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Abstract

The Bus Evacuation Problem (BEP) is a vehicle routing problem that
arises in emergency planning. It models the evacuation of a region from
a set of collection points to a set of capacitated shelters with the help
of buses, minimizing the time needed to bring the last person out of the
endangered region.

In this work, we describe multiple approaches for finding both lower
and upper bounds for the BEP, and apply them in a branch and bound
framework. Several node pruning techniques and branching rules are dis-
cussed. In computational experiments, we show that solution times of our
approach are significantly improved compared to a commercial integer
programming solver.

1 Introduction

Recent events like hurricanes over North America (see [Lit06]), or tsunamis in
the Indian Ocean remind us that evacuating whole regions may become neces-
sary in case of an emergency; and in such a situation, operations research is able
to save both lives and expenses. For a survey on models and challenges in this
area of research, see, e.g., [HT01], [AG06], or [YAM08].

In this work, we consider the problem of evacuating an urban region to a
set of emergency shelter locations with the help of available public transport
infrastructure. In particular, we assume that evacuees that do not travel on
their own, be it due to age, sickness, the lack of a private car or any other
reason, are gathered at few collection points, where they are brought on buses.
The arising optimization problem is to determine a set of bus routes along with
their timetable that minimizes the evacuation time, i.e., the time needed for the
last evacuee to reach a shelter.

The problem we consider is closely related to the one discussed in [Bis11],
where mixed-integer programming models and an iterative local search heuristic
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is presented. Making use of public transport in emergency evacuation is also
considered in [SE10], incorporating traffic flow dynamics. Recently, [GG12]
considered the uncertain bus evacuation problem, where the exact number of
evacuees is not available at the beginning of the evacuation planning.

Contributions Naturally, planning in emergency situations has strict com-
putation time limitations, and the usage of sub-optimal heuristics stands to
reason. We discuss several approaches to construct feasible solutions to the Bus
Evacuation Problem, and to calculate lower bounds on the evacuation time that
help the planner to assess the situation.

However, being useful on their own, we show that these upper and lower
bounds can be easily integrated into a branch and bound framework that aims
at finding an optimal solution. In computational experiments we show that
such an algorithm can solve most realistically sized instances in reasonable time;
furthermore, the resulting computation times are significantly smaller than when
a commercial IP solver is used.

Overview In Section 2 we describe the Bus Evacuation Problem in detail.
We then present upper bounds for the problem in Section 3, and lower bounds
in Section 4. In Section 5, we discuss branching rules and node reduction tech-
niques. Computational results are presented in Section 6. Finally, Section 7
concludes the paper.

2 Problem Description

In this section we formalize the problem we consider, and model it with the help
of a linear integer programming formulation.

The evacuation scenario we consider is the following: A densely populated
region needs to be evacuated, and not everybody is able to leave the region
on its own. An example for such a situation is the defusal of a bomb within
a city center, as is frequently necessary in cities bombed during World War
II. Emergency shelters are prepared for the evacuees, and buses of the local
transport agency are used.

The collection points [S] = {1, . . . , S} where evacuees gather will be referred
to as sources, and the shelters [T ] = {1, . . . , T} where they are transported to as
sinks. We assume that the number of evacuees at every source i ∈ [S] is known,
and given in terms of integer multiples of bus loads denoted by li. Furthermore,
every sink j ∈ [T ] can only shelter a limited number of evacuees, and is thus
given a capacity uj . We will refer to the number of evacuees and the shelter
capacities as lower and upper bounds, or as supply and demand. We denote
the total number of evacuees with L =

∑
i∈[S] li. All buses start from a depot

that is not necessarily a source or a sink. Formally, the bus evacuation problem
(BEP) is now given as:
The Bus Evacuation Problem (BEP):

Input: The number of buses B, of sources S, and of sinks T . A matrix
(dij)i∈[S],j∈[T ] of source-sink-distances, a vector (dstarti )i∈[S] of depot-source-
distances, a vector (li)i∈[S] of numbers of evacuees, and a vector (uj)j∈[T ]

of sink capacities.
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Find: Find a bus schedule minimizing the maximum travel time over all buses
such that all evacuees are transported to the sinks, and sink capacities are
respected.

The problem was first described in [Bis11], where both sources and sinks
are nodes in a transportation network, and buses are allowed to pick up and
drop off amounts of evacuees up to a given bus capacity. Here we consider a
slightly simplified problem version; however, all described algorithms can also
be applied to the problem definition of [Bis11]. We explain the problem using
a small example instance.

Example 1. Figure 1 illustrates a BEP instance. There are three sources and
three sinks given. The sources have a supply of l = (1, 3, 3), while the sinks have
capacities of u = (4, 4, 1). The distance from the depot to the source is given by
dstart = (7, 4, 9), and the distances between S and T is given by

d =

 6 7 8
10 9 2
6 3 7

 .

The number of buses is B = 3.

Figure 1: Example BEP instance.

Table 1 represents a feasible solution to the presented instance; in fact, it
is even optimal. The first bus travels from source 1 to sink 1, and then from
source 3 to sink 2. Its total travel time is thus given by dstart1 +d11 +d31 +d32 =
7 + 6 + 6 + 3 = 22. For bus 2 we calculate a travel time of 23, and for bus 3 a
travel time of 23 again, resulting in a total evacuation time of 23.

We shall refer to a pair (i, j) of source and sink node as a tour, and to a list
of tours as a tourplan.

In order to model the problem as a mixed-integer linear program, we fix a
maximum number of rounds R the evacuation process might possibly take (a
trivial upper bound on R is given by

∑
i∈[S] li). We introduce variables xbr

ij ∈ B
that represent whether bus b travels from source i to sink j in round r. The
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Trip nr. 1 2 3
Bus 1 (1, 1) (3, 2) –
Bus 2 (2, 1) (3, 2) –
Bus 3 (2, 3) (2, 2) (3, 2)

Table 1: Feasible solution.

variables tbrto and tbrback measure the travel time for bus b in round r from the
source to the sink, and from the sink to the next source, respectively. Finally,
the variable tmax denotes the maximum total travel distance over all buses.

min tmax (1)

s.t. tmax ≥
∑
r∈[R]

(
tbrto + tbrback

)
+
∑
i∈[S]

∑
j∈[T ]

dstarti xb1
ij ∀b ∈ [B] (2)

tbrto =
∑
i∈[S]

∑
j∈[T ]

dijx
br
ij ∀b ∈ [B], r ∈ [R] (3)

tbrback ≥ dij

∑
k∈[S]

xbr
kj +

∑
l∈[T ]

xb,r+1
il − 1

 (4)

∀b ∈ [B], r ∈ [R− 1], i ∈ [S], j ∈ [T ]∑
i∈[S]

∑
j∈[T ]

xbr
ij ≤ 1 ∀b ∈ [B], r ∈ [R] (5)

∑
i∈[S]

∑
j∈[T ]

xbr
ij ≥

∑
i∈[S]

∑
j∈[T ]

xb,r+1
ij ∀b ∈ [B], r ∈ [R− 1] (6)

∑
j∈[T ]

∑
b∈[B]

∑
r∈[R]

xbr
ij ≥ li ∀i ∈ [S] (7)

∑
i∈[S]

∑
b∈[B]

∑
r∈[R]

xbr
ij ≤ uj ∀j ∈ [T ] (8)

xbr
ij ∈ B ∀i ∈ [S], j ∈ [T ], b ∈ [B], r ∈ [R] (9)

tbrto , t
br
back ∈ R ∀b ∈ [B], r ∈ [R] (10)

tmax ∈ R (11)

Constraint (2) ensures that tmax is as large as the maximal travel time of
all buses. Constraints (3) and (4) are used to measure the travel time, while
Constraint (5) makes sure a bus can only travel from one source to one sink
per round. Constraint (6) models that bus tours are connected and can stop
whenever they like, while Constraints (7) and (8) ensure that all evacuees are
transported and shelter capacities are respected.

It is shown in [GG12] that BEP is NP-complete, even in the case of dstarti = 0
and dij = di′j for all i, i′ ∈ S.
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3 Upper Bounds: Algorithms for Constructing
Feasible Solutions

We now develop four greedy approaches to construct a feasible solution to the
BEP. All algorithms are able to make use of solutions that are partially fixed,
which will be of importance for the usage within a branch and bound framework.
In particular, we may assume that for each bus i ∈ [B] we are given a tourplan
xi consisting of a number of sequential tours, beginning from the first tour of
the bus (i.e., a partial solution does not have “gaps” in the tourplan). When
no solution is given, we can simply set xi = ∅ for every bus. Furthermore, we
assume that lower and upper bounds l and u are modified according to the given
partial solution.

3.1 Algorithms with Precomputed Tourlists

3.1.1 UB 1.

Our first algorithm is based on a greedy distribution of tours to buses. It consists
of two parts: First, we generate a set of tours that transport the remaining
evacuees to the shelters. Then, we assign these tours to buses.

For each source node i and unit of positive supply li, we generate a tour from
i to the closest sink with positive capacity uj , and reduce li and uj by one. We
add this tour to a list and repeat the process until l = 0, i.e., all evacuees are
transported. We then add a randomly chosen tour from the list to one of the
buses with smallest total travel time, remove the tour from the list, and repeat
until the list is empty. The result is a heuristic feasible solution calculated in
polynomial time.

Algorithm 1 describes this procedure in more detail.

Algorithm 1 (UB 1)

Require: An instance of BEP with partial tour plans xb, i = b, . . . , B.
1: tourlist← ∅
2: for i ∈ [S] do
3: while li > 0 do
4: j ← arg min{dij′ : uj′ > 0, j′ ∈ [T ]}
5: tourlist← tourlist + (i, j)
6: li ← li − 1
7: uj ← uj − 1
8: end while
9: end for

10: while |tourlist| > 0 do
11: Choose any tour (i, j) at random from tourlist.
12: Let b ∈ [B] be a bus with minimum total travel time.
13: xb ← xb + (i, j)
14: Remove (i, j) from tourlist.
15: end while
16: return Feasible solution x.
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3.1.2 UB 2.

In our second greedy heuristic, we use a similar approach as before by computing
a set of tours in a first step, and then assigning the tours to buses in a second
step. We sort the tours (i, j) by non-decreasing cost. Then we start with the
cheapest tour and check if the supply li and the capacity uj are positive. In this
case we add the tour to our set of tours until the supply or the capacity reaches
0. After all tours have been considered we have a set of tours that we are going
to assign to the available buses in the next step.

For the assignment we start with the tour that has been added to the set last,
i.e., the tour with the highest cost. We assign this tour to the first available bus
and continue with the next expensive tour. This way of assignment is inspired
by the longest-processing-time-first rule (LPT rule) known in scheduling theory
(see, e.g., [Pin08]) and tries to accomplish a balanced load on all buses.

Algorithm 2 (UB 2)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: tourlist← ∅
2: while l 6= 0 do
3: (i, j)← arg min{di′j′ : li′ > 0, uj′ > 0, i′ ∈ [S], j′ ∈ [T ]}
4: times← min{li, uj}
5: Add times tours (i, j) to tourlist
6: li ← li − times
7: uj ← uj − times
8: end while
9: while |tourlist| > 0 do

10: Choose the last tour (i, j) from tourlist.
11: Let b ∈ [B] be a bus with minimum total travel time.
12: xb ← xb + (i, j)
13: Remove (i, j) from tourlist.
14: end while
15: return Feasible solution x.

3.1.3 UB 3.

Observe that after the last tour we do not need to travel back. Therefore, it
might pay off to assign a long tour to the last round of a bus, because the back
tour will most likely also be long.

Inspired by this fact we modify the upper bound presented in section 3.1.2
by reversing the added tours for each bus in the end. Note that this is not
guaranteed to improve the solution since we cannot be sure that a long tour will
result in a long back tour.

3.2 An Iterative Algorithm: UB 4

The fourth upper bound is also a greedy approach – however, instead of com-
puting a set of tours in the first step, and then assigning these tours to buses, we
generate tours on-the-fly. In each step, we consider the best possibility to bring
one evacuee from a sink to a source. In order to simplify the description, offsetb
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Algorithm 3 (UB 3)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: Run Algorithm 2 to obtain feasible solution x.
2: Reverse the set of tours in xb that have been added during the run of

Algorithm 2 for each b ∈ [B].
3: return Feasible solution x.

denotes the distance of bus b ∈ [B] which is already planned and tbi denotes the
distance from the current position of bus b to the source i ∈ S. In this case
S = {i ∈ [S] : li > 0} denotes the available sources and T = {j ∈ [T ] : uj > 0}
denotes the available sinks.

Since all the buses are in the depot at the beginning, we initialize offsetb
by 0 and tbi by dstarti . At the beginning, the best possibility is the minimum
distance of a bus b ∈ [B] from the depot over a source i ∈ S to a sink t ∈ T .
This is attained by the minimum of tbi + dij . Therefore, we add the tour (i, j)
to the tourlist of bus b and increase offsetb by tbi + dij . If we reduce the number
of evacuees li and uj by 1 and update tbi , we can compute the next step in a
similar way. Algorithm 4 describes the idea in more detail.

Algorithm 4 (UB 4)

Require: An instance of BEP with partial tour plans xb, offsetb and tbi , i =
1, . . . , S, b = 1, . . . , B

1: S = {i ∈ [S] : li > 0}
2: T = {j ∈ [T ] : uj > 0}
3: while |S| > 0 do
4: (i′, j′, b′)← arg min{offsetb + tbi + dij : i ∈ S, j ∈ T , b ∈ [B]}
5: li′ ← li′ − 1
6: if li′ = 0 then
7: S ← S \ {i′}
8: end if
9: uj′ ← uj′ − 1

10: if uj′ = 0 then
11: T ← T \ {j′}
12: end if
13: offsetb′ ← offsetb′ + tb

′

i′ + di′j′

14: tb
′

i = dij′ ∀i ∈ [S]
15: xb′ ← xb′ + (i′, j′)
16: end while
17: return Feasible solution x.

4 Lower Bounds

In the following, we present three lower bounds on the evacuation time of an
instance of BEP: The first one underestimates the travel time for every necessary
trip, the second one is based on a network flow formulation, and the third one a
simplification of the model formulation. As is the case for the upper bounds, all
algorithms can be computed in polynomial time, and can be applied if a partial

7



solution is given. As before, we assume that li denotes the residual supply at
sources in the current solution, uj the residual capacity, and xb, b ∈ [B] denotes
the partial tour plans. Furthermore, let offsetb denote the travel time in the
current solution for bus b ∈ [B].

4.1 LB 1

This approach is an adapted and slightly improved version of LB2 in [GG12].
We estimate the total travel time from sources to sinks (todistance), and the
total travel time from sinks to sources (backdistance) separately.

Algorithm 5 presents the details for estimating the backdistance. We proceed
as follows: We assume that for every residual supply at the sources i ∈ [S], a
bus will enter this source from the sink with the smallest distance. However,
those buses that do not yet have any tours assigned, may also enter a source by
an arc from the depot. Thus, we assume that we may substitute up to C trips,
where C is the number of buses without any tours, with the minimum distance
from the depot to the sources.

Algorithm 5 (Backdistance estimate)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: backlist← ∅
2: lb← 0
3: for i ∈ [S] do
4: mindist← minj∈[T ] dij
5: for k ∈ 1, . . . , li do
6: backlist.pushback(mindist)
7: end for
8: end for
9: sort backlist

10: minstart← mini∈[S] d
start
i

11: for b ∈ [B] do
12: if xb = ∅ and minstart < backlist.end then
13: lb← lb + minstart
14: backlist.popback()
15: end if
16: end for
17: for v ∈ backlist do
18: lb← lb + v
19: end for
20: return lb

Algorithm 6 estimates the todistance, which we calculate for every source
node separately. We assume that the evacuees at each source node can be sent
to the closest sink node, respecting capacities.

Finally, Algorithm 7 combines these two estimates to a lower bound on the
residual problem. We assume that the residual travel time can be distributed
equally over all buses, taking the current travel times into account.
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Algorithm 6 (Todistance estimate)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: lb← 0
2: for i ∈ [S] do
3: tolist← ∅
4: for j ∈ [T ] do
5: tolist.pushback((dij , uj))
6: end for
7: sort tolist lexicographically
8: while li > 0 do
9: li ← li − 1

10: while tolist.front.second = 0 do
11: tolist.popfront()
12: end while
13: lb← lb + tolist.front.first
14: tolist.front.second ← tolist.front.second - 1
15: end while
16: end for
17: return lb

Algorithm 7 (LB 1)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: lb1 ← output of Algorithm 5
2: lb2 ← output of Algorithm 6
3: lb← lb1 + lb2
4: maxoffset← maxb∈[B] offsetb
5: for b ∈ [B] do
6: lb← lb−maxoffset + offsetb
7: end for
8: if lb ≤ 0 then
9: return maxoffset

10: end if
11: lb← d lbB e
12: return lb + maxoffset
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4.2 LB 2

A lower bound for the maximum travel time is the average travel time. There-
fore, we will have a look at a version of the BEP where the objective is to
minimize the sum of the travel times. If we have a solution to this problem
and divide the value by the number of buses we obtain a lower bound on the
original BEP. An IP formulation for this problem can easily be constructed from
problem formulation (1) - (11) by replacing (1) and (2) by

min
∑
b∈[B]

∑
r∈[R]

(
tbrto + tbrback

)
+
∑
i∈[S]

∑
j∈[T ]

dstarti xb1
ij (12)

Fortunately, a relaxation of this problem can be written as a pure minimum
cost flow problem. For a given BEP instance, we construct a directed graph
Gave = (V,E). The graph contains the following nodes:

• For every source s ∈ [S], two nodes vtoS,s and vbackS,s ,

• for every sink t ∈ [T ], two nodes vtoT,t and vbackT,t ,

• a start depot node vstartd , and

• an end depot node vendd .

The edge set E is partitioned into 5 subsets: Eto, Ehold, Eback, Estart, and
Eend with the following edges:

• For every pair (i, j) ∈ [S] × [T ] of source and sink nodes, Eto contains
an edge (vtoS,i, v

to
T,j) and Eback contains an edge (vbackT,j , vbackS,i ) both with

infinite capacity and cost dij .

• For every sink j ∈ [T ], Ehold contains an edge (vtoT,j , v
back
T,j ) with capacity

uj and cost 0.

• For every source i ∈ [S], Estart contains an edge (vstartd , vbackS,i ) with infinite

capacity and cost dstarti .

• For every sink j ∈ [T ], Eend contains an edge (vbackT,j , vendd ) with infinite
capacity and cost 0.

The supply of nodes vtoS,i ∈ V, i ∈ S, and the demand of nodes vbackS,i ∈ V, i ∈
S, are both li. The supply of node vstartd ∈ V and the demand of node vendd are
both B.

Example 2. The resulting graph for our example is shown in Figure 2. If we
solve the minimum cost flow we obtain the flow drawn in gray with a minimal
cost of 62. Since we have 3 buses the average bus travel time would be 62

3 which
gives a lower bound of 21 since the objective value must be integer.

If we solve a minimum cost flow problem in this graph and divide the ob-
tained cost by the number of available buses we get a lower bound on BEP.

However, note that we do not solve the relaxed problem as stated above: We
do not exclude subtours. Imagine the following situation: There are two sources
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Figure 2: Example for an Average Bus Time Network
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with one evacuee each and two sinks with capacity 1. Travelling from source i
to sink i is cheap but travelling from source i to sink j with i 6= j is expensive.
Furthermore we are only given a single bus and the start distances are low for
the first source and high for the second source. The optimal flow will send one
unit of flow from the start depot to the first source (vstartd − vbackS,1 ), one unit

from the first source to the first sink to the end depot (vtoS,1−vtoT,1−vbackT,1 −vendd ),
and one unit from the second source to the second sink to the second source
(vtoS,2 − vtoT,2 − vbackT,2 − vbackS,2 ). Obviously this is not a valid solution to the BEP
no matter what the objective function looks like.

In the branch and bound algorithm we will have to deal with constrained
instances where some tours are already assigned to buses. Assume bus b is
requested to travel from source i to sink j in its first round. Then we decrease
the supply of vstartd and vtoS,i, the demand of vbackS,i and the capacity of (vtoT,j , v

back
T,j )

by one and increase the supply at vbackT,j by one, i.e., we reduce the number of
people at source i and the capacity at sink j, and force one bus to start at sink
j instead of the depot.

For a given partial solution where most of the tours are already fixed, we
may be able to improve this lower bound even further. Assume there are only
few people left at the sources. Then the above version would balance the total
time for these few people among all buses. This bound might be small; imagine
only two people being left in a scenario with 5 buses. Then every bus would do
approximately 0.4 trips (ignoring the fixed tours). A better lower bound in this
case would be two buses doing one trip each. To approach this idea we introduce
a threshold for each bus: thresb shall denote the minimal time that bus b would
travel, if he continues travelling at all. This threshold can be computed by
taking the time that bus b has travelled so far and add the minimal time from
its current location (a sink or the depot) to a source with people waiting to a
sink with positive residual capacity. If a total evacuation time of less than thresb
should be achieved, bus b must not continue after the so far fixed tours.

For each bus b we compute those buses that have a threshold of at most
thresb. We distribute the remaining time computed by the above minimum cost
flow formulation among these buses such that they are all travelling the same
amount of time lbb. We have to ensure that each of these lbb is greater or
equal to thresb and the offset of all buses. The minimal of the lbb then yields
an improved lower bound. The pseudo code for this computation is shown in
Algorithm 8.

4.3 LB 3

In this section we consider an approach which is motivated by the fact that in
real world evacuation scenarios, the sources lie in a close environment and the
sinks are normally far away. Therefore, the distances between different sources
are neglected such that all the sources can be collapsed to a super node S0 with
lS0 =

∑
i∈[S] li. The distance between the super node S0 and the sinks j ∈ [T ]

will be denoted by dj := mini∈[S] dij and the distance from the depot to the
source S0 is dstart = mini∈[S] d

start
i . Since the depot-source distance is the same

for all buses, this can be neglected in the optimization step.
We can formulate the following IP:
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Algorithm 8 (LB 2)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: construct Gave

2: trem ← min cost flow value in Gave

3: for b ∈ [B] do
4: if b currently ends at sink k then
5: thresb ← mini∈S,j∈T {offsetb + dik + dij}
6: else
7: thresb ← mini∈S,j∈T {offsetb + dstarti + dij}
8: end if
9: end for

10: for i ∈ [B] do
11: Bcur ← {b ∈ B : thresb ≤ thresi}
12: distribute trem among Bcur such that a minimal time ti is achieved
13: ti ← max{ti,maxoffset, thresi}
14: end for
15: return mini∈[B]{ti}

min tmax (13)

s.t. tmax ≥
∑
j∈T

dj
(
xb
j + ybj

)
∀b ∈ [B] (14)

∑
b∈[B]

∑
j∈[T ]

xb
j ≥ lS0 (15)

∑
b∈[B]

xb
j ≤ uj ∀j ∈ [T ] (16)

∑
j∈[T ]

ybj =
∑
j∈[T ]

xb
j − 1 ∀j ∈ [T ] (17)

xb
j , y

b
j ∈ N ∀b ∈ [B], j ∈ [T ] (18)

tmax ∈ R (19)

In this forumlation xb
j is the number of tours that bus b drives from the

super node to sink j and ybj is the number of tours that bus b drives back from
sink j to the super node.

Since the computation of this IP is too complex as a lower bound, in the
computational test, we will relax the variables xb

j , y
b
j in the way that xb

j , y
b
j ∈ R.

Algorithm 9 (LB 3)

Require: An instance of BEP with partial tour plans xb, b = 1, . . . , B.
1: Solve the LP relaxation of the program (13)–(19). Let lb be its objective

value.
2: return dlbe
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5 Branching

Having described algorithms to compute both lower and upper bounds for a
partial solution, we explain in the following how to include them in a branch
and bound framework. We begin with several branching rules, and proceed with
additional node pruning strategies.

5.1 Rules

In the following we present several branching rules. In order to minimize
the number of branches we additionally propose some checks on the created
branches. In the following a trip (i, j) is feasible if the residual capacity of sink
j and the number of people at source i are at least one.

5.1.1 B1: Full Branching.

The first branching rule we consider is the näıve approach of creating one node
for each bus, source, and sink with positive residual capacity.

As an example, reconsider the problem instance of Example 1, and assume
that the tours (1, 1) for bus 1, (2, 1) for bus 2, and (2, 3) for bus 3 are fixed. As
there are two sources and two sinks with positive residual capacity, the partial
solution is branched into 2 · 2 · 3 = 12 new partial solutions, i.e., new branch
and bound nodes.

Note that we may generate up to S · T · B new subproblems with each
branching step, which may be more than we actually need to compute. As an
example, consider the partial solution where bus 1 drives a tour a, and bus 2
drives a tour b. This node can be reached by both fixing the tour a first, and
then tour b, or vice versa. To reduce such unnecessary node duplication, we
further improve the full branching rule in the following sections.

5.1.2 B2: First Buses First.

The first buses first rule branches those buses with smallest index first, and sets
a flag for those buses that do not get branched further. Given a partial tour
plan, we find the bus b with minimal index which has not yet been marked as
done. For this bus create the following new partial tour plans:

• the old branch and bound node, where b is marked as done, and

• a new branch and bound node for each feasible trip (i, j), i ∈ [S] and
j ∈ [T ].

5.1.3 B3: Minimal Offset Bus First.

The minimal offset bus first rule branches those buses with smallest offset first,
and sets a flag for those buses that do not get branched further as before. Given
a partial tour plan compute the bus b with minimal offset which has not yet
been marked as done. The offset is the time that a bus needs for travelling
the already fixed tours. As is the case for rule B2, we create the following new
partial tour plans:

• the old branch and bound node, where b is marked as done, and
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• a new branch and bound node for each feasible trip (i, j), i ∈ [S] and
j ∈ [T ].

5.2 Tree Reduction

5.2.1 TR1: Lexicographic Pruning.

During a general branch and bound, equivalent branches would be created sev-
eral times due to the problem symmetry in the buses. To circumvent this prob-
lem we suggest to do a check for lexicographic bus assignment. The tourplans
xb1 and xb2 of two buses b1 and b2 are lexicographically assigned (xb1 ≤ xb2) if
the following holds:

• The tourplans for b1 and b2 are identical, or

• the tourplans for b1 and b2 are identical for the first r − 1 rounds and for
round r it holds that

– Either xb1 is not defined for round r, or

– the source index for round r and bus b1 is smaller than the source
index for round r and bus b2, or

– the source indices for round r and bus b1 and b2 are equal and the
sink index for round r and bus b1 is smaller than the sink index for
round r and bus b2.

If in a branch there exist bi ≤ bj with bi, bj ∈ [B] for which xbi ≤ xbj does
not hold, we discard the branch.

5.2.2 TR2: Subtour Pruning.

In some optimal solutions there is only one tour – the critical tour – that actually
takes the maximal evacuation time and most others take shorter time. Then
there might be several solutions with this optimal evacuation time but different
assignments of the tours that are not part of the critical tour. To avoid checking
all of these solutions yielding the same objective value, we would like to enforce
the tours of each bus to be assigned in an optimal way. We say that the tours of
a bus are assigned in an optimal way if there is no other assignment of tours to
this bus that visits the same sources and the same sinks and ends at the same
sink as the original assignment which takes less time.

This means that we need to solve a restricted BEP with only one bus. For
the sake of runtime, we only compute a heuristic solution based on one of the
above upper bounds, instead of checking if the subtours are optimal. If the
given subtour takes longer than the heuristic solution we discard the branch.

We use UB4 as a basis for the heuristic solution. First we run the upper
bound algorithm on a BEP instance with a single bus where the demand and
supply of the sources and sinks is given by the number of visits by the given
subtour. If the computed solution does not end at the correct sink, we move the
last tour that ends at the correct sink to the end of the assigned tours. Finally,
we compare the time needed for the given subtour with the time needed for the
computed subtour and discard the branch if the computed subtour takes less
time.
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6 Experiments

In this section we analyze the numerical performance of the lower bounds, upper
bounds, branching rules, and tree reduction checks presented in this paper. We
give an overview of these algorithms in Table 2, where TR0 corresponds to
applying no tree reduction rule.

LBs UBs Bs TRs
Nr. Sec. Nr. Sec. Nr. Sec. Nr. Sec.

1 4.1 1 3.1.1 1 5.1.1 0 -
2 4.2 2 3.1.2 2 5.1.2 1 5.2.1
3 4.3 3 3.1.3 3 5.1.3 2 5.2.2

4 3.2

Table 2: Algorithm overview.

As comparing all possible combinations would result in 3 · 4 · 3 · 3 = 108
different branch and bound algorithms, we need to proceed sequentially: We
will compare only the lower bounds in Experiment 1, only the upper bounds
in Experiment 2, and the branching and tree reduction rules in Experiment 3.
We present our results as plots for the sake of intuition; tables showing detailed
results can be found in the appendix.

Environment All experiments were conducted on a compute server with a
16-core Intel Xeon E5-2670 processor, running at 2.60 GHz (up to 3.3 GHz with
with turbo boost) with 20MB cache, 32 GB RAM and Ubuntu 12.04. We wrote
our code in C++ using gcc v. 4.5.4. with compile flag -O3, and used the com-
mercial MIP solver CPLEX v. 12.4 ([ILO12]). with OPLRUN for comparison.
For the minimum cost flow computations we used the network simplex imple-
mented by the LEMON library ([COI12]). All algorithms, including CPLEX,
were pinned to one core.

Datasets We generated 9 instance sets of varying size, which consisted of
10 instances each; in total, 90 instances were used. Table 3 gives an overview
of the respective values for the number of sources S, the number of sinks T ,
and the number of buses B. Values dij , d

start
i , and uj where drawn randomly

from {1, . . . , 10}, and li from {1, . . . , 5}. Infeasible instances were dropped and
regenerated.

6.1 Experiment 1: Lower Bounds

Setup In our first experiment, we are interested in analyzing the quality-time-
tradeoff of the lower bounds presented in Section 4. We use the following setup:

1. We solve each instance three times, using either LB 1, LB 2, or LB 3 as
lower bound.

2. As an upper bound we use UB 3. Furthermore, we use B 3 as branching
rule and apply both TR 1 and TR 2 for tree reduction.
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set name S T B
I2 2 2 2
I3 3 3 2
I4 4 4 3
I5 5 5 3
I6 6 6 4
I7 7 7 4
I8 8 8 5
I9 9 9 5
I10 10 10 6

Table 3: Instance sizes.

3. We impose a timelimit of 15 minutes per instance and algorithm, and a
memory limit of 10 GB. If either is reached before the instance is solved
to optimality, the algorithm is aborted. We measure the resulting gap
UB/LB for each instance (note that we do not subtract 1).

4. Additionally, we solve each instance computing all three lower bounds, and
in each step using the best of these three. We measure the relative quality
of the lower bounds, i.e., we compute LBi/maxj=1,2,3 LBj for i = 1, 2, 3
in each iteration.

5. We use CPLEX to solve each instance with the same time- and memory
limitations as before, and measure the resulting gap.

Results We present the average gap over the instance sets I1 to I10, divided
by the average gap of CPLEX, in Figure 3(a). Note that the lower the resulting
value, the better performs the respective lower bound compared to CPLEX.
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Figure 3: Experiment 1: Evaluation of lower bounds.

We find that all three approaches clearly outperform CPLEX, where LB 2
turns out to be the best choice, with a gap that is on average only 40% of
CPLEX’ gap on the instance set I10. Next comes LB 1, and LB 3 shows the
worst performance. The average normalized values show a similar behavior, as
can be seen in Figure 3(b): The value of LB 2 is the largest on average, with
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LB 1 and LB 3 following behind. Note the performance gap for instances of size
8 and larger for LB 2. The reason for this behavior is the increased memory
consumption, which leads to an early abortion of the algorithm.

As a note on the comparison to CPLEX, we chose the definition of gap to
be UB/LB instead of UB/LB− 1 for an easier normalization. However, in the
“classic” definition of a branch and bound gap, LB 2 has an average gap of 18%
on the instances I10, while CPLEX has a gap of 200% (see appendix).

6.2 Experiment 2: Upper Bounds

Setup In our second experiment, we consider the differences between the up-
per bounds presented in Section 3. We use the following setup, similar to the
previous experiment:

1. We solve each instance four times, using either UB 1, UB 2, UB 3, or UB
4.

2. As a lower bound we use LB 2. As before, we use the branching rule B 3
and both TR 1 and TR 2 for tree reduction.

3. We impose a timelimit of 15 minutes per instance and algorithm, and a
memory limit of 10 GB.

4. We solve each instance again, computing all 4 upper bounds, and in each
step using the best of these four. We measure the relative quality of the
upper bounds, i.e., we compute UBi/maxj=1,2,3,4 UBj for i = 1, 2, 3, 4 in
each iteration.

Results We present the average normalized gap in Figure 4(a), and the nor-
malized bound quality in Figure 4(b). Even though the average gap is similar
for all four approaches, we see that the quality of UB 1 is worse than that of the
other three, and its relatively good performance is due to its fast computability.
However, this becomes increasingly disadvantageous for larger instances, where
the size of the branch and bound tree forces an early abort. Furthermore, UB
2 tends to yield the strongest bounds.
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Figure 4: Experiment 2: Evaluation of upper bounds.
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6.3 Experiment 3: Branching Rules

Setup In our final experiment, we compare both the branching rules and the
tree reduction approaches. We solve each instance using branching rules B 1,
B 2 and B 3, with the same time- and memory limits as before, and UB 3,
LB 2 and both TR 1 and TR 2 for tree reduction. Furthermore, we solve each
instance using the tree reductions TR 0, TR 1 and TR 2, using branching rule
B 3.

Results For each of the 90 instances, we present the direct comparison of the
resulting gaps of B1 and B2, as well as B2 and B3, in Figures 5(a) and 5(b),
respectively. A point below the diagonal line means that the algorithm on the
vertical scale performs better than the algorithm on the horizontal scale. We
find that B 2 is able to find more optimal solutions (i.e., a gap of 1) than both
B 1 and B 3, and clearly outperforms B 1. However, on average, B 3 results in
a better gap than B 2.
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Figure 5: Experiment 3: Comparison of branching rules.

This comparison is not so distinct for the tree reduction rules, see Fig-
ures 6(a) and 6(b). While TR 2 seldom has an impact on the resulting gap, it
does not worsen it; TR 1 on the other hand has a larger impact on the solution
quality, but sometimes for the better, sometimes for the worst. We are not
aware of any instance property that would predict if it pays off to use TR 1.

7 Conclusion and Further Research

We considered the bus evacuation problem, which optimizes the transport of
transit-dependent people with the help of public transport infrastructure in
the case of an emergency. We presented four greedy algorithms to construct
a feasible solution, and three algorithms to find lower bounds. We discussed
how to use them in a branch and bound framework, and described additional
branching and pruning rules. In an extensive computational study, we found
that our algorithms can improve the branch and bound gap from 200% for
CPLEX to about 20% over the same time horizon. Hence we hope that the
presented algorithms will bring operations research methodology one step closer
to practical applicability in disaster management.
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Figure 6: Experiment 3: Comparison of tree reduction rules.

Future research includes the extension of the bus evacuation problem by fur-
ther planning problems arising during the evacuation process; in particular, the
logistics surrounding the provisioning of evacuees should be taken into account,
as well as the location planning of the collection points and shelters.
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A Detailed results of Experiment 1

I LB 1 LB 2 LB 3 CPLEX

2 1.00 1.00 1.00 1.00
3 1.02 1.00 1.17 1.16
4 1.14 1.00 1.50 1.60
5 1.21 1.01 1.79 1.90
6 1.49 1.03 1.77 2.06
7 1.47 1.06 1.90 2.25
8 1.99 1.09 2.01 2.54
9 1.98 1.16 2.13 2.78

10 1.92 1.18 2.25 2.99

Table 4: Experiment 1: Average gap.

I LB 1 LB 2 LB 3
OPT TIME MEM OPT TIME MEM OPT TIME MEM

2 10 0 0 10 0 0 10 0 0
3 8 0 2 10 0 0 5 5 0
4 3 1 6 10 0 0 0 10 0
5 0 2 8 7 2 1 0 10 0
6 0 0 10 3 5 2 0 10 0
7 0 1 9 1 5 4 0 10 0
8 0 0 10 0 1 9 0 10 0
9 0 0 10 0 2 8 0 10 0

10 0 0 10 0 2 8 0 10 0

Table 5: Experiment 1: Distribution.

B Detailed results of Experiment 2

I UB 1 UB 2 UB 3 UB 4 CPLEX

2 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.16
4 1.00 1.00 1.00 1.00 1.60
5 1.01 1.01 1.01 1.00 1.90
6 1.07 1.04 1.03 1.04 2.06
7 1.10 1.05 1.06 1.06 2.25
8 1.25 1.11 1.09 1.08 2.54
9 1.35 1.15 1.16 1.15 2.78

10 1.36 1.15 1.18 1.16 2.99

Table 6: Experiment 2: Average gap.
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I UB 1 UB 2 UB 3 UB 4
OPT TIME MEM OPT TIME MEM OPT TIME MEM OPT TIME MEM

2 10 0 0 10 0 0 10 0 0 10 0 0
3 10 0 0 10 0 0 10 0 0 10 0 0
4 10 0 0 10 0 0 10 0 0 10 0 0
5 8 1 1 8 1 1 7 2 1 8 2 0
6 1 3 6 2 5 3 3 5 2 4 3 3
7 2 4 4 2 7 1 1 5 4 2 5 3
8 0 1 9 0 0 10 0 1 9 0 2 8
9 0 0 10 0 4 6 0 2 8 0 1 9

10 0 0 10 0 2 8 0 3 7 0 1 9

Table 7: Experiment 2: Distribution.

C Detailed results of Experiment 3

I B 1 B 2 B 3 CPLEX

2 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.16
4 1.03 1.00 1.00 1.60
5 1.04 1.00 1.01 1.90
6 1.07 1.04 1.03 2.06
7 1.12 1.09 1.06 2.25
8 1.17 1.17 1.09 2.54
9 1.21 1.19 1.16 2.78

10 1.26 1.27 1.18 2.99

Table 8: Experiment 3: Average gap.

I B 1 B 2 B 3
OPT TIME MEM OPT TIME MEM OPT TIME MEM

2 10 0 0 10 0 0 10 0 0
3 10 0 0 10 0 0 10 0 0
4 4 4 2 10 0 0 10 0 0
5 1 4 5 9 1 0 7 2 1
6 0 7 3 4 5 1 3 5 2
7 0 2 8 2 5 3 1 5 4
8 0 2 8 0 4 6 0 1 9
9 0 1 9 0 3 7 0 2 8

10 0 5 5 0 2 8 0 3 7

Table 9: Experiment 3: Distribution.
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I TR 0 TR 1 TR 2 CPLEX

2 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.16
4 1.00 1.00 1.00 1.60
5 1.01 1.01 1.01 1.90
6 1.04 1.03 1.04 2.06
7 1.09 1.07 1.07 2.25
8 1.10 1.09 1.10 2.54
9 1.15 1.16 1.15 2.78

10 1.20 1.18 1.20 2.99

Table 10: Experiment 3: Average gap.

I TR 0 TR 1 TR 2
OPT TIME MEM OPT TIME MEM OPT TIME MEM

2 10 0 0 10 0 0 10 0 0
3 10 0 0 10 0 0 10 0 0
4 10 0 0 10 0 0 10 0 0
5 6 3 1 7 2 1 6 3 1
6 1 5 4 3 5 2 1 7 2
7 1 5 4 1 5 4 1 6 3
8 0 3 7 0 1 9 0 3 7
9 0 2 8 0 1 9 0 2 8

10 0 2 8 0 3 7 0 2 8

Table 11: Experiment 3: Distribution.
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