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Abstract

The aim is to prove global existence and uniqueness of square integrable solutions to

a class of multiscale models for tumour cell migration involving chemotaxis, haptotaxis,

and subcellular dynamics. This approach allows the tissue fibre and cell densities as well

as concentrations of chemotactic signals to be less regular and the conditions sufficient for

well-posedness of the multiscale model to be less restrictive than in previous settings.

1 Introduction

Tumour cell invasion is one of the essential stages in the development of cancer. Thereby,

the tumour cells migrate through the surrounding tissue (extracellular matrix) towards blood

or lymph vessels which they penetrate and thus access the blood flow. Through the blood

circulation they are taken to distant locations, where they extravasate and develop new tu-

mours, a process known as metastasis [23, 58]. The intravasation and the subsequent systemic

spread of cancer cells is facilitated by chemotaxis, a complex process during which a gradient of

extracellular compounds is detected by the cells and initiates a series of intracellular signalling

pathways leading to the coordination of cell movement along the chemoattractant gradient

[18, 42].

During their movement the tumour cells interact with the extracellular matrix (ECM):

They need to rely on the tissue fibres, thus the latter enhance invasion upon providing a moving

support, however they can also impede the motion when they are too dense and/or have an

unfavourable orientation w.r.t. the cell’s direction of migration. The latter situation often has

as consequence a particular type of invasiveness termed mesenchymal (see, e.g., [28]). This

migration phenotype is tightly connected with the production of proteinases (matrix degrading

enzymes like matrix metalloproteinases MMP and cathepsins), which are upregulated in tumour

cells [34, 37, 52] and facilitate dissemination and metastasis [51, 52] upon allowing to remodel

the ECM and to control its interaction with the cancer cells. A further effect of the proteolytic

activity of matrix degradation is the production of chemotactic ECM fragments, as well as

promigratory neoepitopes that engage specific sets of cell surface receptors (called integrins)

[28, 29], these in turn triggering cell motility.

Hence, cancer cell invasion is a multiscale process ranging from the subcellular level of

integrin binding and signalling pathways through the level of individual cell behaviour up to

the scale of the entire cancer cell population. According to these scales, most of the available

mathematical models can be assigned to three large classes:
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Microscopic models focus on processes at the intracellular and/or cell surface level, usually

characterised with the aid of a system of ordinary differential equations for the concentration of

the biochemical substances playing a role in the respective signalling pathways or characterising

the evolution of integrin-ligand complexes actually initiating the cell response to its surround-

ings. We refer to, e.g., [10] for an emphasis on proteolysis, to [39] for the dependence of the cell

migration speed on receptor and ligand densities and receptor-ligand binding constants, and to

[44] for an investigation of space-time dynamics describing the onset of lamellipod protrusion

(a crucial step in integrin-mediated haptotactic cell invasion).

In the mesoscopic framework the migration process is modelled by way of a kinetic transport

equation for the cell population density, where an integral operator describing the changes in the

cell velocity replaces the typical collision terms. This type of models was proposed by Othmer

et al. [49] in order to characterise the so-called velocity jump dispersal of organisms like bacteria

under a chemotactic signal. Rigorous theoretical results for a one-particle distribution function

were provided by Stroock [53]. In the context of tumour cell migration, Hillen proposed a

related model for mesenchymal invasion [32], which was further enlarged by Chauvière et al.

[17] to account for chemotaxis and cell-cell interactions. The global existence of measure-valued

solutions to such a kinetic model was proved by Hillen et al. [33] more recently.

Starting from mesoscopic models of the type mentioned above, one can derive macroscopic

descriptions via adequate scalings and averaging, leading to evolution equations for the mo-

ments of cell distribution function, see, e.g., [24] for hyperbolic models for chemosensitive

movement or [32] for parabolic and hyperbolic scalings in the context of mesenchymal cancer

cell migration through network tissues. Rigorous results on hyperbolic and parabolic limits

of kinetic equations for chemotaxis are presented, e.g., in [15] and [50], respectively. Further

macroscopic models for cell migration directly rely on mass conservation and/or mechanical

force balance [6, 16] or on the theory of mixtures [8, 43, 61, 60].

Multiscale settings interconnecting the modelling on the cell scale level with population level

descriptions such as kinetic or macroscopic equations offer a deeper insight into the migratory

mechanism and hence greatly enhance the realism of the models, but are rather scarce, due

to their complexity. A promising multiscale model in the context of tumour immune system

competition with medically induced activation-deactivation was proposed by Firmani, Guerri

and Preziosi [25]. The same idea was retaken by Erban and Othmer [20] in a more recent

model dealing with a multiscale description of bacterial chemotaxis, in which the relevant

intracellular signal transduction was modelled by a simple excitation-adaptation mechanism,

while the density function of bacteria obeys a Boltzmann-like equation coupled to a reaction-

diffusion equation for the chemotactic signal. This model was enhanced later by Bournaveas and

Calvez [12] in order to allow for true excitation in response to small perturbations. The global

existence of its unique solution was shown in higher dimensions (a 1D result for the model in

[20] can be found in [21]) via dispersion and Strichartz estimates under some borderline growth

assumptions on the turning kernel for the velocity changes. A related, but more detailed

multiscale model for bacterial dispersal, along with a different proof for the global existence of

a unique solution was provided in [54]. The latter also introduced an equation-free model for
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the velocity jump movement of bacteria under the influence of a chemoattractant signal and of

the intracellular dynamics. Furthermore numerical simulations for the macroscopic cell density

are presented via a nonparametric method (see [55, 56]), an issue of particular interest, since

no reliable numerical methods are available so far for handling a full multiscale setting of this

type. In [36], the authors started from the mesoscopic framework to deduce a multiscale model

describing the evolution of tumour cell population density, whereby at the microscopic scale

they did not account for genuine intracellular signalling, but rather for the receptor dynamics

on the cell surface. Those integrins provided linkages to the tissue fibres and to the ECM

fragments resulting from proteolytic degradation. The latter acted as a chemoattractant, the

evolution of which was characterised by a reaction-diffusion equation connected to the kinetic

equation for the cell density and to the cell surface dynamics of integrins. In [35], the model

also accounted for the dependency of proteolytic cutting on the fibre density in the direction

of movement. Those concrete settings both align to the very general kinetic theory of active

particles (KTAP) proposed by Bellomo et al. [9]. Another class of multiscale models connecting

the microscopic and macroscopic levels of cancer cell migration was considered in [57] and [46],

where the focus was on the effect of heat shock proteins on the tumour cell motility with a less

detailed, rather phenomenological description of the microscopic phenomena.

It is the model in [36] which makes the object of the present study. The existence of a unique

weak solution to that coupled system was proved there in L∞(0, T ;L1 ∩ L∞) (for tumour cell

density and fibre density) and respectively in L∞(0, T ;L∞∩W 1,1) (for the concentration of the

proteolytic product) with the aid of a regularisation and a fixed point argument. The existence

proof relies on the regularity assumption L∞ (over the entire, particularly unbounded, space

of positions, velocities and internal states), which is used for the estimates in [36]. To the best

of our knowledge, essential boundedness is encountered throughout all existence results to be

found in literature for multiscale models of this type.

However, as cell migration is a highly erratic process featured by very complex phenomena

and influenced by a strongly heterogeneous and rapidly modifying environment, the cell and

fibre densities – though existing globally in time – should be allowed being less regular and the

conditions for their existence being less restrictive. This requirement is fulfilled by our global

existence and uniqueness result in L2 spaces.

The paper is organised as follows: In Section 2, we recall the model introduced in [36],

which will be subsequently analysed. The main results are stated in Section 3. They concern

the differential equations with functional dependencies on the components. This generalization

is to facilitate their application to future extensions of the cell migration model. Its proof relies

on the method of successive approximations and, its structure is outlined in Section 4. Thereby,

the coupled system is split into several subproblems: One for the cell density (Section 5) and

two others for the fibre density and the concentration of proteolytic fragments acting as a

chemoattractant respectively (Section 6). Finally, the fixed point argument in Section 7 will

complete the existence proof of the full original problem. This method also leads us to sufficient

conditions for the continuous dependence of the solution on the given data (i.e., initial states

and coefficients) and for preserving nonnegativity of all concentrations and densities involved.
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2 Setting of the problem

2.1 Model variables

In order to ease the reading, we provide a summary of the variables involved in our model:

• x ∈ Rn spatial position of cell;

• v =
⋃

λ∈ [s1,s2]

λ · Sn−1 = V ⊆ Rn, 0 ≤ s1 < s2 <∞ velocity; v̂ = v
|v| normalised velocity;

• y = (y1, y2) ∈ Y ⊆ Rd vector characterising the integrin state on the cell surface;

• y1: concentration of a cell’s integrins bound to ECM fibres;

• y2: concentration of a cell’s integrins bound to the proteolytic product L;

• R0: total concentration of integrins (bound or unbound) in a cell;

• z := (x,v,y) ∈ Rn × V × Y =: Z (just for abbreviating the tuples)

• θ ∈ Sn−1 orientation of the ECM fibres;

• f : [0, T ] −→ L2(Rn×V ×Y ) time-dependent cell concentration (Lebesgue density);

• f̄(t,x): macroscopic cancer cell density;

• Q : [0, T ] −→ L2(Rn × Sn−1) time-dependent density of ECM fibres;

• Q̄(t,x): macroscopic density of ECM fibres;

• L : ]0, T ] −→ W 1,2(Rn) time-dependent spatial concentration of chemoattractant (ECM

fragments resulted by proteolytic degradation);

• isotropic diffusion κL > 0 of chemoattractant.

Throughout this work we will use the same notation for the species Q̄ and L and for their

densities and concentrations, respectively.

2.2 Microscopic dynamics of migrating cells

Let Sn−1 denote the unit sphere in Rn and let θ ∈ Sn−1 be the fibre orientation. Then we

denote the density of ECM fibres oriented in the direction θ at time t and at location x ∈ Rn

by Q(t,x, θ). The total concentration of ECM molecules is then given by

Q̄(t,x) :=

∫
Sn−1

Q(t,x, θ) dθ. (1)
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Let V ⊆ Rn represent the set of all possible velocities of moving cells. We assume that V is

radially symmetric and can be written as

V = [s1, s2] · Sn−1 Def.
=

⋃
λ∈ [s1,s2]

λ · Sn−1 ⊆ Rn, 0 ≤ s1 < s2 <∞, (2)

where [s1, s2] is the range of possible speeds.3 We consider the population of cells as a system

of N particles having positions xj ∈ Rn and velocities vj ∈ V for j = 1, ..., N . In the absence

of reorientation and assuming that there are no external forces, the cells move along straight

lines obeying Newton’s first law of motion

dxj

dt
= vj

dvj

dt
= 0.

(3)

For the dynamics on the cell surface, we use a kinetic model for the binding of ECM-proteins

Q̄ and proteolytic product L to free integrins denoted by R. The reversible binding of integrins

to ECM-proteins leads to a complex RQ according to the equation

Q̄+R
k1−−⇀↽−−
k−1

RQ.

The corresponding equation for the formation and dissociation of complexes RL of integrin

and proteolytic product reads

L+R
k2−−⇀↽−−
k−2

RL.

We denote the concentrations of integrins of cell j bound to ECM-molecules by yj1 and the

concentration of integrins of the same cell bound to the proteolytic product L by yj2. The

total concentration of integrins (bound or unbound) of each cell is conserved and given by

R0 ∈ R+. Thus, R0 − yj1 − y
j
2 is the concentration of unbound integrins of cell j. Clearly, one

has (yj1, y
j
2) ∈ Y with

Y := {(y1, y2) ∈ (0, R0)2 | y1 + y2 < R0}. (4)

The state equations for the cell surface dynamics now read

∂yj

∂t
= G(yj , Q̄(t,xj), L(t,xj)) (5)

for j = 1, ..., N and with the mapping G : Y × [0,∞)× [0,∞)→ R2 defined by

G(y, q, l) :=

(
k1 (R0 − y1 − y2) q − k−1 y1

k2 (R0 − y1 − y2) l − k−2 y2

)
. (6)

This system relying on mass action kinetics characterises the subcellular dynamics in [35, 36].

Here we consider a slightly different model and assume the bindings between integrins and

ECM fibres and proteolytic residuals to infer a certain amount of saturation:

G(y, q, l) :=

(
k1 (R0 − y1 − y2) q

1+γQ q − k−1 y1

k2 (R0 − y1 − y2) l
1+γL l

− k−2 y2

)
(7)

with some positive saturation constants γQ and γL.

3Hence the case with directed tissue fibres is allowed as well.
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This choice corresponds to the assumption of a constant number of cell surface receptors,

hence limited binding possibilities. The same motivation applies in Subsection 2.3 below to

the interaction between cells and ECM tissue fibres in the haptotaxis operators H+ and H−
(see (8),(9)) and the equations (18),(19) for the evolution of fibre density and concentration of

proteolytic rests, respectively.

Remark 2.1 Observe that the set Y defined in (4) is not closed, since this would mean that

(at least) one of the following situations occurs:

• there is no complex RQ, thus no binding between ECM and integrins, which is very

improbable, since the cell moves in the tissue and therefore has to rely on the ECM

fibres;

• there is no complex RL, thus no binding between integrins and proteolytic rests of the

ECM, which is again highly improbable, because of the quasi-ubiquity of these rests.

Moreover, no binding to L would mean no chemotaxis;

• all receptors are occupied by ECM and/or proteolytic rests: this actually never hap-

pens and has never been observed, since this would impede chemotactic behaviour and

migration per se.

Furthermore, considering such an open and bounded set requires invariance properties for the

flow of (5), see [36]. In order to present the existence proof in a more transparent way, we start

with the additional assumption Y = Rd. Furthermore, our considerations will be carried out

for general dimensions d and n although only d = 2 and n = 3 are needed for the problem at

hand.

2.3 Mesoscopic model. Including the microscopic dynamics

Next we propose a multiscale model involving the mesoscale dynamics of the population density

f(t,x,v,y) of cells that have velocity vector v and – on the microscale – the internal state4 y at

time t and location x. The model (a deduction of which can be found in [36]) is completed with

the equations for the ECM fibre density Q(t,x, θ) and for the concentration of the proteolytic

product L.

In the framework of our model for tumour cell migration, the changes in velocity orientation

can occur due to one of the following two kinds of events:

• A cell may encounter a collagen fibre of the ECM and adapt its motion according to the

direction of this fibre. We model this with a haptotactic term H(f,Q,x,y).

• A cell may adjust its orientation to the gradient of the attracting chemical L, leading to

a chemotactic term C(f, L,x,y).

4As in [36], we (slightly abusively) call the integrin dynamics on the cell surface internal dynamics, since

receptor bindings are the first step in the downstream intracellular events conditioning the motile behaviour.
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We assume that the probability of a cell changing its orientation in the time interval under

consideration is proportional to ∆t and denote the corresponding rates by ph(t,x,v,y) and

pc(t,x,v,y). The operator for haptotaxis H can be written as H = H+ − H− with a gain

term H+ and a loss term H− which (using the shorthand notation f(v′) := f(t,x,v′,y) and

Q(θ′) := Q(t,x, θ′)) are defined as

H+(f,Q,x,y) =

∫
V

∫
Sn−1

ph(t,x,v′,y) ψ(v; v′, θ′) f(v′)
Q(x, θ′)

1 + γQ · |Q(x, θ′)|
dθ′ dv′ (8)

H−(f,Q,x,y) = f(v) ph(t,x,v,y) ·
∫
V

∫
Sn−1

ψ(v′; v, θ′)
Q(x, θ′)

1 + γQ · |Q(x, θ′)|
dθ′ dv′ (9)

where ψ(v; v′, θ′) denotes the likelihood of a cell having the velocity v′ before the encounter

with a fibre having orientation θ′ to continue its motion with the velocity v after the interaction.

Since the cells are conserved during interactions with the fibres, the following condition must

hold: ∫
V
ψ(v; v′, θ′) dv = 1. (10)

A possible choice for the haptotactic turning kernel5 could be

ψ(v; v′, θ′) = |v̂′ · θ′| K(1)
H (v, θ′) + (1− |v̂′ · θ′|) K(2)

H (v,v′), (11)

where K
(1)
H and K

(2)
H denote two reorientation kernels. The fibre orientation assigns different

weights to each of these kernels. Hence, if the encountered fibres are nearly orthogonal to the

cell’s previous direction of motion, then the probability of cutting these fibres by proteolysis

is high and the kernel K
(2)
H will be preferentially chosen. The latter could be, e.g., a Gaussian

kernel ensuring that the new direction of the cell stays close to the old one, while the choice

for K
(1)
H can be for instance the Dirac distribution δ(v − θ′), expressing the fact that the new

cell’s direction is dictated by the direction of the encountered fibre(s).

The decomposition C = C+ − C− for the operator related to chemotaxis C into a gain term

and a loss term reads

C+(f, L,x,y) =

∫
V
pc(t,x,v

′,y) K[L](v; v′,x,y) f(v′) dv′ (12)

C−(f, L,x,y) = pc(t,x,v,y) f(v). (13)

The turning kernel is given by the mixture

K[L](v; v′,x,y) = α1(y) K(v,v′) + α2(y) K(v,∇L),

with the coefficients α1, α2 : Y → [0, 1] assigning corresponding weights to the random direction

change and to the chemotactic effects, respectively, and such that α1 +α2 = 1 on Y . Thereby,

K can be any kernel satisfying the conservation condition∫
V
K(v,v′) dv = 1. (14)

5In [36] it has been kept in a generic form and it assumed the alignment of the tumour cell to the encountered

fibres, not accommodating in its structure the effects of proteolysis
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Remark 2.2

• One could consider two different kernels as well, one for the turning and one for the

chemotactic part. We chose here the same kernel just for the sake of simplicity.

• A possible choice for the weights αi (i = 1, 2) is αi(y) = α̃i(y)
α̃1(y)+α̃2(y) , with α̃i(y) =

exp(Ci|y|) and constants Ci such that C1C2 < 0.

Hence we obtain for the tumour cell density f the following transport equation:

∂f

∂t
+ v · ∇xf +∇y · (G(y, Q̄, L)f) = H(f,Q) + C(f, L). (15)

The macroscopic population density at time t and position x is obtained by integration over

all possible velocities and internal states

f̄(t,x) :=

∫
Y

∫
V
f(t,x,v,y) dv dy. (16)

We define the mean projection of movement direction on the fibre orientation:

Π[f ](t,x, θ) :=
1

f̄(t,x)
·
∫
Y

∫
V
|θ · v̂| f(t,x,v,y) dv dy, (17)

where v̂ is a notation for v
|v| . For the tissue modification model we consider the following

evolution equation for the fibre density Q(t,x, θ) analogously to [32]:

∂Q

∂t
= rECM (Π[f ](t,x, θ)− 1) f̄(t,x)

Q(x, θ)

1 + γQ · |Q(x, θ)|
(18)

where rECM is the degradation rate of ECM fibres by the action of matrix degrading enzymes.

The reaction-diffusion equation for the product L(t,x) of proteolysis reads

∂L

∂t
= κL ·∆xL+

∫
Sn−1

rECM (1−Π[f ](t,x, θ)) f̄(t,x)
Q(x, θ)

1 + γQ · |Q(x, θ)|
dθ − rL · L (19)

where κL > 0 is the diffusion coefficient and rL ≥ 0 the decay rate of L. The production

term in (19) is just the degradation term in (18) integrated over all directions θ and with a

negative sign, i.e. fibres (the density of which is denoted by Q) are degraded into fragments

(of concentration L).

3 The main results about functional equations

Definition 3.1 Set Z
Def.
= Rn × V × Y and define df : L2(Z)× L2(Z) −→ [0,∞[ as

df (f, g) := sup
{∫

Z
ϕ · (f − g) dz

∣∣∣ ϕ ∈ C0
c (Z), ∇yϕ ∈ L∞(Z,Rd),

‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∇yϕ‖L∞ ≤ 1
}
.
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Theorem 3.2 (Existence and uniqueness of solution on Z = Rn × V × Rd)
Consider the system of nonlinear functional differential equations

∂t f + ∇x · (v f) + ∇y · (G(t, f,Q, L) f) = U(t, f,Q, L) · f +W(t, f,Q, L)

∂t Q = T (t, f,Q, L)

∂t L = κL ·∆xL + R(t, f,Q, L)

(20)

with Y = Rd, a constant κL > 0 and the coefficient functions

G : [0, T ] × L2(Z) × L2(Rn×Sn−1)×W 1,2(Rn) −→
{
g ∈ L∞(Z,Rd) ∩ L2

∣∣ ∂yg ∈ L∞
}
,

U : [0, T ] × L2(Z) × L2(Rn×Sn−1)×W 1,2(Rn) −→
{
u ∈ L∞(Z) ∩ L2(Z)

∣∣ ∇yu ∈ L∞
}
,

W : [0, T ] × L2(Z) × L2(Rn×Sn−1)×W 1,2(Rn) −→ L2(Z),

R : [0, T ] × L2(Z) × L2(Rn×Sn−1)×W 1,2(Rn) −→ L2(Rn),

T : [0, T ] × L2(Z) × L2(Rn×Sn−1)×W 1,2(Rn) −→ L2(Rn × Sn−1)

under the following assumptions:

(i) (Global a priori bounds and growth conditions)

sup
t,f,Q,L

(∥∥divy G(t, f,Q, L)
∥∥
L∞(Z)

+
∥∥U(t, f,Q, L)

∥∥
L∞(Z)

+
‖W(t,f,Q,L)‖L2(Z)

1 + ‖f‖L2(Z)

)
<∞

(ii) (Locally uniform a priori bounds and growth conditions)

For every ρ > 0, there exists a constant Cρ < ∞ such that for all t, f̂ , Q, Q̂, L, L̂ with

‖f̂‖L2(Z) ≤ ρ, ‖Q̂‖L2(Rn×Sn−1) ≤ ρ and ‖L̂‖W 1,2(Rn) ≤ ρ · (1 + t− 1/2), it holds

∥∥T (t, f̂ , Q, L)
∥∥
L2(Rn×Sn−1)

≤ Cρ ·
(
1 + ‖Q‖L2(Rn×Sn−1)

)∥∥R(t, f̂ , Q̂, L)
∥∥
L2(Rn)

≤ Cρ ·
(
1 + ‖L‖L2(Rn)

)∥∥G(t, f̂ , Q̂, L̂)
∥∥
L∞(Rn)

+
∥∥∂y G(t, f̂ , Q̂, L̂)

∥∥
L∞(Rn,Rd×d)

≤ Cρ∥∥∇y U(t, f̂ , Q̂, L̂)
∥∥
L∞(Rn,Rd)

≤ Cρ

(iii) G,U ,W,R, T : [0, T ]×
(
L2(Z), df

)
× L2(Rn×Sn−1)×W 1,2(Rn) −→

(
L2, ‖ · ‖L2

)
are measurable.

(iv) (Locally uniform Lipschitz conditions w.r.t. states)

For every ρ > 0, there exists a constant Λρ > 0 such that for all t, f1, f2, Q1, Q2, L1, L2

with sup
j=1,2

{
‖fj‖L2(Z), ‖Qj‖L2(Rn×Sn−1),

1
1+t− 1/2 ‖Lj‖W 1,2(Rn)

}
≤ ρ, the conditions∥∥R(t, f1, Q1, L1) − R(t, f2, Q2, L2)

∥∥
L2 ≤ Λρ

(
df
(
f1, f2) + ‖Q1 −Q2‖L2 + ‖L1 − L2‖L2

)
,∥∥F(t, f1, Q1, L1) − F(t, f2, Q2, L2)

∥∥
L2 ≤ Λρ

(
df
(
f1, f2) + ‖Q1 −Q2‖L2 + ‖L1 − L2‖W 1,2

)
hold for each function F of the coefficients G,U ,W, T .

(v) (Locally uniform choice of function dominating values of W)

For every ρ > 0, there exist wρ ∈ L2(Z) and compact sets Kx ⊆ Rn,Ky ⊆ Y = Rd such

that for all t, f,Q, L with sup
{
‖f‖L2(Z), ‖Q‖L2(Rn×Sn−1),

1
1+t− 1/2 ‖L‖W 1,2(Rn)

}
≤ ρ :∣∣W(t, f,Q, L)

∣∣ ≤ wρ Lebesgue-almost everywhere in Z \
(
Kx × V ×Ky).

9



Then every initial value problem related to (20) has a unique weak solution f : [0, T ] −→ L2(Z),

Q : [0, T ] −→ L2(Rn × Sn−1), L : ]0, T ] −→ W 1,2(Rn). Moreover each component f , Q, L is

bounded w.r.t. the L2 norm.

Proposition 3.3 (Lipschitz continuous dependence of the solution on given data)

For Z
Def.
= Rn×V ×Rd and j = 1, 2, let G(j), U (j), W(j) and R(j), T (j) satisfy the assumptions

of Theorem 3.2 (with the same constants for a priori bounds and linear growth conditions).

Moreover, (f (1), Q(1), L(1)) and (f (2), Q(2), L(2)) denote the unique solutions of system (20)

related to the coefficients G(j),U (j), W(j), R(j), T (j) and the initial states (f
(j)
0 , Q

(j)
0 , L

(j)
0 ) ∈

L2(Z)× L2(Rn × Sn−1) ×L2(Rn), j = 1, 2, respectively. Choose some R > 0 with

max
j= 1,2

(
‖f (j)

0 ‖L2(Z) + ‖Q(j)
0 ‖L2(Rn×Sn−1) + ‖L(j)

0 ‖L2(Rn)

)
≤ R. (21)

Then there exists a constant C > 0 depending on R, T and the constants of coefficient functions

(in assumptions (i) – (iv)) such that the “distance” function ψ : [0, T ] −→ [0,∞[,

ψ(t) := df
(
f (1)(t), f (2)(t)

)
+
∥∥Q(1)(t)−Q(2)(t)

∥∥
L2(Rn×Sn−1)

+
∥∥L(1)(t)− L(2)(t)

∥∥
L2(Rn)

satisfies the following estimate for every t ∈ [0, T ]

ψ(t) ≤ eC t ·
(
ψ(0) · eC

√
t + C · t · sup

(
‖G(1) − G(2)‖L2 + ‖U (1) − U (2)‖L2 + ‖W(1) −W(2)‖L2

+ ‖R(1) −R(2)‖L2(Rn) + ‖T (1) − T (2)‖L2(Rn×Sn−1)

))
(22)

Corollary 3.4 (Existence and uniqueness of solution on Z = Rn × V × Y , Y ( Rd)
Let Y ( Rd now be a nonempty open subset with bounded Lipschitz boundary. In addition to

the hypotheses (i) – (v) of Theorem 3.2, suppose

(vi) For every t ∈ [0, T ], f ∈ L2(Z), Q ∈ L2(Rn×Sn−1) and L ∈ W 1,2(Rn), the function

G(t, f,Q, L) ∈ L∞(Z,Rd) satisfies following tangential condition to the closure Y ⊂ Rd :

For every x ∈ Rn, v ∈ V and a.e. t ∈ [0, T ], the vector field G(t, f,Q, L) (x,v, ·) ∈
W 1,∞(Y,Rd) has a Lipschitz continuous representative and so, a continuous extension to

Y . The latter is assumed to fulfil at each point y ∈ Y

lim inf
h ↓ 0

1

h
· dist

(
y + h · G(t, f,Q, L) (x,v,y), Y

)
= 0.

Then every initial value problem related to (20) has a unique weak solution f : [0, T ] −→ L2(Z),

Q : [0, T ] −→ L2(Rn × Sn−1), L : ]0, T ] −→W 1,2(Rn).

Moreover, assumption (21) about several initial states implies estimate (22).

Corollary 3.5 (Preserving nonnegativity of components f, L of solutions)

Let Y ( Rd (again) be a nonempty open subset with bounded Lipschitz boundary, βL ≥ 0.

In addition to hypotheses (i) – (v) of Theorem 3.2 and assumption (vi) of Corollary 3.4,

suppose for Lebesgue-almost every t ∈ [0, T ] :
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(vii) For all f0, f1 ∈ L2(Z), Q1 ∈ L2(Rn × Sn−1) and L1 ∈ W 1,2(Rn) with f1 ≥ 0 (a.e. in Z),

the following conditions hold{
W(t, f0, Q1, L1) ≥ 0 a.e. in Z

Def.
= Rn × V × Y

R(t, f1, Q1, L1) ≥ −βL · L1 a.e. in Z.

If the initial states f0 ∈ L2(Z), L0 ∈ L2(Rn) satisfy the additional sign condition f0 ≥ 0,

L0 ≥ 0, then so do the components f : [0, T ] −→ L2(Z), L : ]0, T ] −→W 1,2(Rn) of the uniquely

determined weak solutions to problem (20) at every time instant t ∈ ]0, T ].

Applying the general theorems to the model for cell migration

The next step is to draw some conclusions about the following mesoscopic model for cell

migration through tissue:
∂t f + ∇x · (v f) + ∇y · (G(t, f,Q, L) f) = U(t, f,Q, L) · f +W(t, f,Q, L)

∂t Q = T (t, f,Q, L)

∂t L = κL ·∆xL + R(t, f,Q, L)

(23)

with the open set Y :=
{

(y1, y2) ∈ ]0, R0[2
∣∣ y1 + y2 < R0

}
, the coefficients

G(t, f,Q, L)
∣∣
(x,v,y)

:=

 k1 (R0 − y1 − y2) · |Q̄(x)|
1 + γQ · |Q̄(x)| − k−1 · y1

k2 (R0 − y1 − y2) · |L(x)|
1 + γL · |L(x)| − k−2 · y2


U(t, f,Q, L)

∣∣
(x,v,y)

:= 1
f(x,v,y) ·

(
H−(f,Q,x,y) + C−(f, L,x,y)

)
= ph(t,x,v,y) ·

∫
V

∫
Sn−1

ψ(v′; v, θ′) Q(x, θ′)
1 + γQ · |Q(x, θ′)| dθ

′ dv′ + pc(t,x,v,y)

W(t, f,Q, L)
∣∣
(x,v,y)

:= H+(f,Q,x,y) + C+(f, L,x,y)

=

∫
V

∫
Sn−1

ph(t,x,v′,y) ψ(v; v′, θ′) |f(x,v′,y)| |Q(x, θ′)|
1 + γQ · |Q(x, θ′)| dθ′ dv′

+

∫
V
pc(t,x,v

′,y) · K[L](v; v′,x,y) · |f(x,v′,y)| dv′

T (t, f,Q, L)
∣∣
(x,v,y)

:= rECM (Π[f ](x, θ)− 1) f̄(x) Q(x, θ)
1 + γQ · |Q(x, θ)|

= rECM

∫
Y

∫
V

(
|θ · v̂′| − 1

)
f(x,v′,y′) dv′ dy′ · Q(x, θ)

1 + γQ · |Q(x, θ)|

R(t, f,Q, L)
∣∣
(x,v,y)

:=

∫
Sn−1

(
rECM

∫
Y

∫
V

(
1− |θ · v̂′|

)
f(x,v′,y′) dv′ dy′ |Q(x, θ)|

1 + γQ · |Q(x, θ)|

)
dθ

− rL · L(x)

and the notations

Q̄(x) :=

∫
Sn−1

Q(x, θ) dθ,

K[L](v; v′,x,y) := α1(y) ·K(v,v′) + α2(y) ·K(v, projco V ∇L(x)),
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Now we specify the hypotheses for the parameter functions and constants which are to ensure

existence, uniqueness and nonnegativity of weak solutions respectively. It is worth mentioning

that whenever the components f(t), Q(t), L(t) are surely nonnegative at every time instant

then we can dispense with the absolute value in all quotient functions of the preceding model

problem (23).

Assumptions about this model

(a) γL > 0, γQ > 0, k±1 ≥ 0, k±2 ≥ 0, κL > 0, rECM ≥ 0, rL ≥ 0,

V
Def.
=
{
v ∈ Rn

∣∣ s1 ≤ |v| ≤ s2

}
with 0 ≤ s1 ≤ s2 <∞ (and so, coV = Bs2(0) ⊂ Rn)

(b) pc, ph ∈ L∞
(
0, T ; L∞(Z)

)
have support in a joint compact subset of Z

Def.
= Rn × V × Y ,

∂ypc, ∂yph ∈ L∞
(
0, T ; L∞(Z,Rd)

)
,

(c) ψ ∈ L∞(V × V × Sn−1),

(d) α1, α2 ∈W 1,∞(Y ),

(e) K ∈ L∞
(
V ×Bs2(0)

)
is λ-Lipschitz continuous w.r.t. its second argument for some λ > 0,

(f) pc, ph ≥ 0, ψ ≥ 0 and α1, α2 ≥ 0, K ≥ 0.

Proposition 3.6 (Existence and uniqueness of weak solutions)

Under model assumptions (a) – (e), the initial value problem (23) has a unique weak solution

f : [0, T ] −→ L2(Z), Q : [0, T ] −→ L2(Rn × Sn−1), L : ]0, T ] −→ W 1,2(Rn) for each tuple of

initial states f0 ∈ L2(Z), Q0 ∈ L2(Rn × Sn−1), L0 ∈ L2(Rn).

Corollary 3.7 (Nonnegativity of weak solutions)

In addition to assumptions (a) – (e) suppose property (f) now. Then the initial sign conditions

f0 ≥ 0, Q0 ≥ 0, L0 ≥ 0 imply f(t) ≥ 0, Q(t) ≥ 0 and L(t) ≥ 0 for every t ∈ [0, T ].

This corollary is proved in detail in Section 7.5 below. Hence Proposition 3.6 remains to be

verified as a consequence of Corollary 3.4.

Indeed, assumptions (i) – (iii) of Theorem 3.2 are obviously satisfied. In regard to assump-

tion (iv) about local Lipschitz continuity, Definition 3.1 implies∣∣∣ ∫
Z
ϕ · (f1 − f2) dz

∣∣∣ ≤ df(f1, f2) ·max
{
‖ϕ‖L2 , ‖ϕ‖L∞ , ‖∇yϕ‖L∞

}
for all f1, f2 ∈ L2(Z) and every test function ϕ ∈ C0

c (Z) with ∇yϕ ∈ L∞. This estimate holds

in particular whenever ϕ does not depend on y explicitly and so, it is easy to conclude from

12



Hölder inequality and C∞c (Z) being dense in L2(Z)∥∥R(t, f1, Q, L) − R(t, f2, Q, L)
∥∥
L2(Z)

≤ const(γQ, rECM, R0, V ) · df
(
f1, f2

)
,∥∥R(t, f,Q1, L) − R(t, f,Q2, L)

∥∥
L2(Z)

≤ const(γQ, rECM, R0, V, ‖f‖L2(Z)) · ‖Q1 −Q2‖L2 ,∥∥R(t, f,Q, L1) − R(t, f,Q, L2)
∥∥
L2(Z)

≤ rL · ‖L1 − L2‖L2

for all f, f1, f2 ∈ L2(Z), Q,Q1, Q2 ∈ L2(Rn × Sn−1) and L,L1, L2 ∈ W 1,2(Rn). The corre-

sponding conclusions about Lipschitz continuity can also be drawn for the coefficient functions

G, U , T , W. In connection with W(t, f,Q, · ), in particular, it proves to be helpful that the

projection on any compact convex set (such as co V = Bs2(0) here) is Lipschitz continuous.

Assumption (b) about pc, ph implies that all coefficients W(t, f,Q, L) ∈ L2(Z) have compact

support and so, condition (v) in main Theorem 3.2 is obviously satisfied. Similarly assump-

tion (f) ensures condition (vii) in Corollary 3.5 (about preserving nonnegativity).

Finally condition (vi) in Corollary 3.4 remains to be verified. The preceding choice of G and

Y
Def.
=
{

(y1, y2) ∈ ]0, R0[2
∣∣ y1 + y2 < R0

}
even leads to

y + h · G(t, f,Q, L) (x,v,y) ∈ Y

for every y ∈ ∂Y and h > 0 sufficiently small as well as all t, f , Q, L, x, v.
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4 The conceptual strategy how to prove main Theorem 3.2

4.1 The method of successive approximation for the whole system

The proof of main Theorem 3.2 combines two well-known strategies: First the basic concept

is the method of successive approximation. Indeed, for any appropriately given function triple(
f̃ , Q̃, L̃

)
of time, there exist f : [0, T ] −→ L2(Z), Q : [0, T ] −→ L2(Rn×Sn−1) and L : ]0, T ] −→

W 1,2(Rn) which form the unique weak solutions of nonautonomous, but (semi-) linear initial

value problem


∂tf + divx(f v) + divy

(
f G(t, f̃ , Q̃, L̃)

)
= U(t, f̃ , Q̃, L̃) f +W(t, f̃ , Q̃, L̃), f(0) = f0,

∂tQ = T
(
t, f̃ , Q̃, L̃

)
, Q(0) = Q0,

∂tL = κL ∆xL+R
(
t, f̃ , Q̃, L

)
, L(0) = L0.

(24)

The related map L :
(
f̃ , Q̃, L̃

)
7−→ (f,Q,L) proves to be a strict contraction for some sufficiently

small time interval [0, τ ] and so, Banach’s fixed point theorem provides a unique solution to

the full system in [0, τ ].

Second this local existence can be extended to any finite time interval [0, T ] iteratively since

the duration τ > 0 has a positive lower bound depending only on norms of the given initial

values f0, L0, Q0 and the coefficient functions.

The combination of these two notions is standard and, more details about this special system

are presented in Section 7. Sections 5 and 6.1, 6.2 in between focus on the three nonautonomous

(semi-) linear equations of the system separately. Each time we investigate the existence of

unique solutions and their continuous dependence on the coefficients. The latter implies their

Lipschitz continuous dependence on the given data f̃ , Q̃, L̃.

4.2 The linear subproblem of Q(·)

The subproblem of Q(·) {
∂tQ = T

(
t, f̃(t), Q̃(t), L̃(t)

)
Q(0) = Q0

has formal similarities with an ordinary differential equation. But it is even simpler because the

wanted function Q(·) does not occur on the right-hand side. Hence we need just an appropriate

form of integration w.r.t. time. The solution Q(·) is a function of time whose values are in the

Banach space L2(Rn × Sn−1) and, this observation motivates Bochner integrals.

Furthermore weak solutions of these problems are shown to be unique and, so we dispense with

the search for any other solutions (but the Bochner integrals just mentioned). The details are

collected in Section 6.1.
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4.3 The semilinear subproblem of L(·)

L(·) is characterised in terms of a nonautonomous semilinear reaction-diffusion equation{
∂tL = κL ∆xL+R

(
t, f̃(t), Q̃(t), L(t)

)
,

L(0) = L0

Its solution exists since the reaction term R is assumed to be locally Lipschitz continuous w.r.t.

L and of linear growth w.r.t. L. For further estimates, it can be formulated implicitly by means

of the scaled fundamental solution since we consider the problem in the whole space Rn (see

Proposition 6.5 below).

This type of parabolic differential equation is known to have some instantaneously smoothing

effect on the solution, i.e. here: for any L0 ∈ L2(Rn), the solution L(·) satisfies L(t) ∈W 1,2(Rn)

(at least) at every time t > 0. This general feature opens the door to formulating some as-

sumptions w.r.t. the Sobolev norm ‖ · ‖W 1,2(Rn) instead of the L2 norm. In main Theorem 3.2,

we use this aspect in assumption (iv) about the Lipschitz continuity of the coefficient functions

G,U ,W, T , for example.

The price to pay for these weaker continuity hypotheses is that we need a priori bounds of

the gradient ∇xL(t) – particularly for verifying the strict contraction of the successive ap-

proximation map L. The proof of Proposition 6.5 reveals such estimates which are collected

in Corollary 6.6. Roughly speaking, we obtain ‖∇xL(t)‖L2(Rn) ≤ const ·
(
1 + t−1/2

)
which is

mainly relevant for small t > 0.

4.4 The linear subproblem of f(·)

The nonautonomous linear problem for component f(·) is probably the most challenging sub-

problem – if we avoid generous assumptions about the regularity of its coefficients:{
∂tf + divx(f v) + divy(f g̃(t)) = ũ(t) f + w̃(t) in [0, T ],

f(0) = f0

(25)

just with g̃(t) := G
(
t, f̃(t), Q̃(t), L̃(t)

)
∈ L2(Z,Rd) ∩ L∞(Z,Rd), ∂y g̃(t) ∈ L∞(Z,Rd×d),

ũ(t) := U
(
t, f̃(t), Q̃(t), L̃(t)

)
∈ L2(Z) ∩ L∞(Z), ∇y ũ(t) ∈ L∞(Z,Rd),

w̃(t) :=W
(
t, f̃(t), Q̃(t), L̃(t)

)
∈ L2(Z).

This is a nonautonomous linear transport equation and, we are interested in weak solutions

f(·) with values in L2(Z).

In general, the existence of weak solutions is not so difficult to obtain by means of smoothing

coefficients. But here the transport equation is just part of system (24) preparing the full

nonlinear problem (20). Thus we need the continuous dependence of the solution on the time-

dependent coefficients g̃, ũ, w̃. It should be even provided in form of an explicit inequality that

we can then use for verifying the strictly contractive feature of the successive approximation

map L.

This is closely related to the uniqueness of weak solutions. If the coefficients are not sufficiently

regular for the standard method of characteristics then this latter topic belongs to the current
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fields of research (see, e.g., [1, 2, 3, 11, 45, 47] and references therein).

The subsequent investigation of the nonautonomous linear subproblem (25) is motivated by

similar results about signed Radon measures on Rn in [41, § 2.5] and, it consists of the following

steps presented in Section 5:

1. The choice of metrics on L2(Z)
Def.
= L2(Rn × V × Y )

The state space L2(Z) of cell densities is not supplied with the L2 norm directly. We

prefer the metric df : L2(Z)× L2(Z) −→ [0,∞[ instead – for two reasons:

df (f, g) := sup
{∫

Z
ϕ · (f − g) dz

∣∣∣ ϕ ∈ C0
c (Z), ∇yϕ ∈ L∞(Z),

‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∇yϕ‖L∞ ≤ 1
}

First, but of rather minor priority, it proves to be useful in the subsequent estimates

comparing weak solutions because we can represent them in terms of characteristic flows

whose compositions imply invariance of the class of test functions ϕ.

From our point of view, the second reason is more relevant for modelling biological sys-

tems. The metric df reflects the comparison of “features” – in the sense of linear forms.

Indeed, every linear form relates the cell density f ∈ L2(Z) to a real number and, it can

be represented by means of some function ϕ ∈ L2(Z):

L2(Z) −→ R, f 7−→
∫
Z
ϕ · f dz.

This real-valued “feature” might hardly change when considering two functions f, g ∈
L2(Z) although the L2 norm ‖f − g‖L2(Z) is rather large. In general, it is well known

‖f − g‖L2(Z) = sup
{∫

Z
ϕ · (f − g) dz

∣∣∣ ϕ ∈ L2(Z), ‖ϕ‖L2 ≤ 1
}

(see, e.g., [64, § IV.9]). The metric df, however, considers the supremum w.r.t. a smaller

class of test functions ϕ, i.e., we focus on a selection of “features” which, in particular,

restrict the oscillation w.r.t. y: ‖∇yϕ‖L∞ ≤ 1. Suggesting a mathematically suitable

class of test functions for the metric is part of our contribution to this model problem.

The metric df concerns mainly the continuous dependence of solutions on initial values

and coefficients (as summarised in estimates (7.), (8.) of Proposition 5.21). For their

(Lipschitz) continuity w.r.t. time, we prefer the modified metrics

ĕf : (f, g) 7−→ sup
{∫

Z
ϕ · (f − g) dz

∣∣∣ ϕ ∈ C1
c (Z), ‖ϕ‖W 1,2 ≤ 1, ‖ϕ‖W 1,∞ ≤ 1

}
ef : (f, g) 7−→ ĕf(f, g) +

∣∣ ‖f‖L2(Z) − ‖g‖L2(Z)

∣∣
ĕf differs from df in the class of test functions ϕ whereas ef takes additionally the deviation

of L2 norms into consideration.
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In Section 5.1, we investigate the relation between the metrics df, ef and more popu-

lar topologies of L2(Z). Under some additional assumptions like tightness, ĕf proves to

metrize the weak topology and, ef induces the norm topology of L2(Z) (see Lemma 5.3

and Proposition 5.5). The latter proves to be equivalent to the combination of df and

the convergence of L2 norms.

As a consequence of these relations to weak and norm topology, every tight and weakly

closed subset of L2(Z) is complete w.r.t. the metric df (see Lemma 5.6) and, that is

actually what we need for constructing solutions approximatively.

2. Nonautonomous linear problem: Uniqueness of weak solutions

Here we cannot apply the concept of “renormalised solutions” introduced by DiPerna

and Lions [19] immediately since g̃ is assumed to have weak partial derivatives w.r.t. y

only, but we can still adapt the arguments of Le Bris and Lions [40] to square integrable

weak solutions.

3. Autonomous linear problem with “more regular” coefficients: Existence of solutions

We start with the autonomous linear problem under the assumptions g ∈ C1
c (Z,Rd),

u ∈ C1(Z) ∩ W 1,∞(Z). This is much “more regular” than the hypotheses of Theo-

rem 3.2, but it has the technical advantage that the notion of characteristics leads to a

representation of

∫
Z
ϕ f(t) dz for the solution f : [0, T ] −→ L2(Z) and any test function

ϕ ∈ C1
c (Z) (see Proposition 5.11 including an a priori bound of ‖f(t)‖L2(Z)).

4. Autonomous linear problem with “more regular” coefficients: An explicit formula

The presented solution f : [0, T ] −→ L2(Z) can even be described explicitly – simply by

means of the theorems of Fubini and transformations. This formula presented in Propo-

sition 5.18, however, does not provide any significant technical advantages for subsequent

estimates. Its main purpose is the upper bound mentioned in Corollary 5.19:

|f(t, ξ)| ≤ e(‖ [divyg]−‖L∞+‖u‖L∞ ) · t ·
(∣∣f0

(
Z−1,g(t; ξ)

)∣∣ +

∫ t

0

∣∣w(Z−1,g(t− s; ξ)
)∣∣ ds).

The function on the right-hand side will help us later on to verify tightness of all solutions

while perturbing coefficients in a suitably bounded way.

5. Autonomous linear problem with “more regular” coefficients: Further estimates

Still considering the stronger assumptions g ∈ C1
c (Z,Rd), u ∈ C1(Z) ∩ W 1,∞(Z) and

w ∈ L2(Z), we then investigate the function

ϑfg,u,w : [0, 1]× L2(Z) −→ L2(Z), (t, f0) 7−→ f(t)
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induced by the unique weak solution of{
∂tf + divx(f v) + divy(f g) = u f + w in [0, t],

f(0) = f0.

ϑfg,u,w has the typical properties of a semi-dynamical system on L2(Z). It is ω-contractive

w.r.t. df and, the related constant ω can be estimated explicitly in terms of n, ‖divyg‖L∞ ,

‖u‖L∞ , ‖∇yu‖L∞ .

Furthermore ϑfg,u,w( · , f0) : [0, 1] −→ L2(Z) is Lipschitz continuous w.r.t. ef with

Lip ϑfg,u,w( · , f0) ≤ const(n, ‖g‖L2 , ‖ divyg ‖L∞ , ‖u‖L∞ , V ) · (‖f0‖L2 + ‖w‖L2),

i.e., the Lipschitz continuity is locally uniform w.r.t. the initial function f0. Last, but not

least, we verify that in the metric space
(
L2(Z), df

)
, the function ϑfg,u,w(t, f0) depends

on the coefficients g, u, w in a Lipschitz continuous way. In this context, the autonomous

coefficients g, u, w are supplied with the L2 norm (see Proposition 5.21). This choice lays

the foundations for the next step:

6. Extending existence and estimates for autonomous linear problems to “less regular” coef-

ficients: g ∈ L∞(Z,Rd)∩L2, ∂yg ∈ L∞, u ∈ L∞(Z)∩L2, ∇yu ∈ L∞(Z,Rd), w ∈ L2(Z)

Now the coefficients have the same regularity as in Theorem 3.2, but are still autonomous.

The corresponding solution map ϑfg,u,w : [0, 1] × L2(Z) −→ L2(Z) is constructed by

smoothing the coefficients g, u such that the preceding estimates can be applied.

In particular, the solutions of the smoothed problems are tight and form a uniform Cauchy

sequence w.r.t. df. Thus a limit function exists and it is the wanted weak solution related

to the “less regular” coefficients g, u, w. (Its uniqueness was proven before.)

This approach has the advantage that all our a priori estimates (in regard to continuous

dependence on data, for example) are preserved. Hence ϑfg,u,w has still the typical fea-

tures of a semi-dynamical system on L2(Z) which is ω-contractive w.r.t. df and Lipschitz

continuous in time w.r.t. ef.

In the terminology of [41, § 3], this map ϑg,u,w : [0, 1]× L2(Z) −→ L2(Z) is an example

for a “transition” on the tuple
(
L2(Z), df, ef, ‖ · ‖L2(Z)

)
. For the sake of a self-contained

presentation, we do not draw any conclusions from the general (but slightly abstract)

results in [41, § 3.3.7], but give all further proofs explicitly here.

7. Nonautonomous linear problem with “less regular” coefficients:

Existence of weak solutions and a priori bounds

The preceding step serves a rather preparatory purpose. It clarifies how smoothing coef-

ficients, tightness of the related solutions and their continuous dependence on data lead

to the wanted solution via a limit process. Essentially the same arguments are applied
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in Proposition 5.26 (more briefly) for solving the nonautonomous linear problem{
∂tf + divx(f v) + divy(f g̃(t)) = ũ(t) f + w̃(t) in [0, T ],

f(0) = f0

with coefficients g̃ ∈ L1
(
0, T ; L2(Z,Rd)

)
, ũ ∈ L1

(
0, T ; L2(Z)

)
, w̃ ∈ L∞

(
0, T ; L2(Z)

)
of

appropriate regularity for main Theorem 3.2.

5 The subproblem for cell concentration f on Z = Rn × V × Rd

5.1 The metrics df, ef of the state space L2(Z)

Definition 5.1 In addition to the metric df : L2(Z)× L2(Z) −→ [0,∞[ in Definition 3.1,

df(f, g) := sup
{∫

Z
ϕ · (f − g) dz

∣∣∣ ϕ ∈ C0
c (Z), ∇yϕ ∈ L∞(Z),

‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∇yϕ‖L∞ ≤ 1
}
,

set

ĕf : L2(Z)× L2(Z) −→ [0,∞[

(f, g) 7−→ sup
{∫

Z
ϕ · (f − g) dz

∣∣∣ ϕ ∈ C1
c (Z), ‖ϕ‖W 1,2 ≤ 1, ‖ϕ‖W 1,∞ ≤ 1

}
ef : L2(Z)× L2(Z) −→ [0,∞[

(f, g) 7−→ ĕf(f, g) +
∣∣ ‖f‖L2(Z) − ‖g‖L2(Z)

∣∣ .
Remark 5.2 (1.) Obviously the following inequalities hold for all f, g ∈ L2(Z):

ĕf(f, g) ≤ df(f, g) ≤ ‖f − g‖L2(Z), ef(f, g) ≤ 2 · ‖f − g‖L2(Z).

(2.) The basic notion of ĕf is quite similar to the “bounded Lipschitz distance” of Radon

measures a.k.a. Fortet-Mourier distance [63] a.k.a. W 1,∞ dual metric [41]. It differs in two re-

gards though: First the smooth test functions are supposed to have compact support. Second

they have to satisfy an upper bound on the W 1,2 norm.

Lemma 5.3 ĕf metrizes the weak topology on norm-bounded tight balls in L2(Z) – in the

following sense: Suppose f ∈ L2(Z) and let (fk)k∈N be any sequence in L2(Z) such that
(
|fk|2

)
is tight in Z, i.e. lim

ρ→∞
sup
k∈N

‖fk‖L2(Z \ (Bρ(0)×V×Bρ(0))) = 0. Then,

fk −→ f weakly in L2(Z) (k −→∞) ⇐⇒

 sup
k∈N

‖fk‖L2(Z) < ∞ and

lim
k→∞

ĕf
(
fk, f

)
= 0.
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Proof. “⇐=” This is an immediate consequence of C1
c (Z) being a dense subset of

L2(Z) =
(
L2(Z)

)∗
(see, e.g.,[64, V.1.Theorem 3]).

“=⇒” Every weakly converging sequence is known to be bounded w.r.t. the underlying norm

as a consequence of the Banach-Steinhaus theorem. Set S := sup
k∈N
‖fk‖L2(Z) < ∞. Due to the

lower semicontinuity of the norm w.r.t. weak convergence, we have ‖f‖L2(Z) ≤ S.

For proving ĕf(fk, f) −→ 0, choose ε > 0 arbitrarily. There is a radius ρ ≥ 1 with

‖f‖L2(Z \ (Bρ(0)×V×Bρ(0))) + sup
k∈N

‖fk‖L2(Z \ (Bρ(0)×V×Bρ(0))) < ε
2

since (|fk|2)k∈N is tight by assumption. According to the Sobolev embedding theorem, the set{
ϕ ∈ C1

c (B2ρ(0)×V×B2ρ(0))
∣∣ ‖ϕ‖W 1,2 , ‖ϕ‖W 1,∞ ≤ 1

}
(i.e., their zero extensions to Z, strictly

speaking) is relatively compact in
(
L2(Z), ‖·‖L2(Z)

)
. Hence there exist finitely many functions

ϕ1 . . . ϕj ∈ C1
c (B2ρ(0)× V × B2ρ(0)) (with j = j(ε, ρ) ∈ N) s.t. sup

i≤ j

{
‖ϕi‖W 1,2 , ‖ϕi‖W 1,∞

}
≤ 1,

{
ϕ ∈ C1

c (B2ρ×V ×B2ρ)
∣∣∣ ‖ϕ‖W 1,2 , ‖ϕ‖W 1,∞ ≤ 1

}
⊆

j⋃
i= 1

{
g ∈ L2(Z)

∣∣ ‖g − ϕi‖L2 < ε
4S+1

}
.

Then we obtain

ĕf
(
fk, f

) Def.
= sup

{∫
Z
ϕ · (fk − f) dz

∣∣∣ ϕ ∈ C1
c (Z), ‖ϕ‖W 1,2 ≤ 1, ‖ϕ‖W 1,∞ ≤ 1

}
≤ sup

{∫
Z
ϕ · (fk − f) dz

∣∣∣ ϕ ∈ C1
c (B2ρ×V ×B2ρ), ‖ϕ‖W 1,2 , ‖ϕ‖W 1,∞ ≤ 1

}
+ ε

2

≤ sup
1≤ i≤ j

∫
Z
ϕi · (fk − f) dz + ε

4S+1 ‖fk − f‖L2(Z) + ε
2

≤ sup
1≤ i≤ j

∫
Z
ϕi · (fk − f) dz + ε

i.e. lim sup
k→∞

ĕf
(
fk, f

)
= 0. 2

Corollary 5.4

Every norm-bounded closed tight subset of L2(Z) is (sequentially) compact w.r.t. ĕf.

Proof. The Hilbert space L2(Z) is reflexive and so, every bounded closed ball in L2(Z) is

known to be sequentially compact with respect to the weak topology (e.g.,[64, V.1.Theorem 1]).

The equivalence in Lemma 5.3 then implies convergence w.r.t. ĕf. 2

Proposition 5.5 The following equivalence holds for any sequence (fk)k∈N in L2(Z):

∥∥fk − f
∥∥
L2(Z)

k→∞−→ 0 ⇐⇒

{
lim
k→∞

ef
(
fk, f

)
= 0(

|fk|2
)
k∈N is tight in Z.

⇐⇒


lim
k→∞

‖fk‖L2(Z) = ‖f‖L2

lim
k→∞

df
(
fk, f

)
= 0(

|fk|2
)
k∈N is tight in Z.
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Proof. It results essentially from L2(Z) being a Hilbert space. Due to [64, V.1.Theorem 8],

every weakly converging sequence (fk)k∈N in the Hilbert space L2(Z) has the property∥∥fk − f
∥∥
L2(Z)

−→ 0 (k −→∞) ⇐⇒ ‖fk‖L2(Z) −→ ‖f‖L2(Z) (k −→∞).

Hence the first claimed equivalence is a direct consequence of Lemma 5.3. Finally the second

equivalence results from Remark 5.2 (1.). 2

Lemma 5.6 Norm-bounded closed convex tight subsets of L2(Z) are complete with respect

to df – in the following sense: Let M ⊆ L2(Z) be any norm-bounded closed convex subset with

lim
ρ→∞

sup
f∈M

‖f‖L2(Z \ (Bρ(0)×V×Bρ(0))) = 0.

Then every Cauchy sequence w.r.t. df in M has a limit in M w.r.t. df.

Proof. Let (fk)k∈N be a Cauchy sequence in M w.r.t. df. Then (fk)k∈N is Cauchy sequence

w.r.t. ĕf due to Remark 5.2 (1.). Hence Corollary 5.4 provides a function f ∈ L2(Z) with

ĕf(fk, f) −→ 0 (k −→∞) or equivalently fk −→ f weakly in L2(Z).

As a consequence of Mazur’s Lemma (see, e.g., [64, V.1.Theorem 2]), the norm-closed convex

set M ⊆ L2(Z) is weakly closed and so f ∈M . It remains to prove df(fk, f) −→ 0 for k −→∞.

Choose any ε > 0. As (fk)k∈N is Cauchy sequence w.r.t. df, there is some J = J(ε) ∈ N with

df
(
fk, fl

)
≤ ε for all k, l ≥ J.

For every test function ϕ ∈ C0
c (Z) with ‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∇yϕ‖L∞ ≤ 1 and any index

k ≥ J , we conclude from the weak convergence of (fl)l∈N to f∫
Z
ϕ · (fk − f) dz = lim sup

l→∞

∫
Z
ϕ · (fk − fl) dz

≤ lim sup
l→∞

df
(
fk, fl

)
≤ ε ,

i.e. df(fk, f) ≤ ε holds for every index k ≥ J . 2
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5.2 Nonautonomous linear problem: Uniqueness of weak solutions

Proposition 5.7 For any T > 0 suppose g̃ ∈ L∞
(
0, T ; L∞(Z, Rd)

)
, ∂yg̃ ∈ L∞

(
0, T ;

L∞(Z, Rd×d)
)
, ũ ∈ L∞

(
0, T ; L∞(Z)

)
and w̃ ∈ L1

(
0, T ; L2(Z)

)
.

Then for any initial function f0 ∈ L2(Z), there exists at most one weak solution f ∈ L1
(
0, T ;

L2(Z)
)

of the nonautonomous transport equation{
∂tf + divx(f v) + divy(f g̃(t)) = ũ(t) f + w̃(t) in [0, T ],

f(0) = f0

(26)

In our problem we make assumptions about ∂yg, but want to avoid any regularity hypotheses

of ∂xg, ∂vg. Transport equation (26) can still be handled because only the coefficient of the

divergence term w.r.t. x is simple (namely v) and the divergence term w.r.t. v even vanishes.

In short, due to this special structure, every weak solution in Proposition 5.7 proves to be a

“renormalised” solution (in the sense of DiPerna and Lions [19]) and so, it is unique.

The proof is essentially based on the smoothing arguments of Le Bris and Lions in their article

[40] about “transport equations with partially W 1,1 velocities”. The norms in L1, L∞ used

there have just to be replaced by the L2 norm as indicated in [19].

Remark 5.8 Weak (possibly measure-valued) solutions to linear transport equations and

the relation to their (generalised) flow along ODEs (with discontinuous coefficients) belong to

the current fields of research in analysis (see, e.g., [1, 2, 3, 11, 45, 47] and references therein).

Existence of solutions can usually be proved by means of smoothing coefficients.

Uniqueness of weak solutions, however, proves to be a very challenging topic. [45, Theo-

rem 5.10] exemplifies how rather weak assumptions about the divergence of the vector fields

ensure the uniqueness of weak solutions to homogeneous transport equations if their values are

nonnegative bounded Radon measures on the Euclidean space. In [3], however, it is pointed

out as an open question whether similar uniqueness results also hold for signed measures (as

values of weak solutions) – unless the vector field is assumed to fulfil an Osgood-type condition.

The following lemmas clarify the steps of the proof. The first one specifies the differential

equation which the weak solution still satisfies after mollifying w.r.t. x, y. It provides the key

tool for proving the second lemma concerning the absolute value of weak solutions.

Lemma 5.9 Under the assumptions of Proposition 5.7, let f : [0, T ] −→ L2(Z) be any weak

solution of initial value problem (26). Furthermore fix any smooth ϕ : [0,∞[−→ [0, 1] with

compact support in [0, 1[ and ϕ(·) = 1 close to 0, consider the Dirac sequences (ρ̌l)l∈N, (ρk)k∈N

(of mollifiers) with respect to x,y

ρk : Y = Rd −→ [0,∞[, y 7−→ const(d, ‖ϕ‖L1([0,∞[)) kd · ϕ
(
k |y|

)
,

ρ̌l : Rn −→ [0,∞[, x 7−→ const(n, ‖ϕ‖L1([0,∞[)) ln · ϕ
(
l |x|

)
,
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and set for k, l ∈ N (by means of successive convolution w.r.t. y and x)

fk,l : [0, T ]× Z −→ R,

(t,x,v,y) 7−→
(
f(t)

y
∗ ρk

) x∗ ρ̌l
Def.
=

∫
Rn

(∫
Y
f(t, x̃,v, ỹ) ρk(y − ỹ) dỹ

)
· ρ̌l(x− x̃) dx̃.

Then each function fk,l is a weak solution of the transport equation

∂tfk,l + divx(fk,l v) + divy(fk,l g̃(t)) = ũ(t) fk,l +
(
w̃(t)

y
∗ ρk

) x∗ ρ̌l + εk,l(t) (27)

in [0, T ] with a residual function εk,l : [0, T ] −→ L2(Z) satisfying

lim
k→∞

lim
l→∞

∥∥εk,l∥∥L1(0,T ; L2(Z))
= 0.

Lemma 5.10 Under the assumptions of Proposition 5.7, let f : [0, T ] −→ L2(Z) be a weak

solution of initial value problem (26) with w̃ ≡ 0. For β ∈W 1,∞(R) suppose β(0) = 0.

Then the composition fβ := β ◦ f : [0, T ] −→ L2(Z) satisfies the following nonautonomous

transport equation in the distributional sense

∂t fβ + divx

(
fβ v

)
+ divy

(
fβ g̃(t)

)
= divy g̃(t) · fβ + β′(f) f ·

(
ũ(t) − divy g̃(t)

)
. (28)

Proof of Proposition 5.7. Let f̃ ∈ L1
(
0, T ; L2(Z)

)
denote the difference of any two

weak solutions to initial value problem (26). Obviously, f̃ is a weak solution of ∂tf̃ + divx

(
f̃ v
)

+ divy

(
f̃ g̃(t)

)
= ũ(t) f̃ in [0, T ],

f̃(0) = 0.

Fix M > 0 arbitrarily. The auxiliary function R −→ R, s 7−→ min
{
s2, M

}
is bounded

and Lipschitz continuous and so, it belongs to W 1,∞(R). As a consequence of Lemma 5.10

and [65, Corollary 2.1.8] (about weak derivatives of the minima of two Sobolev functions),

the composed function f̃M := min
{
|f̃ |2,M

}
∈ L1

(
0, T ; L2(Z)

)
is a weak solution of

∂t f̃M + divx

(
f̃M v

)
+ divy

(
f̃M g̃(t)

)
=

{
|f̃ |2 ũ(t) if |f̃ | < M,

M · divy g̃(t) if |f̃ | ≥M,

=

{
f̃M · ũ(t) if |f̃ | < M,

f̃M · divy g̃(t) if |f̃ | ≥M.

Our aim is now to verify ∫
Z

min
{∣∣f̃(t)

∣∣2, M} dz = 0

for every t ∈ [0, T ] and M > 0.
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Choose any test functions ϕ1 ∈ C∞c (Rn), ϕ2 ∈ C∞c (V ), ϕ3 ∈ C∞c (Y ) with ϕ1 = 1, ϕ3 = 1 close

to 0 and 0 ≤ ϕ1, ϕ2, ϕ3 ≤ 1. For each R > 0 set

ψR : Z
Def.
= Rn × V × Y −→ R, (x,v,y) 7−→ ϕ1

(
x
R

)
· ϕ2(v) · ϕ3

( y
R

)
.

Then we obtain at Lebesgue-almost every time instant t ∈ [0, T ]

∂t

∫
Z
f̃M ψR dz =

∫
Z

(
f̃M v · ∇xψR + f̃M g̃(t) · ∇yψR

)
dz +∫

Z
f̃M

(
ũ · χ|f̃ |<M + divy g̃(t) · χ|f̃ |≥M

)
ψR dz

≤ const(V, ‖g̃‖L∞(L∞))

R ·
∫
Z

(
f̃M |(∇xϕ1)( x

R)| + f̃M |(∇yϕ3)( y
R)|
)
dz +

(
‖ũ‖L∞(0,T ; L∞(Z)) + ‖∂yg̃‖L∞(0,T ; L∞(Z,Rd×d))

)
·
∫
Z
f̃M ψR dz

≤ C
R ·
∫
Z

∣∣f̃(t)
∣∣2 dz + C ·

∫
Z
f̃M ψR dz

with a constant C = const
(
V, ‖ũ‖L∞(L∞), ‖g̃‖L∞(L∞), ‖∂yg̃‖L∞(L∞), ϕ1, ϕ3

)
. Gronwall’s

inequality and the initial condition f̃M (0) =
∣∣f̃(0)

∣∣2 = 0 lead to the following explicit estimate

for every t ∈ [0, T ]

0 ≤
∫
Z
f̃M (t) ψR dz ≤ C

R

∫ t

0

∫
Z

∣∣f̃(t)
∣∣2 dz ds · eC t

≤ C
R

∥∥f̃∥∥
L1(0,T ; L2(Z))

· eC T .

For R −→∞, Lebesgue’s theorem of dominated convergence ensures for any t ∈ [0, T ], M > 0

0 =

∫
Z
f̃M (t) dz =

∫
Z

min
{∣∣f̃(t)

∣∣2, M} dz.

2

This subsection is closed with proofs of Lemmas 5.9 and 5.10. Although following the gist of

[19, 40] about “renormalised solutions”, we prefer a quite detailed presentation – for the sake

of self-containedness.

Proof of Lemma 5.9. First we consider the convolution w.r.t. y, i.e. the function

f̌k : [0, T ]× Z −→ R,

(t,x,v,y) 7−→
(
f(t)

y
∗ ρk

)
(x,v,y)

Def.
=

∫
Y
f(t,x,v, ỹ) ρk(y − ỹ) dỹ
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for each k ∈ N. Due to [13, Proposition 4.16] and the rotational symmetry of ρk, it satisfies for

every test function ϕ ∈ C1
c (Z)

∂t

∫
Z
ϕ f̌k(t) dz = ∂t

∫
Z
ϕ
(
f(t)

y
∗ ρk

)
dz

= ∂t

∫
Z

(
ϕ

y
∗ ρk

)
f(t) dz

(26)
=

∫
Z

(
f(t) v · ∇x

(
ϕ

y
∗ ρk

)
+ f(t) g̃(t) · ∇y

(
ϕ

y
∗ ρk

))
dz +∫

Z

(
ũ(t) f(t) + w̃(t)

) (
ϕ

y
∗ ρk

)
dz

=

∫
Z

(
f(t) v ·

(
∇xϕ

y
∗ ρk

)
+ f(t) g̃(t) ·

(
(∇yϕ)

y
∗ ρk

))
dz +∫

Z

(
ũ(t) f(t) + w̃(t)

) (
ϕ

y
∗ ρk

)
dz

=

∫
Z

((
f(t)

y
∗ ρk

)
v · ∇xϕ +

(
f(t) g̃(t)

) y
∗ ρk · ∇yϕ

)
dz +∫

Z

((
ũ(t) f(t)

) y
∗ ρk + w̃(t)

y
∗ ρk

)
ϕ dz .

Hence f̌k is a weak solution of

 ∂tf̌k + divx(f̌k v) + divy(f̌k g̃(t)) = ũ(t) f̌k + w̃(t)
y
∗ ρk + ε̌k(t) in [0, T ]

f̌k(0) = f0
y
∗ ρk ∈ L2(Z)

(29)

with ε̌k(t) := divy

((
f(t)

y
∗ ρk

)
g̃(t) −

(
f(t) g̃(t)

) y
∗ ρk

)
+
(
ũ(t) f(t)

) y
∗ ρk − ũ(t)

(
f(t)

y
∗ ρk

)
.

The next step is to prove lim
k→∞

∥∥ε̌k∥∥L1(0,T ; L2(Z))
= 0.

Indeed, the standard rules of convolution and Dirac sequences a.k.a. mollifiers (see, e.g., [13,

§ 4.4], [38, Chapter VIII]) imply for each t ∈ [0, T ] and k −→∞

∥∥(ũ(t) f(t)
) y
∗ ρk − ũ(t) f(t)

∥∥
L2(Z)

−→ 0,
∥∥(ũ(t) f(t)

) y
∗ ρk

∥∥
L2(Z)

≤
∥∥ũ(t) f(t)

∥∥
L2(Z)

,∥∥ũ(t)
(
f(t)

y
∗ ρk

)
− ũ(t) f(t)

∥∥
L2(Z)

−→ 0,
∥∥ũ(t)

(
f(t)

y
∗ ρk

)∥∥
L2(Z)

≤
∥∥ũ∥∥

L∞(L∞(Z))

∥∥f(t)
∥∥
L2(Z)

Hence Lebesgue’s theorem of dominated convergence implies

(
ũ f
) y
∗ ρk − ũ

(
f

y
∗ ρk

)
−→ 0 in L1

(
0, T ; L2(Z)

)
for k −→∞.
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Furthermore we conclude from ∂j ρk(y) = C kn+1 ϕ′(k |y|) yj
|y| for all y ∈ Rd with a constant

C depending just on d, ‖ϕ‖L1([0,∞[) that

divy

((
f(t)

y
∗ ρk

)
g̃(t) −

(
f(t) g̃(t)

) y
∗ ρk

)
=
(
f

y
∗ ρk

)
divy g̃(t) + ∇y

(
f

y
∗ ρk

)
· g̃(t) −

d∑
j=1

∂yj
((
f(t) g̃j(t)

) y
∗ ρk

)
=
(
f

y
∗ ρk

)
divy g̃(t) +

(
f

y
∗ ∇yρk

)
· g̃(t) −

d∑
j=1

(
f(t) g̃j(t)

) y
∗ ∂jρk

=
(
f

y
∗ ρk

)
divy g̃(t) +

d∑
j=1

(
g̃j(t)

(
f(t)

y
∗ ∂jρk

)
−
(
g̃j(t) f(t)

) y
∗ ∂jρk

)
=
(
f

y
∗ ρk

)
divy g̃(t) +

d∑
j=1

∫
Y

(
g̃j(t, x, v, y) f(t, x, v, y − ỹ) −

g̃j(t, x, v, y − ỹ) f(t, x, v, y − ỹ)
)
∂j ρk(ỹ) dỹ

=
(
f

y
∗ ρk

)
divy g̃(t) +

d∑
j=1

∫
Y

(
g̃j(t, x, v, y) f(t, x, v, y − ỹ) −

g̃j(t, x, v, y − ỹ) f(t, x, v, y − ỹ)
)
C kn+1 ϕ′(k |ỹ|) ỹj

|ỹ| dỹ

=
(
f

y
∗ ρk

)
divy g̃(t) +

d∑
j=1

∫
Y

g̃j(t, x, v, y) − g̃j(t, x, v, y − ỹ)

1/k

· f(t, x, v, y − ỹ) C kn ϕ′(k |ỹ|) ỹj
|ỹ| dỹ .

Extending the standard calculation in [13, Theorem 4.15] of Young to the “partial” convolution

(i.e., merely w.r.t. y), the following upper estimate results from supp ϕ′(k | · |) ⊆ B1/k(0)∥∥∥divy

((
f(t)

y
∗ ρk

)
g̃(t) −

(
f(t) g̃(t)

) y
∗ ρk

)∥∥∥
L2(Z)

≤ ‖f(t)‖L2(Z)

∥∥divy g̃(t)
∥∥
L∞(Z)

+

d∑
j=1

∥∥∂y g̃j(t)
∥∥
L∞(Z)

∥∥∥|f(t)|
y
∗
(
C kn ϕ′(k | · |)

)∥∥∥
L2(Z)

≤ ‖f(t)‖L2(Z)

∥∥divy g̃(t)
∥∥
L∞(Z)

+ C d
∥∥∂y g̃

∥∥
L∞(0,T ; L∞(Z))

‖f(t)‖L2(Z)

∥∥kn ϕ′(k | · |)∥∥
L1(Y )

≤ const
(
d, ‖ϕ‖L1([0,∞[), ‖ϕ′‖L1([0,∞[)

)
·
∥∥∂y g̃

∥∥
L∞(0,T ; L∞(Z))

‖f(t)‖L2(Z) .

By means of a density argument, the claim

divy

((
f(t)

y
∗ ρk

)
g̃(t) −

(
f(t) g̃(t)

) y
∗ ρk

)
−→ 0 in L1

(
0, T ; L2(Z)

)
for k −→∞

now results from the corresponding convergence under the additional assumption that all func-

tions involved are smooth. In this smooth case, however, we benefit from

divy

((
f(t)

y
∗ ρk

)
g̃(t)

)
=
((
∇y f(t)

) y
∗ ρk

)
· g̃(t) +

(
f(t)

y
∗ ρk

)
· divy g̃(t),

divy

((
f(t) g̃(t)

) y
∗ ρk

)
=
(

divy

(
f(t) g̃(t)

)) y
∗ ρk

and each of them converges to t 7−→ divy

(
f(t) g̃(t)

)
in L1

(
0, T ; L2(Z)

)
for k −→∞. Hence,

we have completed the step verifying lim
k→∞

∥∥ε̌k∥∥L1(0,T ; L2(Z))
= 0.
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Now the additional regularisation w.r.t. x is considered. Following essentially the same

steps as to initial value problem (29) for f̌k, the function fk,l : t 7−→
(
f(t)

y
∗ ρk

) x∗ ρ̌l proves to

be a weak solution of ∂tfk,l + divx(f̌k v) + divy(fk,l g̃(t)) = ũ(t) fk,l +
(
w̃(t)

y
∗ ρk

) x∗ ρ̌l + εk,l(t) in [0, T ]

fk,l(0) =
(
f0

y
∗ ρk

) x∗ ρ̌l ∈ L2(Z)

(30)

with the residual function εk,l : [0, T ] −→ L2(Z),

εk,l(t) := ε̌k
x∗ ρ̌l + divy

((
f̌k(t)

x∗ ρ̌l
)

g̃(t) −
(
f̌k(t) g̃(t)

) x∗ ρ̌l
)

+
(
ũ(t) f̌k(t)

) x∗ ρ̌l − ũ(t)
(
f̌k(t)

x∗ ρ̌l
)
.

It remains to prove lim
k→∞

lim
l→∞

∥∥εk,l∥∥L1(0,T ; L2(Z))
= 0. We consider the three terms of εk,l(t)

successively. Due to the general convergence properties of mollifiers,

ε̌k
x∗ ρ̌l −→ ε̌k in L1

(
0, T ; L2(Z)

)
for l −→∞ and k ∈ N fixed.

Furthermore, mollifying w.r.t. y implies for f̌k(t)
Def.
= f(t)

y
∗ ρk that the weak partial derivative

∇y f̌k exists for each index k ∈ N and satisfies ‖∇yf̌k(t)‖L2(Z) ≤ const(∇ρk) · ‖f(t)‖L2(Z),

i.e. ∇y f̌k ∈ L1
(
0, T ; L2(Z,Rd)

)
. Thus,

divy

((
f̌k(t)

x∗ ρ̌l
)

g̃(t) −
(
f̌k(t) g̃(t)

) x∗ ρ̌l
)

=
(
∇yf̌k(t)

x∗ ρ̌l
)
· g̃(t) +

(
f̌k(t)

x∗ ρ̌l
)
· divy g̃(t) − divy

(
f̌k(t) g̃(t)

) x∗ ρ̌l

is converging to 0 in L2(Z) for l −→ ∞ and every k ∈ N, t ∈ [0, T ] fixed. For concluding its

convergence in L1
(
0, T ; L2(Z)

)
from Lebesgue’s theorem of dominated convergence, we just

need the following estimate for index k ∈ N fixed:∥∥∥divy

((
f̌k(t)

x∗ ρ̌l
)

g̃(t) −
(
f̌k(t) g̃(t)

) x∗ ρ̌l
)∥∥∥

L2(Z)

≤
∥∥(∇yf̌k(t)

x∗ ρ̌l
)
· g̃(t)

∥∥
L2(Z)

+
∥∥(f̌k(t) x∗ ρ̌l

)
· divy g̃(t)

∥∥
L2(Z)

+
∥∥divy

(
f̌k(t) g̃(t)

) x∗ ρ̌l
∥∥
L2

≤
∥∥∇yf̌k(t)

∥∥
L2 ·

∥∥g̃(t)
∥∥
L∞

+
∥∥f̌k(t)∥∥L2 ·

∥∥divy g̃(t)
∥∥
L∞

+
∥∥divy

(
f̌k(t) g̃(t)

)∥∥
L2

≤ 2 ·
(∥∥f̌k(t)∥∥L2(Z)

+
∥∥∇yf̌k(t)

∥∥
L2(Z,Rd)

)
·
(∥∥g̃∥∥

L∞(0,T ; L∞(Z,Rd))
+
∥∥divy g̃

∥∥
L∞(0,T ; L∞(Z))

)
.

Finally,
(
ũ(t) f̌k(t)

) x∗ ρ̌l − ũ(t)
(
f̌k(t)

x∗ ρ̌l
)
−→ 0 in L1

(
0, T ; L2(Z)

)
for l −→∞ and k ∈ N

fixed results from the theorem of dominated convergence as before. 2

Proof of Lemma 5.10. Let f ∈ L1
(
0, T ; L2(Z)

)
be any weak solution of{

∂tf + divx(f v) + divy(f g̃(t)) = ũ(t) f in [0, T ],

f(0) = f0 .

Consider fk,l : [0, T ] −→ L2(Z), k, l ∈ N, defined in Lemma 5.9 by means of mollifying w.r.t.

y, x successively. Then each fk,l(t) ∈ L2(Z) is partially differentiable w.r.t. x, y and, we have

∇xfk,l ∈ L1
(
0, T ; L2(Z,Rn)

)
as well as ∇yfk,l ∈ L1

(
0, T ; L2(Z,Rd)

)
.
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Originally, β : R −→ R is supposed to be in W 1,∞(R) with β(0) = 0. In addition, we now

assume β ∈ C1(R). The composition β ◦ fk,l has all its values in L2(Z) and, it is partially

differentiable w.r.t. x, y. Furthermore fix a test function ϕ ∈ C∞c (Z) arbitrarily.

As a consequence of modified initial value problem (27) (with w̃ ≡ 0), the function

[0, T ] −→ R, t 7−→
∫
Z
fk,l(t) · ϕ dz

is absolutely continuous for each k, l ∈ N fixed. The Lipschitz continuity of β ∈ C1(R) now

implies the absolute continuity of

[0, T ] −→ R, t 7−→
∫
Z
β
(
fk,l(t)

)
· ϕ dz

and, its weak derivative results from the generalised chain rule:

∂t

∫
Z
β
(
fk,l(t)

)
· ϕ dz

(27)
=

∫
Z
β′
(
fk,l
) (
− divx(fk,l v) − divy(fk,l g̃) + ũ fk,l + εk,l

)
· ϕ dz

=

∫
Z

(
− divx

(
β(fk,l) v

)
− ∇y

(
β ◦ fk,l

)
· g̃ − β′

(
fk,l
)
fk,l · divy g̃

+ β′
(
fk,l
) (

ũ fk,l + εk,l

))
· ϕ dz

=

∫
Z

(
− divx

(
β(fk,l) v

)
− divy

(
β(fk,l) g̃

)
+
(
β(fk,l) − β′

(
fk,l
)
fk,l
)
· divy g̃

+ β′
(
fk,l
) (

ũ fk,l + εk,l

))
· ϕ dz

In other words, the composition f̃k,l := β(fk,l) : [0, T ] −→ L2(Z) is a weak solution of the

nonautonomous transport equation

∂t f̃k,l + divx

(
f̃k,l v

)
+ divy

(
f̃k,l g̃

)
= divy g̃ · f̃k,l +

β′
(
fk,l
) (

fk,l ·
(
ũ − divy g̃

)
+ εk,l

)
.

Now consider first l −→ ∞ (with k ∈ N fixed) and then k −→ ∞. Due to the double limit of

εk,l mentioned in Lemma 5.9, fβ := β ◦ f : [0, T ] −→ L2(Z) solves the claimed equation (28) in

the distributional sense.

Finally, we have to dispense with the additional assumption β ∈ C1(R). For β ∈ W 1,∞(R)

with β(0) = 0 given, the preceding result is applied to a bounded approximating sequence

(βm)m∈N in W 1,∞(R) ∩ C1(R) such that βm(0) = 0 for each m ∈ N and βm −→ β and

β′m −→ β′ Lebesgue-almost everywhere in R for m −→ ∞. Then the claimed equation (28)

for fβ := β ◦ f : [0, T ] −→ L2(Z) even holds for any β ∈ W 1,∞(R) with β(0) = 0 (in the

distributional sense). 2
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5.3 Linear problem with “more regular” coefficients g ∈ C1
c (Z,Rd), u ∈ C1(Z)

∩ W 1,∞(Z) : Existence of solutions

Proposition 5.11

Suppose g ∈ C1
c (Z,Rd), u ∈ C1(Z) ∩W 1,∞(Z) and w ∈ L2(Z).

Then for any initial function f0 ∈ L2(Z) and period T > 0, there exists a weak solution

f : [0, T ] −→ L2(Z) of{
∂tf + divx(f v) + divy(f g) = u f + w in [0, T ],

f(0) = f0

(31)

in the following sense: f : [0, T ] −→ L2(Z) is weakly continuous with f(0) = f0 and it holds

for any 0 ≤ t1 < t2 ≤ T , ϕ ∈ C1
c (Z)∫

Z
ϕ (f(t2)− f(t1)) dz =

∫ t2

t1

∫
Z

(
f(s, · ) (v · ∇xϕ + g · ∇yϕ + u ϕ)

)
dz ds

+ (t2 − t1)

∫
Z
ϕ w dz . (32)

This solution can be represented as∫
Z
ϕ · f(t) dz =

∫
Z

(
ψt,ϕ(0; · ) f0 + w

∫ t

0
ψt,ϕ(s; ·) ds

)
dz (33)

with ψt,ϕ ∈ C1([0, t] × Z) denoting the unique solution to the adjoint problem (39) below.

Moreover it satisfies the a priori estimate with the notation [r]− := min{r, 0} for r ∈ R∥∥f(t)
∥∥
L2(Z)

≤
(
‖f0‖L2(Z) + ‖w‖L2(Z) t

)
· e(‖ [divyg]−‖L∞+‖u‖L∞ ) · t . (34)

Remark 5.12 The characterisation of “weak solution” in Proposition 5.11 differs slightly

from the standard definition, but it implies successively by means of approximation:

(1.) For any ϕ ∈ C1
c (Z), the function [0, T ] −→ R, t 7−→

∫
Z
ϕ f(t) dz is Lipschitz continuous.

Indeed the image f([0, T ]) ⊆ L2(Z) is weakly compact, hence bounded and so the claimed

Lipschitz continuity results from the detailed reformulation (32) of weak solutions.

(2.) For any test function φ ∈ C∞c ([0, T ]× Z) depending on time additionally, it holds∫
Z

(
φ(T, z) f(T, z) − φ(0, z) f0(z)

)
dz

=

∫ T

0

∫
Z

(
f(s, z)

(
v · ∇xφ(s, z) + g · ∇yφ(s, z) + u φ(s, z)

))
dz ds

+

∫ T

0

∫
Z

(
φ(s, z) w + ∂sφ(s, z) f(s, z)

)
dz ds .
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Remark 5.13 In regard to initial value problem (31), the existence of weak solutions in

L∞(0, T ; L2(Z)) has already been verified under weaker assumptions about g, divyg, u

(see, e.g.,[19, Proposition II.1] with the modified regularisation presented in [40]).

For investigating the dependence of solutions on initial data and coefficients, however, we prefer

supplementary uniqueness and need an appropriate representation such as in (33).

Lemma 5.14 (The flow along the nonautonomous ODE with vector field g)

For every α ∈ R and g ∈ L1
loc(Z,Rd) with ∂yg ∈ L∞(Z,Rd×d), there exists a function

Yα,g : [0,∞[×Z −→ Y, (t; x,v,y) 7−→ Yα,g(t; x,v,y)

induced by the unique Carathéodory solutions to the nonautonomous differential equation{
∂t Yα,g(t; x,v,y) = α · g

(
x + α v t, v, Yα,g(t; x,v,y)

)
in [0,∞[ ,

Yα,g(0; x,v,y) = y.

Moreover, Yα,g(t; x,v, · ) : Y −→ Y is a Lipschitz continuous homeomorphism for each t ≥ 0,

x ∈ Rn, v ∈ V and it satisfies with the notation [r]+ := max{r, 0}, [r]− := min{r, 0} for r ∈ R

‖∂y Yα,g(t; · )‖L∞(Z) ≤ econst(n,|α|) (1+‖∂yg‖L∞ ) · t (35)

∂
∂t det ∂y Yα,g(t; · ) = α · (divy g)

∣∣∣
(x+α v t, v, Yα,g(t;x,v,y))

· det ∂y Yα,g(t; · )

e− |α| ‖[divy g]−‖
L∞ · t ≤ det ∂y Yα,g(t; · ) ≤ e|α| ‖[divy g]+‖

L∞ · t . (36)

Lemma 5.15 (The flow along the “full“ autonomous ODE)

Suppose α ∈ R, g ∈ L1
loc(Z,Rd) and ∂yg ∈ L∞(Z,Rd×d). Then,

Zα,g : [0,∞[×Z −→ Z, (t; x,v,y) 7−→
(
x + α v t, v, Yα,g(t; x,v,y)

)
describes the unique Carathéodory solutions to the autonomous ordinary differential equation{

∂t Zα,g(t; x,v,y) = α
(
v, 0, g (Zα,g(t; x,v,y)

)
in [0,∞[ ,

Zα,g(0; x,v,y) = (x,v,y)
(37)

and so, it is a semigroup on Z
Def.
= Rn × V × Y .

If we assume g ∈ C1
c (Z,Rd) in addition, then Zα,g(t, · ) : Z −→ Z is continuously differentiable

for each t ∈ [0,∞[ and satisfies

‖∂z Zα,g(t; · )‖L∞(Z) ≤ econst(n,|α|) (1+‖Dg‖L∞ ) · t .

In particular, each function Zα,g(t, · ) : Z −→ Z, t ∈ [0,∞[, is a diffeomorphism with

∂
∂t det ∂z Zα,g(t; · ) = α · (divy g)

(
Zα,g(t; · )

)
· det ∂z Zα,g(t; · )

e− |α| ‖[divy g]−‖
L∞ · t ≤ det ∂z Zα,g(t; · ) ≤ e|α| ‖[divy g]−‖

L∞ · t . (38)

Remark 5.16 These properties of Yα,g,Zα,g result from the standard theory about ordinary

differential equations (see, e.g., [30, § V.3], [2, Remark 6.3]).
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Lemma 5.17

Suppose g ∈ C1
c (Z,Rd) and u ∈ C1(Z) ∩W 1,∞(Z).

Then for any t ∈ [0, T ] and ϕ ∈ C1
c (Z), there is a unique solution ψt,ϕ = ψ ∈ C1([0, t]× Z) of{

∂t ψ + v · ∇xψ + g · ∇yψ + u ψ = 0 in [0, t]× Z,
ψ(t) = ϕ in Z,

(39)

i.e.

ψ(s; x,v,y) = ϕ (Z1,g(t− s; · )) · exp
(∫ t−s

0
u (Z1,g(r; · )) dr

)
. (40)

Moreover, for every 0 ≤ s ≤ t ≤ T and ϕ ∈ C1
c (Rn), the following a priori estimate holds

‖ψt,ϕ(s; · )‖L2(Z) ≤ ‖ϕ‖L2(Z) · e
(‖[divy g]−‖L∞+‖u‖L∞ ) · t . (41)

Proof of Lemma 5.17. Choose t ∈ [0, T ] and ϕ ∈ C1
c (Z). The method of characteristics

provides the explicit solution φ ∈ C1([0, t]× Z) of the semilinear initial value problem{
∂t φ + v · ∇xφ + g · ∇yφ + u φ = 0 in [0, t]× Z

φ(0) = ϕ in Z,

namely φ(s; · ) = ϕ (Z−1,g(s; · )) · exp
(
−
∫ s

0
u (Z−1,g(s− r; · )) dr

)
.

Substituting ψ(τ ; z) := φ(t−τ ; z) for τ ∈ [0, t], we obtain the claimed solution ψ ∈ C1([0, t]×Z)

of the given transport equation with end-time condition ψ(t, · ) = ϕ:

ψ(s; · ) = ϕ (Z1,g(t− s; · )) · exp
(∫ t

s
u (Z1,g(r − s; · )) dr

)
.

The transformation theorem for Lebesgue integrals leads to∫
Z

∣∣ψt,ϕ(s; z)
∣∣2 dz ≤ e2 ‖u‖L∞ · (t−s) ·

∫
Z

∣∣ϕ (Z1,g(t− s; z))
∣∣2 dz

≤ e2 ‖u‖L∞ · (t−s) ·
∥∥∥det (∂z Z1,g(t− s; · ))−1

∥∥∥
L∞(Z)

‖ϕ‖2L2(Z)

≤ e2 ‖u‖L∞ · t · e‖[divy g]−‖
L∞ · t ‖ϕ‖2L2(Z) .

2

Proof of Proposition 5.11. For any t ∈ [0, T ] and ϕ ∈ C1
c (Z), we consider the solution

ψt,ϕ ∈ C1([0, t]× Z) to the semilinear end-time problem (39). Due to the a priori bound (41)

in Lemma 5.17, the linear operators C1
c (Z) −→ C1(Z),

ϕ 7−→ ψt,ϕ(s; · ) = ϕ (Z1,g(t− s; · )) · exp
(∫ t−s

0
u(Z1,g(r; · )) dr

)
,

ϕ 7−→
∫ t

0
ψt,ϕ(s; · ) ds
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are continuous with respect to the L2(Z) norm and so, they have unique continuous extensions

to L2(Z). For each t ∈ [0, T ], select the unique function f(t) ∈ L2(Z) by means of Riesz’

theorem such that for any ϕ ∈ C1
c (Z),∫

Z
ϕ f(t) dz =

∫
Z

(
ψt,ϕ(0; · ) f0 + w

∫ t

0
ψt,ϕ(s; ·) ds

)
dz. (42)

In particular, ‖f(t)‖L2(Z) is bounded by a constant depending on ‖[divyg]−‖L∞ , ‖u‖L∞ , ‖w‖L2 ,

‖f0‖L2 and T only:

‖f(t)‖L2 = sup
{∫

Z
ϕ · f(t) dz

∣∣∣ ϕ ∈ L2(Z), ‖ϕ‖L2 ≤ 1
}

= sup
{∫

Z
ϕ · f(t) dz

∣∣∣ ϕ ∈ C1
c (Z), ‖ϕ‖L2 ≤ 1

}
= sup

{
‖ψt,ϕ(s; ·)‖L2(Z)

(
‖f0‖L2(Z) + ‖w‖L2(Z) t

) ∣∣∣ ϕ ∈ C1
c (Z), ‖ϕ‖L2 ≤ 1, s ≤ t

}
(41)

≤ e(‖ [divyg]−‖L∞+‖u‖L∞ ) · t ·
(
‖f0‖L2(Z) + ‖w‖L2(Z) t

)
.

This leads to the bounded function f : [0, T ] −→ L2(Z), which we now prove to be a weak

solution of problem (31).

For any test function ϕ ∈ C1
c (Z) with compact support, the function Φ : [0, T ] −→ R, t 7−→∫

Z
ϕ f(t) dz is absolutely continuous with

Φ′(t) =
d

dt

∫
Z

(
f0(z) ϕ (Z1,g(t; z)) e

∫ t
0 u(Z1,g(r; z)) dr + w(z)

∫ t

0
ψt,ϕ(s; z) ds

)
dz

=

∫
Z

d

dt

(
f0(z) ϕ (Z1,g(t; z)) · exp

(∫ t

0
u (Z1,g(r; z)) dr

))
dz

+

∫
Z
w(z) · d

dt

∫ t

0

(
ϕ (Z1,g(t− s; z)) · e

∫ t−s
0 u(Z1,g(r; z)) dr

)
ds dz

=

∫
Z

{
f0(z)

(
∇ϕ (Z1,g(t; z)) · ∂tZ1,g(t; z) + ϕ (Z1,g(t; z)) u (Z1,g(t; z))

)
·

exp
(∫ t

0
u (Z1,g(r; z)) dr

)}
dz

+

∫
Z
w(z)

{
ϕ(z) +

∫ t

0

(
∇ϕ
∣∣
(Z1,g(t−s; z))

· ∂tZ1,g(t− s; z) +

ϕ
∣∣
(Z1,g(t−s; z))

u
(
Z1,g(t−s; z)

))
e
∫ t−s
0 u(Z1,g(r; z)) dr ds

}
dz

(42)
=

∫
Z

(
∇ϕ · (v, 0, g(x,v,y)) + ϕ u

)
· f(t) dz +

∫
Z
ϕ w dz .

Indeed, the global a priori bound on both ‖f(t)‖L2 and the other functions g, u, ϕ, w ensure

that all Lebesgue integrals here exist and so the rules of differentiation can be applied to weak

derivatives. (In particular, ϕ is always chosen with compact support and so we do not require

additionally that V is bounded.) 2
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5.4 Linear problem with “more regular” coefficients g ∈ C1
c (Z,Rd), u ∈ C1(Z)

∩W 1,∞(Z) : An explicit formula for solutions in L2(Z)

Proposition 5.18 Under the assumptions of Proposition 5.11, the weak solution f : [0, T ] −→
L2(Z) of the initial value problem (31) presented in equation (33) has the explicit form

f(t, ξ) = f0

(
Z−1,g(t; ξ)

)
· exp

(∫ t

0
(u − divy g)

(
Z−1,g(s; ξ)

)
ds
)

+∫ t

0

(
w
(
Z−1,g(t− s; ξ)

)
· exp

(∫ t−s

0
(u− divy g)

(
Z−1,g

(
r; ξ)

)
dr
))

ds .

For our conclusions later on, the main benefit of this explicit formula is to obtain some dom-

inating function of space and time. It will help us to verify tightness of (squared) solutions

while coefficients are perturbed in a suitably bounded way (see Lemma 5.25 below).

Corollary 5.19 (A function dominating this weak solution)

Under the assumptions of Proposition 5.11, the weak solution f : [0, T ] −→ L2(Z) of initial

value problem (31) presented in equation (33) satisfies for every t ∈ [0, T ] and Lebesgue-almost

every ξ ∈ Z

|f(t, ξ)| ≤ e(‖ [divyg]−‖L∞+‖u‖L∞ ) · t ·
(∣∣f0

(
Z−1,g(t; ξ)

)∣∣ +

∫ t

0

∣∣w(Z−1,g(t− s; ξ)
)∣∣ ds) .

2

Proof of Proposition 5.18. The main idea is to change the right-hand side of equation (33)

by means of the theorems of Fubini and transformations. The change of coordinates Z −→
Z, z 7−→ Z1,g(t; z) = ξ has the continuously differentiable inverse Z −→ Z, ξ 7−→ Z−1,g(t; ξ) =

z and so, the transformation theorem for Lebesgue integrals leads to∫
Z
ψt,ϕ(0; z) f0(z) dz

(40)
=

∫
Z

{
ϕ (Z1,g(t; z)) · exp

(∫ t

0
u (Z1,g(r; z)) dr

)}
f0(z) dz

=

∫
Z
ϕ(ξ) · exp

(∫ t

0
u
(
Z1,g

(
r; Z−1,g(t; ξ)

))
dr
)
f0

(
Z−1,g(t; ξ)

)
·
∣∣ det ∂ξZ−1,g(t; ξ)

∣∣ dξ
=

∫
Z
ϕ(ξ) · exp

(∫ t

0
u
(
Z−1,g

(
t− r; ξ

)
dr
)
f0

(
Z−1,g(t; ξ)

)
·
∣∣det ∂ξZ−1,g(t; ξ)

∣∣ dξ
(38)
=

∫
Z
ϕ(ξ) · exp

(∫ t

0
u
(
Z−1,g

(
t− r; ξ

)
dr
)
f0

(
Z−1,g(t; ξ)

)
· e−

∫ t
0 (divy g)(Z−1,g(s; ξ)) ds dξ

=

∫
Z
ϕ(ξ) · exp

(∫ t

0
(u − divy g)

(
Z−1,g(s; ξ)

)
ds
)
f0

(
Z−1,g(t; ξ)

)
dξ .

Similarly, we obtain by means of the transformation Z −→ Z, z 7−→ Z1,g(t− s; z) = ξ∫
Z

(
w(z) ·

∫ t

0
ψt,ϕ(s; z) ds

)
dz

(40)
=

∫ t

0

∫
Z
w(z) · ϕ (Z1,g(t− s; z)) · exp

(∫ t−s

0
u (Z1,g(r; z)) dr

)
dz ds
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∫
Z

(
w(z) ·

∫ t

0
ψt,ϕ(s; z) ds

)
dz

=

∫ t

0

∫
Z
w
(
Z−1,g(t− s; ξ)

)
· ϕ(ξ) · exp

(∫ t−s

0
u
(
Z1,g

(
r; Z−1,g(t− s; ξ)

))
dr
)

·
∣∣ det ∂ξZ−1,g(t; ξ)

∣∣ dξ ds

=

∫ t

0

∫
Z
w
(
Z−1,g(t− s; ξ)

)
· ϕ(ξ) · exp

(∫ t−s

0
(u− divy g)

(
Z−1,g

(
r; ξ)

)
dr
)
dξ ds

=

∫
Z
ϕ(ξ) ·

∫ t

0

(
w
(
Z−1,g(t− s; ξ)

)
· exp

(∫ t−s

0
(u− divy g)

(
Z−1,g

(
r; ξ)

)
dr
))

ds dξ.

Finally the claim results directly from equation (33). 2

5.5 Autonomous linear problem with “more regular” coefficients g ∈ C1
c (Z,Rd),

u ∈ C1(Z) ∩W 1,∞(Z) ∩ L2(Z) : Further estimates

Definition 5.20

For any coefficient functions g ∈ C1
c (Z, Rd), u ∈ C1(Z) ∩W 1,∞(Z) and w ∈ L2(Z), let

ϑfg,u,w : [0, 1]× L2(Z) −→ L2(Z), (t, f0) 7−→ f(t)

be defined by means of the unique weak solution of

∂tf + divx(f v) + divy(f g) = u f + w in [0, t], f(0) = f0

whose existence and uniqueness are stated in Propositions 5.11 and 5.7 respectively.

Proposition 5.21

Suppose g, ĝ ∈ C1
c (Z,Rd), u, û ∈ C1(Z) ∩W 1,∞(Z) ∩ L2(Z) and w, ŵ ∈ L2(Z).

Then the following features hold for any f0, f1 ∈ L2(Z) and s, t ∈ [0, 1] with s+ t ≤ 1 :

(1.) ϑfg,u,w(0, f0) = f0

(2.) ϑfg,u,w(s+ t, f0) = ϑfg,u,w
(
s, ϑfg,u,w(t, f0)

)
(3.)

∥∥ϑfg,u,w(t, f0)
∥∥
L2(Z)

≤
(
‖f0‖L2(Z) + ‖w‖L2(Z) t

)
· econst(n) · (1+‖ [divyg]−‖L∞+‖u‖L∞ ) · t

(4.)
∥∥ϑfg,u,w(t, f0)

∥∥
L2(Z)

≥ ‖f0‖L2(Z) · e− const(n) · (1+‖ [divyg]+‖L∞+‖u‖L∞ ) · t − ‖w‖L2(Z) t

(5.) ĕf
(
f0, ϑ

f
g,u,w(t, f0)

)
≤ t · const(n, ‖g‖L2 , ‖ [divyg]−‖L∞ , ‖u‖L∞ , V ) · (‖f0‖L2 + ‖w‖L2)

(6.) ef
(
f0, ϑ

f
g,u,w(t, f0)

)
≤ t · const(n, ‖g‖L2 , ‖ divyg ‖L∞ , ‖u‖L∞ , V ) · (‖f0‖L2 + ‖w‖L2)

(7.) df
(
ϑfg,u,w(t, f0), ϑfg,u,w(t, f1)

)
≤ df

(
f0, f1

)
· econst(n) (1+‖∂yg‖L∞+‖u‖L∞+‖∇yu‖L∞ ) · t

(8.) df
(
ϑfg,u,w(t, f0), ϑfĝ,û,ŵ(t, f0)

)
≤ C ·

(
1 + ‖f0‖L2(Z)

)
· t(∥∥g − ĝ

∥∥
L2(Z)

+
∥∥u− û∥∥

L2(Z)
+
∥∥w − ŵ∥∥

L2(Z)

)
with a constant C

(
n, ‖∂y g‖L∞ , ‖∂y ĝ‖L∞ , ‖u‖L∞ , ‖∇y u‖L∞ , ‖û‖L∞ , ‖∇y û‖L∞ , ‖ŵ‖L2

)
.
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Lemma 5.22 Under the assumptions of Proposition 5.11, let ψt,ϕ ∈ C1([0, t] × Z) denote

the unique solution to problem (39) for any t ∈ [0, T ] and ϕ ∈ C1
c (Z) given. Correspondingly

suppose ψ̂t,ϕ ∈ C1([0, t] × Z) to be the solution to problem (39) with the coefficients ĝ ∈
C1
c (Z,Rd) and û ∈ C1(Z) ∩W 1,∞(Z) ∩ L2(Z) instead.

Then, for every 0 ≤ s ≤ t ≤ T and ϕ, ϕ̂ ∈ C1
c (Rn), the following a priori estimates hold

‖∇y ψt,ϕ(s; · )‖L2(Z) ≤
(
‖∇yϕ‖L2(Z) + ‖ϕ‖L2(Z) (t− s) ‖∇yu‖L∞(Z)

)
·

econst(n) · (1+‖∂yg‖L∞+‖u‖L∞ ) · t,∥∥∥ψt,ϕ(s; · ) − ψ̂t,ϕ(s; · )
∥∥∥
L2(Z)

≤
(
‖ϕ‖L∞ + ‖∇yϕ‖L∞

)
· C t

(
‖g − ĝ‖L2 + ‖u− û‖L2

)
with a constant C = C

(
n, T, ‖∂y g‖L∞(Z), ‖∂y ĝ‖L∞(Z), ‖∇y u‖L∞(Z), ‖∇y û‖L∞(Z)

)
.

Proof of Lemma 5.22. Z1,g still denotes the solution of initial value problem (37). The

explicit representation of ψt,ϕ, i.e. ψt,ϕ(s; z) = ϕ (Z1,g(t− s; z)) · e
∫ t−s
0 u(Z1,g(r; z)) dr, provides

for the gradient with respect to y∣∣∇y ψt,ϕ(s; · )
∣∣ ≤ ( ∣∣∣∇yϕ

(
Z1,g(t− s; · )

)
· ∂y Y1,g(t− s; · )

∣∣∣ +∣∣∣ ϕ
(
Z1,g(t− s; · )

)
·
∫ t−s

0
∇yu

(
Z1,g(r; · )

)
· ∂y Y1,g(r; · ) dr

∣∣∣)
· e

∫ t−s
0 u(Z1,g(r; · )) dr .

Now the transformation theorem of Lebesgue integrals leads to the following upper estimate

of the first scalar product:∫
Z

∣∣∇yϕ
(
Z1,g(t− s; · )

)
· ∂y Y1,g(t− s; · )

∣∣2 dz
≤

∥∥∂y Y1,g(t− s; · )
∥∥2

L∞(Z)
·
∫
Z

∣∣∇yϕ
(
Z1,g(t− s; z)

)∣∣2 dz

(35)

≤ econst(n) · (1+‖∂yg‖L∞ ) · t ·
∥∥∥det

(
∂z Z1,g(t; · )

)−1
∥∥∥
L∞(Z)

‖∇yϕ‖2L2(Z)

(38)

≤ econst(n) · (1+‖∂yg‖L∞ ) · t · ‖∇yϕ‖2L2(Z) . (43)

The corresponding conclusion for the second term and Minkowski inequality imply

‖∇y ψt,ϕ(s; · )‖L2(Z) ≤ econst(n) · (1+‖∂yg‖L∞+‖u‖L∞ ) · t ·
(
‖∇yϕ‖L2 + ‖ϕ‖L2 (t− s) ‖∇yu‖L∞

)
.

For “comparing” the solutions ψt,ϕ, ψ̂t,ϕ related to the coefficients g, u and ĝ, û respectively,

we use the auxiliary functions gλ := λ·g+(1−λ)·ĝ, uλ := λ·u+(1−λ)·û and Ψλ
t,ϕ ∈ C1([0, t]×Z),

0 ≤ λ ≤ 1, with

Ψλ
t,ϕ(s; · ) := ϕ (Z1,gλ(t− s; · )) · exp

(∫ t−s

0
uλ (Z1,gλ(r; · )) dr

)
.
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In particular, Ψ1
t,ϕ = ψt,ϕ and Ψ0

t,ϕ = ψ̂t,ϕ. Furthermore the integral form of differential

equation (37), i.e.

Z1,gλ(t; x,v,y) = (x,v,y) +

∫ t

0

(
v, 0, gλ

(
Z1,gλ(s; x,v,y)

))
ds,

provides an integral equation for the partial derivative Z1,gλ(·; z) w.r.t. parameter λ:

∂λZ1,gλ(t; z) =

∫ t

0

(
0, 0,

(
g − ĝ

)
(Z1,gλ(s; z)) + Dgλ(Z1,gλ(s; z)) · ∂λZ1,gλ(s; z)

)
ds

=

∫ t

0

(
0, 0,

(
g − ĝ

)
(Z1,gλ(s; z)) + ∂ygλ(Z1,gλ(s; z)) · ∂λY1,gλ(s; z)

)
ds

|∂λZ1,gλ(t; z)|2 ≤ t ·
∫ t

0

∣∣∣ (g − ĝ
)
(Z1,gλ(s; z)) + ∂ygλ(Z1,gλ(s; z)) · ∂λY1,gλ(s; z)

∣∣∣2 ds
≤ 2 t ·

∫ t

0

(∣∣(g − ĝ
)
(Z1,gλ(s; z))

∣∣2+ ‖∂ygλ‖2L∞
∣∣∂λY1,gλ(s; z)

∣∣2) ds

‖∂λZ1,gλ(t; ·)‖2L2 ≤ 2 t ·
∫ t

0

(
‖g − ĝ‖2L2(Z) · ec s + ‖∂ygλ‖2L∞

∥∥∂λY1,gλ(s; z)
∥∥2

L2

)
ds

= 2 t ·
∫ t

0

(
‖g − ĝ‖2L2(Z) · ec s + ‖∂ygλ‖2L∞

∥∥∂λ Z1,gλ(s; z)
∥∥2

L2

)
ds

with a constant c = c
(
n, ‖ [divy g]−‖L∞ , ‖ [divy ĝ]−‖L∞

)
and, due to Gronwall’s inequality,

‖∂λY1,gλ(t; · )‖L2 = ‖∂λZ1,gλ(t; · )‖L2 ≤ ‖g − ĝ‖L2 · t et · const(n, T, ‖∂yg‖L∞ , ‖∂yĝ‖L∞ ) .

Hence,

∂λ Ψλ
t,ϕ(s; z) = e

∫ t−s
0 uλ(Z1,gλ

(r; z)) dr ·
{
∂yϕ

∣∣
Z1,gλ

(t−s; z)
· ∂λY1,gλ(t− s; z) +

ϕ
∣∣
Z1,gλ

(t−s; z)
·
∫ t−s

0

(
(u− û)

∣∣
Z1,gλ

(r; z)
+ ∂yuλ

∣∣
Z1,gλ

(r; z)
· ∂λY1,gλ(r; z)

)
dr
}

implies the upper estimate∥∥∂λ Ψλ
t,ϕ(s; · )

∥∥
L2(Z)

≤ e(t−s) · (‖u‖L∞+‖û‖L∞ ) ·
{∥∥∂yϕ(Z1,gλ(t− s; · )

)∥∥
L∞(Z)

·
∥∥∂λY1,gλ(t− s; · )

∥∥
L2(Z)

+

‖ϕ‖L∞(Z) · (t− s)
(
‖u− û‖L2 · ec (t−s) +

∥∥∂y uλ∥∥L∞ · sup
r≤ t−s

‖∂λY1,gλ(r; · )‖L2(Z)

)}
≤ et · const(n, T, ‖∂yg‖L∞ , ‖∂yĝ‖L∞ , ‖u‖L∞ , ‖û‖L∞ ) · (t− s) ·

{
‖∂yϕ‖L∞(Z) ‖g − ĝ‖L2(Z) +

‖ϕ‖L∞(Z)

(
‖u− û‖L2(Z) + (‖∂yu‖L∞ + ‖∂yû‖L∞) · ‖g − ĝ‖L2(Z) (t− s)

)}
.

The last claimed inequality now results from

∥∥ψt,ϕ(s; · ) − ψ̂t,ϕ(s; · )
∥∥
L2(Z)

≤
∫ 1

0

∥∥∂λ Ψλ
t,ϕ(s; · )

∥∥
L2(Z)

dλ .

2

36



Proof of Proposition 5.21.

(1.) The property ϑfg,u,w(0, f0) = f0 results immediately from Definition 5.20 of ϑfg,u,w.

(2.) The semigroup property ϑfg,u,w(s+ t, f0) = ϑfg,u,w
(
s, ϑfg,u,w(t, f0)

)
is a consequence of

the uniqueness of solutions to the initial value problem (31) as stated in Proposition 5.7.

(3.) This upper L2 bound has already been formulated (and proved) in Proposition 5.11.

(4.) Choose any t∈ [0, 1] and f0∈L2(Z). The characterising condition (32) on weak solutions

implies immediately: f : [0, t] −→ L2(Z) is a weak solution of initial value problem (32) if and

only if f̂ := f(t− · ) : [0, t] −→ L2(Z) is a weak solution of

∂tf̂ − divx(f̂ v) − divy

(
f̂ g
)

= −u f̂ − w in [0, t], f̂(0) = f(t).

Due to the uniqueness mentioned in Proposition 5.7, we conclude

ϑfg,u,w(t, · )−1 = ϑf−g,−u,−w(t, · ) : L2(Z) −→ L2(Z) . (44)

Now the claimed lower L2 bound of f(t) := ϑfg,u,w(t, f0) results from property (3.):

‖f0‖L2 =
∥∥ϑf−g,−u,−w(t, f(t)

)∥∥
L2

≤
(∥∥f(t)

∥∥
L2(Z)

+ ‖w‖L2(Z) t
)
· econst(n) · (1+‖ [−divyg]−‖L∞+‖u‖L∞ ) · t .

(5.) For f(t) := ϑfg,u,w(t, f0), t ∈ [0, 1] and ϕ ∈ C1
c (Z), equation (32) and property (3.) imply∫

Z
ϕ (f(t)− f0) dz

=

∫ t

0

∫
Z

(
f(s, · ) (v · ∇xϕ+ g · ∇yϕ+ u ϕ)

)
dz ds + t

∫
Z
ϕ w dz

≤
∫ t

0

(
‖f(s)‖L2

(
‖g‖L2 ‖∇ϕ‖L∞ +

(
const(V ) + ‖u‖L∞

)
‖ϕ‖W 1,2

) )
ds + t · ‖ϕ‖L2 ‖w‖L2

≤ t ·
(
‖ϕ‖W 1,2(Z) + ‖ϕ‖W 1,∞(Z)

)
·
(
‖f0‖L2(Z) + ‖w‖L2(Z)

)
(const(V ) + ‖g‖L2 + ‖u‖L∞)

· exp
(
const(n) · (1 + ‖ [divyg]−‖L∞ + ‖u‖L∞)

)
.

The supremum w.r.t. all ϕ ∈ C1
c (Z) satisfying both ‖ϕ‖W 1,2(Z) ≤ 1 and ‖ϕ‖W 1,∞(Z) ≤ 1 leads

to the claimed estimate of ĕf
(
f0, f(t)

)
.

(6.) Statements (3.), (4.) imply the right continuity of [0, 1] −→ R, t 7−→
∥∥ϑfg,u,w(t, f0)

∥∥
L2

at t = 0. Due to the semigroup property (2.), the norm is right continuous at every t ∈ [0, 1[.

By means of (44), we similarly obtain the left continuity of
∥∥ϑfg,u,w(·, f0)

∥∥
L2 in ]0, 1].

Furthermore statements (3.), (4.) guarantee that the right Dini derivative is absolutely bounded

at each time instant t ∈ [0, 1[:

lim sup
h ↓ 0

∣∣∣∣∣
∥∥ϑfg,u,w(t+ h, f0)

∥∥
L2 −

∥∥ϑfg,u,w(t, f0)
∥∥
L2

h

∣∣∣∣∣
≤ const(n, ‖divyg‖L∞ , ‖u‖L∞) ·

(∥∥ϑfg,u,w(t, f0)
∥∥
L2 + ‖w‖L2

)
(3.)

≤ const(n, ‖divyg‖L∞ , ‖u‖L∞) ·
(
‖f0‖L2 + ‖w‖L2

)
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and so,
∥∥ϑfg,u,w(·, f0)

∥∥
L2 : [0, 1] −→ [0,∞[ is even Lipschitz continuous. Together with property

(5.), it leads to the claimed Lipschitz continuity of ϑfg,u,w(·, f0) w.r.t. ef.

(7.) For every test function ϕ ∈ C1
c (Z), the representations (33), (40) guarantee for the

solutions ϑfg,u,w(t, f0) and ϑfg,u,w(t, f1) related to initial states f0, f1 ∈ L2(Z) respectively∫
Z
ϕ ·
(
ϑfg,u,w(t, f0)− ϑfg,u,w(t, f1)

)
dz =

∫
Z
ψt,ϕ(0; · )

(
f0 − f1

)
dz

=

∫
Z

ϕ (Z1,g(t; · )) · exp
(∫ t

0
u (Z1,g(r; · )) dr

) (
f0 − f1

)
dz . (45)

By means of density arguments, this relation can be extended to any auxiliary function ϕ ∈
C0
c (Z) with ∂yϕ ∈ L∞(Z). Due to the assumptions g ∈ C1

c (Z,Rn), u ∈ C1(Z), the function

Z −→ R, z 7−→ ϕ (Z1,g(t; z)) · exp
(∫ t

0
u (Z1,g(r; z)) dr

)
is continuous with compact support in Z at each time instant t ∈ [0, 1]. Moreover for every

x ∈ Rn, v ∈ V fixed arbitrarily, the composition Y −→ R, y 7−→ ϕ
(
Z1,g(t; x,v,y)

)
also

belongs to the Sobolev space W 1,∞(Y ) and, the following a priori estimates hold∥∥ϕ (Z1,g(t; · ))
∥∥2

L2(Z)
≤ ‖ϕ‖2L2(Z) ·

∥∥∥det (∂z Z1,g(t; · ))−1
∥∥∥
L∞(Z)

(38)

≤ ‖ϕ‖2L2(Z) · e
const(n) · ‖ [divyg]−‖L∞(Z) · t ,∥∥∂y (ϕ ◦ Z1,g(t; · )

)∥∥
L∞(Z)

≤ ‖∂yϕ‖L∞(Z) ·
∥∥∂yY1,g(t; · )

∥∥
L∞(Z)

(35)

≤ ‖∂yϕ‖L∞(Z) · econst(n) · (1+‖∂yg‖L∞(Z)) · t .

Correspondingly, the second factor in representation (45) of the difference, i.e. the composition

ηg,u,t : Z −→ R, z 7−→ exp
(∫ t

0
u (Z1,g(r; · )) dr

)
,

and its partial derivative w.r.t. y belong to L∞(Z) with the a priori bound

∥∥∂y ηg,u,t∥∥L∞(Z)
≤ e‖u‖L∞(Z) t ·

∫ t

0

∥∥∂yu(Z1,g(r; · )
)∥∥
L∞(Z)

∥∥∂y Y1,g(r; · )
∥∥
L∞(Z)

dr

(35)

≤ econst(n) (1+‖∂yg‖L∞(Z)+‖u‖L∞(Z)) t ·
∥∥∂yu∥∥L∞(Z)

t .

Hence, standard arguments (about homogeneity w.r.t. the norm of test functions) lead to

df
(
ϑfg,u,w(t, f0), ϑfg,u,w(t, f1)

)
(45)
= sup

{∫
Z
ϕ (Z1,g(t; ·)) ηg,u,t ·

(
f0 − f1

)
dz
∣∣∣ ϕ ∈ C0

c (Z), ∂yϕ ∈ L∞(Z),

‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∂yϕ‖L∞ ≤ 1
}

≤ econst(n) (1+‖∂yg‖L∞(Z)+‖u‖L∞(Z)+‖∂yu‖L∞(Z)) · t · df
(
f0, f1

)
.
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(8.) For every test function ϕ ∈ C1
c (Z), let ψt,ϕ, ψ̂t,ϕ ∈ C1([0, t] × Z) denote the auxiliary

functions as specified in Lemma 5.22. We conclude from the estimates in Lemmas 5.17, 5.22∫
Z
ϕ ·
(
ϑfg,u,w(t, f0)− ϑfĝ,û,ŵ(t, f0)

)
dz

(33)
=

∫
Z

((
ψt,ϕ(0; · )− ψ̂t,ϕ(0; · )

)
f0 + w

∫ t

0
ψt,ϕ(s; ·) ds − ŵ

∫ t

0
ψ̂t,ϕ(s; ·) ds

)
dz

≤
∥∥∥ψt,ϕ(0; · )− ψ̂t,ϕ(0; · )

∥∥∥
L2(Z)

‖f0‖L2(Z) +
∥∥w − ŵ∥∥

L2(Z)
· sup
s≤ t

∥∥ψt,ϕ(s; ·)
∥∥
L2(Z)

t

+
∥∥ŵ∥∥

L2(Z)
· sup
s≤ t

∥∥ψt,ϕ(s; ·)− ψ̂t,ϕ(s; ·)
∥∥
L2(Z)

t

≤ C ·
(
‖ϕ‖L∞ + ‖∂yϕ‖L∞

) (
1 + ‖f0‖L2(Z)

)
· t
(∥∥g − ĝ

∥∥
L2 +

∥∥u− û∥∥
L2

)
+ ‖ϕ‖L2(Z) · econst(n) · (1+‖ [divyg]−‖L∞+‖u‖L∞ ) · t · t

∥∥w − ŵ∥∥
L2

with a constant C = C
(
n, T, ‖∂y g‖L∞(Z), ‖∂y ĝ‖L∞(Z), ‖∂y u‖L∞(Z), ‖∂y û‖L∞(Z), ‖ŵ‖L2(Z)

)
. 2

5.6 Extending existence and estimates for autonomous linear problems to

“less regular” coefficients: g ∈ L∞(Z,Rd) ∩ L2, ∂yg ∈ L∞, u ∈ L∞(Z) ∩ L2,

∂yu ∈ L∞(Z,Rd), w ∈ L2(Z)

In comparison with Proposition 5.11 about existence of solutions, the coefficients g, u, w are

now supposed to satisfy the weaker regularity assumptions of main Theorem 3.2, but we still

consider the autonomous problem:

Proposition 5.23

Assume g∈L∞(Z,Rd)∩L2, ∂yg∈L∞(Z,Rd×d), u∈L∞(Z)∩L2, ∂yu∈L∞(Z,Rd), w ∈ L2(Z).

Then for any initial function f0 ∈ L2(Z), there exists a weak solution f : [0, T ] −→ L2(Z) of

the following initial value problem in the sense of Proposition 5.11

∂tf + divx(f v) + divy(f g) = u f + w in [0, 1], f(0) = f0.

Furthermore this solution is unique and, all estimates in Proposition 5.21 hold under these

weaker regularity assumptions.

The proof is essentially based on smoothing the coefficients g, u such that Proposition 5.11

can be applied without any significant effects on the a priori estimates.

The following lemma can be verified quite easily by means of mollifying with some Dirac se-

quence of smooth functions (see, e.g., [38, § VIII.3]) – in combination with any cut-off function

for the compact support. It is worth mentioning that this lemma states just the L2 convergence

of the sequence (gk)k∈N, but not the L∞ convergence of the derivatives (∂ygk)k∈N.
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Lemma 5.24 C∞(Z,Rm) ∩ L2(Z,Rm) is dense in
{

h ∈ L2(Z,Rm)
∣∣ ∂yh ∈ L∞(Z,Rm×d)

}
w.r.t. L2. In particular, for every function h∈L2(Z,Rm) with distributional derivative ∂yh∈
L∞(Z,Rm×d), there exists a sequence (hk)k∈N in C∞c (Z,Rm) with

lim
k→∞

∥∥hk − h
∥∥
L2 = 0,

sup
k∈N

‖hk‖L2 ≤ ‖h‖L2 ,

sup
k∈N

‖∂yhk‖L∞ ≤ ‖∂yh‖L∞ ,

sup
k∈N

‖divy hk‖L∞ ≤ ‖divy h‖L∞ (if m = d) .

Moreover for any function h ∈ L∞(Z,Rm) ∩ L2(Z,Rm), the sequence (hk)k∈N in C∞c (Z,Rm)

can be constructed in such a way that

lim
k→∞

∥∥hk − h
∥∥
L2 = 0,

sup
k∈N

‖hk‖L2 ≤ ‖h‖L2 ,

sup
k∈N

‖hk‖L∞ ≤ ‖h‖L∞ ,

sup
k∈N

‖∂yhk‖L∞ ≤ ‖∂yh‖L∞ + ‖h‖L∞ ,

sup
k∈N

‖divy hk‖L∞ ≤ ‖divy h‖L∞ + ‖h‖L∞ (if m = d) .

In general any proof via smoothing coefficients requires some limit process in the end and so,

we need completeness of the underlying subset of L2(Z) with respect to df. As a consequence

of Lemma 5.6, this feature is closely related to tightness of the square values (of solutions to

the approximate problems). The dominating function mentioned in Corollary 5.19 provides the

tool for specifying which norms of the coefficients should be uniformly bounded in this context:

Lemma 5.25 (Tight values due to uniformly bounded velocities)

Let G ⊆ C1
c (Z,Rd) and U ⊆ C1(Z) ∩W 1,∞(Z) be any nonempty subsets with

γ := sup
{
‖g‖L∞ + ‖divyg‖L∞ + ‖u‖L∞

∣∣ g ∈ G, u ∈ U} < ∞ .

Suppose W :=
{
w ∈ L2(Z)

∣∣ |w| ≤ ŵ Lebesgue-a.e. in Z \ (Kx×V ×Ky)
}

for some ŵ ∈ L2(Z)

and compact sets Kx ⊆ Rn, Ky ⊆ Y = Rd.

Then for every f0 ∈ L2(Z), the subset
{∣∣ϑfg,u,w(t, f0)

∣∣2 ∣∣∣ t ∈ [0, 1], g ∈ G, u ∈ U, w ∈W
}
⊆

L1(Z) is tight.

Proof of Lemma 5.25. It is based on the simple observation that
∣∣Z1,g(t, z) − z

∣∣ ≤ C t

holds for all z ∈ Z, t ≥ 0 with the constant C := sup
v∈V

|v|+ sup
g∈G

‖g‖L∞ <∞.

Indeed, for every ε > 0, there exists a radius ρ > 0 with∥∥f0

∥∥
L2(Z \ (Bρ(Kx)×V×Bρ(Ky)))

+
∥∥ŵ∥∥

L2(Z \ (Bρ(Kx)×V×Bρ(Ky)))
< ε.

40



Set R := ρ+C and Zr := Z \
(
Br(Kx)×V ×Br(Ky)

)
⊆ Z for each r ≥ 0. Due to Corollary 5.19,

the function ξt := ϑfg,u,w(t, f0) ∈ L2(Z) with any g ∈ G, u ∈ U , w ∈W , t ∈ [0, 1] satisfies∥∥ξt∥∥2

L2(ZR)
=

∫
ZR

∣∣ξt(z)
∣∣2 dz

≤ 2 · e2 (‖divyg‖L∞+‖u‖L∞ ) · t
(∫

ZR

∣∣f0

(
Z−1,g(t, z)

)∣∣2 dz +

∫
ZR

sup
s∈ [0,t]

∣∣w(Z−1,g(s, z)
)∣∣2 dz

)
≤ 2 · e2 (2 ‖divyg‖L∞+‖u‖L∞ ) · t

∫
Zρ

(∣∣f0

∣∣2 + |ŵ|2
)
dz

because for each k ∈ N and s ∈ [0, 1], the diffeomorphism Z−1,g(s, · ) : Z −→ Z maps ZR in

a subset of Zρ. Hence we obtain
∥∥ξt∥∥2

L2(ZR)
≤ const(γ) · ε with a constant depending on the

fixed bound γ <∞ (but not on g, u, w or t ∈ [0, 1]). 2

Proof of Proposition 5.23.

Choose sequences (gk)k∈N in C∞c (Z,Rd) and (uk)k∈N in C∞c (Z) converging to g, u respectively

as described in Lemma 5.24. According to Proposition 5.11, each related initial value problem

∂tfk + divx(fk v) + divy(fk gk) = uk fk + w in [0, T ], fk(0) = f0

has a weak solution fk : [0, T ] −→ L2(Z). Estimates (3.), (5.), (8.) in Proposition 5.21 imply∥∥fk(t)∥∥L2(Z)
≤ eC T ·

(
‖f0‖L2(Z) + ‖w‖L2(Z)

)
for all k ∈ N, t ∈ [0, T ],

ef
(
fk(s), fk(t)

)
≤ C · |t− s| for all k ∈ N, s, t ∈ [0, T ],

sup
t∈ [0,T ]

df
(
fk(t), fl(t)

)
−→ 0 for k, l −→∞

with a constant C = const
(
‖f0‖L2 , ‖g‖L2 , ‖divyg‖L∞ , ‖u‖L∞ , ‖w‖L2

)
. Furthermore the subset{

|fk(t)|2
∣∣ k ∈ N, t ∈ [0, T ]

}
⊆ L1(Z) is tight due to Lemma 5.25. According to Lemma 5.6,

there exists a bounded limit function f : [0, T ] −→ L2(Z) with

df
(
fl(t), f(t)

)
−→ 0 for l −→∞ and each t ∈ [0, T ].

By means of the triangle inequality, this convergence proves to be even uniform w.r.t. t ∈ [0, T ]:

sup
t∈ [0,T ]

df
(
fk(t), f(t)

)
−→ 0 for k −→∞.

In particular, f is Lipschitz continuous with respect to ĕf and so it is weakly continuous due

to Lemma 5.3.

Finally f : [0, T ] −→ L2(Z) proves to satisfy the characteristic condition (32) on weak solutions,

i.e. for any 0 ≤ t1 < t2 ≤ T , ϕ ∈ C∞c (Z)∫
Z
ϕ (f(t2)− f(t1)) dz =

∫ t2

t1

∫
Z

(
f(s, · ) (v · ∇xϕ + g · ∇yϕ + u ϕ)

)
dz ds

+ (t2 − t1)

∫
Z
ϕ w dz .
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Indeed, the general relation ĕf ≤ df and Lemma 5.3 imply fk(t) −→ f(t) weakly in L2(Z)

for each t ∈ [0, T ]. For arbitrary ε > 0 choose the index J ∈ N sufficiently large such that

‖gl − g‖L2(Z) + ‖ul − u‖L2(Z) ≤ ε holds for all l ≥ J . Fixing any indices k, l ≥ J , the uniform

convergence of (fk)k∈N w.r.t. df leads to

∣∣∣ ∫ t2

t1

∫
Z
fk(s, ·) gk · ∇yϕ dz −

∫ t2

t1

∫
Z
f(s, ·) g · ∇yϕ dz

∣∣∣
≤

∣∣∣ ∫ t2

t1

∫
Z
fk(s, ·) (gk − gl) · ∇yϕ dz

∣∣∣ +
∣∣∣ ∫ t2

t1

∫
Z

(
fk(s, ·)− f(s, ·)

)
gl · ∇yϕ dz

∣∣∣ +∣∣∣ ∫ t2

t1

∫
Z
f(s, · ) (gl − g) · ∇yϕ dz

∣∣∣
≤ const

(
‖f0‖L2 , ‖w‖L2 , ‖∇yϕ‖L∞

)
· ‖gk − gl‖L2

+ const(‖gl · ∇yϕ‖W 1,∞ + ‖gl · ∇yϕ‖L2) · sup
s∈[0,T ]

df(fk(s), f(s))

+ const
(
‖f0‖L2 , ‖w‖L2 , ‖∇yϕ‖L∞

)
· ‖gl − g‖L2

and so we obtain

lim
k→∞

∣∣∣ ∫ t2

t1

∫
Z

(
fk(s, ·) gk ·∇yϕ − f(s, ·) g ·∇yϕ

)
dz
∣∣∣ ≤ const

(
‖f0‖L2 , ‖w‖L2 , ‖∇yϕ‖L∞

)
·ε

Essentially the same arguments guarantee

lim
k→∞

∣∣∣ ∫ t2

t1

∫
Z

(
fk(s, ·) uk ϕ − f(s, ·) u ϕ

)
dz
∣∣∣ ≤ const

(
‖f0‖L2 , ‖w‖L2 , ‖ϕ‖L∞

)
· ε

with ε > 0 having being fixed arbitrarily small.

Finally the weak solution f : [0, T ] −→ L2(Z) is unique as a consequence of Proposition 5.7.

The uniform convergence w.r.t. df implies that all estimates in Proposition 5.21 hold for

ϑfg,u,w( · , f0)
Def.
= f(·) : [0, 1] −→ L2(Z) (with T = 1).

2
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5.7 Nonautonomous linear problem with “less regular” coefficients:

Existence of solutions and estimates

Proposition 5.26

For any T ∈ ]0,∞[, suppose f0 ∈ L2(Z), ŵ ∈ L2(Z),

g̃ ∈ L1
(
0, T ; L2(Z,Rd)

)
∩ L∞

(
0, T ; L∞(Z,Rd)

)
, ∂yg̃ ∈ L∞

(
0, T ; L∞(Z,Rd×d)

)
,

ũ ∈ L1
(
0, T ; L2(Z)

)
∩ L∞

(
0, T ; L∞(Z)

)
, ∂yũ ∈ L∞

(
0, T ; L∞(Z,Rd)

)
,

w̃ ∈ L∞
(
0, T ; L2(Z)

)
and compact sets Kx ⊆ Rn, Ky ⊆ Y with |w̃(t)| ≤ ŵ Lebesgue-a.e. in Z \

(
Kx × V ×Ky

)
for

every t ∈ [0, T ].

Then there exists a weak solution f : [0, T ] −→ L2(Z) to the nonautonomous linear transport

equation {
∂tf + divx(f v) + divy(f g̃(t)) = ũ(t) f + w̃(t) in [0, T ],

f(0) = f0

(46)

(in the same sense as in Proposition 5.11 about autonomous linear problems), i.e. f : [0, T ] −→
L2(Z) is weakly continuous with f(0) = f0 and it holds for any 0 ≤ t1 < t2 ≤ T , ϕ ∈ C1

c (Z)∫
Z
ϕ (f(t2)− f(t1)) dz =

∫ t2

t1

∫
Z

(
f(s, · ) (v · ∇xϕ + g̃(s) · ∇yϕ + ũ(s) ϕ)

)
dz ds

+

∫ t2

t1

∫
Z
ϕ w̃(s) dz ds . (47)

In particular, f is continuous w.r.t. df and, the following estimate is fulfilled for every t ∈ [0, T ]

‖f(t)‖L2(Z) ≤
(
‖f0‖L2(Z) +

∫ t

0
‖w̃(s)‖L2(Z) ds

)
econst(n)·(1+‖divy g̃‖L∞(L∞)+‖ũ‖L∞(L∞)) · t . (48)

Remark 5.27 The weak solution of (46) is unique according to Proposition 5.7.

Corollary 5.28

Let g̃(1), g̃(2), ũ(1), ũ(2) and w̃(1), w̃(2) satisfy the assumptions of Proposition 5.26 respectively.

Then the weak solutions f (1), f (2) : [0, T ] −→ L2(Z) to the respective modification of (46)

satisfy for every t ∈ [0, T ]

df
(
f (1)(t), f (2)(t)

)
≤

(
df
(
f (1)(0), f (2)(0)

)
+

C ·
∫ t

0

∥∥(g̃(1), ũ(1), w̃(1)) (s) − (g̃(2), ũ(2), w̃(2)) (s)
∥∥
L2(Z,Rd+2)

ds
)
· eC t

with a constant C depending only on
∥∥f (1)

∥∥
L∞(0,T ; L2(Z))

and

sup
i=1,2

(∥∥∂y g̃(i)
∥∥
L∞(L∞)

+
∥∥ũ(i)

∥∥
L∞(L∞)

+
∥∥∂y ũ(i)

∥∥
L∞(L∞)

+
∥∥w̃(i)

∥∥
L∞(L2)

)
.
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Proof of Proposition 5.26. Similarly to Lemma 5.24, the standard tool of mollifying with

some Dirac sequence leads to sequences(
g̃k
)
k∈N in L1

(
0, T ; C1

c (Z,Rd)
)
,(

ũk
)
k∈N in L1

(
0, T ; C1(Z) ∩W 1,∞(Z) ∩ L2(Z), ‖ · ‖L2(Z)

)
,(

w̃k
)
k∈N in L1

(
0, T ; L2(Z)

)
whose functions are piecewise constant in time and satisfy

lim
k→∞

∫
[0,T ]

∥∥g̃ − g̃k
∥∥
L2(Z,Rd)

dt = 0, sup
k∈N

max
t∈[0,T ]

∥∥∂y g̃k(t)
∥∥
L∞
≤
∥∥∂y g̃

∥∥
L∞(L∞)

+
∥∥g̃∥∥

L∞(L∞)
,

lim
k→∞

∫
[0,T ]

∥∥ũ− ũk∥∥L2(Z)
dt = 0, sup

k∈N
max
t∈[0,T ]

∥∥∂y ũk(t)∥∥L∞ ≤ ∥∥∂y ũ∥∥L∞(L∞)
,

lim
k→∞

∫
[0,T ]

∥∥w̃ − w̃k∥∥L2(Z)
dt = 0, sup

k∈N
max
t∈[0,T ]

∥∥w̃k(t)∥∥L2 ≤
∥∥w̃∥∥

L∞(L2)
,

∀ k, t :
∣∣w̃k(t)∣∣ ≤

∣∣ŵ∣∣ a.e. in Ẑ

with Ẑ := Z \
(
Kx × V ×Ky

)
⊆ Rn × V × Y .

For each index k ∈ N, we consider the finite partition 0 = t0k < t1k < . . . < tJkk = T such

that g̃k, ũk, w̃k are constant in every subinterval
[
tjk, t

j+1
k

[
. Then the approximative solution

fk : [0, T ] −→ L2(Z) is constructed by means of Euler method:

fk(0) := f0,

fk(t) := ϑf
g̃(tjk), ũ(tjk), w̃(tjk)

(
t− tjk, f(tjk)

)
for t ∈

]
tjk, t

j+1
k

]
, j = 0 . . . Jk − 1.

It is the weak solution of the nonautonomous linear transport equation

∂tf + divx(f v) + divy(f g̃k(t)) = ũk(t) f + w̃k(t) in [0, T ].

fk(·) satisfies the a priori estimate (48) as a piecewise consequence of Proposition 5.21 (3.).

Moreover fk(·) is even continuous w.r.t. the metric ef according to Proposition 5.21 (6.).

The set of all square values
{
|fl(t)|2

∣∣ t ∈ [0, T ], l ∈ N
}

is tight – for the same reasons as in

Lemma 5.25. This has two useful consequences: Firstly the (L2 norm) closed convex hull of{
fl(t)

∣∣ t ∈ [0, T ], l ∈ N
}
⊆ L2(Z) is complete w.r.t. the metric df according to Lemma 5.6.

Secondly Proposition 5.5 guarantees the continuity of each function fk(·), k ∈ N, w.r.t. df.

Furthermore the extension of Proposition 5.21 (8.) (to less regular coefficients) implies

df
(
fk(t), fl(t)

)
≤ C ·

(
1 + ‖f0‖L2(Z)

)
·
∫ T

0

(∥∥g̃k − g̃l
∥∥
L2 +

∥∥ũk − ũl∥∥L2 +
∥∥w̃k − w̃l∥∥L2

)
ds

for every t ∈ [0, T ] with a constant

C = C
(
n, ‖∂y g̃‖L∞(L∞), ‖ũ‖L∞(L∞), ‖∂y ũ‖L∞(L∞), ‖w̃‖L∞(L2)

)
.

and so (fk)k∈N is a uniform Cauchy sequence of continuous functions [0, T ] −→
(
L2(Z), df

)
.
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Thus there exists a continuous function f : [0, T ] −→
(
L2(Z), df

)
with

sup
t∈[0,T ]

df
(
fk(t), f(t)

)
−→ 0 (k −→∞).

In particular, f(·) is weakly continuous in L2(Z) due to ĕf ≤ df and Lemma 5.3. We conclude

from the same arguments that for every t ∈ [0, T ], the sequence
(
fk(t)

)
k∈N converges to f(t)

weakly in L2(Z) and so, f(t) satisfies inequality (48) as well.

It remains to verify that f(·) is a weak solution to the nonautonomous linear transport equa-

tion (46). We can use essentially the same limit arguments as in the proof of Proposition 5.23

and just have to take into consideration that the coefficients g̃(·), ũ(·), w̃(·) depend on time

additionally.

2

Proof of Corollary 5.28. As explained in the proof of Proposition 5.26, the solutions

f (1), f (2) : [0, T ] −→ L2(Z) to the respective modifications of (46) can be approximated by se-

quences
(
f

(1)
k

)
k∈N,

(
f

(2)
k

)
k∈N of solutions to nonautonomous linear transport equations whose

approximative coefficients are piecewise constant in time additionally.

First we consider the case f (1)(0) = f (2)(0).

The extension of Proposition 5.21 (8.) (to less regular coefficients) can again be applied piece-

wise in time and so we obtain for every t ∈ [0, T ], k ∈ N

df
(
f

(1)
k (t), f

(2)
k (t)

)
≤ C ·

(
1+‖f (1)

0 ‖L2

)
·
∫ T

0

(∥∥g̃(1)
k −g̃

(2)
k

∥∥
L2 +

∥∥ũ(1)
k −ũ

(2)
k

∥∥
L2 +

∥∥w̃(1)
k −w̃

(2)
k

∥∥
L2

)
ds

with a constant C = C
(
n, ‖∂y g̃(j)‖L∞(L∞), ‖ũ(j)‖L∞(L∞), ‖∂y ũ(j)‖L∞(L∞), ‖w̃(j)‖L∞(L2)

)
<∞.

The limit for k −→ ∞ leads to the claimed upper estimate of df
(
f (1)(t), f (2)(t)

)
for each

t ∈ [0, T ].

The more general case f (1)(0) 6= f (2)(0) results from the preceding special case applied to

f (1)(·) and the solution f̂ : [0, T ] −→ L2(Z) to the linear auxiliary problem{
∂tf̂ + divx(f̂ v) + divy(f̂ g̃(2)(t)) = ũ(2)(t) f̂ + w̃(2)(t) in [0, T ],

f̂(0) = f
(1)
0

Indeed,

df
(
f (1)(t), f̂(t)

)
≤ C ·

(
1+‖f (1)

0 ‖L2

)
·
∫ T

0

(∥∥g̃(1)−g̃(2)
∥∥
L2 +

∥∥ũ(1)−ũ(2)
∥∥
L2 +

∥∥w̃(1)−w̃(2)
∥∥
L2

)
ds

holds for every t ∈ [0, T ]. Moreover, we can conclude from extended Proposition 5.21 (7.) in

the same piecewise way

df
(
f̂(t), f (2)(t)

)
≤ df

(
f̂(0), f (2)(0)

)
· ec t = df

(
f (1)(0), f (2)(0)

)
· ec t

for every t ∈ [0, T ] with a constant c depending only on the bounds of coefficients (and their

divergence w.r.t. y). The final estimate results from the triangle inequality of metric df. 2
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6 The subproblems for Q and L

Similarly to § 5.7, we focus on the nonautonomous linear problems for Q and L separately and

collect the corresponding standard results briefly.

6.1 The nonautonomous linear problem for Q:

Unique solutions via Bochner integrals

Proposition 6.1

For every q(·) ∈ L1
(
0, T ; L2(Rn×Sn−1)

)
and initial function Q0 ∈ L2(Rn×Sn−1), there exists

a weak solution Q : [0, T ] −→ L2(Rn × Sn−1) of{
∂tQ(t) = q(t) in [0, T ],

Q(0) = Q0

(49)

in the sense that Q(·) is weakly continuous and satisfies for any φ ∈ C1
c ([0, T [×Rn × Sn−1)∫

Rn×Sn−1

(
φ(T, ζ) Q(T, ζ) − φ(0, ζ) Q0(ζ)

)
dζ =

∫ T

0

∫
Rn×Sn−1

(
∂sφ ·Q + φ · q

)
dζ ds.

It is unique and can be represented in form of a Bochner integral:

Q(t) = Q0 +

∫ t

0
q(s) ds .

Corollary 6.2 For any functions q(1), q(2) ∈ L1
(
0, T ; L2(Rn × Sn−1)

)
and Q

(1)
0 , Q

(2)
0 ∈

L2(Rn × Sn−1), let Q(i) : [0, T ] −→ L2(Rn × Sn−1) denote the unique solution of{
∂tQ

(i)(t) = q(i)(t) in [0, T ],

Q(i)(0) = Q
(i)
0

for i = 1, 2 respectively. Then the following estimate holds for every t ∈ [0, T ]

∥∥Q(1)(t)−Q(2)(t)
∥∥
L2(Rn×Sn−1)

≤
∥∥Q(1)

0 −Q
(2)
0

∥∥
L2(Rn×Sn−1)

+

∫ t

0

∥∥q(1)(s)− q(2)(s)
∥∥
L2 ds.

2

Proof of Proposition 6.1. For every Bochner integrable q : [0, T ] −→ L2(Rn × Sn−1),

[0, T ] −→ L2(Rn × Sn−1), t 7−→
∫ t

0
q(s) ds

is differentiable Lebesgue-almost everywhere in [0, T ] as a consequence of [31, Theorem 3.8.5].

Furthermore it is bounded by the Lebesgue integral of the norm s 7−→ ‖q(s)‖L2(Rn×Sn−1) due

to [31, Theorem 3.7.6] and so, it is norm-continuous. Thus, [0, T ] −→ L2(Rn × Sn−1), t 7−→

Q0 +

∫ t

0
q(s) ds is a weak solution.
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It remains to show the uniqueness of weak solutions. The difference ∆ : [0, T ] −→ L2(Rn×Sn−1)

of any two weak solutions of initial value problem (49) is weakly continuous and satisfies for

every φ ∈ C1
c ([0, T [×Rn × Sn−1)∫
Rn×Sn−1

φ(T, ζ) ·∆(T, ζ) dζ =

∫ T

0

∫
Rn×Sn−1

∂sφ(s, ζ) ·∆(s, ζ) dζ ds.

For any function ϕ0 ∈ L2(Rn × Sn−1), we conclude that the Lebesgue integrable function

[0, T [ −→ R, t 7−→
∫
Rn×Sn−1

ϕ0(ζ) ·∆(t, ζ) dζ

has the distributional distribution identical 0 and so, it is constant Lebesgue-almost everywhere.

The weak continuity of ∆(·) and the initial condition ∆(0) = 0 imply ∆(·) = 0 in [0, T ], i.e.

the weak solution of (49) is unique.

2

6.2 The nonautonomous semilinear reaction-diffusion problem for L

Proposition 6.3 (Solutions to semilinear parabolic problems in Rn)
Suppose for R : [0, T ]× L2(Rn) −→ L2(Rn)

1. for every u ∈ L2(Ω), the function R(·, u) : [0, T ] −→ L2(Rn) is measurable,

2. there exists some λ ∈ L1([0, T ]) such that for every t ∈ [0, T ], the function R(t, ·) :

L2(Rn) −→ L2(Rn) is λ(t)-Lipschitz continuous.

Then for every initial L0 ∈ L2(Rn), there exists a unique mild solution L ∈ C0([0, T ], L2(Rn))

to nonautonomous semilinear evolution problem{
∂tL = ∆xL + R(t, L) in ]0, T [×Rn

L(0) = L0 in Rn
(50)

Furthermore L is also weak solution.

Remark 6.4 This proposition is a special case of [59, Theorem 3.2] or, equivalently in our

context, [27, Theorem 1.2].

In more details, Tolstogonov [59] investigates evolution inclusions even with (possibly non-

linear) semigroups which are generated by an m-dissipative operator. His terms of lower order

are specified as a multivalued map of time and state whereas we have the just single-valued

function R here. [59, Theorem 3.1] guarantees the existence of a so-called integral solution for

a much broader class of generating operators.

[59, Theorem 3.2] and [27, Theorem 1.2] consider an infinitesimal generator of a strongly

continuous semigroup of bounded linear operators and provide mild solutions. We apply this

result to the Laplace operator and conclude uniqueness from assumption (2) by means of

Gronwall’s inequality.
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Proposition 6.5 (The explicit weak solution in the whole space Rn)

For any β ≥ 0 set Γ : ]0,∞[×Rn −→ R, (t,x) 7−→ 1

(4π t)
n
2

· exp
(
− |x|

2

4 t
− β t

)
.

Choose κ, T > 0, L0 ∈ L2(Rn) and σ ∈ L1
(
0, T ; L2(Rn)

)
arbitrarily.

Then the function L : [0, T ]× Rn −→ R,

L(t,x) :=

∫
Rn

Γ(κ t, x− ζ) · L0(ζ) dζ +

∫ t

0

∫
Rn

Γ
(
κ (t− s), x− ζ

)
· σ(s, ζ) dζ ds (51)

is the unique weak solution of the nonautonomous linear reaction-diffusion equation{
∂tL = κ ·∆xL − β L + σ in ]0, T [×Rn

L(0) = L0 in Rn
(52)

In particular, L(t, ·) ∈W 1,2(Rn) holds for every t ∈ ]0, T ] if σ ∈ L2
(
0, T ; L2(Rn)

)
in addition.

Corollary 6.6 (A priori estimates) For β ≥ 0, κ, T > 0 and σ1, σ2 ∈ L1
(
0, T ; L2(Rn)

)
,

let L1, L2 : [0, T ] −→ L2(Rn) denote the unique weak solutions of ∂tLj = κ ·∆xLj − βLj + σj

(j = 1, 2). Then the following estimates are satisfied for every t ∈ ]0, T ]∥∥L1(t)− L2(t)
∥∥
L2(Rn)

≤
∥∥L1(0)− L2(0)

∥∥
L2 + const(β, κ, n) ·

∥∥σ1 − σ2‖L1(0,T ;L2)∥∥∇x

(
L1 − L2

)∥∥
L1(0,T ;L2)

≤ const(β, κ, n) ·
√
t ·
(∥∥L1(0)− L2(0)

∥∥
L2 +

∥∥σ1 − σ2‖L1(L2)

)
If σ1 − σ2 ∈ L∞

(
0, T ; L2(Rn)

)
in addition, then the spatial gradients fulfil for every t ∈ ]0, T ]∥∥∇x

(
L1(t)−L2(t)

)∥∥
L2(Rn)

≤ const(β, κ, n) ·
(
t−

1
2

∥∥L1(0)−L2(0)
∥∥
L2 +
√
t ‖σ1−σ2‖L∞(0,T ; L2)

)
2

Proof of Proposition 6.5. If we assume L0 ∈ C0
c (Rn) and σ ∈ C2

c ([0, T ]×Rn) in addition,

then it is well known that equation (51) specifies the unique classical solution of parabolic

problem (52) (see, e.g., [22, § 2.3]). Furthermore, the following estimates hold for every t ∈]0, T ]∥∥Γ(κ t, · )
∥∥
L1(Rn)

= e−β κ t,∥∥∇x Γ(κ t, · )
∥∥
L1(Rn)

≤ const(β, κ, n) · t−
1
2 ,

In the special case σ ≡ 0 (i.e., ∂tL = κ ·∆xL − β L), we conclude from the standard rules of

convolution (e.g., [38, § VIII.2]) that the function L : [0, T ]×Rn −→ R defined in equation (51)

satisfies for every t ∈ ]0, T ]

‖L(t, ·)‖L2(Rn) ≤
∥∥Γ(κ t, · )

∥∥
L1(Rn)

· ‖L0‖L2(Rn) ≤ ‖L0‖L2(Rn)

‖∇xL(t, ·)‖L2(Rn) ≤
∥∥∇xΓ(κ t, · )

∥∥
L1(Rn)

· ‖L0‖L2(Rn) ≤ const(β, κ, n) · t−
1
2 · ‖L0‖L2(Rn)
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For the more general case of nonhomogeneous parabolic equations (i.e., here arbitrary σ ∈
C2
c ([0, T ]× Rn)), the variation of constants formula leads to

‖L(t, ·)‖L2(Rn) ≤ const(β, κ, n) ·
(
‖L0‖L2(Rn) + ‖σ‖L1(0,T ;L2(Rn))

)
∥∥∇x L(t, ·)

∥∥
L2(Rn)

≤ const(β, κ, n) ·
(
t−

1
2 · ‖L0‖L2(Rn) +

∫ t

0
(t− s)−

1
2 · ‖σ(s, ·)‖L2(Rn) ds

)
for every t ∈ ]0, T ] and so, we obtain due to Fubini’s theorem

∥∥∇x L
∥∥
L1(0,T ; L2(Rn))

=

∫ T

0

∥∥∇x L(t, ·)
∥∥
L2(Rn)

dt

≤ const(β, κ, n) ·
(√

T · ‖L0‖L2(Rn) +

∫
(s,t)∈[0,T ]2:

s≤ t

(t− s)−
1
2 · ‖σ(s, ·)‖L2(Rn) d(s, t)

)
≤ const(β, κ, n) ·

(√
T · ‖L0‖L2(Rn) +

∫ T

0

√
T − s · ‖σ(s, ·)‖L2(Rn) ds

)
≤ const(β, κ, n) ·

√
T ·

(
‖L0‖L2(Rn) + ‖σ‖L1(0,T ; L2(Rn))

)
.

For arbitrary L0 ∈ L2(Rn) and σ ∈ L1
(
0, T ; L2(Rn)

)
, consider two sequences in C0

c (Rn)

and C2
c ([0, T ] × Rn) respectively approximating the given data L0, σ. The linearity of the

reaction-diffusion equation and the last estimates imply that the related solutions form a

Cauchy sequence both in L1
(
0, T ; W 1,2(Rn)

)
and w.r.t. supremum norm in C0

(
[0, T ], L2(Rn)

)
.

Hence the limit provides a function L : [0, T ]× Rn −→ R with the following properties:

• ‖L‖L1(0,T ;W 1,2(Rn)) ≤ const(β, κ, n, T ) ·
(
‖L0‖L2(Rn) + ‖σ‖L1(0,T ;L2(Rn))

)
,

• [0, T ] −→ L2(Rn), t 7−→ L(t, ·) is continuous with L(0) = L0,

• L is a weak solution to the nonautonomous linear parabolic equation (52).

Finally it remains to prove that weak solutions of initial value problem (52) are unique.

If β > 0, then the energy estimate method in combination with Gronwall’s inequality leads to

‖L1(t)− L2(t)‖L2(Rn) ≤ ‖L1(0)− L2(0)‖L2(Rn) · econst(β)·t

for the difference of any two weak solutions L1, L2 and every t ∈ [0, T ]. In the last case β = 0,

each weak solution L : [0, T ] −→ L2(Rn) of the original problem (52) induces a weak solution

L̃ : [0, T ] −→ L2(Rn) to the auxiliary problem

∂tL̃ = κ ·∆xL̃ − L̃ + σ in [0, T ], L̃(0) = L0

by means of L̃(t) := e−t · L(t) and, the latter is unique.

2
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7 Proof of main statements in § 3

In this section we always suppose the hypotheses of Theorem 3.2.

7.1 Proof of Theorem 3.2 by means of successive approximation

Consider the space XT of function tuples (f,Q,L) with

f ∈ C0
(
[0, T ], (L2(Z), df)

)
∩ L∞

(
0, T ; L2(Z)

)
,

Q ∈ C0
(
[0, T ], L2(Rn×Sn−1)

)
,

L ∈ C0
(
[0, T ], L2(Rn)

)
s.t. ess supt∈[0,T ]

√
t · ‖L(t)‖W 1,2(Rn) <∞.

Fix the initial functions f0 ∈ L2(Z), Q0 ∈ L2(Rn × Sn−1) and L0 ∈ L2(Rn) arbitrarily. The

method of successive approximation induces a map

L : XT −→ XT ,
(
f̃ , Q̃, L̃

)
7−→ (f,Q,L)

in the following way: For
(
f̃ , Q̃, L̃

)
∈ XT given, f : [0, T ] −→ L2(Z), Q : [0, T ] −→ L2(Rn×Sn−1)

and L : ]0, T ] −→W 1,2(Rn) are the unique weak solutions of nonautonomous (partially semi-)

linear initial value problem
∂tf + divx(f v) + divy

(
f G(t, f̃ , Q̃, L̃)

)
= U(t, f̃ , Q̃, L̃) f + W(t, f̃ , Q̃, L̃), f(0) = f0,

∂tQ = T
(
t, f̃ , Q̃, L̃

)
, Q(0) = Q0,

∂tL = κL ∆xL+R
(
t, f̃ , Q̃, L

)
, L(0) = L0

by means of Propositions 5.26, 6.1 and 6.5 respectively. Indeed, the time-dependent coefficients

t 7−→ G
(
t, f̃(t), Q̃(t), L̃(t)

)
etc. satisfy the assumptions of these three propositions and so,

L : XT −→ XT is well-defined.

In regard to Banach’s fixed point theorem, we now want to conclude its Lipschitz continuity

from assumption (iv) of Theorem 3.2. This requires some a priori bounds depending on the

initial functions f0, Q0, L0:

Lemma 7.1 (A priori bounds)

1. There are constants γf ≥ ‖f0‖L2(Z), ρf > 0 both depending on T , ‖f0‖L2(Z) and the

bounds in assumption (i) such that for every
(
f̃ , Q̃, L̃

)
∈ XT with

∥∥f̃(t)
∥∥
L2(Z)

≤ ρf · eγf ·t

for all t ∈ [0, T ], the first component f(·) of L
(
f̃ , Q̃, L̃

)
∈ XT satisfies

‖f(t)‖L2(Z) ≤ ρf · eγf ·t for every t ∈ [0, T ].

2. There exists a radius ρQ > 0 which depends on ‖Q0‖L2(Rn×Sn−1), T , γf , ρf such that for

each
(
f̃ , Q̃, L̃

)
∈ XT with ‖f̃‖L∞(0,T ; L2(Z)) ≤ ρf · eγf T the tuple (f,Q,L) := L

(
f̃ , Q̃, L̃

)
∈

XT satisfies

‖Q(t)‖L2(Rn×Sn−1) ≤ ρQ for every t ∈ [0, T ].
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3. There exists a radius ρL > 0 depending on ‖L0‖L2(Rn), T , γf , ρf , ρQ such that for each(
f̃ , Q̃, L̃

)
∈ XT with ‖f̃‖L∞(0,T ; L2(Z)) ≤ ρf · eγf T and ‖Q̃‖L∞(0,T ; L2(Rn×Sn−1)) ≤ ρQ, the

tuple (f,Q,L) := L
(
f̃ , Q̃, L̃

)
∈ XT satisfies

‖L(t)‖W 1,2(Rn) ≤ ρL ·
(
1 + t−

1
2
)

for every t ∈ ]0, T ].

Proof. Statement (1.) results from a priori estimate (48) and assumption (i). Indeed,

‖f(t)‖L2(Z) ≤
(
‖f0‖L2(Z) +

∫ t

0
‖W(s, f̃ , Q̃, L̃)‖L2(Z) ds

)
· econst · t

≤
(
‖f0‖L2(Z) +

∫ t

0
const ·

(
1 +

∥∥f̃(s)
∥∥
L2(Z)

)
ds
)
· econst · t

≤
(
‖f0‖L2(Z) + const · T

)
· econst ·T + const · econst ·T ·

∫ t

0

∥∥f̃(s)
∥∥
L2(Z)

ds.

We are looking for a continuous auxiliary function ψ : [0, T ] −→ [0,∞[ such that∥∥f̃(s)
∥∥
L2(Z)

≤ ψ(s) for a.e. s ∈ [0, T ] =⇒ ‖f(t)‖L2(Z) ≤ ψ(t) for all t ∈ [0, T ].

The preceding estimate for ‖f(t)‖L2(Z) provides the sufficient condition

ψ(t) =
(
‖f0‖L2(Z) + const · T

)
· econst ·T + const · econst ·T ·

∫ t

0
ψ(s) ds

for every t ∈ [0, T ] and, this integral equation has the explicit solution

ψ(t) =
(
‖f0‖L2(Z) + const · T

)
· econst ·T · econst(T ) · t .

In regard to statement (2.), assumption (ii) implies

‖Q(t)‖L2(Rn×Sn−1) ≤ ‖Q0‖L2(Rn×Sn−1) +

∫ t

0
Cγf ,ρf ·

(
1 + ‖Q(s)‖L2(Rn×Sn−1)

)
ds

for any t ∈ [0, T ] and, Gronwall’s inequality leads to an explicit bound

‖Q(t)‖L2(Rn×Sn−1) ≤ const
(
‖Q0‖L2(Rn×Sn−1), Cγf ,ρf , T

)
=: ρQ for every t ∈ [0, T ].

Similarly statement (3.) results from Corollary 6.6 and assumption (ii) by means of Gronwall’s

inequality, i.e. with constants c = const(κL, n, T, γf , ρf , ρQ)

‖L(t)‖L2(Rn) ≤ c ·
(
‖L0‖L2(Rn) +

∫ t

0

(
1 + ‖L(s)‖L2(Rn)

)
ds
)

=⇒ ‖L(t)‖L2(Rn) ≤ c ·
(
‖L0‖L2(Rn) + t

)
· ec t.

This implies for every t ∈ [0, T ]∥∥R(t, f̃(t), Q̃(t), L(t)
)∥∥
L2(Rn)

≤ C
max{ρf ·e

γf T , ρQ}
·
(
1 + c ·

(
‖L0‖L2(Rn) + T

)
· ec T

)
=: c1.

Finally we conclude from the last inequality in Corollary 6.6 for every t ∈ ]0, T ]∥∥∇x L(t)
∥∥
L2(Rn)

≤ const(κL, n) ·
(
t−

1
2 ‖L0‖L2(Rn) + c1

√
t
)

=⇒ ‖L(t)‖W 1,2(Rn) ≤ const(κL, n, T, γf , ρf , ρQ, ‖L0‖L2(Rn)) ·
(
1 + t−

1
2
)

2
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Consider the subset

XT,ρ :=
{

(f,Q,L) ∈ XT
∣∣∣ ‖Q‖L∞(0,T ; L2) ≤ ρQ, ‖f(t)‖L2(Z) ≤ ρf · eγf t,

‖L(t)‖W 1,2(Rn) ≤ ρL · (1 + t−
1
2

)
for a.e. t ∈ [0, T ]

}
supplied with the metric

dX : XT,ρ ×XT,ρ −→ R,(
(f1, Q1, L1), (f2, Q2, L2)

)
7−→ sup

t∈[0,T ]

(
df
(
f1(t), f2(t)

)
+
∥∥Q1(t)−Q2(t)

∥∥
L2(Rn×Sn−1)

+∥∥L1(t)− L2(t)
∥∥
L2(Rn)

)
+

ess supt
‖L1(t)− L2(t)‖W1,2(Rn)

1 + t−1/2 .

Lemma 7.1 states LXT,ρ ⊆ XT,ρ. Due to assumption (v), the same arguments as for Lemma 5.25

imply that
{
|f(t)|2

∣∣ (f,Q,L) ∈ LXT,ρ, t ∈ [0, T ]
}
⊆ L1(Z) is tight. Due to Lemma 5.6,

the closed convex hull of
{
f(t)

∣∣ (f,Q,L) ∈ LXT,ρ, t ∈ [0, T ]
}
⊆ L2(Z) is complete w.r.t. df.

Hence the closed convex hull of LXT,ρ is complete w.r.t. dX.

Moreover L is Lipschitz continuous w.r.t. dX. Indeed, in combination with assumptions (ii),(iv)

for the auxiliary radius max
{
ρf · eγf T , ρQ, ρL}, Corollaries 5.28, 6.2 and 6.6 imply for any(

f̃1, Q̃1, L̃1

)
,
(
f̃2, Q̃2, L̃2

)
∈ XT,ρ and (fj , Qj , Lj) := L

(
f̃j , Q̃j , L̃j

)
, j = 1, 2,

df
(
f1(t), f2(t)

)
≤ const(γf , ρf , ρQ, ρL) ·

∫ t

0
Λρ

(
df
(
f̃1(s), f̃2(s)

)
+
∥∥Q̃1(s)− Q̃2(s)

∥∥
L2 +∥∥L̃1(s)− L̃2(s)‖W 1,2

)
ds

≤ const(γf , ρf , ρQ, ρL) ·
∫ t

0
Λρ d

X((f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)
)

(1 + s−
1
2 ) ds

≤ const(γf , ρf , ρQ, ρL) · (t+
√
t) · dX

(
(f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)

)
∥∥Q1(t)−Q2(t)

∥∥
L2 ≤ const(γf , ρf , ρQ, ρL) · (t+

√
t) · dX

(
(f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)

)
∥∥L1(t)− L2(t)

∥∥
L2 ≤ const(γf , ρf , ρQ, ρL, κL) ·

∫ t

0
Λρ

(
df
(
f̃1(s), f̃2(s)

)
+
∥∥Q̃1(s)− Q̃2(s)

∥∥
L2

+
∥∥L1(s)− L2(s)‖L2(Rn)

)
ds∥∥L1(t)− L2(t)

∥∥
L2 ≤ const(γf , ρf , ρQ, ρL, κL, T ) · t · dX

(
(f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)

)
with the last estimate being concluded from Gronwall’s inequality. Moreover the spatial gra-

dients of L1(t)− L2(t) are bounded in the sense that∥∥∇x

(
L1(t)− L2(t)

)∥∥
L2

≤ const(κL, n)
√
t · sup

s∈[0,t]
Λρ ·

(
df
(
f̃1(s), f̃2(s)

)
+
∥∥Q̃1(s)− Q̃2(s)

∥∥
L2 +

∥∥L1(s)− L2(s)‖L2

)
≤ const(ρf , ρQ, ρL, κL, n, T ) ·

√
t · dX

(
(f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)

)
,
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i.e.
‖L1(t)− L2(t)‖W 1,2

1 + t−1/2
≤ const(γf , ρf , ρQ, ρL, κL, n, T ) · t · dX

(
(f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)

)
.

Hence we obtain for every t ∈ ]0, T ]

sup
s∈ ]0,t]

(
df
(
f1(s), f2(s)

)
+
∥∥Q1(s)−Q2(s)

∥∥
L2 +

∥∥L1(s)− L2(s)
∥∥
L2 +

‖L1(s)− L2(s)‖W 1,2

1 + s−1/2

)
≤ const(γf , ρf , ρQ, ρL, κL, n, T ) ·

√
t · dX

(
(f̃1, Q̃1, L̃1), (f̃2, Q̃2, L̃2)

)
.

Now choose τ = τ(γf , ρf , ρQ, ρL, κL, n, T ) ∈ ]0, T ] sufficiently small with

const(γf , ρf , ρQ, ρL, κL, n, T ) ·
√
τ ≤ 1

2
.

If we now restrict our considerations to the subinterval [0, τ ] and the related subset Xτ,ρ (with

the same parameters γf , ρf , ρQ, ρL, κL though), then L : Xτ,ρ −→ Xτ,ρ proves to be a strict

contraction and Banach’s fixed point theorem provides a unique fixed point (f1, Q1, L1) which

solves the given system in [0, τ ] uniquely.

This step is now repeated in the subinterval [τ, 2τ ], the initial states f1(τ), Q1(τ), L1(τ) and

the same parameters γf , ρQ, ρL, κL, but the modification ρf ← ρf ·eγf τ . In particular the same

estimates ensure the strict contraction property etc. After finitely many steps (each of which

has the same step size τ) we obtain the unique solution in the whole time interval [0, T ] – as

claimed in Theorem 3.2. 2

7.2 Proof of Proposition 3.3 about Lipschitz continuous dependence of

solutions on data for Z
Def.
= Rn × V × Rd

For the upper bound R of initial states given, the a priori estimates presented in the proof of

Lemma 7.1 provide constants γf , ρf , ρQ, ρL > 0 depending on R, T and coefficient constants in

assumptions (i) – (ii) of Theorem 3.2 such that the following estimates hold for j = 1, 2 and

every t ∈ [0, T ] 
‖f (j)(t)‖L2(Z) ≤ ρf · eγf ·t

‖Q(j)(t)‖L2(Rn×Sn−1) ≤ ρQ

‖L(j)(t)‖L2(Rn) ≤ ρL

‖L(j)(t)‖W 1,2(Rn) ≤ ρL ·
(
1 + t−

1
2

)
This leads to a joint Lipschitz constant Λ0 = Λ0(R, T ) > 0 for R(j) and G(j), U (j), W(j), T (j)

(j = 1, 2) (in the sense of assumption (iv) in Theorem 3.2).

Corollary 5.28 provides a constant C > 0 (depending on R and the joint bounds of coefficients)

such that for every t ∈ [0, T ]

df
(
f (1)(t), f (2)(t)

)
≤
(
df
(
f

(1)
0 , f

(2)
0

)
+

C ·
∫ t

0

∥∥∥(G(1), U (1), W(1))
∣∣
(s, f (1)(s), Q(1)(s), L(1)(s))

−

(G(2), U (2), W(2))
∣∣
(s, f (2)(s), Q(2)(s), L(2)(s))

∥∥∥
L2(Z,Rd+2)

ds
)
· eC t.
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Now Λ0-Lipschitz continuity of the coefficient functions and Minkowski inequality imply

df
(
f (1)(t), f (2)(t)

)
≤

(
df
(
f

(1)
0 , f

(2)
0

)
+

C · t · sup
[0,T ]×L2(Z)×L2(Rn×Sn−1)×W 1,2(Rn)

∥∥∥(G(1), U (1), W(1)
)
−
(
G(2), U (2), W(2)

)∥∥∥
L2

+

C ·
∫ t

0
Λ0 ·

(
df
(
f (1), f (2)

)
+ ‖Q(1) −Q(2)‖L2 + ‖L(1) − L(2)‖W 1,2

)
ds
)
· eC t.

For the same reason, we conclude from Corollary 6.2 for every t ∈ [0, T ]∥∥Q(1)(t)−Q(2)(t)
∥∥
L2(Rn×Sn−1)

≤
∥∥Q(1)

0 −Q
(2)
0

∥∥
L2(Rn×Sn−1)

+

∫ t

0

∥∥∥T (1)
∣∣
(s, f (1)(s), Q(1)(s), L(1)(s))

− T (2)
∣∣
(s, f (2)(s), Q(2)(s), L(2)(s)

∥∥∥
L2(Rn×Sn−1)

ds

≤
∥∥Q(1)

0 −Q
(2)
0

∥∥
L2(Rn×Sn−1)

+ t · sup
[0,T ]×L2(Z)×L2(Rn×Sn−1)×W 1,2(Rn)

∥∥T (1) − T (2)
∥∥
L2(Rn×Sn−1)

+ Λ0 ·
∫ t

0

(
df
(
f (1)(s), f (2)(s)

)
+ ‖Q(1)(s)−Q(2)(s)‖L2 + ‖L(1)(s)− L(2)(s)‖W 1,2

)
ds.

The corresponding estimates for L(1)(t)− L(2)(t) result from Corollary 6.6, i.e., first,∥∥L(1)(t)− L(2)(t)
∥∥
L2(Rn)

≤
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+ C ·
∫ t

0

∥∥R(1)
∣∣
(s, f (1)(s), Q(1)(s), L(1)(s))

− R(2)
∣∣
(s, f (2)(s), Q(2)(s), L(2)(s))

∥∥
L2(Rn)

ds

≤
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+ C t · sup
∥∥R(1) −R(2)

∥∥
L2(Rn)

+ C Λ0 ·
∫ t

0

(
df
(
f (1)(s), f (2)(s)

)
+ ‖Q(1)(s)−Q(2)(s)‖L2 + ‖L(1)(s)− L(2)(s)‖L2

)
ds

and second,∥∥∇x

(
L(1)(t)− L(2)(t)

)∥∥
L2(Rn)

≤ C ·
(
t−

1
2 ·
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+∫ t

0
(t− s)−

1
2 ·

∥∥∥R(1)
∣∣
(s, f (1)(s), Q(1)(s), L(1)(s))

− R(2)
∣∣
(s, f (2)(s), Q(2)(s), L(2)(s))

∥∥∥
L2(Rn)

ds
)

≤ C ·
(
t−

1
2 ·
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+ 2
√
t · sup

∥∥R(1) −R(2)
∥∥
L2(Rn)

+

Λ0 ·
∫ t

0
(t− s)−

1
2 ·

(
df
(
f (1), f (2)

)
+ ‖Q(1) −Q(2)‖L2 + ‖L(1) − L(2)‖L2

)
ds
)
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Now we consider the auxiliary distance function φ : [0, T ] −→ [0,∞[,

φ(t) := sup
s∈ [0,t]

(
df
(
f (1)(s), f (2)(s)

)
+
∥∥Q(1)(s)−Q(2)(s)

∥∥
L2(Rn×Sn−1)

+
∥∥L(1)(s)− L(2)(s)

∥∥
L2

)
Obviously, it is nondecreasing and so, we obtain for every t ∈ ]0, T ]∥∥∇x

(
L(1)(t)− L(2)(t)

)∥∥
L2(Rn)

≤ C ·
(
t−

1
2 ·
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+ 2
√
t · sup

∥∥R(1) −R(2)
∥∥
L2(Rn)

+

Λ0 · φ(t) ·
∫ t

0
(t− s)−

1
2 ds

)
= C ·

(
t−

1
2 ·
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+ 2
√
t · sup

∥∥R(1) −R(2)
∥∥
L2(Rn)

+ 2 Λ0

√
t · φ(t)

)
.

Hence the distance function ψ : [0, T ] −→ [0,∞[ of interest here satisfies the integral inequality

for every t ∈ ]0, T ]

ψ(t)
Def.
= df

(
f (1)(t)− f (2)(t)

)
+
∥∥Q(1)(t)−Q(2)(t)

∥∥
L2(Rn×Sn−1)

+
∥∥L(1)(t)− L(2)(t)

∥∥
L2(Rn)

≤ df
(
f

(1)
0 , f

(2)
0

)
· eC t +

∥∥Q(1)
0 −Q

(2)
0

∥∥
L2(Rn×Sn−1)

+
∥∥L(1)

0 − L
(2)
0

∥∥
L2(Rn)

+ C t eC t · sup
∥∥∥(G(1), U (1), W(1), T (1), R(1)

)
−
(
G(2), U (2), W(2), T (2), R(2)

)∥∥∥
L2

+ 3 Λ0 C eC t ·
∫ t

0

(
df
(
f (1), f (2)

)
+ ‖Q(1) −Q(2)‖L2 + ‖L(1) − L(2)‖L2

)
ds

+ 2 Λ0 C eC t ·
∫ t

0

∥∥∇x

(
L(1)(s)− L(2)(s)

)∥∥
L2 ds

≤ ψ(0) · eC t

+ C t eC t · sup
∥∥∥(G(1), U (1), W(1), T (1), R(1)

)
−
(
G(2), U (2), W(2), T (2), R(2)

)∥∥∥
L2

+ 3 Λ0 C eC t ·
∫ t

0
ψ(s) ds

+ 2 Λ0 C
2 eC t ·

(
2
√
t ·
∥∥L(1)

0 − L
(2)
0

∥∥
L2 + 3 t

3
2 · sup

∥∥R(1) −R(2)
∥∥
L2 + 2 Λ0

∫ t

0
φ(s)

√
s ds

)
.

We keep the notation C for each constant depending only on R, T and the bounds of the

coefficients (stated in assumptions (i) – (iv) of Theorem 3.2). Moreover set

∆∞ := sup
∥∥∥(G(1), U (1), W(1), T (1), R(1)

)
−
(
G(2), U (2), W(2), T (2), R(2)

)∥∥∥
L2
.

Then φ(t) = sup
0≤ s≤ t

ψ(s) implies the estimate for every t ∈ ]0, T ]

φ(t) ≤ φ(0) · eC t
(
1 + C

√
t
)

+ C t eC t ·∆∞ + C

∫ t

0
φ(s) ·

(
1 +
√
s
)
ds

≤ φ(0) · eC (t+
√
t) + C t eC t ·∆∞ + C

∫ t

0
φ(s) ds

=⇒ φ(t) ≤
(
φ(0) · eC

√
t + C t ·∆∞

)
· e2 C t

due to Gronwall’s inequality and thus, ψ ≤ φ leads to the claim (22).
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7.3 Proof of Corollary 3.4

By assumption, Y ( Rd is now an open subset with bounded Lipschitz boundary. As before,

we set Z
Def.
= Rn × V × Y .

We consider the hypothesis of the boundary ∂Y ⊆ Rd being Lipschitz and compact for two

technical reasons. First every Sobolev function W 1,∞(Y ) is (globally) Lipschitz continuous

and so, it can be extended continuously to the topological closure Y ⊂ Rd. Second, there

exists a continuous extension operator for Sobolev functions with some properties which are

usually not mentioned explicitly in the literature. Indeed, the proofs in [14, § 6.4] reveal for

Lipschitz boundaries (similarly to what can be found in [13, Theorem 9.7] for open sets with

C1 boundaries):

Lemma 7.2 (Extension of Sobolev functions – independent of k, p)

Let Ω ⊂ Rd be an open set with compact Lipschitz boundary. Then there exists a linear extension

operator E : L1
loc(Ω) −→ L1

loc(Rd) which, in addition to the standard condition on extensions,

i.e. (E u)
∣∣
Ω

= u for all u ∈ L1
loc(Ω), satisfies for any k ∈ N, p ∈ [1,∞] and u ∈W k,p(Ω)

E
(
W k,p(Ω)

)
⊂ W k,p(Rd),

‖E u‖Lp(Rd) ≤ const(Ω, k, p) · ‖u‖Lp(Ω),

‖E u‖Wk,p(Rd) ≤ const(Ω, k, p) · ‖u‖Wk,p(Ω).

This extension operator E will be applied to the coefficient functions G and U for extending the

initial value problem (20) from Z
Def.
= Rn×V ×Y to the “whole” space Rn×V ×Rd, which was

considered in Theorem 3.2 and Corollary 3.3. As an abbreviation, define the linear operator

Ey : L1
loc(Rn × V × Y ) −→ L1

loc(Rn × V × Rd)

by
(
Ey u

)
(x,v,y) := E

(
u(x,v, ·)

)
(y) for u ∈ L1

loc(Rn × V × Y ) and (x,v,y) ∈ Rn × V × Rd.

Indeed, for every t ∈ [0, T ], f ∈ L2(Z), Q ∈ L2(Rn×Sn−1) and L ∈ W 1,2(Rn), the function

G(t, f,Q, L) ∈ L∞(Z,Rd) ∩ L2 has its weak partial derivative w.r.t. y in L∞(Z,Rd×d). Hence,

for Lebesgue-almost every x ∈ Rn and v ∈ V ,

Y −→ Rd, y 7−→ G(t, f,Q, L) (x,v,y)

belongs to W 1,∞(Y,Rd) and so, E provides an extension to Rd denoted by

Rd −→ Rd, y 7−→
(
E ◦ G(t, f,Q, L) (x,v, ·)

)
(y)

with { ∥∥E ◦ G(t, f,Q, L) (x,v, ·)
∥∥
L2(Rd)

≤ const · ‖G(t, f,Q, L) (x,v, ·)‖L2(Y ),∥∥E ◦ G(t, f,Q, L) (x,v, ·)
∥∥
W 1,∞(Rd)

≤ const · ‖G(t, f,Q, L) (x,v, ·)‖W 1,∞(Y ).
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Thus, the composition Ey ◦G(t, f,Q, L) belongs to L2(Rn×V ×Rd, Rd)∩L∞ and has its weak

derivative w.r.t. y in L∞(Rn × V ×Rd, Rd×d). Moreover all related norms have upper bounds

in terms of the corresponding norms of G(t, f,Q, L).

Applying the same arguments to Ey ◦ U(t, f,Q, L) ∈ L2(Rn × V × Rd) ∩ L∞ and using the

zero expansion of W(t, f,Q, L) ∈ L2(Z) to Rn× V ×Rd, we now have the tools for solving the

following auxiliary problem for f̆ : [0, T ] −→ L2(Rn × V × Rd), Q̆ : [0, T ] −→ L2(Rn × Sn−1),

L̆ : ]0, T ] −→W 1,2(Rn)
∂t f̆ +∇x · (v f̆) +∇y ·

(
Ey ◦ G

(
t, f̆ |Z , Q̆, L̆

)
f̆
)

= Ey ◦ U
(
t, f̆ |Z , Q̆, L̆

)
f̆ +W

(
t, f̆ |Z , Q̆, L̆

)
∂t Q̆ = T

(
t, f̆ |Z , Q̆, L̆

)
∂t L̆ = κL ∆xL + R

(
t, f̆ |Z , Q̆, L̆

)
.

(53)

Indeed, all assumptions of Theorem 3.2 are satisfied and so, there exists a unique weak solution

f̆ : [0, T ] −→ L2(Rn × V × Rd), Q̆ : [0, T ] −→ L2(Rn × Sn−1), L̆ : ]0, T ] −→ W 1,2(Rn) for any

initial states f̆0 ∈ L2(Rn × V × Rd), Q̆0 ∈ L2(Rn × Sn−1), L̆0 ∈ L2(Rn) given.

Considering smooth test functions with compact support in Z
Def.
= Rn × V × Y (rather than

Rn×V ×Rd as permitted in the auxiliary problem), we obtain immediately that the restrictions

f(t) := f̆(t)
∣∣
Z
∈ L2(Z), t ∈ [0, T ], provide a weak solution to the original problem (20) on Z.

The Lipschitz continuous dependence on given data (in the sense of estimate (22)) remains to

be proved because it implies uniqueness.

All statements about the extended problem on the “whole space” Rn × V ×Rn use the metric

d̆f (f̆ , ğ)
Def.
= sup

{∫
Rn×V×Rd

ϕ · (f̆ − ğ) dz
∣∣∣ ϕ ∈ C0

c (Rn × V × Rd), ∂yϕ ∈ L∞,

‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∂yϕ‖L∞ ≤ 1
}
,

but the estimate of interest now refers to the smaller domain Z
Def.
= Rn× V × Y and its related

distance of f̆ , ğ ∈ L2(Rn × V × Rd), i.e.

df (f̆ , ğ)
Def.
= sup

{∫
Z
ϕ · (f̆ − ğ) dz

∣∣∣ ϕ ∈ C0
c (Z), ∂yϕ ∈ L∞(Z,Rd),

‖ϕ‖L2 ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∂yϕ‖L∞ ≤ 1
}
,

(54)

which differs in the domain of the test functions. In particular, df(f̆ , ğ) = df
(
f̆ |Z , ğ|Z

)
.

Definition 7.3 ([7, Definition 4.1.1]) Let K be any nonempty subset of Rd and ξ ∈ K.

TK(ξ) :=
{

w ∈ Rd
∣∣∣ lim inf

h ↓ 0

1
h · dist

(
ξ + h ·w, K

)
= 0

}
is called the contingent cone of K in ξ (in the sense of Bouligand).
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Proposition 7.4 (Characterising invariant sets for ordinary diff. equations)

Suppose g̃ : [0, T ]× Rd −→ Rd to be an integrably bounded Carathéodory function, i.e.,

(i) for every ξ ∈ Rd, g̃(·, ξ) : [0, T ] −→ Rd is Lebesgue-measurable,

(ii) for Lebesgue-almost every t ∈ [0, T ], g̃(t, ·) : Rd −→ Rd is continuous,

(iii) there is µ ∈ L1([0, T ]) with |g̃(t, ξ)| ≤ µ(t) for almost every t ∈ [0, T ] and all ξ ∈ Rd.

For any nonempty closed set K ⊂ Rd, the following statements are equivalent:

(a) In each point of K, there starts an absolutely continuous solution η : [0, T ] −→ Rd of

η′ = g̃(·, η) a.e. in [0, T ] satisfying the state constraint η(t) ∈ K for every t ∈ [0, T ].

(b) For Lebesgue-almost every t ∈ [0, T ], the vector g̃(t, ξ) ∈ Rd belongs to the contingent

cone TK(ξ) of K in each point ξ ∈ K.

If, in addition, there exists some λ ∈ L1([0, T ]) such that for Lebesgue-almost all t ∈ [0, T ], the

function g̃(t, ·) : Rd −→ Rd is λ(t)-Lipschitz continuous, then these statements are equivalent to

(c) For Lebesgue-almost every t ∈ [0, T ], g̃(t, ξ) ∈ co TK(ξ) is satisfied for every ξ ∈ K.

Remark 7.5 Such a characterisation of flow-invariant subsets (in terms of tangent cones)

was first introduced for autonomous differential equations by Nagumo [48] in 1942 and then

often rediscovered independently. An extension to nonautonomous differential equations with

Carathéodory right-hand side can be found in [62]. Generalisations to differential inclusions

(via set-valued maps on the right-hand side) are known as viability theorems and have been

investigated by several authors like Aubin, Cârjă, Deimling, Frankowska, Haddad et al. Their

publications mostly differ from each other in the basic vector space, the assumptions about the

right-hand side (of the differential inclusion) and the tangential criteria.

Here we use [26, Theorems 4.2] applied to a Carathéodory function (instead of a set-valued

map) and [26, Theorems 4.7] in the Lipschitz continuous case.

On our way proving estimate (22) under the assumptions of Corollary 3.4, the basic idea is

now to apply the gist of this invariance criterion to the subset Z = Rn × V × Y .

For technical reasons (i.e., mollifying in a moment), fix any bounded open neighbourhood

V̂ ⊂ Rn of the compact set V
Def.
= [s1, s2]·Sn−1 ⊂ Rn. The flow is induced by the nonautonomous

vector field

[0, T ]× Rn × V̂ × Rd −→ Rn × Rn × Rd,

(t, x, v, y) 7−→
(
v, 0, g̃(t) (x, projV v, y)

)
with the continuous function

g̃ : [0, T ] −→ L2(Rn × V̂ × Rd, Rd), t 7−→ Ey ◦ G
(
t, f̆(t)|Z , Q̆(t), L̆(t)

)
.
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Proposition 7.4, however, cannot be applied immediately because g̃(t) is not continuous w.r.t.

x, v and so, the nonautonomous vector field indicated before is not Carathéodory in general.

But the assumptions about G guarantee that for all t ∈ [0, T ] and every x ∈ Rn, v ∈ V̂ , the

function g̃(t) (x, projV v, · ) : Rd −→ Rd is Lipschitz continuous and, its Lipschitz constant is

bounded independently of t,x,v.

The next step aims at smoothing the vector field and considers mollification w.r.t. x,v only.

As an important advantage, we “almost” preserve the tangential property specified in assump-

tion (vi) of Corollary 3.4. Indeed, the contingent cone is now replaced by its closed convex

hull, but then Lipschitz continuity enables us to apply Proposition 7.4.

Lemma 7.6 Let g : Rn×V ×Y −→ Rd be square Lebesgue integrable and essentially bounded

with g(x,v, ·) ∈ W 1,∞(Y ), ∂yg ∈ L∞(Rn × V × Y ) and g(x,v,y) ∈ TY (y) for every x,v,y.

Consider any smooth Dirac sequences (ρk)k∈N, (ρ̌l)l∈N with shrinking support in B1(0) ⊂ Rn

and set for each k, l ∈ N

gk,l : Rn × V × Y −→ Rd,

(x,v,y) 7−→
(
g

x∗ ρk
) v∗ ρ̌l

Def.
=

∫
Rn

(∫
Rn

g
(
x̃, projV ṽ, y

)
· ρk(x−x̃) dx̃

)
· ρ̌l(v−ṽ) dṽ.

Then for all indices k, l ∈ N sufficiently large, the function gk,l is Lipschitz continuous, bounded,

square integrable and satisfies
‖gk,l‖L2 ≤ ‖g‖L2 , ‖gk,l‖L∞ ≤ ‖g‖L∞ ,

‖∂y gk,l‖L∞ ≤ ‖∂y g‖L∞ , ‖∂x,v gk,l‖L∞ ≤ const(∇ρk,∇ρ̌l) · ‖g‖L∞ ,
gk,l(x,v,y) ∈ co TY (y) for all x ∈ Rn, v ∈ V, y ∈ Y .

Furthermore, lim
k,l→∞

‖gk,l − g‖L2(Rn×V×Y , Rd) = 0.

The proof of Lemma 7.6 uses only the standard properties of convolution and mollifiers (as

presented in [13, § 4.4], for example) and so, we skip the details here. Its key consequence is:

Consider the flow Z1,gk,l : [0, T ] × Rn × V × Y −→ Rd defined by the unique Carathéodory

solutions to initial value problem (37). Then for every t ∈ [0, T ], the function Z1,gk,l(t, ·) :

Y −→ Rd induces a Lipschitz continuous homeomorphism and, its weak derivative satisfies all

the estimates in Lemma 5.15. Furthermore Proposition 7.4 implies

Z1,gk,l

(
t, Rn × V × Y

)
⊂ Rn × V × Y

for every t ∈ [0, T ], k, l ∈ N. In fact, we can even conclude from the continuity of Z1,gk,l(t, ·)−1

Z1,gk,l

(
t, Rn × V × Y

)
⊂ Rn × V × Y.

Hence, if ϕ ∈ C0
c (Z) is any admissible test function for df(f, g) (mentioned in equation (54))

then the composition ψ := ϕ
(
Z1,gk,l(t, ·)

)
is also continuous with compact support in Z for
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every t ∈ [0, T ], k, l ∈ N and, it satisfies

‖ψ‖L2(Z) ≤ ‖ϕ‖L2(Z) · econst(‖divy g‖L∞ ) · t ,

‖ψ‖L∞(Z) ≤ ‖ϕ‖L∞(Z) ≤ 1,

‖∇y ψ‖L∞(Z,Rd) ≤ ‖∇yϕ‖L2(Z,Rd) · econst(n) · (1+‖∂yg‖L∞ ) · t

– for essentially the same reasons as in Lemma 5.17 and inequality (43).

This observation lays the basis for reusing the arguments proving Proposition 5.21 (7.),(8.) and

so, we obtain the following results: For any g, ĝ as in Lemma 7.6 and u, û ∈W 1,∞(Z)∩L2(Z),

w, ŵ ∈ L2(Z), consider the map

ϑ̆fgk,l,u,w : [0, 1]× L2(Rn × V × Rd) −→ L2(Rn × V × Rd), (t, f̆0) 7−→ f̆(t)

defined by means of the unique weak solution of

∂tf̆ + divx(f̆ v) + divy(f̆ Ey(gk,l)) = Ey(u) f̆ + w in [0, t], f̆(0) = f̆0,

whose existence and uniqueness are stated in Propositions 5.11 and 5.7 respectively, and its

counterpart ϑ̆f ĝk,l,û,ŵ : [0, 1]× L2(Rn × V × Rd) −→ L2(Rn × V × Rd).
Then Proposition 5.21 provides upper estimates for

d̆f
(
ϑ̆fgk,l,u,w(t, f̆0), ϑ̆fgk,l,u,w(t, f̆1)

)
, d̆f

(
ϑ̆fgk,l,u,w(t, f̆0), ϑ̆f ĝk,l,û,ŵ(t, f̆0)

)
immediately. Due to the additional invariance of Y , however, the corresponding inequalities

also hold for the metric df (specified here in equation (54)), i.e. for any k, l ∈ N, t ∈ [0, 1] and

f̆0, f̆1 ∈ L2(Rn × V × Rd),

df
(
ϑ̆fgk,l,u,w(t, f̆0), ϑ̆fgk,l,u,w(t, f̆1)

)
≤ df

(
f̆0, f̆1

)
· econst(n) (1+‖∂ygk,l‖L∞+‖u‖L∞+‖∇yu‖L∞ ) · t

df
(
ϑ̆fgk,l,u,w(t, f̆0), ϑ̆f ĝk,l,û,ŵ(t, f̆0)

)
≤ C ·

(
1 + ‖f̆0‖L2(Z)

)
· t(∥∥gk,l − ĝk,l

∥∥
L2(Z)

+
∥∥u− û∥∥

L2(Z)
+
∥∥w − ŵ∥∥

L2(Z)

)
with a constant C

(
n, ‖∂y gk,l‖L∞ , ‖∂y ĝk,l‖L∞ , ‖u‖L∞ , ‖∇y u‖L∞ , ‖û‖L∞ , ‖∇y û‖L∞ , ‖ŵ‖L2

)
.

It is worth mentioning that only information on the restrictions to Z
Def.
= Rn × V × Y is used

in these estimates although the functions are defined on Rn × V × Rd.

Now we can follow essentially the same way as to Corollary 3.3, i.e., via smoothing and the

limit process k, l −→ ∞ (as in Proposition 5.23), Corollary 5.28 and the arguments in § 7.2.

The final conclusion is the counterpart of claimed estimate (22) proving that the weak solu-

tions f̆ : [0, T ] −→ L2(Rn × V × Rd), Q̆ : [0, T ] −→ L2(Rn × Sn−1), L̆ : ]0, T ] −→ W 1,2(Rn)

to extended problem (53) depend Lipschitz continuously on both initial states and coefficients

w.r.t. the L2 norm and the metric df (restricted to Z) respectively.

As a consequence, the restriction f̆(t)
∣∣
Z
∈ L2(Z), t ∈ [0, T ], is uniquely determined by the

given initial state f0 ∈ L2(Z) and does not depend on its extension to Rn × V × Rd. This

completes the proof of Corollary 3.4 about the case Y ( Rd.
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7.4 Proof of Corollary 3.5 about nonnegativity of components f, L

For the autonomous linear transport equation (31) in the “whole space” Rn × V × Rd, i.e.{
∂tf̆ + divx(f̆ v) + divy(f̆ g) = u f̆ + w in [0, T ],

f̆(0) = f̆0 ∈ L2(Rn × V × Rd),

Proposition 5.18 specifies an explicit representation of the unique weak solution f̆ : [0, T ] −→
L2(Rn × V × Rd) whenever the autonomous coefficients satisfy g ∈ C1

c (Rn × V × Rd,Rd),
u ∈ C1(Rn × V × Rd) ∩W 1,∞ and w ∈ L2(Rn × V × Rd), namely

f̆(t, ξ) = f̆0

(
Z−1,g(t; ξ)

)
· exp

(∫ t

0
(u − divy g)

(
Z−1,g(s; ξ)

)
ds
)

+∫ t

0

(
w
(
Z−1,g(t− s; ξ)

)
· exp

(∫ t−s

0
(u− divy g)

(
Z−1,g

(
r; ξ)

)
dr
))

ds .

Obviously, f̆0 ≥ 0 and w ≥ 0 implies f̆(t, ·) ≥ 0 Lebesgue-almost everywhere in Rn × V × Rd.
Following the same steps of approximation as in § 5, the corresponding implication also holds

for less regular (but still autonomous) coefficients g∈L∞(Rn×V ×Rd,Rd)∩L2, ∂yg∈L∞, u∈
L∞(Rn×V ×Rd)∩L2, ∂yu∈L∞, w ∈ L2(Rn×V ×Rd) – as a consequence of Proposition 5.21 (8.)

and the following lemma:

Lemma 7.7 Let (fk)k∈N be any bounded sequence in L2(Z) which converges to f ∈ L2(Z)

w.r.t. df and satisfies fk ≥ 0 a.e. in Z for every k ∈ N. Then, f ≥ 0 a.e. in Z.

Proof. Assume that the claim does not hold, i.e., there is a set A ⊂ Z of positive Lebesgue

measure with f < 0 in A. Then, for some sufficiently small ε > 0, there exists a subset Â of A

which has Lebesgue measure µ
Â
> 0 and fulfils f ≤ −ε in Â additionally.

Set M := sup
{
‖fk‖L2(Z), ‖f‖L2(Z)

∣∣ k ∈ N
}
<∞ and let χ

Â
: Z −→ {0, 1} denote the charac-

teristic function of Â ⊂ Z. It is Lebesgue integrable and so, there is some ϕ ∈ C∞c (Z) with∥∥ϕ− χ
Â

∥∥
L2(Z)

≤
ε µ

Â

4M
.

Finally using the abbreviation C := 1
1+‖ϕ‖L2+‖ϕ‖L∞+‖∇yϕ‖L∞

, we obtain for every k ∈ N

df(fk, f) ≥ C ·
∫
Z
ϕ · (fk − f) dz

≥ C
(∫

Z
χ
Â
· (fk − f) dz −

∥∥ϕ− χ
Â

∥∥
L2(Z)

· ‖fk − f‖L2(Z)

)
≥ C

(
ε · µ

Â
−

ε µ
Â

4M
· 2M

)
> 0

This contradicts the assumption df(fk, f) −→ 0 for k −→∞. 2

Due to these arguments about “preserving” the sign while converging w.r.t. df, Proposition 5.26

about the nonautonomous linear problem in the “whole space” Rn × V × Rd{
∂tf̆ + divx(f̆ v) + divy(f̆ g̃(t)) = ũ(t) f + w̃(t) in [0, T ],

f̆(0) = f̆0 ∈ L2(Rn × V × Rd)
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can be extended by the following statement:

If f̆0 ≥ 0 and if w̃ ∈ L∞
(
0, T ; L2(Rn × V × Rd)

)
satisfies w̃(t) ≥ 0 for almost every t ∈ [0, T ],

then the unique weak solution f̆ : [0, T ] −→ L2(Rn×V ×Rd) fulfils f̆(t) ≥ 0 for every t ∈ [0, T ].

Finally both the method of successive approximation used in § 7.1 and the potential restriction

to Z
Def.
= Rn × V × Y (if Y ( Rd as in § 7.2) also preserve nonnegativity. Hence the proof for

the component f : [0, T ] −→ L2(Z) of the unique weak solution to the original problem (20) is

completed: f(t) ≥ 0 holds for every t ∈ [0, T ].

In regard to the component L : ]0, T ] −→W 1,2(Rn), this observation implies

σ(t, · ) := βL · L(t) +R
(
t, f(t), Q(t), L(t)

)
≥ 0 Lebesgue-a.e. in Rn

for Lebesgue-almost every t ∈ [0, T ]. L is the weak solution to the nonautonomous linear

reaction-diffusion problem (52) (with constant parameters κ := κL > 0, β := βL ≥ 0) and, the

explicit representation (51) of L(t, · ) : Rn −→ R reveals L(t, · ) ≥ 0 directly.

7.5 Proof of Corollary 3.7 about nonnegative solutions to model problem (23)

In model (23) for cell migration through tissue, the uniquely determined component Q :

[0, T ] −→ L2(Rn×Sn−1) satisfies the ordinary differential equation (with all values in a Banach

space)

∂tQ(t) = T
(
t, f(t), Q(t), L(t)

)
=⇒ ∂tQ(t, x, θ) = rECM

∫
Y

∫
V

(
|θ · v̂′| − 1

)
f(t, x,v′,y′) dv′ dy′ · Q(t,x, θ)

1 + γQ · |Q(t,x, θ)|

for Lebesgue-almost every (x, θ) ∈ Rn × Sn−1 fixed and then each t ∈ [0, T ]. Here the com-

ponent f : [0, T ] −→ L2(Z) is bounded and so, f ∈ L2([0, T ] × Z). Fubini’s theorem implies

f( · ,x, ·, · ) ∈ L2([0, T ]× V × Y ) for Lebesgue-almost every x ∈ Rn.

Thus for Lebesgue-almost every (x, θ) ∈ Rn × Sn−1, there exists a scalar auxiliary function

ηx,θ ∈ L2([0, T ]) ⊂ L1([0, T ]) with

|∂tQ(t, x, θ)| ≤ ηx,θ(t) ·
|Q(t, x, θ)|

1 + γQ · |Q(t, x, θ)|
≤ ηx,θ(t) · |Q(t, x, θ)|.

Gronwall’s inequality guarantees Q(·, x, θ) = 0 in [t0, T ] whenever there is a time instant t0 ∈
[0, T [ with Q(t0, x, θ) = 0. Hence we conclude from the continuity of Q(·, x, θ) : [0, T ] −→ R
that Q0(x, θ) ≥ 0 implies Q(·, x, θ) ≥ 0 in [0, T ].

Finally preserving nonnegativity of components f(t), L(t) at every time t ∈ ]0, T ] is an imme-

diate consequence of Corollary 3.5 since sign assumption (f) here implies condition (vii) there.

Thus the proof of Corollary 3.7 is completed.
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