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Chapter One

Motivation

Make no little plans. They have no magic to stir men’s blood and probably
themselves will not be realized. Make big plans; aim high in hope and work,
remembering that a noble, logical diagram once recorded will never die, but
long after we are gone will be a living thing, asserting itself with ever-growing
insistency. Remember that our sons and grandsons are going to do things that
would stagger us. Let your watchword be order and your beacon beauty.

Think big.

Daniel Burnham

Let us consider this work in a bigger context to demonstrate our motivation.
A classic mechanical system consists of many connected parts, think of a train, a
car, a bicycle or some other type of machine. The parts of the machine are, e.g.,
for a car its chassis, outer frame, wheels, transmission, the brake and so on, all
connected into one big system, the car. The dynamics of such a system are the
movements of all parts while using the machine, e.g., driving a car along some
road. An approach to simulate the dynamics is to assume that all parts inside
the machine are rigid and thus non deformable and somehow connected through
joints. So the wheels of the car are connected to the chassis such that they can
rotate along their axis but they are also connected to the gearbox to accelerate
them for driving. The chassis can rotate the anchor point of the wheels for steering
and is thus connected to the steering system, the steering system is connected to
the steering wheel, and so on.

However, we notice that not every element can be considered rigid, there is an
important exception, the so called force elements. A force element represents a
special kind of connection, to attain a specific relative displacement of two parts,
connected by a force element, a force is needed. For example consider the suspen-
sion of the car, you need some force to attain a deformation.

One of the simplest kind of force elements are linear springs, a change in
length requires some force, doubling the force doubles the change in length, but
force elements can easily become more difficult. In the following we will get more
specific and take a look into the front axle of a car (Figure 1.1). In particular,
we see several steel parts connected by rubber bushings. One of these bushings
can be seen in Figure 1.2, this is also a force element but it has a nonlinear force-
displacement relation, acts in multiple directions and has a changing topology
dependent on how large the displacement of the inner ring is. Until this point the
described approach is called multibody simulation.

To accurately model the behavior of such a rubber bushing a totally different
approach has to be used. Assuming that for a small block of rubber we know how
force is transferred into deformation, we call the small block an element. This local
knowledge can then be used to discretize the whole part into such small elements

1



2 CHAPTER 1. MOTIVATION

Figure 1.1: Front-axle of a car [SHKH10] with several rubber bushing elements
marked by arrows

to estimate the whole force-displacement relation. The approach is known as the
finite element method.

In the example of a rubber bushing the finite element model has to incorporate,
on the one side, that rubber is very flexible and thus very large deformations can
occur and, on the other that side, that rubber is incompressible in its volume. Note
that the rubber-bushing is only one example of a force element, others could be
the wheels for driving on the road, or we could be considering larger steel parts
also as deformable, and so on. We see that each force-element needs a special
handling in its modeling. A quite systematical approach is the use of the finite

Figure 1.2: Detailed finite element model of one rubber bushing used in a front
axle
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Figure 1.3: 2 minute - 6D time trajectory for forces and moments

element method.
By trying to include a rubber bushing modeled by finite elements into a multi-

body system we face multiple problems. First of all the finite element model uses
many elements to estimate the part’s geometry in its deformed and undeformed
configuration. Thus we face a problem dimension which has more then 105 de-
grees of freedom. Secondly because of the nonlinear material characteristic and
the large deformations occurring, an approach by using linearizations and eigen-
modes of the part is not possible.

Further the multibody system lives in an other time scale than the finite ele-
ment model, because of the difference in degrees of freedom. A multibody model
can be used to simulate the dynamics of a system for several minutes, whereas a
finite element model can only be used for the simulation of several seconds. In
Figure 1.3 we show a 2 minute excitation which is calculated for the rubber bush-
ing. A simulation of such an excitation would cost several weeks of computation
time using the finite element model.

To be able to connect these two worlds, we need to find a way to simulate a
long time-excitation by the finite element model of the rubber bushing. We think,
this shall be somehow possible since the excitations observed are not all unique
throughout the simulation. So that they may be reused, and also we think that
the occurring deformations of a rubber bushing are not in need of 105 degrees of
freedom. There are deformations which are more reasonable than others (e.g.,
consider one note which is pulled out of the part while all others stay in place,
this is a deformation which is rather unlikely). This knowledge shall be utilized
for a reduced model.



4 CHAPTER 1. MOTIVATION

Overview

In this thesis we are going to concentrate on the case of a rubber bushing and
discuss what can be done to reach the goal of simulating long time excitations
within a finite element model.

The work consists of two parts. In the first part we want to discuss the mod-
eling of incompressible hyperelastic (rubber like) materials to see where the com-
putational costs arise and how a more efficient integration is possible. The second
part is about nonlinear model reduction which can be utilized to reduce the large
dimension of a finite element model and to further reduce the simulation time.

Starting with Part I, Chapter 2, gives a short introduction to continuum me-
chanics. We describe the linear and nonlinear modeling of a structural dynamical
problem and introduce the hydrostatic pressure which is necessary to model in-
compressible materials. We discretize and linearize the system to bring it into a
form which allows for a numerical treatment of the problem.

In Chapter 3 we start our mathematical investigation by introducing the no-
tion of singularly perturbed systems. We will give some examples of perturbed
systems, as they naturally arise whenever a constraint is exchanged by a very stiff
spring and give some of their properties. Afterwards we show how an incompress-
ible hyperelastic structural dynamical problem can be interpreted as a singular
singularly perturbed system.

Chapter 4 handles the numerical treatment of the introduced singular singu-
larly perturbed systems. In the case of Runge-Kutta methods an order reduction
is observed, by using so called linear implicit or Rosenbrock methods we will see
an advantage. We introduce these methods and give conditions which have to be
fulfilled for convergence in the case of singular singularly perturbed systems by
examination of an appropriate test equation.

An efficient implementation of the introduced Rosenbrock methods is given
in Chapter 5. We pay special attention to achieve a good performance for large
second order systems. The attained performance is afterwards compared to a
common method for structural dynamical problems. Notice that by efficiency we
don’t head for a real-time application but for relatively fast simulations.

Increasing the simulation time of our full finite element model can only be a
small step towards the inclusion into a multibody system. Since so far we have not
handled the huge dimensions, those bring us to Part II, which is a nonlinear model
reduction. For the obtained reduced model an inclusion into some multibody
system shall be possible, while recovering feasible simulation times.

We describe how to do a model reduction of a nonlinear system in Chapter
6. There we motivate the use of the proper orthogonal decomposition and show
how the method can be applied to structural dynamical systems. For a further
reduction of simulation time we describe the use of an additional lookup method.

In Chapter 7 we will show some of the simulation results which can be at-
tained using the described model reduction. In the end we apply the method to
a large finite element model and show that the methods were able to reduce the
simulation time drastically.



Part I

Efficient time integration
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Chapter Two

Structural mechanics and mixed formulation

In this chapter we want to introduce the basic notations and formulations of struc-
tural mechanics. The cases considered are those of linear elastic and nonlinear
hyperelastic materials. We show how one can obtain a mixed formulation by sep-
arating deformation and inner/ hydrostatic pressure. We are going to give the
discretized equations which are obtained by transforming the mixed mechanical
system into the abstract notation of bilinear forms. The reader may compare these
efforts to the saddle point problems obtained in [BF91b] for the linear quasi-static
case. As references on the general modeling of nonlinear structural mechanics
and hyperelastic materials we give [Ogd97, Hol07, MH94, Wri08] and [YBBK12].

For the mechanical formulation we start with some notations, an undeformed
body is described as an open subset B ⊂ R

3. Its deformations are described
by the mapping φ : (B , [t0, t1]) → R

3. In general we denote a point X ∈ B
by X = (X1, X2, X3) while a point in the deformed configuration is denoted by
x ∈ φ(B , t) with x = (x1, x2, x3). The spatial derivative of φ in coordinates ofB
is the deformation gradient

F =

�

∂ φ i

∂ X j

�

i, j

.

Deformations can also be described by the map of relative deformations

u(X , t) = φ(X , t)− X .

The velocity is defined as the time derivative of φ,

V (X , t) = φ̇(X , t),

for a point x = φ(X , t) we write V (X , t) = v(x , t). Also we introduce the defor-
mation tensors of Green-Lagrange E and Cauchy-Green C by

E =
1

2
(F T F − Id), C = F T F. (2.1)

In our model we let the body B be subject to some internal and external
forces, as illustrated in Figure 2.1. For all inner points we define a load l(x , t)
normalized per unit mass, and respectively L(X , t) for X ∈ B . The boundary is
divided into two subsets. For Γ0 ⊂ ∂B we have a prescribed relative deformation
u(X , t)|Γ0

= u0(X , t), for the complementary boundary Γ1 = ∂B \ Γ0 we apply a
force T (X , t) also normalized per unit area (and respectively τ(x , t) for x ∈ φ(B)).
Additional to the prescribed loads, the inner forces due to deformations, as can be
seen for an arbitrary cut through the body, are denoted by t(x , t, n) (normalized
per unit area of the current configuration), where n is a vector pointing along the

7



8 CHAPTER 2. STRUCTURAL MECHANICS AND MIXED FORMULATION

Figure 2.1: Illustration of a body and the used notation

normal direction of the cut. By Cauchy’s Theorem we know that in equilibrium
positions the inner force vector t(x , t, n) is linear in n. Thus, we introduce the
Cauchy stress tensor σ(x , t)

t(x , t, n) = σ(x , t)n.

The conservation law we want to obey is the so called balance of momentum.
In the current configuration for U ⊂B , it is stated as

d

d t

∫

φ(U ,t)

ρvd x =

∫

∂ φ(U ,t)

t(x , t, n)da+

∫

φ(U ,t)

ρld x (2.2)

⇔
d

d t

∫

φ(U ,t)

ρvd x =

∫

φ(U ,t)

divσ(x , t)d x +

∫

φ(U ,t)

ρld x . (2.3)

For convenience we transform these relations such that they are defined on the
reference configuration B . To transform t(x , t, n) such that it measures force
relative to the undeformed area dA instead of the deformed area da, we find the
relation

n da = J F−T dA with J = det F

which in hand gives the transformation of σ

σn da = JσF−T N dA,

and defines the first Piola Kirchhoff tensor P = JσF−T . By the second Piola Kirch-
hoff Tensor S = F−1P “the base point” is also transformed back to the undeformed
configuration. So the balance of momentum with internal force vector L(X , t) in
terms of the reference configuration is

d

d t

∫

U
ρre f V dX =

∫

∂U
PNdA+

∫

U
ρre f LdX . (2.4)

For an elastic material the Piola Kirchhoff tensor P can be written at every
point only depending on the current deformation gradient F

P = P̂(X , F).

Thus we are going to formulate a stored energy potential W and relate it to P̂ via

P̂ =
∂W

∂ F
.
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In this way deformations generate energy into the potential W . How much energy
is produced will depend on the used material law. Notice the relations between
the second Piola Kirchhoff, the Green-Lagrange and Cauchy-Green tensor

S =
∂W

∂ E
, S = 2

∂W

∂ C
. (2.5)

2.1 Linear case

In the linear case only small deformations are considered, we can first simplify the
Green-Lagrange strain tensor E (2.1) by neglecting the mixed term ∇u∇uT to

ε(u) =
1

2
(∇u+∇uT ),

and formulate a strain energy function in terms of ε

W =
Λ
2
(trε)2 + 2µε : ε. (2.6)

This corresponds to Hook’s law using the Lamé parameters Λ and µ, where for
two tensors A, B

A : B = tr(AT B).

Remark 2.1.1. The Lamé parameters are related to Young’s modulus E and Poisson’s
ratio ν via

Λ =
Eν

(1+ ν)(1− 2ν)
, µ=

E

2(1+ ν)
. (2.7)

Motivated by the fact that trε(u) = div u, we decompose the energy into a
volumetric and isochoric (constant-volume) part by

Wvol =
Λ
2
(trε)2, Wiso = 2µε : ε, (2.8)

W =Wvol +Wiso. (2.9)

Formulation (2.8) is inappropriate for the case of incompressible materials,
because for ν → 1

2
we have Λ → ∞. To overcome this, we introduce a mixed

formulation by adding the hydrostatic pressure p = ∂Wvol

∂ (tr e)
= Λ trε. We obtain

W =
p

2
trε+ 2µε : ε. (2.10)

Additionally, we now have to fulfill the constraint

p

Λ
= div u. (2.11)

We see the advantage that in the incompressible case (2.11) remains feasible and
reduces to

0= div u.
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The pressure p is acting as a Lagrange multiplier.
The second Piola Kirchhoff stress for (2.6) using (2.5) is

S =
∂W

∂ ε
= Λ trε+ 2µε (2.12)

and for the mixed formulation (2.10)

S = p Id+2µε. (2.13)

Using the kinetic and potential energies

Πkin =

∫

B
ρre f

1

2
V̇ T V dX , (2.14)

Πpot =
1

2

∫

B
S : ε(u)dX −

∫

B
uTρre f LdX −

∫

∂B
uT T dA, (2.15)

and the energy conservation law
∫ t1

t0

(Πkin −Πpot)d t −→ stationary, (2.16)

we derive the weak formulation after introducing the appropriate function spaces.

Definition 2.1.2 (Sobolev spaces). For Ω ⊂ Rn we introduce the Lebesgue space of
square integrable functions

L2(Ω) =

¨

v
�

�

�

∫

Ω

|v|2 <∞
«

,

and the Sobolev spaces

Hm(Ω) =
§

v
�

�

�Dαv ∈ L2(Ω), ∀|α| ≤ m
ª

, |α|=
∑

αi ,

Dαv =
∂ |α|v

∂ xα1
1 . . .∂ xαn

n

with their corresponding norms for k ∈ L2(Ω), u ∈ Hm(Ω), we have

‖k‖2
L2 =

∫

Ω

‖k‖2d x and ‖u‖Hm =
∑

k≤m

∑

|α|=k

‖Dαu‖2
L2 .

We will skip the strong form of the equation and directly write down Problem
(2.16) in its weak formulation with the boundary conditions

u(X , t) = u0(X , t) on Γ0 (2.17)

P(X , t)N = T (X , t) on Γ1. (2.18)

Let V be the space of test functions

V =
§

v
�

�

�v ∈ (H1(B))3, v|Γ0
= 0
ª

.
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Then the weak form is: Find

u ∈ U =
§

u
�

�

�u ∈ (H1(B))3 and u(·, t)|Γ0
= u0(·, t)

ª

such that for all v ∈ V it holds that
∫

B
ρre f vT ü dX +

∫

B
S :∇vdX =

∫

B
vTρre f LdX +

∫

∂B
vT T dA.

By inserting the material law (2.12) we have
∫

B
S :∇v = µ

∫

B
ε(u) : ε(v)dX +Λ

∫

B
div(u)div(v)dX .

While the weak form in the mixed setup (2.13) is: Find u ∈ U , p ∈ K = L2(B)
fulfilling

∫

B
ρre f vT ü dX +µ

∫

B
ε(u) : ε(v)dX +λ

∫

B
p div(v)dX

=

∫

B
vTρre f LdX +

∫

Γ

vT T dA (2.19)

∫

B
div(u)kdX =

1

Λ

∫

B
pkdX ,

for all k ∈ K and v ∈ V .
Using the inner-product of the Sobolov space (H1(B))3

〈u, v〉=
∫

B
vT u dX ,

the bilinear forms

a(u, v) = µ

∫

B
ε(u) : ε(v) dX ,

b(v, p) =

∫

B
p div(v) dX ,

c(p, k) =

∫

B
kT p dX ,

and

l =

∫

B
vT LdX +

∫

Γ

vT T dA,

we rewrite Problem (2.19) in the abstract form for all v ∈ V

〈ρre f ü, v〉+ a(u, v) + b(v, p) = 〈l, v〉

b(u, k)−
1

Λ
c(p, k) = 0.

(2.20)
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For the discretization we choose the finite dimensional function spaces Vh ⊂ V,
Kh ⊂ K . Here we have to be careful in the choice of ansatz-functions to get
a well defined system. A detailed discussion on the used spaces will follow in
Chapter 3.2. For now we only assume that the elements of the used spaces can be
represented by ansatz-functions φi ∈ Vh (for relative displacements) and ψi ∈ Kh
(for pressure variables) such that

uh(x , t) =
nq
∑

i=1

φi(x)qi(t), ph(x , t) =
nλ
∑

j=1

ψ j(x)λ j(t). (2.21)

The discretized equations are

Mq̈+ Aq+ BTλ= f (t)

Bq−
1

Λ
Mλλ= 0

(2.22)

with the mass matrices

M =

�
∫

B
ρre fφ

T
i φ j dX

�

i, j

, Mλ =

�
∫

B
ψiψ j dX

�

i, j

, (2.23)

the stiffness matrix

A=

�

µ

∫

B
ε(φi) : ε(φ j) dX

�

i, j

,

and the constraint matrix

BT =

�
∫

B
ψT

j divφi dX

�

i, j

. (2.24)

2.2 Hyperelastic case

While considering large deformations, which typically occur in rubber compo-
nents, due to their much lower stiffness compared to the surrounding parts, the
assumption of a linear stress-strain relation is not satisfied. We replace the linear
elastic material law by a so called hyperelastic one, while preserving the isotrop-
icity. Thus, we are entering the nonlinear setting. Structurally we will follow the
same path as in the linear case by first deriving the corresponding energy strain
function W . To do this, we have to state a few considerations about the used
parametrization of W .

Since we assume a hyperelastic material to be isotropic, W shall not depend
on the orientation of the deformation gradient F, and also it has to be indepen-
dent of the material orientation so that if we decompose F = Q1RQ2 with Q1,Q2
orthonormal it holds that

W (F) =W (R).

Thus we are going to use the invariants of the right Cauchy-Green tensor C (2.1)
for the parametrization of W, since they are also invariant to a change of orienta-
tion.
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Definition 2.2.1. The invariants of a matrix A ∈ R3×3 are the coefficients of the
characteristic polynomial

χA(λ) = λ
3 + I1(A)λ

2 + I2(A)λ+ I3(A).

Lemma 2.2.2. For a symmetric matrix A∈ R3×3 the invariants are

I1(A) = tr A, I2(A) = det Atr A−1, I3(A) = det A,

if λ1,λ2,λ3 are the eigenvalues of A then

I1(A) = λ1 +λ2 +λ3, I2(A) = λ
−1
1 +λ

−1
2 +λ

−1
3 I3(A) = λ1λ2λ3.

Like in the linear case we go for a split of volumetric and isochoric defor-
mations. As a change in volume is characterized by J = det F 6= 1, we do a
multiplicative decomposition of

F = J
1
3 F̄

into volume change J and isochoric part F̄ . This also defines the isochoric part of
the Cauchy-Green tensor to be

C̄ = F̄ T F̄ = J−
2
3 C .

The separation is used for modeling the difference in the behavior of bulk and
shear deformations

W =Wvol(J) +Wiso(C̄). (2.25)

Wvol tends also to be helpful in giving a continuous way of switching between
incompressible and compressible formulations by increasing bulk modulus, as we
will see.

Remark 2.2.3. The material invariants of C̄ can be calculated from those of C by

I1(C̄) = I1(C)J
− 2

3 , I2(C̄) = I2(C)J
− 4

3 .

Definition 2.2.4. For ci j ∈ R we define the isochoric part of the strain energy func-
tion of polynomial type as

Wiso =Wpoly =
∑

i, j≥0

ci j(I1(C̄)− 3)i(I2(C̄)− 3) j . (2.26)

Example 2.2.5. Two popular examples of polynomial type strain energy functions
are the Neo-Hook material law, which consists only of c10 6= 0 and thus has

Wiso =Wneo = c10(I1(C̄)− 3), (2.27)

and the Mooney-Rivlin type material laws where additionally c01 6= 0,

Wiso =Wmooney = c10(I1(C̄)− 3) + c01(I2(C̄)− 3). (2.28)
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Remark 2.2.6. Another choice, not directly using the invariants, was proposed
by Ogden [Ogd72]. He uses the principle stretches, i.e., the eigenvalues of C̄ =
{λ1,λ2,λ3}, and parameters αi ,µi ∈ R, i = 1 . . . N , for an energy-strain function

Wiso =Wogden =
N
∑

i=1

2
µi

α2
i

(λαi
1 +λ

αi
2 +λ

αi
3 − 3).

Physically this form is easier to interpret, since a principal stretch is the change of
length in a corresponding principal direction, and λαi

k are arbitrary powers of these
length changes.

For the volumetric dependencies Wvol(J) we choose a potential around the
volume change J

Wvol(J) =
1

2
κ(J − 1)2 with κ= Λ+

2µ

3
. (2.29)

The material parameter κ is called bulk modulus and can be expressed in terms of
the Lamé parameters Λ,µ known from the linear theory (Remark 2.1.1).

Remark 2.2.7. Other choices of a potentials around a volume change are also possi-
ble, indeed in the literature one finds different suggestions for the volumetric depen-
dency, e.g., [SM92]

Wvol(J) = κ
1

4
(J2 − 1− 2 ln J),

or [Ogd72] suggests for β > 0

Wvol(J) = κβ
−2(β ln J + J−β − 1).

To gain the ability of handling volumetric deformations separately, we intro-
duce again a mixed formulation using an extra pressure variable p via (2.29)

p =
∂Wvol

∂ J
= κ(J − 1), (2.30)

and find it in the volumetric strain energy

Wvol =
κ

2
(J − 1)2 = κ(J − 1)2 −

κ

2
(J − 1)2 = p(J − 1)−

p2

2κ
. (2.31)

Remark 2.2.8. Since the linearization of the determinant around the identity is
equal to the trace

det(Id+hX ) = 1+ h tr X +O(h2),

we have that the linearization of (2.30)

∂

∂ X
κ(J(X )− 1) =

∂

∂ X
κ(det(F(X ))− 1)) =

∂

∂ X
κ(det(Id+∇u)− 1)

= κ tr∇u= κdiv u

corresponds to the linear case.
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The second Piola Kirchhoff tensor is also split using (2.25) into an isochor and
volumetric part

S =
∂W

∂ E
= Siso + Svol

with

Siso =
∂Wiso

∂ E
and Svol =

∂Wvol

∂ E
,

where we have the p variable in

Svol = κJ(J − 1)C−1 = J pC−1. (2.32)

In order to give the weak formulation, we reuse the kinetic energy of the linear
case (2.14) and add the potential energy

Πpot =
1

2

∫

B
W dX +

∫

B
uT LdX −

∫

∂B
uT T dA,

into (2.16). Again we spare out the details of this calculation. The weak form of
(2.16) together with the boundary conditions (2.17), (2.18) is: Find u ∈ U such
that

∫

B
ρre f vT üdX +

∫

B
S :

1

2
(∇vT F(u) + F(u)T∇v) dX

−
∫

∂B
vT T dA−

∫

B
ρre f vT L dX = 0 (2.33)

holds for all v ∈ V , where F(u) = Id+ ∂ u
∂ X

is the relative deformation gradient.
Inserting the mixed form, the weak formulation is

∫

B
ρre f vT üdX +

∫

B
(Siso + Svol) :

1

2
(∇vT F(u) + F(u)T∇v) dX

−
∫

∂B
T · v dA−

∫

B
ρre f L · v dX = 0 (2.34)

∫

B
(J(u)− 1)k dX =

1

κ

∫

B
pk dX , (2.35)

to be satisfied additionally for all k ∈ L2(B).
We calculate the differential of

∫

B J(u)− 1 dX around u at u0 applied to δu

d
∫

B J(u)− 1 dX

du

�

�

�

u0

(δu) =
∫

B
JC−1 :

1

2
(∇(δu)T F(u0) + F(u0)

T∇(δu)) dX , (2.36)



16 CHAPTER 2. STRUCTURAL MECHANICS AND MIXED FORMULATION

and find the same relation in the Svol part of (2.34) while inserting (2.32)
∫

B
J pC−1 :

1

2
(∇vT F(u) + F(u)T∇v) dX . (2.37)

For a semi-discretization we choose (2.34) using again the ansatz (2.21) in

each of the three space dimensions ordered from top to bottom as







q1

q2

q3







Mq̈ = fa(q,λ) + fb(t) (2.38)
1

κ
Mλλ= j(q) (2.39)

with M , Mλ from (2.23). For the other terms we have

( fa(q,λ)) j=k+(i−1)nq=1...3nq

=

∫

B
(Siso(q) + Svol(q,λ)) :

1

2

�

∂ φT

∂ X
F(q) + F(q)T

∂ φ

∂ X

�

dX (2.40)

=
3
∑

k,l=1

∫

B

1

2
((Siso(q))k,l + (Svol(q,λ))k,l)

�

∂ φk

∂ Xk
Fil(q) + Fik(q)

∂ φk

∂ X l

�

dX ,

( fb(t)) j=k+(i−1)nq=1...3nq
=

∫

Γ1

TiφkdA+

∫

B
ρre f LiφkdX

with space dimension i = 1 . . . 3 and k = 1 . . . nq, i.e., fa(q,λ) ∈ R3nq and

( j(q))i=1...np
=

∫

B
(J(q)− 1)ψidX . (2.41)

The linearization of (2.41), i.e., the gradient of the constraint is the projection
of (2.36) onto λ. Differentiating the j-th row of (2.41) gives for i = 1 . . . 3nq,
m= 1 . . . 3.

B j =

∫

B
ψ jJC−1 :

1

2
(∇(δu)T F(u0) + F(u0)

T∇(δu)) dX

=
3
∑

k,l=1

∫

B

1

2
ψ jJC−1

kl

�

∂ φi

∂ Xk
Fml + Fmk

∂ φi

∂ X l

�

dX , (2.42)

which is again similar to the Svol term in (2.40). And we have the local structure

Mq̈ = f (t, q)− BT (q)λ
1

κ
Mλλ= j(q).

(2.43)
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For linearization (see also [YBBK12]) let us introduce the elasticity tensor
C= ∂ S

∂ E
and its splitting into C= Ciso +Cvol ,

Ciso =
∂ Siso

∂ E
, Cvol =

∂ Svol

∂ E
= C[vol +C

\

vol , (2.44)

and

C
[
vol = p

∂ (JC−1)
∂ E

, C
\

vol = JC−1 ∂ p

∂ E
. (2.45)

The linearization of the material part
∫

S : 1
2
(∇vT F(u)+F(u)∇v) of (2.34) around

u at the point u0 evaluated at δu is

d
∫

S : 1
2
(∇vT F(u) + F(u)∇v)

du
|δu0
(δu) =

∫

B

1

2

�

∇vT F(u0) + F(u0)
T∇v

�

: (Ciso +Cvol)

:
1

2

�

∇(δu)T F(u0) + F(u0)
T∇(δu)

�

dX

+

∫

B
(Svol + Siso) : (∇(δu)T∇v) dX

=

∫

B

1

2

�

∇vT F(u0) + F(u0)
T∇v

�

: (Ciso +C
[
vol)

:
1

2

�

∇(δu)T F(u0) + F(u0)
T∇(δu)

�

dX

+

∫

B

1

2

�

∇vT F(u0) + F(u0)
T∇v

�

: (JC−1dp) dX

+

∫

B
(Svol + Siso) : (∇(δu)T∇v) dX (2.46)

with (2.44), (2.45), and

dp =
1

2
κJC−1 :

�

∇(δu)T F(u0) + F(u0)
T∇(δu)

�

.

The bilinear forms from the linearized weak formulation (2.46) at the point
(u0, p0) for u= u0 +δu and p = p0 +δp are

a(δu, v) =

∫

B

1

2

�

∇vT F(u0) + F(u0)
T∇v

�

: (Ciso|u0
+C[vol |u0,p0

)

:
1

2

�

∇(δu)T F(u0) + F(u0)
T∇(δu)

�

dX
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and

b(v,δp) =

∫

B

1

2

�

∇vT F(u0) + F(u0)∇v
�

: JC−1δp dX .

So the local abstract formulation around some working point u0, p0 ends up to be
the same as for the linear case

〈ρre f δü, v〉+ a(δu, v) + b(v,δp) = 〈l, v〉 (2.47)

b(δu, k)−
1

κ
c(δp, k) = 0. (2.48)

Ending up with a mixed formulation of the system of structural dynamics in-
cluding the nonlinear effects of large deformations and hyperelastic materials.
In the next chapters we discuss the general properties of systems in the form of
(2.38) and show how they can be solved. This leads us to a discussion of singularly
perturbed systems.



Chapter Three

Singularly perturbed systems

To study the effects of introducing the mixed formulation onto the structure and
solution of the structural dynamical problem, we are going to give the notation of
differential index and singularly perturbed systems. This will allow us to interpret
the mixed formulation of nearly incompressible material in terms of singularly
perturbed systems.

3.1 Introduction and some properties

We start with a brief preface on differential algebraic equations.

Definition 3.1.1. The differentiation index of a system

ẋ = f (x , z)
0= g(x , z)

is the smallest number of time derivatives k of the constraint d
d t

g(x , z) such that we
obtain an explicit differential equation in ż. In this way we obtain the underlying
ordinary differential equation.

Example 3.1.2. The system

ẋ = f (x , z)
0= g(x , z)

(3.1)

is of index 1 iff gz(x , z) is non singular. This can be seen by differentiating g(x , z)
once with respect to the time t

d

d t
⇒ 0= gx(x , z) ẋ + gz(x , z)ż.

For a non singular gz(x , z) we have

ż =−g−1
z gx f (x , z),

and obtain the underlying ordinary differential equation

ẋ = f (x , z)

ż =−g−1
z gx f (x , z).

A constraint defines a manifold

M = {(x , z) : g(x , z) = 0},

which contains all solutions of the problem.

19
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Definition 3.1.3. The tangent-space of a point x ∈M = {x : g(x) = 0} is defined
by

TxM =
�

(x , v) : gx(x)v = 0
	

.

Example 3.1.4. The general constrained mechanical system

q̇ = v

M v̇ = f (q, v)− GT (q)λ
0= g(q) (3.2)

with G = gq is of index 3 if GM−1GT is non singular.

Proof. Differentiating (3.2) twice gives

0= gqq̇ = gq v, (3.3)

0= gqq(v, v) + gq v̇ = gqq(v, v) + gq M−1 f (q, v)− gq M−1GTλ. (3.4)

Arising from the last term of (3.4) we obtain an explicit dependence on λ̇ by
differentiating once more.

Remark 3.1.5. Due to the structure and definition of M , the solutions to the me-
chanical system are still contained in the manifold. They are further constrained
onto a hidden sub-manifold because of the additional constraints arising during the
differentiation of the equation, as seen in (3.3).

Definition 3.1.6 (Singularly perturbed system). The system

ẋ = f (x , z)
εż = g(x , z)

is called singularly perturbed if gz is non singular.

Observe the influence of ε to the differential index of the systems. For ε→ 0
the system is of index 1, while for all cases ε > 0 we have index 0. Singularly
perturbed systems are also discussed in [TVS85, REOM88, Joh05]. Our formula-
tion is especially interesting in the convergence analysis of numerical integration
methods for differential algebraic equations [HW96].

A singular perturbation in the case of mechanical systems brings us to a higher
index and thus to different problems. We are going to discuss the influence of the
structural change by introducing a stiff spring via ε2 to a mechanical system. As
a prototype of a mechanical system, we take a look at second order differential
equations of the form

Mq̈ = f (q, q̇)− G(q)Tλ

ε2Mλλ= g(q)
(3.5)

with G(q) = gq of full row rank, y ∈ Rn, λ ∈ Rm, f : Rn → R
n, g : Rn → R

m,
and 0 < ε� 1. Looking at the index of system (3.5), we see that for ε > 0 one
differentiation is needed to obtain

λ̇=
1

ε2 M−1
λ G(q)q̇,

but for ε2→ 0 the system has the form of Example 3.1.4 and is of index 3.
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Definition 3.1.7 (Singular singularly perturbed system). The second order system
with positive symmetric matrix M

Mq̈ = f (q, q̇)− GTλ

ε2λ= g(q) (3.6)

is called singular singularly perturbed if gq M−1 gT
q is non singular.

While solving mechanical systems, singular singularly perturbed systems are
likely to arise, for example when the constraints of a mechanical system are re-
placed by stiff springs.

Example 3.1.8 (Stiff spring-pendulum). The dynamics of a pendulum with unit
mass, unit length and gravity g are described by

q̈1 =−2q1λ

q̈2 =−2q2λ− g
(3.7)

0= q2
1 + q2

2 − 1.

The constraint is responsible for holding the pendulums length at exactly 1. Replacing
this constraint by a stiff spring such that a change in the length of the pendulum
p

q2
1 + q2

2 away from 1 is penalized by a strong force 1
ε2 , and bounding this force by

considering only the relative change of length we have the constraint

ε2λ=

p

q2
1 + q2

2 − 1
p

q2
1 + q2

2

.

This gives us a singular singularly perturbed index 1 system.
Here λ can also be expressed in terms of known quantities and thus inserted

directly into (3.7) by

q̈1 =−
1

ε2 2q1

p

q2
1 + q2

2 − 1
p

q2
1 + q2

2

q̈2 =−
1

ε2 2q2

p

q2
1 + q2

2 − 1
p

q2
1 + q2

2

− g.

(3.8)

By (3.8) we have formulated the system without a constraint, in index 0 form.

Remark 3.1.9. Looking at a singular singularly perturbed system as in Definition
3.1.7, for ε2 > 0 one can obtain an index 0 formulation by solving the second relation
for λ and inserting into the first one

Mq̈ = f (q, q̇)−
1

ε2 GT g(q). (3.9)

Theorem 3.1.10 (Smooth Motion). For system (3.5) we have that for every (q0, q̇0)
satisfying

g(q0) = 0, G(q0)q̇0 = 0, (3.10)
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there exists a pair (qε, q̇ε), unique up to O(ε2N ) for arbitrary N , with q0−qε, q̇0− q̇ε
of magnitude O(ε2) and situated in the M-orthogonal complement of

M = {q : g(q) = 0}

such that the solution with initial values (qε, q̇ε) is smooth and of the form

q(t) = q0(t) + ε
2q1(t) + · · ·+ ε2N qN (t) +O(ε2N+2),

q̇(t) = q̇0(t) + ε
2q̇1(t) + · · ·+ ε2N q̇N (t) +O(ε2N+2).

(3.11)

In this expression, the functions qk(t), q̇k(t), and the domain [0, T] are independent
of ε for k = 0 . . . N.

Proof. Following the lines of the proof given by [Lub93] in the index 0 case (see
also Remark 3.1.11), we do an analysis of the index 1 formulation.

First we construct a truncated expansion by comparison of the ε coefficients of
qk in the solution of (3.5) where we also write λ in an expanded form

λ= λ0 + ε
2λ1 + · · ·+ ε2NλN .

The ε−2 term only appears in the constraint and vanishes iff

g(q0) = 0. (3.12)

For ε0 we find

Mq̈0 = f (q0, q̇0)− GT (q0)λ0 (3.13)

Mλλ0 = G(q0)q1. (3.14)

Here q0,λ0 can be determined by solving the index 3 system (3.13) together with
the position constraint (3.12). Because of the full rank of G, the system has got
a unique solution for all initial values (q0(0), q̇0(0)) in the tangent bundle TM .
Going on to the ε2 coefficient, we have

Mq̈1 = fq(q0, q̇0)q1 + fq̇(q0, q̇0)q̇1 − GT (q0)λ1 (3.15)

Mλλ1 = G(q0)q2 +
1

2
H(q0)(q1, q1) (3.16)

so that we consider for known values of q0, q̇0 equation (3.15) together with (3.14)
again as an index 3 system with unique solution for q1, q̇1. The initial values
q1(0), q̇1(0) are determined uniquely by the condition that both q1, q̇1 are in the
range of M−1GT (q0). We can proceed in this way and construct more elements in
the sequence of qk, q̇k by introducing more index 3 systems, up to an arbitrary k.

It remains to show that every solution with starting values close to the con-
structed epsilon expansion of q remains in an O(ε2N ) neighborhood. So let ξ, ξ̇
be

ξ= q0 + ε
2q1 + · · ·+ ε2N qN , (3.17)

ξ̇= q0 + ε
2q̇1 + · · ·+ ε2N q̇N . (3.18)

The defect while inserting (3.17) into (3.5) due to construction is

M ξ̈= f (ξ, ξ̇)− GTλ+O(ε2N+2)

λ= ε−2 g(ξ) +O(ε2N ).
(3.19)
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We will show that every solution q, q̇ of the system (3.5) with starting values

q(0)− ξ(0) = O(ε2N+1), q̇(0)− ξ̇(0) = O(ε2N )

remains near ξ, ξ̇, i.e.,

q(t)− ξ(t) = O(ε2N ), q̇(t)− ξ̇(t) = O(ε2N ) (3.20)

uniformly for t on bounded intervals.
For the following we assume that the system is written in coordinates such that

g(q) =
�

0 Id
�

q and with M = Id. We consider the difference of δq = q− ξ and
add the constraint via δλ using (3.19)

δq̈ = O(δq) +O(δq̇)−
�

0
Id

�

δλ+O(ε2N+2) (3.21)

δλ := ε−2
�

0 Id
�

δq+O(ε2N )

which is, due to the linearization of f , valid if δq is at least O(ε2). Next we insert
δλ explicitly into (3.21)

δq̈ = O(δq) +O(δq̇)− ε−2
�

0 0
0 Id

�

δq+
�

0 0
0 Id

�

O(ε2N ) +O(ε2N+2). (3.22)

If we write down the differential equation (3.22) separated into δq =
�

δu δv
�T

for δv being those components which contain ε−2, then we have that

δü= O(‖δu‖+ ‖δu̇‖+ ‖δv‖+ ‖δv̇‖) +O(ε2N+2), (3.23)

δv̈ =−ε−2 Idδv +O(‖δu‖+ ‖δu̇‖+ ‖δv‖+ ‖δv̇‖) +O(ε2N ).

Rewriting δv to first order form by δw =
�

δv ε−1δv̇
�T

yields

δẇ = ε−1
�

0 Id
− Id 0

�

δw+O(‖δw‖+ ε‖δu‖+ ε‖δu̇‖) +O(ε2N+1).

Calculating the energy estimate

‖δw‖ ·
d

d t
‖δw‖=

1

2

d

d t
‖δw‖2 = δwTδẇ

= O(‖δw‖ · (‖δw‖+ ε‖δu‖+ ε‖δu̇‖+O(ε2N+1)))

and using Gronwall’s Lemma with δw(0) = O(ε2N+1) gives

‖δw(t)‖ ≤ Cε max
0≤τ≤t

(‖δu(τ)‖+ ‖δu̇(τ)‖) +O(ε2N+1).

Finally reinserting into (3.23) gives the result δu= O(ε2N ), δu̇= O(ε2N ).
To show the smoothness of the constructed solution q of (3.5) fulfilling (3.20),

we investigate δq̈ = q̈− ξ̈ in (3.22). By inserting (3.20) into (3.22), we see that

δq̈ = O(ε2N−2). (3.24)

Differentiating (3.24) once more and using again (3.20), we have that also

δq(3) = O(ε2N−2).
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By further differentiation of (3.22) we see that

δq(4) = O(ε2N−4), δq(5) = O(ε2N−4),

δq(6) = O(ε2N−6), δq(7) = O(ε2N−4).

And thus the constructed solution is smooth.

Remark 3.1.11. A similar result to Theorem 3.1.10 can be obtained for the more
general index 0 system

M(q)q̈ = f (q, q̇)−
1

ε2∇U(q),

with a potential U : Rn→ R, (∇U)T = ∂ U
∂ q

, f : R2n→ R
n, and M : Rn→ R

n×n. How-
ever, we have some additional assumptions on the potential U and on the configuration-
dependent mass matrix :

(a) M(q) is symmetric and positive definite for all q ∈ Rn.

(b) The potential U attains a local minimum on a d-dimensional manifold U , i.e.,
for some region D ⊂ Rn

U =
�

u ∈ D : U(u) =min
q∈D

U(q)
�

= {u ∈ D :∇U(u) = 0} .

(c) U is in a neighborhood of U , strongly convex along directions non-tangential to
U , i.e., there exists α > 0 such that for u ∈ U it holds that

vT∇2U(u)v ≥ αv̇T M(u)v

for all v in the M(u)-orthogonal complement to the tangent space TuU .

The proof relies on a local transformation into the index 1 case, which leads to the
same arguments as in the previous proof. It can be seen in [Lub93].

Theorem 3.1.10 shows how index 1 and index 3 formulations are connected.
In the index 3, i.e., ε = 0, case all solutions to system (3.5) have to be inside the
tangent bundle TM , the system is thus already of the form of (3.12), (3.13). For
ε > 0 we see how the solutions starting from the tangent bundle are influenced.
The crucial aspect are the initial values, for initial values outside the smooth mo-
tion additional oscillations occur. The theorem tells us how solutions starting in a
O(ε2) radius around the tangent bundle behave with respect to ε, they stay close
to the corresponding solution of the index 3 system. This justifies the exchange of
constraints by strong penalizing forces, in favor of a lower indexed system, since
the dependence of the solution on the constraint is small for small values of ε.

Example 3.1.12 (Second order Prothero-Robinson). An example of a singular sin-
gularly perturbed system in the form of (3.5) is the extension of the first order linear
Prothero-Robinson equation [PR74] to a, still linear, second order form. The initial
value problem for a two times continuous differentiable function φ is

q̈ = φ̈ −λ

ε2λ= q−φ
,

q(t0) = φ(t0) + γ
q̇(t0) = φ(t0) +η

.
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Figure 3.1: Solution of Prothero-Robinson equation for different values of ε
and perturbed initial value, γ = .01 plotted in position q and velocity q̇ for
φ(t) = cos(6t)

The idea of this equation is that we try to enforce the motion of φ onto q via a stiff
spring ε2λ. The analytic solution to this problem is

q(t) = φ(t) + γ cos
�

1

ε
(t − t0)

�

+ηε sin
�

1

ε
(t − t0)

�

. (3.25)

For the equation all higher order terms in the ε-expansion (3.11) of the smooth
solutions, i.e., η= γ= 0 are zero. This is due to the linearity of the constraint.

Nevertheless, we see that solutions starting with η,γ ∈ O(ε2) oscillate with a the
high frequency of 1

2πε
but only an amplitude of O(ε2) around the smooth solution

φ(t). The behavior is illustrated in Figure 3.1. We see how a perturbation in the
initial value provokes oscillations around the smooth solution: by decreasing the
value of ε, the frequency of the oscillations increases. In the velocity component we
see also an increase of the amplitude away from O(ε2) while γ > ε2.

Looking at the Prothero-Robinson example one can understand that the prob-
lem arises while tackling the perturbed systems by numerical methods. Due to
the error of a time integrator, a perturbation away from the smooth motion is in-
troduced and thus oscillations are provoked. This will be a topic in the following
chapter on linear implicit methods.

3.2 In the context of mixed formulations

We want to bring the mixed systems derived in Chapter 2 into the formulation of
perturbed systems. So we are going to show that the hyperelastic mixed formula-
tion is a singular singularly perturbed system.

Looking at the linear case by discretizing the bilinear forms, we obtained a
system of equations of the form

Mq̈+ Aq+ BTλ= f (t)
1

Λ
Mλλ= Bq.

(3.26)

In (2.23) we already saw that the mass matrices M , Mλ are both symmetric and
positive definite. For the incompressible system to be of index 3 we need to show
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that the constraint matrix B ∈ Rnλ×nq is of full rank. A useful criterion for this is the
min-max characterization of B which is in a similar context also used in [Sim06].

Lemma 3.2.1. A matrix B ∈ Rnλ×nq with nq > nλ is of full rank iff

min
λ

max
v

λT Bv

‖λ‖2‖v‖2
= σmin > 0.

Proof. Let U , V be orthogonal matrices such that

U T BV =









σ1
. . .

σnλ

0








∈ Rnλ×nq ,

with ordered singular values σ1 ≥ σ2 ≥ · · · ≥ σnλ ≥ 0. For a full rank of B the
smallest singular value has to be greater than zero, σnλ > 0. This implies for all
λ 6= 0

λT BBTλ

λTλ
≥ σ2

nλ
.

For ei being the i-th unit vector and λ= Uenλ this inequality is sharp, we have

σ2
nλ
=min

λ

λt BBTλ

λTλ
⇔ σnλ =min

λ

‖BTλ‖2

‖λ‖2
.

Since the operator norm is defined as

‖BTλ‖2 =max
v

‖vT BTλ‖2

‖v‖2
=max

v

λT Bv

‖v‖2
,

we derive the min-max characterization

min
λ

max
v

λT Bv

‖λ‖2‖v‖2
= σnλ > 0,

which is again equivalent to the full rank criterion.

Remark 3.2.2. The criterion derived on the constraint matrix B is equivalent to the
inf-sup condition on finite elements [BF91b]

inf
k∈K

sup
v∈V

b(v, k)
‖v‖V‖k‖K

> 0.

In our case B = (Bi j)i=1...nλ, j=1...nq
with (see also (2.24))

Bi j =

∫

B
ψi(x)

T divφ j(x)d x (3.27)

the criterion derived in Lemma 3.2.1 boils down to the used finite elements (φ j ,ψi)
being divergence free.

Definition 3.2.3. For a domain D let Pn(D) be the space of all polynomials up to
degree n in each variable.
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Lemma 3.2.4. Let V be a space of appropriate test functions, then for a partition τ
ofB into quadtrilaterals and n arbitrary the finite dimensional spaces

Vh =
§

vh ∈ V
�

�

� vh|τi
∈ Pn for all τi ∈ τ

ª

,

Kh =
§

kh ∈ H1(B)
�

�

� kh|τi
∈ Pn−1 for all τi ∈ τ

ª

fulfill the inf-sup condition for (3.27).

Proof. [BF91a]

Remark 3.2.5. For n = 2 we obtain the well known Taylor-Hood element [HT73]
which provides a quadratic approximation of position/ velocity and a linear approx-
imation of pressure variables.

Knowing this and again that Mλ is non-singular, we see that system (3.26) is
of index 1 for Λ> 0 and thus is a singular singularly perturbed system in the form
of (3.5).

Hyperelastic case with large deformations

Similarly to Chapter 2 we want to discuss the structure of the system in case of
large deformations and hyperelastic materials. As we already saw in (2.47), the
linearized nonlinear system

〈ρre f ü, v〉+ a(u, v) + b(v, p) = 〈l, v〉

b(u, k)−
1

κ
c(p, k) = 0.

matches the structure of the linear one (2.20).
For justifying a full rank of the discretized form of b(v, p), Lemma 3.2.1 re-

mains valid. Thus, we also have to fulfill the inf-sup condition

inf
p∈K

sup
v∈V

b(v, p)
‖v‖V‖p‖K

> 0.

The only difference to the linear case is inside of b, because now we have for some
fixed linearization point u0 (see also (2.48)) that

b(v, p) =

∫

B

1

2
(∇vT F(u0) + F(u0)

T∇v) : JC−1pdX .

By inserting the Cauchy-Green tensor C = F T F (2.1) and expanding the con-
traction, we have

b(v, p) =

∫

B

1

2
tr
�

(∇vT F(u0) + F(u0)
T∇v)J F(u0)

−1F(u0)
−T
�

pdX

using some properties of the trace operator
�

e.g., tr(AT B) = tr(BT A) and tr(A+ B) = tr(A) + tr(B)
�
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and the regularity of F at u0

b(v, p) =

∫

B

1

2
J
�

tr(∇vT F(u0)F(u0)
−1F(u0)

−T )

+ tr(F(u0)
T∇vF(u0)

−1F(u0)
−T )
�

p dX

=

∫

B

1

2
J
�

tr(∇vT F(u0)
−T ) + tr(F(u0)

−1∇v)
�

p dX

=

∫

B
J tr(F(u0)

−1∇v)pdX

=

∫

B
J div(F(u0)

−1v)p dX .

We end up at a divergence relation. Observe further for v ∈ V = H1
0(B)

3 also
F(u0)−1v ∈ V since ∇(F(u0)−1v) = F(u0)−1∇v. From this we see that the el-
ements chosen in the linear case are still sufficient for fulfillment of the inf-sup
condition and thus the full rank of the discretized bilinear form.

Remark 3.2.6. Our concern here was only the inf-sup condition on b to obtain a
singular singularly perturbed system. Nevertheless, for the problem to have a solution
the usual elipticity condition on a(u, v) still has to be satisfied. For large deformations
this can also lead to difficulties as pointed out in [PB97].

We see that the considered mixed formulations of Chapter 2, linear (2.22) and
hyperelastic case (2.47) (2.48), are indeed singular singularly perturbed systems.
In the next chapter we want to discuss how the numerical solution of the systems
is affected by this property.



Chapter Four

Linear implicit methods

In this chapter we present the numerical methods used by us for efficiently sim-
ulating the presented stiff mechanical systems. Generally, the class of integration
methods can be separated into explicit and implicit ones. Explicit methods can
easily handle systems with many degrees of freedom because the solution of lin-
ear systems is avoided. They do this by restricting the step-size dependent on the
smallest element and the density distribution inside the body. However, additional
constraints can lead to unstable systems.

On the other hand there are implicit methods which rely on the solution of
nonlinear systems up to some accuracy, which is usually done by different lin-
earizations and Newton’s method. The linear implicit methods considered here
are a mixture of both types. In every time-step one linear system has to be solved,
while a Newton iteration is avoided. This is a benefit which helps to save compu-
tation time. Also these methods give us an advantage for constrained systems and
allow for larger time-steps than the explicit methods.

Implicit Runge-Kutta methods

Let us first do a excursion into implicit Runge-Kutta methods. We will recall their
definition and structure and show their behavior for singular singularly perturbed
systems.

Definition 4.0.7. For the autonomous system

ẋ = f (x)

we call the recursion formula

ki = f



xn + h
s
∑

j=1

ai jk j



 , i = 1 . . . s (4.1)

xn+1 = xn + h
s
∑

i=1

biki

for initial value x0 and step-size h a s-stage Runge-Kutta method with method-
dependent coefficients A= (ai j)i j ∈ Rs×s and b = (bi)i ∈ Rs.

Depending on the matrix A, these methods are either explicit (if all ai j = 0
for j ≥ i) or implicit. In the implicit case in every time-step the nonlinear system
(4.1) has to be solved, herein the size of the system to be solved depends on the
count of “future” k j used in the construction of ki , which is related to those ai j 6= 0
for j ≥ i.

29
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Remark 4.0.8. We can extend Runge-Kutta methods to implicit differential equations
of the form

F(x , ẋ) = 0

by solving

0= F(Xn,i , Ẋn,i), (4.2)

Xn,i = xn + h
s
∑

j=1

ai j Ẋn, j

for Ẋn,i , i = 1 . . . s and setting

xn+1 = xn + h
s
∑

j=1

ai j Ẋn,i .

In the same manner the method can be extended to higher order systems.

Definition 4.0.9. An autonomous iteration scheme xn+1 = f (xn) is called stable if
xn, for n→∞ is bounded.

Definition 4.0.10 (A-stability). A numerical integration method is called A-stable
if it is stable when applied to the linear test equation ẋ = λx for all λ < 0.

Definition 4.0.11 (Convergence and Order). An integration method is said to be
of order p if its local error satisfies

x(t0 + h)− x1 = O(hp+1),

where x(t) is the exact solution and x1 the result of one time-step with starting value
x0 = x(t0) and step-size h. Further the method is said to be convergent of order p if
its global error satisfies

x(t0 + nh)− xn = O(hp)

for xn being the n-th successive steps of the iteration method using the initial value
x0 = x(t0).

Definition 4.0.12 (Stage order). A Runge-Kutta method has stage order r ≥ 1 iff
for all l = 1 . . . r the recursive formula

s
∑

j=1

ai jc
l−1
j =

c l
i

k

is fulfilled, where ci =
∑s

j=1 ai j .

Theorem 4.0.13. An A-stable Runge-Kutta method with stage order r ≥ 1 applied to
index 3 systems of the form of the general constrained mechanical system (Example
3.1.4) is convergent of order r, i.e.,

x(tn)− xn = O(hr).

Proof. [Lub93]
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Remark 4.0.14. Collocation methods [HW96] satisfying

0< c1 < · · ·< cs = 1

with order of convergence p > r for ordinary differential equations are also conver-
gent of order p for index 3 systems [Jay93].

Example 4.0.15 (Radau5). A prominent example of implicit Runge-Kutta methods
is implemented in the RADAU5 code developed in [HW96]. It utilizes a 3 stage method
consisting of

b =









16−
p

6
36

16+
p

6
36
1
9









, c =









4−
p

6
10

4+
p

6
10
1









, A=









88−7
p

6
360

296−169
p

6
1800

−2+3
p

6
225

296+169
p

6
1800

88+7
p

6
360

−2−3
p

6
225

16−
p

6
36

16+
p

6
36

1
9









.

The method is convergent of order 5 and has stage order 3. Since it fulfills also that
0 < c1 < c2 < c3 = 1, RADAU5 is convergent of order 5 in the q component, even for
the index 3 case and of order 3 in v = q̇.

Coming back to the perturbed system for the solution of (3.1) via a Runge-
Kutta method, one can show:

Theorem 4.0.16. Given an A-stable Runge-Kutta method with stage order r and
starting values qε0, q̇ε0 inside Mε, for 0 < ε ≤ h ≤ h0 there exists a unique Runge-

Kutta solution qn =
�

qεn q̇εn
�T

of (3.5) whose error satisfies

qεn − qε(tn) = q0
n − q0(tn) +O(ε2hr−2),

q̇εn − q̇ε(tn) = q̇0
n − q̇0(tn) +O(ε2hr−2)

uniformly for all 0 ≤ tn ≤ T. Here q0
n, q0 denote Runge-Kutta and exact solution

of the corresponding index 3 system with starting values satisfying the conditions of
Theorem 3.1.10.

Proof. See [Lub93].

Considering that the system to be solved is of index 1, the estimated conver-
gence order for the Runge-Kutta method reduces at least down to the index 3 case.
Also the advantage of a collocation methods is lost.

Example 4.0.17. In the case of RADAU5 as seen in Example 4.0.15, we obtain by
Theorem 4.0.16 for a singular singularly perturbed system with ε < h,

qεn − qε(tn) = O(h5) +O(ε2h),

q̇εn − q̇ε(tn) = O(h3) +O(ε2h).

For large time-steps h, i.e. h > ε, the order reduces from O(h5) in the q component
to O(h3). On the other hand, for h� ε we see the classical asymptotic behavior

qεn − qε(tn) = O(h5),

q̇εn − q̇ε(tn) = O(h3).

This effect can also be verified numerically as seen in [Sim98].
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Additionally to the order reduction, convergence issues while solving the non-
linear system (4.2) via a Newton iteration are observed. Especially, if one consid-
ers the index 0 formulation of the singular singularly perturbed system (3.9), the
perturbation leads to a step-size restriction dependent on ε, in order to obtain a
convergent Newton iteration [Lub93].

4.1 Rosenbrock methods

For the construction of the so called Rosenbrock methods [Ros63] we first start by
the Runge-Kutta discretization of an autonomous system

ẋ = f (x).

For a given initial value x0 the solution via a Runge-Kutta method is obtained by

x1 = x0 +
s
∑

j=1

b jk j ,

ki = hf



x0 +
i−1
∑

j=1

αi jk j +
s
∑

j=i

αi jk j



 , i = 1 . . . s.

The essential idea now is to use a linearization of J = fx and estimate ki via

ki = hf (vi) + hJ(vi)
s
∑

j=i

αi jk j ,

vi = x0 +
i−1
∑

j=1

αi jk j .

This can be even more simplified by replacing J(vi) ≈ J(x0) and considering only
methods with αi j = 0 for j > i. The full implicit formulation of these methods
are so called diagonally implicit Runge-Kutta methods (DIRK). In the case of all
αii = α j j (for all i, j) they are known as singly diagonally implicit Runge-Kutta
methdods (SDIRK).

Definition 4.1.1. For the constrained system with nonsingular mass matrix M

M ẋ = f (x , z) (4.3)

0= g(x , z) (4.4)

we call the approximation to the solution by

xn+1 = xn +
s
∑

j=1

biki , zn+1 = zn +
s
∑

j=1

bi li , (4.5)

�

M 0
0 0

��

ki
li

�

= h
�

f (vi , wi)
g(vi , wi)

�

+ h
�

fx fz
gx gz

�

|(xn,zn)

i
∑

j=1

γi j

�

k j
l j

�

, (4.6)

vi = xn +
i−1
∑

j=1

αi jk j , wi = zn +
i−1
∑

j=1

αi j l j (4.7)

for i = 1 . . . s, and coefficients αi j ,γi j , bi , a Rosenbrock method.



4.1. ROSENBROCK METHODS 33

Remark 4.1.2. a) As intended, the direct need of solving a nonlinear system is
avoided.

b) In the special case of all γii = γ only one decomposition of the iteration matrix
�

�

M 0
0 0

�

− hγ
�

fx fz
gx gz

�

|(xn,zn)

�

︸ ︷︷ ︸

iteration-matrix

�

ki
li

�

= h
�

f (vi , wi)
g(vi , wi)

�

+ h
�

fx fz
gx gz

�

|(xn,zn)

i−1
∑

j=1

γi j

�

k j
l j

�

is needed. This is useful for obtaining fast implicit simulations.

c) Although in this chapter, for the sake of simplicity, we focus on equations of first
order. For solving mechanical problems like those of Chapter 2, an extensions to
the second order case will be useful. By considering the special structure of second
order systems the cost while solving one step can be additionally reduced, this will
be discussed in chapter 5.

Example 4.1.3 (Linear implicit Euler). The linear implicit Euler method can be
interpreted as a first example of a Rosenbrock method. For the autonomous system it
reads

x1 = x0 + k1,

k1 = hf (x0) + hfx(x0)k1,

i.e., that the coefficients are s = b1 = γ11 = 1. The method is convergent of order 1.

Lemma 4.1.4. The stability function of a Rosenbrock method is

R(hλ) = 1+ hλbT (Id−hλB)−1
1 (4.8)

with B =
�

αi j + γi j

�

i j
and 1 =

�

1 . . . 1
�T

. The stability function evaluated at
hλ=∞ is

ρ∞ = |R(∞)|= |1− bT B−1
1|,

the method is called L-stable if ρ∞ = 0.

Proof. The stability function of the method is directly computed by inserting the
test equation ẋ = λx

x1 = x0 +
s
∑

i=1

biki ,

ki = hλ



x0 +
i−1
∑

j=1

αi jk j



+ hλ
i
∑

j=1

γi jk j

= hλ



x0 +
i
∑

j=1

(αi j + γi j)k j



 .

So by inserting B we have with (4.8) that x1 = R(hλ)x0. The result for ρ∞ follows
by taking the limit hλ→∞.
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Classic convergence

For an ordinary differential equation we derive the conditions on the coefficients
of the method, which are sufficient for its convergence. In the following we will
assume, without loss of generality, that M = Id. The given conditions are also
derived in [HW96, Roc88], we will repeat those results for classic and index 1
convergence.

To obtain a convergent method of order p, i.e.,

x(t0 + h)− x1 = O(hp+1),

we differentiate numerical and exact solutions. For this we write (4.5) in tensor
notation for

k j = (k
J
j )J=1...n, f (vi) = ( f

J (vi))J=1...n, vi = (v
J
i )J=1...n, x i = (x

J
i )J=1...n,

we have

kJ
j = hf J (v j) + h

∑

K

f J
K (x0)

∑

k

γ jkkK
k , (4.9)

vJ
i = x J

0 +
∑

j

αi jk
J
j ,

x J
1 = x J

0 +
∑

j

b jk
J
j . (4.10)

Here we use the notation f J
K =

∂ f J

∂ xK , subsequent labels will stand for additional

differentiation like f J
K L =

∂ 2 f J

∂ xK∂ x L .
The q-th differential of the stage kJ

j (4.9) is

(kJ
j )
(q)|h=0 = q( f J (v j))

(q−1)|h=0 + q
∑

K

f J
K (x0)

∑

k

γik(k
K
k )
(q−1)|h=0. (4.11)

In the following we will omit the subscript h= 0 and always evaluate at this point.
For evaluating ( f J (v j))(q) we use the chain rule

( f J (v j))
(1) =

∑

K

f J
K (v j) · (vK

j )
(1),

( f J (v j))
(2) =

∑

K ,L

f J
K L(v j) · (vK

j )
(1)(vL

j )
(1) +

∑

K

f J
K (v j) · (vK

j )
(2).

Inserted into (4.11) we get

(k j)
(1) = f J ,

(k j)
(2) = 2

∑

K

f J
K f K

∑

k

α jk + 2
∑

K

f J
K f K

∑

k

γ jk

= 2
∑

K

f J
K f K

∑

k

(α jk + γ jk),

(k j)
(3) = 3

∑

f J
K L f K f L

∑

k,l

α jkα jl + 6
∑

K ,L

f J
K f K

L f L
∑

k,l

(α jk + γ jk)(αkl + γkl).
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order condition

1
∑

i bi = 1

2
∑

i,k biβ
′
ik = 1

2
− γ

3
∑

i,k,l biαikαil = 1
3

3
∑

i,k,l biβ
′
ikβ
′
kl = 1

6
− γ+ γ2

4
∑

i,k,l,m biαikαilαim = 1
4

4
∑

i,k,l,m biαikβ
′
klα jm = 1

8
− γ

3

4
∑

i,k,l,m biβ
′
ikαklαkm = 1

12
− γ

3

4
∑

i,k,l,m biβ
′
ikβ
′
klβ
′
lm = 1

24
− γ

2
+ 3

2
γ2 − γ3

Table 4.1: Order conditions up to order 4

By further differentiating and inserting into (4.10) we get the resulting differential

(x J
1)
(q) =

∑

j

b j(k
J
j )
(q)|h=0. (4.12)

While differentiating the true solution yields

(x J )(1) = f J (x),

(x J )(2) =
∑

K

f J
K (x) · (x

K)(1) =
∑

K

f J
K (x) f

K(x),

(x J )(3) =
∑

K ,L

f J
K L(x) f

K(x) f L(x) +
∑

K ,L

f J
K (x) f

K
L (x) f

L(x).

(4.13)

Comparing the coefficient of (4.13) with those of the exact solution (4.12), we
arrive at the following conditions for a method of order 3

∑

b j = 1,
∑

b j(α jk + γ jk) =
1

2
,

∑

b jα jkα jl =
1

3
,

∑

b j(α jk + γ jk)(αkl + γkl) =
1

6
.

For higher order methods the arising terms become bigger and harder to write
down. The procedure of obtaining the coefficients can be nicely formalized by
using labeled trees which than give a comprehensive view on the different condi-
tions that a method has to fulfill. Since we are not heading to higher order, we
will not introduce these. For convenience we wrote down the order conditions up
to order 4 in Table 4.1, setting γ= γii = γ j j and using the abbreviations

βi j = αi j + γi j , β ′i j =

¨

βi j

0 for i = j
.
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Index 1 convergence

In the index 1 case we will use the same idea of comparing coefficients in the
Taylor expansion. This time we start by calculating the derivatives of the exact
solution. First of all, we have to remove the constraint. By differentiation of (4.4)
we obtain the equation

z(1) = (−g−1
z )gx f .

Together with (4.3) we can now calculate further differentials of the exact solution
using the differential of the inverse mapping and the chain rule

x (2) = fx x (1) + fzz
(1) = fx f + fz(−g−1

z )gx f ,

z(2) = (−g−1
z )(gzx((−g−1

z )gx f , f ) + gzz((−g−1
z )gx f , (−g−1

z )gx f ))

+ (−g−1
z )(gx x( f , f ) + gxz( f , (−g−1

z gx f )) + (−g−1
z )gx( fx f + fz(−g−1

z )gx f ).
(4.14)

By a Taylor expansion of the numerical solution (4.5) we now have for the
differential of the stages (everything evaluated at h= 0)

k(q)i = q( f (vi , wi))
(q−1) + ( fx)0q

i
∑

j=1

γi jk
(q−1)
j + ( fz)0q

i
∑

j=1

γi j l
(q−1)
j ,

and the differential of the constraint row after dividing by h is

0= (g(vi , wi))
(q) + (gx)0

i
∑

j=1

γi jk
(q)
j + (gz)0

i
∑

j=1

γi j l
(q)
j . (4.15)

For the differentials ( f (vi , wi))(q−1) and (g(vi , wi))(q) we may use Faà di Bruno’s
formula or directly calculate using the chain rule

(g(vi , wi))
(1) = gx v(1)i + gzw(1)i ,

(g(vi , wi))
(2) = gx x(v

(1)
i , v(1)i ) + gx(v

(2)
i ) + gxz(v

(1)
i , w(1)i )

+ gzx(w
(1)
i , v(1)i ) + gz(w

(2)
i ) + gzz(w

(1)
i , w(1)i ).

(4.16)

Lemma 4.1.5. The q-th derivative of f (v, w) can be represented as

f (v, w)(q) =
∑

(m,n)∈Q

∂ m+n f (v, w)
∂ xm∂ zn

�

v(µ1), · · · , v(µm), w(ν1), · · · , w(νn)
�

for some set Q and coefficients µi ,νi fulfilling additionally
∑

µi +
∑

ν j = q.

Proof. Use Faà di Brunos’s formula or see [HNW08].

Inserting

v(q)i =
i−1
∑

j=1

αi jk
(q)
j , w(q)i =

i−1
∑

j=1

αi j l
(q)
j
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order condition

2
∑

b jω jkαklαkm = 1

3
∑

b jω jkαklαkmαkn = 1
3

∑

b jω jkαklαkmβ
′
mn = 1

2
− γ

3
∑

b jω jkαklαkmωmnαnpαnq = 1

Table 4.2: Order conditions of the z component for index 1 Rosenbrock methods
up to order 3

into (g(vi , wi))(q) using Lemma 4.1.5 and (4.16) we have that (4.15) is

0=
∑

(m,n)∈Q
s.t. m+n≥2

∂ m+n g(x0, z0)
∂ xm∂ zn





i−1
∑

j=1

αi jk
(µ1)
j , · · · ,

i−1
∑

j=1

αi j l
(ν1)
j , · · ·





+ (g y)0
i
∑

j=1

βi jk
(q)
j + (gz)0

i
∑

j=1

βi j l
(q)
j (4.17)

with βi j = αi j + γi j . Now (4.17) can be solved for l(q)j using (ωi j)i j = ((βi j)i j)−1,

l(q)i = (−gz)
−1
0

i
∑

j=1

ωi j

∑

(m,n)∈Q
s.t. m+n≥2

∂ m+n g(x0, z0)
∂ xm∂ zn





i−1
∑

j=1

αi jk
(µ1)
j , · · · ,

i−1
∑

j=1

αi j l
(ν1)
j , · · ·





+ ((−g−1
z )g y)0k(q)i (4.18)

and also for k(q)i

k(q)i = q
∑

(m,n)∈Q
s.t. m+n≥2

∂ m+n f (x0, z0)
∂ xm∂ zn





i−1
∑

j=1

αi jk
(µ1)
j , · · · ,

i−1
∑

j=1

αi j l
(ν1)
j , · · ·





+ q( f y)0
i−1
∑

j=1

βi jk
(q−1)
j + q( fz)0

i
∑

j=1

βi j l
(q−1)
j . (4.19)

By inserting (4.18) and (4.19) for q ≥ 1 into

x (q)1 =
s
∑

j=1

b jk
(q)
j and z(q)1 =

s
∑

j=1

b j l
(q)
j ,

respectively, we finally have an expansion of the numerical solution. Comparing
the coefficients with those of (4.14) we obtain the conditions on the order. For
the z component these are listed up to order four in Table 4.2. Starting with order
four also additional conditions for the x component arise, see Table 4.3.

Theorem 4.1.6 (Convergence). For the index 1 system with consistent initial values
(x0, z0), stability function |R(∞)|< 1 and local errors

x1 − x(t0 + h) = O(hp+1), z1 − z(t0 + h) = O(hp),
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order condition

4
∑

b jα jkα jlωlmαmnαmp = 1

Table 4.3: Additional order condition for the x component in the index 1 case up
to order 4

a Rosenbrock method is convergent of order p, i.e.,

xn − x(tn) = O(hp), zn − z(tn) = O(hp)

for tn − t0 = nh≤ C.

Proof. [HW96]

Singularly perturbed systems

In the search of additional conditions, which could arise for singular singularly
perturbed systems, we consider the Prothero-Robinson type equation (Example
3.1.12) as a test problem. Similar approaches have also be used for first order
[Sch89] and index 0 formulations [Sim98]. The crucial question is if we observe
an order-reduction, and if we can avoid it by a clever choice of coefficients.

Remark 4.1.7. The Prothero-Robinson equation is also considered for the construc-
tion of B-convergent Runge-Kutta methods [PR74].

We are going to apply a general Rosenbrock method to the linear test-equation.
After this, we will look at the local error to find sources for a possible order reduc-
tion. Since the Prothero-Robinson equation

�

q̇
q̈

�

=
�

0 1
0 0

��

q
q̇

�

−
�

0
1

�

λ+
�

0
φ̈(t)

�

ε2λ= q−φ(t)
(4.20)

is not autonomous, we have to use an adequate form of the Rosenbrock method.
However, the autonomization of the non-autonomous equation will be introduced
in Section 5.1. So we apply (5.6) to system (4.20) using

J =







0 1 0
0 0 −1
1 0 −ε2






, Jt =







0
φ(3)(t0)
−φ̇(t0)






, M̄ =







1 0 0
0 1 0
0 0 0






(4.21)

(4.20) reads






q̇
q̈
0






= f (q, q̇, z, t) = J







q
q̇
z






+







0
φ̈(t)
−φ(t)







and the non-autonomous Rosenbrock method is



4.1. ROSENBROCK METHODS 39







q1,q
q1,v
z1






=







q0,q
q0,v
z0






+

s
∑

j=1

b j







k j,q
k j,v
l j






, (4.22)

M̄







ki,q
ki,v
li






= hf






q0 +

i−1
∑

j=1

αi j







k j,q
k j,v
l j






, t0 +αih






+ h2γiJt + hJ

i
∑

j=1

γi j







k j,q
k j,v
l j







= hJ






q0 +

i−1
∑

j=1

αi j







k j,q
k j,v
l j












+ hφi + h2γiJt + hJ

i
∑

j=1

γi j







k j,q
k j,v
l j







= hJ






q0 +

i
∑

j=1

βi j







k j,q
k j,v
l j












+ hφi + h2γiJt , (4.23)

where

φi =







0
φ̈(t0 +αih)
−φ(t0 +αih)






.

The last row of (4.23) reads

hε2
i
∑

j=1

βi j l j = hq̃0,3 + h
i
∑

j=1

βi jk j,q − hφ(t0 +αih)− h2γiφ̇(t0). (4.24)

By inserting (4.24) into the second row of (4.23) we can eliminate the constraint
from the system as long as ε > 0

ki,v = hq̃0,2.1 − h
i
∑

j=1

βi j l j + hφ̈(t0 +αih) + h2γiφ
(3)(t0)

= hq̃0,2.2 −
h

ε2

i
∑

j=1

βi jk j,q +
h

ε2φ(t0 +αih) +
h2

ε2 γiφ̇(t0)

+ hφ̈(t0 +αih) + h2γiφ
(3)(t0).

Collecting all terms, we write (4.23) for ε > 0 as

�

ki,q
ki,v

�

= h
�

0 1
−ε−2 0

�



q0 +
i
∑

j=1

βi j

�

k j,q
k j,v

�

−
�

φ(t0 +αih)
φ̇(t0 +αih)

�





+ h

�

φ̇(t0 +αih)
φ̈(t0 +αih)

�

+ h2γi

�

−
�

0 1
−ε−2 0

�

�

φ̇(t0)
φ̈(t0)

�

+

�

φ̈(t0)
φ(3)(t0)

��

. (4.25)

Solving equation (4.25) is equivalent to solving (4.23).



40 CHAPTER 4. LINEAR IMPLICIT METHODS

Lemma 4.1.8. The stability function corresponding to the Rosenbrock method ap-
plied to the Prothero-Robinson equation after eliminating the constraint (4.25) is

R(hJ) = Id2+(b
T ⊗ Id2)(Id2s−B⊗ hJ)−1(1⊗ hJ).

By reordering the terms, such that the blocks of R(hJ) correspond to the components
of x =

�

q q̇
�T

, we have that

R(hJ) =
�

1− h2ε−2 bT SB hbT S
−hε−2 bT S 1− h2ε−2 bT SB

�

for S = (Id+h2ε−2B2)−1 and

J =
�

0 1
−ε−2 0

�

. (4.26)

Proof. By the Rosenbrock method we have that

x1 = x0 + (b
T ⊗ Id2)Ks = x0 + (Id2⊗bT )Kg (4.27)

for different orderings of the components

Ks =
�

k1,q k1,v · · · ks,q ks,v

�T
,

Kg =
�

k1,q · · · ks,q k1,v · · · ks,v

�T
.

Using (4.26) we see from (4.25) that

Ks = (Ids⊗hJ)(1⊗ x0 + (B⊗ Id2)Ks) + rs

⇔ (Id2s−B⊗ hJ)Ks = (Ids⊗hJ)(1⊗ x0) + rs,

where r is the term not containing x0 or Ks, while for the version ordered by
components

Kg = (hJ ⊗ Ids)
�

x0 ⊗ 1+ (Id2⊗B)Kg

�

+ rg

⇔ (Id2s−hJ ⊗ B)Kg = (hJ ⊗ Ids)(x0 ⊗ 1) + rg .

Inserting Ks into (4.27) gives

R(hJ) = Id2+(b
T ⊗ Id2)(Id2s−B⊗ hJ)−1(hJ ⊗ 1).

By inserting Kg we evaluate the ordered version. There we have

(Id2⊗bT )(Id2s−hJ ⊗ B)−1 =
�

bT S hbT SB
−hε−2 bT SB bT S

�

and finally

R(hJ) =
�

1− h2ε−2 bT SB hbT S
−hε−2 bT S 1− h2ε−2 bT SB

�

.
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Using Lemma 4.1.8 we obtain the local error

δ1 = φ(t0)−φ(t0 + h) + (bT ⊗ Id2)(Id2s−B⊗ hJ)−1
�

1⊗ hJ x0 +
�

rq
rv

��

,

where

rq = 0,

rv = hε−2(φ(t0 +αih) + hγiφ̇(t0)) + hφ̈(t0 +αih) + h2γiφ
(3)(t0).

Looking closer into δ1 there are two components

δ1,q = φ(t0)−φ(t0 + h) + bT S(−h2ε−2B1φ(t0) + 1hφ̇(t0) + hBrv), (4.28)

δ1,v = φ̇(t0)− φ̇(t0 + h) + bT S(−1hε−2φ(t0)− h2ε−2B1φ̇(t0) + rv). (4.29)

Inserting rq, rv we can expand the local error for a consistent method (i.e., with
∑s

i=1 bi = 1) into

δ1,q =
∑

i≥2

hi

i!
ξiφ

(i)(t0), δ1,v =
∑

i≥2

hi−1

(i− 1)!
ζiφ

(i)(t0). (4.30)

The first terms of ξi ,ζi are

ξ2 =−1+ bT SB(h2ε−2(α2
i ) + 21),

ζ2 =−1+ bT S(h2ε−2(α2
i )/2+ 1),

ξ3 =−1+ bT SB(h2ε−2(α3
i ) + 6(αi + γi)),

ζ3 =−1+ bT S(h2ε−2(α3
i )/3+ 2(αi + γi)),

ξ4 =−1+ bT SB(h2ε−2(α4
i ) + 12(α2

i )),

ζ4 =−1+ bT S(h2ε−2(α4
i )/4+ 3(α2

i )).

(4.31)

Examining ξ2 further for how it behaves in the limit ε→ 0

lim
ε→0
ξ2 =−1+ lim

ε→0
bT (1− h2ε−2B2)−1B(h2ε−2(α2

i ) + 21)

=−1+ bT B−1(α2
i )i=1...s (4.32)

we see that the order of the method can exceed 1 iff (4.32) vanishes. This means
the order drops in the stiff case and thereby motivates us to introduce stiffly accu-
rate methods.

Definition 4.1.9 ([HLR89b]). A s-stage Rosenbrock method is called stiffly accurate
iff

αsi + γsi = bi ,
s−1
∑

i=1

αsi = 1.

Remark 4.1.10. Advantages of stiffly accurate methods are also observed for Runge-
Kutta methods B-convergence [PR74].

Lemma 4.1.11. Stiffly accurate Rosenbrock methods are L-stable



42 CHAPTER 4. LINEAR IMPLICIT METHODS

Proof. Inserting Definition 4.1.9 into the stability function Lemma 4.1.4 for a
stiffly accurate method, the last row of B equals bT and

bT B−1 =
�

0 · · · 0 1
�

thus the formula for ρ∞ gives

ρ∞ = 1− bT B−1
1= 0.

Lemma 4.1.12. For stiffly accurate Rosenbrock methods it holds that

bT B−1(αi)
k = 1 for all k ∈ N.

Proof. The result follows, since for stiffly accurate methods it holds that

αs =
s
∑

i=1

αs,i = 1 and bT B−1 =
�

0 · · · 0 1
�

.

So, for stiffly accurate methods limε→0 ξ2 = 0 but on the other side for δ1,v
(4.29) the limit

lim
ε→0
ζ2 =−1+

1

2
bT B−2(α2

i )i=1..s

does not vanish. So we obtain a local error of

δ1,q = O(ε2) +O(ε2h), δ1,v = O(h) +O(ε2). (4.33)

But is this enough for avoiding an order reduction? To get further insight we
recover the previously eliminated z component of the solution by back-substitution
of the obtained solution of (4.25) into (4.24), and evaluating z1 = z0 +

∑s
j=1 b j l j

in (4.22). From (4.24) we have

hε2Bl = hφ(t0) + hBkq − hφ(t0 +αih)− h2γiφ̇(t0). (4.34)

Using again the stability function, we obtain kq like in δ1,q

kq = S(−h2ε−2Bφ(t0) + 1hφ̇(t0) + hBrv). (4.35)

By inserting (4.35) into (4.34)

hε2Bl = hφ(t0) + hBS(−h2ε−2Bφ(t0) + 1hφ̇(t0) + hBrv)

− hφ(t0 +αih)− h2γiφ̇(t0),

we have the stage vector l to be

l = ε−2B−1φ(t0) + ε
−2S(−h2ε−2Bφ(t0) + 1hφ̇(t0) + hBrv)

− ε−2B−1φ(t0 +αih)− hγiB
−1φ̇(t0). (4.36)
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Theorem 4.1.13. Let ξi be the expansion coefficients (4.30) for the singular singu-
larly perturbed system (4.20) and the error in z be denoted by

δ1,z =
∑

i≥2

hi

i!
τiφ

(i)(t0),

further let bT B−1(αn
i ) = 1, then it holds that

τi =
1

ε2ξi .

Proof. By using (4.36) we construct the solution z1 = z0 + bT l. Since the exact
solution is λ≡ 0, we have z1 = bT l and thus δ1,z = z1.

We want to show that δ1,z = ε−2δ1,x and thus both expressions share the same
expansion in ξ, respectively τ. For this we look at the term bT B−1φ(t0 + αih),
expanding it into a Taylor series and using bT B−1(αn

i ) = 1 gives

bT B−1φ(t0 +αih) = bT B−1
∞
∑

i=1

αi
ih

i

i!
φ(i)(t0)

=
∞
∑

i=1

hi

i!
φ(i)(t0)

= φ(t0 + h)

such that

δ1,z =
1

ε2 (b
T B−1

1φ(t0)−φ(t0 + h)+

bT S(−h2ε−2Bφ(t0) + 1hφ̇(t0) + hBrv)− hbTγiB
−1φ̇(t0)).

The result follows by comparing the terms which account to ξi from (4.28).

Using Theorem 4.1.13 and observing τ2, the local error in δ1,z drops to O(1).

Example 4.1.14. One effect observed using methods, which have δ1,z = O(1), is
seen in this example for the linear implicit Euler method (seen in Example 4.1.3). By
applying it to system (4.20) together with (4.21) we have to solve in each step

(M̄ − hJ)k = hf (x0, t0) + h2Jt0
,

x1 = x0 + k.

By choosing φ(t) = cos(at) we have φ̇(t) = −a sin(at), φ̈(t) = −a2cos(at) and
for a consistent initial value x0 =

�

1 0 0
�T

evaluating f and Jt given as

f (x0, t0) =







0
−a2

0






, Jt0

=







0
0
0






.
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The solution after one step is

k =











−a2h
�

h− h3

ε2+h2

�

−a2h
�

1− h2

ε2+h2

�

−a2h2 1
ε2+h2











.

From the exact solution (3.25) we know that λ is zero, i.e., in the numerical
solution the z component has to be small, while for ε = 0 the component is only
small if a2� 1. In the case of ε > 0 the behavior can also be compensated by h. But
notice that h must at least satisfy h2 > ε2.

Doing a few steps of the implicit Euler method for a = 6 and ε2 = 10−6, we see in
Figure 4.1 that for h2 < ε2 the solution makes a jump in the first iteration, and after
this converges to a wrong solution. Only for h2 > ε2 we stay close to the analytic
solution.

The same behavior can be observed for the stiffly accurate method, e.g., RO2,
which will be presented in Example 4.2.3, see Figure 4.2, as here as well δ1,z = O(1).

This brings us to a different approach for the construction of methods which
are fulfilling ξi ≡ 0 for arbitrary h and ε, these were first suggested and con-
structed in [Sch89].

Definition 4.1.15. For i ≥ 2 the further condition on the method’s coefficients such
that ξi ,ζi (4.30) are zero independent of h and ε are called Scholz conditions. We
say that the Scholz condition is fulfilled up to order k if it is fulfilled for all 2≤ i ≤ k.

Remark 4.1.16. The Scholz conditions are independent from stiffly accuracy (as in
Definition 4.1.9).

The consequence to the local error of a Rosenbrock method for the Prothero-
Robinson example are evident, since by construction of a method which fulfills the
Scholz condition up to order k all terms ξi , ζi for i ≤ k vanish. So, for k = 2 we
have using (4.31)

δ1,q = O(ε2h) +O(ε2h2), δ1,v = O(h2) +O(ε2),

which is already advantageous in comparison to (4.33).
In the next section we want to numerically compare different methods which

do either fulfill the Scholz conditions or are stiffly accurate.

4.2 Overview of methods

For the singular singularly perturbed systems we have now the choice between
several methods. We consider only methods which fulfill the additional conditions
on index 1 systems and which are at least A-stable. Further, as argued in the
previous subsection, the methods should either be stiffly accurate (and thus L-
stable) or fulfill some of the Scholz conditions.

For efficiency we consider only methods with γ = γi = · · · = γs such that only
one matrix decomposition is needed, even if we don’t head for a very high order
with many stages.

Remark 4.2.1. The number of function calls has not to be equal to the number of
stages, because of equal coefficients αi j = αk j for some i, k, and all j in (4.7).
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Figure 4.1: Numerical Solution of the z-component with linear implicit Euler
method

Figure 4.2: Solution by RO2

The costs per step will be more dominated by the number of function evalua-
tions then by the number of stages. Thus we have to minimize the use of function
evaluations, which for Rosenbrock methods are only needed for a fixed number of
times in one time-step since no iteration is done.

Remark 4.2.2. The calculated Jacobi matrices can be used only for one step of the
method. This can be circumvented by using so called W-methods [SW79]. They
guaranty stability of the method independent of the used Jacobi matrix.

For a stiffly accurate method, we give a small example how a Rosenbrock meth-
ods generally and a stiffly accurate methods in particular can be constructed.

Example 4.2.3 (RO2). To obtain a second order stiffly accurate method with 2 stages
we have to fulfill the order conditions of Table 4.1

b1 + b2 = 1,

b2(α21 + γ21) =
1

2
− γ.
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For a stiffly accurate method we also require b2 = γ, α21 + γ21 = b1 and α21 = 1.
Inserting we obtain for γ

γ2 − 2γ+
1

2
= 0

and thus have the choices γ1 = 1 +
p

2
2

or γ2 = 1 −
p

2
2

. All other coefficients are
already fixed with respect to γ

αi j =
�

0 0
1 0

�

, γi j =
�

γ 0
−γ γ

�

, b =
�

1− γ γ
�

,

ωi j =
�

γ−1 0
(γ− 1)γ−2 γ−1

�

.

Nevertheless the method already fulfills the first condition in Table 4.2. Since only
α21 6= 0 and the matrix γi j is triangular, we have ω22 = γ−1 and thus b2ω22 = 1.
However notice that this condition is not needed for the convergence. As we saw in
Theorem 4.1.6, we obtain a method convergent of order 2.

For an error estimate we can construct an embedded method by choosing different
coefficients in place of bi such that the method converges up to one order less. So, for
an embedded method of order 1 only one condition is given

b̂1 + b̂2 = 1.

We choose it to minimize |R(∞)|,

R(∞) = 1− b̂1γ
−1 − b̂2(2γ

−1 − γ−2)

and thus solve the system for R(∞) = 0 by b̂ =
�

1− γ

1−γ
γ

1−γ

�

by inserting γ = γ1

we obtain b̂ =
�

2+
p

2 −1−
p

2
�

. In the further we refer to the Rosenbrock
method using this set of coefficients as RO2.

How a general embedded method can be used for step-size selection is shown in
the next chapter.

For a list of different stiffly accurate methods with increasing order see Table
4.4.

embedded method

Name order stages f-calls order ρ∞ s.a.

RO2 2 2 2 1 0 - Example 4.2.3
ROWDA3 3 3 2 2 .96 - [Roc88]
ROS3PL 3 4 3 2 .25 - [LT08]

ROWDAIND2 3 4 3 2 0 - [Roc88]
RODAS3 3 4 3 2 0 Ø [SVB+97]
RODAS4 4 6 6 3 0 Ø [HW96]

RODAS4P 4 6 6 3 0 Ø [Ste95]

Table 4.4: Overview of stiffly accurate methods for index 1 systems
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Methods which are constructed such that they do not only satisfy the order
conditions but also several Scholz conditions are found in Table 4.5. Special at-
tention is to be drawn to the order 4 method RODAS4P, which is a variant of
RODAS4 [Ste95], since it fulfills the Scholz conditions up to order 3. Also we
want to pick out the ROS3P method constructed in [LV01], which is designated
for a minimal number of function evaluations and stages. The main compromise
which has to be made while choosing ROS3P is its lack of L-stability. To achieve
L-stability one additional step and one additional function evaluation is necessary,
see for ROS3PL.

Name order stages f-calls s.a. ξi ≡ 0 ζi ≡ 0 ρ∞

RO2P 2 2 2 - i < 3 i < 3 1.0 (!) [Sch89]
ROS3P 3 3 2 - i < 3 i < 3 .73 [LV01]

ROS3PL 3 4 3 Ø i < 3 i < 3 0 [LT08]
RODAS4P 4 6 6 Ø i < 4 i < 4 0 [Ste95]

Table 4.5: Overview of methods designed to fulfill additional Scholz conditions

Stability functions for methods of different number of stages are plotted in
Figure 4.3. The more stages a method has the broader is the plateau of exactly
transferred frequencies. For being interested in the smooth motion more damping
at high frequencies seems to be advantageous as examined in [Stu04].

Remark 4.2.4. Rosenbrock methods can also be directly constructed for higher-index
systems. This was done up to the index 3 case, namely by ROWDAIND2 for index 2
systems, constructed in [HLR89a] (listed also in Table 4.4) and by a partitioned 8-
stage fourth order method for index 3 systems, developed in [Wen98, Wen97].

Numerical examples

For the given methods we would like to come back to the Prothero-Robinson Ex-
ample (4.20) and have a look at the achieved convergence order of the different
methods. For this purpose we apply the methods to Example 4.1.14 for a = 6 and

Figure 4.3: Stability function lemma 4.1.4 of some Rosenbrock methods evaluated
at the imaginary axis
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Figure 4.4: Convergence plot of index 1 Prothero-Robinson equation in position
and velocity components comparison of RODAS4, RODAS4P and ROS3PL for dif-
ferent ε

Figure 4.5: Convergence plot of index 1 Prothero-Robinson equation in posi-
tion and velocity components comparison of ROS3P and stiffly accurate methods
ROS3PL, RO2 for varying ε

tend = 2.2. The plots are given in Figure 4.4 and Figure 4.5. For all methods we
observe its classical order in the case of ε2 = 0.01. Decreasing ε2 to 10−6, for
RODAS4 we see a loss in its order of positions as well as velocities, the method be-
haves in the same way as the much cheaper to compute ROS3P. By fulfilling that
ξ2 ≡ ξ3 ≡ ζ2 ≡ ζ3 ≡ 0 RODAS4P shows no order reduction in position and ve-
locity. For RO2 we see the order dropping to O(1). A comparison between ROS3P
and ROS3PL doesn’t show an advantage of the L-stable method in our example.

Remembering our intention, we are looking for methods with a high efficiency.
Thus, we want a minimum number of stages and possibly even less function calls
in addition to good properties when considering a singular singularly perturbed
system. A high order isn’t necessary for this application, so the most economic
methods by observing the linear example is ROS3P. The method has got only
one additional stage and no additional function call compared to RO2 but brings
the advantage in fulfilling some of the Scholz conditions. However, we have to
compromise and accept that we loose L-stability.

Remark 4.2.5. The plots for the z component of Figure 4.4 and Figure 4.5 are not
shown because of their exact same behavior compared to those of the x component,
except that they are scaled by their corresponding factor of ε−2.
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4.3 Applied to perturbed nonlinear systems

As a last step, we want to observe the behavior of Rosenbrock methods for singu-
larly perturbed nonlinear systems. We would like to have a look at the iteration
matrix and how it behaves in the limiting case ε→ 0

For the singular singularly perturbed system

q̇ = v

v̇ = f (q, v,λ)

0= g(q) + ε2λ

, fv = 0,

we are investigating the iteration Matrix St = (M̄ − Ĵ) for Jacobi matrix J and
mass matrix M̄ of the Rosenbrock method with ĥ= hγ

St =









Id −ĥ Id 0

−ĥ fq Id −ĥ fλ
−ĥgq 0 −ε2ĥ









.

Using the Schur complement K = A− ε−2B1B2 for the matrix St structured like

St =
�

A B1
B2 Idε−2

�

,

we find its inverse

S−1
t =











ĥ3
�

ĥ2 fq + 1
�

fλK−1 gq + ĥ2 fq + 1 ĥ4 fλK−1 gq + ĥ ĥ2 fλK−1

ĥ2
�

ĥ2 fq + 1
�

fλK−1 gq + ĥ fq ĥ3 fλK−1 gq + 1 ĥ fλK−1

ĥ
�

ĥ2 fq + 1
�

K−1 gq ĥ2K−1 gq K−1











.

Observing K and S−1
t , we see that as long K is of full rank the iteration matrix

stays regular even for ε→ 0, as long as A is of full-rank.

Example of a stiff spring pendulum

The results for the linear Prothero-Robinson equation suggest an advantage for the
specifically constructed methods. To see how the methods compare in a nonlinear
setup we want to discuss the stiff spring pendulum also in the singular singularly
perturbed index 1 formulation as seen in Example 3.1.8. The stiff spring in the
pendulum can already be seen as a one dimensional incompressibility constraint,
since it penalizes a change in the length of the pendulum.

First we take a look at the Jacobi matrix for the vector x =
�

q1, q2, q̇1, q̇2

�T

Jx ,λ =















0 0 1 0 0
0 0 0 1 0
−λ 0 0 0 −q1
0 −λ 0 0 −q2
−Aq1 −Aq2 0 0 ε2















, M̄ =
�

Id4 0
0 0

�

, (4.37)
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−Aĥ3q2
1(−ĥ2λ+1)

K
− ĥ2λ+ 1 −Aĥ3q1q2(−ĥ2λ+1)

K
−Aĥ4q2

1

K
+ ĥ −Aĥ4q1q2

K
− h2q1

K

−Aĥ3q1q2(−ĥ2λ+1)
K

−Aĥ3q2
2(−ĥ2λ+1)

K
− ĥ2λ+ 1 −Aĥ4q1q2

K
−Aĥ4q2

2

K
+ ĥ − h2q2

K

−Aĥ2q2
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K
− ĥλ −Aĥ2q1q2(−ĥ2λ+1)

K
−Aĥ3q2

1

K
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K
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−Aĥ3q2

2

K
+ 1 − hq2

K
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Figure 4.6: Inverse iteration matrix of stiff spring pendulum (4.38)

with

A=
1

q2
1 + q2

2

−

p

q2
1 + q2

2 − 1
�

q2
1 + q2

2

�
3
2

.

We can already give the iteration matrix, since only h and γ dependent on the
actual choice of coefficients. So, for ĥ= γh we have

(M̄ − ĥJ) =















1 0 −ĥ 0 0
0 1 0 −ĥ 0

ĥλ 0 1 0 ĥq1

0 ĥλ 0 1 ĥq2

Aĥq1 Aĥq2 0 0 −ε2ĥ















. (4.38)

The Schur complement of matrix (4.38) is

K =−
Aĥ3(q2

1 + q2
2)

ĥ2λ+ 1
− ε2h (4.39)

and can be used to compute the inverse of (4.38), which is shown in Figure 4.6.
As noted before, we observe no problems in the iteration matrix for ε→ 0, since
of

lim
ε→0

K =−
Aĥ3(q2

1 + q2
2)

ĥ2λ+ 1

the inverse K−1 is not influenced by a small value of ε. We have that K−1 = O(h−3).

Order behavior

For a numerical analysis of the global error we computed a reference solution
using RADAU5 and appropriate tolerances 10−12. We evaluate the solution at
tend = 4 which corresponds to two periods of the pendulum while setting g =
13.7503716. Afterwards we applied the different Rosenbrock methods to the
problem and evaluated the difference in the q1 and the q̇1 components.

In Figure 4.7 we compare RODAS4 and its variant RODAS4P for a range of
different ε2. We observe the classical order for both methods. Doing the same
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Figure 4.7: Global error behavior for the stiff spring pendulum dependent on ε
and h for RODAS4 and RODAS4P in position and velocity component

Figure 4.8: Global error behavior for the stiff spring pendulum dependent on ε
and h for RO2 and ROS3P in position and velocity component

experiment for a comparison of the RO2 method and ROS3P (Figure 4.8) again we
can see some influence of ε but can’t really identify an order reduction. Also the
direct comparison of ε2 = 10−6 in Figure 4.9 shows the classical error behavior
for the considered methods.

Only in the limiting case ε= 0 (Figure 4.10) we observe a drop of order down
to 2 of all methods but RODAS4P which is the only considered method fulfilling
the additional conditions of Scholz for ξ3, ζ3, and more astonishing for ROWSPP4
(see Table 4.4) which fails to fulfill any of the Scholz conditions.
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Figure 4.9: Comparison of global error behavior ε2 = 10−6 for different Rosen-
brock methods

Figure 4.10: Order reduction in the stiff limit, ε= 0



Chapter Five

Performance

5.1 Implementation

We have seen the construction and convergence properties of Rosenbrock methods
in Chapter 4. Our interest now is to show how they can be efficiently implemented
in the case of non-autonomous second order systems.

We start by the first order formulation for stiff systems
�

x1
z1

�

=
�

x0
z0

� s
∑

i=1

bi

�

ki
li

�

, (5.1)

�

M 0
0 0

�

︸ ︷︷ ︸

M̄

�

ki
0

�

= h
�

f (vi , wi)
g(vi , wi)

�

+ h
�

fx fz
gx gz

� i
∑

j=1

γi j

�

k j
l j

�

, (5.2)

�

vi
wi

�

=
�

x0
z0

�

+
i−1
∑

j=1

αi j

�

k j
l j

�

. (5.3)

An extension to non-autonomous equations is done by adding an artificial vari-
able t with time derivative and mass 1 to the equation. Considering the uncon-
strained system, adding the time leads to the augmented system

�

1 0
0 M

��

1
ẋ

�

=
�

1
f (t, x)

�

, (5.4)

which can be solved explicitly for t in (5.2) since the Jacobian of (5.4) is

J =
�

0 0
ft fx

�

.

The relation for the stage ki , split into
�

ki,t ki,x

�T
, in (5.2) is

�

1 0
0 M

��

ki,t
ki,x

�

= h

�

1
f (t0 +

∑i−1
j=1αi jki,t , vi

�

+ hJ
i
∑

j=1

γi j

�

ki,t
ki,x

�

,

it solves to ki,t = 1 for all i. We insert the solution for ki,t into ki,x so that we
arrive at a method for non-autonomous systems. Writing again ki for ki,x we have

Mki = hf (t +αih, vi) + hfx |(t0,x0)

i
∑

j=1

γi jk j + γih
2 ft |(t0,x0), (5.5)

αi =
i−1
∑

j=1

αi j , γi =
i
∑

j=1

γi j .

53
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Equally in the index 1 case, we have

M̄
�

ki
0

�

= h
�

f (t i , vi , wi)
g(t i , vi , wi)

�

+ h
�

fx fz
gx gz

� i
∑

j=1

γi j

�

k j
l j

�

+ h2γi

�

ft
gt

�

, (5.6)

t i = t0 +αih (5.7)

in addition to (5.1) and (5.3).

Remark 5.1.1. Observe that we explicitly need to evaluate the time-derivative of
the non-autonomous function in (5.5) and also of the constraint in (5.6). This is
in addition to the spatial derivatives which are needed by most methods, thus some
extra effort is necessary to obtain it.

Structural savings by implementation

The computational efficiency of a method can be tuned by some model parame-
ters, e.g., the number of stages or the choice of the αi j coefficients (see Remark
4.2.1). But besides these optimization’s we also have a look at what can be ef-
ficiently implemented for a general choice of Rosenbrock methods. What is the
complexity of the separated solution steps?

In every step of the method we have to calculate the solution of

�

M − hγii fx
�

ki = hf (vi) + hfx

i−1
∑

j=1

γi jk j . (5.8)

Thus the most expensive parts beside the general evaluation of f and fx (which is
out of our scope) are:

(a) Solution of the linear system (M − hγii fx).

(b) Matrix multiplication between fx and
∑

γi jk j .

For (a) we have to calculate one LU decomposition per time-step.

Remark 5.1.2. The advantage of only one LU decomposition per step for full system
matrices can be preserved in the spare matrix case by the use of sparse LU factoriza-
tion as implemented in packages such as MUMPS [ADKL01, AGLP06] or UMFPACK
[Dav06, Dav04]. By using UMFPACK in MATLAB we already saw savings in the sec-
ond evaluation of the decomposition for iteration matrices obtained from problems
like those described in Chapter 2 compared to a direct solution method. For the nu-
merical results in this thesis we utilized this sparse LU decomposition by MATLAB and
UMFPACK.

For (b) the matrix multiplication can be avoided [KPB85] by the use of

ui =
i−1
∑

j=1

γi jk j + γiiki

instead of ki . We may recover ki by using the matrix Γ = (γi j)i j

ki =
1

γii
ui −

i−1
∑

j=1

ci ju j
︸︷︷︸

=γi j k j

, C =









γ−1
11

. . .
γ−1

ss









−Γ−1
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inserting ki into (5.8) and dividing by h we rewrite the method as

�

1

hγii
M − fx

�

ui = f



x0 +
i−1
∑

j=1

ai ju j



+M
i−1
∑

j=1

ci j

h
u j , (5.9)

x1 = x0 +
s
∑

j=1

m ju j , (5.10)

ai j = αi jΓ,
�

m1 . . . ms

�

=
�

b1 . . . bs

�

Γ−1.

Equivalently for the non-autonomous system the simplification using ui can be
added after explicitly solving for t, i.e., in place of (5.5) we have

�

1

hγii
M − fx

�

ui = f



t i , x0 +
i−1
∑

j=1

ai ju j



+
1

h
M

i−1
∑

j=1

ci ju j + γihft(t0, x0), (5.11)

together with (5.7).
In the constrained case we do the same, but have to extend the vector ui such

that it contains also the li variables,

ui =
i−1
∑

j=1

γi j

�

k j
l j

�

+ γii

�

ki
li

�

so that in the constrained non-autonomous setting we end up with

�

1

hγii
M̄ − fx

�

ui = f



t i , x0 +
i−1
∑

j=1

ai ju j



+
1

h
M̄

i−1
∑

j=1

ci ju j + γihft(t0, x0). (5.12)

Optimization for systems of second order

Considering the second order system, we bring it to first order form. The special
structure of the first order form allows to reduce the size of the iteration matrix.
Let us consider the first-order system

q̇ = v

M v̇ = f (q, v).
(5.13)

Be aware that we slightly changed the notation of the mass matrix M . As we have
unit mass for the velocity components q̇, M now acts only on the v̇ part. Inserting
(5.13) into the Rosenbrock method (5.10) with (5.11) yields





1
hγii

Id − Id

− fq
1

hγii
M − fv





�

ui,q
ui,v

�

=
�

ai,v
f (ai,q, ai,v)

�

+
1

h

�

Id 0
0 M

� i−1
∑

j=1

ci j

�

u j,q
u j,v

�

,

(5.14)

ai,∗ = ∗0 +
i−1
∑

j=1

ai ju j,∗.
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Writing down the first row in (5.14) explicitly

1

hγii
ui,q − ui,v = ai,v +

1

h

i−1
∑

j=1

ci ju j,q, (5.15)

solving for ui,v , and inserting into the second row gives

�

− fq −
1

hγii
fv +

1

h2γ2
ii

M

�

ui,q = f (ai,q, ai,v) +
1

h
M

i−1
∑

j=1

ci ju j,v

+
h

1
hγii

M − fv

i



ai,v +
1

h

i−1
∑

j=1

ci ju j,q



 . (5.16)

ui,v is again determined by back substitution of ui,q into (5.15). In this way the
size of the iteration matrix is reduced by a factor of 2.

In the constrained case we consider

q̇ = v

M v̇ = f (q, v, z)
0= g(q, v, z),

(5.17)

using the optimized Rosenbrock method for constrained systems (5.12), we have
to solve in every step







γ′ Id − Id 0
− fq γ′M − fv − fz
−gq −gv −gz













ui,q
ui,v
ui,z







=







ai,v
f (ai,q, ai,v , ai,z)
g(ai,q, ai,v , ai,z)






+

1

h







Id 0 0
0 M 0
0 0 0







i−1
∑

j=1

ci j







u j,q
u j,v
u j,z






, (5.18)

where we used the abbreviation γ′ = 1
hγ

. Inserting (5.15) into the second row of
(5.18) gives

−gqui,q − γ′gvui,q − gzui,z = g(ai,q, ai,v , ai,z) + gv



ai,v +
1

h

i−1
∑

j=1

ci jui,q





and the second order representation

�

γ′
2M − γ′ fv − fq − fz
−gq − γ′gv −gz

�

�

ui,q
ui,z

�

=
�

f (ai,q, ai,v , ai,z)
g(ai,q, ai,v , ai,z)

�

+

�

1
h
M 0
0 0

� i−1
∑

j=1

ci j

�

u j,v
u j,z

�

+
�

γM − fv 0
0 −gv

�





�

ai,v
ai,v

�

+
1

h

i−1
∑

j=1

ci j

�

ui,q
ui,q

�



 . (5.19)
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Observe that the second row in the last term of (5.19) cancels in the case of gv = 0.
We finally get

�

γ′
2M − γ′ fv − fq − fz
−gq −gz

�

�

ui,q
ui,z

�

=
�

f (ai,q, ai,v , ai,z)
g(ai,q, ai,v , ai,z)

�

+

�

1
h
M
∑i−1

j=1 ci ju j,v

0

�

+

�

(γM − fv)(ai,v +
1
h

∑i−1
j=1 ci jui,q)

0

�

. (5.20)

Also in the constrained case the size of the iteration matrix is reduced by the
number of velocity components.

Remark 5.1.3. To account for a bad scaling of the iteration matrix in (5.19) between
the constraint block compared to the upper left block, we may add a preconditioning
by a factor of γ′2 following the idea of [BDT08]. This is done by pre- and post-
multiplication of the iteration matrix S by

DL =

�

γ′
2 0

0 Id

�

, DR =

�

Id 0
0 γ′

−2

�

,

i.e., we replace the problem of finding x s.t. Sx = b by the preconditioned version

DLSDR x̃ = DL b

DR x̃ = x .

Instead of pre- and post-multiplication the factors can also be directly incorporated
into the matrices of the system.

Error estimate and step-size control

For most Rosenbrock methods it is possible to construct an embedded method,
i.e., a method of one order less while sharing all coefficients expect those of bi ,
i = 1 . . . s in (5.1). We denote these different coefficients by b̂i , and calculate
another approximation to the solution by

x̂n+1 = xn +
s
∑

i=1

b̂iki , ẑn+1 = zn +
s
∑

i=1

b̂i li ,

reusing the already calculated stages ki , li from (5.2).
The embedded method is then used to estimate the local error at time-step

xn by en = xn − x̂n. To evaluate the error into one scalar, we specify vectors of
absolute and relative tolerances, atol and rtol , for all individual components, so
that we use the estimate of each component of x ∈ Rnx and obtain the scalar

ẽn =









� en,1

atol,1+rtol,1 max(|xn−1,1|,|xn,1|)
. . .

en,nx

atol,nx+rtol,nx max(|xn−1,nx |,|xn,nx |)

�T








2

.

The value of ẽn is also used to determine if a step was successfully. For ẽn > 1 the
step is rejected and a reattempt is started using a smaller step-size h.
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Figure 5.1: Result of ROS3P applied to the stiff spring pendulum using variable
step-sizes (first component and velocity v = q̇ shown)

For very stiff system close to index 3, as in the case of a singular singularly
perturbed system, the error estimates suffer from the structure of the system and
tend to be of one order less in the velocity components v = q̇ and of two orders
less in Lagrange multiplier components z. So that, the estimate is to high and
the suggested step-size will become unnecessarily small. To circumvent this in the
calculation of en, we consider quantities v

h
and λ

h2 , scaled by the step-size h. The
effect and the scaling approach is also proposed in [HLR89a].

Because of its one step nature a step-size control can be easily employed for
a Rosenbrock method. Considering two time-steps of a Rosenbrock method, the
step-size of the second step may be chosen arbitrarily. We used the error esti-
mation for the selection, based on the choice done in RODAS4 and proposed by
[GLS88] we select the step-size for the next step hn+1 by

fac=
hn−1

hn

p

È

ẽ2
n

ẽn−1
, fac=min(6,max(0.2, f ac)), hn+1 =

hn

fac
,

with p equal to the order of the used method.

Example 5.1.4. We apply the ROS3P method using the described step-size selection
scheme to the stiff spring pendulum with ε = 10−6 as seen in Example 3.1.8 (for
g = 1.0). Setting the tolerances atol = rtol = 1 · 10−4 for all components and
use the described scaling of velocity and constraint components, we obtain the result
for tend = 10[s] by 744 function calls and 372 evaluations of the Jacobi matrix
�

fq fz
gq gz

�

while 3 steps had to be rejected. The result is shown in Figure 5.1.

5.2 Generalized alpha

For a comparison with classic integration methods we introduce a recent variant
of Newmark’s method. Newmark’s method [New59] is very popular for the com-
putation of structural dynamics [Wri08] since it is directly formulated in second
order form and easy to implement. The variant presented here is an improved ver-
sion with selectable numerical damping called generalized-α. It was introduced in
[CH93] and is also valid for constrained mechanical systems of index 3 as shown
in [AB07].

We begin by considering the unconstrained mechanical system

Mq̈ = f (q, q̇, t).



5.2. GENERALIZED ALPHA 59

Newmark’s integration formula [New59] for generalized coordinates qn, acceler-
ations an = q̈n and time-step h is given by

qn+1 = qn + hq̇n + h2
�

1

2
− β
�

an + h2βan+1,

q̇n+1 = q̇n + h(1− γ)an + hγan+1,
(5.21)

where β and γ are the methods parameters. Their optimal choice is

γ=
1

2
and β =

1

4
,

which gives an A-stable method with ρ∞ = 1 convergent of second-order. One can
introduce some numerical damping such that ρ∞ becomes less than 1 by adding
α > 0 and choosing

γ=
1

2
+α, β =

1

4

�

γ+
1

2

�2

,

but this leads also to Newmark methods which are only convergent of first-order.
To obtain the generalized-α method, we follow the way proposed in [AB07]

and add a recurrence relation into the Newmark scheme, by redefining the vector
an as acceleration like variables to

(1−αm)an+1 +αman = (1−α f )q̈n+1 +α f q̈n (5.22)

with initial value a0 = q̈0.

Remark 5.2.1. The recurrence relation (5.22) enforces the equilibrium at every time-
step by adding the vector of accelerations an which satisfy the property of the true
accelerations at time tn+1

Man+1 = f (qn+1, q̇n+1, tn+1) = fn+1.

Together with the idea of averaging the time instants

(1−αm)Mq̈n+1 +αmMq̈n = (1−α f ) fn+1 +α f fn,

we arrive at the generalized-α method.

Remark 5.2.2. An additional advantage of (5.22) is that also the accelerations are
computed with second order accuracy.

By (5.22) we gain two additional parameters α f ,αm, which can be chosen for
suitable accuracy and stability properties. In the fixed step-size case the algorithm
is convergent of second order provided that

γ=
1

2
+α f −αm.

Observe that for α f = αm = 0 we obtain Newmark’s method (5.21). Optimal
values for αm,α f , and β are proposed in [CH93]. It is possible to relate the
parameters to the spectral radius ρ∞ = |R(∞)| of the algorithm. For an A-stable
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algorithm it has to be chosen between ρ∞ ∈ [0,1], where ρ∞ = 0 means L-
stability and ρ∞ = 1 disables the numerical damping. The optimal choices for
second-order accuracy are

αm =
2ρ∞ − 1

ρ∞ + 1
, α f =

ρ∞

ρ∞ + 1
, β =

1

2

�

γ+
1

2

�2

.

With iteration matrix

St = Mβ ′ + Ctγ
′ + Kt ,

Jacobi matrices

Kt =
∂ (− f )
∂ q

, Ct =
∂ (− f )
∂ q̇

,

and constants

β ′ =
∂ q̈n+1

∂ qn+1
=

1−αm

h2β(1−α f )
,

γ′ =
∂ q̇n+1

∂ qn+1
=
γ

hβ
,

the method can be implemented as in Algorithm 1.

Algorithm 1 one step of generalized-α

qn+1 = qn + hq̇n + h2(.5− β)a
q̇n+1 = q̇n + h(1− γ)a
a = 1/(1−αm)(α f q̈n −αma)
qn+1 = qn+1 + h2βa
q̇n+1 = q̇n+1 + hγa
q̈n+1 = 0
for i = 1 to imax do

compute residuum rq

if rq < tol then
break

end if
δq =−S−1

t rq

qn+1 = qn+1 +δq
q̇n+1 = q̇n+1 + γ′δq
q̈n+1 = q̈n+1 + β ′δq

end for
a = a+ (1−α f )/(1−αm)q̈n+1

Remark 5.2.3. One interesting property of the method is that a two-step formulation
can be obtained by doing two time-steps and eliminating the auxiliary variable an. If
we further define g = M−1 f , the generalized-α method reads

2
∑

k=0

akqn+k−1 + h
1
∑

k=0

ukq̇n+k−1 = h2
2
∑

k=0

bk gn+k−1,

2
∑

k=0

akq̇n+k−1 = h
2
∑

k=0

ck gn+k−1,
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with

a0 =−αm, a1 =−1+ 2αm, a2 = 1−αm,

u0 =−αm, u1 =−1+αm,

b0 = α f (1/2− β), b1 = (1−α f )/(1/2− β) +α f β , b2 = (1−α f )β ,

c0 = α f (1− γ), c1 = (1−α f )(1− γ) +α f γ, c2 = (1−α f )γ.

Remark 5.2.4. Attention has to be paid in the case of variable step-size, because of
the hidden multi-step structure, the step-size can’t be changed independently of the
method’s parameters. If one wants to preserve second order accuracy the choice of γ
has to be adapted. Let h= tn+1 − tn and let s be the factor such that tn − tn−1 =

h
s
.

Then we need to set γn+1 for the next iteration to obey

1−αm − γn+1

1−αm − γn
= s
(1−α f )γn+1 − (1−αm)/2

α f (1− γn)−αm/2

to keep second order accuracy, as shown by [AB08].

Constrained cases

In the index 1 and index 3 case (ε= 0) we will solve system

Mq̈ = f (q, q̇, t)− GTλ

ε2λ= g(q, t)

with G = gq as the matrix of constrained gradients. Thus the iteration matrix
changes to

St =
�

Mβ ′ + Ctγ
′ + Kt GT

G ε2 Id

�

,

where the sub-matrices Kt and Ct are now given by

Kt =
∂ (Mq̈− f + GTλ)

∂ q
,

Ct =−
∂ f

∂ q̇
.

Also in the algorithm we introduce the extra degrees of freedom λ as seen in
Algorithm 2.

This method is convergent of second order in the coordinates q, q̇, and also in
Lagrange multipliers λ, as shown in [AB07], even for systems of index 3.

Remark 5.2.5 (Error estimate). Due to the structure of Newmark-like iterations,
there cannot exist an embedded method. Therefore it is more difficult to obtain an
error estimate. The most pragmatic ways of obtaining a measure for the error are
either controlling the number of Newton iterations, or evaluating the residual forces
at intermediate time-steps as done by HALFTOL inside the finite element software
package ABAQUS [Das11].
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Algorithm 2 generalized-α including lambda

qn+1 = qn + hq̇n + h2(.5− β)a
q̇n+1 = q̇n + h(1− γ)a
a = 1/(1−αm)(α f q̈n −αma)
qn+1 = qn+1 + h2βa
q̇n+1 = q̇n+1 + hγa
q̈n+1 = 0
λn+1 = 0
for i = 1 to imax do

compute residuum rq and rλ

if
p

‖rq‖2 + ‖rλ‖2 < tol then
break

end if
�

δq
δλ

�

=−S−1
t

�

rq

rλ

�

qn+1 = qn+1 +δq
q̇n+1 = q̇n+1 + γ′δq
q̈n+1 = q̈n+1 + β ′δq
λn+1 = λn+1 +δλ

end for
a = a+ (1−α f )/(1−αm)q̈n+1

5.3 Comparison of numerical results

For a fair comparison we implemented the generalized-α method and the Rosen-
brock method ROS3P in MATLAB and apply them to a structural mechanical prob-
lem involving hyperelastic materials modeled and discretized by COMSOL. The con-
sidered problem consists of 3, 552 degrees of freedom and is similar to the one that
will be described in Section 7.2, here we choose a one dimensional excitation by
a displacement of the inner ring

u(t) =
�

1

1+ e(−10t+8)
−

1

1+ e8

�

10sin(2π · 3t)[mm],

depicted in Figure 5.3. The simulated time horizon consists of two seconds t0 = 0,
tend = 2.

For the generalized-α method we obtain the results doing two simulations
with different bulk-modulus κ1 = 30[M Pa] and κ2 = 300,000[M Pa], which also
means Poisson ratio ν1 = 0.48 and ν2 = 0.499998. Using a fixed step-size of
h = 3 · 10−3 and calculate one Jacobi matrix per Newton step, we end up with
the simulation result in Table 5.1. The simulation result at t = 1.707 is plotted in
Figure 5.4. A detailed comparison of which step requires how many Newton-steps
and thus function evaluations is found in Figure 5.2. We see for increasing κ the
number of Newton iterations increases in those parts of the excitation with high
absolute value.

For the considered Rosenbrock methods the number of Jacobians needed is
equal to the number of time-steps. Further the number of function calls per time-
step is fixed. Choosing ROS3P ends up in two function calls per step (see Table
4.5), and one additional function call to evaluate the time-derivative ( ft , gt)T for
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Figure 5.2: Influence of increasing bulk-modulus κ on the number of function
evaluations using the generalized-α method

Figure 5.3: Used time-excitation for comparison

Figure 5.4: Comparison of pressure distribution and magnitude left κ1 = 30, right
κ2 = 300, 000
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κ[M Pa] #Jacobi matrices #Newton-steps #function calls CPU-time [s]

30 664 1,993 2,660 768
300,000 664 2,519 3,186 828

Table 5.1: Effort needed by generalized-α

κ[M Pa] #Jacobi matrices #function calls CPU-time [s]

30 667 2001 550
300,000 667 2001 550

Table 5.2: Simulation using optimized version ROS3P

component absolute difference relative difference

displacement 11.07 0.49%
velocity 320.80 0.52%

pressure 11.07 0.66%

Table 5.3: Relative and absolute differences between generalized α and ROS3P.
Given in the 2-norm of the matrix of differences of all time-steps.

the non-autonomous system (5.6). This evaluation was done using a finite differ-
ence approximation of the derivative for τ� h

ft =
f (t0 +τ, x0)− f (t0, x0)

τ
.

The CPU-time of the version of ROS3P optimized for second order systems
is only 550[s] when κ1 and κ2 for the 2[s] excitation signal u (see also Table
5.2). Comparing the result of the Rosenbrock method to the one obtained by
generalized-α in Table 5.3, we see a relative difference of 0.5%, but notice that
ROS3P is a method convergent of order 3 whereas generalized-α is only of order
2.

Using the embedded error-estimator for a step-size selection we can further
reduce the simulation costs while choosing atol = rtol = 1 · 10−3 and a scaling the
velocity components by h and pressure components by h2. The selected step-sizes
are depicted in Figure 5.5. The method needed 472 evaluations of the Jacobi
matrix and made 1.416 function calls while 7 steps were rejected. All in all, we
got the result after 440[s].

5.4 Conclusion

In the first part of this thesis we saw how incompressible materials can be included
into a structural dynamical problem. Especially for the nonlinear case, using a
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Figure 5.5: Selected step-size by a variable step-size scheme using ROS3P for a
nearly incompressible, hyperelastic model in mixed formulation

hyperelastic material formulation, we showed that this is a singular singularly
perturbed system.

We discussed some of the numerical problems while solving perturbed systems
and motivated the use of Rosenbrock methods. These fit perfectly into our use-
case, since we are more interested in fast simulation than in perfect accuracy in
every time-step. We conducted our analysis using the index 1 form Rosenbrock
methods and showed the advantages of those methods that additionally fulfill
the Scholz conditions at a singular singularly perturbed system using a Prothero-
Robinson-like test equation. Requiring only stiffly accuracy turned out to be insuf-
ficient.

After this, we gave an implementation of the Rosenbrock methods in a way
such that they are competitive to methods usually used for structural mechanics.
In the nearly incompressible singular singularly perturbed case the Rosenbrock
methods were even able to outperform the generalized-α method. In general we
experienced a good behavior while applying the methods to structural dynamical
problems.

An appropriate starting point for a further analysis, is to considering Rosen-
brock methods for the nonlinear case of singularly perturbed systems, as we ob-
served some good results and also saw that the global convergences seems to be
only weakly affected by the perturbation (at least in the case of a stiff spring pen-
dulum).
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Chapter Six

Nonlinear model reduction technique

6.1 Introduction

In this part we aim at a further improvement of calculation time by using model
reduction techniques. In contrary to Part I, where we have not altered the sys-
tem equations, we now allow for changes to reduce the total number of equations
which need to be solved. Our interest is to first give an overview of the existing
methods, then we will focus on POD as the method of our choice for nonlinear
systems. We show briefly how these methods work for structural dynamical prob-
lems and give the idea of some lookup methods which are necessary to decrease
the computational costs.

There are different approaches to model reduction. One way, the so called
black box modeling or system identification approach, is to construct a new para-
metric system of equations

ẋP = fP(xP , u, p)
yP = gp(xP , u, p),

and fit the system’s parameters p to some system trajectories φ(x , u, t). The sim-
plest form of this process is known as the description of a system only by its charac-
teristic curves. More advanced examples can be found in [Lju87] and some recent
ones used for mechanical systems in [BVB+11, SDR11]. Another systematic ap-
proach which combines different forms of system knowledge and measurements
of the full system is called Grey-box modeling. A recent work about this topic is
found at [Hau08].

In contrary to the methods above all the methods considered in this thesis are
projection based, i.e., we always start with a full model description which already
contains all effects that shall be considered. The challenge is to reduce the state
dimension and computation time of the system simulation while retaining the
system’s dynamics. This we do by projecting the whole state space of the system
onto a smaller subspace. Redundant state information can in this way be mainly
compressed into a smaller uncorrelated representation.

Definition 6.1.1. A linear map T : V → V is called projection iff T ◦ T = T.

Lemma 6.1.2. Let T be a projection, let further Im T = V be spanned by

Vk =
�

v1 · · · vk

�

and (Ker T )⊥ =W be spanned by

Wk =
�

w1 · · · wk.
�

69



70 CHAPTER 6. NONLINEAR MODEL REDUCTION TECHNIQUE

Then we can represent T by

T = VkW T
k .

If Vk is orthogonal we can choose Wk = Vk.

Definition 6.1.3 (Galerkin Projection). Let Σ be a general system

Σ : ẋ = f (x),

and T = V V T an orthogonal projection. Then we call Σ̂,

Σ̂ : ˙̃x = V f (V T x̃),

the Galerkin projection of Σ.

There are different techniques for obtaining an appropriate projection basis
for model reduction. For linear systems we will give a really short overview how
the most popular methods work. For further insight we want to refer to [Ant05,
BMS05]. Consider a linear system

ẋ = Ax + Bu

y = C x
, (6.1)

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rs×n. One of the most common methods is called Krylov
moment matching, which makes use of the so-called transfer function H(s) of (6.1)
defined as

H(s) = C(s Id−A)−1B =
1

s
C

 

∞
∑

l=0

1

sl
Al

!

B

=
∞
∑

l=1

1

sl
CAl−1B.

The reduced system is chosen such that its transfer function coincides in the first k
terms CAl−1B, l = 1 . . . k with the full system. The necessary projection is obtained
by orthonormalizing the Krylov matrix Kn(A, B) =

�

B AB · · · An−1B
�

, which
can be efficiently computed even for very big systems.

Another popular method for linear systems is balanced truncation [Moo81].
For an asymptotically stable linear system we define the reachability and observ-
ability Gramians as

P =

∫ ∞

0

eAt BBT eAT t d t, Q =

∫ ∞

0

eAT t C T CeAt d t. (6.2)

This definition is such that x T
1 P−1 x1 describes the minimal energy needed to

steer a system from zero state to a given state x1. Notice that P is non singular if
the system is controllable, while x T

1 Qx1 is the output energy produced by a state
x1 with input u ≡ 0, which will be finite for asymptotically stable systems. We
can interpret a large value of x T

1 P−1 x1 for some x1 as a state which is difficult to
attain. On the other side, if x T

1 Qx1 has a small value, we are in a state which is
only merely recognized in the systems output.
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Theorem 6.1.4. A linear asymptotically stable and controllable system (6.1) has
always a balanced representation

P =Q =









σ1
. . .

σn









, σ1 ≥ . . .≥ σn.

Where we call σi Hankel singular-values, they are the singular values of the matrix
PQ.

This result can be nicely interpreted, small Hankel singular-values correspond
to those states of the balanced system which are hard to observe and since of the
inverse relation in P−1 also hard to attain. The model is reduced by considering
only the first k states of the transformed system. One of the main advantages of
this method is that we also get an error bound:

Theorem 6.1.5 (Error bound of balanced truncation). Let H(s) be the transfer
function of an asymptotically stable and controllable system, further let Ĥk(s) be
the transfer function of the reduced system obtained by projecting onto the basis
corresponding to the first k Hankel singular values. Then

‖H(s)− Ĥk(s)‖H∞ =max
ω∈R
‖H(iω)− Ĥk(iω)‖2 ≤ 2(σk+1 + · · ·+σn).

Proof (Theorem 6.1.4, Theorem 6.1.5). [Ant05]

Remark 6.1.6. Balanced truncation is what can be achieved by the later described
POD method applied to linear systems [Moo81].

Since our main interest is in structural dynamics, we have a short look at what
is done for second order linear systems like

Mq̈ = Kq+ Dq̇+ Bu

y = C1q+ C2q̇+ Du.
(6.3)

The most popular approach, by far, is modal reduction. For a modal reduction we
consider (6.3) with D = 0, u = 0. Then we represent the system by a number of
its generalized eigenmodes V =

�

vi · · · v j

�

, for which holds that

Kvi = λM vi .

As there are as many eigenmodes as space dimensions, the decision which vi shall
contribute to the projection V is always difficult. Rather new works therefore
suggest also an approach by balanced truncation for the second order system (6.3)
[RS08, FE11, BS11, NKEB12]. As in the first order case, Krylov subspace methods
can also be used as, for example, presented in [SL06].

Starting from the linear case there are extensions like methods for bilinear sys-
tems [BB11] [BD10] and discrete-time control systems [BBD10] appearing which
use a balancing transformation. In general, for the nonlinear case it is increasingly
difficult to apply the discussed methods. Nevertheless, the application of balanced
truncation may still be possible as shown by [FS10, FS05], but the calculation of
the corresponding Gramians (the nonlinear versions of (6.2)) is very difficult and
currently only feasible for very small systems.

For us it seems that the only established and feasible method for general non-
linear systems remaining is the proper orthogonal decomposition. We are going
to describe it in the following.
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6.2 Singular value decomposition

As the main ingredient to proper orthogonal decomposition, we discuss the singu-
lar value decomposition (SVD). The SVD is very important tool in matrix analysis,
it has its roots in works of Beltrami [Bel73] (see also [Ste93]) and was brought to
attention of the numerical community by [GvL96]. We will repeat the theorem,
give a short proof and also state some of its properties.

Theorem 6.2.1. For all A ∈ Rm×n there are orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n such that

U T AV =
�

Σ 0
0 0

�

with Σ =









σ1 0 0

0
. . . 0

0 0 σr









,

where r = rank(A) and σ1 ≥ σ2 ≥ . . .≥ σr > 0.

Proof. Case 1: m= n and det(A) 6= 0.

Then AAT is symmetric and positive definite, thus there exists an orthogonal
matrix U such that

AAT = UΣ2U T .

So we can write

A= UΣ(ΣU T A−T )
︸ ︷︷ ︸

V T

.

From

V V T = A−1UΣΣU T A−T

= A−1AAT A−T = Id,

we see that V indeed is orthogonal.
Case 2: For a general matrix A.

Let Y =
�

Y1 Y2

�

∈ Rn×n and W =
�

W1 W2

�

∈ Rm×m be orthogonal matrices
such that

Im Y2 = Ker A and Im W2 = Ker AT .

Thus

W T AY =
�

W T
1

W T
2

�

A
�

Y1 Y2

�

=
�

Ak 0
0 0

�

(case 1)
=

�

U TΣV 0
0 0

�

,

and hence
�

U 0
0 Id

�

W T AY
�

V T 0
0 Id

�

=
�

Σ 0
0 0

�

.
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Remark 6.2.2. The singular values are the square roots of the non-zero eigenvalues
of AAT > 0 or AT A

{σ2
1 . . .σ2

r }= σ(AAT ) \ {0}

= σ(AT A) \ {0}.

Theorem 6.2.3 (Schmidt-Eckhart-Young-Mirsky). Let A ∈ Rn×m, it holds for the
minimal rank k approximation of A in 2-norm that

min
X s.t. rank X=k

‖A− X‖2 = σk+1(A).

A minimizing solution X̂ is obtained by the first k terms of the singular value decom-
position of A= UΣV , i.e.,

X̂ = σ1u1vT
1 + · · ·+σkuk vT

k . (6.4)

Lemma 6.2.4. Given A of rank r for all X of rank less than k, it holds

‖A− X‖2 ≥ σk+1(A).

Proof (Lemma). Let yi ∈ Rm, i = 1 . . . m− k be a basis of ker X , and A= UΣV T =
UΣ
�

v1 · · · vm

�T
. Then the intersection

span{y1, . . . , ym−k} ∩ span{v1, . . . , vk+1}

is not empty. Let z be in this intersection and zT z = 1, then

‖A− X‖2
2 ≥ ‖(A− X )z‖2

2 = ‖Az‖2
2

=
k+1
∑

i=1

σ2
i (v

T
i z)2 ≥ σ2

k+1.

Proof. For the proof of the theorem it remains only to show that the lower bound
is attained, this can easily be checked by inserting (6.4)

Example 6.2.5. To demonstrate the SVD at an arbitrary matrix, we interpret the im-
age from Figure 6.2a as matrix A= (ai j)i j where ai j is represented by a corresponding
color value at position (i, j). As an example of the minimal rank property obtained in
Theorem 6.2.3, we show the corresponding minimal rank approximations in Figure
6.2 of the full image.

Figure 6.1 shows the singular values of A and the decreasing relative error

r =

∑k
i=1σi

∑n
i=1σi

,

while the number of used basis vectors is increased. The image has a size of

2000× 3000= 6 · 106 pixels.

For a minimal representation of rank r, only the data of

r · (2000+ 3000)

elements is needed. The error and size of the different approximations is given in Table
6.1. However, please notice that the singular value decomposition is not a particular
good method for image compression.
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Figure 6.1: Singular values and relative error of projection

reduced to full size
rank reduced size ratio rel. error σk+1

1 5,000 0.08% .547 7.600 · 104

10 50,000 0.8% .395 1.360 · 104

100 500,000 8% .205 2.223 · 103

1,000 5,000,000 80% .019 9.130 · 101

Table 6.1: Comparison of different approximations seen Figure 6.2

We can further say how sensitive the singular value decomposition is to per-
turbations [Ste90],

Theorem 6.2.6 (Weyl [Wey12]). Let Ã= A+ E and denote the singular values of Ã
and A, respectively, by σ̃i and σi for i = 1 . . . n. Then it holds that

|σ̃i −σi | ≤ ‖E‖2.

Theorem 6.2.7 (Mirsky [Mir60]). Using the notation of Theorem 6.2.6, it holds
that

r

∑

i

(σ̃i −σi)2 ≤ ‖E‖F ,

for ‖E‖F =
Æ

∑

i, j |ei j |2 being the Frobenius norm.

Remark 6.2.8. There is no restriction to the size of ‖E‖ in the above theorems.

For singular vectors it is getting more complicated. Let

A=
�

U1 U2 U3

�







Σ1 0
0 Σ2
0 0







�

V H
1

V H
2

�
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(a) original

(b) rank 1 (c) rank 10

(d) rank 100 (e) rank 1000

Figure 6.2: Low rank approximations by singular value decomposition
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and

Ã=
�

Ũ1 Ũ2 Ũ3

�







Σ̃1 0
0 Σ̃2
0 0







�

Ṽ H
1

Ṽ H
2

�

.

Theorem 6.2.9 (Wedin [Wed72]). Suppose that δ,α, and β with 0 < δ ≤ α ≤ β
are such that the eigenvalues of Σ̃ lie in [α,β] while the eigenvalues of Σ2 are outside
of (α−δ,β +δ). Then

‖ŨH
1

�

U2 U3

�

‖ ≤
p

2
max(‖R‖2,‖S‖2)

δ
,

‖Ṽ H
1 V2‖ ≤

p
2

max(‖R‖2,‖S‖2)
δ

,

where the size of perturbations to A is measured by the size of the residuals

R= AṼ1− Ũ1Σ̃1 and S = AH Ũ1− Ṽ1Σ̃1.

Example 6.2.10. Consider the perturbed matrices

A1 =
�

1+ ε 0
0 1− ε

�

, A2 =
�

1 ε
ε 1

�

,

the singular vectors of A1 are
�

1
0

�

and
�

0
1

�

where those of A2 are
� 1p

2
1p
2

�

and

� 1p
2

− 1p
2

�

.

We see that in the case of A2 the whole subspace has turned by 45 degrees due to a
perturbation of ε, while it was unaffected by the perturbation in the case of A1.

6.3 POD

Let us explain the POD method following [Ant05]. Given a function x : R→ R
n

of time t, we denote a time-snapshot at time t i by

x i = x(t i) ∈ Rn. (6.5)

We are looking for a set of orthonormal basis vectors u j ∈ Rn, j = 1 . . . N such that

x i =
N
∑

j=1

γ jiu j , i = 1 . . . N .

For more time samples t = t1 . . . tN this is

�

x1 · · · xN

�

︸ ︷︷ ︸

X

=
�

u1 · · · un

�

︸ ︷︷ ︸

U









γ11 · · · γ1N
...

. . .
...

γN1 · · · γNN









︸ ︷︷ ︸

Γ

with U T U = Id .
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We truncate the elements to

x̂ i =
k
∑

j=1

γ jiu j , i = 1 . . . N

so that the snapshots are reconstructed only by the first k vectors u j . Considering
X̂ =

�

x̂1 · · · x̂N

�

, what is an optimal basis U such that the 2-induced norm of
the difference ‖X − X̂‖2 is minimized?

This problem is exactly the one solved by Schmidt-Eckard-Young-Mirsky, Theo-
rem 6.2.3. Consider the SVD of X = UΣV T . Then Γ = ΣV T and so we have found
an orthonormal basis U such that X = UΓ.

For a general dynamical system

ẋ(t) = f (x(t), u(t))
y(t) = g(x(t), u(t))

we can use a projection T = VW T , where W T V = Idk, to obtain a reduced order
dynamical system of order k

˙̂x(t) =W T f (V x̂(t), u(t)) (6.6)

y(t) = g(V x̂(t), u(t)). (6.7)

The trajectories of the reduced system x̂ = W T x evolve in a k-dimensional sub-
space. If V =W the columns of V form an orthonormal set and T is orthogonal.

For a given system with given input trajectories u(t)we build time-snapshots of
a specific solution of the dynamical equations. Using the matrix of time-snapshots
X , we obtain an optimal basis in the discussed way such that X = UΓ. For a
dimension reduction of the system we may take only the first k elements of this
basis so that Uk =

�

u1 · · · uk

�

is used for the projection with

V =W = Uk ∈ Rn×k. (6.8)

Uk x̂ = UkU T
k x is the projection of x onto span{u1, . . . , uk}. The projection error

is ‖ x̂ − x‖2 ≥ σk+1 as described by Lemma 6.2.4. Typically, k is chosen in a way
such that the ratio of singular values

r =

∑k
i=1σi

∑n
i=1σi

is of a given size (e.g., r = 99.9%). r is used to describe the relative size of the
projection error.

Definition 6.3.1. For a dynamical system

ẋ = f (x , u)

we denote by proper orthogonal decomposition or POD the process

1. Generate a matrix of time-snapshots t i ∈ [t0, tend], i = 1 . . . n for some input
u,

X =
�

x(t1) · · · x(tn)
�

. (6.9)
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2. Calculate an orthogonal projection basis Uk for some chosen k

X = U TΣV, U =
�

u1 · · · un

�

, Uk =
�

u1 · · · uk

�

. (6.10)

3. Construct the reduced system

˙̂x = U T
k f (Uk x̂ , u). (6.11)

We will decorate the reduced system with a hat and denote the projection basis of
dimension k by Uk, or U if the dimension is obvious from the context.

Remark 6.3.2. The columns ui of Uk are also called POD-modes.

Remark 6.3.3. The POD method is also known as Karhuen-Loève transformation
or principal component analysis.

Beside this general approach, POD is used in many fields and has different
varieties, for example, in parametric systems [HDO11], fluid dynamics [KV03],
parabolic systems [KV01], inverse design [BTDW04], dynamic analysis [LLL+02]
or missing point evaluation [AWWB08].

We are going to apply the POD method to structural dynamical problems. For
examples of our applications have a look at Chapter 7.

Connection of POD and balanced truncation

Let us consider the linear system (6.1) with the input matrix B ∈ Rn×m. By solving
the initial value problem x(t) for x(0) ≡ 0 while the input u(t) is only a Dirac
impulse δ(t) in every space dimension i,

ui(t) = δ(t)ei , i = 1 . . . m,

and ei the i-th unit vector, we get as solution

x(t) =









x1(t)
...

xn(t)









, x i(t) = eAt Bi , i = 1 . . . n.

In this way, the reachability Gramian has the following connection to the exact
solution

P =

∫ ∞

0

eAt BBT eAt d t =

∫ ∞

0

x(t)x(t)T d t.

Transferring this observation to a discrete vector of time instances, we define the
empirical reachability Gramian as follows.

Definition 6.3.4. Let x(t) be the solution of a differential equation, then we define
for a matrix of time-snapshots X =

�

x(t1) · · · x(tN )
�

, t1 < t2 < . . . < tN , the
empirical reachability Gramian

Pe =
N
∑

i=1

x(t i)x(t i)
T = X X T , Pe ∈ RN×N .
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Now considering the POD method, we do a singular value decomposition of
X (Theorem 6.2.1) and thus a decomposition by the eigenvalues of Pe is calcu-
lated. So the POD method can be interpreted as: Find a basis U such that for the
projection of P̂e = U T PeU holds that

‖Pe − P̂e‖2

is minimized with k = rank P̂ < rank Pe. So by POD we estimate the empirical
reachability Gramian in dependence of some given input u.

Remark 6.3.5. In a statistical setup the empirical reachability Gramian can also be
interpreted as the covariance matrix of the data as seen in the principal component
analysis [Jol02].

The parallels to balanced truncation ends because of the missing link to the ob-
servability Gramian. Nevertheless, we may also define the empirical observability
Gramian in terms of a measured output y [LMG02]:

Definition 6.3.6. Let y(t)= C x(t), C ∈ Rs×n be the measured output of a differen-
tial equation, then we define for a matrix of output time-snapshots

Y =
�

y(t1) · · · y(tN )
�

for t1 < t2 < . . .< tN the empirical observability Gramian as

Qe = Y T Y, Qe ∈ RN×N .

But by the POD method the observability is not considered, thus we have no
knowledge about the output energy of the neglected information. This is in con-
trary to balanced truncation, where the observability can be utilized to obtain an
error-estimate. In the following we won’t consider an output map to y for our
systems.

Error propagation

For an orthogonal projection T ∈ Rn×n such that T T = T and T T = T we want to
compare (following [RP03]) the systems

ẋ = f (x , t),
˙̂x = T f ( x̂ , t),

by introducing the error function

e(t) = x̂(t)− x(t). (6.12)

Further we split e(t) in an orthogonal part eo(t) such that Teo(t) = 0 and an in-
plane part ei(t), for which it holds that Tei = ei . Thus eo is the error orthogonal
to the projection, while ei is the accumulated error inside the subspace. Differen-
tiation of (6.12) yields

ė(t) = ėi(t) + ėo

= T f ( x̂ , t)− f (x , t).
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Multiplication by T on both sides using T 2 = T and T ė = ėi , we obtain an initial
value problem for the in plane error

ėi(t) = T ( f (ei(t) + eo(t) + x(t))− f (x , t)),
ei(0) = 0.

Locally we are looking at this in the linear case for an asymptotically stable
system ẋ = Ax . We have

ėi = TAei + TAeo, ei(0) = 0,

so as long as eo is small also ei will be small due to the stability of the system.
While eo can be controlled by the relative projection error.

In general side effects of the nonlinear system while applying a projection
method are possible, and they may amplify and grow with the projection error.
For a general estimate Gronwall’s lemma may be used.

Remark 6.3.7. Other works [HV08, KV03, Her08] show how the projection error
can be amplified by the integration scheme and thus produce several “special” POD in-
tegration methods, e.g., the POD-Backward Euler or POD-Newmark schemes. We step
back form describing a POD-generalized−α method or POD-Rosenbrock methods. In
our view, POD is only an exchange of the discretized system and is thus independent
of the time-integration scheme used, as long the reduced system is stable.

Systems of second order

For the reduction of mechanical systems it is necessary to consider systems of
second order like

q̈ = f (q, q̇) for q ∈ Rn.

Because of the separated q and q̇ variables we now have multiple possibilities of
applying the POD method to the system.

We can construct a projection basis by snapshots of q such that the snapshot
matrix is

Xq =
�

q(t1) · · · q(tN )
�

, Xq ∈ Rn×N ,

calculate the projection basis of U from Xq and apply the Galerkin projection like

¨̂q = U T f (Uq̂, U ˙̂q). (6.13)

But we could also use x =
�

q v
�T

and bring the system to its first order form

ẋ =
�

v
f (q, v)

�

. (6.14)

We can then apply the POD method to (6.14), use the snapshot matrix

X =
��

q(t1)
v(t1)

�

· · ·
�

q(tN )
v(tN )

��

, X ∈ R2n×N (6.15)
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and calculate the projection basis Ux from X . By separating

Ux =
�

Uq
Uv

�

, Uq, Uv ∈ Rn×k,

into a basis for q and v we end up at the projected system

˙̂x = U T
x

�

Uq x̂
f (Uq x̂ , Uv x̂)

�

= U T
q Uq x̂ + U T

v f (Uq x̂ , Uv x̂)
, x ≈ Ux x̂ . (6.16)

We see that in the reduced system (6.16) the previously separated position and
velocity information is mixed up because of the projection, by this the invariant
relation q̇ = v can be destroyed.

Applying POD to the first order form has several consequences, the velocity
components have got a larger absolute value and are thus preferred by the sin-
gular value decomposition of X . To circumvented this, we can calculate separate
projection bases Uq ∈ Rn×kq and Uv ∈ Rn×kv by considering the snapshot matrices
Xq and X v =

�

v(t1) · · · v(tn)
�

. Afterwards, we put Uq and Uv as uncorrelated
components together into the orthogonal projection basis

Ux =
�

Uq 0
0 Uv

�

, Ux ∈R2n×(kq+kv).

Remark 6.3.8. Position and velocity is not uncorrelated, since by a finite difference
approximation we have that

v(t) =
q(t + h)− q(t)

h
+O(h2)

and thus as linear combination already contained in the basis Uq. Neglecting a corre-
lation where one exists, increases the size of the basis and thus the size of the projected
system, but beside of this does no harm to the method as long the projection matrices
stay orthogonal.

Numerical studies suggest that a direct handling of the second order system
like in (6.13) gives better results then bringing the system to first order form. The
corresponding simulations were discussed in the recent work of Joachim Kren-
ciszek at the University of Kaiserslautern (to be published).

In our work we will consider the POD method always for the second order
systems (6.13).

Definition 6.3.9. By POD for a second order dynamical system

q̈ = f (q, q̇, u)

we denote the process of

1. Generate a matrix of time-snapshots t i ∈ [t0, tend], i = 1 . . . n for some input
u,

X =
�

q(t1) · · · q(tn)
�

. (6.17)
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2. Calculate an orthogonal projection basis Uk for some chosen k

X = U TΣV, U =
�

u1 · · · un

�

, Uk =
�

u1 · · · uk

�

. (6.18)

3. Construct the reduced system

¨̂q = U T
k f (Ukq̂, Uk ˙̂q, u). (6.19)

Remark 6.3.10. Sticking to the second order system, we have the additional advan-
tage that the structure of the system remains in second order form which allows us
to use the optimized integration methods, discussed in Chapter 5 also for the reduced
systems equations.

Singularly perturbed systems

For the singular singularly perturbed systems considered in Chapter 3,

q̈ = f (q)− GT (q)λ

ε2λ= g(q)
, ε2� 1, (6.20)

we first want to look at an expansion of the solution

q(t) = q0(t) + ε
2q1(t) +O(ε4),

as given by Theorem 3.1.10. In the snapshot matrix for t i ∈ [0, tend], i = 1 . . . n
we have

X =
�

q(t0) · · · q(tn)
�

=
�

q0(t0) · · · q0(tn)
�

︸ ︷︷ ︸

X0

+ε2
�

q1(t) · · · q1(tn)
�

︸ ︷︷ ︸

X1

such that also the snapshot matrix can be decomposed into a part coming from
the solution to the ε = 0 system and a perturbation by ε2. Unfortunately a per-
turbation by ε can have a tremendous effect on the calculated basis, as seen in
Theorem 6.2.9 and Example 6.2.10. Thus it is not possible to conclude to the pro-
jection basis by considering the smooth system via X0. This means, for snapshot
generation the perturbed system has to be simulated. We have shown how this is
effectively done in the case of a second order perturbed systems in Part I.

Our next concern is how to do a model reduction for system (6.20). The
problem is separated into two sets of variables, namely those of q and those of λ.
For the application of POD we have again several choices:

(a) The naive approach is to treat z =
�

q λ
�T

as the whole system state and use
it for a snapshot matrix like

X =
�

z(t1) · · · z(tN )
�

.

The projection basis U ∈ R(n+nλ×k) calculated from X splits similarly to the
second order case into

U =
�

Uk
Lk

�

, Uk ∈ Rn×k, Lk ∈ Rnλ×k.
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Trying to calculate the Galerkin projection, we have to bring the ε2λ-term to
the right hand side of the equation and obtain

U T
k Uk

¨̂z = U T
�

f (Uk ẑ)− G(Uk ẑ)T Lk ẑ
g(Uk ẑ)− ε2 Lk ẑ

�

= U T
k f (Uk ẑ) + U T

k G(Uk ẑ)T Lk ẑ+ LT
k g(Uk ẑ)− ε2 LT

k Lk ẑ
, for ẑ ∈ Rk.

In general, all structure of the perturbed system is lost. Especially the con-
straint is mixed into the system, and the interpretation of λ as a Lagrange
multiplier is gone. We are not able to distinguish between q and λ quantities,
so a change in λ may affect also q, i.e.,

UkU T
�

q
λ

�

6= UkU T
�

q
0 ·λ

�

.

This all brings an error into the two times differentiated q components while
the constraint is most likely to be unsatisfied. Also notice the non-identity
mass matrix U T

k Uk appearing by the projection of

�

U T
k LT

k

�

�

Idn 0
0 0

��

Uk
Lk

�

(6.21)

on the left hand side of the equation.

We think these properties disqualify the naive approach.

(b) Respecting the structure of the equations we want λ to be retained such that
we can assure that all constraints are acknowledged. We calculate the projec-
tion basis only through snapshots of q using

Xq =
�

q(t1) · · · q(tN )
�

(6.22)

to determine Uk ∈ Rn×k and consider the reduced system

¨̂q = U T
k f (Ukq̂)− GT (Ukq̂)λ

ε2λ= g(Ukq̂).
(6.23)

Observe that in this way all structure is retained but the dimension reduction
suffers if many constraints nλ� 1 have to be considered.

(c) We can use a separated basis for q and λ. Consider Xq and the snapshot
matrices of λ,

Xλ =
�

λ(t1) · · · λ(tN )
�

,

for a basis Uk ∈ Rn×k of q and a basis Lm ∈ Rnλ×m of size m for λ. By a
Galerkin projection we obtain

¨̂q = U T
k f (Ukq̂)− GT (Ukq̂)Lmλ̂

ε2λ̂= LT
m g(Ukq̂).

By this approach the projections for q and λ are obtained separately. One can
interpret it as if we are doing a second Galerkin projection of system (6.23).
The system is reduced to size k+m.
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Remark 6.3.11. Finally we could handle the constraint by avoiding it through a
transfer into the index 0 formulation (Remark 3.1.9)

q̇ = f (q)−
1

ε2 GT (q)g(q).

which is then projected to

˙̂q = U T
k f (Ukq̂)−

1

ε2 U T
k GT (Ukq̂)g(Ukq̂),

using again the snapshots of q like in Xq. This approach is also equivalent to the
index 0 formulation of (6.23). Nevertheless, in this thesis we are going to stick to the
index 1 form.

A numerical test of the described approach (b) and (c) will be done in Chapter
7 (see page 103).

6.4 POD in structural dynamics

The POD method in connection with structural dynamical systems was consid-
ered, for example, by [LKM03, KLM01, Wri08]. For the description of nonlinear
structural dynamical systems we consider again the semi-discretized equations of
Chapter 2, in a simplified notation, there we had

Mq̈− fa(q) = fc(t), q ∈ Rn. (6.24)

We apply the POD method to the second order systems (Definition 6.3.9) by con-
sidering snapshots of q and a projection basis Uk ∈ Rn×k of size k, we have the
Galerkin projection of (6.24)

U T
k MUk ¨̂q− U T

k fa(Ukq̂) = U T
k fc(t). (6.25)

For the linearization of fa(q) around q0, i.e., the stiffness matrix, evaluated at q0,
we have Kq0

= ∂ fa

∂ q
|q0, its projection is

K̂q0
= U T

k Kq0
Uk, K̂q0

∈ Rk×k.

Locally the reduced system is

U T
k MUq ¨̂q− U T

k fa(Ukq̂0)− K̂Uk q̂0
(q̂− q̂0) = U T

k fc(t),

simplified to the case q0 ≡ 0, fa(q0)≡ 0, we have

U T
k MUq ¨̂q− K̂Uk q̂0

(q̂− q̂0) = U T
k fc(t). (6.26)

Boundary conditions

The boundary conditions of the reduced system are a crucial aspect. By boundary
conditions we mean

- external forces fc(t),

- constraints which prescribe some state of q.
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How are they considered in the reduced model, and how can they be retained
accessible in the reduced model, as we may want to alter the external force inter-
actively without doing a new projection?

Generally for boundary conditions, it holds that we have to assure that they are
contained inside the projection subspace. For a force fc(t) and its projection f̂c =
U T

k fc(t). The force may be projected to zero if fc ⊥ Uk as the basis is calculated
without considering fc . We have a look at two scenarios:

1. A force is only applied to a few discrete points � n, e.g., a single node or
the six degrees of freedom of a rigid body.

2. Many points are subjected to an external load.

For case 1 we add these points explicitly into the basis by an identity. Let Uk be
the projection basis, and let without loss of generality the last node be subjected
to a force. Then we will consider the projection

�

Uk[1 . . . (n− 1), 1 . . . (k)] 0
0 1

�

∈ Rn×k+1,

with Uk[1 . . . (n− 1), 1 . . . (k)] ∈ Rn−1×k being the sub-matrix of Uk consisting of
the rows 1 . . . (n−1) and the columns 1 . . . k. In this way the selected components
stay accessible in the reduced system and the external force can easily be altered.

For case 2, the overhead of adding all degrees of freedom separately into the
basis might be to high. So an alternative approach is to take also snapshots of the
force vectors

X f =
�

fc(t1) · · · fc(tN )
�

∈ Rn×N

and calculate a projection basis U f
m of size m based on a singular value decom-

position of X f . To obtain an orthogonal projection basis, we build a combined
matrix

Ǔ =
�

Uk U f
m

�

∈ Rn×(k+m)

with POD basis Uk and orthogonalize the result by another singular value decom-
position

Ǔ =
�

Ui Ur

�T
�

Σ 0
0 0

�

V, Σ =









σ1
. . .

σi









,

and get the projection basis Ui , i ≤ (k+m). Notice that i ≤ (k+m) because both
bases may span the same subspace. The basis Ui contains all basis vectors coming
from the snapshots of q and all basis vectors out of the forces fc .

Remark 6.4.1. Although, because of the singular value decomposition, the basis
is still ordered by some singular values, these can not anymore be interpreted in the
sense of Theorem 6.2.3. Nevertheless both selected bases Uk and U f

m can be interpreted
correspondingly, and it is possible to project the calculated solution back into these.
Let q̂(t) : R→ R

i be the solution of the reduced system using the Galerkin projection
Ui , then we can represent the solution in coordinates of Uk by considering U T

k Ui q̂(t)
and in the coordinates of U f

m by (U f
m)

T Ui q̂(t).
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By this approach the force can only be altered as long as it stays inside the pro-
jected subspace.

Let us come to prescribed displacements and first consider the snapshot matrix
X of q and a corresponding projection basis Uk. A node qi which is fixed in its
position qi(t) = 0 for all t gives rise to a zero row in Uk, thus the constraint will
be automatically satisfied by the projection.

Remark 6.4.2. On the other hand, consider a subset of nodes which are constrained
to follow the movement of a rigid body, because of a combination of displacements and
rotations it may not be possible to describe the deformations by a linear combination
of basis vectors, but since a rigid body consists only of six degrees of freedom we
already know the relation between the nodes and the rigid body. In this case it
may be advantageous to remove the constrained nodes from the basis generation and
recover their position by the six degrees of freedom of the rigid body. In this way we
saved degrees of freedom for the reduced model.

In general a prescribed displacement should also be handled as a constraint,
we have

Mq̈ = fa(q) + fc(t)− GTλ

0= g(q, t)
with G = gq

such that the same things said about fc are also true for the force coming through
GTλ, this should be considered in a similar way inside the basis Uk to obtain the
Galerkin projected system

0= M̂ q̈+ U T
k fa(Ukq̂, Uk ˙̂q) + U T

k fc(t)− U T
k GTλ

0= g(U T
k q̂, t).

How much can be saved by a projected system

To quantify how much the complexity is reduced by POD we compare the costs
while solving the reduced system (6.25) and the full system (6.24). This depends
surely on the integration method used to solve either one. For a rough estimate
we try to compare the atomic operations of time-integration which are solutions of
linear systems for implicit methods and matrix multiplications in explicit methods.
So we want to compare one implicit time-step and one explicit time-step.

An implicit time-step consists mainly of a Newton step (compare Chapter 5.2)

St∆q = fa(q)

St =
�

Mβ ′ + K
�

.

In the full system case the stiffness matrix K is evaluated element-wise which
scales with the per element degrees of freedom and is then assembled to obtain the
complete stiffness matrix Kq0

evaluated at q0, which scales with the total number
of elements. We obtain O(n) for the complete assembly step. The estimate of
fa and fc is also obtained in O(n). The linear solve step is hard to estimate, it
depends roughly on the number of non-zero elements of the iteration matrix St .

For the reduced system we need also the full assembled stiffness matrix eval-
uated at q0, which is the back-projection of the current state q̂0. Additionally
we have to do the projection by post- and pre-multiplication of U to obtain the re-
duced matrix of size k×k. The terms fa and fc need also to be projected f̂a = U T fa
and f̂c = U T fc , these projections imply additional costs of
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step full system step reduced system

back-projection to obtain q0 O(nk)
assembly of Kq0

O(n) K̂q̂0
O(n) +O(nk) +O(nk2)

fa, fc O(n) f̂a, f̂c O(n) +O(nk)
sparse linear solve O(nnz(K)) linear solve O(k3)

Table 6.2: comparison of implicit Newton step

step full system step reduced system

back-projection to obtain q0 O(nk)
fa, fc O(n) f̂a, f̂c O(n) +O(nk)

Table 6.3: comparison explicit methods

- three matrix vector multiplications O(kn) to obtain f̂a, f̂c , and q0,

- one sparse matrix-matrix multiplication Kq0
U , O(nk),

- one matrix-matrix multiplication U T [Kq0
U], O(nk2).

In the linear solve we have got the dense (not sparse), but smaller, matrix K̂q̂0

which takes O(k3) for a single solution. Albeit reduced, the smaller system still
needs a strong connection to the full system, in every time-step we have to back-
project and evaluate the equations in the full space. The only advantage comes
in the solution of the linear system, but there is also some overhead from the
projections, this means that we only gain an advantage if k � n and maybe an
additional advantage if the smaller system can be integrated using a larger time-
step.

For an explicit time-step we consider the central difference scheme, as given
by

�

M +
h

2
D
�

qn+1 = h2( fc − fa(qn)) +
h

2
Dqn+1 +M(2qn − 2qn−1). (6.27)

The comparison in Table 6.3 reveals even poorer performance improvements.
Since we do not solve a linear system, the reduced size manifests only in smaller
matrix-matrix multiplications. A factorization of M and D may be reused in every
step for constant matrices.

We find that the reduction of a nonlinear structural mechanical problem only
through a Galerkin projection has the drawback that the computation time is re-
duced only by a small factor. A similar result was previously found in [LKM03].

6.5 Lookup methods

We saw that the computation has its bottleneck while back-projecting into the full
system for evaluation of f̂c , f̂a, and K̂q̂ while the costs for solving the equations is,
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in comparison, eliminated in the reduced system. Following the idea of [Her08],
we want to avoid back-projections into the full state-space by pre-computing those
values in an offline step such that we can reuse the already once evaluated func-
tion calls in an optimal way.

The used lookup methods are nothing more than an interpolation method in a
high dimensional setting. A general interpolation method for a given function

f : Rn→ R
n

q 7→ f (q)

using the well known Taylor rule in the point q = qi +δq is

f (q) = f (qi) + (q− qi)
∂ f

∂ q
|qi
+

1

2
(q− qi)

T ∂
2 f

∂ 2q
|qi
(q− qi) +O(δq3).

This means, knowing the function value at some points qi and its first and second
derivative allows to estimate points q close to qi with an error of the order of
‖q−qi‖3, and knowing only its first derivative gives an estimate of order ‖q−qi‖2.
These are the defining properties of Lookup 1 and Lookup 2.

Definition 6.5.1 (Lookup 1). Given a function f : Rn → R
m, a set of evaluation

points qi ∈ Rn, i = 1 . . . l, corresponding function values f (qi) ∈ Rm, i = 1 . . . l and
the derivatives Kqi

= ∂ f
∂ q
|qi

, i = 1 . . . l, then Lookup 1 is the estimate f̃ to f con-
structed via

f̃ (q) = f (qs) + Kqs
(q− qs),

s = argmini=1...l ‖qi − q‖2,

its linearization is

∂ f̃

∂ q
= K̃ |q = Kqs

.

Definition 6.5.2 (Lookup 2). Using the same notation as in Lookup 1 plus the
second derivative information H|qi

in all known points qi gives the estimate

f̃ (q) = f (qs) + Kqs
(q− qs) +

1

2
(q− qs)

T H|qs
(q− qs),

s = argmini=1...l ‖qi − q‖2

called Lookup 2. For its linearization holds

∂ f̃

∂ q
= K̃ |q = Kqs

+ (q− qs)
T H|qs

.

Remark 6.5.3. Higher derivative information is often not easy to obtain. The H|qi

information in direction of some point qi+1 may be approximated through a finite
difference using K |qi

and K |qi+1

K |qi+1
≈ K |qi

+ (qi+1 − qi)
T H|qi

.

An alternative approach, instead of using higher derivative information, is to
utilize more of the known points qi in the estimation of f (q).
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Definition 6.5.4 (TPWL [Rew03]). We borrow the notation of Definition 6.5.1. An
estimation to f via the s-point trajectory piecewise-linear approximation (TPWL) is

f̃ (q) =
s
∑

i=1

ωi(q)( f (qi) + K |qi
(q− qi)) (6.28)

with linearization

K̃ |q =
s
∑

i=1

ω̇i(q)K |qi
.

The weights ωi(q) are normalized such that
∑s−1

i=0ωi(q) = 1 and the representation
of the qi is sorted such that it fulfills

‖q0 − q‖2 ≤ ‖q1 − q‖2 ≤ . . .≤ ‖ql − q‖2. (6.29)

Remark 6.5.5. If higher derivative information is available it can also be included
into TPWL, as for Lookup 2.

Remark 6.5.6. Weightsωi , for example, can be computed dependent on the distance
using an exponential kernel. For the current evaluation point q let di be the distance
di = ‖q− qi‖2 while the qi are ordered like 6.29. Then we can compute

ω̃i = e
�

−β di
d1

�

, β ∈ R,

and normalize afterwards to obtain

wi =
w̃i

∑s
i=1 w̃i

.

The error ‖ f (q)− f̃ (q)‖2 of both techniques, for a general function f , is only
small in a region where the distance between evaluation point q and lookup point
qi is small. The choice of qi , or the relation between those points at which f has
to be evaluated and the qi , is crucial for the success of a lookup method.

Example 6.5.7. For the sake of easy visualization we choose small dimensions. The
lookup methods are intended for higher dimensions where polynomial or spline in-
terpolation is more complicated than in two dimensions.

We are going to show the described lookup methods applied to

f : R2→ R
�

x
y

�

7→ sin(x)cos(y).

with 35 given interpolation points
�

x i
yi

�

given at a straight line starting from yi = 10

and equally space up to x34 = 9.9,

x i = 0+ (i− 1) · 0.3 for i = 1 . . . 34

plus one additional point at
�

18
6

�

. These are points drawn from a hypothetical

trajectory. We use the lookup methods to evaluate all missing points in a 20× 20
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Figure 6.3: Ground truth of Example 6.5.7

square. In the result of Lookup 1 (Figure 6.4), as expected, we see that the method
could only recover the local behavior of the function, while Lookup 2 (Figure 6.5) is
able to recover a little bit more. The result of both methods suffers from being not
differentiable. This is due to the norm we use to determine the closest point which is
not differentiable.

For TPWL we can circumvent the problem of differentiability by using all points
for the interpolation as seen in Figure 6.6. Using more than one point, for example,
five (Figure 6.7), helps already to obtain a locally smoother result than Lookup 1 and
Lookup 2 could generate.

Choosing the weights for TPWL as described in 6.5.6, a smaller value β leads to
slower decay of e−βd , which leads to a wider area of influence, whereas a bigger value
of β leads to a locally smaller influence.

In combination with the reduced basis representation, the lookup methods
may be directly used for the reduced system. This is beneficial through the much
smaller state-space which needs to be approximated.

In general, the lookup method can be employed for reduced or full system.
One can easily see that the application of Lookup 1 and the Galerkin projection
commute:

Lemma 6.5.8. Let

ˆ̃f = U T
k f (Ukqs) + U T

k Kqs
Uk(q− qs), (6.30)

s = argmini=1...l ‖Ukqi − Ukq‖2, (6.31)

be the Galerkin projection using Uk applied to Lookup 1 and

˜̂f = f̂ (q̂s) + K̂qs
(Ukq− q̂s), (6.32)

s = argmini=1...l ‖q̂i − Ukq‖2, (6.33)

be Lookup 1 applied after the Galerkin projection. Then it holds that

˜̂f = ˆ̃f .
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Figure 6.4: Result obtained by Lookup 1

Figure 6.5: Result obtained by Lookup 2
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Figure 6.6: Result of the TPWL method using all available points

Figure 6.7: Result of the 5 point TPWL method
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Remark 6.5.9. It can be checked that the lemma holds also for Lookup 2 and TPWL.

Although ˜̂f = ˆ̃f holds, their computational and memory costs differ. ˜̂f has only
the memory consumption of k · l for l times f̂ (q̂s) plus k · l for l times q̂s plus l · k2

for K̂qs
. All projections can be done in a “data collecting phase” of the method,

even Ukq needs not be computed, as it already is available as state of the reduced
system.

The computational complexity using either lookup method, splits up into an
offline and an online part. The offline computation consists for l points of calcu-
lating f (qi), i = 1 . . . l, for some given qi . This is still the same amount of work
as seen in the last section, but during the simulation of the reduced model, only
the online part accounts to the run-time of the method, which is much less. For
Lookup 1 and Lookup 2 we have to do l comparisons ‖q− ql‖ to find the closest
point denoted by qs. After this only a matrix vector multiplication by K remains,
which is for the projected matrices of order O(k3). We saved all projections and
the evaluations in the full space of dimension n� k. Beside the consistent dimen-
sion reduction the method allows a reuse of previous function evaluations.

Remark 6.5.10. The presented lookup methods are kind of a brute force approach.
In an application it may be advisable not to tackle the full system equations by one
lookup method, but rather split the problem into independent parts and apply a
lookup method to each of these, or even combine the lookup method with some ana-
lytic knowledge of the function to be approximated.

DEIM

In difference to a lookup method, another recently discussed approach to effi-
ciently overcome the difficulty of back-projecting into the full-state space is the
discrete empirical interpolation method (DEIM) [CS10]. To approximate a nonlin-
ear function f : Rn → R

n the idea is to project this function, as for POD, onto
a space that is spanned by a much smaller basis m � n, and captures the non-
linearity. Let

¦

v1, . . . , vm

©

⊂ Rn

be such a basis. Then

f (t)≈ V c(t),

where V =
�

v1 · · · vm

�

∈ Rn×m and c(t) is the corresponding coefficient vector.
To determine c(t) we select m rows of the system f (t) = V c(t). Consider

P =
�

ep1
· · · epm

�

,

where epn
is the pn-th unit vector. If PT V is non singular we determine c(t) by

PT f (t) = PT V c(t). (6.34)

So that f is only evaluated at the indices pi . The interpolation of f (t) is then

f (t)≈ V (PT V )−1PT f (t). (6.35)

We have two choices left:
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1. The projection basis
�

v1 . . . vm

�

.

2. The interpolation indices
�

p1 · · · pm

�

.

We select the interpolation indices by applying the inductive Algorithm 3. The
idea is to add an interpolation point at the index pi which has the maximal error
in the basis considered up to component i. We iterate by considering more basis
components and adding one point for each basis vector.

Algorithm 3 DEIM
p1 = index_of_maximum(|v1|)
V = [v1], P = [ep1

], p = [p1]
for i = 2 to m do

Solve c = (PT V )−1PT vi
residuum= vi − V c
pi = index_of_maximum(|residuum|)
V = [V, v1], P = [P, ep1

], p = [p, p1]
end for

Lemma 6.5.11. [CS10] Let f ∈ Rn, {v1, . . . , vm|vi ∈ Rn} be a set of orthonormal
vectors and

f̃ = V (PT V )−1P f ,

with V =
�

v1 . . . vm

�

and P =
�

ep1
· · · epm

�

. An error bound for f̃ is given
by

‖ f − f̃ ‖2 ≤ CE∗( f ),

where

C = ‖(PT V )−1‖2, E∗( f ) = ‖(Id−V V T ) f ‖2.

Lemma 6.5.12. [CS10] By using Algorithm 3 for the selection of the projection P
in Lemma 6.5.11 the approximation of f is the best 2-norm approximation from the
space Im(V ). Furthermore we get a bound on C by

C ≤
(1+

p
2n)m−1

|eT
p1

u1|
= (1+

p
2n)m−1‖u1‖−1

∞ .

Remark 6.5.13. The main saving in computation time of this method is due to the
projection PT f in (6.35). This selection of m rows out of the n components of f al-
lows to reduce the evaluation to these indices (the value at the others is approximated
by the used method) such that if the components of f can be computed independently
we save much of the computation time. However, the more components of f are
needed to evaluate one selected index of the function the more we will recover the
original evaluation time.

For model reduction we apply the method to the system

ẋ = f (x)
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and obtain the reduced system using the POD projection basis Uk

˙̂x = U T
k f̃ (Uk x̂)

⇔ ˙̂x = U T
k V (PT V )−1PT f (Uk x̂).

The matrix U T
k V (PT V )−1 may be pre-computed.

Remark 6.5.14. For bringing DEIM to the application in structural mechanics we
struggle on how to evaluate only some selected components since, by the mesh, every-
thing seems to be connected.





Chapter Seven

Simulation Examples

After getting the POD and lookup methods in the last chapter, we will show a few
examples of the methods applied to structural dynamical problems.

7.1 Training

As of now we have not talked about what to do in the case of a variable input u,
which u shall be used for the training of the time-snapshots matrix

X =
�

x(t1, u(t1)) · · · x(tn, u(tn))
�

. (7.1)

This is a crucial aspect, as the POD reduced system will only be valid if the system’s
dynamics are captured in the projected subspace as seen at the end of Section 6.3.

Since a projection basis Uk (6.18) depends only on the observed time-snapshots
(7.1) for a different input signal ũ, we expect the reduced model to be valid only
if the states of the solution trajectory φ(x , ũ, t) can be expressed by the projection
basis without loosing much of their information. So the projection basis clearly is
not independent of the system’s inputs while snapshot generation. Let’s assume
we know an input signal ud(t) to our system, in advance of the simulation (for
t ∈ [0, tend]). Is there a way of obtaining X (7.1) for ud? Obviously yes, since
X can be computed via a full-system simulation. Taking this X as usual to cal-
culate the POD basis leads to an appropriate projection basis Uk. However, this
procedure is very expensive for large time-periods.

Remark 7.1.1. The input signal ud is obtained by following a hierarchical approach.
Remember that in our motivation the reduced structural mechanical model is only a
part of a bigger system. A structural mechanical sub-system can be approximated by
a linearization (or in other terms by springs and dampers). Simulating the larger
system using this approximated sub-system gives some input signal ud , which can
be used to train a reduced model. Following this way the reduced system is another
approximation to the full sub-system and the procedure may be repeated.

Definition 7.1.2 (Input dependent projection-basis). For a differential equation
ẋ = f (x , u) with given initial values, we denote by Ξ(u)k the POD projection basis
of size k generated using X =

�

x(0, u(0)) · · · x(tn, u(tn))
�

for sufficiently many
equally spaced time-steps t1 . . . tn, t1 = 0.

The challenge is to synthesize an input uT (t) for t ∈ [0, tT ] with tT � tend
such that Ξk(uT ) = Ξk(ud). Denote by Tk the set of all input-signals u which give
rise to the same projection basis

Tk =
�

u|Ξk(u) = Ξk(ud)
	

.

Then we are searching for those u(t) ∈ Tk having minimal “end-time” tT .

97
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Remark 7.1.3. The requirements to u may be relaxed by considering that the snapshot-
matrix X may be composed of different inputs ui , i = 1 . . . n

X =
n
⋃

i=1

X i ,

X i =
�

x(0, ui(0)) · · · x(tni
, ui(tni

))
�

.

Synthesizing uT seems to be very difficult and leads through an inverse prob-
lem. Consider the singular value decomposition of Ξk

Ξk =
�

Ξk ζ
�T
�

Idk
0

�

Idk with ζ⊥ Ξk.

We see that an optimal input uT could be the input for which the time-snapshot
matrix is already equal to the projection basis, so we are searching the inverse
input to the POD modes which are unknown up to this point. This seems to be
very difficult.

Remark 7.1.4. Another brief idea could be formulated in the spirit of balanced trun-
cation. We have to remove those inputs or time-intervals from ud which don’t generate
much energy in the output and retain those which give rise to large singular values.

These approaches and others to obtain optimal input signals for snapshot gen-
eration is out of the scope of this thesis. In structural mechanics we will in the
following give an example for which it was possible to use a reduced model for
a longer time period than the corresponding training. A similar observation was
made in [Her08].

For the selection of this training input we rely on some heuristics and model
properties, in this way we selected a seemingly characteristic excitation and used
it for the training.

Remark 7.1.5. Even if we don’t know how to choose a training, we can use the
knowledge on how sensitive our projection basis is to the training by looking into the
classic theorems on the singular value decomposition, for example, the Theorem of
Wedin 6.2.9 and the Theorem of Mirsky 6.2.7.

7.2 Example: 2D bushing

As our first example of POD we modeled a 2D rubber part under the assump-
tions of plane strain. The part we are going to simulate (Figure 7.1) consists of
three rings where the outer rings shall be steel rings while the inner part repre-
sents a compressible rubber-like material. The material of the smaller and outer
rings (coloured in red) are modeled as nearly rigid by a linear elastic isotropic
material with a Young’s modulus of 200.0[GPa] and Poisson ratio of 0.33. In the
central ring (coloured gray) we use a compressible hyperelastic material model
with bulk modulus κ = 30[M Pa]. The isochore energy strain function is chosen
as the relation of Mooney-Rivlin (Example 2.2.5), where we used the parameters
c10 = 0.4[M Pa] and c01 = 0.1[M Pa]. The density of the hyperelastic part is
1.1 · 10−9[ t

mm3 ] while both other rings have got 7.85 · 10−9[ t
mm3 ]. The radius of

the inner ring is 10[mm] while the outer ring is of radius 25[mm].
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Figure 7.1: 2D rubber part and mesh

The boundary conditions of the simulation are a fixed position of the outer ring
while the inner ring is displaced (as a whole) in horizontal and vertical direction.
The structure is discretized using linear finite elements. The mesh, represented in
Figure 7.1, is composed of 496 elements and carries 1248 degrees of freedom.

For a demonstration of the POD method we follow the steps of Definition 6.3.1
and generate the matrix of time-snapshots using a displacement via

u(t) =





A1 sin(2π f1 t)

A2 cos(2π f2 t)
�

1− 1
(1+t)6

�



 with t ∈ [0,1], (7.2)

A1 =, A2 = 9[mm], f1 = f2 = 3[Hz], of the inner ring.
The calculation is first performed for the full-system. We utilize the full simu-

lation to construct the snapshot matrix

X =
�

q(t1, u(t1)) · · · q(tN , u(tN ))
�

and the reduction basis Uk. Additionally we use the solution q(t) as a reference
solution to compare the simulation results of full a reduced models. In the Figures
7.2 and 7.3 we show some of the basis vectors (POD modes) selected through the
training, i.e., columns of Uk.

Doing a simulation of the projected system and comparing it to the full sim-
ulations, we plot the relative difference in Figure 7.4. We see that it decreases
with the number of used basis vectors. For k = 200 we observe a relative error
of ≤ 0.1% in position and velocity components. The system represented in the
reduced coordinates q̂ is depicted in Figure 7.5. We see the contribution of the
different basis components (also corresponding to the bases, partly seen in Fig-
ure 7.2 and Figure 7.3). Notice how the absolute value of contribution decreases
while the index of the bases increases. This is due to the minimal rank property
of the singular value decomposition (Theorem 6.2.3). Also observe that the first
and second POD mode are the only needed to describe the movement of the inner
ring.

For a qualitative comparison between the different projections we plotted (Fig-
ure 7.6) the trajectory of one selected degree of freedom inside the bushing using
different basis sizes within the POD method.
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Figure 7.2: POD basis vectors numbered by corresponding singular value
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Figure 7.3: continued: POD basis vectors
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Figure 7.4: Relative Error of the POD method with respect to the used basis size
and decay of singular values

Figure 7.5: Solution of 2D bushing example represented in reduced coordinates
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Figure 7.6: Qualitative comparison of different POD approximations in the 2D
bushing example

Example mixed formulation

For a reduction of the mixed singularly singular perturbed system as discussed in
Part I we proceed like described in the subsection on POD for perturbed systems
on page 84.

The example is computed for the same geometry and material parameters used
at the begin of this section (Figure 7.1), but we use a mixed formulation to handle
deformation q and pressure p separately as described in Section 2. The choice of
finite elements has to be adapted to attain a well-defined system as discussed in
Section 3.2. So to fulfill the inf-sup condition we choose a second order approx-
imation of displacement quantities q and a linear one for the pressure p. By this
the number of degrees of freedoms increases from 1248 to 3264 while the number
of elements is retained at 496.

For obtaining a perturbed system we increase the bulk-modulus to

κ= 3 · 105[M Pa]

(which also is a typical, physically observed value for rubber materials [Tab94]),
and get a Poisson ratio of ν = 0.499998.

The excitation used in the example is again a displacement of the inner ring
by

u(t) = 9
�

1

1+ e−10t+8 −
1

1+ e8

�

sin(2π f t)[mm].

in up-down direction while the outer ring is fixed. The calculated reference solu-
tion for all nodes in q and p is plotted in Figure 7.7.

We consider approach (b) and (c) as discussed on page 84. For the projection
basis Uk snapshots of the exact solution q are used. In the following k, the size of
the basis, will be fixed to 100.
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Figure 7.7: Referenced solution of Displacement and pressure of all components
over time

Figure 7.8: Relative error using different size of bases in pressure while fixing the
basis to 100 elements in displacement quantities

For approach (b) all 288 p variables are retained, and a simulation of the
reduced model is done using the same input trajectory u(t), used in the full sim-
ulation. In rightmost point of Figure 7.8 we see the obtained relative error in
comparison to the reference simulation.

Introducing a second POD basis using snapshots of p

Xλ =
�

p(t1, u(t1)) · · · p(tN , u(tN ))
�

,

we construct a separate projection basis Lm for the pressure components following
approach (c). The relative error of the reduced model for different projection
sizes m is plotted in Figure 7.8. We are astonished to see a decreasing error for
decreasing size of m. Since less information is used the error shall increase.

Remark 7.2.1. In our test implementation the computation time was not dominated
by the solution of the nonlinear system, hence we used no lookup method and had a
communication overhead while coupling multiple simulation tools. Thus our savings
were as estimated in Section 6.4 small. In the next section we see an example with
significant savings due to the lookup method.
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7.3 Example: Detailed 3D bushing

For a the next example we want to come to the model of a real rubber-made
bushing (Figures 7.9, 7.10).

Figure 7.9: Real bushing and its finite element model

The corresponding finite element model as provided by Vibracoustic GmbH&Co
KG consists of ≈ 30,000 elements yielding ≈ 100.000 degrees of freedom. As ma-
terial model we used again a description by Mooney-Rivlin (Example 2.2.5).

Full system simulation

For discretization and full system simulations we relied on a commercial finite
element package, in this way we could include the inner contact areas and the
rigid body constraints for inner and outer elements into the simulation. From an
input to output view, the model consists of one force transmission point connected
to the inner surface, and one force transmission point connected to the outer
surface. Thus the model inputs and outputs are, respectively, only the 6 degrees
of freedom (displacements in all 3 directions and rotations around 3 axis) of the
two connecting rigid bodies. We choose the classical formulation (not the mixed
form) while decreasing the bulk modulus reasonably and consider standard linear
finite elements.

For the simulation, forces and moments are prescribed at the inner rigid body

Figure 7.10: Side view of horizontal and vertical cut through the middle plane of
finite element model.
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Figure 7.11: Selected training excitation

while the position of the outer one is fixed in all degrees of freedom. The simulation-
results are thus the generalized deformations of the middle reference point.

To obtain also a realistic excitation we took a multibody simulation in which
the bushing of choice was modeled using only some characteristic curves of the
part. We will bring a part of these excitation to the finite element model and
will use them for the training of the reduced model. The used force and moment
trajectories can be seen in Figure 7.11.

All results of the full model are calculated by a commercial software, using an
explicit variant of Newmarks method and step-size h = 10−6[s]. Explicit integra-
tion was a necessary choice in our simulation tool because of the huge number of
freedoms, also the explicit integrator forced us to select the compressible material
model. Unluckily we couldn’t interface the tool for implementing the presented
integration methods of Chapter 5.

The simulation time of the example is only 1 second. In Figure 7.12 one can
see the displacements corresponding to the inputs of Figure 7.11. We see how
large the deformations inside the part are and how different states of contact are
realized.

Reduced system simulation

Consider the discretized system to be of the form

Mq̈ = f (q) + fex t(t). (7.3)

The described full-simulation is used to obtain the following data at a number of
time-steps t i , i = 1 . . . n:

- time-snapshots of deformation states qi = q(t i),

- inner-force vector fi = f (qi),

- linearization at different time-steps

Ki =
∂ f (q)
∂ q

|qi
. (7.4)

Remark 7.3.1. In our example the matrices (7.4) have roughly 3 · 106 nonzero
elements, obtaining them from a commercial tool for projection is rather technical
but unluckily not trivial, since they are usually only created and needed while solving
the system and are additionally not directly available for export. We had to save
intermediate steps while solving the full dynamics and do a re-initialization using the
saved states to start the matrix extractions.
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Figure 7.12: Snapshots of unscaled displacements of full simulation using the
excitation seen in Figure 7.11 at time-steps (from top left to bottom right) t =
[0.39, 0.43, 0.47, 0.55, 0.57, 0.72, 0.77, 0.89]

Figure 7.13: First four POD-modes calculated via the full displacement snapshots,
note that modes do not automatically obey the constraint

In our example we used the data of 300 equidistantly distributed time-steps in
the one second simulation interval. The time-snapshots

X =
�

q1 · · · q300

�

are used to calculate projection basis Uk, the first four POD-modes can be seen
in Figure 7.13. The force is only applied to one rigid body node, consisting of
6 degrees of freedom. We added this node and the rigid body output node as
described in Chapter 6.4 (page 84) by an identity into the projection basis.
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The collected inner-force vector fi , at qi and linearization Ki also at qi for
i = 1 . . . 300 are projected to

f̃i = Uk fi , q̃i = Ukqi , K̃i = UkKiU
T
k (7.5)

and used to construct a lookup table for the TPWL approximation (Definition
6.5.4)

f̂ (q̃) =
s
∑

l=1

ωl(q̃)( f̃l + Kl(q̃− q̃l)),

ωl(q̃) = ‖q̃− q̃l‖





s
∑

j=1

‖q̃− q̃ j‖





−1

,

(7.6)

with indices sorted such that

‖q̃− q̃1‖ ≤ ‖q̃− q̃2‖ ≤ . . .≤ ‖q̃− q̃s‖.

Putting lookup and projection together into (7.3) we end up at the reduced
system

M̃ ¨̃q = f̂ (q̃) + f̃ex t(t) (7.7)

with precalculated values of

M̃ = Uk MU T
k , f̃ex t = Uk fex t(t).

By choosing the projection of size k = 250 we obtain system (7.7) with only 250
degrees of freedom and due to precalculated projections of (7.5) and the used
lookup (7.6) we have no need for back-projecting into the full model. Thus the
reduced system can be solved independently of the full system, as long as the
lookup yields a good approximation, and the reduced system is valid as long as
the used projection basis can capture the displacements.

For the reduced system we have all data at hand and so use the generalized-α
method from Section 5.2 to solve the system. The solution is calculated not only
for the used training excitation (Figure 7.11), but also for an extended 4 second
signal depicted in Figure 7.14. The additional 3 seconds arise from the same
multibody simulation and are not equal to first second.

The obtained trajectory of the inner rigid-body in all its six degrees of freedom
is plotted in Figure 7.15. For comparison we did another simulation of the full
model for the whole 4 second interval which can be seen as the reference solution
in Figure 7.15. We see a good accordance between reduced and full simulation.
Especially, the more significant components (larger deformations) are captured
adequately. Components of smaller magnitude are overall still following the ref-
erence solution but the reduced solution leaves off more often.

In Table 7.1 we listed the times which had to be spent for the different steps.
Comparing the simulation times of the reduced System using the lookup method,
which were 126[s] including back projection, and the simulation of the full model
for the 4 second signal, which took 45[h] on 4 CPU cores, we see a significant sav-
ing of a factor ≈ 1.000. However, we also have to take into account the necessary
steps for obtaining the reduced system. The full simulation to train the reduc-
tion basis and lookup method took 12[h]. Because of the bad interface (Remark
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Figure 7.14: Extended excitation for the reduced system

7.3.1), extracting the required data from the simulation took almost as long as the
training simulation. After this, we left the commercial tool behind and calculated
the projection basis in 3[h]. So in total we spend 27[h] to obtain the reduced
system which can then be solved in 126[s].

step CPU- time

full system simulation, for 1 [s] 12 [h]
data extraction for basis and lookup ui , fi , Ki 12 [h]

calculation of projection basis 3[h] reduced system simulation 126 [s]

full system simulation, for 4 [s] 45 [h]

Table 7.1: Comparison of computational costs at the different steps

7.4 Conclusion

For a model reduction of finite element models we have presented in Part II the
POD method which can be applied to a rather general class of nonlinear systems.
We discussed how the technique can be applied to a structural mechanical prob-
lem. The need of a simulation using the full system couldn’t be completely re-
moved, but still an advantage is gained since the full system can be simulated
very efficiently in the case of nearly incompressible hyperelastic materials using
the optimized methods of Part I.

We saw that the nonlinear model reduction can be applied to our class of prob-
lems, but to save computational costs it has to be split into two parts. One part
handles the pure dimension reduction. The other part needed is an efficient inter-
polation of the nonlinear equations so that POD with lookup gave us significant
savings. The method has got a high potential. However a further development of
interpolation techniques could lead to improved results by attaining larger areas
of validity.

Also for a model reduction of the singularly perturbed system we showed how
the POD method can be applied to the constrained system and did a few success-
ful numerical experiments. In general a better understanding on how to handle
constraints inside of a reduced model is necessary.

The reduced finite element model can now be included into a multibody sys-
tem. It needs to be investigated how large the area of validity has to be for specific
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Figure 7.15: Result of POD Lookup simulation in comparison to reference solution
for all six components. Notice that the POD Lookup method was trained using only
the first second of the full simulation. Excitation is taken from Figure 7.14
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use-cases. The accuracy of the used model reduction can be adapted by changing
the training excitation, the size of the reduced system and the accuracy of the used
lookup method.

A further extension of our work can be done by considering also damping
effects inside the rubber-bushing. The techniques for dimension reduction should
be similar to the presented methods, but a different approach may be needed in
the lookup method if one also wants to include velocity information.
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