces which have the property that the kernels in the chaos decom-

position are from the Hilbert space. Thus the test functions are more singular and the

generalized functions are more regular than in the Hida triple. The spaces G and G ′ first

were introduced by Potthoff and Timpel [69]. There are various applications from the

probabilistic point of view as SPDE’s and martingale properties, one can associate with

these spaces, see [31, 30, 30]. Additionally Westerkamp introduced the spacesM andM′,

see [87] which leads to the chain

G ⊂M ⊂ L2(µ) ⊂M′ ⊂ G ′.

Consider the following norms for q ∈ Z, β ∈ [0, 1]

‖ϕ‖2
0,q,β =

∞∑
n=0

(n!)1+β2nq|ϕ(n)|20,

for ϕ =
∑N

n=0〈ϕ(n), : .⊗n :〉. We define

Gβq :=
{
f ∈ L2(µ)

∣∣∣f =
∞∑
n=0

〈f (n), : .⊗n :〉, ‖f‖0,q,β <∞
}
.

Definition 2.2.24. We define

Gβ := proj lim
q>0

(G)βq ,
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and call Gβ the space of regular test functions. Moreover we define

Mβ := indlim
q>0

(G)βq .

Note that Gβ is a Fréchet space and both spaces are continuously embedded in L2(µ), see

also [87]. Moreover we have, that both spaces are not nuclear.

Furthermore we define the spaces of regular generalized functions

G−β := (Gβ)′ := indlim
q<0

(G)βq ,

and

M−β := proj lim
q<0

(G)βq .

Note that M−β is a Fréchet space.

We end, for a fixed β with the chain

Gβ ⊂Mβ ⊂ L2(µ) ⊂M−β ⊂ G−β.

Moreover

G1 ⊂ Gβ ⊂ G ⊂ L2(µ) ⊂ G ′ ⊂ G−β ⊂ G−1,

with G = G0.

The next proposition is proved in [87], see also [69].

Proposition 2.2.25. (i) Let ϕ ∈ Lp(µ) for p > 1 then ϕ ∈ G ′,i.e.⋃
p>1

Lp(µ) ⊂ G ′.

(ii) Let ϕ ∈ Lp(µ) for all 1 < p < 2 then ϕ ∈M′, i.e.⋂
1<p<2

Lp(µ) ⊂M′.

Compare to [86, 30], that one has for β ∈ [−1, 1], q ∈ Z

Gβq =
{

Φ =
∞∑
n=0

〈Φ(n), : .⊗n :〉
∣∣∣Φ(n) ∈ H⊗̂n, ‖Φ‖q,β <∞

}
.
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This shows that elements from Gβq (hence also from Mβ and Gβ) have the property, that

the kernels in the Wiener-Itô-Segal chaos decomposition are elements from the symmetric

tensor powers of the underlying Hilbert-space H⊗̂nC . The generalized functions are therefore

called regular generalized functions. For the characterization of the spaces G and G ′ via

the Bargmann-Segal isomorphism we refer to [30] and [32].

2.3 Donsker’s Delta Function

This section is dedicated to Donsker’s Delta function. We introduced this Hida distribu-

tion already in Definition 2.2.22. It serves to pin paths of processes at certain endpoints

and gives therefore rise of various applications as Feynman integrals and polymer physics,

see e.g.[59]. One can also describe the local time of a stochastic process with help of

Donsker’s Delta function by the so-called Takenaka formula see e.g. [57]. Many authors

studied properties and applications of Donsker’s Delta function, see e.g. [59, 87, 40] and

the references therein. The generalized expectation of Donsker’s Delta function is the heat

kernel. Therefore also a complex-scaled Donsker’s Delta function is of interest, since it

formally gives the Schrödinger kernel. We will focus this in chapter 4.

2.3.1 Properties of Donsker’s Delta Function

Consider again the S-transform of Donsker’s Delta function corresponding to η ∈ H at

x ∈ R
S(δx(〈η, ·〉))(ξ) =

1√
2π〈η, η〉

exp(− 1

2〈η, η〉
(x− 〈ξ, η〉)2), ξ ∈ N .

Donsker’s delta function is an element in (N )′, as we see by the above S-transform.

Here we used the representation by Pettis integrals.

Example 2.3.1. Let η ∈ HC,<(〈η, η〉) > 0, x ∈ C, then
∫
R

exp(i(〈η, ·〉 − x)s) ds is a well

defined Pettis integral and

S

 1

2π

∫
R

exp(i(〈η, ·〉 − x)s) ds

 (ξ) =
1√

2π〈η, η〉
exp(−1

2

1

〈η, η〉
(〈ξ, η〉 − x)2), ξ ∈ NC.
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The Pettis integral 1
2π

∫
R

exp(i(〈η, ·〉 − x)s)ds is a Donsker’s delta function.

Proof. By [64, Corollary 3.3.8, p.51] it follows, that exp(i(〈η, ·〉−x)t) ∈ (N )′ for all t ∈ R.

We have

exp(i(〈η, ·〉 − x)t) = e−ixt · exp(i〈tη, ·〉)

= exp(−ixt− t2 〈η, η〉
2

)· : exp(〈itη, ·〉) :

Now let ξ ∈ NC, then

〈〈: exp(〈ξ, ·〉) :, exp(i(〈η, ·〉 − x)t)〉〉 = e−ixt−t
2 〈η,η〉

2 · eit〈η,ξ〉. (2.8)

Thus t 7→ 〈〈Ψt,Φξ〉〉 is Lebesgue measurable.

Furthermore, since for K > 0: |t〈ξ, η〉| =
∣∣∣〈√Kξ, 1√

K
tη〉
∣∣∣ ≤ 1

2

(
1
K
t2 |η|20 +K |ξ|20

)
we have

|S(exp(i(〈η, ·〉 − x)t))(ξ)| ≤ e|xt| · e−t2
Re(〈η,η〉)

2 · et2
|η|20
2K · eK|ξ|

2
0

≤ e|xt| · e−t2·c(K) · eK|ξ|
2
0 ,

since <(〈η, η〉) > 0 and for some suitable c(K) > 0, (for K →∞).

Since t 7→ e|xt| · e−c(K)t2 in L1(R, dt,R) fulfill the conditions of Corollary 2.2.21 the first

assertion is proved.

To prove the second statement we substitute u = s ·
√
〈η, η〉 :

〈〈: exp(〈ξ, ·〉) :,
1

2π

∫
R

exp(i(〈η, ·〉 − x)s ds〉〉 =
1

2π

∫
R

e−i(x−〈η,ξ〉)s · e
−s2〈η,η〉

2 ds

=
1

2π
√
〈η, η〉

∫
R

e
−i (x−〈η,ξ〉)√

〈η,η〉
·u · e

−u2

2 du

=
1√

2π〈η, η〉

∫
R

e
−i
(
x−〈η,ξ〉√
〈η,η〉

)
u
· e
−u2

2

√
2π

du

=
1√

2π〈η, η〉
e
− 1

2

(
x−〈η,ξ〉√
〈η,η〉

)2

,

43



Remark 2.3.2. Note that the condition

η ∈ HC and <(〈η, η〉) > 0

in 2.3.1 is equivalent to the condition

〈η, η〉 6= 0 and

(
|arg(〈η, η〉)| < π

4
or arg(〈η, η〉) ∈ (

3

4
π,

5

4
π)

)
.

Now we give a generalization of Donsker’s delta function, which is quite standard, but

it is necessary to give some comments to the domain of definition.

Definition 2.3.3. Let η ∈ HC, 〈η, η〉 6= 0 and x ∈ C. The generalized function δx(〈η, ·〉),

which is defined via

S(δx(〈η, ·〉))(ξ) :=
1√

2π〈η, η〉
exp(−1

2

1

〈η, η〉
(〈η, ξ〉 − x)2), ξ ∈ NC :

is called a Donsker’s delta function.

In [87, Theorem 90, p. 77] it is stated, that δx(〈η, ·〉) ∈M′ :=
⋂
p>0

G−p. This assertion

is wrong. As a counterexample let η = e1 + i1
2
e2, where {e1, e2} is an orthonormal System

in L2(R, dt,R). This we show in Example 2.3.4. Following the proof in [87, Theorem 90,

p. 77], we correct the above statement as follows:

δx(〈η, ·〉) ∈
⋂

p>log2

(
|η|20
|〈η,η〉|

)G−p ⊂ G ′.

As a consequence, the assertion of Westerkamp is true for real η, but if η is a complex

function, we can only say that δx(〈η, ·〉) ∈ G ′.
Recall that

M′ = proj lim
p>0

G−p

is reflexive as countably Hilbert space with dual space

M = indlim
p>0

Gp.
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Example 2.3.4. Let η = e1 + i1
2
e2, where {e1, e2} are orthonormal vectors in L2(R, dt,R).

Then

for all α ∈ R : δ0(〈η, ·〉) ∈ Gα ⇔ α < log2(
3

5
)

Proof. First note that 〈η, η〉 = 3
4
, such that 〈η, η〉 6= 0.

Then for arbitrary α ∈ R:

|δ(〈η, ·〉)|2α =

√
2

3π
·
∞∑
n=0

(2n)! · 22nα

(
1

n!

)2

· 1

22n
|〈η, η〉|−2n · |η|4n0

=

√
2

3π
·
∞∑
n=0

(2n)!

22n (n!)2 ·

(
22α |η|40
|〈η, η〉|2

)n

,

which converges if and only if
(

2α|η|20
|〈η,η〉|

)
< 1.

Now we want to give as an example the calculation of a product of Donsker’s Delta

functions compare [59].

Example 2.3.5 (Products of Donsker’s Delta functions). In [59] the authors used the

following ansatz for a product of Donsker’s Delta functions

N∏
n=1

δxn(〈ηn, ·〉) =
N∏
n=1

1

2π

∫
R

exp(iλn〈ηn, ·〉 − λnxn) dλn,

where (ηn)n is a linear independent family in H and xn ∈ C, n = 1, · · ·N .

Then the S-transform of
∏N

n=1 δxn(〈ηn, ·〉) is given by

S(
N∏
n=1

δxn(〈ηn, ·〉))(ξ) =
1√

(2π)n det((〈ηi, ηj〉)i,j)

× exp

−1

2

(
〈ξ, η1〉 − x1, . . . , 〈ξ, ηn〉 − xn

)
,
(

(〈ηi, ηj〉)i,j
)−1

 〈ξ, η1〉 − x1

. . .

〈ξ, ηn〉 − xn


 .

In the case of vector-valued White Noise, i.e. N = Sd(R) we use the above product form to

define Donsker’s Delta function for a vector valued process by a product of the Donsker’s

Delta functions in the certain coordinates.
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Let N = S3(R). Recall that a three dimensional Brownian motion can be described as a

vector of three independent Brownian motions. Then we have

δ

(〈1[0,t), ·1〉, 〈1[0,t), ·2, 〉, 〈1[0,t)), ·3〉
)
−

 a1

a2

a3


 :=

3∏
n=1

δ
(
〈1[0,t), ·n〉 − an

)
,

for a1, a2, a3 ∈ C. The assumptions of the Theorem in [59] are clearly fulfilled, since the

orthogonality of the coordinate processes guarantee the linear independence of the family in

Hd.

2.3.2 Donsker’s Delta Function as Positive Generalized Function

For the following definition see [90, Definition 5.1, p. 150].

Definition 2.3.6. A generalized white noise function Ψ ∈ (S)′ is said to be positive,

denoted by Ψ ≥ 0, if 〈〈φ,Ψ〉〉 ≥ 0 for all φ ∈ (S) such that φ(x) ≥ 0 at every point x ∈ S ′.
Hereby φ is identified with it’s continuous version.

The following theorem is due to Yokoi, see [90, Theorem 5.1, p. 151] and [90, Theorem

5.2, p. 152]. It is based on the continuity of the pointwise multiplication on (N ), see [64,

Theorem 3.5.6, p. 61], and the theorem of Bochner and Minlos.

Theorem 2.3.7. Suppose Ψ ∈ (N )′. Then the following statements are equivalent:

(i) Ψ is a positive generalized White noise function.

(ii) The T-transform of Ψ is a positive definite function of ξ ∈ N .

(iii) There exists a unique finite positive Borel measure ν on N ′, called a positive Hida

measure, such that

(a) (N ) ⊂ L2(N ′, dν,C)

(b) ∀φ ∈ (N ) : 〈〈ϕ,Ψ〉〉 =
∫
N ′
φ dν

Hereby φ is identified with it’s continuous version.

Proposition 2.3.8. Let Ψ ∈ (N )′ be a positive generalized White noise function. Then

the mapping

[·]νΨ
: (N )→ L2(N ′, dνΨ,C)
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is continuous. Hereby for φ ∈ (N ) the expression [φ]νΨ
denotes the function class of the

continuous version of φ in L2(N ′, dνΨ,C).

Proof. Let f ∈ (N ). Note that by 2.3.7 we have f ∈ L2(N ′, dνΨ,C) . By the continuity of

the pointwise multiplication on (N ) it follows |f |2 = f · f ∈ (N ). Then∫
N ′

|f(x)|2 dνΨ(x) = 〈〈|f(·)|2 ,Ψ〉〉 ≤
∣∣(f · f)

∣∣
p,p
,

for some p > 0, by the continuity of Ψ on (N ). Moreover we have

∣∣(f · f)
∣∣
p,p
≤ |f |p+q,p+q · |f |p+q,p+q ,

for some q > 0, since the pointwise multiplication on (N ) is continuous.

In order to investigate the convolution of two positive generalized white noise functions

the definition of the convolution of two measures is useful.

Definition 2.3.9. Let µ, ν be two measures on N ′. Then the image measure of µ × ν

under the mapping + : N ′ × N ′ → N ′ is called the convolution of µ and ν and denoted

by µ ∗ ν.

Note that the mapping + : N ′ ×N ′ → N ′ is continuous and hence Borel-measurable.

Further, if µ, ν are two finite positive Borel measures on N ′, so does µ ∗ ν.

Theorem 2.3.10. Let Φ,Ψ ∈ (N )′ be positive generalized white noise functions and νΦ, νΨ

be the corresponding positive Hida measures. Then

∀ϕ ∈ (N ) : Φ ∗Ψ(ϕ) =

∫
N ′

ϕ dνΦ ∗ νΨ (2.9)

Proof. By definition we have T (Φ ∗ Ψ) = T (Ψ) · T (Φ). Since the product of two positive

definite functions is positive definite, we have Φ ∗ Ψ is a positive generalized white noise

function. Then for all ξ ∈ N :

T (Φ ∗Ψ)(ξ) = T (Φ)(ξ) · T (Ψ)(ξ)

= (

∫
N ′

ei〈ξ,〉 dνΦ(x)) · (
∫
N ′

ei〈ξ,y〉 dνΨ(y))
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=

∫
N ′×N ′

ei〈ξ,x+y〉 dνΦ(x)× νΨ(y) =

∫
N ′

ei〈ξ,z〉 dνΦ ∗ νΨ(z)

By the uniqueness of the characteristic function of a measure, (Bochner Minlos theorem),

it follows for the corresponding measures:

νΦ∗Ψ = νΦ ∗ νΨ (2.10)

Proposition 2.3.11. Let a ∈ N ′ and δa be the point evaluation at a, i.e. for ϕ ∈ (N ):

δa(ϕ) = ϕ(a)

and ν be a positive Hida measure on N ′. Then, for f ∈ (N ), it follows:∫
N ′

f(z)dνδa ∗ ν =

∫
N ′

f(a+ y)dν(y).

Proof. First notice that T (δa)(ξ) = exp(i 〈ξ, a〉), ξ ∈ N . Therefore δa is a positive gener-

alized function. It holds by 2.3.7(iii)∫
N ′

f(z)dνδa ∗ ν =

∫
N ′×N ′

f(x+ y)dνδa × ν =

∫
N ′

〈〈f(.+ y), δa〉〉dν(y) =

∫
N ′

f(a+ y)dν(y)

Proposition 2.3.12. Let η ∈ L2(R, dt) with η 6= 0 and a ∈ R. Then δ(〈η, ·〉 − a) is a

positive generalized White Noise function.

Proof. By Definition 2.2.22 we have for ξ ∈ N

T (δ(〈η, ·〉))(ξ) =
1√

2π〈η, η〉
exp(−1

2
〈ξ, ξ〉) exp(

1

2〈η, η〉
(〈η, ξ〉2 + 2ia〈η, ξ〉 − a2)),

which is positive definite as a product of positive definite functions. Note that

|〈 η
|η|0

, ξ〉| ≤ |ξ|0.
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Chapter 3

Generalized Gauss kernels

In this chapter we give properties of the so called generalized Gauss kernels. This class

of Hida distributions plays an important role in the application of the theory of Feynman

integrals. Moreover, since these generalized Gauss kernels are related to quadratic forms,

one can also consider the expectation of a pointwise multiplication of such a GGK and a

generalized function informally as the generalized expectation of the generalized function

with respect to a Gaussian measure with a different covariance matrix, if the Gauss kernel

fulfills certain positivity properties. We will give a rigorous meaning of this in the following

chapter.
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3.1 Exponentials of Quadratic Forms

Let (en)n∈N ⊂ N be an orthonormal basis of H. Let Pen be the bounded linear operator

on H defined by

Penf = 〈f, en〉en, with f ∈ H.

In [34] it is mentioned that this projection to the one-dimensional subspace spanned by en

is a continuous mapping on N and can be extended to a continuous mapping on N ′.

Definition 3.1.1. Let K be a normal compact operator on H with eigenvalues λn and

corresponding eigenvectors (en)n∈N ⊂ H, then we define the quadratic form

〈ω,Kω〉 :=
∞∑
n=1

λn〈en, ω〉2.

Remark 3.1.2. With the help of Definition 3.1, we are also able to define exp(〈·, K·〉) as

a measurable function by the above limit procedure. Under special properties of K, the so

constructed object is well-defined as a Hida distribution.

Here we review a special class of Hida distributions which are defined by their T-

transform, see e.g. [34], [40]. Let B be the set of all continuous bilinear mappings B :

N ×N → C. Then the functions

N 3 ξ 7→ exp

(
−1

2
B(ξ, ξ)

)
∈ C

for all B ∈ B are U-functionals. Therefore, by using the characterization of Hida distribu-

tions in Theorem 2.2.16, the inverse T-transform of these functions

ΦB := T−1 exp

(
−1

2
B

)
are elements of (N )′.

Definition 3.1.3. The set of generalized Gauss kernels is defined by

GGK := {ΦB, B ∈ B}.

In case the continuous bilinear form is given via the dual pairing and an operator B : NC →
N ′C we write ΦB = T−1 exp

(
−1

2
〈·, B·〉

)
50



Lemma 3.1.4. Let (λn)n∈N be a monotone decreasing sequence of nonnegative real numbers

such that

(i) 1 > λ1 ≥ λ2 ≥ · · · ≥ 0

(ii)
∞∑
n=1

λn <∞

then
∞∏
n=1

(1− λn) > 0

Proof. There exists an interval [0, x0] such that

∀x ∈ [0, x0] : 1− x ≥ e−2x.

Because lim
n→∞

λn = 0, there exists n0 ∈ N such that for all n ≥ n0 we have λn ∈ [0, x0]. It

follows

∞∏
n=n0

(1− λn) ≥
∞∏

n=n0

e−2λn = exp(−2
∞∑

n=n0

λn) > 0

Example 3.1.5. [34], [10] We consider a symmetric trace class operator K on L2
d(R) such

that −1
2
< K ≤ 0, then∫

S′d(R)

exp (−〈ω,Kω〉) dµ(ω) = (det(Id+ 2K))−
1
2 <∞.

For the definition of 〈·, K·〉 see the remark below. Here Id denotes the identity operator

on the Hilbert space L2
d(R), and det(A) of a symmetric trace class operator A on L2

d(R)

denotes the infinite product of its eigenvalues. The trace class condition gives us condition

(ii) in Lemma 3.1.4 and the boundedness of the spectrum is equivalent to condition (i) in

Lemma 3.1.4. Hence the determinant is non-zero and the expectation makes sense.

In the present situation we have det(Id+2K) 6= 0. Therefore we obtain that the exponential

g = exp(−1
2
〈·, K·〉) is square-integrable and its T-transform is given by

Tg(f) = (det(Id+K))−
1
2 exp

(
−1

2
(f , (Id+K)−1f)

)
, f ∈ Sd(R).

Therefore (det(Id+K))
1
2 g is a generalized Gauss kernel.
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Remark 3.1.6. Since a symmetric trace class operator is compact, see e.g. [70], we have

that K in the above example is diagonalizable, i.e.

Kf =
∞∑
k=0

kn(f, en)en, f ∈ H,

where (en)n∈N denotes an eigenbasis of the corresponding eigenvalues (kn)n∈N with kn ∈
(−1

2
, 0], for all n ∈ N. Since K is compact, we have that lim

n→∞
kn = 0 and since K is trace

class we also have
∑∞

n=0(en,−Ken) <∞. We define for ω ∈ N ′

−〈ω,Kω〉 := lim
N→∞

N∑
n=1

〈en, ω〉(−kn)〈en, ω〉.

Then as a limit of measurable functions ω 7→ −〈ω,Kω〉 is measurable and hence∫
N ′

exp(−〈ω,Kω〉) dµ(ω) ∈ [0,∞].

The explicit formula for the T -transform and expectation then follow by a straightforward

calculation with help of the above limit procedure.

Proposition 3.1.7. Let B ∈ L(NC,N ′C) and ΦB ∈ GGK the associated generalized Gauss

kernel, then ΦB has the following properties:

i) S(ΦB)(ξ) = exp(−1
2
〈ξ, (Id−B)ξ〉), for ξ ∈ N

ii) ΦB =
∑∞

n=0
1
n!

(−1
2
)n〈tr⊗̂nI−B, : .⊗2n :〉. I.e. for η, ψ ∈ N , 〈η⊗ψ, trI−B〉 = 〈η, (I−B)ψ〉.

For higher order of tensor powers it is the symmetric multilinearform given by Id−B
compare to [40]

iii) ΦB ∈ (H)k, if ‖H−kΦBH
−k‖H.S. < 1.

Proof. (i) We have

T (ΦB)(−iξ) = exp(
1

2
〈ξ, ξ〉)S(ΦB)(ξ),

then

S(ΦB)(ξ) = exp(
1

2
〈ξ, Bξ〉) exp(−1

2
〈ξ, ξ〉),

thus

S(ΦB)(ξ) = exp(−1

2
〈ξ, (Id−B)ξ〉).
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(ii) A Taylor expansion of the S-transform gives

S(ΦB)(ξ) =
∞∑
n=0

1

n!
(−1

2
)n〈ξ, (Id−B)ξ〉n.

Then the chaos decomposition is obtained by the inverse S-transform.

(iii) Is proved in [40].

Remark 3.1.8. For positive definite operator B, one can also consider ΦB as generalized

radon Nikodym-derivative as in [40]. The corresponding measure is then µ(
√
B
−1
.), if

B is self-adjoint w.r.t 〈·, ·〉. The representation via trace operators or multilinearforms

respectively is also valid in a more general setting, when the root of an operator does not

exists, as in the case of non-positive definite operators B. One then still can consider ΦB

as a kind of change of measure, although, the ”covariance matrix” might not be positive

definite.

Definition 3.1.9. Let K : HC → HC be linear and continuous such that

(i) Id+K is injective,

(ii) there exists p ∈ N such that (Id+K)(HC) ⊂ Hp,C is dense,

(iii) there exist q ∈ N0 such that (Id + K)−1 : Hp,C → H−q,C is continuous with p as in

(ii).

Then we define the normalized exponential

Nexp(−1

2
〈·, K·〉) (3.1)

by

T (Nexp(−1

2
〈·, K·〉))(ξ) := exp(−1

2
〈ξ, (Id+K)−1ξ〉), ξ ∈ N .

Example 3.1.10. i) Let ΦB be defined by T (ΦB)(ξ) = exp(−1
2
〈ξ, Bξ〉), ξ ∈ S2(R)

where

B =

(
1[0,t)c 0

0 1[0,t)c

)
+

(
1[0,t) −1[0,t)

−1[0,t) 0

)
∈ L(L2

2(R), L2
2(R)).
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Then B fulfills the requirements of definition 3.1.3 and we can find a K such that

B = (Id+K)−1. In this case

Id+K =

(
1[0,t)c 0

0 1[0,t)c

)
+

(
0 −1[0,t)

−1[0,t) −1[0,t)

)
.

Thus K is given by

K =

(
−1[0,t) −1[0,t)

−1[0,t) −21[0,t)

)
.

Hence ΦB = exp
(
− 1

2
〈·, K·〉

)
.

ii) Let B be the orthogonal projection on the complement of the subspace spanned by

η ∈ L2(R), with (η, η) = 1. Then

T (ΦB)(ξ) = exp(−1

2
〈ξ, Bξ〉)

= exp(−1

2
〈ξ, ξ − 〈ξ, η〉η〉)

= exp(−1

2
〈ξ − 〈ξ, η〉η, ξ − 〈ξ, η〉η〉

= exp(−1

2
〈ξ, ξ〉) exp(

1

2
(〈ξ, η〉)2)

= exp(−1

2
〈ξ, ξ〉) exp(−1

2
(i〈ξ, η〉)2)

= T (δ0(〈., η〉))(ξ)

Since the T -transform of ΦB coincides with T (δ0(〈., η〉)) we have, that the Hida dis-

tributions are the same. Compare also [40]

Remark 3.1.11. The ”normalization” of the exponential in the above definition can be

considered as a division of a divergent factor. In an informal way one can write

T (Nexp(−1

2
〈·, K·〉))(ξ) =

T (exp(−1
2
〈·, K·〉))(ξ)

T (exp(−1
2
〈·, K·〉))(0)

=
T (exp(−1

2
〈·, K·〉))(f)√

det(Id+K)
, ξ ∈ N ,

i.e. if the determinant in the Example 3.1.5 above is not defined, we can still define the

normalized exponential by the T-transform without the diverging prefactor. The assump-

tions in the above definition then guarantee the existence of the generalized Gauss kernel

in (3.1).
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3.2 Pointwise Products with Generalized Gauss ker-

nels

Example 3.2.1. For sufficiently ”nice” operators K and L on H we can define the product

Nexp
(
− 1

2
〈·, K·〉

)
· exp

(
− 1

2
〈·, L·〉

)
of two square-integrable functions. Its T -transform is then given by

T
(

Nexp(−1

2
〈·, K·〉) · exp(−1

2
〈·, L·〉)

)
(ξ)

=

√
1

det(Id+ L(Id+K)−1)
exp(−1

2
〈ξ, (Id+K + L)−1ξ〉), ξ ∈ N ,

in the case the right hand side indeed is a U-functional.

Remark 3.2.2. In Example 3.2.1

In the case g ∈ N , c ∈ C the product between the Hida distribution Φ and the Hida test

function exp(i〈g, .〉+c) is well-defined because (N ) is a continuous algebra under pointwise

multiplication. The next definition is an extension of this product.

Definition 3.2.3. The pointwise product of a Hida distribution Φ ∈ (N )′ with an expo-

nential of a linear term, i.e.

Φ · exp(i〈η, ·〉+ c), η ∈ HC, c ∈ C,

is defined by

T (Φ · exp(i〈η, ·〉+ c))(ξ) := TΦ(η + ξ) exp(c), ξ ∈ N ,

if TΦ has a continuous extension to HC and the term on the right-hand side is a U-

functional in ξ ∈ N .

Definition 3.2.4. Let D ⊂ R such, that 0 ∈ D. Under the assumption that TΦ has a

continuous extension to HC, η ∈ HC, y ∈ R, λ ∈ γα := {exp(−iα)s| s ∈ R} and that the

integrand

γα 3 λ 7→ exp(−iλy)TΦ(ξ + λη) ∈ C

55



fulfills the conditions of Corollary 2.2.21 for all α ∈ D, one can define the product

Φ · δ(〈η, ·〉 − y),

by

T (Φ · δ(〈η, ·〉 − y))(ξ) := lim
α→0

1

2π

∫
γα

exp(−iλy)TΦ(ξ + λη) dλ.

Of course under the assumption that the right-hand side converges in the sense of Corollary

2.2.18, see e.g. [34].

Proposition 3.2.5. Let K : HC → HC as in Definition 3.1.9 and let η1, . . . , ηn ∈ HC be a

family of functions, such that the matrix

M(Id+K)−1 := (〈ηk, (Id+K)−1ηj〉)k,l

is non–singular and

<(M(Id+K)−1) positive definite

or

<(M(Id+K)−1) = 0 and =(M(Id+K)−1) positive or negative definite.

Then

Nexp(−1

2
〈·, K·〉) ·

n∏
k=1

δyk(〈ηk, ·〉), yk ∈ C, k = 1, . . . , n,

exists as an element in (N )′. Moreover its T -transform in ξ ∈ N is given by

T (Nexp(−1

2
〈·, K·〉)·

n∏
k=1

δxk(〈ηk, ·〉)(ξ) =
1√

(2π)n det(M(Id+K)−1)
exp(−1

2
〈ξ, (Id+K)−1ξ〉)

× exp

(
1

2
uT
(
M(Id+K)−1

)−1

u

)
,

where

u =


1
2

〈
(Id+K)−1ξ, η1

〉
+ 1

2

〈
ξ, (Id+K)−1η1

〉
+ iy1

·
·

1
2

〈
(Id+K)−1ξ, ηn

〉
+ 1

2

〈
ξ, (Id+K)−1ηn

〉
+ iyn

 .
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Proof. We want to give meaning to the expression

Nexp
(
− 1

2
〈·, K·〉

)
·

n∏
k=1

δ(〈ηk, ·〉 − yk),

using Definition 3.2.4 inductively.

Hence we obtain for the T -transform of the integrand

γnα 3 λ 7→ Φλ = exp(−i
n∑
j=1

λje
−iαyj) · exp(i

n∑
j=1

λje
−iα〈ηj, ·〉) · N exp(−1

2
〈·, K·〉)

in ξ ∈ N ,

T
(

exp(−i
n∑
j=1

λje
−iαyj) exp(i

n∑
j=1

λje
−iα〈ηj, ·〉) · N exp(−1

2
〈·, K·〉))(ξ)

= exp(−i
n∑
j=1

λje
−iαyj)T

(
N exp(−1

2
〈·, K·〉) · exp(i

n∑
j=1

〈λje−iαηj, ·〉)
)
(ξ)

= exp(−i
n∑
j=1

λje
−iαyj) exp(−1

2

〈
(ξ +

n∑
j=1

λje
−iαηj), (Id+K)−1(ξ +

n∑
k=1

λke
−iαηk)

〉
)

Then we can rewrite the above formula with the help of the matrix M(Id+K)−1 as

γnα 3 λ 7→ T
(

exp(−i
n∑
j=1

λje
−iαyj) exp(i

n∑
j=1

λje
−iα〈ηj, ·〉) · N exp(−1

2
〈·, K·〉)

)
(ξ)

= exp
(
− 1

2
〈ξ, (Id+K)−1ξ〉

)
exp

(
− 1

2
e−2iα(λTM(Id+K)−1λ)

− e−iαλ
(

1

2

(〈
ξ, (Id+K)−1η1

〉
, . . . ,

〈
ξ, (Id+K)−1ηn

〉)
+

1

2

(〈
(Id+K)−1ξ, η1

〉
, . . . ,

〈
(Id+K)−1ξ, ηn

〉)
+ iy

))
, (3.2)

where y = (y1, . . . yn) and λ = (λ1, . . . , λn) respectively. The function in (3.2) is integrable

w.r.t. the Lebesgue measure, if the real part of e−2iαM(Id+K)−1 , i.e. <(e−2iαM(Id+K)−1) =

cos(2α)<(M(Id+K)−1) + sin(2α)=(M(Id+K)−1), is positive definite. Our assumptions on

M(Id+K)−1 in Proposition 3.2.5 imply that this holds for α in a set D, as required in
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Definition 3.2.4. Then we have

1

(2π)n
exp(−1

2
〈ξ, (Id+K)−1ξ〉)

∫
γα

· · ·
∫
γα

exp

(
− 1

2
(λ,M(Id+K)−1λ)

− λ
(

1

2

(〈
ξ, (Id+K)−1η1

〉
, . . . ,

〈
ξ, (Id+K)−1ηn

〉)
+

1

2

(〈
(Id+K)−1ξ, η1

〉
, . . . ,

〈
(Id+K)−1ξ, ηn

〉)
+ i(y1, . . . yn)

))
dλ1 · · · dλn

=
e−αn

(2π)n
exp(−1

2
〈ξ, (Id+K)−1ξ〉)

∫
Rn
· · ·
∫
γα

exp

(
− 1

2
e−2iα(λTM(Id+K)−1λ)

− e−iαλ
(

1

2

(〈
ξ, (Id+K)−1η1

〉
, . . . ,

〈
ξ, (Id+K)−1ηn

〉)
+

1

2

(〈
(Id+K)−1ξ, η1

〉
, . . . ,

〈
(Id+K)−1ξ, ηn

〉)
+ i(y1, . . . yn)

))
dλ1 · · · dλn

=
e−αn

(2π)n
exp(−1

2
〈ξ, (Id+K)−1ξ〉)

√
(2π)n

e−i2αn det(M(Id+K)−1)

× exp
(e−2iα

2
uT
(
e−2iαM(Id+K)−1

)−1

u
)

=
1√

(2π)n det(M(Id+K)−1)
exp(−1

2
〈ξ, (Id+K)−1ξ〉) exp

(
1

2
uT
(
M(Id+K)−1

)−1

u

)

Lemma 3.2.6. Let L be a d× d block operator matrix on Hd
C acting componentwise such

that all entries are bounded operators on HC. Let K be a d ×d block operator matrix on

HC, such that Id+K and N = Id+K+L are bounded with bounded inverse. Furthermore

assume that det(Id + L(Id + K)−1) exists and is different from zero (this is e.g. the case

if L is trace class and -1 in the resolvent set of L(Id + K)−1). Let (ηk)k=1,...J be a family

of non–zero functions from Hd, J ∈ N, such that the matrix

MN−1 := (〈ηk, N−1ηj〉)k,l
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is non–singular and

<(MN−1) positive definite or <(MN−1) = 0 and =(MN−1) positive or negative definite,

where MN−1 = <(MN−1) + i=(MN−1) with real matrices <(MN−1) and =(MN−1),

then

ΦK,L := Nexp
(
− 1

2
〈·, K·〉

)
· exp

(
− 1

2
〈·, L·〉

)
· exp(i〈·,g〉) ·

J∏
i=1

δ(〈ηk, ·〉 − yk),

for g ∈ Hd
C, t > 0, yk ∈ R, k = 1 . . . , J , exists as a Hida distribution.

Moreover for f ∈ N d

TΦK,L(f) =
1√

(2π)J det((MN−1))

√
1

det(Id+ L(Id+K)−1)

× exp

(
− 1

2

〈
(f + g), N−1(f + g)

〉)
exp

(
1

2
(uT (MN−1)−1u)

)
,

where

u =

 iy1 + 1
2
〈η1, N

−1(f + g)〉
)

+ 1
2
〈N−1η1, (f + g)〉

. . .

iyJ + 1
2
〈ηJ , N−1(f + g)〉+ 1

2
〈N−1ηJ , (f + g)〉


Proof. We want to give meaning to the expression

Nexp
(
− 1

2
〈·, K·〉

)
· exp

(
− 1

2
〈·, L·〉

)
· exp(i〈·,g〉) ·

J∏
k=1

δ(〈ηk, ·〉 − yk),

using Definition 3.2.4 inductively as in Proposition 3.2.5.

Note that Nexp
(
− 1

2
〈·, K·〉

)
· exp

(
− 1

2
〈·, L·〉

)
can be defined as in Example 3.2.1. Hence

we obtain for the T-transform of the integrand

γJα 3 λ 7→ Φλ = exp(−i
J∑
j=1

λje
−iαyj) · exp(i

J∑
j=1

λje
−iα〈ηj, ·〉)

· N exp(−1

2
〈·, K·〉) exp(−1

2
〈·, L·〉) exp(i〈·,g〉)

in f ∈ N d, Then with the notations y = (y1, . . . yJ) and λ = (λ1, . . . λJ), respectively, we
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obtain the integrand

γJα 3 λ 7→ T
(

exp(−i
J∑
j=1

λje
−iαyj) exp(i

J∑
j=1

λje
−iα〈ηj, ·〉)

· N exp(−1

2
〈·, K·〉) · exp(−1

2
〈·, L·〉) · exp(i〈·,g〉)

)
(f)

=
1√

det(Id+ L(Id+K)−1)
exp

(
− 1

2
e−2iα(λTMN−1λ)

− e−iαλ
(

(
1

2

〈
f + g), N−1η1

〉
+

1

2
〈η1, N

−1(f + g)〉+ iy1),

. . . , (
1

2

〈
(f + g), N−1ηd

〉
+

1

2
〈ηd, N−1(f + g)〉+ iyd)

))
. (3.3)

Again the function in (3.3) is integrable w.r.t. the Lebesgue measure, if the real part of

e−2iαMN−1 , i.e. <(e−2iαMN−1) = cos(2α)<(MN−1) + sin(2α)=(MN−1), is positive definite.

Our assumptions on MN−1 in Lemma 3.2.6 imply that this holds for α in a set D, as

required in Definition 3.2.4. The calculation of the T-transform then follows in analogous

way to the calculation of the T-transform of a product of Donskers delta functions, see

e.g. [59, 87] and as in the proof of Proposition 3.2.5.
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Chapter 4

Operators in White Noise Analysis

In this section we discuss operators which are related to applications for Feynman Inte-

grals as differential operators, scaling, translation and projection. We show the relation

of these operators to differential operators, which leads to the notion of so called convo-

lution operators. We generalize the concept of complex scaling to scaling with bounded

operators. Furthermore for this generalized scaling we discuss the relation to generalized

Radon-Nikodym derivatives. This is done to sum up a toolbox to investigate products of

generalized functions in chapter 5.
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4.1 Differential operators

Many authors in White Noise Analysis studied several classes of differential operators on

the Hida test functions or (N )β, 0 ≤ β ≤ 1. Instead of listing a complete reference list, we

refer to the monographs [64, 57, 40] and the references therein. First we clarify the notion

of Gâteaux derivatives.

Definition 4.1.1. Let X be a locally convex Hausdorff space over the field K ∈ {R,C}.
For a C-valued function F : X→ C the Gâteaux-derivative at η ∈ X in direction ξ ∈ X is

defined by

DξF (η) =
∂

∂λ
F (λξ + η)

∣∣∣
λ=0

, λ ∈ K

if this derivative exists, we call F Gâteaux-differentiable at η ∈ X in direction ξ ∈ X. If F

is Gâteaux differentiable in direction ξ ∈ X for all η ∈ X we call F Gâteaux-differentiable

in direction ξ ∈ X.

Definition 4.1.2. Let X be a locally convex Hausdorff space over C. A function F : X→ C
is called entire holomorphic, if for all ξ, η ∈ X the function z 7→ F (zξ+η), z ∈ C is entire

holomorphic. The set of entire holomorphic functions of X is denoted by A(X).

Lemma 4.1.3. Let X be a locally convex Hausdorff space. Let F ∈ A(X). For z ∈ C, ξ, η ∈
X let g(z) := F (zξ + η). Then

(i)

DξF ∈ A(X) (4.1)

(ii)

∀n ∈ N0 : g(n)(z) = (Dn
ξF )(zξ + η) (4.2)

(iii)

F (zξ + η) =
∞∑
n=0

(Dn
ξF )(η)

n!
zn (4.3)

Proof. Proof of (i):

Let ξ1, ξ2, η ∈ X and h(z1, z2) := F (z1ξ1 + z2ξ2 + η) for z1, z2 ∈ C. Then h is separately

holomorphic and by the Lemma of Hartog [18], h is holomorphic. Thus ∂h
∂z1

(0, z2) =

(Dξ1F )(z2ξ2 + η) is entire holomorphic.

Proof of (ii):
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By definition we have for z0 ∈ C

g′(z0) = lim
z→0

g(z + z0)− g(z0)

z

= lim
z→0

F ((z + z0)ξ + η)− F (z0ξ + η)

z

= (DξF )(z0ξ + η)

Now the claim follows by iteration using (i).

Proof of (iii)

By (ii) the Taylor expansion of g(z) = F (zξ + η) =
∞∑
n=0

(Dnξ F )(η)

n!
zn

The next proposition can be found in [40, 64, 57].

Proposition 4.1.4. For ψ, φ ∈ (N )β, 0 ≤ β ≤ 1, and ξ ∈ N ′ the Gâteaux derivative has

the following properties:

(i) The Wiener-Itô-Segal chaos decomposition of Dξφ is given by

Dξφ(ω) =
∞∑
n=0

n〈φ(n), : ω⊗(n−1) : ⊗̂ξ〉, ω ∈ N ′, (4.4)

where φ(n) denotes the n-th kernel in the Wiener-Itô-Segal chaos decomposition of

φ ∈ (N )β.

(ii)

Dξφψ = (Dξφ)ψ + φDξψ.

(iii) For ω ∈ N ′ we have

(Dξϕ)(ω) = lim
h→0

φ(ω + hξ)− φ(ω)

h
, (4.5)

see e.g. [64, Cor.4.3.6, p.79].

Definition 4.1.5. For η ∈ N ′C with η = η1 + iη2, η1, η2 ∈ N ′ we define

Dη = Dη1 + iDη2 .
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Proposition 4.1.6. Let ξ, η ∈ NC and Φ ∈ (N )′. Let S denote the S-transform of Φ.

Then

(Dk
ξS(Φ))(η) = S(Dk

ξΦ)(η), k ∈ N

Proof. Note that (N )′ is a locally convex Hausdorff space. Suppose that

Φ =
∞∑
n=0

〈F (n), : ·⊗ :〉, F (n) ∈ N ′⊗̂nC .

Then by [64, proof of Theorem 3.3.7, p.50] we have

S(Φ)(zξ + η) =
∞∑
k=0

(
∞∑
n=0

(
n+ k

k

)〈
Fn+k, ξ

⊗k ⊗ η⊗n
〉
)

)
zk

=
∞∑
k=0

(
∞∑
n=0

(
n+ k

k

)〈
ξ⊗k⊗̂kFn+k, η

⊗n〉)) zk

=
∞∑
k=0

S(Dk
ξΦ)(η)

k!
zk

The claim follows by 4.1.3, (iii).

Corollary 4.1.7. Let ξ1, · · · ξn, η ∈ NC and Φ ∈ (N )′. Let S denote the S-transform of

Φ. Then

(Dξ1 · · ·DξnS(Φ))(η) = S(Dξ1 · · ·DξnΦ)(η)

Proof. By [64, Theorem 3.3.7, p. 50] we have S(Φ) ∈ A(NC). By [64, Theorem 4.3.12,

p. 88] we have Dξ ∈ L((N )′, (N )′) for all ξ ∈ NC. Then the claim follows by iterated

application of 4.1.6.

Another proof is given by the following: By [64, Lemma 3.6.5, p. 65].

The function

(ξ1, · · · , ξn) 7→ Dξ1 · · ·DξnΦ(η)

is a symmetric n-linear form. The claim follows now by 4.1.6 and the polarization identity.

With the help of (4.4) we can extend Dη also to regular distributions φ ∈ G ′. This

leads to the next proposition.
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Proposition 4.1.8. Let η ∈ HC. Further let α, γ ∈ R, γ < α. Then for all ϕ ∈ G ′ with

|ϕ|0,α <∞

|Dηϕ|0,γ ≤ |η|0

√
2−γ

(α− γ)e ln(2)
|ϕ|0,α (4.6)

As an immediate consequence we have

Dη ∈ L(G,G)

Dη ∈ L(M,M)

Dη ∈ L(M′,M′)

Dη ∈ L(G ′,G ′)

Proof.

Dη(ϕ) =
∞∑
n=0

(n+ 1)〈〈η, ϕ(n+1)〉, : ·⊗n :〉

|Dη(ϕ)|20,γ ≤
∞∑
n=0

n! 2γn · (n+ 1)2 |η|20 ·
∣∣ϕ(n+1)

∣∣2
0

≤ |η|20 2−α
{

sup
n∈N

(2(γ−α)n · (n+ 1))

}
|ϕ|20,α ,

note that sup
n∈N

(2(γ−α)n · (n+ 1)) <∞.

Furthermore

|η|20 2−α
{

sup
n∈N

(2(γ−α)n · (n+ 1))

}
|ϕ|20,α ≤ |η|

2
0 2−α

2α−γ

(α− γ)e ln(2)
|ϕ|20,α

= |η|20
2−γ

(α− γ)e ln(2)
|ϕ|20,α

(for the not straight-forward estimation in the proof, see [64, Eq. (4.4)ff, p. 72])

Concerning the further claims, we calculate explicitly the case ofM, which has an inductive

topology. At this purpose we use the universal mapping property of M. We show that

for all α > 0 the mapping Dη : Gα −→M is continuous. Let α > 0. As just proven, we

can choose γ ∈ R with 0 < γ < α such that Dη : Gα −→ Gγ ↪→M is continuous. Hence

Dη : M ↪→M is continuous by the universal mapping property.
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We verify the case of G with a projective topology.

Let γ > 0. Then there exists α > 0, such that (4.6) holds. This means that Dη : G ↪→ G
is continuous.

Note the different assumptions in these cases. The other cases are similarly treated.

Next we give the definitions for the so called Gross Laplacian. Compare e.g. [40, 57]

Definition 4.1.9. Let ϕ ∈ (N )β, ϕ =
∑∞

n=0〈ϕ(n), : ·⊗n :〉 then we define the Gross Lapla-

cian of ϕ by

∆Gϕ(ω) =
∞∑
n=0

(n+ 2)(n+ 1)
〈
〈ϕ(n+2), tr〉, : ω⊗n :

〉
.

The next proposition can be found in [86].

Proposition 4.1.10. The Gross Laplacian is a continuous operator from (N )β to (N )β

for 0 ≤ β ≤ 1.

4.2 Scaling Operator

First note, that every test function ϕ ∈ (N ) can be extended to N ′C, see e.g. [57]. Thus

the following definition makes sense.

Definition 4.2.1. Let ϕ be the continuous version of an element of (N )β for 0 ≤ β ≤ 1.

Then for 0 6= z ∈ C we define the scaling operator σz by

(σzϕ)(ω) = ϕ(zω), ω ∈ N ′.

Proposition 4.2.2. Let 0 ≤ β ≤ 1 then

(i) for all 0 6= z ∈ C we have σz ∈ L((N )β, (N )β),

(ii) for ϕ, ψ ∈ (N )β we have

σz(ϕ · ψ) = (σzϕ)(σzψ).

Proof. (i) is proved in [87]

For (ii), first note that (N )β is an algebra under pointwise multiplication. Since the scaling

operator is continuous from (N )β to itself by (i), it suffices to show the assumption for

the set of Wick ordered exponentials. Since this set is total the rest follows by a density

argument. We have for ξ, η ∈ N ,
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σz(: exp(〈ξ, ·〉) : · : exp(〈η, ·〉) :) = σz(exp

(
−1

2
(〈ξ, ξ〉+ 〈η, η〉)

)
exp(〈ξ + η, ω〉)

= exp

(
−1

2
(〈ξ, ξ〉+ 〈η, η〉)

)
exp(〈ξ + η, zω〉)

= exp

(
−1

2
(〈ξ, ξ〉+ 〈η, η〉)

)
exp(〈zξ, ω〉) exp(〈zη, ω〉)

on the other hand

σz(: exp(〈ξ, ·) :) ·σz(: exp(〈η, ·) :)) = exp(−1

2
〈ξ, ξ〉) exp(〈ξ, zω〉) exp(−1

2
〈η, η〉) exp(〈η, zω〉),

which proves the assumption.

More precisely we have, compare to [86] and [87] the following proposition.

Proposition 4.2.3. Let ϕ ∈ (N ), z ∈ C, then

σzϕ =
∞∑
n=0

〈ϕ(n)
z , : ·n :〉,

with kernels

ϕ(n)
z = zn

∞∑
k=0

(n+ 2k)!

k!n!

(
z2 − 1

2

)k
· trkϕ(n+2k).

Definition 4.2.4. Since σz is a continuous mapping from (N )β, 0 ≤ β ≤ 1 to itself we

can define its dual operator σ†z : (N )−β → (N )−β by

〈〈ϕ, σ†zΦ〉〉 = 〈〈σzϕ,Φ〉〉,

for Φ ∈ (N )−β and ϕ ∈ (N )β.

The following proposition can be found in [87] and [86].

Proposition 4.2.5. Let Φ ∈ (N )−β, ϕ, ψ ∈ (N )β and z ∈ C then we have

(i)

σ†zΦ = Jz � ΓzΦ,
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where Γz is defined by

S(ΓzΦ)(ξ) = S(Φ)(zξ), ξ ∈ N ,

and Jz = Nexp(−1
2
z2〈·, ·〉). In particular we have

σ†z1 = Jz.

(ii) Jzϕ = σ†z(σzϕ).

The next theorem gives the representation of the scaling operator by differential oper-

ators, see e.g. [86] and [87].

Theorem 4.2.6. For any z ∈ C, z 6= 0, we can represent the scaling operator on (N )β,

0 ≤ β < 1, by

σz = Γz exp(
z2 − 1

2
∆G) := Γz

∞∑
k=0

1

k!

(
z2 − 1

2

)k
∆k
G,

where ∆G denotes Gross Laplacian. Moreover, for ϕ ∈ (N )β the S-transform is given by

S(σzϕ)(ξ) = S

(
exp(

z2 − 1

2
∆G)ϕ

)
(zξ), ξ ∈ N .

4.3 Translation Operator

In this section we investigate the so-called translation operator. Since the Gaussian measure

on N ′ is not translation invariant, the translation operator gives - in comparison to the

translation w.r.t. Lebesgue measure - a non-trivial contribution to the functional.

First not that, from the measure theoretical point of view, a shift of the variable by y ∈ H
yields

∫
N ′

exp(i〈ω, ξ〉)dµ(ω − y) =

∫
N ′

exp(i〈ω + y, ξ〉)dµ(ω)

= exp(i〈y, ξ〉)
∫
N ′

exp(i〈ω, ξ〉)dµ(ω) = exp(−1

2
〈ξ, ξ〉 exp(i〈y, ξ〉).

On the other hand
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∫
N ′

exp(i〈ω, ξ〉) : exp(〈ω, y〉) : dµ(ω) = exp(−1

2
〈y, y〉)

∫
N ′

exp(i〈ω, ξ − iy〉)dµ(ω)

= exp(−1

2
〈y, y〉) exp(−1

2
〈ξ − iy, ξ − iy〉)

= exp(−1

2
〈y, y〉) exp(−1

2
〈ξ, ξ〉) exp(i〈y, ξ〉) exp(

1

2
〈y, y〉)

= exp(−1

2
〈ξ, ξ〉 exp(i〈y, ξ〉).

Thus : exp(〈ω, y〉) : can be considered as the generalized Radon-Nikodym density of µy :=

µ(.− y) w.r.t. µ.

We define the translation operator (or shift operator) as follows:

Definition 4.3.1. Let y ∈ N ′ and ϕ ∈ (N ) we define the translation operator τy by

τyϕ(ω) = ϕ(ω + y).

See e.g. [87, 86]

Theorem 4.3.2. The translation operator τy for y ∈ N ′ is continuous from (N ) into itself.

Now we want to take a closer look on the action of the translation operator on a Hida

test function. For this we first state the following lemma which can be found in [57].

Lemma 4.3.3 (Kuo 96, S.74 Lemma 7.16).

For any x, y ∈ N ′ and any n ≥ 1,

: (x+ y) :⊗n:=
n∑
k=0

(
n

k

)
: x⊗(n−k) : ⊗̂y⊗k. (4.7)

There exists also a representation of the translation operator corresponding to differ-

ential operators. The next theorem is stated and proved in [86] compare also [87]

Theorem 4.3.4. For η ∈ N ′ the translation operator on (N ) can be represented as

τη = exp(Dη) :=
∞∑
k=0

1

k!
Dk
η .

Thus we define for θ ∈ N ′C

τθ = exp(Dθ) :=
∞∑
k=0

1

k!
Dk
θ , (4.8)
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which is a continuous operator on (N ). Note that the series in (4.8) is convergent in

L((N ), (N )). Furthermore, for ϕ ∈ (N ) its S-transform in ξ ∈ N is given by

S(τη)(ξ) = S(exp(Dη)ϕ)(ξ) = exp(Dη)S(ϕ)(ξ) =
∞∑
k=0

1

k!
Dk
ηS(ϕ)(ξ).

Proof. We give a sketch of the proof.

Let ϕ ∈ (N ) with

ϕ =
∞∑
n=0

〈ϕ(n), : ·⊗n :〉,

then for y ∈ N ′, one obtains

τyϕ(ω) = ϕ(ω + y) =
∞∑
n=0

∞∑
k=0

(
n+ k

n

)〈
〈ϕ(n+k), y⊗k〉, : ω⊗n :

〉
=
∞∑
k=0

1

k!
Dk
ηϕ

Proposition 4.3.5. Let η ∈ H. Further let α, γ ∈ R, γ < α. Then there exists

K(γ, α, η) > 0, such that for all ϕ ∈ G ′ with |ϕ|0,α <∞ we have

|τηϕ|0,γ ≤ K(γ, α, η) |ϕ|0,α (4.9)

Proof. Consider τη as in Theorem 4.3.4 then we have

|τηϕ|0,γ = |exp(Dη)ϕ|0,γ =

∣∣∣∣∣∑
n∈N

1

n!
Dn
ηϕ

∣∣∣∣∣
0,γ

=

∣∣∣∣∣∑
n∈N

1

n!

∑
k∈N

(k + n)!

k!
〈〈η⊗n, ϕk+n〉, : ·⊗k :〉

∣∣∣∣∣
0,γ

≤
∑
n∈N

1

n!

∑
k∈N

(k + n)!

k!

∣∣〈〈η⊗n, ϕk+n〉, : ·⊗k :〉
∣∣
0,γ

≤
∑
n∈N

∑
k∈N

√
k!2kγ

√
(k + n)!

k!n!
|η|n0 2−

α(k+n)
2 2

α(k+n)
2
√

(k + n)! |ϕk+n|0

≤
∑
n∈N

(∑
k∈N

2k(γ−α) (k + n)!

k!n!2
2−αn |η|2n0

) 1
2

· |ϕ|0,α ,

by Cauchy-Schwartz inequality. Thus
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∑
n∈N

(∑
k∈N

2k(γ−α) (k + n)!

k!n!2
2−αn |η|2n0

) 1
2

· |ϕ|0,α

≤
∑
n∈N

1√
n!

2−αn/2 |η|n0

(∑
k∈N

(
k + n

k

)
2k(γ−α)

) 1
2

· |ϕ|0,α

=

{∑
n∈N

1√
n!

2−αn/2 |η|n0
(
1− 2γ−α

)− 1
2

(n+1)

}
· |ϕ|0,α ,

where the infinite sum is finite by the root criterion and since γ < α. Recall that we have

the Stirling lower bound
√

2nπ
(
n
e

)n ≤ n!.

Corollary 4.3.6. As an immediate consequence we have for η ∈ HC:

τη ∈ L(G,G)

τη ∈ L(M,M)

τη ∈ L(M′,M′)

τη ∈ L(G ′,G ′)

Because of the continuity of the translation operator, we can define its adjoint operator

τ †η .

Definition 4.3.7. (i) Let η ∈ HC then we define τ †η : (G)′ → (G)′ by

〈〈ψ, τ †ηϕ〉〉 = 〈〈τηψ, ϕ〉〉,

for ϕ ∈ G ′, ψ ∈ G.

(ii) Let η ∈ N ′C then we define τ †η : (N )′ → (N )′ by

〈〈ψ, τ †ηϕ〉〉 = 〈〈τηψ, ϕ〉〉,

for ϕ ∈ (N )′, ψ ∈ (N ).

For the adjoint operator we have the following properties, see e.g. [57, Thm. 10.25

p.142, Thm.10.26 p.143].

Proposition 4.3.8. Let y ∈ N ′, then

(i)

: exp(〈y, ·〉) : �Φ = τ †yΦ, Φ ∈ (N )−β.
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(ii)

: exp(〈y, ·〉) : ϕ = τ †yτyϕ, ϕ ∈ (N )β.

4.4 Generalized Scaling - Linear Transformation of

the Measure

As mentioned in chapter 3 pointwise multiplication with a generalized Gauss kernel can

be considered as a measure transformation. In a view to the previous sections we want to

generalize the notion of scaling to bounded operators. More precisely we investigate for

which kind of linear mappings B ∈ L(N ′,N ′) there exists some operator σB : (N )→ (N )

such that

Φ(BB∗) · ϕ := σ†BσBϕ.

Further we state a generalization of the Wick formula to Gauss kernels. We start with the

definition of σB.

Definition 4.4.1. For B ∈ L(N ′C,N ′C) we define σBϕ, ϕ ∈ (N ), via its chaos decomposi-

tion, which is given by

σBϕ =
∞∑
n=0

〈
ϕ

(n)
B , : ·⊗n :

〉
, (4.10)

with kernels

ϕ
(n)
B =

∞∑
k=0

(n+ 2k)!

k!n!

(
−1

2

)k
(B∗)⊗n(trk(Id−BB∗)ϕ

(n+2k)).

Here, B∗ means the dual operator of B with respect to 〈·, ·〉. Further for A ∈ L(NC,N ′C),

the expression trkAϕ
(n+2k) is defined by

trkAϕ
(n+2k) :=

〈
tr⊗kA , ϕ(n+2k)

〉
∈ N ⊗̂n,

where the generalized trace kernel trA is defined in 1.2.7.

Next we show the continuity of the generalized scaling operator.
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Proposition 4.4.2. Let B : N ′C → N ′C a bounded operator. Then ϕ 7→ σBϕ is continuous

from (N ) into itself.

Proof. Let ϕ
(n)
B as in Definition 4.10. First choose q1 > 0, such that |trId−BB∗ |k−q1 < ∞.

Then, by 1.2.3, there exist C(B) > 0, q2 > q1 such that

|ϕ(n)
B |p = |

∞∑
k=0

(n+ 2k)!

k!n!

(
−1

2

)k
(B∗)⊗n(trkId−BB∗ϕ

(n+2k))|p

≤ 1√
n!
C(B)n

∞∑
k=0

√(
n+ 2k

2k

)√
(2k)!

k!2k

√
(n+ 2k)!|trId−BB∗|k−q2 |ϕ

n+2k|q2

Since as in [87] it yields

√
(2k)!

k!2k
< 1 we have

1√
n!
C(B)n

∞∑
k=0

√(
n+ 2k

2k

)√
(2k)!

k!2k

√
(n+ 2k)!|trId−BB∗|k−q2 |ϕ

n+2k|q2

≤ 1√
n!
C(B)n

∞∑
k=0

√(
n+ k

k

)√
(n+ k)!|trId−BB∗|

k
2
−q2|ϕ

n+k|q2

≤ 1√
n!
C(B)n2−n

q′
2

(
∞∑
k=0

(
n+ k

k

)
2−q

′k|trId−BB∗|k−q2

) 1
2

×

(
∞∑
k=0

(n+ k)!2q
′(n+k)|ϕ(n+k)|2q2

) 1
2

≤ ‖ϕ‖q2,q′
1√
n!

2−n
q′
2 C(B)n

(
1− 2−q

′ |trId−BB∗|−q2
)−n+1

2
.

If q′ fulfills

2−q
′ |trId−BB∗|−q2 < 1,

we obtain

‖σBϕ‖2
q2,q
≤ ‖ϕ‖2

q2,q′ ·
∞∑
n=0

2n(q−q′)C(B)2n
(

1− 2−q
′ |trId−BB∗|−q2

)−(n+1)

,

where the right hand side converges if q′ − q is large enough.
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Proposition 4.4.3. Let ϕ ∈ (N ) given by its continuous version. Then it holds

σBϕ(ω) = ϕ(Bω),

if B ∈ L(N ′,N ′), ω ∈ N ′.

This can be proved directly by an explicit calculation on the the set of Wick exponen-

tials, a density argument and a verifying of pointwise convergence, compare [64, Proposition

4.6.7, p. 104], last paragraph.

In the same manner the following statement is proved.

Proposition 4.4.4. Let B : N ′ → N ′ be a bounded operator. For ϕ, ψ ∈ (N ) the following

equation holds

σB(ϕψ) = (σBϕ)(σBψ).

Since we consider a continuous mapping from (N ) into itself one can define the dual

scaling operator with respect to 〈·, ·〉, σ†B : (N )′ → (N )′ by〈〈
σ†BΦ, ψ

〉〉
=
〈〈

Φ, σBψ
〉〉
,

The Wick formula as stated in [86, 36] for Donsker’s delta function can be extended to

Generalized Gauss kernels.

Proposition 4.4.5. [Generalized Wick formula] Let Φ ∈ (N )−β, 0 ≤ β < 1, ϕ, ψ ∈ (N )β

and B ∈ L(N ′,N ′). then we have

(i)

σ†B = ΦBB∗ � ΓB
∗Φ,

where ΓB
∗ is defined by

S(ΓB
∗Φ)(ξ) = S(Φ)(B∗ξ), ξ ∈ N .

In particular we have

σ†B1 = ΦBB∗ .

(ii) ΦBB∗ · ϕ = σ†B(σBϕ).
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(iii) ΦBB∗ · ϕ = ΦBB∗ � (ΓB∗ ◦ σB(ϕ)).

Proof. Proof of (i): Let Φ ∈ (N )−β and ξ ∈ N then we have

S(σ†BΦ)(ξ) = 〈〈: exp(〈ξ, ·〉) :, σ†BΦ〉〉 = 〈〈σB : exp(〈ξ, ·〉) :,Φ〉〉

= exp(−1

2
〈ξ, ξ〉)〈〈exp(〈B∗ξ, ·〉),Φ〉〉

= exp(−1

2
〈ξ, Id−BB∗ξ〉)S(Φ)(B∗ξ)

= S(ΦBB∗)(ξ) · S(ΓB∗Φ)(ξ)

Proof of (ii): First we have σ†1 = ΦBB∗ � ΓB∗1 = ΦBB∗ .

Thus for all ϕ, ψ ∈ (N )β

〈〈ΦBB∗ϕ, ψ〉〉 = 〈〈σ†1, ϕ · ψ〉〉 =

〈〈1, (σBϕ)(σBψ)〉〉 = 〈〈(σBϕ), (σBψ)〉〉 = 〈〈σ†B(σBϕ), ψ〉〉

Proof of (iii): Immediate from (i) and (ii).

Remark 4.4.6. The scaling operator can be considered as a linear measure transform. Let

ϕ ∈ N and B a real bounded operator on N ′. Then we have∫
N ′
σBϕ(ω) dµ(ω) =

∫
N ′
ϕ(Bω) dµ(ω) =

∫
N ′
ϕ(ω) dµ(B−1ω)

Moreover we have ∫
N ′

exp(i〈ξ, ω) dµ(B−1ω) = exp(−1

2
〈B∗ξ, B∗ξ〉,

which is a characteristic function of a probability measure by the Theorem of Bochner and

Minlos. Furthermore ∫
N ′

exp(i〈ξ, ω) dµ(B−1ω) = T (σ†1)(ξ),

such that ΦBB∗ is represented by the positive Hida measure µ ◦B−1.

At the end of this section for the sake of completeness we present another formula for

σB, which uses an integral kernel operator, for the definition see [64, Propsition 4.3.3, p.82].
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Proposition 4.4.7. Let B ∈ L(N ′,N ′). Then

σB = ΓB∗ ◦ exp(−1

2
(Ξ0,2((Id⊗2 −B⊗2)(τ))))

Proof. Let B ∈ L(N ′,N ′) and ξ, η ∈ N , then

S (σB : exp(〈η, ·〉) :) (ξ) = 〈〈: exp(〈ξ, ·〉) :, (σB : exp(〈η, ·〉) :〉〉

= 〈〈: exp(〈ξ, ·〉) :, exp(〈B∗η, ·〉〉〉 exp(−1

2
〈η, η〉)

= 〈〈: exp(〈ξ, ·〉) :, : exp(〈B∗η, ·〉 :〉〉 exp(−1

2
〈η, η〉) exp(

1

2
〈B∗η,B∗η〉)

= 〈〈: exp(〈ξ, ·〉) :, : exp(〈B∗η, ·〉 :〉〉 exp(−1

2
〈η, (Id−BB∗)η〉)

= exp(〈ξ, B∗η〉) exp(−1

2
〈η, (Id−BB∗)η〉)

= S(ΓB∗ : exp(〈η, ·〉) :)(ξ) · S(ΦBB∗)(η)

= S(ΓB∗ {S(ΦBB∗)(η) : exp(〈η, ·〉) :})(ξ)

= S(ΓB∗ ◦ exp(−1

2
(Ξ0,2((Id⊗2 −B⊗2)(τ)))) : exp(〈η, ·〉) :)(ξ)

Notice that exp
(
− 1

2

(
Ξ0,2(Id⊗2 − B⊗2)(τ))

))
is just the convolution operator corre-

sponding to ΦBB∗ . The convolution operator will be treated in detail in a later section.

4.5 Convolution Operators

In this section we introduce the so called convolution operators. We will see that these

operators give an easy characterization of operators to be in L(G,G) with the help of

e.g. Proposition 4.5.9. Furthermore a convolution operators allows a representation of a

dual pairing as an integral w.r.t the Gaussian measure µ, i.e. we consider the expression

〈〈ϕ,Ψ〉〉 with ϕ ∈ (N ) and Ψ ∈ (N )′ and ask ourselves, in which way can we represent this

as an integral. We have already seen representations like that:

- Ψ ∈ (L2). In this case can consider Ψ as a Radon-Nikodym-density and have

〈〈ϕ,Ψ〉〉 =

∫
N ′
ϕ(ω) ·Ψ(ω) dµ(ω).
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- We can consider generalized Radon-Nikodym-derivatives given by a generalized scal-

ing with an operator B. In this case ΦBB∗ = Ψ ∈ GGK, i.e.

〈〈ϕ,Ψ〉〉 =

∫
N ′
ϕ(ω) dµ ◦B−1(ω)

- The last case is the case when we use convolution operators. 〈〈ϕ,Ψ〉〉 can be then

written as an integral of a convolution operator w.r.t. the Gaussian measure µ, i.e.

〈〈ϕ,Ψ〉〉 =

∫
N ′
CΨ(ϕ) dµ,

as in Corollary 4.5.5.

Recently in [65, Theorem 5.6, p. 671] it was stated, that there exists an injective vec-

tor algebra homomorphism between (N )′ with the Wick product and a subalgebra of

L((N ), (N )).

We show, that this homomorphism is even a topological isomorphism to the image space.

Our aim is the application of the techniques from [65] to regular distributions as G ′ and

L(G,G). We give a proof in which the continuity of the Wick product plays a key role.

Let X be a reflexive (F )-space and X ′ its dual space with the strong dual topology. Recall

that L(X,X) is equipped with the topology of bounded convergence, namely the locally

convex topology is defined by the seminorms:

‖T‖B,p := sup
ξ∈B
|Tξ|p , T ∈ L(X,X) (4.11)

where B runs over the bounded subsets of X and |·|p is an arbitrary seminorm on X. The

topology on L(X ′, X ′) is defined in the same way. We state the following proposition:

Proposition 4.5.1. Let X be a reflexive (F)-space and X ′ it’s dual space with the strong

dual topology. Then the mapping ∗ : L(X,X)→ L(X ′, X ′), T 7−→ T ∗ is continuous.

Proof. Let B be a bounded subset of X, B′ be a bounded subset of X ′ and T ∈ L(X,X).

Then, because X is reflexive, the claim follows by considering the strong dual topologies:

sup
b′∈B′

[
sup
b∈B
|〈T ∗(b′), b〉|

]
= sup

b∈B

[
sup
b′∈B′
|〈b′, T (b)〉|

]
. (4.12)
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Definition 4.5.2. ,

(i) For all φ ∈ (N )′ we denote by M�
φ the Wick multiplication operator ϕ 7→ φ � ϕ in

L((N )′, (N )′)

(ii) For all φ ∈ (N )′ we denote by Cφ the dual of the Wick multiplication operator, i.e.

Cφ := (M�
φ)∗ ∈ L((N ), (N ))

We summarize some properties of the convolution operators, see [65] for the proof of

(i) and (ii).

Proposition 4.5.3. Let φ ∈ (N )′. Then

(i) C∗φ(1) = φ,

(ii) Cφ(: exp(〈ξ, ·〉) :) = S(φ)(ξ)· : exp(〈ξ, ·〉) :, ξ ∈ NC,

(iii) C〈η,·〉 = Dη, η ∈ N ′C.

Proof. Proof of (iii): Note that we have for ψ ∈ (N )′ with

ψ =
∞∑
n=0

〈ψ(n), : ·⊗n :〉

with [64, Prop.4.1.4.,p.73] that

D∗ηψ =
∞∑
n=0

〈ψ(n)⊗̂η, : ·⊗(n+1) :〉 = 〈η, ·〉 � ψ.

Then for any ϕ ∈ (N ), we obtain

〈〈Dηϕ, ψ〉〉 = 〈〈ϕ,D∗ηψ〉〉 = 〈〈ϕ, 〈η, ·〉 � ψ〉〉 = 〈〈C〈η,·〉(ϕ), ψ〉〉.

Theorem 4.5.4. The map

C : ((N )′,+, ., �) −→ (L((N ), (N )),+, ., ◦)

φ 7→ Cφ
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is a continuous, injective homomorphism.

Further C is an isomorphism onto Im(C).

Proof. By Obata and Ouerdiane, see [65, Theorem 5.6, p. 671], the proof of the first claim

is routine. To prove the last claim, we use 4.5.1 and and write C−1 as composition of two

continuous mappings:

C−1 : Cφ 7→ Cφ∗ 7→ Cφ∗(1) = φ.

The above theorem enables us to represent the action of ψ ∈ (N )′ by the measure µ.

Corollary 4.5.5. Let ψ ∈ (N )′. Then it holds

∀ϕ ∈ (N ) : 〈〈ψ, ϕ〉〉 =

∫
N ′

Cψ(ϕ) dµ

Proof. 〈〈ψ, ϕ〉〉 = 〈〈C∗ψ(1), ϕ〉〉 = 〈〈1, Cψ(ϕ)〉〉 =
∫
N ′
Cψ(ϕ) dµ.

Example 4.5.6. Let η ∈ N . Then the convolution operator acts by

(i) 〈η, ·〉 7→ Dη

(ii) 〈η⊗k, : ·⊗k :〉 7→ Dk
η

(iii) : exp(〈η, ·〉) :7→ exp(Dη) = τη

Example 4.5.7. For any orthonormal basis (en)n∈N of L2(R, dt,C) the trace operator

tr has the representation tr =
∞∑
n=0

en ⊗ en, see [64, Proposition 2.2.1, p. 24]. By [64,

Eq. (5.33), p. 121] and 4.5.4, we have the following representation of the Gross Laplace

operator ∆G

∆G = C〈tr,:·⊗2:〉 =
∞∑
n=0

C(〈en,·〉�2)

=
∞∑
n=0

C〈en,·〉 ◦ C〈en,·〉 =
∞∑
n=0

Den ◦Den
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A further application of 4.5.4 concerns Donsker’s delta function. At this purpose we

formulate the analogue of 4.5.4 for G ′, which furnishes the characterization of G ′ as subspace

of L(G,G).

Lemma 4.5.8. Let α ∈ R and f, g ∈ Gα+2. Then it holds

|f � g|0,α ≤ |f |0,α+2 · |g|0,α+2

The Wick product is separately continuous from G ′ × G ′ −→ G ′

and continuous from G × G → G

Proof. Let f ∼ (fn)n∈N0 and g ∼ (gn)n∈N0 . For n ∈ N0 let hn :=
n∑

m=0

fn−m⊗̂gm.

Then f � g ∼ (hn)n∈N0 . Following the ideas in [40, proof of Theorem 4.21., p. 101 ff.] we

get:

|f � g|20,α =
∞∑
n=0

n!2αn |hn|20 ≤
∞∑
n=0

n!2αn(n+ 1)
n∑

m=0

|fn−m|20 · |gm|
2
0

=
∞∑
n=0

2αn(n+ 1)
n∑

m=0

(
n

m

)
(n−m)! |fn−m|20 ·m! |gm|20

≤
∞∑
n=0

2αn(n+ 1)2n
n∑

m=0

(n−m)! |fn−m|20 ·m! |gm|20

=
∞∑
n=0

2(α+1)n(n+ 1)
n∑

m=0

(n−m)! |fn−m|20 ·m! |gm|20

≤
∞∑
n=0

2(α+2)n

n∑
m=0

(n−m)! |fn−m|20 ·m! |gm|20

=
∞∑
n=0

n∑
m=0

(n−m)!2(α+2)(n−m) |fn−m|20 ·m!2(α+2)m |gm|20

= |f |20,α+2 · |g|
2
0,α+2

Theorem 4.5.9. The map

C : (G ′,+, ., �) −→ (L(G,G),+, ., ◦)
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φ 7→ Cφ

is a continuous, injective homomorphism.

Further C is an isomorphism onto Im(C).

Proof. The proof of the homomorphy follows immediately by the properties of the Wick

product. For the proof of injectivity, note that Cφ = 0 implies C∗φ = 0, which implies

C∗φ(1) = φ = 0.

Note that G is reflexive and the topology of G is defined by the collection of the following

seminorms, where B′ runs over all bounded subsets of G ′.

∀g ∈ G : |g|B′ = sup
b′∈B′
|〈g, b′〉|

Now let β > 0, φ ∈ G−β, B ⊂ G be bounded and B′ ⊂ G ′ be bounded, i.e. there exists

γ > 0, such that sup
b′∈B′
|b′|0,−γ = K(B′) <∞. Then, using Lemma 4.5.8, we get

sup
b∈B

( sup
b′∈B′
|〈Cφ(b), b′〉|) = sup

b∈B
( sup
b′∈B′

∣∣〈b,M�
φ(b′)〉

∣∣)
≤ sup

b∈B
( sup
b′∈B′
|b|0,β+γ+2 · |φ � b

′|0,−(β+γ+2))

≤ sup
b∈B

( sup
b′∈B′
|b|0,β+γ+2 · |φ|0,−β |b

′|0,−γ)

≤ K(B) K(B′) |φ|0,−β),

for some K(B) > 0, because B is bounded.

The last claim is proved in the same way as in the proof of 4.5.4.

Corollary 4.5.10. Let ψ ∈ G ′. Then it holds

∀ϕ ∈ G : 〈〈ψ, ϕ〉〉 =

∫
N ′

Cψ(ϕ) dµ

Proof. Compare with the proof of 4.5.5. Note, that for ϕ ∈ G, we have

Cψ(ϕ) ∈ G ⊂ (L2).

Remark 4.5.11. For the proof of 4.5.9 the well-definedness of a Wick product is crucial.
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An analogue can thus also be proven for the spaces (G)−β, 0 ≤ β ≤ 1. The continuity of

the Wick product in (G)−1 was shown in [32] and [30].

Next we present some properties of Donsker’s delta function, which are based on Defi-

nition 4.5.2 and an application of 4.5.9 and 4.5.10. For (ii) compare with [87, Proposition

72, p. 67].

Proposition 4.5.12. Let η ∈ HC, 〈η, η〉 6= 0 and a ∈ C. Then

(i) It holds Cδ(〈η,·〉−a) ∈ L((N ), (N )) and Cδ(〈η,·〉−a) ∈ L((G), (G)) and

Cδ(〈η,·〉−a) =
1√

2π〈η, η〉

(
exp(− 1

2〈η, η〉
(Dη − a Id)2)

)

(ii) For all ϕ ∈ G (resp. (N )) it holds

〈〈ϕ, δa(〈η, ·〉)〉〉 =
1√

2π〈η, η〉

∫
N ′

(
exp(− 1

2〈η, η〉
(Dη − a Id)2)

)
ϕ dµ

Proof. The proof of (i) is a direct application of 4.5.4 resp. 4.5.9.

The proof of (ii) is a direct application of 4.5.5 resp. 4.5.10.

At the end of this section we present a situation where convolution operators appear

in a natural way.

Remark 4.5.13. Let A be a continuous linear operator on N ′. For the second quantized

operator Γ(A) we use the shorter notation ΓA. Note that ΓA ∈ L((N ), (N )′) and that ΓA

has a continuous extension to an operator in L((N )′, (N )′), which formally operates in the

same way. We define JA ∈ (N )′ by it’s S-transform:

S(JA)(ξ) := exp(−1

2
〈ξ, (Id− AA∗)ξ〉), for ξ ∈ NC

and the generalized scaling operator σA by

σAφ(ω) := φ(Aω), φ ∈ (N ), ω ∈ N ′.
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We calculate for ξ ∈ NC

σA : exp(〈ξ, ω〉) : =: exp(〈ξ, Aω〉) :

= exp(〈ξ, Aω〉 − 1

2
〈ξ, ξ〉)

= exp(〈A∗ξ, ω〉 − 1

2
〈A∗ξ, A∗ξ〉) · exp(−1

2
(〈ξ, ξ〉 − 〈ξ, AA∗ξ〉)

=: exp(〈A∗ξ, ω〉) : ·〈〈: exp(〈ξ, ω〉) :, JA〉〉.

This implies the formula

σA = ΓA∗ ◦ CJA , (4.13)

by 4.5.3(ii).

Further it follows by (4.13) that σA ∈ L((N ), (N )). (Note that we have indeed σAφ(ω) :=

φ(Aω) for all ω ∈ N ′. It is shown above for φ =: exp(〈ξ, ·〉) :, where ξ ∈ NC. For a general

φ ∈ (N ) take an approximating sequence ψn each of which is a linear combination of

exponential vectors. Then σAψn → σAφ in (N ), and therefore pointwisely by [64, Theorem

3.2.13, p. 47], i.e. σAψn(ω) → σAφ(ω) for any ω ∈ N ′. On the other hand, since

σAψn(ω) = ψn(Aω) and ψn(y)→ φ(y) especially for y = Aω, we conclude that (σAφ)(ω) =

φ(Aω). Compare the proof of [64, Proposition 4.6.7, p. 104].)

Example 4.5.14. Now let η ∈ N , |η|0 = 1 and Aω = ω − 〈η, ω〉η for all ω ∈ N ′.
Then A is an extension of A∗. It follows for ξ ∈ NC:

〈ξ, (Id− AA∗)ξ〉 = 〈η, ξ〉2

It follows JA = exp�(−1
2
〈η, ·〉�2) and CJA = exp(−1

2
D2
η).

Defining Pη,⊥ by

Pη,⊥ω := ω − 〈η, ω〉η, ω ∈ N ′,

we have, by (4.13), for all φ ∈ (N ):(
Γ(Pη,⊥) ◦ exp(−1

2
D2
η)φ

)
(ω) = φ(Pη,⊥ω), ω ∈ N ′.
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With y ∈ N ′ and the corresponding translation operator τy, we get

∀ω ∈ N ′ :
(

Γ(Pη,⊥) ◦ exp(−1

2
D2
η) ◦ τyφ

)
(ω) = (τyφ)(Pη,⊥ω) = φ(y + Pη,⊥ω)

In Corollary 5.5.15 it will be shown that this statement also holds if η is chosen in

L2(R, dx).

4.6 An Example: The Projection Operator

In this section we consider the generalized scaling operator in the case when the linear

operator is an orthogonal projection. This will lead to the projection operator which was

considered in [87] and [86, Chap.3.2.2,] respectively. This operator plays a key role in the

Wick formula from [86, 36]. Unfortunately we will see that this operator is not closable on

(L2), i.e. an approximation will always depend on the sequence one uses.

Definition 4.6.1. Let y ∈ L2(R, dt,C). We define the operator

Py,⊥ ∈ L(L2(R, dt)C, L2(R, dt)C)

by

Py,⊥ : L2(R, dt,C) −→ L2(R, dt,C)

ξ 7→ ξ − 〈y, ξ〉
〈y, y〉

y

Py,⊥ is a linear projection, which is an orthogonal projection if y is a real valued function,

(in this case we have |< y, y >| = |y|20).

In order to estimate Γ(Py,⊥) we state the following lemma.

Lemma 4.6.2. Let T ∈ L(HC,HC). Then

(i) Γ(T ) ∈ L(G,G)

(ii) Γ(T ) ∈ L(G ′,G ′)

(iii) If ‖T‖ ≤ 1 then, for all γ ∈ R, Γ(T ) is a contraction on Gγ.
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Proof. Let γ ∈ R. Choose α ≥ 0, such that ‖T‖ ≤ 2
α
2 . Then, using [70, VIII.10 Tensor

products, Proposition p. 299], for ϕ ∈ G with

ϕ =
∞∑
n=0

〈ϕn, : ·⊗n :〉,

we have

|Γ(T )(ϕ)|20,γ =
∑
n∈N

n! 2γn
∣∣T⊗nϕn∣∣20

≤
∑
n∈N

n! (2−αn ‖T‖2n) · (2(α+γ)·n |ϕn|20)

≤ |ϕ|20,α+γ

In order to show that Γ(T ) ∈ L(G ′,G ′), choose β ∈ R. Then

Gβ ↪→ Gβ−α ↪→ G ′

is continuous. Therefore by the universal mapping property of the inductive limit it follows

that Γ(T ) ∈ L(G ′,G ′).

Example 4.6.3. Now let η ∈ N , |η|0 = 1 and Pη,⊥ω := ω − 〈ω, η〉η, ω ∈ N ′.
Then ΦPη,⊥◦P ∗η,⊥ =

√
2πδ(〈η, ·〉), by Proposition 3.1.7, Proposition 4.4.5(iii) and Proposition

4.5.12 we obtain

δ(〈η, ·〉) · ϕ = δ(〈η, ·〉) �
(

Γ(Pη,⊥) ◦ exp(−1

2
D2
η)ϕ

)
.

Definition 4.6.4. Let η ∈ H, |η|0 = 1. Then we denote by Pη the operator Pη := Γ(Pη,⊥)◦
exp(−1

2
D2
η) and call it the projection operator with respect to η. Note that Pη ∈

L(G,G) and Pη ∈ L((N ), (N )′).

Lemma 4.6.5. Let η ∈ H, |η|0 = 1 and Y ∈ H⊗̂jC , j ∈ N. Then it holds for all k ∈ N and

α ∈ C: ∣∣(αη)⊗k⊗̂P⊗jη,⊥Y
∣∣2
0

=
j!k!

(j + k)!
·
∣∣(αη)⊗k

∣∣2
0

∣∣P⊗jη,⊥Y ∣∣20
Proof. For k = 0 or j = 0 there is nothing to prove. Thus let j, k > 0. Using the Fourier

expansion of Y we obtain

Y =
∞∑
n=0

yn,1⊗̂ · · · ⊗̂yn,j.
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Let Mk denote the set of the subsets of {1, · · · , j + k} consisting of k elements. For I ∈Mk

and π ∈ Sj we define

fn(π, I) := x1 ⊗ · · · ⊗ xj+k,

where

xi = η for i ∈ I

and for

1 ≤ i1 < · · · < ij ≤ j + k with {i1, · · · , ij} ∩ I = ∅ we set xil := Pη,⊥yn,π(l), 1 ≤ l ≤ j.

Then by a rearrangement of the series we get

η⊗k⊗̂P⊗jη,⊥Y =
1

(j + k)!

∑
I∈Mk

∞∑
n=0

k!
∑
π∈Sj

fn(π, I).

Note that each expression fn(π, I) appears k! times since we use (j + k)-permutations by

the definition of the symmetric tensor product (each expression (η, · · · , η) permutates k!

times with itself!). The following two arguments are important for the discussion. For

I1, I2 ∈Mk with I1 6= I2 we have:

∞∑
n=0

∑
π∈Sj

fn(π, I1) ⊥
∞∑
n=0

∑
π∈Sj

fn(π, I2)

and ∣∣∣∣∣∣
∞∑
n=0

∑
π∈Sj

fn(π, I1)

∣∣∣∣∣∣
2

0

=

∣∣∣∣∣∣
∞∑
n=0

∑
π∈Sj

fn(π, I2)

∣∣∣∣∣∣
2

0

The last equation holds since only the sequel of the tensors is different. The first equation

follows by 〈η, Pη,⊥(h)〉 = 0 for all h ∈ HC. Hence

∣∣η⊗k⊗̂P⊗jη,⊥Y ∣∣20 =
1

(j + k)!2
·
(
j + k

k

) ∣∣∣∣∣∣
∞∑
n=0

k!
∑
π∈Sj

η⊗k ⊗ Pη,⊥yn,π(1) ⊗ · · · ⊗ Pη,⊥yn,π(j)

∣∣∣∣∣∣
2

0

=
1

(j + k)!2
·
(
j + k

k

)
(k!)2(j!)2

∣∣∣∣∣∣
∞∑
n=0

∑
π∈Sj

η⊗k ⊗ 1

j!
Pη,⊥yn,π(1) ⊗ · · · ⊗ Pη,⊥yn,π(j)

∣∣∣∣∣∣
2

0
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=
1

(j + k)!2
·
(
j + k

k

)
(k!)2(j!)2

∣∣∣∣∣∣η⊗k ⊗
∞∑
n=0

P⊗jη,⊥
1

j!

∑
π∈Sj

yn,π(1) ⊗ · · · ⊗ yn,π(j)

∣∣∣∣∣∣
2

0

=
j!k!

(j + k)!
·
∣∣η⊗k∣∣2

0

∣∣P⊗jη,⊥Y ∣∣20 ,
since |·|0 is a cross norm. Now multiply both sides with |α|2k.

Example 4.6.6. Consider η⊗2⊗̂x, where x = Pη,⊥y. Then

η⊗2⊗̂x =
1

3!
(η ⊗ η ⊗ x+ η ⊗ η ⊗ x+ η ⊗ x⊗ η + η ⊗ x⊗ η + x⊗ η ⊗ η + x⊗ η ⊗ η)

=
1

3
(η ⊗ η ⊗ x+ η ⊗ x⊗ η + x⊗ η ⊗ η),

where the expressions in the last term are orthogonal to each other with the same norm.

Then ∣∣η⊗2⊗̂x
∣∣2
0

=
1

9
· 3 |η|40 · |Pη,⊥y|

2
0 .

Proposition 4.6.7. Let η ∈ H, |η|0 = 1 and ϕ ∈ G ′ with Γ(Pη,⊥)ϕ 6= 0. Then for any

α ∈ R:

|δ(〈η, ·〉) � Γ(Pη,⊥)ϕ|20,α = |δ(〈η, ·〉|20,α · |Γ(Pη,⊥)ϕ|20,α ,

where the result may be infinite.

Proof. Note that by Remark 2.2.23 we have

δx(〈η, ·〉) =
∞∑
n=0

〈f (n), : ·⊗n :〉,

where the kernels f (n) are given by

f (n) =
1

n!
√

2π〈η, η〉
exp(− x2

2〈η, η〉
Hn

(
x√

2〈η, η〉

)
(2〈η, η〉)−

n
2 η⊗n.

Hence we can abbreviate the kernels by

f (k) = αkη
⊗k, αk ∈ C.

87



|δ(〈η, ·〉) � Γ(Pη,⊥)ϕ|20,α =

∣∣∣∣∣
∞∑
n=0

〈
n∑
k=0

f (k)⊗̂P⊗(n−k)ϕ(n−k)

η,⊥ , : ·⊗n :

〉∣∣∣∣∣
2

0,α

=
∞∑
n=0

n! · 2nα
∣∣∣∣∣
n∑
k=0

f (k)⊗̂P⊗(n−k)
η,⊥ ϕ(n−k)

∣∣∣∣∣
2

0

=
∞∑
n=0

n!2nα
n∑
k=0

∣∣∣f (k)⊗̂P⊗(n−k)
η,⊥ ϕ(n−k)

∣∣∣2
0
,

since we have orthogonality. Then by 4.6.5

n∑
k=0

∣∣∣f (k)⊗̂P⊗(n−k)
η,⊥ ϕ(n−k)

∣∣∣2
0

=
∞∑
n=0

n!2nα
n∑
k=0

k!(n− k)!

n!

∣∣f (k)
∣∣2
0

∣∣∣P⊗(n−k)ϕ(n−k)

η,⊥

∣∣∣2
0

=
∞∑
n=0

n∑
k=0

k! 2kα
∣∣f (k)

∣∣2
0

(n− k)! 2(n−k)α
∣∣∣P⊗(n−k)ϕ(n−k)

η,⊥

∣∣∣2
0

= |δ(〈η, ·〉|20,α · |Γ(Pη,⊥)ϕ|20,α .

Moreover we use [70, Theorem VIII.1, p. 252]

Lemma 4.6.8. Let H be a Hilbert space and T be a densely defined operator on H. Then

T is closeable if and only if the domain D(T ∗) of T ∗ is dense in H. Here T ∗ means the

adjoint of T with respect to the sesquilinearform (·, ·)H on H×H.

Theorem 4.6.9. Let η ∈ G, |η|0 = 1. Then Pη : G −→ G is closeable in Gα if and only if

α > 0.

Proof. Let α ∈ R. As in 4.6.8 let P ∗η denote the adjoint of Pη with respect to the sesquilin-

earform ((·, ·))α on Gα × Gα. Let ϕ ∈ Gα. Then, by [70, Eq. (VIII.1), p. 252], ϕ is in

D(P ∗η ) if and only if

G −→ C

ψ 7−→ ((Pηψ, ϕ))α

has a continuous extension to Gα.

((Pηψ, ϕ))α = ((Γ(2
α
2 Id)Pηψ,Γ(2

α
2 Id)ϕ))0
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= (Pηψ,Γ(2αId)ϕ))0

=
√

2π〈〈ψ, δ(〈η, ·〉) � Γ(Pη,⊥)Γ(2αId)ϕ〉〉

By the definition of the bilinearform 〈〈·, ·〉〉 on G × G ′ and the density of G in Gα it follows

that ϕ ∈ D(P ∗η ) if and only if δ(〈η, ·〉) � Γ(Pη,⊥)Γ(2αId)ϕ ∈ G−α.

By 4.6.7 it holds

|δ(〈η, ·〉) � Γ(Pη,⊥)Γ(2αId)ϕ|20,−α = |δ(〈η, ·〉)|20,−α · |Γ(Pη,⊥)Γ(2αId)ϕ|20,−α
= |δ(〈η, ·〉)|20,−α · |Γ(2αId)Γ(Pη,⊥)ϕ|20
= |δ(〈η, ·〉)|20,−α · |Γ(Pη,⊥)ϕ|20,α

Since Γ(Pη,⊥) ∈ L(Gα,Gα) by Lemma 4.6.2 it follows |Γ(Pη,⊥)ϕ|20,α <∞.

First let α > 0. Then |δ(〈η, ·〉|20,−α < ∞, because δ(〈η, ·〉) ∈
⋂
β>0

G−β, by [87, Sect.4.6].

Hence ϕ ∈ D(P ∗η ).

If α ≤ 0 we have |δ(〈η, ·〉|20,−α =∞. So, if Γ(Pη,⊥)ϕ 6= 0, we have ϕ /∈ D(P ∗η ).

Consequently D(P ∗η ) ⊂ ker(Γ(Pη,⊥)). But ker(Γ(Pη,⊥)) is a proper closed subspace of Gα,

hence not dense in Gα. The claim follows now with 4.6.8.
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Chapter 5

A Wick representation of Wiener

products

In this chapter we restrict ourselves to the case N = S(R), i.e. the case of the White Noise

triple. We denote the spaces (N ) by (S) and (N )′ by (S)′. All the theorems also work for

the multi-dimensional case N = Sd(R) and can be shown by the same techniques.

Throughout the next pages we want to give meaning to pointwise products of generalized

with Donsker’s Delta functions as well-defined objects of White Noise Analysis and inves-

tigate in which sense the Wick-formula in [86, 36] can be extended beyond (L2). This is

interesting for applications as e.g. Feynman integrals. Here the potential part is playing

the role of the generalized function and Donsker’s Delta function is used to pin the paths

at the endpoints, see e.g. [16].
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5.1 The Pointwise product

The test function space (S) is a Banach algebra with the pointwise product of two Hida

test functions φ, ψ ∈ (S), which is defined by the algebraic product of their chaos decom-

positions. Thus the product of two kernels φ(n) ∈ S(R)⊗̂nC := SC and ψ(m) ∈ S⊗̂mC is given

by

〈φ(n), : ω⊗n :〉〈ψ(m), : ω⊗m :〉 =
n∧m∑
k=0

k!

(
n

k

)(
m

k

)
〈φ(n)⊗̂kψm, : ω⊗(n+m−2k) :〉, ω ∈ S ′,

(5.1)

where ⊗̂k denotes the k-times symmetric tensor power, see [87] and [64, Lemma 3.5.1,

p.58]. Hence the chaos decomposition of φ · ψ is given by

φ · ψ :=
∞∑
n=0

∞∑
m=0

n∧m∑
k=0

k!

(
n

k

)(
m

k

)
〈: .⊗n+m−2k :, φ(n)⊗̂kψm〉.

Proposition 5.1.1. The space Gβ ,0 ≤ β ≤ 1, is closed under pointwise multiplication.

More precisely, pointwise multiplication is a separately continuous bilinear map from Gβ ×
Gβ into Gβ.

For the proof see [69]. For θ ∈ (S) and ψ ∈ (S)′ the pointwise product is defined in

distribution sense, by

〈〈θ · ψ, ϕ〉〉 = 〈〈ψ, θ · ϕ〉〉, ϕ ∈ (S).

Since also elements of (S)′ have a generalized chaos decomposition, by an extension of (5.1)

one can also define the formal product of two Hida distributions θ ∈ (S) and Ψ ∈ (S)′ with

corresponding kernels θ(n), n ∈ N and Ψ(m),m ∈ N by

Θ ·Ψ :=
∞∑
n=0

∞∑
m=0

n∧m∑
k=0

k!

(
n

k

)(
m

k

)
〈Θ(n)⊗̂kΨm, : .⊗n+m−2k :〉,

whenever the right hand side is in (S)′. In [64, Th.3.5.10., p.63] it is shown that in this

case both distributions coincide.
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5.2 The Wick formula revised

Proposition 5.2.1. Let η ∈ SC. Further let y ∈ L2(R, dt,C), 〈y, y〉 6= 0 and a ∈ C. Then

δ(〈y, ·〉−a)· : exp(〈η, ·〉 := δ(〈y, ·〉−a)�
[(

Γ(Py,⊥) ◦ exp(− 1

2〈y, y〉
D2
y) ◦ τa y

〈y,y〉

)
exp(〈η, ·〉 :

]
,

where τa y
〈y,y〉

is the translation operator corresponding to a y
〈y,y〉 .

Proof. Note that for all ξ ∈ SC we obtain from definition that

exp(〈ξ, ·〉 : · exp(〈η, ·〉 := e〈ξ, η〉 · Φξ+η,

compare [64, proof of Proposition 4.6.4, p. 102]. By the definition of the Wiener product,

we obtain

〈〈δa(〈y, ·〉) · exp(〈η, ·〉 :, exp(〈ξ, ·〉 :〉〉 := 〈〈δa(〈y, ·〉),ΦηΦξ〉〉

= e〈ξ, η〉〈〈δa(〈·, y〉), exp(〈ξ + η, ·〉 :〉〉

= e〈ξ, η〉
1√

2π〈y, y〉
exp(− 1

2〈y, y〉
(〈ξ + η, y〉 − a)2),

by definition of the S-transform we obtain for the above expression

e〈ξ, η〉
1√

2π〈y, y〉
exp(− 1

2〈y, y〉
((〈ξ, y〉 − a) + 〈η, y〉)2)

= S(δa(〈y, ·〉))(ξ) · exp(−
1

2〈y, y〉
(〈η, y〉2 − 2a〈η, y〉))·

exp(− 1

2〈y, y〉
(2〈η, y〉y − 2〈y, y〉ξ, η〉))

= S(δa(〈y, ·〉))(ξ) · exp(−
1

2〈y, y〉
(〈η, y〉2 − 2a〈η, y〉)) · exp(〈η − 〈ξ, η, y〉

〈y, y〉
y〉))

= S(δa(〈y, ·〉))(ξ) · S
(

Γ(Py,⊥) ◦ exp(− 1

2〈y, y〉
D2
y) ◦ τa y

〈y,y〉
exp(〈η, ·〉 :

)
(ξ)

By the injectivity of the S-transform and the well-definiteness (on (S)) of the operators,

which appear in the last equation the assertion is proved.

Corollary 5.2.2 (Wick formula). Let y ∈ L2(R, dt,C), 〈y, y〉 6= 0 and a ∈ C.
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(i)

∀ϕ ∈ (S) : δ(〈y, ·〉−a) ·ϕ = δ(〈y, ·〉−a)�
[(

Γ(Py,⊥) ◦ exp(− 1

2〈y, y〉
D2
y) ◦ τa y

〈y,y〉

)
ϕ

]

(ii)

∀ϕ ∈ G : δ(〈y, ·〉 − a) · ϕ = δ(〈y, ·〉 − a) �
[(

Γ(Py,⊥) ◦ exp(− 1

2〈y, y〉
D2
y) ◦ τa y

〈y,y〉

)
ϕ

]

Proof. (i) Pointwise multiplication with Donsker’s delta is continuous from (S) to (S)′,

see [64, Corollary 3.5.9, p. 63]. Note that, by 4.5.4, we have exp(− 1
2〈y,y〉D

2
y), τa y

〈y,y〉
∈

L((S), (S)), and therefore the composition of operators on the other side of the equation is

well defined. The claim follows now because span
{

: exp(〈η, ·〉)
∣∣ η ∈ S(R)C

}
is dense in (S).

(ii) Pointwise multiplication with Donsker’s delta is continuous from G to G ′, by [87,

Corollary 65, p. 62]. Because of 4.5.9, we have exp(− 1
2〈y,y〉D

2
y), τa y

〈y,y〉
∈ L(G,G) and by

4.6.2 it holds Γ(Py,⊥) ∈ L(G,G). Then the claim follows by a density argument.

Our aim is to investigate the validity of the Wick formula for larger spaces. Because

[87, Theorem 90, p. 77] is only valid for real η, we can only expect extensions of the Wick

formula to the space M for real y. We study the operators, mentioned above in detail.

We want to show that exp(−1
2
D2
η) ∈ L(M,G ′). At this purpose we use the universal

mapping property ofM. We show that for all p > 0 the mapping exp(−1
2
D2
η) : Gp −→ G ′

is continuous.

Theorem 5.2.3. Let η ∈ L2(R, dt,C), |η|0 = 1. Further let α, γ ∈ R, α > 0 and 2γ <

2α − 1. Then

exp(−1

2
D2
η) : Gα −→ Gγ

is well defined and it holds for all ϕ ∈ Gα:∣∣∣∣exp(−1

2
D2
η)ϕ

∣∣∣∣
0,γ

≤ 1√
(1− 2−α)−

√
(2γ−α)

· |ϕ|0,α

Further exp(−1
2
D2
η) ∈ L(G,G) and exp(−1

2
D2
η) ∈ L(M,G ′).

Proof. We have
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∣∣∣∣exp(−1

2
D2
η)ϕ

∣∣∣∣
0,γ

=

∣∣∣∣∣∑
n∈N

1

n!
(−1

2
)nD2n

η ϕ

∣∣∣∣∣
0,γ

=

∣∣∣∣∣∑
n∈N

1

n!
(−1

2
)n
∑
k∈N

(k + 2n)!

k!
〈〈η⊗2n, ϕk+2n〉, : ·⊗k :〉

∣∣∣∣∣
0,γ

≤
∑
n∈N

1

n!
(
1

2
)n
∑
k∈N

(k + 2n)!

k!

∣∣〈〈η⊗2n, ϕk+2n〉, : ·⊗k :
∣∣
0,γ
〉

The following rearrangement of the series is justified by the proven absolute convergence

of the rearranged series. Note that

∣∣〈η⊗2n, ϕk+2n〉
∣∣
0
≤ |η|2n0 · |ϕk+2n|0

. Then∣∣∣∣exp(−1

2
D2
η)ϕ

∣∣∣∣
0,γ

≤
∑
k∈N

√
k!2kγ

∑
n∈N

(
1

2
)n
√

(k + 2n)!

k!n!
2−α(k+2n)/22α(k+2n)/2

√
(k + 2n)! |ϕk+2n|0

=
∑
k∈N

√
k!2k(γ−α)

∑
n∈N

(
1

2
)n
√

(k + 2n)!

k!n!
2−α(2n)/22α(k+2n)/2

√
(k + 2n)! |ϕk+2n|0

≤
∑
k∈N

√
k!2k(γ−α)

(∑
n∈N

(
1

2
)2n (k + 2n)!

k!2n!2
2−α(2n)

) 1
2

· |ϕ|0,α ,

=
∑
k∈N

√
2k(γ−α)

∑
n∈N

(
k + 2n

2n

)
(2−α)2n · (2n)!

n!2 · 22n︸ ︷︷ ︸
≤1


1
2

· |ϕ|0,α

≤
∑
k∈N

√
2k(γ−α)(1− 2−α)−(k+1)/2 · |ϕ|0,α

=
1√

1− 2−α

∑
k∈N

(√
2(γ−α)

(1− 2−α)

)k

· |ϕ|0,α ,
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where ∑
k∈N

(√
2(γ−α)

(1− 2−α)

)k

<∞,

since 2(γ−α)

(1−2−α)
< 1 by the assumption 2γ < 2α − 1. Then the last term expression equals

1√
1− 2−α

√
(1− 2−α)√

(1− 2−α)−
√

(2γ−α)
· |ϕ|0,α =

1√
(1− 2−α)−

√
(2γ−α)

· |ϕ|0,α ,

Since for all α > 0 it holds 2α − 1 > 0, there exists γ(α) ∈ R, such that 2γ(α) < 2α − 1.

Since γ(α) < α, we have

Gα → Gγ(α) ↪→ G ′

is continuous.

If we omit the condition |η|0 = 1 in 5.2.3, using the same argumentation as above, we

get the following statement.

Corollary 5.2.4. Let η ∈ L2(R, dt,C), 〈η, η〉 6= 0 and a ∈ C. Further let α, γ ∈ R, α >

log2(
|η|20
|〈η,η〉|) and 2γ < 2α − |η|20

|〈η,η〉| . Then

exp(− 1

2〈η, η〉
D2
η) : Gα −→ Gγ

is well defined and it holds for all ϕ ∈ Gα:∣∣∣∣exp(− 1

2〈η, η〉
D2
η)ϕ

∣∣∣∣
0,γ

≤ 1√
(1− 2−α

|η|20
|〈η,η〉|)−

√
(2γ−α)

· |ϕ|0,α

Note that, if η is not real valued the above corollary does not permit the extension of

the linear operator exp(− 1
2〈η,η〉D

2
η) to an operator on M.

We state the Wick formula for the real case, see [86, Theorem 4.24, p. 70] and [36].

Corollary 5.2.5 (Wick formula). Let η ∈ L2(R, dt,R), |η|0 = 1, a ∈ C, ϕ ∈ M. With

Pη := Γ(Pη,⊥) ◦ exp(−1
2
D2
η) it holds

δa(〈η, ·〉) · ϕ = δa(〈η, ·〉) � (Pη ◦ τaηϕ)

Proof. By [87, Corollary 66, p. 62], Wick multiplication with real Donsker’s delta is con-

tinuous fromM to G ′. Note that |η|0 = 〈η, η〉, because η is real valued. The claim follows
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now by 5.2.1, because we have proven the well-definiteness of the concerned operators.

(Recall 4.6.2(ii)).

For the action of Pη on the test functions, see 4.5.14.

5.3 Extensibility of the Wick formula

We have established the use of the Wick formula 5.2.5 for general regular white noise dis-

tributions inM. The question arises whether it is possible to use the Wick formula for an

extension of the definition of the product with Donsker’s delta function. The extensibility

of the Wick formula to larger vector spaces by continuity depends highly on the continuity

of the operator exp(−1
2
D2
η). The next result, which is stated exemplarily for real η, demon-

strates the pathological situation. A similar investigation was made in [86, Corollary 3.19,

p. 41].

Proposition 5.3.1. Let η ∈ L2(R, dt,R), |η|0 = 1. Then the operator exp(−1
2
D2
η) is not

extendable to an operator in L((L2),G ′)

Proof. Suppose exp(−1
2
D2
η) ∈ L((L2),G ′). Then we have exp(−1

2
D2
η)
∗ ∈ L(G, (L2)) and

consequently, by 4.5.12, it follows that
(

1√
2π

exp(−1
2
D2
η)
∗
)

(1) = δ(〈η, ·〉) ∈ (L2), in con-

tradiction to δ(〈η, ·〉) /∈ (L2).

Now we want to investigate if there exists a meaningful algebraic extension of the Wick

formula to (L2). For a meaningful extension of the notion of δ(〈., η〉) ·ϕ to (L2), we demand

at least that the expectation value, which is formally calculated by

〈〈δ(〈., η〉), ϕ〉〉 =
1√

2π〈η, η〉

∞∑
n=0

(2n)!
1

n!
(
−1

2〈η, η〉
)n · 〈ϕ2n, η

⊗2n〉 ϕ ∈ (L2)

is well defined on (L2), (perhaps not continuous). We present a counterexample.

Lemma 5.3.2. Let ϕ defined by ϕn := in
√
n!·n

3
4
· 1⊗n[0,1) for n ∈ N and ϕ0 := 0. Then

ϕ ∈ (L2) \M.

Proof. By [74, Theorem 3.28, p.62] we have For p < 1 :
∞∑
n=1

1
np

diverges and ∀p ≥ 1 :
∞∑
n=1

1
np

converges. Hence

|ϕ|20 =
∑
n∈N

n! |ϕn|20 =
∑
n∈N

n!
1

n!

1

n
3
2

· 12n <∞
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Now let α > 0. Then

|ϕ|20,α =
∑
n∈N

n! |ϕn|20 =
∑
n∈N

n!2αn
1

n!

1

n
3
2

· 12n =∞,

because lim sup
n∈N

n

√
2αn

n
3
2

= 2α > 1.

We need further a more technical result.

Lemma 5.3.3.
2
√
π

e2 ·
√
k
≤ (2k)!

(2k k!)2
≤ e

π
· 1√

2k
, for all k ≥ 0

Proof. The claim follows immediately by Stirlings formula

√
2nπ

(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n

Proposition 5.3.4. Let ϕ defined by ϕn := in
√
n!·n

3
4
·1⊗n[0,1) for n ∈ N and ϕ0 := 0. Then the

generalized expectation value 〈〈1, δ(〈1[0,1),·〉) · ϕ〉〉 =∞

Proof. Note that

δ(〈1[0,1),·〉) =
∞∑
n=0

〈 1√
2π

(
(−1)n

2n · n!
1⊗2n

[0,1)

)
, : ·⊗n :〉

. Then

〈〈1, δ(〈1[0,1), ·〉) · ϕ〉〉 := 〈〈δ(〈., 1[0,1)〉), ϕ〉〉

=
1√
2π

∑
n∈N

(2n)!
(−1)n

2n · n!
· i2n√

(2n)! · (2n)
3
4

· 12n

=
1√
2π

∑
n∈N

√
(2n)!

22n · n!2
· 1

(2n)
3
4

≥ 1

2
3
4

√
2π

∑
n∈N

(√
4π

e2

) 1
2

· 1

(n)
1
4

· 1

(n)
3
4

=∞,

by 5.3.3.

We conclude that even an algebraic extension of the product with Donsker’s delta

to (L2) is not meaningful by our minimal demands.
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Consequently we can only expect that, outsideM, only in a special suitable situation, the

product with Donsker’s delta function is well defined.

Another approach to generalize the product with Donsker’s delta function is to use the

representation of Donsker’s delta function as a Pettis integral, see 2.3.1. The problem

of multiplication with Donsker’s delta function will be simplified to a multiplication by

ei(〈·,η〉−a)t. But naturally we cannot find a better result as found above.

5.4 Extension of the Wick formula

Analyzing the proof of 5.2.5, the extension of the Wick formula depends highly on the

domain of continuity of the operator exp(−1
2
D2
η). We have seen in 5.3.1, that the exten-

sibility of exp(−1
2
D2
η) to a continuous operator from (L2) to G ′ is not possible, which is

expected by the fact, that Donsker’s delta function is not in (L2). The principle problem

in the extension of the Wiener multiplication to some bigger subspace of G ′ is given by the

fact, that we have tried to make continuous extensions which include whole White noise

spaces, like G, M or (L2).

In this section we start with a more general setting. We discuss the question whether there

exists a solution X ∈ L(G ′,G) of the equation

δ(〈η, ·〉 − a) · ϕ = δ(〈η, ·〉 − a) �X(ϕ),

where ϕ ∈ G ′.
Considering the whole space G, we have for real η, |η|0 = 1 the solution

X(ϕ) = Pη ◦ τaη(ϕ)

We restrict ourselves to some suitable subspaces of G, where X(ϕ) has a simple form which

allows a continuous extension to some subspace of G ′, which of course does not contain the

full space (L2). For example, we consider the subspace

GId = {g ∈ G | δ(〈η, ·〉 − a) · ϕ = δ(〈η, ·〉 − a) � Id(ϕ)}

Since Id : G ′ −→ G ′ is continuous, we find a continuous extension of the Wiener product

with Donsker’s delta function from GId to the completion of GId in the topology of G ′,
which indeed contains functions which are not in (L2). Obviously we have a compatibility
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problem, which arises if we can define δ(〈η, ·〉 − a) · ϕ = δ(〈η, ·〉 − a) �X(ϕ) and δ(〈η, ·〉 −
a) · ϕ = δ(〈η, ·〉 − a) � Y (ϕ), for different functions X, Y.

Lemma 5.4.1. Let η ∈ L2(R, dt,C), 〈η, η〉 6= 0 and a ∈ C.

Then for all ϕ ∈ G the equation

δ(〈η, ·〉 − a) · ϕ = δ(〈η, ·〉 − a) �X(ϕ)

has a unique solution. Further X defines a continuous linear mapping from G to G ′.

Proof. Verifying the S-transform of δ(〈η, ·〉−a), it easy to see that δ(〈η, ·〉−a) has a Wick

inverse δ
�(−1)
a (〈η, ·〉) in G ′, i.e.

δ(〈η, ·〉 − a) � δ�(−1)
a (〈η, ·〉) = 1.

Consequently

X(ϕ) = δ�(−1)
a (〈η, ·〉) � (δ(〈η, ·〉 − a) · ϕ),

i.e. X(ϕ) is uniquely defined by this equation. The continuity of X follows, since the

pointwise product with Donsker’s delta function is a continuous linear mapping from G to

G ′ by [87, Corollary 65, p. 62], and the Wick multiplication is separately continuous on

G ′.

In the following we need some notations

Definition 5.4.2. , Let η ∈ L2(R, dt,C), 〈η, η〉 6= 0 and a ∈ C.

Let D denote a complete locally convex Hausdorff space which is continuously embedded in

G ′ and let X be an arbitrarily chosen operator in L(D,G ′).

We denote by GX the following subspace of D:

GX := {g ∈ G ∩D| δ(〈η, ·〉 − a) · g = δ(〈η, ·〉 − a) �X(g)} .

Note that 0 ∈ GX

We denote by DX the following subspace of D:

DX := GX
D
.

Further we use the notation
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ΨX : D −→ G ′

d 7→ δ(〈., η〉 − a) �X(g)

Proposition 5.4.3. ΨX is a continuous extension of the pointwise multiplication with

δ(〈η, ·〉 − a) from GX to DX .

Proof. Note that ΨX is continuous as operator from D to G ′. The claim follows by the

density of GX in DX .

Example 5.4.4. We present an example where DX \ (L2) 6= ∅. We choose X = Id and

D = G ′. Note, that G ′ is complete as the strong dual space of a Fréchet space, see [66,

Proposition 0.7.6, p. 11] and [64, Proposition 1.1.2, p. 3]. Further let a = 0, η = 1[0,1)

and let ϕ defined by ϕn := in√
n!·n · 1

⊗n
[1,2) for n ∈ N and ϕ0 := 0. Then ϕ ∈ (L2) \M. Let

Ψn :=
n∑
k=0

〈ϕk, : ·⊗k:〉. By the Wiener-Itô-Segal isomorphism, see [64, Theorem 2.3.5, p.

30], we have |ϕ−Ψn|0 → 0, hence Ψn → ϕ in G ′ = D. Further, it holds for all n ∈ N:

δ(〈η, ·〉 − a) ·Ψn = δ(〈η, ·〉 − a) �Ψn ∈ G ′.

Therefore, for all n ∈ N, it holds Ψn ∈ GX and since Ψn → ϕ in D, we have ϕ ∈ DX .

Also it is easy to see, that for all α ∈ R, we have Γ(2α Id)ϕ ∈ DX , i.e.

∀α ≥ 0 : DX \ G−α 6= ∅.

Further, it’s easy to see, that {ϕ ∈ G ′ | Dηϕ = 0} ⊂ DX .

Example 5.4.5. Let D = G ′. Further let a ∈ C, η = 1[0,1) and let X = Γ(Pη,⊥). Then

span
{

: exp(〈ξ, ·〉) : | ξ ∈ L2(R, dt,C) and (〈ξ, η〉 − 2a = 0 ∨ 〈ξ, η〉 = 0)
}
⊂ GX

.

Because Γ(Pη,⊥)2 = Γ(Pη,⊥) on G ′ we have

Γ(Pη,⊥)(G ′) ⊂ DX
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5.5 Products with Donskers Delta function via mea-

sure transformation

In this section we consider the case, when X is a generalized scaling operator, i.e. for

g ∈ G, η ∈ L2(R, dt,R), |η|0 = 1, a ∈ R, we discuss conditions for the validity of the

equation

(δ(〈η, ·〉 − a) · g)(x) = δ(〈η, ·〉 − a) � g̃η,a(aη + Pη,⊥(x)), x ∈ S ′

Note that G ⊂ (L2) and therefore each g ∈ G is a class of measurable functions relative to

the measure µ. The above equation is in fact valid for the space G, but note that we use

a g̃η,a instead of g. We will see that g̃η,a is nothing but a function class w.r.t. the positive

Hida measure νδ(〈η,·〉−a). The following measure theoretical preliminaries are needed to

show that we cannot replace g̃η,a by g in the above formula.

Definition 5.5.1.

(i) We denote by M(S ′,B) the set of Borel measurable mappings from S ′ to S ′ and by

MF (S ′,B) the set of Borel measurable functions from S ′ to C.

(ii) For f ∈MF (S ′,B) we denote by f⊥ the measurable set:

f⊥ := f−1({0})

(iii) Let ν be a positive Borel measure on S ′ and f ∈M(S ′,B). Then we use the notation

[f ]ν := {g ∈ M(S ′,B) | f =ν−a.e. g}

For f ∈ MF (S ′,B) we use [f ]ν analogously. Each element ϕ ∈ (S) has a unique

continuous version f , see [64, Theorem 3.2.1, p. 38], with ϕ = [f ]µ. Since of this

uniqueness, we use the symbol f instead of [f ]µ or [f ]ν, if the context allows no

confusion.

Remark 5.5.2. Note that we must be careful in the use of compositions of measurable

functions: if f, ϕ ∈M(S ′,B) and f1, f2 ∈ [f ]µ then generally we have

[f1 ◦ ϕ]µ 6= [f2 ◦ ϕ]µ .

E.g. consider the case where µ and µ ◦ ϕ−1 are mutually singular. (We can choose f1, f2
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such that f1 ◦ ϕ = 1 and f2 ◦ ϕ = 0.)

But if f1, f2 ∈ [f ]µ◦ϕ−1 then

[f1 ◦ ϕ]µ = [f2 ◦ ϕ]µ .

Lemma 5.5.3. Let ϕ : S ′ −→ S ′ be a Borel measurable mapping. Then for all φ ∈ [ϕ]µ
it holds:

µ ◦ ϕ−1 = µ ◦ φ−1,

i.e. the construction of the image measure depends only on the class [ϕ]µ. So the expression

µ ◦ [ϕ]−1
µ

is well defined.

Proof. Let ϕ1, ϕ1 ∈M(S ′,B) and A, N Borel measurable sets, where

µ(N) = 0 and ϕ1

∣∣
S′\N = ϕ2

∣∣
S′\N

Then ϕ−1
1 (A) \N = ϕ−1

2 (A) \N and

µ(ϕ−1
1 (A)) = µ(ϕ−1

1 (A) ∩N) + µ(ϕ−1
1 (A) \N) = µ(ϕ−1

2 (A)).

Lemma 5.5.4. For all p ∈ R it holds that Sp is a Borel measurable subset of S ′. Also S

is a Borel measurable subset of S ′.

Proof. Let x ∈ S ′ In view of [64, Lemma 1.2.8, p.7] we obtain

|x|2p =
∞∑
n=0

|〈x,Hpen〉|2

Then |x|2p is a countable infinite sum of continuous positive functions, hence measurable.The

claim follows now with Sp =
{
x ∈ S ′ | |x|2p <∞

}
.

Furthermore

S =
⋂
p∈N

Sp

is Borel measurable as countable intersection of Borel measurable sets.
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Because of the independency of the image measure from the special defining measurable

mapping see Lemma 5.5.3, we define suitable measurable functions, which allow an easy

verification of properties.

Lemma 5.5.5.

(i) Let ϕ ∈ L2(R, dt,R), ϕ 6= 0 and Yϕ be a Borel measurable version of 〈ϕ, ·〉. Then

µ(Y ⊥ϕ ) = 0.

(ii) µ(span {ϕ}) = 0, ϕ ∈ S ′ \ {0}

(iii) Let ψ ∈ L2(R, dt,R). Then there exists a Borel measurable version Xψ of 〈ψ, ·〉 ∈ (L2)

and a measurable subspace Vψ ⊂ S ′ with

(a) µ(Vψ) = 1 and L2(R, dt,R) ⊂ Vψ

(b) Xψ(ξ) = 〈ψ, ξ〉, for all ξ ∈ L2(R, dt,R)

(c) Xψ is a linear functional on Vψ

(d) For all η ∈ S ′ \ Vψ : Xψ(η) = 0.

Proof. Proof of (i):

Note that {Yϕ}⊥ is measurable by definition. Furthermore we have

1{Yϕ}⊥ = 1{0} ◦ (|ϕ|0 ·
Yϕ
|ϕ|0

).

Thus ∫
S′

1{Yϕ}⊥ dµ =

∫
R

1{0}(|ϕ|0 t) dν0,1 =

∫
R

1{0}(t) dν0,1 = 0,

since {0} is a set of Lebesgue measure zero.

Proof of (ii):

span {ϕ} is a one dimensional, closed subset of S ′, hence measurable.

Then there exists ξ ∈ S \{0} with 〈ξ, ϕ〉 = 0, (e.g. if ϕ =
∑
n∈N
〈ei, ϕ〉ei and 〈e1, ϕ〉, 〈e2, ϕ〉 6=

0.

We choose ξ = 〈e1, ϕ〉e2 − 〈e2, ϕ〉e1). Then

span {ϕ} ⊂ X⊥ξ .

The assertion then follows by (i).

Proof of (iii):
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Now let Yψ be a Borel measurable version of 〈ψ, ·〉. Moreover let (fn)n∈N be a sequence in

S with 〈fn, ·〉 → Yψ in (L2) and 〈fn, ·〉 → Yψ µ-a.e.. Then there exists a measurable set M

of measure zero, such that for all x ∈ S ′ \M : we have

〈fn, x〉 → Yψ(x)

Now we define

Vψ := {x ∈ S ′| (〈fn, x〉)n∈N is convergent}

Then Vψ is a vector space. Furthermore Vψ is a measurable set, since lim sup〈fn, ·〉 and

lim inf〈fn, ·〉 are measurable functions by [72, 1.14 Theorem, p. 15]. Thus

Vψ = {x ∈ S ′ | |lim sup〈fn, x〉| <∞}

∩ {x ∈ S ′ | |lim inf〈fn, x〉| <∞}

∩ {x ∈ S ′ | lim sup〈fn, x〉 = lim inf〈fn, x〉}

Finally we have S ′ \ Vψ ⊂M and consequently µ(Vψ) = 1 and µ(S ′ \ Vψ) = 0. Now set

Xψ :=

0, x /∈ Vψ
lim
n→∞
〈fn, x〉, x ∈ Vψ

(Note that x 7→ lim
n→∞
〈fn, x〉 is measurable on Vψ).

The above situation is natural. It is well known from the theory of Gaussian measures

on Banach spaces [58], that for all measurables vector spaces V ⊂ S ′ with µ(V ) = 1 one

has L2(R, dt,R) ⊂ V . It holds even

L2(R, dt,R) =
⋂
{V | V is a measurable subspace of S ′ and µ(V ) = 1}

.

Remark 5.5.6. By the axiom of choice, we choose to each ψ ∈ L2(R, dt,R) \ S a Xψ

and a corresponding vectors pace Vψ as in 5.5.5. In the case ψ ∈ S, we choose Xψ as the

uniquely defined continuous version of ψ and Vψ := S ′.
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For ψ ∈ L2(R, dt,C), with ψ = ψ1 + ψ2, where ψ1, ψ2 ∈ L2(R, dt,R), we define

Xψ := Xψ1 + iXψ2

Definition 5.5.7. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R.

(i) We define the measurable mapping Py,⊥ by

∀x ∈ S ′ : Py,⊥(x) := x−Xy(x) · y

Note that, by 5.5.5, this definition is compatible with 4.6.1

(ii) We define the measurable mapping Py,a by

∀x ∈ S ′ : Py,a(x) := ay + Py,⊥(x)

(iii) The mapping

σy,a : M(S ′,B) −→M(S ′,B)

f 7−→ σy,a(f) = f ◦ Py,a

is well defined.

Note that the above mappings are compositions of measurable mappings.

We want to present a statement about positive generalized functions with a normal

distribution. Similar calculations are made in [57, Example 15.9, p.324-326]. Compare

also [40, p.113]

Proposition 5.5.8. Let u, σ ∈ R, σ 6= 0 and ϕ ∈ L2(R, dt,R) with |ϕ|0 ≤ |σ|, ϕ̃ := 〈ϕ, :
· :〉 the corresponding element in (L2). Let Ψ := exp�(− 1

2σ2 ϕ̃
�2 +u · ϕ̃) be the corresponding

positive generalized white noise functional and let νΨ be the corresponding unique finite

positive Borel measure, such that for all φ ∈ (S) :

〈〈φ,Ψ〉〉 =

∫
S′

φ dνΨ.

Then
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(i) νΨ is a probability measure.

(ii) For all ξ ∈ S the distribution of the test white noise functional Xξ : S ′ → C, x 7→
〈ξ, x〉, with respect to νΨ, is N(m, σ̃2) distributed with m = u〈ϕ, ξ〉 and σ̃2 = BΨ(ξ, ξ),

where BΨ is the positive semidefinite bilinearform, defined by

BΨ(ξ, η) := 〈ξ, η〉 − 1

σ2
〈ϕ, ξ〉〈ϕ, η〉, ξ, η ∈ SC.

(iii) Let |ϕ|0 = |σ|. With the abbreviation

K := P ϕ
|ϕ|0

,⊥

we have

νΨ = νδuϕ ∗ µ ◦K−1, i.e.∀φ ∈ (S) : 〈〈φ,Ψ〉〉 =

∫
S′

φ(u · ϕ+Kx) dµ(x)

Here µ ◦K−1 denotes the image measure of µ under the mapping K.

Furthermore νΨ is the image measure of µ under the mapping P ϕ
|ϕ|0

,|ϕ|0u i.e.

νΨ = µ ◦ (P ϕ
|ϕ|0

,|ϕ|0u)
−1.

Proof. Let ξ ∈ N . Since S(Ψ)(ξ) = exp(− 1
2σ2 〈ξ, ϕ〉2 + u〈ξ, ϕ〉) we have by Theorem2.2.16

that Ψ ∈ (S)′.

The T -transform T (Ψ) is positive definite, since we have

T (Ψ)(ξ) = exp
(
− 1

2
(|ξ|20 −

1

σ2
〈ξ, ϕ〉2)

)
· exp(iu〈ξ, ϕ〉),

where both terms are positive definite.

Proof of (i):

We use the analogy of [40, (A1.15), p. 453] for the White noise functions.∫
S′

1 dνΨ = 〈〈1,Ψ〉〉 =
∞∑
n=0

: un : 1
σ2
〈〈1, ϕ̃

�n

n!
〉〉 = : u0 : 1

σ2
·1 = 1.
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Proof of (ii):

Let ξ ∈ S. It must be shown, that the image measure ν of νΨ under the mapping Xξ :

S ′ → R is the Gaussian measure νm,σ̃2 . For this we calculate the Fourier transform ν̂ at

s ∈ R.

ν̂ =

∫
R

ei·st dt

=

∫
S′

eis〈ξ,x〉dνΨ(x)

= 〈〈Ψ, ei〈s,xξ〉〉〉

= e−
1
2
|sξ|20〈〈: exp(〈isξ, ·〉) :,Ψ〉〉

= e−
1
2
|ξ|20s2 · exp(−1

2

1

σ2
〈isξ, ϕ〉2 + u〈isξ, ϕ〉)

= exp(i(u〈ξ, ϕ〉)s) · exp(−1

2
(BΨ(ξ, ξ))s2)

For the rest compare to [5, Bsp.3,p.192]

Proof of (iii):

First note that K is a Borel-measurable function from S ′ to S ′, which is defined µ-a.e.. By

5.5.5 we have

Kξ = ξ − 〈ξ, ϕ〉
|ϕ|20

· ϕ, ξ ∈ S.

Let BΨ as in (ii). Then BΨ(ξ, η) = 〈η,Kξ〉 for all ξ, η ∈ S. Further, by an explicit

calculation, we have even

BΨ(ξ, ξ) = 〈Kξ, ξ〉 = 〈Kξ,Kξ〉 for all ξ ∈ S, (or simply note that K just defines the

orthogonal projection of S into [span {ϕ}]⊥). As in the proof of (ii) we have:

ν̂Ψ = exp(i(u〈ξ, ϕ〉)) · exp(−1

2
BΨ(ξ, ξ))

= exp(i(u〈ξ, ϕ〉)) · exp(−1

2
〈ξ,Kξ〉)

= exp(i(u〈ξ, ϕ〉)) · exp(−1

2
〈Kξ,Kξ〉)

= exp(i(u〈ξ, ϕ〉)) ·
∫
S′

ei〈Kξ,x〉dµ
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= exp(i(u〈ξ, ϕ〉)) ·
∫
S′

ei〈ξ,Kx〉dµ,

since XKξ = 〈ξ,K·〉µ−a.e.. Finally we obtain

ν̂Ψ =

∫
S′

ei〈uϕ+Kx,ξ〉dµ(x)

The claim follows now by the definitions of the image measure and the convolution of

measures, compare Definition 2.2.17.

Corollary 5.5.9. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Further let νδ denote the positive

Hida measure corresponding to δ(〈y, ·〉 − a). Then we have for all f ∈ L1(S ′, dνδ,C) or

Borel-measurable f ≥ 0:∫
S′

f(x) dνδ =
1√
2π
e−

1
2
a2

∫
S′

f(ay + (x−Xy(x)y)) dµ(x)

Compare with 5.5.1.

Corollary 5.5.10. , Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R and 1 ≤ p <∞. Further let νδ

denote the positive Hida measure corresponding to δ(〈y, ·〉−a) and µy,a be the corresponding

probability measure, i.e. µy,a := (
√

2πe
1
2
a2

)νδ. Then we obtain

(i)

µy,a = µ ◦ P−1
y,a

(ii) The mapping

σy,a : Lp((S ′, dµy,a,C) −→ Lp((S ′, dµ,C)

f(x) 7−→ f(ay + (x−Xy(x)y))

defines an isometrical embedding from Lp((S ′, µy,a,C) into Lp((S ′, dµ,C).

Proof. The assertions follow immediately by 5.5.8.

For the statements in the following definition compare [90] and Proposition 2.3.7.
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Definition 5.5.11. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. We denote

Ψy,a :=
√

2πexp(
1

2
a2)δ(〈y, ·〉 − a).

Note that Ψy,a ∈ (S)′ is a positive generalized White Noise functional and the corresponding

Hida measure is a probability measure.

The next proposition is crucial for the discussion.

Proposition 5.5.12. Let η ∈ L2(R, dt,R), |η|0 = 1, a ∈ R. Then

∀ϕ ∈ SC : [Xϕ(aη + Pη,⊥(·))]µ = Γ(Pη,⊥) exp(−1

2
D2
η) ◦ τaη(〈ϕ, ·〉).

Proof. First, by 5.2.2, we have Γ(Pη,⊥) exp(−1
2
D2
η) ◦ τaη(〈ϕ, ·〉) ∈ G. Note that Xϕ(aη +

Pη,⊥(·)) is a Borel measurable function as composition of Borel measurable functions. Fur-

ther note, that Xϕ is the continuous version of ϕ and Vϕ = S ′(R). Therefore

∀x ∈ S ′ : Xϕ(aη + Pη,⊥(x)) = 〈ϕ, aη〉+ 〈ϕ, x〉 − 〈ϕ, η〉Xη(x)

Hence

[Xϕ(aη + Pη,⊥(·))]µ = a〈ϕ, η〉+ 〈ϕ, ·〉 − 〈ϕ, η〉〈η, ·〉 ∈ G.

Further, by a simple calculation, it holds

Γ(Pη,⊥) exp(−1

2
D2
η) ◦ τaη(〈ϕ, ·〉) = a〈ϕ, η〉+ 〈Pη,⊥ϕ, ·〉

Now the claim follows by applying the S-transform. Indeed, for ξ ∈ SC, we have:

〈〈: exp(〈ξ, ·〉) :, [Xϕ(aη + Pη,⊥(·)]µ〉〉 = 〈ϕ, aη〉+ 〈ϕ, ξ〉 − 〈ϕ, η〉〈ξ, η〉 = a〈ϕ, η〉+ 〈Pη,⊥ϕ, ξ〉

Lemma 5.5.13. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Let

K := Γ(Py,⊥) exp(−1

2
D2
y)τay(ϕ)

Then

∀ϕ1, ϕ2 ∈ G : K(ϕ1 · ϕ2) = K(ϕ1) ·K(ϕ2)
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Proof. By Proposition 4.5.9, we have exp(−1
2
D2
y), τay ∈ L(G,G) and by Proposition 4.6.2

Γ(Py,⊥) ∈ L(G,G). Thus K ∈ L(G,G). By the (joint) continuity of the pointwise multi-

plication on G × G it suffices to show the relation for Wick exponentials : exp(〈ξ, ·〉) : and

: exp(〈η, ·〉) :, where η, ξ ∈ SC. On the one hand we have

K(: exp(〈ξ, ·〉) : · : exp(〈η, ·〉) :) = exp(〈ξ, η〉)K(: exp(〈ξ + η, ·〉) :)

= exp(〈ξ, η〉) exp(−1

2
〈ξ + η, y〉2) exp(〈ξ + η, ay〉) : exp(〈Py,⊥(ξ + η), ·〉) :

On the other hand we have

K(: exp(〈ξ, ·〉) :) ·K(: exp(〈η, ·〉) :)

= exp(−1

2
〈ξ, y〉2) exp(〈ξ, ay〉) : exp(〈Py,⊥ξ, ·〉) :

× exp(−1

2
〈η, y〉2) exp(〈η, ay〉) : exp(〈Py,⊥η, ·〉) :

= exp(−1

2
〈ξ, y〉2) exp(−1

2
〈η, y〉2) exp(〈ξ + η, ay〉 : exp(〈Py,⊥ξ, ·〉) :: exp(〈Py,⊥η, ·〉) :

= exp(−1

2
〈ξ, y〉2) exp(−1

2
〈η, y〉2) exp(〈ξ + η, ay〉)

× exp(〈Py,⊥ξ, Py,⊥η〉) : exp(〈Py,⊥(ξ + η), ·〉) :

= exp(〈ξ, η〉) exp(−1

2
〈ξ + η, y〉2) exp(〈ξ + η, ay〉) : exp(〈Py,⊥(ξ + η), ·〉) :

Based on the previous results we are able to state the following theorem.

Theorem 5.5.14. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Then for all ϕ ∈ (S)

Γ(Py,⊥) exp(−1

2
D2
y)τay(ϕ) = σy,a(ϕ) = ϕ ◦ Py,a

Proof. By 5.5.10 and 2.3.8 the mapping

(S)
[·]µy,a→ L2(S ′, dµy,a,C)

σy,a→ (L2)

ϕ 7−→ σy,a(ϕ)
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is continuous. (Note that we use for ϕ ∈ (S) the unique continuous version of ϕ, by

[64, Theorem 3.2.1, p. 38] so the mapping is well defined.) The claim follows now by

5.2.2, 5.5.12, 5.5.13 and the density of the polynomials
{
Xn
ξ |n ∈ N and ξ ∈ S

}
in (S),

compare [64, Proposition 2.2.3, p. 25] and [64, Theorem 3.2.1, p. 38].

As a corollary we state another Wick formula for (E) in the real case.

Corollary 5.5.15. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Then for all ϕ ∈ (S) we have

δ(〈y, ·〉 − a) · ϕ = δ(〈y, ·〉 − a) � σy,a(ϕ).

Now we want to answer the question, if it is possible, to present a similar statement in

the case of G.

Proposition 5.5.16. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Then to each g ∈ G, there

exists a unique g̃y,a ∈ L2(S ′, dµy,a,C) with the following property:

For each sequence (fn)n∈N, fn ∈ (S) with fn → g in the topology of G it holds fn → g̃y,a in

L2(S ′, dµy,a,C). The mapping

G −→ L2(S ′, dµy,a,C)

g 7−→ g̃y,a

is linear and continuous.

Proof. Because fn → g in the topology of G it holds fn → g in the topology of (L2), hence

without loss of generality fn(x)→ g(x) µ-a.e.. By the continuity of the pointwise product

on G it follows

lim
n,m→∞

(fn − fm)(fn − fm) = 0.

Because Ψy,a ∈ G ′ we have

〈〈Ψy,a, (fn − fm)(fn − fm)〉〉 =

∫
S′

|fn − fm|2 dµy,a → 0, (5.2)

where equality follows by 5.5.11. Hence (fn)n∈N is a Cauchy-Sequence in L2(S ′, dµy,a,C)

and fn → g̃y,a ∈ L2(S ′, dµy,a,C). It is easy to see, that g̃y,a is independent of the choice of

(fn)n∈N.

The claimed continuity of g 7→ g̃y,a follows by (5.2), the continuity of Ψy,a on G and the
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joint continuity of the pointwise multiplication on G × G:∫
S′

|g̃y,a|2 dµy,a = lim
n→∞

∫
S′

|fn|2 dµy,a

= lim
n→∞
〈〈|fn|2 ,Ψy,a〉〉

= 〈〈gg,Ψy,a〉〉

≤ |g|20,γ ,

for some γ > 0.

Definition 5.5.17. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Corresponding to 5.5.16 we use

the notation.

G̃y,a := {g̃y,a | g ∈ G} .

But we omit the identifiers ·y,a, whenever there is no danger of confusion.

Corollary 5.5.18. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R. Then it holds

∀ϕ ∈ G : δ(〈y, ·〉 − a) · ϕ = δ(〈y, ·〉 − a) � σy,a(ϕ̃y,a).

Proof. Choose a sequence fn → ϕ as in 5.5.16. Then apply 5.5.10 and 5.2.2.

There exists a similar convergence process for suitable spaces Gα.

Proposition 5.5.19. Let α > log2(3). Further let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R.

Then it holds for all ϕ ∈ Gα:

δ(〈y, ·〉 − a) · ϕ = δ(〈y, ·〉 − a) � σy,a(ϕ̃y,a).

Proof. By [87, Theorem 64, p. 26] the pointwise multiplication Gα×Gα →M is continuous

for α > log2(3). So we may repeat the same approximation procedure as above for this

case, defining ϕ̃ in the same way. Note that δ(〈y, ·〉 − a) ∈M′ by [87, Theorem 90, p. 77],

which is valid in the real case.

By [87, 4.3.2 The pointwise product, p.61ff ], the pointwise multiplication goes from

M ×M −→ G ′, such that the above used method fails. So we can make at less the

following statement:
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Proposition 5.5.20. Let y ∈ L2(R, dt,R), |y|0 = 1, a ∈ R, m ∈ M and (gn)n∈N be a

sequence of elements of G with gn → m in the topology of M. Then

δ(〈y, ·〉 − a) ·m = lim
n→∞

δ(〈y, ·〉 − a) � σy,a(g̃ny,a),

Proof. δ(〈y, ·〉 − a) · gn → δ(〈y, ·〉 − a) ·m by 5.2.5. On the other hand

δ(〈y, ·〉 − a) · gn = δ(〈y, ·〉 − a) � σy,a(g̃ny,a),

by 5.5.18

Finally, as an application, we precise the meaning of the statement ”The Brownian

motion is pinned at time t at the point a.”

Proposition 5.5.21. The Brownian motion (B(s))s≥0 defined by

B(s) := 〈1[0,s), ·〉

is pinned at time t at the point a, i.e. from∫
S′

B̃(s)dµ1[0,t)√
t
, a√
t

=
a

t
· (s ∧ t)

it follows ∫
S′

B̃(t)dµ1[0,t)√
t
, a√
t

= a

Proof. With the notations in 5.5.8 we have for ξ ∈ S:

exp(i(
a

t
〈1[0,t), ξ〉)) · exp(−1

2
(P1[0,t)√

t
,⊥
ξ, ξ)) =

∫
S′

ei〈ξ,ω〉dµ1[0,t)√
t
, a√
t

(ω)

Note that ̂µ1[0,t)√
t
, a√
t

is continuously extendable from S to L2(R, dt,R) by the left side of the

above equation. Using 5.5.16, an approximation of B̃(s) by a suitable sequence in (S) and

the dominated convergence theorem, applied to the right side of the above equation, we

get the result. Compare [40, Example 4.32, p.113-114].

On infinite-dimensional spaces measures have a strong tendency to be mutually singular.

As an example we show, that the measures µ and µy,a are mutually singular, i.e. they have
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support on disjoint measurable sets. The following proposition shows that it is reasonable

to introduce g̃η,a.

Proposition 5.5.22. Let y ∈ L2(R, dt,R) and |y|0 = 1, a ∈ R. Then µ and µy,a are

mutually singular. If a 6= b then µy,a and µy,b are mutually singular.

Proof. Since the Gaussian measure µ is quasi-invariant under translations by ϕ ∈ L2(R, dt),
see [64, Theorem 2.1.6, p.23], it follows by 5.5.5

µ(ay + {Xy}⊥) = 0.

Now we have to distinguish two cases:

First let x ∈ S ′\Vy. Then Xy(x) = 0 and we have Py,⊥(x) = x /∈ Vy, hence Xy(Py,⊥(x)) = 0.

In the case x ∈ Vy this can be obtained immediately by the linearity of Xy on Vy. Hence

Py,⊥(S ′) ⊂ X⊥y . It follows that Py,a(S
′) = ay + Py,⊥(S ′) ⊂ ay + {Xy}⊥.

Thus

µy,a(S
′ \ {ay + {Xy}⊥}) = µ(P−1

y,a (S ′ \ {ay + {Xy}⊥})) = µ(∅) = 0.

The last claim yields since for a 6= b we have

ay + {Xy}⊥ ∩ by + {Xy}⊥ = ∅.
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Chapter 6

Appendix

We transfer some results about Gaussian measures on Banach spaces to the White noise

space. The results are typical properties of the Cameron−Martin space. The following

statement is quite standard and a well known characterization of the Cameron−Martin

space in the theory of Gaussian measures on Banach spaces. The idea of the proof is taken

from lecture notes of [89] and [39], respectively.

First we state the following Lemma:

Lemma 6.0.23. For n ∈ N, let hn be the n-th Hermite function. Then

sup
n∈N
|〈hn, ω〉| =∞,

for µ-almost all ω ∈ S ′(R).

Proof. Let F1 denote the cumulative distribution function corresponding to the normal

distribution N (0, 1). Further let 0 < m <∞ and F (m) := F1(m)− F1(−m).

By [64, Eq. (2.7), (2.8), p. 21], each hn is normally distributed by N (0, 1), hence

{〈hn, ·〉}n∈N is a sequence of identically distributed and independent random variables,

see [64, Lemma 2.1.3, p. 20], with

∀n ∈ N : µ({x ∈ S ′(R) | |hn(x)| ≤ m}) =

∫
R

1[0,m](|t|) dν0,1 =

m∫
−m

dν0,1 = F (m) < 1.

It follows:

µ(

{
x ∈ S ′(R) | max

0≤i≤n
|hi(x)| ≤ m

}
) = µ(

n⋂
i=0

{x ∈ S ′(R) | |hi(x)| ≤ m})
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= (
n∏
i=0

µ {x ∈ S ′(R) | |hi(x)| ≤ m}), independency

= (F (m))n+1, normally distributed

→ 0, for n→∞

For n ∈ N let An :=

{
x ∈ S ′(R) | max

0≤i≤n
|hi(x)| ≤ m

}
. By [73, 1.19 Theorem(e), p. 17] it

follows that

µ

(
∞⋂
n=0

An

)
= lim

n→∞
µ(An) = 0,

hence

µ(x ∈ S ′(R) | sup
n∈N
|hn(x)| ≤ m) = 0

and

µ(
⋃
m∈N

{
x ∈ S ′(R) | sup

n∈N
|hn(x)| ≤ m

}
) = 0

and finally

µ(

{
x ∈ S ′(R) | sup

n∈N
|hn(x)| =∞

}
) = 1

Another comparable proof, using the first lemma of Borel-Cantelli:

Proof. Let F1 denote the cumulative distribution function corresponding to the normal

distribution N (0, 1). Further let 0 < m <∞ and F (m) := F1(m)− F1(−m).

By [64, Eq. (2.7), (2.8), p. 21], each hn is normally distributed by N (0, 1), hence

{〈hn, ·〉}n∈N is a sequence of identically distributed and independent random variables,

see [64, Lemma 2.1.3, p. 20], with

∀n ∈ N : µ({x ∈ S ′(R) | |hn(x)| ≤ m}) =

∫
R

1[0,m](|t|) dν0,1 =

m∫
−m

dν0,1 = F (m) < 1.
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It follows:

µ(

{
x ∈ S ′(R) | max

0≤i≤n
|hi(x)| ≤ m

}
) = µ(

n⋂
i=0

{x ∈ S ′(R) | |hi(x)| ≤ m})

= (
n∏
i=0

µ {x ∈ S ′(R) | |hi(x)| ≤ m}), independency

= (F (m))n+1, normally distributed

It follows ∑
n∈N

µ(

{
x ∈ S ′(R) | max

0≤i≤n
|hi(x)| ≤ m

}
) =

F (m)

1− F (m)
<∞.

Hence by the first lemma of Borel-Cantelli, see [5, 11.8 Satz, p. 74], it follows

µ(

{
x ∈ S ′(R) | max

0≤i≤n
|hi(x)| ≤ m for infinitely many n

}
) = 0,

(this means here for all n ∈ N), hence

µ(

{
x ∈ S ′(R) | sup

n∈N
|hn(x)| ≤ m

}
) = 0

and

µ(
⋃
m∈N

{
x ∈ S ′(R) | sup

n∈N
|hn(x)| ≤ m

}
) = 0

and finally

µ(

{
x ∈ S ′(R) | sup

n∈N
|hn(x)| =∞

}
) = 1

Proposition 6.0.24. L2(R, dt,R) is a Borel measurable subset of S ′(R) and it holds

µ(L2(R, dt,R)) = 0

Proof. The first claim follows by 5.5.4. For n ∈ N, let hn be the n-th Hermite function.
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Then, by 6.0.23 it follows

µ(L2(R, dt,R)) = µ(

{
x ∈ S ′(R) |

∑
n∈N

|〈hn, x〉|2 < ∞

}
) ≤ µ(

{
sup
n∈N
|hn(x)| <∞

}
) = 0

Proposition 6.0.25.

(i) For all measurables vector spaces V ⊂ S ′(R) with µ(V ) = 1 it holds

L2(R, dt,R) ⊂ V

(ii)

L2(R, dt,R) =
⋂
{V | V measurable subspace of S ′(R) and µ(V ) = 1}

Proof. (i) Let y ∈ L2(R, dt,R). Suppose y /∈ V . Then (y + V ) ∩ V = ∅. Since the

Gaussian measure µ is quasi-invariant under translations by ϕ ∈ L2(R, dt,R), see

[64, Theorem 2.1.6, p.23], it follows µ(y + V ) = 1, hence µ((y + V ) ∪ V ) = 2.

Contradiction!

(ii) On the other hand, let x /∈ L2(R, dt,R). Denote H := L2(R, dt,R). Then

∀Ψ ∈ S ′(R) : (|Ψ|0 = sup
h∈H, |h|0=1

|< h,Ψ >| <∞)⇔ (Ψ ∈ H)

So there exists a sequence (ϕn)n∈N , ϕn ∈ H with |ϕn|0 = 1 and |〈ϕn, x〉| ≥ n.

Now define

∀η ∈ S ′(R) : ‖y‖ :=

(∑
n∈N

1

n2
|< ϕn, y >|2

) 1
2

.

It follows ∫
S′(R)

‖y‖2 dµ(y) =
∑
n∈N

1

n2
<∞

Consequently µ(
{
y ∈ S ′(R) | ‖y‖2 =∞

}
) = 0 This implies that the linear space

V :=
{
y ∈ S ′(R) | ‖y‖2 <∞

}
, which is by definition measurable, has full measure

one. But x /∈ V , hence

x /∈
⋂
{V | V measurable subspace of S ′(R) and µ(V ) = 1}
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As a further example we investigate the measurability of {δt | t ∈ R}.

Lemma 6.0.26. The mapping

R→ S ′(R)

t 7→ δt

is continuous.

Proof. Note that S ′(R) is endowed with the strong dual topology. Let B be a bounded

subset of S(R). Then there exists a K > 0 such that sup
f∈B
‖f ′‖∞ ≤ K. For s, t ∈ R it

follows:

sup
f∈B
|〈f, δt − δs〉| = sup

f∈B
|f(t)− f(s)|

≤ sup
f∈B
‖f ′‖∞ · |s− t|

≤ K · |s− t|

Example 6.0.27.

µ({δt | t ∈ R}) = 0.

Proof. First note that by 6.0.26

{δt | t ∈ R} =
⋃
n∈N

{δt | t ∈ [−n, n]}

is Borel measurable as union of compact subsets of S ′(R). By [40, (A.1.11), p. 453], we

have

|hn(t)| = O(n−
1
4 ).

It follows

{δt | t ∈ R} ⊂
{
x ∈ S ′(R) | sup

n∈N
|hn(x)| <∞

}
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The following theorem is remarkable since it implies that even though L2(R, dt,R) itself

has µ-measure 0, whenever A is a set of positive measure, no matter how small, the set

A+ L2(R, dt,R) has full µ-measure one!

Theorem 6.0.28 (Borell-Sudakov-Cirelson). Let F1 denote the cumulative distribution

function corresponding to the normal distribution N (0, 1) and for ε > 0 let

Bε :=
{
f ∈ L2(R, dt,R) | |f |0 ≤ ε

}
.

Let A be a µ-measurable set with µ(A) ≥ F1(α) for some α ∈ R. Then

µ∗(A+Bε) ≥ F1(α + ε).

Note that µ∗ denotes the inner measure corresponding to µ.

Proof. We are not going to give a proof of 6.0.28 because these arguments are completely

out of the scope of this work, see [60].

In the proof of the following statement, we use 6.0.28. Note that there no measurability

questions occur and we can use the measure µ instead of µ∗.

Corollary 6.0.29. Let V be a measurable vector subspace of S ′(R). Then

µ(V ) = 0 ∨ µ(V ) = 1.

Further

µ(V ) = 1⇔ µ(V ) > 0 and L2(R, dt,R) ⊂ V.

Proof. Let L2(R, dt,R) 6⊂ V . Choose h ∈ V \ L2(R, dt,R). For r ≥ 0 set Vr := rh + V .

Then

∀r1, r2 ≥ 0, r1 6= r2 : r1h+ V ∩ r2h+ V = ∅.

Consequently for all n ∈ N it follows that the set
{
r ≥ 0 | µ(Vr) >

1
n

}
is finite. Hence

the set {r ≥ 0 | µ(Vr) > 0} is at most countable. But R+ is uncountable, such that there

exists a r > 0 with µ(Vr) = 0. By the quasi-invariance of the Gaussian measure µ under

translations by any element of L2(R, dt,R) it follows µ(V ) = 0.

Let L2(R, dt,R) ⊂ V . For ε > 0 let Bε := {f ∈ L2(R, dt,R) | |f |0 ≤ ε}. Then V = V +Bε.
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Suppose µ(V ) > 0. Then, by 6.0.28, with α ∈ R and µ(V ) ≥ F1(α):

µ(V ) ≥ lim
ε→∞

F1(α + ε) = 1.

Hence µ(V ) = 1.

We investigate some often used measures in White noise theory. The proofs are trans-

lated from theorems about the Cameron-Martin space in the lecture notes of LIHU XU

and Martin Hairer to the White noise space.

Measures in infinite dimensional spaces have a strong tendency to being mutually singular,

i.e. they reside on disjoint measurable sets. We give a striking illustration of this phe-

nomenon.

Given c > 0 we consider the dilatation operator Dc : x 7→ cx for all x ∈ S ′(R). The

following theorem is a surprising result for the infinite dimensional Gaussian measure.

Proposition 6.0.30. Let c > 0. If c 6= 1 then the measures µ and µ ◦ D−1
c are mutually

singular:

µ ◦D−1
c ⊥ µ

Proof. By [64, Eq. (2.7), (2.8), p. 21] and [64, Lemma 2.1.3, p. 20], the Hermite functions

{〈hn, ·〉}n∈N are a set of identically distributed and independent (i.i.d.) random variables,

with distribution N (0, 1) relative to µ and distribution N (0, c2) relative to µ ◦D−1
c . Now

we apply the strong Law of Large Numbers (L.L.N.) of Kolmogoroff (see [5, 12.2 Korollar,

p. 86] to the i.i.d. random variables

{
|〈hn, ·〉|2

}
n∈N ,

to get

lim
n→∞

1

n+ 1

n∑
k=0

|hk(x)|2 −→ 1, µ− a.e. (6.1)

and

lim
n→∞

1

n+ 1

n∑
k=0

|hk(x)|2 −→ c2, µ ◦D−1
c − a.e. (6.2)

It follows µ

({
x ∈ S ′(R) | lim

n→∞
1

n+1

n∑
k=0

|hk(x)|2 −→ c2

})
= 0 and

µ ◦D−1
c

{
x ∈ S ′(R) | lim

n→∞
1

n+1

n∑
k=0

|hk(x)|2 −→ 1

}
= 0.
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Theorem 6.0.31 (Cameron-Martin). For ξ ∈ S ′(R) , define the map Tξ : S ′(R)→ S ′(R)

by Tξ(x) = x + ξ. Then, the measure µ ◦ T−1
ξ is absolutely continuous with respect to µ if

and only if ξ ∈ L2(R, dt,R).

If ξ /∈ L2(R, dt,R) then the measures µ ◦ T−1
ξ and µ are mutually singular.

Proof. For the one part of the first claim, see [64, Proposition 2.1.6., p. 23]. Now let

ξ /∈ L2(R, dt,R). Then, as in the proof of 6.0.25 (ii), we find a measurable vector space

V ⊂ S ′(R) with µ(V ) = 1 and ξ /∈ V , hence −ξ /∈ V . Let N := S ′(R) \ V . Because

V ∩ (−ξ+V ) = ∅ it follows µ(−ξ+V ) = 0. By S ′(R) = V ∪ N = (−ξ+V ) ∪ (−ξ+N)

it follows

µ(−ξ + V ) = 0 and µ(−ξ +N) = 1

Consequently ∫
V

dµ ◦ T−1
ξ = 0 and

∫
N

dµ ◦ T−1
ξ = 1

i.e.

µ ⊥ µ ◦ T−1
ξ
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Part II

Hamiltonian Path Integrals -

Feynman Integrals in Phase Space
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Chapter 7

Fundamental Hamiltonian Path

Integrals

7.1 Hamiltonian Path Integrals

As proposed by Feynman [23, 24], quantum mechanical transition amplitudes may be

thought of as a kind of averaging over fluctuating paths, with oscillatory weight functions

given in terms of the classical action

S(x) =

∫ t

0

L(x(τ), ẋ(τ), τ) dτ.

The ideas based on the previous work of Norbert Wiener and the succeeding work of

Paul Dirac in 1933 [19]. The Lagrangian (hence the action as the time integral of the

Lagrangian) is given by the difference of the kinetic energy and the potential, e.g.

L(x(t), ẋ(t), t) = −1

2
m(ẋ(t))2 − V (x(t), ẋ(t), t)

Formally, the Feynman path integral is then expressed as

K(t, y|0, y0) = N

∫
exp

(
i

~
S(x)

) ∏
0<τ<t

dx(τ)

The integral is thought of as being over all paths with x(0) = y0 ∈ Rd and x(t) = y ∈ Rd.

The quantum mechanical propagator K(t, y|0, y0) represents the transition amplitude for a

particle to be found at position y at time t given that the particle was at position y0 at an
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earlier time 0. The propagator K(t, y|0, y0) is the integral kernel of the unitary operator

Ut = exp(itĤ), where Ĥ is the Hamilton operator. The operator Ut gives the semi-group

of the Schrödinger equation, i.e.

i~∂t
(
U(t, t0)Ψ

)
= H(t)

(
U(t, t0)Ψ

)
, U(t0, t0)Ψ = Ψ.

Although the first aim of Feynman was to develop path integrals based on a Lagrangian,

they also can be used for various systems which have a law of least action, see e.g.[23].

Since classical quantum mechanics is based on a Hamiltonian formulation rather than a

Lagrangian one, it is worthwhile to take a closer look to the so-called Hamiltonian path

integral, which means the Feynman integral in phase space. This has therefore many

advantages:

- At first the semi-classical limit of quantum mechanics is more natural in an Hamil-

tonian setting, i.e. the phase space is more natural in classical mechanics than the

configuration space, see also [2, 45] and the references therein.

- In [21] the authors state, that potentials which are time-dependent or velocity de-

pendent should be treated with the Hamiltonian path integral.

- The idea of canonical transformations due to a Hamiltonian system can be done

easier in a Hamiltonian setting.

- Also momentum space propagators can be investigated.

Feynman gave a heuristic formulation of the phase space Feynman Integral in [24]

K(t, y|0, y0) = N

∫
x(0)=y0,x(t)=y

∫
exp

(
i

~
S(x)

) ∏
0<τ<t

dp(τ)

(2π)d
dx(τ) (7.1)

Here the action (and hence the dynamic) is expressed by a canonical (Hamiltonian) system

of generalized space variables and their corresponding conjugate momentums. The canon-

ical variables can be found by a Legendre-transformation, see e.g. [76]. The Hamiltonian

action:

S(x, p, t) =

∫ t

0

p(τ) · ẋ(τ)−H(x(τ), p(τ), τ)dτ,

where H is the Hamilton function and given by the sum of the kinetic energy and the

potential.

H(x, p, t) =
1

2m
p2 + V (x, p, t).

128



The phase space is therefore 2n-dimensional if we have n so called degrees of freedom.

Furthermore the variables are independent.

By the result of Heisenberg uncertainty principle the momentum variables are fulfilling no

boundary conditions, because the space variables are fixed.

Note that both integrals, the Feynman integral as well as the Hamiltonian path integral

are thought to be integrals w.r.t a flat, i.e. translation invariant measure on the infinite

dimensional path space. Such a measure does not exist, hence the integral at first - as it

stands - is not a mathematical rigorous object. The normalization constant in both inte-

grals turns out to be infinity. Nevertheless there is no doubt that it has a physical meaning.

There are many attempts to give a meaning to the Hamiltonian path integral as a

mathematical rigorous object. Among these are analytic continuation of probabilistic in-

tegrals via coherent states [45, 46] and infinite dimensional distributions e.g. [17]. Most

recently also an approach using time-slicing was developed by Naoto Kumano-Go [56] and

also by Albeverio et al. using Fresnel integrals [2, 1]. As a guide to the literature on many

attempts to formulate these ideas we point out the list in [2].

Ansatz for the Phase Space In the following we use throughout the thesis the vector-

valued White Noise space as underlying space, i.e. we choose N = S2d(R) and N ′ = S ′2d(R)

such that we have with the central space L2
2d(R) the chain of spaces

S2d(R) ⊂ L2
2d(R) ⊂ S ′2d(R).

In our approach we choose a Gaussian measure on the vector-valued White noise space

S ′2d(R) as a reference measure as in Chapter 2.

In the following for the two settings and objects we give a meaning to as distributions of

White Noise Analysis. First we consider the ansatz for the configuration space Hamiltonian

path integrand then for one in momentum space. The propagators are related to each other

by Fourier transform. Hence we can check if the propagators are fulfilling the right physics.

Hamiltonian Path Integral in coordinate space First we introduce the space

trajectories as Brownian motion starting in x0.

x(τ) = x0 +

√
~
m
B(τ), 0 ≤ τ ≤ t.
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Furthermore the momentum variable is modeled by white noise, i.e.

p(τ) =
√
~mωp(τ), 0 ≤ τ ≤ t.

This is a meaningful definition, since a path has always start and end points which a noise

does not have. Moreover since we have that if the initial and end conditions are fully

known, the momentum is completely uncertain, which means has variance infinity. The

white noise process is intrinsically fulfilling the no boundary condition property and has

as well infinite variance. Furthermore one can think of for a potential just depending on

the space variable the momentum to be p = mẋ, which in our approach would correspond

to a noise in terms of derivative of the Brownian path.

The model for the space path can be found in [40] to model the momentum path we take

a closer look to the physical dimensions of x(τ).

y(s) has as a space variable the dimension of a length, i.e. also
√

~
m
B(τ) has to have the

dimension of a length. We have

[

√
~
m

] =

√
Js

kg
=

√
kgm2

skg
=

m√
s
.

Thus since the norm of the Brownian motion gives again a
√
t which has the dimension

√
s we have that x(τ) has the dimension of a length.

Considering the momentum variable we have to obtain that the dimension is the dimension

of a momentum. We have

[
√
~m] =

√
Nmskg =

√
kg2m2s

s2
=
kgm√
s
,

hence ωp has the dimension 1√
s
, such that p(τ) has the dimension of a momentum.

A definition which goes in the same direction using the momentum as a kind of derivative

of the path can also be found in [2] and [1]. Here the authors modeled the path space as

the space of absolutely continuous functions and the momentum to be in L2(R). Then we

propose the following formal ansatz for the Feynman integrand in Phase space with respect

to the Gaussian measure µ,

IV = N exp

(
i

~

∫ t

t0

p(τ)ẋ(τ)− p(τ)2

2m
dτ +

1

2

∫ t

t0

ẋ(τ)2 + p(τ)2dτ

)
(7.2)
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× exp

(
− i
h

∫ t

t0

V (x(τ), p(τ), τ) dτ

)
· δ(x(t)− y)

In this expression the sum of the first and the third integral is the action S(x, p), and the

Donsker’s delta function serves to pin trajectories to y at time t. The second integral is

introduced to simulate the Lebesgue integral by compensation of the fall-off of the Gaus-

sian measure in the time interval (t0, t). Furthermore, as in Feynman’s formula we need

a normalization which turns out to be infinity and will be implemented by the use of a

normalized exponential as in Chapter 3.

Hamiltonian path integral in momentum space If we know the initial and the

end momentums it is clear by Heisenbergs uncertainty principle that we have no certain

information about the corresponding space variables. This means we model the momentum

trajectories as a Brownian fluctuation starting in the initial momentum p0.

p(τ) = p0 +

√
~m

t− t0
B(τ), 0 ≤ τ ≤ t. (7.3)

Furthermore the space variable is modeled by white noise, i.e.

x(τ) =

√
~
m
· (t− t0)ωx(τ), 0 ≤ τ ≤ t. (7.4)

The Hamiltonian path integral for the momentum space propagator is formally given by,

see e.g. [48]

K(p′, t′, p0, t0) = N
∫
p(t0)=p0,p(t)=p′

exp(
i

~

∫ t

t0

−q(s)ṗ(s)−H(p, q) ds)DpDq. (7.5)

This path integral can be obtained by a Fourier transform of the coordinate space path

integral in both variables, see e.g. [47]. Then we propose the following formal ansatz for

the Feynman integrand in Phase space with respect to the Gaussian measure µ,

IV = N exp

(
i

~

∫ t

t0

−x(τ)ṗ(τ)− p(τ)2

2m
dτ +

1

2

∫ t

t0

ωx(τ)2 + ωp(τ)2dτ

)
(7.6)

× exp

(
− i
h

∫ t

t0

V (x(τ), p(τ), τ) dτ

)
· δ(p(t)− p′)
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7.2 The free Feynman integrand in phase space

First we consider V = 0 (free particle). For simplicity let ~ = m = 1 and t0 = 0. Fur-

thermore we choose to have one space dimension and one dimension for the corresponding

momentum variable, i.e. the underlying space is S2(R). Note that higher dimensions can

be obtained by multiplication of the generating functionals, since the used variables are

independent.

7.2.1 Coordinate space

Note that the first term in (7.2) can be considered as a exponential of a quadratic type:

Nexp

(
i

∫ t

0

(p(τ)ẋ(τ)− p(τ)2

2
)dτ +

1

2

∫ t

0

ωx(τ)2 + ωp(τ)2dτ

)
= Nexp

(
− 1

2

〈
(ωx, ωp), K(ωx, ωp)

〉)
,

where the operator matrix K on L2
2(R)C can be written as

K =

(
−1[0,t) −i1[0,t)

−i1[0,t) −(1− i)1[0,t)

)
. (7.7)

Here the operator 1[0,t) denotes the multiplication with 1[0,t). Hence, the integrand in (7.2)

can then be written as

I0 = Nexp

(
−1

2
〈(ωx, ωp), K(ωx, ωp)〉

)
· δ
(
〈(ωx, ωp), (1[0,t), 0)〉 − (y − x0)

)
,

where the last term pins the position variable to y at t. Note that the momentum variable

is not pinned. Our aim is to apply Lemma 3.2.6 with K as above and g = 0, L = 0 and as

η = (1[0,t), 0). The inverse of (Id+K) is given by

N−1 = (Id+K)−1 =

(
1[0,t)c 0

0 1[0,t)c

)
+ i

(
1[0,t) 1[0,t)

1[0,t) 0

)
, (7.8)

hence (η, N−1η) = i · t. Therefore the assumptions of Lemma 3.2.6 are fulfilled. Thus I0

exists as a Hida distribution. By applying Lemma 3.2.6 and using 〈N−1η, f〉 = 〈η,N−1f〉,
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its T -transform in (fx, fp) ∈ S2(R) is given by

T

(
Nexp

(
−1

2
〈(ωx, ωp), K(ωx, ωp)〉

)
· δ
(
〈(ωx, ωp), (1[0,t), 0)〉 − y

))
(fx, fp)

=
1√
2πit

exp

(
1

2it

(
i(y − x0) + 〈η, N−1(fx, fp)〉

)2 − 1

2

(
(fx, fp), N

−1(fx, fp)
))

=
1√
2πit

exp

(
1

2it

(
i(y − x0) + i

∫ t

0

fx + fp ds

)2
)

× exp

(
−1

2

(
(fx, fp),

( (
1[0,t)c + i1[0,t) i1[0,t)

i1[0,t) 1[0,t)c

) )
(fx, fp)

))

=
1√
2πit

exp

(
1

2it

(
i(y − x0) + i

∫ t

0

fx + fp ds

)2
)

× exp

(
−1

2

(∫
[0,t)c

f 2
x + f 2

p ds+ i

∫
[0,t)

f 2
x ds+ 2i

∫
[0,t)

fx(s)fp(s) ds

))
. (7.9)

Hence its generalized expectation

E(I0) = TI0(0) =
1√
2πit

exp(− 1

2it
(y − x0)2) = K(y, t, x0, 0)

gives indeed the Greens function to the Schrödinger equation for a free particle, see e.g. [40].

Summarizing we have the following Theorem:

Theorem 7.2.1. Let y ∈ R, 0 < t < ∞, then the free Feynman integrand in phase space

I0 exists as a Hida distribution. Its generating functional TI0 is given by (7.9) and its

generalized expectation E(I0) = TI0(0) is the Greens function to the Schrödinger equation

for the free particle.

7.2.2 Momentum space

It is well known, see e.g. [48] that the momentum space propagator for a free particle is

given in form of a Dirac Delta function. We want to show therefore at least that we can find

an expression which converges to this propagator. As above we consider first the action

S =

∫ t

0

−x(τ)ṗ(τ)− 1

2m
p2(τ)dτ
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then we have with (7.3) and (7.4)

S =

∫ t

0

−
√

~
m

√
~mωp(τ)ωx(τ)− 1

2m
(p0 +

√
~m
t
〈1[0,τ), ωp〉)2 dτ

= −~
∫ t

0

ωp(τ)ωx(τ)dτ − p2
0

2m
t+ 〈p0

√
~
mt2

(s− t)1[0,t)(s), ωp(s)〉 −
1

2

∫ t

0

~
t2
〈1[0,τ), ωp〉2 dτ

Then we can write (7.6) in the following form using m = ~ = 1:

Nexp

(
− 1

2

〈
(ωx, ωp), Kmom(ωx, ωp)

〉)
× exp(〈p0

1

t
(· − t)1[0,t)(·), ωp〉)δ(p′ − p0 − 〈

1

t
1[0,t), ωp〉)

where the operator matrix K on L2
2(R)C can be written as

Kmom =

(
−1[0,t) i1[0,t)

i1[0,t) −1[0,t) + i
t2
A

)
. (7.10)

Here

Af(s) = 1[0,t)(s)

∫ t

s

∫ τ

0

f(r) dr dτ, f ∈ L2(R,C), s ∈ R,

we refer to [34] for properties of the operator as the trace class property, invertibility and

spectrum.

We have for f, g ∈ L2(R)C

〈f, Ag〉 =

∫ t

0

∫ τ

0

f(s) ds ·
∫ τ

0

g(s) ds dτ.

Hence the operator is used to implement the integral over the squared Brownian motion.

The last term pins the momentum variable to p′ at t. Note that the space variable is not

pinned.

Our aim is to apply Lemma 3.2.6 with K as above and g = (0, p0

t
(s − t)1[0,t)(s)), L = 0

and as η = (0, 1
t
1[0,t)). The inverse of (Id+K) is given by

N−1 = (Id+Kmom)−1 =

(
1[0,t)c 0

0 1[0,t)c

)
+ i

( 1
t2
A −1[0,t)

−1[0,t) 0

)
, (7.11)
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hence (η, N−1η) = 0.

To apply Lemma 3.2.6 we use a small perturbation of the matrix N−1.

Let ε > 0 then we define

N−1
ε =

(
1[0,t)c 0

0 1[0,t)c

)
+

( i
t2
A −i1[0,t)

−i1[0,t) +ε

)
,

then we have (η, N−1
ε η) = ε

t
and Lemma 3.2.6 can be applied. Therefore the assumptions

of Lemma 3.2.6 are fulfilled. Thus we define the regularized free momentum integrand by

its T -transform in (fx, fp) ∈ S2(R)

T (I0mom,ε)(fx, fp) =
1√
2π ε

t

exp(−ip
2
0

2
t)

× exp
(
− 1

2

〈(
fx

fp + p0

t
(· − t)1[0,t)

)
, N−1

ε

(
fx

fp + p0

t
(· − t)1[0,t)

)〉)
× exp

(
1

2 ε
t

(
i(p′ − p0) +

〈(
fx

fp + (· − t)1[0,t)

)
, N−1

ε

(
0

1[0,t)

)〉)2
)

Hence its generalized expectation

E(I0,mom,ε) = TI0,mom,ε(0)

=

√
t√

2πε
exp(−1

2

〈(
0

0 + p0

t
(· − t)1[0,t)

)
, N−1

ε

(
0

p0

t
(· − t)1[0,t)

)〉
)

× exp

 t

2ε

(
i(p′ − p0) +

〈(
0

0 + p0

t
(· − t)1[0,t)

)
, N−1

ε

(
0

1
t
1[0,t)

)〉)2
 · exp(−ip

2
0

2
t)

=

√
t√

2πε
exp

(
− ε

2t2
p2

0

∫ t

0

(s− t)2 ds

)
× exp

(
t

2ε

(
i(p′ − p0) +

p0ε

t2

∫ t

0

(s− t) ds
)2
)

exp(−ip
2
0

2
t)

=

√
t√

2πε
exp

(
− ε

2t2
p2

0

∫ t

0

(s− t)2 ds

)
exp(−ip

2
0

2
t)

× exp

(
t

2ε

(
− (p′ − p0)2 +

2ip0ε

t2
(p′ − p0)(

∫ t

0

(s− t) ds) +
p2

0ε
2

t4
( ∫ t

0

(s− t) ds
)2
)

=

√
t√

2πε
exp(− t

2ε
(p′ − p0)2) exp(−ip

2
0

2
t)
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×exp

(
− ε

2t2
p2

0

∫ t

0

(s− t)2 ds

)
exp

(
p2

0ε

2t3
( ∫ t

0

(s− t) ds
)2
)
·exp(i

p0

t
(p′−p0)

∫ t

0

(s− t) ds)

In the limit ε→ 0 we obtain:

lim
ε→0

E(I0mom,ε) = δ(p′ − p0) · exp(−ip
2
0

2
t) · exp

(ip0

t
(p′ − p0)

∫ t

0

(s− t) ds
)

= δ(p′ − p0) · exp(−ip
2
0

2
t),

Since the last term vanishes note that the Delta function just gives values if p′ = p0. The

generalized expectation is up to a factor 2π exactly the propagator of the free particle in

momentum space, see [48]. Note that the Delta function serves to conserve the momentum

of the free particle. If there is no potential the momentum must be the same as the initial

momentum since the space is free of any force.

7.3 Harmonic oscillator

In this section we construct the Feynman integrand for the harmonic oscillator in phase

space. I.e. the potential is given by x 7→ V (x) = 1
2
kx2, 0 ≤ k <∞.

7.3.1 Coordinate Space

The corresponding Lagrangian in phase space representation in coordinate space is given

by

(x(τ), p(τ)) 7→ L((x(τ), p(τ))) = p(τ)ẋ(τ)− p(τ)2

2
− 1

2
kx(τ)2.

In addition to the matrix K from the free case, see (7.7), we have a matrix L which includes

the information about the potential, see also [34]. In order to realize (7.2) for the harmonic

oscillator we consider

IHO = Nexp
(
− 1

2
〈(ωx, ωp), K(ωx, ωp)〉

)
· exp

(
− 1

2
〈(ωx, ωp), L(ωx, ωp)〉

)
· δ
(
〈(ωx, ωp), (1[0,t), 0)〉 − y

)
,

with

L =

(
ikA 0

0 0

)
, y ∈ R, t > 0.
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Here again Af(s) = 1[0,t)(s)
∫ t
s

∫ τ
0
f(r) dr dτ, f ∈ L2(R,C), s ∈ R. Hence we apply Lemma

3.2.6 to the case

N =

(
1[0,t)c + ikA −i1[0,t)

−i1[0,t) 1[0,t)c + i1[0,t)

)
=

(
1[0,t)c 0

0 1[0,t)c

)
+ i

(
kA −1[0,t)

−1[0,t) 1[0,t)

)
.

For determining the inverse of N we use the decomposition of L2
2(R)C into the orthogonal

subspaces L2
2([0, t))C and L2

2([0, t)c)C. The operator N leaves both spaces invariant and on

L2
2([0, t)c) it is already the identity. Therefore we need just an inversion of N on L2

2([0, t)).

By calculation we obtain

N−1 =

(
1[0,t)c 0

0 1[0,t)c

)
+

1

i
1[0,t)

(
(kA− 1[0,t))

−1 (kA− 1[0,t))
−1

(kA− 1[0,t))
−1 kA(kA− 1[0,t))

−1

)
, (7.12)

if (kA − 1[0,t))
−1 exists, i.e. kA − 1[0,t) is bijective on L2

2([0, t)). The operator kAf(s) =

1[0,t)(s)k
∫ t
s

∫ τ
0
f(r) dr dτ , f ∈ L2

2([0, t))C, s ∈ [0, t), diagonalizes and the eigenvalues ln

different from zero have the form:

ln = k

(
t

(n− 1
2
)π

)2

, n ∈ N.

Thus (kA − 1[0,t))
−1 exists if ln 6= 1 for all n ∈ N. For 0 < t < π/(2

√
k) this is true. The

corresponding normalized eigenvectors to ln are

[0, t) 3 s 7→ en(s) =

√
2

t
cos

(
s

t

(
n− 1

2

)
π

)
, s ∈ [0, t) n ∈ N.

Hence we obtain using [28, p. 431, form. 1]:

1

det(Id+ L(Id+K)−1)
=

(
det

(
Id+

(
−kA −kA
0 0

)))−1

=
( ∞∏
n=1

(1− k
( t

(n− 1
2
)π

)2
)
)−1

=
1

cos(
√
kt)

.

Furthermore, again with η = (1[0,t), 0) we obtain

(η, N−1η) = (1[0,t), (1[0,t)c + i(1[0,t) − kA)−1)1[0,t)) = i

∞∑
n=1

(
1− ln)−1(1[0,t), en)2
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= i

∞∑
n=1

1

1− k
(

t
((n− 1

2
)π

)2

2t

(n− 1
2
)π)2

= 2it
∞∑
n=1

1

((n− 1
2
)π)2 − kt2

=
i√
k

8
√
kt

∞∑
n=1

1

((2n− 1)π)2 − 4kt2
=

i√
k

tan(
√
kt) = i

tan(
√
kt)√
k

,

by using [28, p. 421,form. 1]. Hence we have for the T -transform in f ∈ S2(R) by applying

Lemma 3.2.6

TIHO(f) =

√√√√( √
k

2πi sin(
√
kt)

)
exp

(
1

2

√
k

i tan(
√
kt)

(
iy +

(
η, f + g

))2
)

× exp

(
− 1

2

((
f + g

)
,

(
1[0,t)c 0

0 1[0,t)c

)(
f + g

)))

× exp

(
− 1

2

((
f + g

)
,
t

i
1[0,t)

(
1
t
(kA− 1[0,t))

−1 (kA− 1[0,t))
−1

(kA− 1[0,t))
−1 ktA(kA− 1[0,t))

−1

)(
f + g

)))
(7.13)

Summarizing we have the following theorem:

Theorem 7.3.1. Let y ∈ R, 0 < t < π
2
√
k
, then the Feynman integrand for the harmonic

oscillator in phase space IH0 exists as a Hida distribution and its generating functional is

given by (7.13). Moreover its generalized expectation

E(IHO) = T (IHO)(0) =

√√√√( √
k

2πi sin(
√
kt)

)
exp

(
i

√
k

2 tan(
√
kt)

y2

)

is the Greens function to the Schrödinger equation for the harmonic oscillator, compare

e.g. with [44].

7.3.2 Momentum Space

The corresponding Lagrangian in phase space representation in momentum space is given

by

(x(τ), p(τ)) 7→ L((x(τ), p(τ))) = −ṗ(τ)x(τ)− p(τ)2

2
− 1

2
kx(τ)2.

In addition to the matrix K from the free case, see (7.7), we have a matrix L which includes

the information about the potential, see also [34]. For the sake of simplicity we set p0 = 0.

138



In order to realize (7.6) for the harmonic oscillator we consider

IHO,mom = Nexp
(
− 1

2
〈(ωx, ωp), Kmom(ωx, ωp)〉

)
· exp

(
− 1

2
〈(ωx, ωp), L(ωx, ωp)〉

)
· δ
(
〈(ωx, ωp), (0,1[0,t))〉 − (p′)

)
.

with

L =

(
ikt21[0,t) 0

0 0

)
, p′ ∈ R, t > 0.

Then we have

N = (Id+K + L) =

(
1[0,t]c 0

0 1[0,t)c

)
+ i

(
kt21[0,t] 1[0,t)

10,t)
1
t2
A

)
.

Its inverse is then given by

N−1 = (Id+K+L)−1 =

(
1[0,t]c 0

0 1[0,t)c

)
+

1

i

(
A
t2

(kA− 1[0,t))
−1 −(kA− 1[0,t))

−1

−(kA− 1[0,t))
−1 kt2(kA− 1[0,t))

−1

)
,

if (kA−1[0,t))
−1 exists, i.e. kA−1[0,t) is bijective on L2

2([0, t)). Using again the eigenvalues

ln different from zero as in coordinate space:

ln = k

(
t

(n− 1
2
)π

)2

, n ∈ N,

we have (kA− 1[0,t))
−1 exists if ln 6= 1 for all n ∈ N as before for 0 < t < π/(2

√
k) this is

true. Hence we obtain again using [28, p. 431, form. 1]:

1

det(Id+ L(Id+K)−1)
= det

(
Id+

(
−kA −kt21[0,t)

0 0

))−1

=
( ∞∏
n=1

(1− k
( t

(n− 1
2
)π

)2
)
)−1

=
1

cos(
√
kt)

.

As in the coordinate space we use the eigenstructure of A to determine the matrix

MN−1 . We have

MN−1 = 〈(0, 1

t
1[0,t)), N

−1(0,
1

t
1[0,t))〉 =

ikt2

t2

∞∑
n=0

1

1− ln
〈en,1[0,t)〉2
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= ik
tan(
√
kt)√
k

= i
√
k tan(

√
kt),

where we used the results of the previous subsection to calculate the explicit value of the

series. We see that at least for small times the assumptions of Lemma 3.2.6 are fulfilled,

since MN−1 is completely imaginary with positive imaginary part.

The T -transform of IHO,mom in f ∈ S2(R) with η = (0, 1
t
1[0,t)) is then given by

TIHO(f) =

√(
1

2πi
√
k sin(

√
kt)

)

× exp

(
1

2

1

i
√
k tan(

√
kt)

(
ip′ +

〈
η,

1

i

(
A
t2

(kA− 1[0,t))
−1 −(kA− 1[0,t))

−1

−(kA− 1[0,t))
−1 kt2(kA− 1[0,t))

−1

)
(f + g)

〉)2
)

× exp

(
− 1

2

((
f + g

)
,

(
1[0,t)c 0

0 1[0,t)c

)(
f + g

)))

× exp

(
− 1

2

((
f + g

)
,
1

i

(
A
t2

(kA− 1[0,t))
−1 −(kA− 1[0,t))

−1

−(kA− 1[0,t))
−1 kt2(kA− 1[0,t))

−1

)(
f + g

)))
(7.14)

Finally we obtain the following theorem.

Theorem 7.3.2. Let y ∈ R, 0 < t < π
2
√
k
, then the Feynman integrand for the harmonic

oscillator in phase space in momentum space IH0,mom exists as a Hida distribution and its

generating functional is given by (7.13). Moreover its generalized expectation

E(IHO,mom) = T (IHO,mom)(0) =

√(
1

2πi
√
k sin(

√
kt)

)
exp

(
i

1

2
√
k tan(

√
kt)

p′2
)

is the Greens function to the Schrödinger equation for the harmonic oscillator in momentum

space, compare e.g. with [48, p.118, form.2.187].

7.4 Charged particle in a constant magnetic field

In this subsection we want to calculate the transition amplitude for the movement of a

charged particle in a constant magnetic field. Investigations of this system for the Feynman

integrand had been done in White Noise in [29], [43] and [11]. Here we just consider the

motion in the plane orthogonal to the direction of the magnetic field. Note that the

propagator in three dimension can just be obtained by multiplying the expression with the
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free motion propagator along the axis of the magnetic field vector. For the corresponding

Hamiltonian action one finds see e.g. [76, form.(2.49), p.103]:

S(q, p, T ) =

∫ T

0

p~̇x− 1

2m

(
p− q

c
A(x)

)2

dτ,

where

p =

(
p1

p2

)
and x =

(
x1

x2

)
,

respectively. Moreover q is the charge of the particle, c is the speed of light and A(x) a

is the two dimensional vector potential. Note that a multiplication of the vectors above is

thought of a the euclidean scalar product, e.g.

px = p1x1 + p2x2.

Here we consider the case of a constant magnetic field along the x3-axis, i.e. the axis

orthogonal to the plane spanned by x1 and x2. We have B = (0, 0, Bz). With the relation

B = rot(A),

we have

A = Bz

(
−x2

x1

)
.

Thus we have

S(q, p, t) =

∫ t

0

p~̇x− 1

2m

(
p− q

c
Bz

(
−x2

x1

))2

dτ

=

∫ t

0

p~̇x− 1

2m
(p2

1 + p2
2) +

q

mc
Bz(x1p2 − x2p1)− q2B2

z

2mc2
(x2

1 + x2
2)dτ.

At the beginning for simplicity we set x1,0 = x2,0 = 0, t0 = 0 and m = ~ = 1. Then with

k = qBz
mc

we consider the following ansatz for the integrand:

ICP = N exp
(
− 1

2
〈·, K·〉

)
· exp

(
− 1

2
〈·, L·〉

)
· δ
(
〈·x1,1[0,t)〉 − y1

)
δ
(
〈·x2,1[0,t)〉 − y2

)
.(7.15)
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For the kinetic energy part and the locally simulation of the flat measure we have for the

matrix K as in the previous section:

K =


−1[0,t) −i1[0,t) 0 0

−i1[0,t) −1[0,t) + i1[0,t) 0 0

0 0 −1[0,t) −i1[0,t)

0 0 −i1[0,t) −1[0,t) + i1[0,t)


and in addition we have to model the potential. We use an ansatz where we have an upper

triangular block matrix, i.e.

L =


ik2A 0 0 −2ikB∗

0 0 2ikB 0

0 0 ik2A 0

0 0 0 0

 ,

with R 3 s 7→ Af(s) = 1[0,t)(s)
∫ t
s

∫ r
0
f(τ) dτ dr and R 3 s 7→ Bf(s) = 1[0.t)(s)

∫ s
0
f(r) dr

for f ∈ L2(R). With B∗ we denote the dual operator of B w.r.t. the dual pairing. Note

that we have (Ag, f) = (Bg,Bf) for all f, g ∈ L2(R). Thus

Id+K + L = N

=


1[0,t)c 0 0 0

0 1[0,t)c 0 0

0 0 1[0,t)c 0

0 0 0 1[0,t)c

+


ik2A −i1[0,t) 0 −2ikB∗

−i1[0,t) i1[0,t) 2ikB 0

0 0 ik2A −i1[0,t)

0 0 −i1[0,t) i1[0,t)


We have the following proposition:

Proposition 7.4.1. The operator

Id+K + L = N

=


1[0,t)c 0 0 0

0 1[0,t)c 0 0

0 0 1[0,t)c 0

0 0 0 1[0,t)c

+


ik2A −i1[0,t) 0 −2ikB∗

−i1[0,t) i1[0,t) 2ikB 0

0 0 ik2A −i1[0,t)

0 0 −i1[0,t) i1[0,t)
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is linear and bounded on L2
4(R)C and has a bounded inverse.

Proof. The operator A is in the trace class, moreover B and B∗ are compact operators.

Moreover by 7.13 we know that A is invertible on the orthogonal subspace L2([0, t), dx).

Since N is already the identity restricted on L2
4([0, t)c, dx) we can restrict ourselves to

L2
4([0, t), dx). We then have

N|[0,t) =


ik2A −i1[0,t) 0 −2ikB∗

−i1[0,t) i1[0,t) 2ikB 0

0 0 ik2A −i1[0,t)

0 0 −i1[0,t) i1[0,t)



= i


k2A −1[0,t) 0 −2kB∗

−1[0,t) 1[0,t) 2kB 0

0 0 k2A −1[0,t)

0 0 −1[0,t) 1[0,t)

 ,

which is of the form

R =

(
M P

0 M

)
,

with a bounded invertible matrix M . The inverse of such a matrix is given by

R−1 =

(
M−1 −M−1PM−1

0 M−1

)
.

Indeed(
M P

0 M

)(
M−1 −M−1PM−1

0 M−1

)
=

(
MM−1 −MM−1PM−1 + PM−1

0 MM−1

)

=

(
Id 0

0 Id

)
.

Now in our case

M−1 =

(
(kA− 1[0,t))

−1 (kA− 1[0,t))
−1

(kA− 1[0,t))
−1 kA(kA− 1[0,t))

−1

)
.
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Thus

M−1PM−1 =

(
(k2A− 1[0,t))

−1 (k2A− 1[0,t))
−1

(k2A− 1[0,t))
−1 k2A(k2A− 1[0,t))

−1

)

×

(
0 −2kB∗

2kB 0

)(
(k2A− 1[0,t))

−1 (k2A− 1[0,t))
−1

(k2A− 1[0,t))
−1 k2A(k2A− 1[0,t))

−1

)

=

(
(k2A− 1[0,t))

−1 (k2A− 1[0,t))
−1

(k2A− 1[0,t))
−1 k2A(k2A− 1[0,t))

−1

)

×

(
−2kB∗(k2A− 1[0,t))

−1 −2k3B∗A(kA− 1[0,t))
−1

2kB(k2A− 1[0,t))
−1 2kB(k2A− 1[0,t))

−1

)

= 2

(
k(k2A− 1[0,t))

−1(B −B∗)(k2A− 1[0,t))
−1 (k2A− 1[0,t))

−1(kB − k3B∗A)(k2A− 1[0,t))
−1

−(k2A− 1[0,t))
−1(kB∗ − k3AB)(k2A− 1[0,t))

−1 k3(k2A− 1[0,t))
−1(AB −B∗A)(k2A− 1[0,t))

−1

)
.

Moreover we have that N is bounded invertible with

N−1 =


1[0,t)c 0 0 0

0 1[0,t)c 0 0

0 0 1[0,t)c 0

0 0 0 1[0,t)c



+
1

i


1[0,t) 1[0,t) 2k(k2A− 1[0,t))

−1(B −B∗) 2(k2A− 1[0,t))
−1(kB − k3B∗A)

1[0,t) k2A −2(k2A− 1[0,t))
−1(kB∗ − k3AB) 2k3(k2A− 1[0,t))

−1(AB −B∗A)

0 0 1[0,t) 1[0,t)

0 0 1[0,t) k2A



×


(k2A− 1[0,t))

−1 0 0 0

0 (k2A− 1[0,t))
−1 0 0

0 0 (k2A− 1[0,t))
−1 0

0 0 0 (k2A− 1[0,t))
−1

 (7.16)

Next we calculate the matrix MN−1 from Lemma 3.2.6 to take care if it is applicable.

Proposition 7.4.2. For N as is Proposition 7.4.1 we have for η1 = (1[0,t), 0, 0, 0) and
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η3 = (0, 0,1[0,t), 0), that

MN−1 =

(
〈η1, N

−1η1〉 〈η1, N
−1η3〉

〈η3, N
−1η1〉 〈η3, N

−1η3〉

)
= i

(
tan(k t)

k
0

0 tan(k t)
k

)
,

moreover the assumptions on Lemma 3.2.6 are fulfilled.

Proof. We have η1 = (1[0,t), 0, 0, 0) and η3 = (0, 0,1[0,t), 0). Hence by Proposition 7.4.1,

we just have to consider the part of the inverse which has support on [0, t).

Instead of calculating the inverse directly we find a preimage of η1 and η3, respectively

under the operator N . We have
k2A −1[0,t) 0 −2kB∗

−1[0,t) 1[0,t) 2kB 0

0 0 k2A −1[0,t)

0 0 −1[0,t) 1[0,t)




f1

f2

f3

f4

 = −iηk k = 1, 3.

We can transfer this to a system of differential equations, note that the function on the

right-hand-side is almost surely constant. We obtain

(I)− k2f1 + 2kf ′4 = f ′′2 (7.17)

(II)f ′1 − 2kf3 = f ′2 (7.18)

(III)− k2f3 = f ′′4 (7.19)

(IV )f3 = f4. (7.20)

Taking into account that f3 = f4 and deriving equation (II) and setting it equal to (I) we

obtain.

(I)− k2f1 + 2kf ′4 = f ′′1 − 2kf ′3 (7.21)

(II)f ′1 − 2kf3 = f ′2 (7.22)

(III)− k2f3 = f ′′3 (7.23)

(IV )f3 = f4. (7.24)

Then (I) can be written as

f ′′1 = −k2f1 + 4kf ′3.

To obtain now the preimages we have to take the boundary conditions into account. We
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have by the definition of B and B∗ and taking into account that ηk2 = ηk4 = 0 the

following boundary conditions:

f1(0) = f2(0)

f ′2(0) = f3(0)

f ′4(0) = f ′3(0) = 0.

The additionally two boundary conditions are obtained by inserting ηk. For η1 we have

f2(t) = i,

f4(t) = f3(t) = 0.

For η3 we have

f2(t) = 0,

f4(t) = f3(t) = i.

We solved this system of differential equations with the dsolve-routine in MATLAB and

obtained

N f = (1[0,t), 0, 0, 0)

with

f =


cos(k s) i
cos(k t)
cos(k s) i
cos(k t)

0

0


and

Nh = (0, 0,1[0,t), 0)

with

h =


2 sin(k s) i+2 k s cos(k s) i−2 k t cos(k s) i

cos(k t)
2 k cos(k s) (s−t) i

cos(k t)
cos(k s) i
cos(k t)
cos(k s) i
cos(k t)
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Then we have

MN−1 =

(
〈η1, f〉 〈η1,h〉
〈η3, f〉 〈η3,h〉

)
= i

(
tan(k t)

k
0

0 tan(k t)
k

)
.

Now, to have all ingredients for the integrand, we calculate the determinant of (Id +

L(I +K)−1) We have

(Id+ L(I +K)−1) =


1[0,t)c 0 0 0

0 1[0,t)c 0 0

0 0 1[0,t)c 0

0 0 0 1[0,t)c



+


1[0,t) − k2A −k2A 2kB∗ 0

0 1[0,t) −2kB −2kB

0 0 1[0,t) − k2A −k2A

0 0 0 1[0,t)


We have the following structure of the spectrum of this operator.

Proposition 7.4.3. Let 0 < t < π
2k

. Then the eigenvalues of Id + L(Id + K)−1 |L2([0,t))

are v0 = 1 and

vn = 1− k2

(
t

(n− 1
2
)π

)2

, n = 1, 2, 3 · · · .

The algebraic multiplicity of each vn, n = 1, 2, 3, · · · is 2.

The eigenvectors to v0 have the form 
f1

f2

f3

−f3

 ,

where f2, f3 are arbitrarily choosen in L2([0, t)) and f1 solves the equation

k2Af1 = −k2Af2 + 2kB∗f3
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.

The eigenvectors to vn, n = 1, 2, 3, · · · is the setα


cos( k√
1−vn

s)

0

0

0

+ β


2k

1−vn · s cos(
k√

1−vn
s)

2√
1−vn

sin( k√
1−vn

s)

cos( k√
1−vn

s)

0

 | α, β ∈ C

 .

Finally det(Id+ L(Id+K)−1 |L2([0,t))) = cos2(kt).

Proof. First note that we need the restriction 0 < t < π
2k

for the well-definiteness of

(Id+K)−1. We consider the equation

(Id+ L(Id+K)−1)


f1

f2

f3

f4

 = λ


f1

f2

f3

f4

 , λ ∈ C, f1, f2, f3, f4 ∈ L2([0, t))

Note that Id+L(Id+K)−1 = N(Id+K)−1 is invertible because N is invertible. Hence 0 is

not an eigenvalue of Id+L(Id+K)−1. Further L(Id+K)−1 is a Hilbert-Schmidt operator,

where each eigenvalue different from zero has a finite algebraic multiplicity. Consequently

each eigenvalue of Id + L(Id + K)−1 which is different from 1 has a finite algebraic mul-

tiplicity. Because we do not know whether L(Id+K)−1 is a trace class operator, it is not

sure that the determinant of Id+ L(Id+K)−1 has a finite value. It must be calculated.

1.case: λ = 1:

By the last equation we choose f4 arbitrarily. The third equation furnishes (1− k2A)f3 −
k2Af4 = f3, hence f3 = −f4. Using this result in the second equation we get f2 = f2,

hence f2 can be choosen arbitrarily. The first equation leads to

k2Af1 = −k2Af2 + 2kB∗f3

as condition for f1. Examples of eigenvectors of Id+L(Id+K)−1 |L2([0,t)) to the eigenvalue
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1 are given by


f1

f2

k
2
B(f1 + f2)

−k
2
B(f1 + f2)

, with f1, f2 ∈ L2([0, t)).

2.case: λ 6= 1:

The last equation implies f4 = 0. Assumimg f3 = 0 implies f2 = 0 and f1 is an eigenvector

of 1 − k2A corresponding to λ, hence λ = vn for some n > 0. Now we consider the last

case:

Assume f3 6= 0. Then f3 is an eigenvector of 1 − k2A corresponding to λ, hence λ =

vn for some n > 0. Further f2 = 2k
1−λBf3 by the second equation and f1 ∈ (1 −

λ − k2A)−1
({

( 2k3

1−λAB − 2kB∗)f3

})
by the first equation. Note that the set (1 − λ −

k2A)−1
({

( 2k3

1−λAB − 2kB∗)f3

})
is not empty, because using f3 ∈ LH

{
cos( k√

1−vn
s)
}

it

holds

(1− λ− k2A)−1

({
(

2k3

1− λ
AB − 2kB∗)f3

})
=

2k

1− λ
· (s f3) + ker((1− λ)− k2A).

So the eigenspace of Id+ L(Id+K)−1 |L2([0,t)) corresponding to vn is the setα


f1

0

0

0

+ β


2k

1−vn · s f3

2k
1−vnBf3

f3

0

 | f1, f3 eigenvectors of 1− k2A to vn, α, β ∈ C

 .

Finally

det(Id+ L(Id+K)−1 |L2([0,t))) =
∞∏
n=1

(
1− k2

(
t

(n− 1
2
)π

)2
)(

1− k2

(
t

(n− 1
2
)π

)2
)
.

Thus

det(Id + L(I + K)−1) = det(Id − k2A)2 =

(
∞∏
n=1

1− k2(
t2

(n− 1
2
)2π2

)2

= cos(kt)2,

as in Theorem 7.3.1.
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Altogether we have with N−1 as in (7.16):

T (Icp)(ξ) =

(
kt

2πi sin(kt)

)
exp

(
− 1

2

〈
ξ, N−1ξ

〉)
exp

(
1

2i
(uT

(
kt

tan(k t)
0

0 kt
tan(k t)

)
u)

)
,

with u =

 iy1 + 1
2
〈η1, N

−1ξ〉
)

+ 1
2
〈N−1η1, ξ〉

. . .

iy2 + 1
2
〈η3, N

−1ξ〉+ 1
2
〈N−1η3, ξ〉

 . (7.25)

Thus we can state the following theorem.

Theorem 7.4.4. Let y1, y2 ∈ R, 0 < t < π
k

, then the Feynman integrand for the charged

particle in a constant magnetic field in phase space Icp exists as a Hida distribution and its

generating functional is given by (7.25). Moreover its generalized expectation

E(Icp) = T (Icp)(0) =

(
k

2πi sin(kt)

)
exp

(
i

k

2 tan(kt)
(y2

1 + y2
2)

)
is the Greens function to the Schrödinger equation for the charged particle in a constant

magnetic field, compare e.g. with [44].
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Chapter 8

Canonical commutation relations

In this section we give a functional form of the quantum mechanical commutator relations.

The definition can be found in [25], for their realization in the white noise framework, we

refer to [87, Chap. 9]. With the help of these relations we can confirm that the choice

of the phase space variables gives the right physics. I.e. the variables fulfill the non-

commutativity of momentum and position variables at equal times. This seemed to have no

direct translation in a path integral formulation of quantum mechanics. But on a heuristic

level Feynman and Hibbs [25] found an argument to show that E(p(t+ε)x(t)IV ) 6= E(p(t−
ε)x(t)IV ) for infinitesimal small ε and that the difference is given by the commutator. First

we collect some helpful formulas.

Lemma 8.0.5. Let Φ ∈ (N )′, k ∈ Sd(R) and n ∈ N, then

(−i)n d
n

dλn
TΦ(λk + f)|λ=0 = T (〈k, ·〉n · Φ)(f), f ∈ Sd(R).

Proof. By [40, Thm.5.36.(iii),p.178] we have

T (〈k, ·〉Φ)(f) = (−i) d
dλ
TΦ(λk + f)|λ=0. (8.1)

The claim then follows by iterated application of (8.1). In the following for ηi,k ∈ L2
d(R)

and yi ∈ R, i ∈ (1, . . . , J), we use the abbreviations:

〈η, N−1k〉 =
(
(η1, N

−1k), . . . , (ηJ , N
−1k)

)
∈ RJ

and

y = (y1, . . . , yJ) ∈ RJ
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.

In the following we use the notation (v,Aw) := vT · A · w for vector matrix vector

multiplication, where v, w ∈ Cn and A ∈ Mat(Cn,Cn). Note that the above pairing is

bilinear.

8.1 Canonical Commutation Relations for the free in-

tegrand in Phase Space

Proposition 8.1.1. Let ΦK,L := Nexp(−1
2
〈·, K〉) · exp(−1

2
〈·, L·) ·

∏J
k=1 δ(〈ηk, ·〉−yk) be as

in Lemma 3.2.6. Then for k,h ∈ L2
2(R) 〈k, ·〉 · ΦK,L and 〈h, ·〉 · 〈k, ·〉 · ΦK,L exist as Hida

distributions. Furthermore for f ∈ Sd(R) and with y = (y1, . . . yJ) ∈ Rk, we have

T (〈k, ·〉 · ΦK,L)(f)

= iTΦK,L(f)

(
〈f , N−1k〉 −

(
〈η, N−1k〉,M−1

N−1

(
iy + 〈η, N−1f〉

))

and

T (〈k, ·〉 · 〈h, ·〉 · ΦK,L)(f) = T (ΦK,L)(f)

((
〈k, N−1h〉 −

(
〈η, N−1h〉,M−1

N−1〈η, N−1k〉
))

−
(
〈f , N−1h〉 −

((
iy + 〈η, N−1f〉

)
,M−1

N−1〈η, N−1h〉
))

×
(
〈f , N−1k〉 −

((
iy + 〈η, N−1f〉

)
,M−1

N−1〈η, N−1k〉
)))

.

Proof. We have from Lemma 8.0.5 that T (〈k, ·〉 · ΦK,L)(f) = 1
i
d
dλ
T (ΦK,L)(f + λk)|λ=0

,

k ∈ Sd(R). Then by Lemma 3.2.6,

T (ΦK,L)(f + λk) = T (ΦK,L)(f) exp
(
− 1

2
λ2〈k, N−1k〉 − λ

(
f , N−1k

))
exp

(
1

2
λ2
(
〈η, N−1k〉,M−1

N−1〈η, N−1k〉
)

+ λ
(
〈η, N−1k〉,M−1

N−1

(
iy + 〈η, N−1(f + g)〉

)))
.
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Thus, by the above formula we get

1

i

d

dλ
T (ΦK,L)(f + λk) = −iTΦK,L(f)

×
(
−
(
〈f , N−1k〉 −

(
〈η, N−1k〉,M−1

N−1

(
iy + 〈η, N−1(f)〉

)))
− λ
(
〈k, N−1k〉 −

(
〈η, N−1k〉,M−1

N−1〈η, N−1k〉
)))

.

Then by an approximation in the sense of Corollary 2.2.18 we get 〈k, ·〉 · ΦK,L ∈ (N )′ for

k ∈ L2
d(R). Setting λ = 0 we obtain the desired expression. In an analogue way one can

show the second formula by using the second derivative, see Lemma 8.0.5 and polarization

identity.

Next we extend this to the case, where just one of the functions is in L2
2(R), but the

other one is a tempered distribution.

Remark 8.1.2. Since the dual pairing between a Dirac delta function and an indicator

function is defined as a limit object, we can not expect that the approximation is independent

of the choice of the approximating sequence. We choose the following approximation.

Definition 8.1.3. Let h ∈ L2
d(R) and k ∈ S ′d(R) with compact support and let (ψn)n∈N be

a standard approximate identity. Since the convolution of a compactly supported smooth

function with a compactly supported tempered distribution gives a Schwartz test function,

i.e. ψn ∗ k ∈ Sd(R), n ∈ N, see e.g. [71, Chap.9] we may define

〈k, ·〉 · 〈h, ·〉 · ΦK,L := lim
n→∞
〈ψn ∗ k, ·〉 · 〈h, ·〉 · ΦK,L,

in the case the limit exists in the sense of Corollary 2.2.18, i.e. the limit on the right-hand

side is a U-functional.

In the following for convenience we restrict ourselves to the case d = 2.

For the free Feynman Integrand we have then as an analogue to [87]:

Theorem 8.1.4. Let 0 < s− ε < s < s+ ε < t <∞, then

〈
(
0, δs±ε

)
, ·〉 · 〈

(
10,s), 0), ·〉 · I0 ∈ (N )′
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and

lim
ε→0

(
T (〈δs+ε, ·〉 · 〈1[0,s), ·〉 · I0))(0)− T (〈δs−ε, ·〉 · 〈1[0,s), ·〉 · I0))(0)

)
= −iT (I0)(0).

Proof. Set ψ±n :=
(

0, ψn ∗ δs±ε
)

, n ∈ N, where (ψn)n∈N is a standard approximate iden-

tity. Note that lim
n→∞
〈ψ±n , (0,1[0,s))〉 = 1

2
± 1

2
. Using (7.9) in the case η =

(
1[0,t), 0

)
with

N−1 =

(
1[0,t)c + i1[0,t) i1[0,t)

i1[0,t) 1[0,t)c

)
as in (7.8), we have (MN−1)−1 = 1

it
. Thus, together with

Proposition 8.1.1 we obtain

T (〈ψ±n , ·〉 · 〈(1[0,s), 0), ·〉 · I0)(f) = T (I0)(f)

×

((
〈Ψ±n , (i1[0,s), i1[0,s))〉 −

(
〈(i1[0,t), i1[0,t)), (1[0,s), 0)〉, 1

it
〈(i1[0,t), i1[0,t)),Ψ

±
n )〉
))

−
((
〈f , (i1[0,s), i1[0,s))〈−

(
iy + 〈(i1[0,t), i1[0,t)), f〉,

1

it
〈(i1[0,t), i1[0,t)), (1[0,s), 0)〉

))
×
((

N−1f ,Ψ±n

)
−
(
iy + 〈((i1[0,t), i1[0,t)), f)〉, 1

it
〈(i1[0,t), i1[0,t)),Ψ

±
n 〉
)))

(8.2)

Now let us take a look at the terms which include the sequence Ψ±n .

Since N−1 consists of projections on [0, t) or [0, t)c respectively and
∫
R Ψ±n (s) ds = 1, we

have |(N−1f ,Ψ±n )| ≤ ‖f‖sup. Furthermore |((i1[0,u), i1[0,u)),Ψ
±
n )| ≤ 1, for all n ∈ N and

0 < u ≤ t. Therefore the expression can be bounded uniformly in n ∈ N in the sense of

Corollary 2.2.18 (note that ‖ · ‖sup ≤ ‖ · ‖p for some p ∈ N). Obviously the T -transform

in (8.2) is convergent as n→∞, thus the limit exists as a Hida distribution by Corollary

2.2.18. Taking the limit leads us to

T (I0)(f)

(
i1[0,s)(s± ε)−

is

t
−
(
i

∫ s

0

fx(r) + fp(r) dr−
s

t

(
iy + i

∫ t

0

fx(r) + fp(r) dr
))
×(

ifx(s± ε)−
1

t

(
iy + i

∫ t

0

fx(r) + fp(r) dr
)))

, f = (fx, fp) ∈ S2(R).

For the difference E(〈δs+ε, ·〉〈1[0,s), ·〉I0)− E(〈δs−ε, ·〉〈1[0,s), ·〉I0) we have

lim
ε→0

T (〈δs+ε, ·〉〈1[0,s), ·〉I0))(0)− T (〈δs−ε, ·〉〈1[0,s), ·〉I0))(0)

= lim
ε→0

T (I0)(0)
(
i1[0,s)(s+ ε)− i1[0,s)(s− ε)

)
= T (I0)(0) · (0− i) = −iT (I0)(0),
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which completes the proof.

Thus, the commutation law for the free Feynman integrand in phase space is fulfilled

in the sense of Feynman and Hibbs [25].

8.2 Canonical Commutation Relations for the Har-

monic Oscillator in Phase Space

Commutation relations for the harmonic oscillator in coordinate space

For the harmonic oscillator we have

Theorem 8.2.1. Let 0 < s− ε < s < s+ ε < t <∞, then

〈
(
0, δs±ε

)
, ·〉 · 〈

(
10,s), 0), ·〉 · IHO ∈ (N )′

and

lim
ε→0

(
T (〈δs+ε, ·〉 · 〈1[0,s), ·〉 · IHO))(0)− T (〈δs−ε, ·〉 · 〈1[0,s), ·〉 · IHO))(0)

)
= −iT (IHO)(0).

Proof. Set ψ±n :=
(

0, ψn ∗ δs±ε
)

, n ∈ N, where (ψn)n∈N is a standard approximate identity.

Note that lim
n→∞
〈ψ±n , (0,1[0,s))〉 = 1

2
± 1

2
. Using (7.9) in the case η =

(
1[0,t), 0

)
with

N−1 =

(
1[0,t)c 0

0 1[0,t)c

)
+

1

i
1[0,t)

(
(kA− 1[0,t))

−1 (kA− 1[0,t))
−1

(kA− 1[0,t))
−1 kA(kA− 1[0,t))

−1

)

as in (7.12), we have (MN−1)−1 = 1
tan(
√
kt)√
k

. Thus, together with Proposition 8.1.1 we obtain

T (〈ψ±n , ·〉 · 〈(1[0,s), 0), ·〉 · IHO)(f) = T (IHO)(f)

×

((
〈Ψ±n , N−1(1[0,s), 0)〉 −

(
〈(N−1(1[0,t), 0), (1[0,s), 0)〉, 1

i tan(
√
kt)√
k

〈N−1(1[0,t), 0),Ψ±n )〉
))

−
((
〈f , N−1(1[0,s), 0)〉 −

((
iy + 〈N−1(1[0,t), 0), f〉

)
,

1

i tan(
√
kt)√
k

(
〈N−1(1[0,t), 0), (1[0,s), 0)〉

)))
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×
(
〈(N−1f ,Ψ±n 〉 −

((
iy + 〈N−1(1[0,t), 0), f〉

)
,

1

i tan(
√
kt)√
k

〈N−1(1[0,t), 0),Ψ±n 〉
)))

(8.3)

Now let us take a look at the terms which include the sequence Ψ±n .

Since N−1 consists of operators on [0, t) or [0, t)c respectively and
∫
R Ψ±n (s) ds = 1, we

have |(N−1f ,Ψ±n )| ≤ ‖N−1f‖sup. Note that for f ∈ S2(R) we have N−1f|[0,t) ∈ C([0, t)).

Furthermore by taking n so large that supp(Ψ±n ) ⊂ [0, t) we have

〈N−1(1[0,u),Ψ
±
n )〉

= 2
∞∑
l=0

1

1− k2t2

(l− 1
2

)2π2

1

(l − 1
2
)π

sin((l − 1

2
)π
u

t
)〈cos((l − 1

2
)π
·
t
), ψ±n 〉|

≤ 2
∞∑
l=0

2| 1

1− k2t2

(l− 1
2

)2π2

1

(l − 1
2
)π

sin((l − 1

2
)π
u

t
)|,

for n large enough, since then |〈cos((l − 1
2
)π ·

t
), ψ±n 〉| < 2.

Then we have

2∑∞

l=0

2| 1

1− k2t2

(l− 1
2

)2π2

1

(l − 1
2
)π

sin((l − 1

2
)π
u

t
)|

= 4
∞∑
l=0

(l − 1
2
)2π2

(l − 1
2
)2π2 − k2t2

1

(l − 1
2
)π

sin((l − 1

2
)π
u

t
)| ≤ 4

∞∑
l=0

| 1

(l − 1
2
)π

sin((l − 1

2
)π
u

t
)|,

which is convergent for all 0 < u ≤ t by the Dirichlet test.

Therefore the expression can be bounded uniformly in n ∈ N in the sense of Corollary

2.2.18 (note that ‖ · ‖sup ≤ ‖ · ‖p for some p ∈ N). Obviously the T -transform in (8.3)

is convergent as n → ∞, thus the limit exists as a Hida distribution by Corollary 2.2.18.

Taking the limit leads us to

T (IHO)(f)×((
〈(0, δs±ε), N−1(1[0,s), 0)〉 −

(
〈N−1(1[0,t), 0), (1[0,s), 0)〉 1

i tan(
√
kt)√
k

〈N−1(1[0,t), 0), (0, δs±ε)〉
))

−
((
〈f , N−1(1[0,s), 0)〉 −

((
iy + 〈N−1(1[0,t), 0), f〉

) 1

i tan(
√
kt)√
k

(
〈N−1(1[0,t), 0), (1[0,s), 0)〉

)))
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×
(
〈N−1f , (0, δs±ε)〉 −

((
iy + 〈N−1(1[0,t), 0), f〉

) 1

i tan(
√
kt)√
k

〈N−1(1[0,t), 0), (0, δs±ε)〉
)))

(8.4)

For the difference E(〈δs+ε, ·〉〈1[0,s), ·〉I0)− E(〈δs−ε, ·〉〈1[0,s), ·〉I0) we have

lim
ε→0

T (IHO)(0)

((
〈(0, δs+ε), N−1(1[0,s), 0)〉 − 〈(0, δs−ε), N−1(1[0,s), 0)〉

−
(
〈N−1(1[0,t), 0), (1[0,s), 0)〉, 1

i tan(
√
kt)√
k

〈N−1(1[0,t), 0), (0, δs+ε)〉
)

− 〈N−1(1[0,t), 0), (0, δs−ε)〉
)))

−
(((

iy
1

i tan(
√
kt)√
k

(
〈N−1(1[0,t), 0), (1[0,s), 0)〉

))

×
((
iy

1

i tan(
√
kt)√
k

(〈N−1(1[0,t), 0), (0, δs+ε)〉 − 〈N−1(1[0,t), 0), (0, δs−ε)〉)
))

= lim
ε→0

T (IHO)(f)

((
(0, δs+ε), N

−1(1[0,s), 0)
)
−
(

(0, δs−ε), N
−1(1[0,s), 0)

)
,

because

lim
ε→0

(〈N−1(1[0,t), 0), (0, δs+ε)〉 − 〈N−1(1[0,t), 0), (0, δs−ε)〉) = 0,

since 0 < s < t. Hence we take a look at((
(0, δs+ε), N

−1(1[0,s), 0)
)
−
(

(0, δs−ε), N
−1(1[0,s), 0)

)
.

We have

(
(0, δs±ε), N

−1(1[0,s), 0)
)

= i
∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)π

sin(
s

t
(n− 1

2
)π) cos(

s± ε
t

(n− 1

2
)π)

= i

∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)π

(
sin(

s

t
(n− 1

2
)π) cos(

s

t
(n− 1

2
)π) cos(

ε

t
(n− 1

2
)π)

− sin2(
s

t
(n− 1

2
)π) sin(

ε

t
(n− 1

2
)π)
)
,
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by the addition theorems of sine and cosine. Now since sin(x) cos(x) = 1
2

sin(2x) and with

cos2(x)− sin2(x) = cos(2x) we obtain

∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)π

(
sin(

s

t
(n− 1

2
)π) cos(

s

t
(n− 1

2
)π) cos(

ε

t
(n− 1

2
)π)

− sin2(
s

t
(n− 1

2
)π) sin(

ε

t
(n− 1

2
)π)
)

=
∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)π

1

2
sin(

s

t
(2n− 1)π) cos(

ε

t
(n− 1

2
)π)

+
∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)πt

1

2
sin(

ε

t
(n− 1

2
)π) cos(

s

t
(2n− 1)π)

−
∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)π

1

2
sin(

ε

t
(n− 1

2
)π).

Note that the first two series exist as Fourier series with square summable coefficients.

Moreover both series are absolutely convergent. Hence we have continuity in ε. Thus for

the difference we consider we just have to focus on the last series. We have

∞∑
n=1

1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)πt

1

2
sin(

ε

t
(n− 1

2
)π)

= −
∞∑
n=1

1− 1

1− (kt)2

(n− 1
2

)2π2

2

(n− 1
2
)πt

1

2
sin(

ε

t
(n− 1

2
)π) +

∞∑
n=1

2

(n− 1
2
)πt

1

2
sin(

ε

t
(n− 1

2
)π).

Since

1− 1

1− (kt)2

(n− 1
2

)2π2

=
− (kt)2

(n− 1
2

)2π2

1− (kt)2

(n− 1
2

)2π2

,

the first series is uniformly convergent thus continuous in ε. For the last series we have

∞∑
n=1

2

(n− 1
2
)πt

1

2
sin(

ε

(n− 1
2
)π

) =
2

t

∞∑
n=1

1

(n− 1
2
)πt

1

2
sin(

ε

(n− 1
2
)π

),

which is the Fourier series of a rectangular pulse between 0 and ε. Altogether we have

E(〈δs+ε, ·〉〈1[0,s), ·〉IHO)− E(〈δs−ε, ·〉〈1[0,s), ·〉IHO) = iT (IHO)(0)
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which completes the proof.
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Chapter 9

A scaling approach to the

Hamiltonian Path Integral in White

Noise Analysis

In this chapter we want to give an outlook, how one can realize the ideas of complex scaling

from [36], [35], [37] to phase space path integrals. The idea of this scaling method goes

back to [20]. We use again the Wick representation of a product with Donsker’s Delta

function. Note that, since the projection operator is not not closeable we can not expect,

that a limit we obtain by approximating the potential is unique. At least we can say that

if the sequence converges, it will be a Hida distribution. The basis of this chapter is a

representation of the Feynman-Kac formula with Brownian bridges, see e.g. [38].

9.1 Complex-scaled heat kernel

From standard results of Stochastic Analysis e.g. [38] it is known that a solution of the

heat equation  ∂
∂t
ψ(t, x) = 1

2
∆ψ(t, x) + V (x)ψ(t, x)

ψ(0, x) = f(x), 0 ≤ t ≤ T <∞, x ∈ Rd,
(9.1)

is given by the Feynman-Kac formula. In (9.1) ∆ denotes the Laplace operator on Rd.

For a suitably nice potential V : O → C, O ⊂ Rd open, d ≥ 1 and a source function
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f : Rd → C the unique solution of (9.1) is given by

ψ(t, x) = E(exp(

∫ t

0

V (x+Br) dr)f(x+Bt)), t ∈ [0, T ], x ∈ O, (9.2)

where E denotes the expectation w.r.t. a Brownian motion B starting at 0. For suitable

potentials the heat kernel can be written as follows, see e.g. [38]

KV (x, t;x0, t0) =
1√

2π(t− t0)
exp(− 1

2(t− t0)
(x0 − x)2)

× E(exp(

∫ t

t0

V (x0 −
s− t0
t− t0

(x0 − x) +Bs −
s− t0
t− t0

Bt) ds)). (9.3)

In the following, since we are interested in solutions to the Schrödinger equation we focus

on complex scaled heat equations, i.e. for z ∈ C, we consider ∂
∂t
ψ(t, x) = −z2 1

2
∆ψ(t, x) + 1

z2V (x)ψ(t, x)

ψ(0, x) = f(x), 0 ≤ t ≤ T <∞, x ∈ O ⊂ Rd,
(9.4)

for suitable functions f and suitable time-independent potentials V .

In the configuration space, this has been done in [87] and [86, 36]. This scaling approach

has several advantages:

- Treatable potentials are beyond perturbation theory such as

V (x) = (−1)n+1a4n+2x
4n+2 +

4n+1∑
j=1

ajx
j, x ∈ R, n ∈ N, with a4n+2 > 0, aj ∈ C.

- Due to a Wick formula we have a convenient structure (i.e. ”Brownian motion is

replaced by a Brownian bridge”)

- The kinetic energy ”‘σzδ”
′ and the potential can be treated separately.

- The Wick product of two Hida distributions exists always as Hida distribution, thus

one does not need to justify the well-definedness of the pointwise product.

We give an idea how to implement this approach to phase space.
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9.2 Construction of the generalized scaled heat kernel

Within this section we consider the case of one degree of freedom, i.e. the underlying space

is the space S ′2(R). In the euclidean configuration space a solution to the heat equation

is given by the Feynman-Kac formula with its corresponding heat kernel. In White Noise

Analysis one constructs the integral kernel by inserting Donsker’s delta function to pin the

final point x ∈ R and taking the expectation, i.e.,

KV (x, t, x0, t0) = E
(

exp(

∫ t

t0

V (x0 + 〈1[t0,r), ·〉) dr)δ(x0 + 〈1[t0,t), ·〉 − x)

)
,

where the integrand is a suitable distribution in White Noise Analysis (e.g. a Hida distri-

bution).

We will construct in this section by a suitable generalized scaling the Hamiltonian Path

Integral as an expectation based on the formula above.

First we construct the scaling operator we need.

Proposition 9.2.1. Let N−1 =

(
1[0,t)c 0

0 1[0,t)c

)
+ i

(
1[0,t) 1[0,t)

1[0,t) 0

)
as in the case of the

free Hamiltonian integrand. Let R be a symmetric operator (w.r.t. the dual pairing) with

R2 = N−1. Indeed we have:

R =

(
1[0,t)c 0

0 1[0,t)c

)
+

√
i

1 + (
√

5+1
2

)2
UT

(
1+
√

5
2

1[0,t) 0

0 1−
√

5
2

1[0,t)

)
U,

with

U =

(
−
√

5+1
2

1

−1 −
√

5+1
2

)

Then under the assumption that σRδ(〈(1[0,t), 0), ·〉) = δ(〈R(1[0,t), 0), ·〉) ∈ (S)′, we have

I0 = σ†RσRδ(〈(1[0,t), 0), ·〉).

Consequently the Hamiltonian path integrand for an arbitrary space dependent poten-

tial V , can be informally written as

IV = Nexp

(
−1

2
〈·, K·〉

)
exp

(
−i
∫ t

0

V (x0 + 〈(1[0,r), 0), ·〉) dr
)
δ(x0 + 〈(1[t0,t), 0), ·〉 − x)
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= σ†R

(
σR

(
exp

(
−i
∫ t

0

V (x0 + 〈(1[0,r), 0), ·〉) dr
))

σRδ(x0 + 〈(1[t0,t), 0), ·〉 − x)

)
, (9.5)

for x, x0 ∈ R and 0 < t0 < t <∞.

In the following we give some ideas to give a mathematical meaning to the expression

in (9.5). First we consider a quadratic potential, i.e. we consider

exp(−1

2
〈·L·〉)δ(〈(1[t0,t), 0), ·〉 − x).

Definition 9.2.2. For L fulfilling the assumption of Lemma 3.2.6 and δ(〈(1[t0,t), 0), ·〉−x)

we define

σR

(
exp(−1

2
〈·L·〉)δ(〈(1[t0,t), 0), ·〉 − x)

)
:= exp(−1

2
〈·RLR·〉)δ(〈R(1[t0,t), 0), ·〉 − x).

We now take a look at the T -transform of this expression. We have

T (σ†RσR

(
exp(−1

2
〈·L·〉)δ(〈(1[t0,t), 0), ·〉 − y)

)
)(ξ)

= T (σR

(
exp(−1

2
〈·L·〉)δ(〈(1[t0,t), 0), ·〉 − y)

)
)(Rξ)

=
1√

2π det(Id+RLR)
exp(−1

2
〈Rξ, (Id+RLR)−1Rξ〉)

exp
( 1

2〈R(1[t0,t), 0), (Id+RLR)−1R(1[t0,t), 0)〉
(iy − 〈Rξ, (Id+RLR)−1R(1[t0,t), 0)〉)2

)
.

Now with R2 = N−1 and since R is invertible with R−1R−1 = N , we have

Id+RLR = RR−1R−1R +RLR = R(Id+K + L)R

and

(Id+RLR)−1 = R−1(Id+K + L)−1R−1.

Thus

T (σ†RσR

(
exp(−1

2
〈·L·〉)δ(〈(1[t0,t), 0), ·〉 − y)

)
)(ξ)

=
1√

2π det((N + L)N−1)
exp(−1

2
〈ξ, (N + L)−1ξ〉)
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exp
( 1

2〈(1[t0,t), 0), (N + L)−1(1[t0,t), 0)〉
(iy − 〈ξ, (N + L)−1(1[t0,t), 0)〉)2

)
,

which equals the expression from Lemma 3.2.6. Hence we have that for a suitable quadratic

potential

σ†RσR

(
exp(−1

2
〈·L·〉)δ(〈(1[t0,t), 0), ·〉 − y)

)
,

exists as a Hida distribution. Moreover for all quadratic potentials from the previous

chapter, the T -transform obtained via scaling gives the generating functional as in chapter

8. Since the T -transforms coincide, also the distributions are the same.

For the case of quadratic potentials we obtained the correct physics also by the scaling

approach. Now we generalize this to more complicated potentials. Therefore we follow

the way from [86] and [36] by the use of the Wick-formula for generalized function with

Donsker’s delta function and so-called finitely based Hida distributions, compare to [87].

First we have to list properties, which we demand from the potentials we investigate,

compare also to [86, Ch. 7]

Assumption 9.2.3. Let 0 < t < T <∞ and O ⊂ R open such that R \ O is of Lebesgue

measure zero. We assume that the potential V : DR → C is analytic, with

DR = {x0 + 〈(y1, y2), R

(
1

0

)
〉|y1, y2 ∈ R}

and there exist a constant 0 < A < ∞, a locally bounded function B : O → R and some

ε < 1
8T

such that for all x0 ∈ O and y ∈ R one has that

| exp(−iV (x)| ≤ A exp(εx2),

and

| exp(−iV (x0 + 〈(y1, y2), R

(
1

0

)
〉)| ≤ B(x0) exp(ε(y2

1 + y2
2)).

Furthermore we assume the following for the potential and its derivative:

Assumption 9.2.4. Let 0 < T < ∞ and V : DR → C such that Assumption 9.2.3 is

fulfilled. We furthermore assume the existence of a locally bounded function C : O×O → R
and some 0 < ε < 1

8T
such that for all x0, x1 ∈ O and y1, y2 ∈ R we have
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| exp(V (x0 + 〈(y1, y2), R

(
1

0

)
〉) exp(−iV (x1 + 〈(y1, y2), R

(
1

0

)
〉)|

≤ C(x0, x1) exp(ε(y2
1 + y2

2))

and

| ∂
∂z

exp(V (x0 + 〈(y1, y2), R

(
1

0

)
〉) exp(−iV (x1 + 〈(y1, y2), R

(
1

0

)
〉)|

≤ C(x0, x1) exp(ε(y2
1 + y2

2)),

where ∂
∂z

denotes the derivative of z → V (z) w.r.t. z.

9.3 Approximation by finitely based Hida distribu-

tions

In this section we give an outlook how to give a meaning to a scaling in phase space for

potentials V fulfilling the Assumptions 9.2.3 and 9.2.4. For simplicity we consider the case

t0 = x0 = 0.

First we consider the approximation by finitely based Hida distributions as in [86, 36],

compare also [87]. The main use of finitely based Hida distributions in this work is the

fact, that they allow us to extend the generalized scaling operator.

Let ηj ∈ L2
2(R), j = 1, . . . n a system of linear independent vectors and G : Rn → C such

that G ∈ Lp(νM) for some p > 1, where νM denotes the measure on Rn with density

exp(−1

2

n∑
k,l=1

xkM
−1
k,j xj),

w.r.t. the Lebesgue measure on Rn, where Mk,j := 〈ηk, ηl〉 . Then one can define compare

[86, p.66]

φ(·) := G(〈η1, ·〉, . . . , 〈ηn, ·〉) ∈ Lp(µ).

Such elements are called finitely based Hida distributions, since they just depend on a

finite number of basis elements 〈ηk, ·〉, k ∈ N. The definition goes back to [55], see [86, 36]

for non-smooth ηk.
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Lemma 9.3.1 ([86]). If G ∈ Lp(νM) the following relation holds

G(〈η1, ·〉, . . . , 〈ηn, ·〉) =

∫
Rn
G(x1, . . . , xn)

n∏
j=1

δ(〈ηj, ·〉 − xj) dx1 . . . dxn,

where the integral exists in (S)′ in the sense of Corollary 2.2.21.

The next lemma is a modification of [86, Thm.4.19,p.66]

Lemma 9.3.2. Let ηj ⊂ L2
2(R), j = 1, . . . , n be a system of linear independent vectors.

Let νMN−1 ,ε the measure having the density

exp

−1

2

 x1

.

.xn


T

<((MN−1)−1 − εId)

 x1

.

.xn


 ,

w.r.t. the Lebesgue measure on Rn, where (MN−1)k,l = 〈ηk, ηl〉. Let G ∈ Lp(νMN−1 ,ε). Then

σRφ :=

∫
Rn
G(x1, . . . , xn)

n∏
j=1

σRδ(〈ηj, ·〉 − xj)dx1 . . . dxn,

is a well-defined Hida distribution as a Bochner integral in (S)′.

This can be proven analogously to the proof in [86]. Note that the density is analogue

to the density in the complex scaling case.

The next assumption is based on [86].

Assumption 9.3.3. We consider the decomposition of the interval [0, t) given by tk := t k
n

,

k = 1, . . . , n. We assume that the Riemann approximation

φn := exp

(
−i t
n

n−1∑
k=1

V (〈R(1[0,tk), 0), ·〉)

)
∈ L2(µ). (9.6)

Then we have the following proposition.

Proposition 9.3.4. The product of the generalized scaled Donsker’s delta function with

the Riemann approximation defined as in (9.6) can be defined as a Hida distribution, i.e.

Φn := exp

(
−i t
n

n−1∑
k=1

V (〈R(1[0,tk), 0), ·〉)

)
σRδ(〈(1[0,t), 0)− y, ·〉) ∈ (S)′, (9.7)
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for all y ∈ R, 0 < t <∞ and n ∈ N.

Proof. We define

G : Rn−1 → C

y = (y1, . . . , yn−1) 7→ exp

(
−i t
n

n−1∑
k=1

V (yk)

)
(9.8)

Then we have

φn =

∫
Rn−1

G(y)
n−1∏
k=1

δ(〈R(1[0,tk), 0), ·〉 − yk)dn−1y,

for all n ∈ N with y = (y1, . . . , yn−1).

Since R is invertible and (1[0,tk), 0), k = 1, . . . , n−1 and (1[0,t], 0) form a linear independent

system also their images under R form a linear independent system. Hence we have(
n−1∏
k=1

δ(〈R(1[0,tk), 0), ·〉)

)
δ(〈R(1[0,t), 0), ·〉),

is a Hida distribution for all n ∈ N. Moreover we have

T (exp

(
−i t
n

n−1∑
k=1

V (〈R(1[0,tk), 0), ·〉)

)
σRδ(〈(1[0,t), 0)− y, ·〉))(ξ)

=

∫
Rn−1

G(y)T

((
n−1∏
k=1

δ(〈R(1[0,tk), 0), ·〉)

)
δ(〈R(1[0,t), 0), ·〉)

)
(ξ)dy,

for all ξ ∈ S2(R).

Note that we can prove that the sequence converges in (S)′, since the T -transform

can not be estimated independently on n, see also [86]. The following assumption can be

compared to [86, Prop.5.11.,p.81].

Assumption 9.3.5. Let hk := (1[0,tk) − k
n
1[0,t), 0), 1 ≤ k ≤ n− 1. Then

Ψn := exp

(
−i t
n

n−1∑
k=1

V (
k

n
y + 〈Rhk, ·)

)
∈ L2(µ)

and

Φn = Ψn � σRδ(〈(1[0,t), 0), ·〉 − y) ∈ (S)′,
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with Φn, n ∈ N as in Proposition 9.3.4.

Proposition 9.3.6. Let φn and ψn, n ∈ N, be defined as in Assumption 9.3.5. Then

φn,Ψn ∈ L2(µ) and

lim
n→∞

φn = exp

(
−i
∫ t

0

V (〈R(1[0,r), 0), ·〉) dr
)
,

lim
n→∞

ψn = exp

(
−i
∫ t

0

V (〈R(1[0,r) −
r

t
1[0,t), 0), ·〉 − r

t
y) dr

)
.

This can be proven by Lebesgues dominated convergence for suitable potentials V .

Then we can as in [86] state the following crucial theorem.

Theorem 9.3.7. Under the Assumption 9.3.5 and for suitable potentials V the sequence

Φn converges in (S)′. Then it is natural to identify the limit object with

Φ := exp

(
−i
∫ t

0

V (〈R(1[0,r), 0), ·〉) dr
)
σRδ(〈(1[0,t), 0), ·〉 − y) := lim

n→∞
Φn.

Moreover we have

S(Φ)(ξ) = S(ψ)(ξ)S(σRδ(〈(1[0,t), 0), ·〉 − y))(ξ), ξ ∈ S2(R).

This means we have given a meaning to the generalized scaled heat kernel as a Hida

distribution. Note that here we just gave the ideas and the heuristics to achieve this goal.

Moreover the limit here is strongly dependent on the sequence, since the projection op-

erator, where the relation between ψ and φ is based on, is not closable on L2(µ). The

same hold for the generalized scaling operator. Never the less, the particular choice of the

approximation converges to a well-defined Hida distribution. The object then is mathemat-

ical rigorously defined. The last step now would be to check if the so achieved integrands

solve the Schrödinger equation, as it is done in [86, 36] and [87]. This is not done in this

work.
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Part III

Numerical Investigation of Fractional

Polymers
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Chapter 10

Off-Lattice Discretization of

Fractional Polymers - First

Numerical Results

10.1 The Edwards model for Polymers

In 1964 Edwards proposed that polymer chains can be described in an idealized manner

as elastic strings which are Gaussian distribibuted and two point interaction. Although

the Gaussian statistics would lead at first to a classical Brownian path, the number of

self-crossings would not fit to the behaviour of a polymer chain. To overcome this, there

is also taken in account, that two monomers can not occupy the same place in a polymer.

This effect is called excluded-volume effect, see e.g. [22], see also [48]. This self-repellence

property causes the polymers to spread itself in the space.

In the Edwards model[22] this is implemented by using the so-called self-intersection local

time

L =

∫ ∫
dsdtδ (x(s)− x(t))

of Brownian motion. That means that formally we multiply the Wiener measure dµ(x)

with a density function Z−1 exp(−gL) where the normalization constant

Z = E

(
exp

(
−g
∫ N

0

∫ N

0

δ (x(s)− x(t) )

)
dt ds

)
=

∫
exp (−gL) dµ
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is used to obtain Z−1 exp(−gL)dµ as a probability measure.

In [84] one gave a mathematical meaning to the objects above for dimension d = 1, e.g. as

limit of suitably regularized versions with

Z = lim
ε

∫
exp (−gLε) dµ.

For planar Brownian motion Varadhan [85] showed that the expectation value E(Lε(T ))

has a logarithmic divergence but after its subtraction the centered Lε,c(T ) converges in L2,

with a suitable rate of convergence. From this, Varadhan could conclude the integrability

of exp(−gLc(T )), thus giving a proper meaning to the Edwards model. In the three-

dimensional case the problem is being more complicated and one kind of renormalization

has been constructed to make the model well defined [88] and [12].

10.2 Fractional Brownian Motion Models.

In recent years the fractional Brownian motion (fBm) has become an object of intense study

due to its special properties, such as short/long range dependence and self-similarity, lead-

ing to proper and natural applications in different fields. In particular, the specific prop-

erties of fractional Brownian motion paths have been used in the modelling of polymers.

We note the relevance of fractional Brownian motion for modelling of polymers as follows:

”...by suitable choice of the parameter H, the average configurational behaviour of the

chain can be made to correspond to its actual behaviour in solvents of different quality,

thereby eliminating the need to account in detail, for the nature of the intermolecular

potential appropriate to the given solvent. For instance, the choice H = 3/5 models poly-

mers in good solvent, while the choice H = 1/3 models polymers in compact or collapsed

phases.”,see [9].

Moreover there is a large class of systems which are not behaving by a nearest neighbour

interaction as in the classical Brownian model by Edwards. It can be found in Stanley

et. al. [80] that long-range correlations can be found e.g. in DNA configurations. This

lang-range interaction of monomers (i.e. changes of a single monomer influence other

monomers ’far away’ in the polymer chain) can be covered by the use of fBm.

Fractional Brownian motion with ”Hurst parameter” H ∈ (0, 1) can be characterized as a
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centered Gaussian process with covariance

E(BH
i (s)BH

j (t)) =
δij
2

(
t2H + s2H − |t− s|2H

)
, i, j = 1, . . . , d, s, t ≥ 0, (10.1)

[8, 62]. In the special case H = 1/2 is standard Brownian motion.

It is important to note that fBm is a process with stationary increments and that it is

not Markovian. This of course makes the mathematical analysis of the fBm models more

complicated.

Again a more realistic model would also involve te exculded volume effect. In [33] the

authors showed that the Edwards model is well defined for x = BH whenever H ≤ 1/d.

10.3 Monomer Interaction

In contrast to the classical methods of path integrals, where a finite dimensional approxi-

mation is used to give a meaning to the infinite dimensional path integral, the situation in

the context of polymers is different. Here the path integral is an idealization of the finite

dimensional integration over all monomer positions x(k).

Considering N monomers we set

xk = x(k) = BH(k), k = 0, ..., N − 1

∫
dµ(x) ≈ C

N−1∏
k=0

∫
exp (−H0(x)) dxk,

for a constant C.

In the following we want to the quadratic form H0(x) ≡ 1
2

(x, h0x). Consider the covariance

of the fractional Brownian motion at the time points k and l. We have:

(A)k,l = E(BH(k)BH(l)) =
1

2
(k2H + l2H − |k − l|2H) (10.2)

Then since for a function f : RN → R we have as expectation w.r.t. the fractional Brownian

motion

E(f(x)) =
1

√
2π

N ·
√

det(h0)

∫
RN
f(x) exp(−1

2
x, h0x) dx,
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we can especially calculate the characteristic function by

E(eiλx) =
1

√
2π

N ·
√

det(h0)

∫
RN
eiλx exp(−1

2
(x, h0x) dx = exp(−1

2
λh−1

0 λ).

With this result we have for the second moment, i.e. for the covariance

E(BH(k)BH(l)) =
1

√
2π

N ·
√

det(h0)

∫
RN
− ∂2

∂λk∂λl
eiλx|λk=λl=0 exp(−1

2
(x, h0x)) dx

= −
∂2 exp(−1

2
(λh−1

0 λ))

∂λk∂λl |λk=λl=0

.

Hence

h−1
0 = A.

For the standard Brownian motion the well-known result is

H0(x) =
1

2

∑
(xk − xk−1)2

i.e. an attractive quadratic interaction between nearest neighbors. For N = 51 we display

the matrix elements

h25,k =


2 if k = 26

−1 if k = 25, 27

0 otherwise

.

in Figure 10.4.

A numerical inversion of the covariance matrix (10.2) can be done easily and generally.

For small H we have as expected a long range attraction which corresponds to curlier poly-

mers (Fig. 10.1-10.2), while for bigger H we observe a next-to-nearest neighbor repulsion

(Fig. 10.3) which stretches the polymers.

10.4 An off-lattice discretization of fractional Brown-

ian paths

In this section we present an off-lattice discretization of fractional Braownian motion. For

the excluded volume effect for the discrete Edwards model off-lattice methods were also

used by [7].
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Figure 10.1: Correlation for H=0.1

Figure 10.2: Correlation for H=0.3

Figure 10.3: Correlation for H=0.9

Figure 10.4: Correlation for H=0.5
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The advantage of off-lattice discretizations compared to on-lattics discretizations of fBm

are less complicated from their mathematical structure and their numerical efford. Due to

the long-range correlation of the increments, a simulation, which uses a lattice has to take

this into account in every refinement step. A list of approaches for simulating fBm can be

found in [15].

The derivation in Section 10.3 is the basis of the for the discretization of fBm paths.

We have that the correlation matrix of a fBm can be used to derive the free energy matrix

of a polymer driven by fractional Brownian motion.

The free fBm polymer

Now we consider the case of a free polymer in one dimension. To obtain such a polymer

path we use a Metropolis routine. The idea is to minimze the free energy of the system by

varying the position of the monomers.

Here the basis is the free energy matrix calculated from the covariance matrix.

Starting with a random configuration of increments, during the algorithm monomer incre-

ment positions are chosen randomly and set to a random number. Then the change of

energy, which is caused by this influence is tested.

If the energy is reduced by the above mentioned random change, the new configuration is

taken as an update and the procedure starts again with this update as initial configuration.

Otherwise, if the change of configuration increases the energy, it is tested with a random

number r if exp(−1
2
(Enew − Eold)) > r.

If this is the case, we take also the new configuration as an update. Otherwise we restart

with the old one.

With this routine it is possible to create discretized fBm paths just with the help of the

covariance matrix.

Of course, as usual in Metropolis routines, the algorithm needs a certain number of updates

until covergence starts.

In the graphics below (Fig. 10.5-Fig. 10.8), we displayed 1d-fBm paths created with this

algorithm. Here the start configuration was always the same in all examples. Moreover we

used N = 30 and 100000 iterations.

In the figures the x-axis gives the monomer number. Note that we are in the 1d-case.

Here a self-crossing takes already part if the path is changing its direction, i.e. if the path
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Figure 10.5: 1d-fBm path for H=0.1

Figure 10.6: 1d-fBm path for H=0.3

Figure 10.7: 1d-fBm path for H=0.9

Figure 10.8: 1d-fBm path for H=0.5
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runs up between monomer 4 and 5 and after that runs down to monomer 6.

From the sample paths we already see, that the paths with H < 1
2

are rougher than the

path with H = 0.9. In the case of H = 0.5 we have the shape of a classical Brownian

random walk.

Simulation including the excluded volume

The routine sketched above can also be modified to incorporate the excluded volume effect.

Here we have to model the self-intersection local time mentioned above. The idea is to put

a grid around the monomer position and count the number of monomers are inside one

box. For every self-crossing the energy is increased by a factor g, which is making in the

routine paths with a lot of self-crossings unlikely. We obtain the following graphs for d = 1.

Here again we used the same start configuration as in the examples before. Moreover we

have N = 30, g = 0.5 and 100000 iterations.

Figure 10.9: g=0.5, H=0.1

Figure 10.10: g=0.5, H=0.3

Figure 10.11: g=0.5, H=0.9

Figure 10.12: g=0.5, H=0.5
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In the pictures we see, that the paths have a straight direction upwards or downwards.

Still the paths with lower Hurst index are rougher. Nevertheless the number of self-crossings

is reduced.

In the follwing to picures we one more displayed paths with the same initial conditions

but with a lower self-repellence factor g (here g=0.3). Compared to Figures 10.9-10.12.,

we see that the number of self-crossings is much higher but the strong tendency to a

certain direction is still recovered. The algorithms above can also be used to obtain 2d-

Figure 10.13: g=0.3, H=0.1 Figure 10.14: g=0.3, H=0.3

paths of fBm polymers. This is at the moment object of a research project with Ludwig

Streit(CCM Madeira), Samuel Eleuterio, Maria Joao Oliveira (Lisbon), Jinky Bornales

and Dennis Arogancia (both Iligan, Phillippines). Simulations based on this algorithms to

investigate the end-to-end length of the polymer are actual research projects.

10.5 The End-to-End Length.

A crucial object of interest is the investigation of how the end-to-end distance R of a

polymer, with

R2 = E(|xN−1|2),

scales with the number of monomers N for N large. In polymer physics we have the ansatz

R ∼ N ν , see [83]
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where ν is the famous ”Flory index”. This exponent has the following conjectured depen-

dence to the dimension n d:

υ =
3

d+ 2
. (10.3)

Theoretical studies support this conjecture for d = 1, 2 while various less rigorous methods,

from computer simulations to renormalization group theory, point to a slight deviation for

d = 3, in agreement with experimental results, see e.g.[13]:

Flory Theory Exp.

d = 1 : 1 1

d = 2 : 0.75 0.75 0.79

d = 3 : 0.60 0.588 0.59

d = 4 : 0.5 0.5

10.5.1 Extension to the fractional case.

Generalization of Flory’s conjecture to the fractional case with general Hurst index H was

proposed in [14]:

υH =


1 if d = 1 and H > 1/2

H if dH > 2
2H+2
d+2

if otherwise.

. (10.4)

Here the first condition stems from the fact that the scaling exponent υ = 1 is maximal,

polymers will not grow faster than the number of monomers. The second condition reflects

the fact that for dH = 2 fBm becomes self-intersection free[82], beyond that value the

end-to-end-length will scale like for free fBm.

We mention in passing that there is also a proposition for a recursion formula, gen-

eralizing the one given by Kosmas and Freed [52] for the case of conventional Brownian

motion.

10.5.2 Computer simulations - first results.

Preliminary results for the Flory index in the one-dimensional case could be obtained based

on the algorithm sketched above. Here the proposed result is given by

υH =
2H + 2

3
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for H ≤ 1/2 and υH = 1 otherwise. Numerically in [13] the authors found

H υH Simulation

0.10 0.73 0.772± 0.037

0.20 0.80 0.803± 0.012

0.35 0.90 0.917± 0.013

in preliminary computations.

More systematic and detailed simulations of the Flory index in the one-and two-dimensional

case are in work. The preliminary results are very good comparable to the proposed val-

ues. A publication together with Streit, Eleuterio, Bornales et. al. about this topic is in

preparation.
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random polymers. Journal of Statistical Physics, 103:915–944, 2001.

10.1023/A:1010309005541.

[85] S.R.S. Varadhan. Appendix to ”Euclidean quantum field theory” by K. Symanzik.

Academic Press, New York, 1969.

191



[86] A. Vogel. A new wick formula for products of white noise distributions and application

to feynman path integrands, 2010.

[87] W. Westerkamp. Recent Results in Infinite Dimensional Analysis and Applications to

Feynman Integrals. PhD thesis, University of Bielefeld, 1995.

[88] M.J. Westwater. On Edwards’ model for long polymer chains. Commun. Math. Phys.,

72:131–174, 1980.

[89] L. Xu. An Introduction to Stochastic Partial Differential Equations.

http://page.math.tu-berlin.de/ xu/teaching.html, 2012.

[90] Yoshitaka Yokoi. Positive generalized white noise functionals. Hiroshima Math. J.,

20(1):137–157, 1990.

192



Curriculum Vitae

Name: Wolfgang Bock

Date of birth: January 30, 1983

Place of birth: Lebach/Saar, Germany

Education:

1989-1993 Grundschule Steinberg

1993-2002 Hochwaldgymnasium Wadern, 06/2002 Abitur

10/2002 -07/2003 Military duty in Kusel, Idar-Oberstein and Tauber-Bischofsheim

10/2003-06/2008 State Exam studies in Mathematics and Physics,

University of Kaiserslautern

06/2008 First state exam in Mathematics and Physics

Since 10/2008 PhD studies in Mathematics, University of Kaiserslautern

10/2008-03/2009 Research assistant; Department of Mathematics,

University of Kaiserslautern

04/2009-10/2009 Scholarship from the

’Graduiertenförderung des Landes Rheinland-Pfalz’

Since 10/2009 Research assistant; Department of Mathematics,

University of Kaiserslautern

193



Lebenslauf

Name: Wolfgang Bock

Geburtsdatum: 30.01.1983

Geburtsort: Lebach/Saar, Deutschland

Ausbildung:

1989-1993 Grundschule Steinberg

1993-2002 Hochwaldgymnasium Wadern, 06/2002 Abitur

10/2002 -07/2003 Wehrdienst in Kusel, Idar-Oberstein and Tauber-Bischofsheim

10/2003-06/2008 Studium in Mathematik und Physik für das Staatsexamen,

TU Kaiserslautern

06/2008 Erstes Staatsexamen in Mathematik und Physik

Seit 10/2008 Doktorand in Mathematik, TU Kaiserslautern

10/2008-03/2009 Wissenschaftlicher Mitarbeiter, Fachbereich Mathematik,

TU Kaiserslautern

04/2009-10/2009 Stipendium der ’Graduiertenförderung des Landes

Rheinland-Pfalz’

Since 10/2009 Wissenschaftlicher Mitarbeiter, Fachbereich Mathematik,

TU Kaiserslautern

194


