
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF KAISERSLAUTERN

Master Thesis

Information flow tracking for JavaScript in
Chromium

Jonas Peschla

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF KAISERSLAUTERN

Master Thesis

Information flow tracking for JavaScript in Chromium

Author: Jonas Peschla
1st Supervisor: Prof. Dr. Dieter Rombach
2nd Supervisor: Prof. Dr. Alexander Pretschner
Advisor: Enrico Lovat, M.Sc.
Date: December 14, 2012

Ich versichere hiermit, dass ich die vorliegende Masterarbeit mit dem Thema “Informa-
tion flow tracking for JavaScript in Chromium” selbstständig verfasst und keine anderen
als die angegebenen Hilfsmittel benutzt habe.
Die Stellen, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen wur-
den, habe ich durch die Angabe der Quelle, auch der benutzten Sekundärliteratur, als
Entlehnung kenntlich gemacht.

Kaiserslautern, den 14. Dezember 2012 Jonas Peschla

Abstract

Data usage control is a concept that extends access control to also protect data after it
has been released. Usage control enforcement relies on available information about the
distribution of data in the monitored system. In this thesis we introduce an information
flow tracking approach for JavaScript in order to enable usage control for dynamic content
in web browsers. The proposed model is implemented as a prototype in the JavaScript
engine V8 of the Chromium browser.

vii

Acknowledgments

First of all, I thank Prof. Alexander Pretschner for supervising this thesis and encouraging
me to work in the interesting field of usage control. Before this thesis I already worked to-
gether with his working group for about two years. I always enjoyed the great atmosphere
and challenging topics we worked on.

Another word of thanks goes to Enrico Lovat, the probably only person on earth who
knows everything, but from time to time pretends to not know the answer to a question
in order to not discourage his fellow human beings. He advised me during this thesis and
helped me a lot to concertize my ideas for the presented approach.

ix

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 The route planning example . 1

1.1.1 Issues with third-party scripts . 1
1.2 The photo gallery example . 2

1.2.1 Issues with dynamic content . 2
1.3 Information flow . 2

1.3.1 Kinds of information flow . 2
1.4 Related work on information flow analysis 3

1.4.1 Runtime information flow tracking . 3
1.4.2 Data and representation . 4

1.5 Usage control . 4
1.5.1 Usage control enforcement . 4
1.5.2 Enforcement along different levels of abstraction 5

1.6 Problem statement . 6
1.6.1 Considered solution . 7
1.6.2 Contribution . 7

1.7 Organization . 7

2 The Chromium browser 9
2.1 Architecture overview . 9
2.2 The V8 JavaScript engine . 9

2.2.1 The V8 API . 9
2.3 JavaScript . 12

2.3.1 The formal basis: ECMAScript . 12
2.3.2 Core language characteristics . 13

3 Information flow model for JavaScript 15
3.1 Definitions . 15

3.1.1 Containers . 16
3.1.2 Data . 16
3.1.3 Variables and container identification 16

3.2 Actions . 18
3.2.1 Expressions . 19
3.2.2 Statements . 23

3.3 Application of the model . 24

xi

Contents

4 IF4JS - Design 25
4.1 Requirements . 25

4.1.1 Limitation of data sources . 25
4.1.2 Covered subset of the DOM API . 25

4.2 Design overview . 26
4.2.1 WebKit hooks . 26
4.2.2 Usage Control architecture . 27
4.2.3 PIP interface . 28
4.2.4 Information flow tracking within in V8 28

4.3 Abstract syntax tree based rewriting . 29
4.3.1 Coverage of AST nodes . 30
4.3.2 Overview about the rewriting process 30
4.3.3 Rewrite rules . 33

4.4 Dynamic information flow tracking . 38
4.4.1 The XMLHttpRequest Interceptor . 38
4.4.2 The runtime tracking function . 39

5 IF4JS - Implementation 41
5.1 Notes on Chromium, WebKit and V8 . 41

5.1.1 Modifications in V8 Bindings . 41
5.1.2 Overview of V8 . 42

5.2 PDP Interface . 42
5.3 PIP Interface . 43

5.3.1 Mappings and their implementation 43
5.4 AST Rewriter . 45

5.4.1 Context and utilities . 45
5.4.2 A rewriting life-cycle . 45

5.5 Runtime Tracker . 48
5.5.1 The XMLHttpRequest Interceptor . 48
5.5.2 The runtime tracking function . 49

5.6 Integration into WebKit and V8 . 51
5.6.1 V8 API extensions . 51
5.6.2 Tracking function registration . 52
5.6.3 Signaling DOM events . 52
5.6.4 Redirecting the compilation process 52

6 Evaluation 53
6.1 Performance analysis . 53

6.1.1 Test setup . 53
6.1.2 Test results . 54
6.1.3 Further experiments . 55
6.1.4 Field testing . 55

6.2 Completeness and correctness . 56
6.2.1 Proof ideas . 57

xii

Contents

7 Conclusion and future work 59
7.1 AST rewriting . 59
7.2 Performance improvements . 60

Bibliography 61

xiii

List of Tables

3.1 Overview of modeled assignment types . 21

4.1 Requirements for IF4JS . 25
4.2 Possible values for the first parameter of the tracking function 39

6.1 Benchmark results for IF4JS . 54

xv

List of Figures

1.1 Conceptual usage control architecture . 5
1.2 Extended usage control architecture . 6

2.1 Application layers of Chromium . 10
2.2 Illustration of a V8 context . 11
2.3 Type hierarchy of the built-in types in ECMAScript 12
2.4 Illustration of the prototype mechanism in ECMAScript 14

3.1 Variable scopes in JavaScript . 17
3.2 Object aliasing in JavaScript . 18
3.3 Evaluation of a binary operation . 21

4.1 Conceptual architecture of IF4JS . 26
4.2 Architectural Layers of WebKit . 27
4.3 Example of an abstract syntax tree in V8 . 29
4.4 V8 statement types . 31
4.5 V8 expression types . 31

5.1 Structure of class IF4JS_PIPWrapper . 44
5.2 Structure of class IF4JS_ASTRewriter . 46
5.3 Structure of class IF4JS_RuntimeTracker . 50
5.4 V8 API extensions . 51

xvii

Listings

1.1 Example for explicit information flow . 2
1.2 Example for implicit information flow . 3

2.1 JavaScript execution with V8 . 10

3.1 Illustration of the naming function . 17
3.2 Examples of different property lookup constructs 20

4.1 JavaScript code example . 29
4.2 Simple code rewriting example . 32
4.3 Complex code rewriting example . 32
4.4 Rewriting scheme for Block . 33
4.5 Rewriting scheme for ExpressionStatement 33
4.6 Rewriting scheme for IfStatement . 34
4.7 Rewriting scheme for ReturnStatement . 34
4.8 Rewriting scheme for TryFinallyStatement 34
4.9 Rewriting scheme for TryCatchStatement . 34
4.10 Rewriting scheme for loops . 34
4.11 Rewriting scheme for SwitchStatement . 35
4.12 Decomposition scheme for Literal . 35
4.13 Decomposition scheme for Property . 35
4.14 Decomposition scheme for Call and CallNew 36
4.15 Decomposition scheme for Binary- and CompareOperation 36
4.16 Decomposition scheme for Assignment 1 . 36
4.17 Decomposition scheme for Assignment 2 . 37
4.18 Decomposition scheme for Assignment 3 . 37
4.19 Decomposition scheme for Assignment 4 . 37
4.20 Rewriting scheme for global variable declarations 38

5.1 PDP implementation . 43
5.2 VisitFunctionLiteral implementation . 47
5.3 Nested statement rewriting . 47
5.4 XMLHttpRequest Interceptor tracking for open 48
5.5 XMLHttpRequest Interceptor tracking for send 49

xix

1 Introduction

This thesis deals with protection of third party data in web browsers. Today, websites often
use JavaScript to provide a flexible user interface. This is achieved by asynchronous ma-
nipulations of the Document Object Model (DOM) of rendered pages [1]. Thereby, JavaScript
may also push around data which is sensitive to its publisher.

We will introduce an approach to track flows of sensitive data through client-side Java-
Script. The gained knowledge can be used to protect data from undesired usage. Our
solution assists an existing usage control system for the Chromium browser which protects
static data on rendered pages. As it operates on the DOM, it could detect modifications,
but not whether and, if so, which sensitive data was involved in changes of the DOM.
By inserting exactly this information gained through data flow tracking, we empower this
system to also protect sensitive data in non-static settings.

The following examples illustrate the problem scope and motivation behind this work
in a practical context.

1.1 The route planning example

Alice recently relocated. She published her new address in her social network profile to
inform her friends about it. She only wants her friends to get to know her address, so she
configured her profile accordingly.

Dave, an old friend of hers, decides to visit Alice. On her profile page he detects a route-
planning feature which allows him to get a route to her address. The feature relies on an
embedded third-party script, such as Google Maps. Depending on the profile information
used to invoke the route-planning service, the feature could violate Alice’s privacy. If,
besides the bare address, also her name was be passed, this would basically violate what
she specified in her profile.

1.1.1 Issues with third-party scripts

Websites allowing their users to configure privacy settings usually only apply them against
other users, but not included services. This requires the user to make all-or-nothing deci-
sions for information he considers to share. Even if he trusts the primary website provider,
he still must decide this question for all embedded services at once.

And even if website providers cared about which data is sent along to third-parties, the
way embedded scripts are currently handled in browsers makes it impossible to prevent
leakage. In this thesis we introduce a possible solution for this problem.

1

1 Introduction

1.2 The photo gallery example

In a second scenario, Alice uploaded pictures from her housewarming party. Again she
limits access, this time to all attendees of the party.

Now Carol, who has been at the party, sits at home with her friend Bob who was not
there. Together they view the pictures. When they come across a cute photo of Alice, Bob,
who has a crush on her, asks Carol to copy this picture on his USB stick. As they are good
friends, Carol does not mind and copies the picture. That this could be against Alice’s will
does not even come to her mind.

1.2.1 Issues with dynamic content

The previous example has already been used in the diploma thesis of Patrick Wenz [2].
There an assumption was, client-side JavaScript does not modify rendered content. He
developed a solution to protect static HTML content in the Chromium browser which
prevented Bob from copying Alice’s picture.

For actual websites the assumption of only static content is not realistic. Thus, to put the
proposed solution into practice, it must be enabled to also cover dynamic modifications.

Photo galleries on the web often provide thumbnail previews. When a thumbnail is
clicked, the respective picture is displayed in large. Such features usually rely on JavaScript.

The information flow tracking approach introduced in this thesis can support the pre-
vious system to also protect dynamic content. When the DOM is modified, it adds usage
control information tracked through JavaScript, which will then be interpreted by the ex-
isting system again to protect the changed parts.

1.3 Information flow

As indicated, current browsers cannot prevent data leakage through embedded scripts.
Third-party scripts get the same privileges as site internal ones, and thus cannot be con-
trolled by the embedding site. This is the reason why websites can not do any better than
trust third parties, even if they cared about whether and which data is used by them.

To be able to give guarantees, it would be necessary to have browser-side mechanisms in
place that detect attempts to leak sensitive data. Our proposed solution for this deficiencies
is based on information flow tracking for JavaScript.

1.3.1 Kinds of information flow

In the context of information theory and programming languages, information flow char-
acterizes the transfer of information from one variable into another. The literature distin-
guishes two kinds of information flow, explicit and implicit.

Explicit information flow occurs in assignments as in Listing 1.1 where the information
associated with the data contained in a variable y directly flows into a variable x.

1 x = y;

Listing 1.1: Example for explicit information flow

2

1.4 Related work on information flow analysis

Implicit information flow is caused by control flow dependency or covert channels. We do
not go into detail for covert channels, e.g. the duration of a computation.

For control flow dependency, the information associated with variables in branching
conditions indirectly flows into the governed branches, no matter whether they are exe-
cuted or not. Both variants are illustrated in Listing 1.2. Implicit information flow I denotes
flows due to a taken branch. In the example the assignment of 1 to l encodes implicit flow
I from h to l.

On the other hand, implicit information flow II characterizes possible observations due to
a non-executed branch. In the given listing, after the if-then-else statement, p would still
hold 0. Based on that, one could infer the value of h because p was not changed.

1 h = true;
p = 0;

3 if (h == true){
l=1; // implicit information flow type 1

5 } else{
l=0;

7 p = 5; // implicit information flow type 2
}

Listing 1.2: Example for implicit information flow

1.4 Related work on information flow analysis

Information flow analysis is often employed to investigate programs with respect to prop-
erties like confidentiality, integrity and non-interference. In the context of browser-side
JavaScript, related work usually considers two kinds of variables, public and secret ones.
Extensive work dealing with malicious third-party scripts exists in this area [3–6].

However, non-interference, as a static property concerning all possible runs of a pro-
gram, has lost focus in this area. Pure static analysis for JavaScript rendered out to be
impractical due to the high dynamism of the language which allows code-generation at
runtime, e.g. instantiate new functions from strings or evaluate arbitrary code via the
eval construct [3, 6]. It rejects all programs that create code from strings which are not
known prior to execution, although they not necessarily violate confidentiality or integrity
of secrets. Accounting for this, Magazinius, Russo and Sablefeld investigated how non-
interference could be approximated by runtime mechanisms in a way that suffices practi-
cal requirements [5].

1.4.1 Runtime information flow tracking

Instead, research concentrated on runtime tracking mechanisms which observe and mon-
itor information flows just as they occur. The goal here is to establish confidentiality and
integrity for certain variables or locations in a website’s context [3, 6]. Some approaches
also combine static and dynamic methods to hybrid solutions [4, 6].

As the execution of JavaScript progresses, the mechanisms track whenever flows from
secret into public variables occur and taint them too be also secret. When a statement
would violate confidentiality or integrity of a governed secret value, execution is halted.

3

1 Introduction

Besides this coarse grained classification there are also solutions that can distinguish dif-
ferent origins and keep a combined tainting for variables [4].

As said, considered work in this area shares the assumption of public and secret infor-
mation on a website which is held in variables that are ordered in an according security
lattice. Because we aim at supporting usage control, we follow a different approach. We do
not distinguish sensitivity levels but data itself. We will come back to this in Section 1.5.

1.4.2 Data and representation

Another difference is that we distinguish between information associated with data and
its actual representation. To us, information is the abstract contents that inheres in a par-
ticular data representation. We use the terms information and data interchangeably and
explicitly state when we refer to representation. For the subject of related work this is not
of importance as it only needs to classify data as secret or public. Furthermore, as data
remains in the same level of abstraction, there is no need to consider data independently
of its representation [7].

Regardless of this two differences we can leverage results from the introduced related
work with respect to information flow tracking in general. The distinction lies in the reac-
tion to and interpretation of tracked flows.

1.5 Usage control

Today, mature facilities to restrict data access exist [8]. But, the data provider usually looses
control in the moment access is granted. Data consumers are free to further use it as they
like, even if the provider disagrees.

Usage control generalizes access control such that also can be specified what consumers
may or may not do with accessed data. Examples for such provisions are "do not copy or
print my picture", "delete this file after 10 days" or "do not watch this clip more than 3 times".

On access, when the requester was verified to have proper usage control mechanisms in
place, the applicable policy is bundled with the data and both are shipped over. Otherwise,
access is simply denied.

1.5.1 Usage control enforcement

Usage control enforcement is based on the observation and possibly also modification of
usage events. Whenever data is read, written, moved or transformed, this is some sort
of data usage. Such usage events can be observed on different layers of abstraction. For
example on the processor level, in applications like browsers or word processors or at the
operating system level with file system, processes and virtual memory.

Literature distinguishes two kinds of policy enforcement. Detective enforcement observes
occurring usage events and detects policy violations as they happen. Violations trigger
compensating actions like informing the data provider about the non-compliant use. A
real world example used in the literature is speed monitoring. Drivers cannot be hindered
from driving too fast, but they are fined for violating the speed limit.

Unlike detective enforcement, preventive enforcement can also avoid policy violations. It
requires actual data usage to be indicated by preceding requests. Requests are intercepted

4

1.5 Usage control

Figure 1.1: Conceptual view on preventive (left) and detective (right) usage control
enforcement.

and checked against the active policies. If an intended usage violated a policy, the accord-
ing request would either be inhibited or modified to become compliant.

The conceptual view, shown in Figure 1.1, is the same for both. The Policy Enforce-
ment Point (PEP) is attached to the controlled system where it observes or intercepts usage
events. It queries the Policy Decision Point (PDP) whether the observed events are compli-
ant with the active policies. For preventive enforcement, the PEP suppresses actual events
if the PDP signals to do so.

1.5.2 Enforcement along different levels of abstraction

In general, on lower levels of abstraction the possible coverage of observable events is
higher. Unfortunately, it is hard to associate low level usage events to concrete, tangible
actions on higher levels of abstraction - for example to combine all machine instructions
that belong to saving a picture from a website on the hard disk. Also, on the operating sys-
tem level one cannot reliably relate opened files to particular windows of an application.

Application specific PEPs are limited to events that occur within the scope of their mon-
itored applications. But they have a fine-grained understanding of the semantics of ob-
served events and can distinguish data more precisely. A PEP for a browser knows which
data resides in which cache files, but cannot observe when other applications access them.

Hence, the idea of multi-layer enforcement emerged [7]. Usage control monitors on dif-
ferent levels of abstraction provide precise control over events in their respective domain.
They communicate with each other and thus overcome their limited range of sight. For ex-
ample, the web browser PEP could signal the operating system level monitor the contents
of cache files. If one of them was a PDF with sensitive content, the operating system level
monitor could deny access to viewers that are not usage control enabled.

Varying representations of data

A circumstance that has to be dealt with in multi-layer enforcement is the different mani-
festations of data among the different levels of abstraction. A picture can be the contents
of a file, an tag on a website, a set of pixels in a window, the content of a vari-
able pointing to some memory region and so on. But the information associated with the

5

1 Introduction

Figure 1.2: Extended usage control architecture for preventive enforcement. Policies are
deployed in the PDP before the according data enters the observed system.
This can be done by the data provider or the PEP.

picture is always the same.
When data flows from one layer of abstraction to another its representation usually

changes, but not its meaning. This is the reason why we distinguish between data and
containers. In the example, the file, the tag and memory regions are different con-
tainers for the same data - the abstract information associated with the picture.

To realize cross-layer communication and system wide usage control, it is necessary to
map corresponding events for usage actions on different layers of abstraction and iden-
tify which data flows from which container in the source layer to which container in the
destination layer.

The Policy Information Point

Since the distinction between containers and data, the conceptual architecture for usage
control systems has been extended by a third component, the Policy Information Point (PIP).
It is the general data flow tracking component maintaining the associations between con-
tainers and the data present in them. Thus, it provides knowledge about the data distribu-
tion among the different layers of abstraction.

In the extended architecture, depicted in Figure 1.2, the PEP intercepts usage requests
(1) and queries the PDP about them (2). To decide whether the actual usage would violate
a policy, the PDP relies on information about the current data distribution from the PIP (3
and 4). Based on the received result (5), the PEP either grants or inhibits the usage (6).

1.6 Problem statement

Usage control enforcement in browsers has been investigated before [2, 9]. In both cases
dynamic modification of rendered content through client-side JavaScript was excluded.
However, a practical usage control system needs to also consider this aspect.

The problem tackled in this master thesis is the development of an information flow
tracking model for JavaScript and its prototypical implementation. We aim at providing a
basis to close the mentioned gap.

6

1.7 Organization

The developed model obeys the distinction between data and containers to account for
multi-layer usage control. Furthermore, the prototype aligns with the general usage con-
trol architecture consisting of PDP, PEP and PIP.

1.6.1 Considered solution

For the information flow model, we will adopt and tailor the concepts already used for the
same task on the operating system level [10] and the X11 window system [11].

A subset of statements and expressions from the EMCAScript language [12], which is
the basis of JavaScript, will be formalized as transition system that evolves the state in the
proposed model. However, the model is guided by V8’s implementation of the standard.

1.6.2 Contribution

To the best of our knowledge, information flow tracking for JavaScript has not been inves-
tigated in the context of usage control so far. Related work focuses on data that is assigned
to different sensitivity levels.

Thus, the main contribution of this thesis is to combine insights from general informa-
tion flow tracking for JavaScript with the special needs of usage control in a tailored infor-
mation flow tracking model. Data is distinguished by identity and tracked independently
of its representation.

The feasibility of the proposed model will be evaluated by developing IF4JS, an instan-
tiation of the model for the Chromium browser. It interacts with the DOM which consti-
tutes a different layer of abstraction. IF4JS is a PEP, directly incorporated into Chromium’s
JavaScript engine V8 [13]. There it intercepts the code generation process to inject tracking
instructions. Code rewriting is done by modifications of the intermediate abstract syntax
tree1 (AST) built by V8. Although we do not develop a full usage control enforcement
system, IF4JS will be designed such that it could be easily integrated there.

1.7 Organization

The reminder of this thesis starts with an overview over the Chromium browser, the
JavaScript engine V8 and the JavaScript language itself in Chapter 2. In Chapter 3 we
define the information flow tracking model. Afterwards, the design of IF4JS is introduced
in Chapter 4. The applied rewriting scheme is also covered there. Details about the im-
plementation will be given in Chapter 5. In Chapter 6 we present an evaluation of the
model and its implementation IF4JS. Finally, Chapter 7 will conclude the thesis and give
directions for future work.

1Abstract syntax trees (short AST) are a concept to represent the syntactic structure of program code as a
tree. The nesting of expressions and sub-expressions in statements is reflected in the sub-tree relationship
of nodes. The semantics of particular child nodes depends on the parent’s node type.

7

2 The Chromium browser

Chromium is an open source project actively developed by Google [14]. It serves as the ba-
sis for the Chrome browser which besides some additional features basically is "Chromium
with Google’s name and logo on it" [15].

2.1 Architecture overview

Chromium is not a browser from scratch. At its core it uses WebKit to render websites [16].
WebKit also is an open source project, developed under the lead of Apple. For Chromium
the original JavaScript engine in WebKit, JavaScriptCore, is replaced by the highly opti-
mized V8 engine which will be covered in more detail below. On top of WebKit, Google
implements the browser’s multi-process architecture which uses separate processes for
each displayed web page.

The details of Chromium’s architecture in the layers above WebKit, which can be seen
in Figure 2.1, are not of particular relevance for this thesis. As IF4JS will be incorporated
into V8, it belongs to the WebKit layer and will not directly interact with the upper layers.
For details about them please refer to Section 2.1 of Patrick Wenz’s diploma thesis "Data
Usage Control for ChromiumOS" [2] and the developer section on the project website [17].

How V8 is connected to WebKit, as well as the relevant parts of their architectures, will
be covered in Chapter 4 where the design of IF4JS is presented.

2.2 The V8 JavaScript engine

V8 is Google’s own JavaScript engine. Rather than being directly developed as part of the
browser, it is a standalone project which provides an API to embed it. Hence, although
initially and primarily developed for Chromium, it is not limited to this use case.

The rationale behind developing an own engine was the lacking performance of existing
JavaScript engines at the time the development of Chromium started [18]. As websites
made more and more use of JavaScript, in particular also Google’s own services like GMail
which is cited as example by the V8 team, its performance became vital for user experience.

V8 is known to be very fast. Three major reasons for its speed are the way it imple-
ments objects, properties and their modification; dynamic machine code generation and
optimization during runtime; and its efficient garbage collector. Just as a side note, the
second aspect has been investigated by Andy Wingo in detail [19].

2.2.1 The V8 API

To just execute a string of JavaScript code in V8 is simple. The example in Listing 2.1, which
can be found in the "Getting started" section of the project page, shows how it works.

9

2 The Chromium browser

Figure 2.1: The conceptual application layers of Chromium. This diagram is a slight re-
work of an image taken from the Chromium project website and licensed under
Creative Commons Attribution 2.5 license1.

int main(int argc , char* argv []){
2 // Create a string containing the JavaScript source code.

String source = String ::New("’Hello’ + ’, World’");
4

// Compile the source code.
6 Script script = Script :: Compile(source);

8 // Run the script to get the result.
Value result = script ->Run();

10

// Convert the result to an ASCII string and print it.
12 String :: AsciiValue ascii(result);

printf("%s\n", *ascii);
14 return 0;

}

Listing 2.1: JavaScript execution with V8

There are only three V8 classes involved: Script, Value and String. Their use is straight-
forward and one does not need to deal with any specifics of V8, not even Contexts [20].
But, without further preparation, executed code has very limited means. Why that is the
case will be explained in 2.3, where we will shed light on JavaScript itself.

Contexts

In V8, contexts serve the purpose to encapsulate a single runtime environment. Because
JavaScript provides a set of built-in objects and functions which are mutable to executed

1Source: https://sites.google.com/a/chromium.org/dev/developers/design-documents/
displaying-a-web-page-in-chrome

10

https://sites.google.com/a/chromium.org/dev/developers/design-documents/displaying-a-web-page-in-chrome
https://sites.google.com/a/chromium.org/dev/developers/design-documents/displaying-a-web-page-in-chrome

2.2 The V8 JavaScript engine

Figure 2.2: Illustration of a V8 context with built-in and external objects and func-
tions. Runtime functions and objects are depicted separately because they are
immutable.

code, it is required that each executed program runs in its own scope. Otherwise scripts
from different web pages would likely interfere with each other.

Figure 2.2 shows an illustration of a context. The blocks "Built-in -" and "Runtime Objects
and Functions" denote built-in capabilities and the objects executed code creates, respec-
tively. "Custom Objects and Functions" indicates a third class of objects that can exist in
a V8 context. The V8 API allows embedders to provide own objects and functions to a
runtime environment and thus extend the capabilities for executed code.

Function and Object templates

V8 provides the classes FunctionTemplate and ObjectTemplate to extend a context by addi-
tional objects and functions. Embedding applications may use them to reflect custom C++
code into JavaScript. FunctionTemplates allow to bind C++ functions as handlers that are
invoked whenever JavaScript code calls the associated function names. ObjectTemplates let
JavaScript objects be backed by C++ implementations. For them, V8 delegates property
access to the respective C++ code.

In Chromium these mechanisms are used to introduce the DOM API to JavaScript.

Handles and objects

The implementations of object and function templates need a way to access and modify
values in the JavaScript runtime environment. V8 provides certain data types that are used
to represent them internally. They are depicted in Figure 2.3. But, references to them are
never exposed directly. The reason for this is how garbage collection works in V8. When
the garbage collector conducts a collection cycle, it moves JavaScript objects around to
optimize the memory layout. Thus, pointers to moved objects would become invalid.

To circumvent this problem, V8 introduces the concept of Handles. Handles are wrappers
around the actual address of an object or value. The garbage collector knows about all ex-
isting handles and updates the location of the wrapped objects when necessary. Relocation
remains transparent for the embedder as access to values is performed via Handles.

11

2 The Chromium browser

Figure 2.3: Type hierarchy of the built-in types in ECMAScript

2.3 JavaScript

JavaScript is understood as the scripting language enabling client-side modifications of
rendered web pages. To enable modifications of rendered pages, browsers expose the
underlying DOM to JavaScript.

Here lies a first differentiation that is important to be aware of: The DOM is technically
not part of JavaScript as a language construct. A second circumstance is that JavaScript
itself is a vague term. In the web area, JavaScript usually refers to the implementation of
the ECMAScript language together with the DOM and the XMLHttpRequest API (XHR)2

in a browser. From this perspective, JavaScript comprises all language constructs and APIs
available to embedded scripts. Because implementations, especially of the DOM, differ
between some browsers there are different dialects of JavaScript, so to say.

But JavaScript sometimes is also used as a synonym for the pure ECMAScript language.
Throughout the remainder of this thesis, JavaScript is used to specifically refer to the im-
plementation of ECMAScript in Chromium.

2.3.1 The formal basis: ECMAScript

ECMAScript is a dynamically typed, object-oriented, prototype-based language. Although
originated from the standardizing process for scripting in browsers in the 1990s it is not
limited to that. Extensions for OpenOffice.org can be written in an ECMAScript based
language and Adobe specified an API that allows using it in PDFs. With Node.js3 there
even exists a framework that allows to write complete applications in this language.

ECMAScript has a limited set of predefined types and operations, because its focus lies
on providing a uniform basis for scripting in general. But the implementing host environ-
ments are explicitly expected to add facilities that extend the capabilities of ECMAScript
programs, as browsers do with the DOM. These so-called host objects can freely extend the
functionality as long as they adhere to the specified behavior for ECMAScript objects.

2XmlHttpRequest is an API browsers expose to JavaScript in order to allow embedded scripts to asyn-
chronously communicate with remote hosts.

3Node.js homepage: http://nodejs.org/

12

http://nodejs.org/

2.3 JavaScript

2.3.2 Core language characteristics

Dynamic typing: In ECMAScript the types of variables and expressions depend on the
respective runtime values. This requires careful consideration in the rewriting process if
the possible runtime types of a handled expression play a role.

Object orientation: Besides the values of the five primitive types Undefined, Null, Boolean,
Number and String, each value in ECMAScript is an Object. For Boolean, Number and
String there are also object types that wrap corresponding primitive values. Furthermore,
functions are also first-class objects. They can be created, assigned to variables and passed
as parameters during runtime. The difference to other objects is that they are callable.

Object structure: Objects are defined as collections of properties. Thus, they can be seen
as a closure around a set of values. Properties define named associations between the
owning object and some value. Some properties, such as prototype on function objects,
have a special meaning within the specification.

Prototyping: ECMAScript, unlike class-based languages as Java, does not provide a static
type hierarchy. Inheritance is realized via so-called prototypes. When objects are created,
they get assigned a prototype which is either another object or null. As prototypes are ob-
jects themselves, they also have prototypes. Thus, each object has a prototype chain, which
eventually is terminated by null.

If a property access to an object cannot be resolved locally, because the property name
is not defined in that object, it is recursively looked up in the the prototype chain. As a
consequence, objects sharing the same prototype also share all properties in their prototype
chain which are not shadowed by local properties.

Functions: Because functions are first-class entities in the language, they behave differ-
ent from methods in the sense of class-based languages. There, functions are bound to
classes and called methods of the respective class. In ECMAScript, functions not neces-
sarily belong to an object. But if they are bound as property, this affects the way they are
invoked. In this case they are also called a method of that object.

Function calls: If a function is called, besides the actual values for the formal parameters,
it also receives an additional parameter that serves as ThisBinding. The value associated
with it will be used to resolve properties accessed via the this keyword in the function body.
If a function is called as a property of an object, the runtime environment will automatically
pass that object as ThisBinding.

Functions called as constructor: Functions can also be invoked as constructors. This is
done by preceding the call by the new keyword. The returned result is a newly created
object which is bound to the ThisBinding for the evaluation of the function body. Created
objects get assigned a prototype which is determined by the special prototype property of
the constructor function. It does not describe the function’s own prototype. Figure 2.4
illustrates this and also shows an example for shared prototypes.

13

2 The Chromium browser

Figure 2.4: Illustration of the prototype mechanism: ConstrFun is a function which assigns
ConstrFunProt as prototype to objects it creates when called as a constructor.
This prototype reference is different from the function’s own prototype as an
ECMAScript object. This image is based on Figure 1 from the ECMAScript
standard specification.

14

3 Information flow model for JavaScript

The information flow model for JavaScript is based on the principles introduced by Harvan
and Pretschner [10]. Data and containers are used to model pieces of information and
locations they are present in. Information flow is described by a transition system in which
actions (statements and expressions) trigger modifications of the current state.

In JavaScript, containers are memory regions referred to by variables. Containers are
either objects or primitive values like booleans, numbers or strings. A particular state is
characterized by the distribution of usage controlled data among the containers. Because
containers may be aliased, i.e. referred to by different variables, we must also model the
mapping between variable names and the actual containers. Hence, the core entities in our
model are the sets of containers C, data D and container names F .

This sets are related to each other via three functions f , s and p that are used to de-
scribe the states Σ in the model. The naming function f maps variable names to containers,
the storage function s relates containers to sets of contained data and the points-to function
p keeps track of the nesting between objects and properties. Due to the way variables
and properties are treated in JavaScript, the domain of the naming function is comparably
complex. The details about this will be explained in 3.1.3.

3.1 Definitions

C = CRef ∪ CPrim ∪ {empty, undefined} - set of all containers where:
CRef denotes the set of all objects
CPrim is the set of containers of all primitive values
empty, undefined are reserved values, explained below

D set of usage controlled data items/ids
B set of lookup scopes for variable names
V set of all existing variable names
P set of all existing property names
F = B × (V × (

⋃
n≥0 P

n)) - set of container names where:
B describes the scope in which a variable or property is looked up
V identifies variable names to look up in a particular scope
P is used to refer to properties within objects

A = AE ∪AS - the set of supported actions (expressions and statements)
s identifier for the storage function (C → 2D)
sp identifier for the data-lookup function (C → 2D)
p identifier for the points-to function (C → 2C)
f identifier for the naming function (F → C)
Σ = s× p× f - set of states
R ⊂ (Σ×A× Σ) - the transition relation, see below

15

3 Information flow model for JavaScript

3.1.1 Containers

Containers are conceptual entities in which data can be present. The presence of data is
captured by the storage function s that links a container to the identifiers of the data in it.
In the model, the objects and primitive values in the JavaScript environment, respectively
their memory locations, are considered to be the containers. We also define two special
containers empty and undefined which are used as values for the naming function. When
a variable holds no value but has been defined, it is mapped to empty. Undefined is the
container for undefined variable names and helps to define the naming function as a total
function.

Objects and properties For primitive values the relation between container and data is a
simple 1:1 relation. This is different for containers that are associated with objects. Objects
have properties that themselves either refer to primitive values or can point to other objects
again. The model must be able to capture this kind of nesting.

The points-to function To this end we introduce the points-to function p. It describes
the set of containers a certain container refers to. By this we can model the relationship be-
tween objects and their properties. For an object o ∈ CRef , p(o) yields the set of containers
for the properties of o. For containers in CPrim it always yields the empty set.

3.1.2 Data

Data comprises sensitive pieces of information that are subject to usage control. They
are associated with an identifier, which allows to refer to them independently of their
representation. The data flow model uses these identifiers in the storage function. Actions
may perform updates on this function and by this capture data flow.

The storage and data-lookup functions The storage function s describes which data is
present in a container. More precise, it describes which data is directly associated with it.
This distinction is important for objects because we consider them to also be containers for
the data reachable through all their properties.

So, to determine the data present in a container, we define the data-lookup function sp
which takes properties into account. When applied to some c ∈ C, sp(c) yields the set
s(c) ∪ ⋃

∀cpi∈p(c) sp(cpi). For primitive containers prim ∈ CPrim, it holds that sp(prim) =
s(prim), because they have no properties.

3.1.3 Variables and container identification

In order to track data flow in JavaScript we need to update the storage and points-to func-
tion. This requires to identify the containers affected by statements and expressions.

16

3.1 Definitions

Figure 3.1: Illustration of the variable scoping in JavaScript. Throughout the execution of
the lines 1 to 9 there is only the global scope. The call to z creates a new local
scope for the lifetime of the function body in which y shadows the variable with
the same name in the global scope.

Variable handling in JavaScript JavaScript uses hierarchical lookup scopes for variables.
For a function call made in the global scope this means the body of the called function gets
a new variable scope which is chained with the global scope as shown in Figure 3.1. The
uppermost scope is the newly created one in which function local variables live. To look up
a variable, first the topmost scope is inspected and then, if not found, the chain of scopes is
consulted one after another until the variable name has been found. If the end of the chain
is reached, the variable is resolved to undefined.

Consequently, we have to consider variable shadowing which means, a container can
not be reliably identified by the name of a variable only. It is also important in which
scope the variable name occurs. This explains why the set of execution scopes B is part of
the container identifiers F .

1 // container name would be (b, (someVar , ())), short (b, [someVar])
someVar;

3

// container name would be (b, (someVar , (property))),
5 // short (b, [someVar , property])
someObject.property;

7

// container name would be (b, (someVar , (property , subproperty))),
9 // short (b, [someVar , property , subproperty])
someObject.property.subproperty;

Listing 3.1: Examples for how expressions map to naming function arguments in an
assumed scope b

The naming function f maps container names - which are tuples of a scope, a variable
name and possibly a property name or property chain - to the associated container. The
first component identifies the scope of a container name.

17

3 Information flow model for JavaScript

Figure 3.2: In line 9, foo is called with the actual parameter obj. During its execution the
formal parameter a thus points to the same object as obj. The solid line indicates
the scope chain. The dashed lines represent object associations.

The second component is an n-tuple of type V × (
⋃

n≥0 P
n). This is in order to let f

resolve any syntactical references that are allowed in JavaScript - top-level variables, prop-
erties and sub properties. The elements of V define variable names to be looked up. Prop-
erty or sub property references are captured by an additional element of P for each level
of nesting. Listing 3.1 illustrates how JavaScript expressions in an assumed scope b are
mapped to container names. For the sake of brevity we will use [var, prop1, ..., propn] as
syntactic sugar for (var, (prop1, ..., propn)).

Note that calling the naming function f with two different scopes b and b′ and the same
second component can yield the same container. In the scenario from Figure 3.1 this would
be the case for x in the local scope of z and the global scope. Furthermore, different vari-
ables or properties can point to the same object, as obj and a do in Figure 3.2. Hence,
container names are not unique identifiers.

Using the lookup scope and a list of properties with arbitrary length, we can reliably
distinguish containers and reflect any nesting depth.

3.2 Actions

Before, we explained how variables, containers and data are interrelated via naming, points-
to and storage function (f, p and s), which also describe the states in the model. We now
formally define the actions and how they trigger information flow. The model evolution is
described by a transition relation R ⊂ (Σ×A×Σ) where (σ, a, σ′) ∈ R means that action a
causes the transition from state σ to σ′. R is the smallest relation that satisfies the equations
1 to 12 given below.

As f, p and s describe states, transitions are function updates. To describe a function
update, we use the same notation as Harvan and Pretschner [10]. For m : S → T and a
variable x ranging over X ⊆ T :

m[x← expr]x∈X = m′ with m′ : S → T and

18

3.2 Actions

m′(y) =

{
expr, if y ∈ X
m(y), otherwise

We will also make use of the semicolon as a shortcut to express simultaneous updates on
disjoint sets:

m[x1 ← exprx1 ; ...;xn ← exprxn]x1∈X1,...,xn∈Xn =
m[xn ← exprxn]xn∈Xn ◦ ... ◦m[x1 ← exprx1]x1∈X1

The set of actions A reflects a subset of expressions (AE) and statements (AS) in ECMA-
Script. However, we developed the model based on the particular ECMAScript implemen-
tation in V8. We leave out statements that do not change the state or only do so via nested
expressions and statements. Hence, we model none of the control flow statements. We as-
sume implementations to cover such compositions, for example the branching conditions
of If-statements.

We specify 11 actions: Assignment, BinaryOperation, Call, CallNew, CallObject, Literal,
Property, Variable, PropertyDeclaration, Return and VarDeclaration. Actions that represent
expressions - all but the latter three - yield a value which depends on the state they are ex-
ecuted in. Except for Literal, Property and Variable expressions, they also change the state.
Implementations must make sure to not miss state changes in the observed system that are
caused by nested expressions. IF4JS handles this by expression decomposition, which we
will introduce in 4.2.4.

In our model each value represents a container and thus has a set of data associated. If a
value flows into a variable or property by an assignment, or becomes part of a new value
as for operands of binary operations, the set of associated data is mapped to the target. In
JavaScript the statement type ExpressionStatement wraps expressions and simply evaluates
them, which is often the case for assignments. In this case the resulting value has no effect.
But the consequence is that model evolution can likewise be driven by expressions and
statements.

3.2.1 Expressions

Whenever expressions occur in a statement or as sub expression, they are replaced with
the result of their evaluation before the outer statement or expression is further processed.

Literal and Variable are atomic expressions, i.e. they cannot have sub expressions which
trigger intermediate computations. Literals yield a constant value which is never sensitive.
Variables are constant names which are resolved within the current scope. To retrieve the
data associated with a variable var in scope b, sp ◦ f is applied: sp(f(b, [var])).

Properties are characterized by an object and a property name, which are given by ex-
pressions. In the simple case, the object is given by a variable. Otherwise, it is a nested
property or a call expressions which both have to be evaluated first and then are replaced
by their values before the actual property lookup is performed. The same holds for the
name expression, which usually but not necessarily is given by a Literal. The result of a
Property expression is the container associated with the property name in the identified
object. Some examples can be found in Listing 3.2.

19

3 Information flow model for JavaScript

var obj = new Object ();
2 // object given by variable , property ’foo’ by string constant:
obj.foo;

4 // object evaluated by call , property by string constant:
getObject ().foo;

6 // using a variable to access property ’foo ’:
var prop = "foo";

8 obj[prop];

Listing 3.2: Examples of different property lookup constructs

BinaryOperations take two expressions, a left (lop) and right (rop) operand, and combine
their results to a new value by applying a binary operator: lop ⊕ rop. Binary operations
always produce primitive values which get associated the conjunction of the data linked
to the involved sub expressions. Lop and rop can be any kind of expression. Nested binary
operations are resolved recursively. For example, var1⊕ var2 would be replaced by a new
container rvBOp which is associated with sp(var1) ∪ sp(var2). In a more complex scenario
as (var1⊕getPrimitive())⊕obj.getPropObj().prop, which can be found in Figure 3.3, first
the left binary operation in brackets would be evaluated. For this, the value for var1 is
retrieved and combined with the result of the call to getPrimitive according to the operator
semantics. The data associated with both is merged and bound to the temporarily created
container. Then the outer binary operation could be evaluated, which requires to evaluate
the right-hand side Property expression first. The method call to getPropObj on obj yields
the object owning the property. Next, the container for the property prop is looked up.
Finally, the remaining two containers are combined to the result value according to the
outer operator.

As mentioned before, it may be the case that expression results are not used, what means
they get no name. So, they in fact exist, but are not referenced and thus cannot influence
further information flow. In JavaScript, the garbage collector deletes such values. How-
ever, operations that produce such values cannot be ignored as they may have side effects
that must be captured.

Assignments

Assignments cause explicit information flow. Their basic structure is lhs = rhs, meaning the
information associated with the right-hand side expression flows into the left. Depending
on the expression types of lhs and rhs, an assignment changes the current state in different
ways. Lhs can either be a Variable or a Property expression which each could point to a
primitive value or an object. Rhs can be any expression type, also yielding a primitive value
or an object. When both sides hold primitive values, the assignment could be compound
(+=, ...), so the operator itself also has an influence on the model evolution.

As assignments yield the assigned value, they are expressions instead of statements.
This is relevant if an assignment occurs in a different context than an ExpressionStatement.

Based on the kinds of involved lhs and rhs expressions, we distinguish six kinds of as-
signments. Table 3.1 shows which combinations are handled by which assignment type.
For the following specification, we assume assignments take place in scope b.

20

3.2 Actions

Figure 3.3: The steps for the evaluation of the binary operation (var1⊕ getPrimitive())⊕
obj.getPropObj().prop. Dashed lines describe the evaluation of a sub expres-
sion, solid lines indicate data flows.

Lhs expr. Variable Property
Lhs value Primitive Object Primitive Object
Rhs value Primit. Object Primit. Object Primit. Object Primit. Object
Assigment A1, CA1 A2 A1 A2 A3, CA2 A4 A3 A4

Table 3.1: Overview of the six different assignment types in the model.

21

3 Information flow model for JavaScript

Assignment1 covers the two cases where a primitive value is assigned to a variable. Be-
cause simple values are copied on assignment, the lhs variable is associated with an unused
container, i.e. one that had no name before, and gets assigned the rhs data:

∀s ∈ [C → D2], ∀p ∈ [C → C2],∀f ∈ [F → C] : ¬∃ n ∈ F : f(n) = cnew ∧
((s, p, f), (lhs = rhs), (s[cnew ← sp(f(b, [rhs]))], p, f [(b, [lhs])← cnew])) ∈ R

(1)

CompoundAssignment1 covers the case where a variable receives a compound assignment.
Because the left value also flows back into the variable, the previously mapped data is
merged with the rhs data and not overwritten:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] : ¬∃ n ∈ F : f(n) = cnew ∧
((s, p, f), (lhs op= rhs),

(s[cnew ← sp(f(b, [rhs])) ∪ sp(f(b, [lhs]))], p, f [(b, [lhs])← cnew])) ∈ R
(2)

Assignment2 handles both cases where a variable gets assigned an object. This changes
the naming function as the variable name becomes a new alias for the object:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] :

((s, p, f), (lhs = rhs), (s, p, f [(b, [lhs])← f(b, [rhs])])) ∈ R
(3)

Assignment3 describes the assignment of a primitive value to some property obj.prop. The
old property value is removed from the set of properties in the points-to function and
replaced by a new container. The new container gets assigned the property name and the
same data as rhs:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] : ¬∃ n ∈ F : f(n) = cnew ∧
((s, p, f), (obj.prop = rhs),

(s[cnew ← sp(f(b, [rhs]))],

p[f(b, [obj])← (p(f(b, [obj])) \ {f(b, [obj, prop])}) ∪ {cnew}],
f [(b, [obj, prop])← cnew])) ∈ R

(4)

CompoundAssignment2 describes the compound assignment of a primitive value to some
property obj.prop. It is similar to Assignment3 but also maintains the data previously
mapped to lhs:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] : ¬∃ n ∈ F : f(n) = cnew ∧
((s, p, f), (obj.prop op= rhs),

(s[cnew ← sp(f(b, [rhs])) ∪ sp(f(b, [obj, prop]))],

p[f(b, [obj])← (p(f(b, [obj])) \ {f(b, [obj, prop])}) ∪ {cnew}],
f [(b, [obj, prop])← cnew])) ∈ R

(5)

Assignment4 covers the assignment of a referential value to a property obj.prop. In the
model, the link between the object and its old property value in the points-to function is

22

3.2 Actions

replaced by a reference to the new value and the property name becomes an alias for the
rhs object:

∀s ∈ [C → D2],∀p ∈ [C → C2],∀f ∈ [F → C] :

((s, p, f), (obj.prop = rhs),

(s, p[f(b, [obj])← (p(f(b, [obj])) \ {f(b, [obj, prop])}) ∪ {f(b, [rhs])}],
f [(b, [obj, prop])← f(b, [rhs])])) ∈ R

(6)

Calls

When a function is called via Call, CallNew or CallObject, a scope is added to the scope
chain. In this scope the function body is evaluated. The call expressions describe the
preparation of the scopes in which the formal parameters are bound to their actual values.
The evaluation of function bodies happens according to the semantics of their statements
and does not belong to call expressions themselves. The value returned by a call is deter-
mined by a corresponding Return statement which terminates the called function.

For each case, we assume a call to a function funwith formal parameters x1, . . . , xn. The
calls are made from scope b with actual parameters a1, . . . , an and the function body will
be evaluated scope b′.

Call describes calls to functions that are not bound as method to a particular object. The
expressions for the actual parameters are evaluated and their values bound to the corre-
sponding formal names:

∀s ∈ [C → D2],∀p ∈ [C → C2],∀f ∈ [F → C] : ((s, p, f), fun(a1, . . . , an),

(s, p, f [(b′, [x1])← f(b, [a1]); . . . ; (b′, [xn])← f(b, [an])])) ∈ R
(7)

CallObject handles functions called as a method of an object obj. Like before, the param-
eter binding is established and additionally this is bound to the receiver:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] : ((s, p, f), obj.fun(a1, . . . , an), (s, p,

f [(b′, [x1])← f(b, [a1]); . . . ; (b′, [xn])← f(b, [an]); (b′, [this])← f(b, [obj])])) ∈ R
(8)

CallNew covers constructor calls. For them, this is bound to the newly created object
which can be initialized in the body:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] : ¬∃ n ∈ F : f(n) = cnew ∧ ((s, p, f),

new fun(a1, . . . , an), (s, p,

f [(b′, [x1])← f(b, [a1]); . . . ; (b′, [xn])← f(b, [an]); (b′, [this])← cnew])) ∈ R
(9)

3.2.2 Statements

Statements are the basic building blocks for programs. Each program is a sequence of
statements. Most statements trigger explicit flows by nested statements or expressions.
In V8, this holds for all statements except for Return. Thus, it is the only V8 statement
(compare Figure 4.4) we model directly. Source code constructs that declare variables or

23

3 Information flow model for JavaScript

properties are transformed to special kinds of assignments and calls. Because it is easier
for us to model them by separate actions, we additionally define VarDeclaration and Prop-
ertyDeclaration to capture them.

VarDeclaration: When a variable v is declared in scope b (via var v;) this changes the nam-
ing function. A variable defined in a particular scope shadows variables with the same
name in the scope chain.

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] :

((s, p, f), (var v), (s, p, f [(b, [v])← empty])) ∈ R
(10)

PropertyDeclaration: When a property p is declared in an object obj in scope b this changes
the naming function:

∀s ∈ [C → D2], ∀p ∈ [C → C2],∀f ∈ [F → C] :

((s, p, f), (declareProp(obj, p)), (s, p, f [(b, [obj, p])← empty])) ∈ R
(11)

A property usually is declared in the course of an assignment to an undefined property
name. If a property prop is nonexistent in obj, then obj.prop = someVar; first declares the
property and then assign the value. The built-in object Object also allows property defini-
tions via its defineProperty1 method.

Return: Return statements carry expressions which serve as results for corresponding
function calls. Eventually, each function ends with a return statement. If there is no explicit
one, undefined is returned. The return value replaces the corresponding call expression in
the further evaluation of its context. To indicate this replacement we define rvnew to be a
new temporary name in the calling scope b which will refer to the result value. It is only
valid while the expression context of the call is evaluated. The statement return result; in
scope b′ triggers the following change:

∀s ∈ [C → D2], ∀p ∈ [C → C2], ∀f ∈ [F → C] :

((s, p, f), return result, (s, p, f [(b, [rvnew])← f(b′, [result])])) ∈ R
(12)

3.3 Application of the model

In the next two chapters we will introduce IF4JS, which is a prototype for information
flow tracking in JavaScript based on the model above. As the language provides more
statements and expressions than we specified in the model, we need mechanisms to cover
unmodeled ones. Statement rewriting and expression decomposition will fulfill this pur-
pose. How the runtime tracker maps actual JavaScript to actions in the model will be
explained in 4.4.2. However, as a prototype it will not cover the whole language.

1Detailed description of Object.defineProperty on the Mozilla Developer Network: https://developer.
mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty.

24

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty

4 IF4JS - Design

To evaluate the proposed model, we developed IF4JS as a PEP for JavaScript in Chromium.
It is directly integrated into the JavaScript engine V8 and connected to WebKit in order to
intercept DOM events in rendered pages. IF4JS tracks usage controlled data as soon as it is
read from the DOM. When sensitive values are written to the DOM, IF4JS adds the tracked
information from the model to the target. If sensitive data is about to be sent away using
an XMLHttpRequest, IF4JS cancels the send operation.

4.1 Requirements

The general requirements for IF4JS are summarized in the following table:

ID Description
R-10 IF4JS tracks JavaScript execution in Chromium using the model from Chapter 3.
R-20 IF4JS reads UC information for sensitive data retrieved from the DOM.
R-30 IF4JS adds UC information for sensitive data written to the DOM.
R-40 IF4JS must follow the general UC architecture and consider PDP, PEP and PIP.
R-50 IF4JS prevents sensitive data from being sent via XMLHttpRequest.

Table 4.1: Requirements for IF4JS

4.1.1 Limitation of data sources

For the prototype we assume sensitive data only enters JavaScript via a certain set of DOM
accesses which will be introduced below. As we want to extend the work done by Patrick
Wenz [2], we also use the same mechanism to identify usage controlled data based on
 tags. If the class attribute of a tag matches a certain pattern, all child nodes
are considered sensitive.

We are aware that the XMLHttpRequest API offers a second way, besides the DOM, to
introduce sensitive data into JavaScript. Although we cover it as a sink for usage controlled
data, we do not treat it as source here and leave this to future work.

4.1.2 Covered subset of the DOM API

Covering the whole DOM API would be unfeasible for the given time frame. Thus, for
R-20 and R-30, we limit ourselves to a subset of its functionality for a proof-of-concept.
We track read and write access to properties of arbitrary DOM nodes but do not track
method invocations on them. The latter can not be handled by code rewriting because

25

4 IF4JS - Design

Figure 4.1: The conceptual architecture of IF4JS. The arrows describe control flow injec-
tions of IF4JS components into the V8 Binding.

the DOM has a native implementation. Tracking methods would require to modify their
implementations analogously to the changes we made in the XHR API.

4.2 Design overview

The design of IF4JS is primarily influenced by three aspects:
1. Its integration in the interplay between WebKit and V8.
2. The alignment to the general UC architecture.
3. The chosen method to realize dynamic data flow tracking, which is code rewriting.

Figure 4.1 shows the conceptual architecture for IF4JS and how it is connected to WebKit.
The concrete integration into V8 will be discussed later.

4.2.1 WebKit hooks

WebKit is the part in Chromium which renders web documents. It processes HTML, CSS
and JavaScript. An overview of WebKit’s layers can be found in Figure 4.2. In summary we
made two modifications in WebKit. Both apply to the Bindings layer which is the interface
through which V8 is accessed:

• We added a switch to activate information flow tracking when a DOM event occurs.

• We modified the XMLHttpRequest API to intercept the sending of AJAX requests.

26

4.2 Design overview

Figure 4.2: The architectural layers of WebKit in Chromium. This figure is based on a slide
of a presentation by Adam Barth [21].

The information flow tracking switch: WebCore loads and renders web pages, and thus
controls JavaScript execution. But, JavaScript is also used to implement parts of the user
interface, which we do not want to track. So we need a way to determine when WebCore
executes scripts. There are two ways to execute JavaScript on a web page.

One is the immediate execution of JavaScript that is found during a page is parsed. This
affects all code that does not define a function or an event handler. We detect this in V8
due to the way it is invoked. We refer to such code as direct JavaScript in the following.

For DOM events [22], as caused by user actions, this is not possible. Thus we located the
spot in the V8 Bindings where events are passed into V8 and added instructions to activate
IF4JS before and deactivate it after they are processed.

Interception of XMLHttpRequests: The XMLHttpRequest API is registered in V8 via
the function- and object-template mechanism explained in Section 2.2. We added tracking
code to the parts that are responsible for creating and sending requests. By this we can
prevent leakage of sensitive data via requests.

4.2.2 Usage Control architecture

Following the general usage control architecture shown in Figure 1.2, IF4JS conceptually is
a PEP for preventive enforcement. But for most cases it will only update the PIP to capture
data flows and not query the PDP about intercepted actions. This is because in JavaScript
data usage means data being used in statements or expressions. As the XHR API is the
only unprotected sink for data, it is also the only part that requires PDP decisions. For the
rest it is sufficient to track information flow and add usage control information when data
is leaked to the DOM.

27

4 IF4JS - Design

As we have no suitable PDP or PIP at hand, we implemented dummies for them with
predefined interfaces. This allows to replace them by more elaborate ones when it comes to
integrating IF4JS into a comprehensive usage control system without bigger modifications
to the core PEP part later on.

As the PDP is only required for the XHR API and we have no existing server application
prototype which would receive usage controlled data via AJAX messages, we stick to a
hard coded policy that simply prohibits sending any sensitive data.

None of our former PIP implementations provides the points-to function, so we devel-
oped a basic solution for this purpose. It allows to maintain the data container mapping
according to the model from Chapter 3.

4.2.3 PIP interface

The interface for the PIP provides six methods. They allow to add and remove containers,
manipulate the mapping between containers and data, and of course the points-to func-
tion:

AddData(container, data) reflects updates to the storage function s. It adds data to the
mapping for a container. This method can be called with an empty second parameter to
only introduce a new container.

RemoveData(container, data) also updates s. It removes data from the mapping for a
given container.

GetDataInContainer(container) applies the data-lookup function sp to the given container.

AddPointsTo(from, to) creates a link between two containers. This mirrors an update to
the points-to function p.

RemovePointsTo(from, to) is the inverse operation to AddPointsTo.

RemoveContainer(container) is used as callback for the garbage collector (GC). The GC
calls it to signal when it is about to delete an unreferenced container. As containers with-
out a reference cannot be accessed anymore, we can safely remove them from the model.

A custom way maintain the naming function is not required. V8 itself implements it in
order to perform its task and IF4JS uses built-in functionality to resolve container names.

4.2.4 Information flow tracking within in V8

Code given to V8 passes four stages: Parsing, AST creation, Compilation and Execution. De-
tails about their sequence and implementation can be found at [23].

Our approach to integrate information flow tracking into JavaScript is a form of code
rewriting. Code rewriting takes a given piece of code and transforms it. This transforma-
tion can add instructions, modify existing ones or remove them. IF4JS applies code rewrit-
ing to inject code that captures the effects of assignments and modifies existing statements

28

4.3 Abstract syntax tree based rewriting

Figure 4.3: The abstract syntax tree V8 generates for Listing 4.1. Expressions are repre-
sented by rectangles, statements have rounded corners.

to be able to follow data flows step by step. This is achieved by decomposition of nested
expressions into atomic steps.

4.3 Abstract syntax tree based rewriting

When WebKit renders a web page, it passes encountered blocks of continuous JavaScript
to V8 for immediate execution. V8 parses these blocks and transforms them into Func-
tionLiterals which are root nodes of the ASTs used for compilation. If4JS intercepts these
functions and rewrites the statements in their bodies to inject the runtime tracking system.
We decided to use AST rewriting because it spares us the considerable effort of parsing the
code on our own. Furthermore, it is easy to navigate through ASTs in V8. And for most
statements and expressions, also modifications are simple. Encountered difficulties with
switch statements and loops will be explained below.

An example AST can be found in Figure 4.3. It shows the AST V8 generates for the three
lines of code in Listing 4.1. Besides the saved effort for parsing, ASTs provide typed nodes
that allow us to easily map the represented statements and expressions to actions in our
model.

pic = document.getElementById("userPic");
2 request = new XMLHttpRequest ();
request.send("img=" + pic.toDataURL ());

Listing 4.1: Example JavaScript code. Figure 4.3 shows the AST representation for it.

29

4 IF4JS - Design

4.3.1 Coverage of AST nodes

There are two basic node types in V8, Statements and Expressions. The statements of a
JavaScript program or function become siblings under the FunctionLiteral node represent-
ing the whole program or function in the corresponding AST. Depending on their concrete
type, Statements contain Expressions, nested Statements, or a combination of both. In the
following we introduce the existing AST nodes and explain which are covered by IF4JS’
AST Rewriter to which extent.

Statements: V8 defines 16 concrete statement types, which can be found in Figure 4.4.
Their structure differs depending on their type. Blocks, for instance, wrap a collection of
nested statements. IfStatements, as another example, consist of a branching expression and
two statements, then and else. IfStatements also illustrate one use of Blocks. They allow
then- and else-branches to contain more than just one statement.

IF4JS fully rewrites Blocks, Expression-, If-, Return- and TryFinallyStatements. Although
general rewriting rules for them exist, the rewriting of nested statements and expressions
is of course limited to those types handled by the rewrite rules.

No rewriting rules exist for Break-, Continue-, Debugger-, Empty- and WithStatement. For
Break, Continue and Empty, as they do not affect explicit flows, there is no need for rewriting
anyways. Debugger- and WithStatements would have to be investigated by future work.

For loop statements, bodies are covered but not control expressions. In Switch, the ex-
pression used as switch and for TryCatch the variable in the catch construct are not rewrit-
ten. These limitations exist because handling them would require IF4JS to create new
nodes of the respective types. Unlike for other statements and expressions, this requires
a deeper understanding of the parsing and AST creation process than we gained so far.
To close this gap, one most likely needs to find out how the required jump labels in these
control flow statements are created and recalculate them.

Expressions: For eight out of the 19 expression types, see Figure 4.5, we defined actions
in our information flow model and decomposition rules to rewrite them. These are: Assign-
ment, BinaryOperation, CompareOperation (treated as BinaryOperation), Call, CallNew, Literal,
Property and VariableProxy (as Variable). As described above, FunctionLiterals are also han-
dled to integrate the runtime tracker. They are the starting point for the rewriting process.

Due to time constraints, we provide no mapping and rewrite rules for the remaining
ten expressions. Covering them would require to identify the caused flows and either
express them by already defined actions or introduce new ones. Deriving the rewriting
rules requires careful consideration of the possible side effects of expressions in order to
prevent semantic changes of instrumented programs.

Consequently, the covered expressions can only be fully handled by IF4JS if they do not
use uncovered expression types as sub expressions.

4.3.2 Overview about the rewriting process

To rewrite an intercepted function, the AST Rewriter takes each statement from the func-
tion body, applies the rewriting rules and replaces the original statement by its rewritten
version. Unhandled statements remain unchanged.

30

4.3 Abstract syntax tree based rewriting

Figure 4.4: Overview about the statement types in V8.

Figure 4.5: Overview about the expression types in V8.

31

4 IF4JS - Design

We use a decomposition approach to track explicit flows in expressions. The rewriter
takes expressions from handled statements and extracts nested sub expressions first. These
are then prepared for isolated evaluation in newly inserted statements. The results are
assigned to temporary variables and additional instructions trigger the runtime tracker
to observe these single flows. Afterwards, the original statement is replaced by one with
the same result but which uses the decomposed expressions. Listings 4.2 and 4.3 show
the principle applied to a simple and a more complex example. Both describe how an
ExpressionStatement assigning the result of a binary operation to a variable v is rewritten.

1 // before rewriting:
v = a + b;

3 // rewritten code:
v = a + b;

5 if4js_trackStatement("ASSIGNMENT_VP_BOP", false , "v", "a", "b");

Listing 4.2: A simple example for code rewriting applied by IF4JS

In the first example, the ExpressionStatement wraps an Assignment expression which has a
VariableProxy as target and a BinaryOperation as assigned value. The left and right operands
of the binary operation again are VariableProxies. Looking up variables causes no interme-
diate data flows, so the rewriter simply inserts a tracking call after the given statement.
The parameters of the call instruct the runtime tracker to update the storage function for
v. The new value will be the union of the data sets currently associated with a and b.

1 // before rewriting:
v += getObj ()[propA] + objB[propB] + c;

3 // rewritten code:
// first track the left operand (getObj ()[propA] + objB[propB])

5 // 1) track the retrieval of the property owner
tmp1 = getObj ();

7 // 2) track the property value
tmp2 = tmp1[propA];

9 if4js_trackStatement("ASSIGNMENT_VP_PROP",false , "tmp2",tmp1 ,propA);
// 3) track right operand ’s value

11 tmp3 = objB[propB];
if4js_trackStatement("ASSIGNMENT_VP_PROP", false , "tmp3",objB , propB);

13 // 4) track the nested binary operation
tmp4 = tmp2 + tmp3;

15 if4js_trackStatement("ASSIGNMENT_VP_BOP", false ,"tmp4","tmp2","tmp3");
// next track the outer binary operation

17 if4js_trackStatement("ASSIGNMENT_VP_PRE", "v");
// replacement for the original statement:

19 v += tmp4 + c;
if4js_trackStatement("ASSIGNMENT_VP_BOP", true , "v", "tmp4", "c");

Listing 4.3: A more complex example for code rewriting applied by IF4JS

The second example also shows an ExpressionStatement with an Assignment to v. The
first difference is that the assignment here is a compound assignment, which means data
present in v will not be overwritten but merged with the right-hand side. The call inserted
in line 17 accounts for that. It triggers the runtime tracker to backup the data associated
with v in the current state before the compound assignment is performed. Afterwards, in

32

4.3 Abstract syntax tree based rewriting

line 20, the tracker will associate v not only with the union of the data for tmp4 and c, but
also add the previously saved data. Whether or not backed up data has to be considered
is indicated by the second parameter of the respective tracking calls.

The compound assignment also has a BinaryOperation as right value, but in this exam-
ple its left operand is a nested binary operation which causes intermediary data flows.
Lines 6 to 15 show how the nested operation is recursively decomposed. The left operand
(getObj()[propA]) of the nested operation is a Property expression. The owner object of the
property is given by a Call expression which must be inspected for caused flows first. Thus,
the property is rewritten such that the evaluation of the call can be tracked separately. The
result of the call, which is the owner of the property, is stored in a temporary variable.
This variable is used to rewrite the property lookup in line 8. In contrast to the original
lookup it does not contain sub expressions that cause additional flows. Line 11 stores the
second operand of the nested binary operation in a temporary variable and lines 14 and 15
finally capture the complete flow induced by the nested operation before the outer binary
operation is tracked as explained above.

4.3.3 Rewrite rules

We use two functions, instrument and decompose, to describe the rewriting process. Instru-
ment takes a statement and outputs instrumented statements for its replacement. It has no
return value. Decompose takes an expression and returns a variable pointing to the decom-
posed result value. It also generates statements if required for the decomposition. How
the outputs of both functions are used, respectively how they are stored, will be explained
in the implementation part in the next chapter. We give the rewrite rules by pseudo code.
Listings 4.4 to 4.11 show the rules applied for statements. The decomposition rules for
expressions can be found in Listings 4.12 to 4.19.

Block:
Blocks are rewritten by rewriting all nested statements:

instrument(Block(stmt_1; ...; stmt_n ;))
2

// is rewritten to:
4 Block(instrument(stmt_1); ...; instrument(stmt_n);)

Listing 4.4: The rewriting scheme for Blocks.

ExpressionStatement:
ExpressionStatements evaluate a wrapped expression. Thus, the rewriting process decom-
poses the expression:

instrument(ExprStmt(Expression))
2

// is rewritten to:
4 ExprStmt(decompose(Expression))

Listing 4.5: The rewriting scheme for ExpressionStatements.

33

4 IF4JS - Design

IfStatement:
To rewrite IfStatements, the contained branching condition is decomposed and the then-
and else-statement are instrumented:

instrument(IfStmt(Cond , Then , Else))
2

// is rewritten to:
4 IfStmt(decompose(Cond), instrument(Then), instrument(Else))

Listing 4.6: The rewriting scheme for IfStatements.

ReturnStatement:
ReturnStatements carry an Expression which yields the value passed back by a function call.
The rewriter decomposes the return value:

instrument(Return(Expression))
2

// is rewritten to:
4 Return(decompose(Expression))

Listing 4.7: The rewriting scheme for ReturnStatements.

TryFinallyStatement:
This statement consist of two Blocks that contain the statements for the try and finally parts.
The rewriter applies instrument to both blocks:

instrument(TryFinallyStmt(Try , Finally))
2

// is rewritten to:
4 TryFinallyStmt(instrument(Try), instrument(Finally))

Listing 4.8: The rewriting scheme for TryFinallyStatements.

TryCatchStatement:
Similar to TryFinally this statement has two Blocks for the try and catch parts, but there is
an additional variable expression that is available in the catch block. The rewriter applies
instrument to both blocks:

instrument(TryCatchStmt(Try , CatchVar , Catch))
2

// is rewritten to:
4 TryCatchStmt(instrument(Try), CatchVar , instrument(Catch))

Listing 4.9: The rewriting scheme for TryCatchStatements.

IterationStatement:
This common supertype of loops exposes the body of a particular loop. We use it to de-
scribe the rewriting for all loop types which only covers the body statement:

instrument(IterationStatement(Body))
2

// is rewritten to:
4 IterationStatement(instrument(Body))

Listing 4.10: The rewriting scheme for loops.

34

4.3 Abstract syntax tree based rewriting

SwitchStatement:
SwitchStatements are composed from an expression that is switched upon and a set of case
clauses. Cases consist of an expression that serves as their label and a block describing the
statements of that clause. A possibly present default clause has no label expression. The
AST rewriter rewrites the blocks of all case clauses:

instrument(SwitchStmt(Expr , Clause(L1,Block1) ,..., Clause(Ln,Blockn)))
2

// is rewritten to:
4 SwitchStmt(Expr , Clause(L1,instrument(Block1)), ...,

Clause(Ln,instrument(Blockn)))

Listing 4.11: The rewriting scheme for SwitchStatements.

VariableProxy:
Variable expressions are not further decomposed. Thus, the decompose function simply
returns the given expression and outputs no additional statements for them. We use the
notation VP(varName) to describe a VariableProxy expression that points to the variable
with name varName in the following decomposition rules.

Literal:
Literals represent constants. Their values are never sensitive. To ease the implementation
the rewriter stores them in temporary variables and returns the according VariableProxy

1 decompose(Literal)

3 // outputs statements:
tmp = Literal;

5 // returns:
VP(tmp)

Listing 4.12: The decomposition scheme for Literals.

Property:
Property expressions consist of two nested expressions that identify the owner object and
the name of the property. To decompose a property, the object and name expressions are
recursively resolved (lines 4 and 5). The resolved values are used to perform the original
property lookup and the lookup result is assigned to a temporary variable (line 6). The
temporary variable is returned, as it holds the original expression’s result:

decompose(Property(objExpr , nameExpr))
2

// outputs statements:
4 tmp1 = decompose(objExpr);
tmp2 = decompose(nameExpr);

6 tmp3 = tmp1[tmp2];
if4js_trackStatement("ASSIGN_VP_PROP", false , "tmp3", "tmp1", "tmp2");

8

// returns:
10 VP(tmp3)

Listing 4.13: The decomposition scheme for Properties.

35

4 IF4JS - Design

Call and CallNew:
Call and CallNew expressions consist of an expression that identifies the called function
and a list of parameter expressions. IF4JS decomposes the parameters of calls and replaces
them with calls using the decomposed values as parameters. The call result is stored in a
temporary variable which is also the return value for the decomposition:

decompose(Call(funExpr , [p_1 , ..., p_n]))
2

// outputs statements:
4 tmp_1 = decompose(p_1);
...

6 tmp_n = decompose(p_n);
tmp_r = Call(funExpr , [tmp_1 , ..., tmp_n]);

8 // returns:
VP(tmp_r)

Listing 4.14: The decomposition scheme for Calls. The same scheme is applied to CallNew.

Binary- and CompareOperation:
These two expression types contain two nested expressions that provide the left and right
operands of the operation. The operation is given by a binary operator. Rewriting is per-
formed by decomposing both operands and replace the original operation by one that uses
the decomposed values as operands. The applied scheme is the same for both:

1 decompose(BinOp(leftExpr , op, rightExpr))

3 // outputs statements:
tmp1 = decompose(leftExpr);

5 tmp2 = decompose(rightExpr);
tmp3 = BinOp(tmp1 , op, tmp2);

7 if4js_trackStatement("ASSIGN_VP_BOP", false , "tmp3", "tmp1", "tmp2");
// returns:

9 VP(tmp)

Listing 4.15: The decomposition scheme for Binary- and CompareOperation.

Assignment:
Assignments also have two sub expressions. The target expression, which is either a Vari-
ableProxy or a Property, determines the left hand side. The value expression describes the
right-hand side, the assigned value and can be any expression type. The rewriting applied
for Assignments depends on the target expression type and whether the assignment has a
simple or a compound assignment operator. Thus, there are four different rewrite rules:

1 decompose(Assign(VP(target), valueExpr))
// example:

3 target = value;

5 // outputs statements:
tmp = decompose(valueExpr);

7 target = tmp;
if4js_trackStatement("ASSIGN_VP_VP", false , "target", "tmp");

9

36

4.3 Abstract syntax tree based rewriting

// returns:
11 VP(tmp)

Listing 4.16: The decomposition scheme for Assignments with a VariableProxy as target and
a simple assignment operator.

1 decompose(Assign(VP(target), valueExpr))
// example:

3 target op= value;

5 // outputs statements:
tmp = decompose(valueExpr);

7 if4js_trackStatement("ASSIGN_VP_PRE", "target");
target op= tmp;

9 if4js_trackStatement("ASSIGN_VP_VP", true , "target", "tmp");

11 // returns:
VP(tmp)

Listing 4.17: The decomposition scheme for Assignments with a VariableProxy as target and
a compound assignment operator.

decompose(Assign(Property(objExpr , nameExpr), valueExpr))
2 // example:
obj.name = value;

4

// outputs statements:
6 tmp1 = decompose(objExpr);
tmp2 = decompose(nameExpr);

8 tmp3 = decompose(valueExpr);
if4js_trackStatement("ASSIGN_PROP_PRE", false , tmp1 , tmp2);

10 tmp1[tmp2] = tmp3;
if4js_trackStatement("ASSIGN_PROP_VP",false , tmp1 , tmp2 , tmp3);

12

// returns:
14 Property(tmp1 ,tmp2)

Listing 4.18: The decomposition scheme for Assignments with a Property as target and a
simple assignment operator.

decompose(Assign(Property(objExpr , nameExpr), valueExpr))
2 // example:
obj.name op= value;

4

// outputs statements:
6 tmp1 = decompose(objExpr);
tmp2 = decompose(nameExpr);

8 tmp3 = decompose(valueExpr);
if4js_trackStatement("ASSIGN_PROP_PRE", true , tmp1 , tmp2);

10 tmp1[tmp2] op= tmp3;
if4js_trackStatement("ASSIGN_PROP_VP",true , tmp1 , tmp2 , tmp3);

12

37

4 IF4JS - Design

// returns:
14 Property(tmp1 ,tmp2)

Listing 4.19: The decomposition scheme for Assignments with a Property as target and a
compound assignment operator.

VarDeclarations have no direct counterpart in V8 and are realized differently for local and
global variables. For variables declared without initial values, IF4JS does nothing as there
is no explicit flow.

Local variables are declared via assignments which carry an initialization hint. IF4JS
treats them the same way as other assignments. Global variables are declared through a
call to the runtime function InitializeVarGlobal which happens through a CallRuntime ex-
pression. The applied rewriting, see Listing 4.20, uses the aforementioned expression de-
composition to track the initial value.

CallRuntime("InitializeVarGlobal", variable , initValue);
2

// is rewritten to:
4 instrument(var tmp = initValue ;)

CallRuntime("InitializeVarGlobal", variable , tmp);
6 if4js_trackStatement("ASSIGN_VP_VP", false , "variable", "tmp");

Listing 4.20: The basic rewriting scheme for the initialization of global variables. The suffix
_name indicates that the name of a variable is used instead of its value

4.4 Dynamic information flow tracking

When V8 executes code compiled from modified ASTs, the Runtime Tracker comes into
play. It consists of two parts. One is the tracking function if4js_trackStatement, which up-
dates an instance of the proposed model maintained in parallel to JavaScript execution.
The other part is the XHR API Interceptor, which essentially does the same for XHR in-
stances.

4.4.1 The XMLHttpRequest Interceptor

We directly integrated data flow tracking for XHR requests into the API implementation,
because this is less complicated than let flows be handled via AST rewriting and the track-
ing function. Additionally, it produces less runtime overhead.

The instructions to create and send requests are represented as calls in the AST. Whether
a CallNew or Call expression will create or send a XHR cannot be reliably determined at
compile time. The rewriter would have to inject tracking calls which for each call check,
whether an XHR API call is about to be performed or not. These additional calls are un-
necessary when data flow tracking is performed by the XHR API itself.

Furthermore, following this approach, the XHR interceptor can easily be extended to
later on also handle PDP decisions that allow sensitive data to be sent away, but require a
bundled usage control policy. From the perspective of the runtime tracking function, the
methods of the XHR API are atomic actions. Because they are implemented natively, the
AST Rewriter cannot inject tracking calls into their statements. Any actions performed by

38

4.4 Dynamic information flow tracking

them would have to be anticipated and judged in advance. The interceptor has a more
fine-grained view as it is interweaved into the implementation. It is tracking code injected
by hand, so to say.

4.4.2 The runtime tracking function

The tracking function records information flow by observing assignments. IF4JS rewrites
covered statements and expressions such that induced explicit flows are decomposed and
pass through observable assignments. This makes it easy to track them. Basically, the
tracking function looks up which data currently is associated with the right-hand value
and updates the mapping for the target. Depending on the operand and operator types,
the concrete steps differ in some details. For example, assignments to properties need
additional steps to adjust the points-to relation. The six assignment types described in
the model are rewritten in a way that they can be handled by four different usages of the
tracking function.

The function takes between two and five parameters. The first one always determines
which steps the function has to perform and the number and meaning of the following
parameters. There are six possible values for it. Table 4.2 lists them and also explains their
meaning. The according six calls are explained below.

Paramete value Meaning

ASSIGN_VP_PRE
A call before a compound assignment to a variable. The function
backs up the data mapped to the left side.

ASSIGN_PROP_PRE

A call before an assignment to some property. The points-to rela-
tionship between owner and property value is removed. When
indicated by the second parameter, the data mapping for the
property value backed up.

ASSIGN_VP_VP
A call after an assignment of some variable to another variable.
The mapping for the left variable has to be updated.

ASSIGN_VP_BOP
The result of a binary operation was assigned to some variable.
The mapping for the variable must be updated based on the two
operands of the binary operation.

ASSIGN_VP_PROP
The function updates the mapping for a variable after it got as-
signed the value of some property.

ASSIGN_PROP_VP
A call to update the mapping for a property which got assigned
the value of some variable. The points-to mapping for the prop-
erty owner is also updated to cover the new property value.

Table 4.2: Possible values for the first parameter of the tracking function

if4js_trackStatement("ASSIGN_VP_PRE", varName):

This call only has one additional parameter. It is inserted prior to compound assignments
to variables. The second parameter is the name of the left variable. The tracking function
backs up the data mapping for its value, which in the model corresponds to sp(f(b, [lhs]))

39

4 IF4JS - Design

in the storage function update for CompoundAssignment1. After it has been overwritten, a
subsequent tracking call will use it perform the storage function update for the left value.

if4js_trackStatement("ASSIGN_PROP_PRE", append, objVar, nameVar):

This call is inserted before any assignment to a property. The parameters objVar and
nameVar hold the names of variables pointing to the owner and name of the property.
They are used to dissolve the points-to mapping between owner object and property value,
which is required for Assignment3/4 and CompoundAssignment2. For compound assign-
ments, append holds true and the call also backs up sp(f(b, [obj, prop])) for the left value
like above.

if4js_trackStatement("ASSIGN_VP_VP", append, leftName, rightName):

This call updates the PIP after assignments. LeftName and rightName hold the names of the
involved variables. The mapping for the left value is set to the data associated with the
right value. If append is true, the backup data is added to the new mapping. Hence, the call
belongs to the storage function update of either Assignment1/2 or CompoundAssignment1,
depending on the assignment operator and the rhs value type.

if4js_trackStatement("ASSIGN_VP_BOP", append, leftName, lopName, ropName):

Similar to the previous call, this one updates the PIP but after assignments having a binary
operation as right value. In terms of the model, this is a combination of BinaryOperation
with Assignment1/2 or CompoundAssignment1. To track the occurred flows, the tracker uses
the names of both involved operands in lopName and ropName.

if4js_trackStatement("ASSIGN_VP_PROP", append, leftName, objVar, propVar):

This call is used to decompose property expressions. The left variable of the respective
assignment holds the property value afterwards. To track the associated data the PIP is
updated for the variable named by leftName. The owner object is given by objVar and the
property name by propVar. Again, append signals whether backup data has to be consid-
ered. So this is also a variant for the storage function update for Assignment1/2 or Com-
poundAssignment1.

if4js_trackStatement("ASSIGN_PROP_VP", append, objVar, propVar, rightName):

Assignments to properties are handled by this type. As before objVar and nameVar identify
the property. They are used to establish the relationship between the object and the new
property value in the model, which is the missing part of the points-to function update in
Assignment3/4 and CompoundAssignment2. For the storage function update, rightName and
append indicate which data has to be assigned in the PIP.

40

5 IF4JS - Implementation

Clarification: All statements given about the structure and architecture of V8 are mainly
based on code reading and secondary sources such as mailing lists and blog posts. This
is due to the fact that there are no detailed architecture documents about the internals of
V8 available. Although the code contains detailed comments they do not reveal the full
rationale behind the system design. Thus, explanations may be incomplete or not match
the intentions of the developers.

Except for the XHR Interceptor, IF4JS is embedded into V8. Like Chromium, WebKit and
V8, it is written in C++. The interceptor consists of a few lines of code that we added to
the respective ObjectTemplate in WebKit. The remaining components are each realized by
an own C++ class residing in V8. All classes are defined in the same header file if4js.h. To
integrate the AST Rewriter into the compilation process of V8, we added some code to the
compiler. It makes sure that ASTs are passed to the rewriter before they are compiled.

Furthermore, we extended V8’s API, used by WebKit to communicate with it, by six
methods. Three of them are required by the XHR Interceptor to communicate with PDP
and PIP. One is used to register the tracking function in the JavaScript environment. An-
other one is required to tell IF4JS whether follow-up code has to be instrumented or not
and the last one exists for debugging purpose.

Next, we describe how a development environment for IF4JS can be prepared and in-
troduce where WebKit and V8 are located in Chromium. Afterwards, we describe the
implementation and integration of IF4JS in detail.

5.1 Notes on Chromium, WebKit and V8

We integrated IF4JS into version r157275 of Chromium [24]. It is available as a patch for
this revision. To set up a development environment, one should follow the instructions
from the project website [17] and use the referenced archive instead of the latest version.
Afterwards the patch bundled with this thesis has to be applied to integrate IF4JS into the
code. Using an IDE eases navigation through the code a lot. A manual to setup an Eclipse
project for Chromium is available [25].

V8 is located in the subfolder v8/ of Chromium’s main source directory. WebKit re-
sides in the relative path third-party/WebKit/, the V8 Bindings can be found under third-
party/WebKit/Source/WebCore/bindings/v8/. The implementation of IF4JS only affects V8 and
the bindings, everything else remained unchanged.

5.1.1 Modifications in V8 Bindings

The V8 Bindings comprise all code that is required to connect WebKit and the DOM to V8.
We made changes at three spots. Each modification carries the comment "IF4JS extension"

41

5 IF4JS - Implementation

to ease their localization.
On the one hand, the bindings contain management code. Particularly important in

our context is the ScriptController class. It feeds DOM events received from WebCore into
V8 for their evaluation. This is the place where we added code to inform IF4JS about
incoming code that must be instrumented. Other management code, for instance, keeps
track of open windows and tabs and the respective V8 contexts that belong to them.

On the other hand, there are a lot of Object- and FunctionTemplates (see Section 2.2.1).
They provide the implementations for the DOM and XHR API. One of them is the template
for the global object in V8 contexts. It reflects the window of the respective tab and is
provided by the V8DOMWindowShell class. IF4JS extends its initialization code to register
the tracking function if4js_trackStatement.

The third change affects the XHR implementation. There we added the code for the XHR
Interceptor in the methods responsible to initialize and send requests.

As a side note, for the case one misses ObjectTemplates for the major part of the DOM
API: Most templates are automatically generated during Chromium’s build process from
their interface definitions. Thus, they do not exist before Chromium is compiled for the
first time. For a Debug build, the generated parts are created in /out/Debug/gen/webcore/bind-
ings/ relative to Chromium’s main directory.

5.1.2 Overview of V8

The organization of V8’s source code does not reveal much about its architecture. Most
header and source files are directly placed in the source directory v8/src/. Only the ma-
chine code generators have own subfolders according to their target platform. The code
is distributed among two namespaces, v8 and v8::internal. The embedder API resides in
v8 and serves as a mediator between the user and the core implementation in v8::internal.
Knowing this is important, because some classes like Object, String or Handle exist in both,
with different implementations, of course.

A good starting point to understand how V8 works is the API. By tracing the control
flow of its methods, one can comprehend the performed steps. The API is defined in
v8/include/v8.h and implemented in v8/api.cc. It provides the possibilities to create iso-
lated runtime environments via Context, to parse and execute JavaScript code via Script
and all types required to implement and register custom functionality. Script::Compile and
Script::Run are the methods used by WebCore to execute direct JavaScript. DOM events
are executed by calling custom functions. An elaborate guide through the control flow of
Script::Compile can be found in [23].

5.2 PDP Interface

IF4JS has only one hard coded policy: No sensitive data may be sent away. To decide
about it, the PDP class IF4JS_PDPWrapper provides one method that takes a request and
its contained data. If there is any sensitive data, the request is prohibited. The complete
code for the PDP is shown in Listing 5.1. Although currently not used, the request is
passed to the PDP to leave room for more detailed checks based on any properties.

42

5.3 PIP Interface

class IF4JS_PDPWrapper{
2 public:

// Takes a request and the set of data associated with it.
4 // Returns true if the request may be sent , false if not.

static bool IsXhrSendAllowed(Handle <Value > request ,set <string > data)
6 {

return data.size() == 0;
8 };
};

Listing 5.1: The complete PDP implementation.

5.3 PIP Interface

The PIP component is realized by class IF4JS_PIPWrapper. Figure 5.1 shows its structure.
It has only static members, simply for the sake of less code. So, future work could change
this without hidden ramifications.

The wrapper has two nested classes, ContainerMapper and ContainerMap. They are used
to associate containers with a string identifier. In JavaScript, values are containers and
IF4JS identifies them by their references. However, references have no meaning outside of
the runtime environment. As we developed IF4JS with multi-layer usage control in mind,
we decided to already integrate a mapping for them.

The public methods of IF4JS_PIPWrapper provide the PIP interface introduced in Section
4.2.3. There is a second RemoveData method which only receives a container and no data
set. When it is called, the mapping for the given container is cleared. This eases the syn-
chronization between the data to container mappings in the DOM and the model instance
maintained by IF4JS.

5.3.1 Mappings and their implementation

Besides the mapping between JavaScript values and container ids in containerMapper, the
PIP implementation maintains two additional mappings. In contDataMap, container ids
are mapped to the set of sensitive data contained in the respective container. This repre-
sents the storage function from the proposed model. Analogously, pointsToMap realizes
the points-to function. Both mappings are implemented using the template class map from
the standard library.

Unfortunately, it is not possible to also use map for the container id mapping, because it
organizes keys relying on a strict weak order. The memory addresses of JavaScript values
could not be used as ordering criterion as the garbage collector moves objects around and
thus likely changes the order. Handles (compare 2.2.1), which wrap values, can not be used
as keys either, because different handles may refer to the same value.

43

5 IF4JS - Implementation

Figure 5.1: The structure of IF4JS_PIPWrapper with its nested helper classes ContainerMap
and ContainerMapper. The red S marks static members.

44

5.4 AST Rewriter

5.4 AST Rewriter

The rewriter is implemented in class IF4JS_ASTRewriter. Its methods SetActive and IsActive
are used to control when the rewriter has to inject the runtime tracker. They serve as getter
and setter for its private _active attribute.

Then there are 47 more public methods. They are all inherited from V8’s AstVisitor class.
This class provides the interface to implement a visitor for ASTs according to the visitor
pattern. Among the prescribed methods there is one VisitXYZ method for each of the
35 expression and statement types in V8. However, the only method used to instrument
functions is VisitFunctionLiteral. The rewriter has an empty implementation for the other
visitor methods. Figure 5.2 shows the members of IF4JS_ASTRewriter but leaves out the
methods from AstVisitor except for VisitFunctionLiteral.

5.4.1 Context and utilities

While processing a function, V8 maintains a CompilationInfo object to gather information
about the function. For example, it contains the source code, the genrated AST, the context
of the function and will also hold the generated machine code in the end.

Each time a function has to be rewritten, the processing is interrupted right before V8
compiles the machine code. To perform the rewriting, a new IF4JS_ASTRewriter instance is
created and given the described CompilationInfo object. From there it retrieves the AST that
has to be instrumented. The statements created to replace the original function body are
collected in _stmts which holds a V8 internal list data structure. To produce new statements
and expressions, the rewriter uses an AstNodeFactory which also is obtained by the help of
the CompilationInfo instance.

As explained in the design, a basic approach to track flows is the observation of assign-
ments. Thus, the rewriter uses storeExpressionInTempVar to create statements that store ex-
pression values in new variables. Subsequent tracking calls then record the induced flow.
This calls are created by the createTrackingCall methods. They produce ExpressionStatements
which call the runtime tracker as introduced in Section 4.4.2. The suffixes of the method
names indicate which calls they create. Both, the assignment creator and the tracking call
generators receive a list as last parameter to which they add the created statements.

The createLiteral methods help to create the parameters for the tracking function. They
derive expressions which hold the names of variables or the value of the append parameter.

5.4.2 A rewriting life-cycle

The rewriting process always starts with a call to VisitFunctionLiteral which receives the
program or function to instrument as a pointer to a FunctionLiteral expression. This method,
Listing 5.2 shows its implementation, simply passes each statement in the body to rewriteS-
tatement (line 13). Afterwards it replaces the original body with the instrumented state-
ments. As the method operates on a pointer to the original function, there is no need to
change anything else. The CompilationInfo mentioned above also points to the same object
and hence, the compilation process will compile the instrumented function without being
aware of the modification.

45

5 IF4JS - Implementation

Figure 5.2: The structure of IF4JS_ASTRewriter. The S indicates static members.

46

5.4 AST Rewriter

1 void IF4JS_ASTRewriter :: VisitFunctionLiteral(FunctionLiteral* funLit){
// runtime tracker initialization

3 v8:: IF4JS_RuntimeTracker :: InitializeMap ();
// Only rewrite functions if requested

5 if (IF4JS_ASTRewriter :: IsActive () && !isIgnoredFunction(funLit)){
// fetch the function body

7 ZoneList <Statement*>* body = funLit ->body();
// create the list to collect the instrumented statements

9 _stmts = new (_z) ZoneList <Statement*>(body ->length (), _z);
// iterate over the function body and rewrite each statement

11 for (int i = 0; i < body ->length (); i++) {
// the rewritten statements are put into the collector

13 rewriteStatement(body ->at(i), _stmts);
}

15 // replace the original function body with the instrumented one
body ->Clear();

17 body ->AddAll(_stmts ->ToVector (), _z);
}

19 }

Listing 5.2: The code of VisitFunctionLiteral.

The rewriteStatement method reflects the instrument function we used to specify the rewrite
rules in Section 4.3.3. There we explained, how instrumented statements are derived from
an input statement but not exactly where they are stored. Note that the rewrite method has
a second parameter. It is a statement list named collector to which the rewritten statements
are added. This list allows rewriteStatement to recursively rewrite statements without mix-
ing up the nesting of statements. See Listing 5.3 for an illustration. When a block has to be
rewritten, the method creates a new list (line 2) and lets the nested statements be rewritten
into it without mixing up the list for the block (lines 4-7). Afterwards, the block is added
to its intended list (line 11).

1 // a block , we rewrite the sequence of nested statements
ZoneList <Statement*>* rewBlockStmts =

3 new(_z) ZoneList <Statement *>(3, _z);
for (int i = 0; i < block ->statements ()->length (); i++){

5 Statement* cStmt = block ->statements ()->at(i);
this ->rewriteStatement(cStmt , rewBlockStmts);

7 }
// replace original block statements with the rewritten ones

9 block ->statements ()->Clear();
block ->statements ()->AddAll(rewBlockStmts ->ToVector (), _z);

11 collector ->Add(block , _z);

Listing 5.3: Code from IF4JS which illustrates nested statement rewriting.

Also the decompose function from the rewrite rules has a counterpart in IF4JS_ASTRewriter:
decomposeExpression. It splits up given expressions into several individually trackable state-
ments and generates the required runtime tracking calls. DecomposeExpression also receives
a list to store created statements. It returns the expression which serves as replacement for
the handled expression.

47

5 IF4JS - Implementation

5.5 Runtime Tracker

For the Runtime Tracker we first describe the implementation of the XHR Interceptor and
then explain how the runtime tracking function evolves the model instance that is main-
tained in parallel to the tracked JavaScript code.

5.5.1 The XMLHttpRequest Interceptor

The XHR interceptor consists of two modifications in the V8XMLHttpRequest class. It is
the C++ implementation of the object and function templates for XMLHttpRequest.
V8XMLHttpRequest::openCallback and ::sendCallback provide the implementations of the API
functions open and send [26]. Their implementation can be found in /custom/V8XMLHttp-
RequestCustom.cpp relative to the bindings directory. We added some code to both meth-
ods to implement the interceptor. As the interceptor needs to communicate with the PIP to
perform its task, we added the methods V8::PIPGetDataInContainer and V8::PIPAddDataTo-
Container to the V8 API. They are required because the PIP is located in V8 and thus not
directly accessible from WebKit.

XMLHttpRequest.open: The open method configures a XHR request. The parameters
determine whether the request should use HTTP GET or POST and the URL it will be sent
to. Because URLs may contain GET-parameters to transport data, we added the code in
Listing 5.4 to check whether the URL parameter contains sensitive data. In the code, args
is an array holding the parameters passed to open. If the URL contains sensitive data, the
PIP is updated and the request marked to also contain the same data as the received URL.

1 // We check for sensitive data in the URL
set <string > urlData = v8::V8:: PIPGetDataInContainer(args [1]);

3 if (urlData.size() > 0){
// Update the mapping for the opened request

5 set <string > reqData;
reqData.insert(urlData.begin(), urlData.end());

7 if(v8::V8:: IsIF4JSVerbose ()){
cout << "__ XHR created with sensitive data" << endl;

9 }
v8::V8:: PIPAddDataToContainer(args.Holder (), reqData);

11 }

Listing 5.4: The code used to track sensitive data when XHRs are opened

XMLHttpRequest.send: To start a request, the send method is used. It takes an optional
parameter which for POST requests provides the POST data to send along. How a request
is performed and where it is directed to depends on its configuration. Before send can be
called, the request must have been configured via open. Hence, when a request should be
sent, we must check whether it already contains sensitive data and if send received sensi-
tive POST data. Listing 5.5 shows the required code. If there is sensitive data somewhere,
the interceptor terminates the sending call (line 14) before any data left the system.

48

5.5 Runtime Tracker

1 v8::Local <v8::Object > request = args.Holder ();
// Fetch data already present in the request

3 set <string > reqData = v8::V8:: PIPGetDataInContainer(request);
// Next add sensitive data from the first parameter

5 if (args.Length () >= 1){
set <string > postData = v8::V8:: PIPGetDataInContainer(args [0]);

7 reqData.insert(postData.begin(), postData.end());
}

9 // Now we query the PDP whether we may send the request or not
if(!v8::V8:: IsXhrSendAllowed(request , reqData)){

11 if (v8::V8:: IsIF4JSVerbose ()){
cout << "__ XHR with sensitive data ... aborted" << endl;

13 }
return v8:: Undefined ();

15 }

Listing 5.5: The code used to detect whether XHRs are about to send sensitive data.

5.5.2 The runtime tracking function

Actually, the runtime tracking function is not only just one method or function. It sub-
sumes the functionality provided by IF4JS_RuntimeTracker. We referred to it as the track-
ing function, because all its activity is triggered via injected calls to if4js_trackStatement.
IF4JS register the method TrackStatement of the runtime tracker class as callback to handle
if4js_trackStatement calls. Figure 5.3 reveals IF4JS_RuntimeTracker’s structure.

Besides evolving the storage and points-to functions maintained in the PIP, it also takes
care of connecting IF4JS with the DOM. When tracked variables refer to DOM nodes, usage
control information is synchronized between the DOM and IF4JS. If an expression reads
data from a DOM node, the tracker inspects whether there is an outer usage control
tag in the ancestor chain of the node and, if so, associates the data specified in the
with the node value in the runtime environment. Analogously, if an expression pushes
data into a DOM node, IF4JS_RuntimeTracker makes sure to update the DOM with the
associated usage control information. This either means it adds data to a usage control
 or creates a new one if there was none before. In Figure 5.3, the eight involved
methods can be seen in the lower part (from isDOMObject to _getDocument). Elaborate
comments in the respective code give insights about the concrete steps performed.

As said before, TrackStatement is the callback for if4js_trackSatement. Its task is to delegate
the incoming calls according to the given parameters. For each of the six calls described
in Section 4.4, there is an according trackAssignment_ call which performs the specified
actions. The two calls ending on ’_PRE’, which back up previous left side data if required,
use _tmpData to store the backup. Any subsequent tracking call will look up the data and
then clear the temporary store.

When the tracker performs its updates to the storage and points-to function, it must take
care whether the involved variables are local, arguments or global. As the rewriter does
not add hints about variable types, the runtime tracker must determine them by itself. This
task is performed by getVariableByName which uses getStackFrameVariable and getArgument-
Variable as helpers to lookup local variables and formal argument names. Determining the

49

5 IF4JS - Implementation

Figure 5.3: The structure of IF4JS_RuntimeTracker. All members are static.

50

5.6 Integration into WebKit and V8

Figure 5.4: The six methods which extend the V8 API.

variable type is based on the assumption that local variables always have precedence be-
fore arguments which in turn precede global variables. So, getVariableByName checks one
after another and returns the according value as soon as the given name was successfully
resolved. This way, variable shadowing is covered. If the name could not be resolved to
any type, the variable does not exist and the method returns undefined.

5.6 Integration into WebKit and V8

We now explain how the different parts of IF4JS are embedded into Chromium. There
are four parts we had to change to integrate it, two in WebKit and two in V8. First we
will describe the extensions of the V8 API. Then we explain how the tracking function is
registered in the runtime environment and where the rewriter is informed about DOM
events. Lastly, we show how the compilation process in V8 is intercepted and redirected
through the rewriter.

5.6.1 V8 API extensions

The six methods extending the API are depicted with their signatures in Figure 5.4.

IsIF4JSVerbose: This method does not contribute to the actual information flow track-
ing. It is used to determine whether the modifications in WebKit should output debugging
information to the console.

SetIfState: The code signaling DOM events from WebKit uses this to inform the rewriter
about upcoming events. It is a wrapper which makes IF4JS_ASTRewriter::SetActive acces-
sible through the API.

RegisterTrackingHandler: This registers TrackStatement from IF4JS_RuntimeTracker in the
received object template. It is called with the template for the global object when a website
is loaded.

51

5 IF4JS - Implementation

PIPGetDataInContainer and PIPAddDataToContainer: This two functions let external
code query the PIP to receive and update the data associated with JavaScript values. It is
used by the XHR Interceptor.

IsXhrSendAllowed: This method performs a query for XHRs to the PDP. Given a request
and the set of contained data, it returns whether the request may be sent or not.

5.6.2 Tracking function registration

The V8DOMWindowShell class mentioned above, which provides the global object within
a browser window, is implemented in V8DOMWindowShell.cpp. The method createContext
is in charge of configuring its template before it is registered in V8. To add the tracking
function, we use one line of code which passes the prepared object template to the new V8
API function RegisterTrackingHandler.

5.6.3 Signaling DOM events

WebKit uses the ScriptController class to execute JavaScript. It is implemented in Script-
Controller.cpp. For DOM events, after some preparation, the controller uses callFunction-
WithInstrumentation to pass the event to V8. We added one line of code at the beginning
of this method to call SetIFState from the V8 API with true. This activates the rewriter to
instrument the upcoming event code. Before the method returns, we call SetIFState again
to suspend the rewriter.

5.6.4 Redirecting the compilation process

To instrument functions, we need to intercept V8’s compilation process right before the
created AST is actually compiled into machine code. The respective code is located in
v8/compiler.cc. V8 only compiles functions when they are executed afterwards. If some
code contains a function definition, this function is just preprocessed. It will be compiled
only if later on some other code, a DOM event for instance, actually calls this function.
This principle is referred to as lazy compilation.

To cover both cases, direct and lazy compilation, we had to modify two spots in com-
piler.cc. One is located in the function MakeFunctionInfo, the other in Compiler::CompileLazy.
The code, which is also marked with the comment "IF4JS extension", checks whether the
rewriter is currently active and if so, creates a new instance of it. The created rewriter is
then given to the processed function as a visitor what leads to VisitFunctionLiteral being
called on it. This triggers the rewriting process as described above.

52

6 Evaluation

In this chapter we will evaluate the proposed model and the developed prototype. We look
at the performance overhead caused by IF4JS and also define completeness and correctness
as quality criteria for information flow tracking models.

6.1 Performance analysis

We created a small benchmark to asses the performance overhead caused by IF4JS. Our
benchmark is based on the SunSpider test suite [27]. It aims at comparison of JavaScript
implementations. The focus is on core JavaScript language features, hence, it does not
involve the DOM or other additional browser APIs. This makes it well-suited for our pur-
pose as we primarily modified V8. SunSpider consists of 26 single tests that are grouped
in nine categories. They cover a wide range of scenarios ranging from string processing
over mathematics and 3D graphics to crypto algorithms.

Executing the complete SunSpider benchmark with IF4JS was not possible in a reason-
able time frame. Thus, we decided to execute single tests of the suite and use their results
to estimate the overhead. We randomly chose five tests, each from a different category.
Although it is a small subset of the benchmark, it is sufficient to highlight the dimension
of the caused overhead.

6.1.1 Test setup

The tests we used are: 3d-cube, access-binary-trees, controlflow-recursive, crypto-md5 and string-
base64. Unless otherwise stated, the result for a particular test case is given by the averaged
duration of five individual runs. Each run was conducted in a new instance of the browser.
The DVD belonging to the thesis contains the test cases and raw results.

The benchmark was performed on a Dell Precision T5500 with an Intel Xeon E5645 CPU,
32 GB DDR3 RAM and a solid state disk as system drive. Despite the power of the used
hardware, we would expect similar results on a today’s consumer PC, as Chromium has no
high hardware requirements and the performance of JavaScript execution mainly depends
on the capabilities of a single CPU core.

While executing the tests, we found out that IF4JS is not compatible with V8’s optimizer
Crankshaft. It dynamically changes executed code to speed-up execution. We will come
back to this in the conclusion. To see Crankshaft’s influence on our benchmark, we mea-
sured the unmodified Chromium versions once with and without it.

In total, we measured each test in six configurations: IF4JS, Chromium with and without
Crankshaft, each of them as debug and release builds.

53

6 Evaluation

Test Type w/ Crankshaft w/o Crankshaft IF4JS

3d-cube
release 14.4 (x1.39) 20 (x89,953) *1,295,330
debug 248,6 (x0,99) 248 -

access-binary- release 4 (x1.15) 4.6 (x1,819) 7,276
trees debug 30 (x1.00) 30 (x4,285) 128,558
controlflow- release 3.4 (x1.41) 4.8 (x927) 3,153
recursive debug 16.2 (x1.01) 16.4 (x6,138) 99,443

crypto-md5
release 6 (x0.97) 5.8 (x269,800) *1,618,799
debug 67.4 (x0.63) 42.2 -

string-base64
release 8.6 (x0.77) 6.6 (x8,359) 71,885
debug 79.8 (x1.00) 79.8 (x11,412) *910,656

Table 6.1: The results of our benchmark. All figures describe runtime in milliseconds. In
each row, the coefficients in brackets are related to the result with Crankshaft
enabled. For values marked with * we measured only one run. Configurations
marked with ’-’ have not been completed, see 6.1.2 for explanations.

6.1.2 Test results

The benchmark results can be found in Table 6.1. We didn’t complete two tests, because of
the supposed execution time. Assuming the factors for the release builds to be tolerably
applicable, a run with IF4JS in debug mode would take more than 6 hours for 3d-cube and
more than 5 hours for crypto-md5.

The results clearly render IF4JS unfeasible for scenarios with computationally intensive
tasks. In summary, the overall performance overhead due to rewriting and runtime track-
ing lies in the range of three to five orders of magnitude. This is not only a matter of
proportionality. The fastest test case for IF4JS takes about 3 seconds which creates a per-
ceivable delay, not to speak of nearly 27 minutes for crypto-md5.

The major overhead is caused by runtime tracking. Rewriting is only performed once for
each executed function, independently of the numbers of invocations. It has a complexity
of O(n) in terms of AST nodes, as each node is visited once. But the injected tracking calls
are executed for each invocation. Among the tracked expressions, calls and nested expres-
sions cause the most overhead. For calls, each parameter is stored in a separate variable
which is tracked for flows. This at least adds two statements per parameter, one of which
is a tracking call. Nested expressions are decomposed similarly. Each sub expression is
tracked via an assignment to a temporary variable, also creating at least two additional
statements.

The MD5 test has many function invocations, with up to seven parameters, and uses
binary operations with up to ten sub expressions, which explains the immense slow down
compared to the control flow test. The latter is still nearly 1000 times slower than in the
optimal case, but the overhead lies within three instead of five orders of magnitude while
the MD5 calculation in the unmodified Chromium only takes twice the time of the con-
trol flow test. Having a closer look reveals that the control flow test uses less nesting in

54

6.1 Performance analysis

expressions and significantly less calls, which also have fewer parameters.

6.1.3 Further experiments

We suspect the tracking calls to be the primary reason for the produced overhead. To
verify this, we compiled IF4JS with commenting out the line that inserts the tracking calls
into rewritten ASTs. A short test with 3d-cube (26 ms/283 ms) and crypto-md5 (9 ms/50
ms) confirms our assumption. The gained insight through this little experiment is not
surprising, but it affirms that future work should focus on this issue.

A first question would be whether it is possible to improve the performance of track-
ing calls to a satisfying level by optimizing the used data structures and algorithms, as
we never considered their performance during implementation, or if the context switches
alone already create too much overhead. To get a first impression, we made another ex-
periment. This time, the tracking calls were inserted again, but they immediately returned
without actually performing any tracking. Based on the results for crypto-md5 (56 ms/2960
ms) and 3d-cube (129 ms/6190 ms), there is a high potential for improvement in the imple-
mentation. At least for release builds it could be possible to reach or approximate accept-
able performance.

We suppose the PIP implementation could be dramatically improved by replacing copy
assignments with expressions using references or pointers. Also looking up container ids
could be accelerated. Currently the list of containers is traversed twice, once to check
whether a container is already known and if so once again to fetch it. Using an out pa-
rameter for the lookup result could save the second traversal. It would be useful to profile
IF4JS to find out the greatest bottlenecks in the implementation and concentrate on them
first.

6.1.4 Field testing

Regardless of the bad benchmark results we were interested in the perceived performance
of IF4JS on regular websites. Websites usually cause little load compared to the benchmark
so they could possibly still be usable. To get an impression of IF4JS in the wild we surfed
the top six Alexa websites [28] with a release build of IF4JS. At the time of writing these
were: Google, Facebook, Youtube, Yahoo, Baidu and Wikipedia [29–34].

On Wikipedia we did not perceive any delays and articles were displayed correctly. This
is likely due to mainly static content. However, the overlay with a call for donations cur-
rently displayed on top of each article did not show up. Youtube also did not appear to be
slower, but for most videos the preview pictures were not displayed. Also Google’s web
search only partly worked. The regular search displayed results correctly but the autocom-
plete feature, which displays similar and popular search terms just-in time as a drop-down
menu, was not shown. The image search did not display any results and always showed
the message that no matching images could be found. In Facebook we could login but we
did not get any content displayed which is usually dynamically created by JavaScript. On
the pages of Yahoo and Baidu the active tab simply crashed because of exceptions in V8.

This suggests wrong or incomplete rewriting rules. We guess that they are rather incom-
plete than wrong as we created examples which worked as expected. These examples of

55

6 Evaluation

course only use statement and expression compositions we anticipated in the implementa-
tion. In the web JavaScript often is compressed using tools like Google’s Closure Compiler
[35]. It analyzes JavaScript code and rewrites it to be as small as possible. A construct often
used for this is the comma-operator. In V8 this is a binary operator which behaves differ-
ent from the action we modeled as BinaryOperation. Hence, it is most likely treated wrong
by the current implementation. As optimizers often use it to initialize variables it could be
an explanation for the erroneous behavior on Wikipedia, Youtube, Google and Facebook.
We need to investigate the JavaScript code in these websites in detail and compare it with
the results of IF4JS’ rewriting process in order to fix the observed issues.

6.2 Completeness and correctness

Whether an information flow tracking approach detects all occurring flows, and also if
each indicated flow has an actual counterpart in the tracked system, are important crite-
ria to asses its practicability in a usage control system. We refer to these two criteria as
completeness and correctness. We define and discuss them speaking of models and their
properties, but the actual implementations also play a role. Thinking of our solution, the
model alone would clearly not be able to capture many flows in JavaScript. But the way
IF4JS rewrites tracked code allows to capture also flows for constructs that are not directly
reflected in the model.

Completeness criterion: Completeness demands that actually occurring flows in the
monitored system must be captured by a model. However, it does not consider false pos-
itives. Thus, a model indicating flows which did not occur can still be complete as long as
it also captures all actual flows. But high over-approximation significantly contributes to
the label-creep problem. This hinders fine-grained usage control, which essentially is the
goal of using cross-layer approaches.

Correctness criterion: To evaluate a model with respect to over-approximations, we use
a notion of correctness. We consider a captured flow to be correct, if there is a correspond-
ing action in the observed system which actually caused this flow. Consequently, a correct
model, which only tracks correct flows, would not produce false-positives. But, to be cor-
rect, a model does not necessarily have to track all occurring flows.

An ideal model would track at the same time at least but also at most all occurring flows.
Thus, both criteria together describe the functional requirements for an ideal data flow
tracking model. Our solution is not yet complete but the goal of future work should be to
achieve completeness. We think the model could be correct for the parts covered by the
ECMAScript specification though, because it tracks information flow on the level of single
primitive values and thus for example also can track array fields. But we are not able to
give formal evidence here. To provide a proof we would require a formal model of the
ECMAScript language or its implementation in V8 which we could relate to our model.
Unless we have such a model we can only present informal proof ideas for both criteria.

56

6.2 Completeness and correctness

6.2.1 Proof ideas

Completeness: To show completeness, one must show that a solution at least covers all
flows that occur in the tracked code. This could be done be a complete induction over
the sequence of actions induced by the execution of JavaScript programs. By actions we
mean changes in the JavaScript environment caused by the evaluation of expressions or
execution of statements.

A JavaScript program is given by a sequence of statements. As explained in 4.3.1, state-
ments themselves can have sub statements and consist of expressions. Adding one state-
ment to a program could in fact add an arbitrary number of sub statements as for Blocks.
This makes it difficult to perform an induction over the length of a program. But, as we
are only interested in explicit flows, we can look at the sequence of actions caused by the
execution of a program. The underlying control flow is transparent to this sequence, but
for explicit flows it does not matter under which condition an action happens.

An induction over the sequence of actions would use an empty sequence as base case
which changes nothing in a state and hence is trivially covered. The induction hypothesis
would state that if a sequence of actions of length n is covered, then the model also covers
sequences of length n + 1. In the induction step we would have to show for any added
action that the model covers the induced flow.

Due to the rewriting process applied by IF4JS, which would have to be proven as seman-
tic preserving separately, the set of actions that could be added is limited to a certain subset
of expression and statements in V8. This would be either actions that do not induce any
flow, like break or continue, or assignments, calls or return expressions that can be directly
mapped to action in the proposed model. For each case an argument had to be provided
which proves why the flow is covered. As an example, for assignments from a variable to
another variable we could argue that we can lookup the containers and associated data by
the names of the involved variables and thus track the occurring flow.

Correctness: To show correctness, one must prove that any flow indicated by the model
has a corresponding actual flow in the tracked code. Here a proof could show that informa-
tion flow tracking is correct by construction. IF4JS detects flows by observing assignments
in tracked code. So, if IF4JS detects a flow, this means that there also is an corresponding
actual flow in the code. As the tracking is performed on the level of single properties and
primitive values, there is no over-approximation here, at least for built-in types. If every
single tracked flow from one container to another was correct, this would imply that also
any flow described by more than one intermediary step was correct as it could only be
composed from correct steps.

Unfortunately, this only holds for built-in objects and values. How objects of types
added via object templates behave internally would have to be examined separately. This
means, for a correctness proof also the implementation of the DOM API has to be exam-
ined which was not a subject of this thesis.

57

7 Conclusion and future work

In this thesis we presented an approach for information flow tracking in JavaScript and
showed a prototype implementation of the proposed model in the Chromium browser.
We provide two working examples in the examples folder of the submitted DVD. The intro-
duced approach turned out to be feasible in general, but the evaluation revealed that our
implementation as is produces intolerable overhead. Furthermore, we found out that cur-
rently not all statements and expressions are rewritten in a way that preserves the original
semantics. Nevertheless, we believe that future work could fix these issues and improve
it to cover the complete set of statements and expressions. We also see chances to opti-
mize the implementation to an acceptable performance level. In the following we give an
outlook on open problems that future work has to deal with.

7.1 AST rewriting

In terms of AST rewriting there are two major problems to be investigated for one of which
it is unclear whether it can be solved with reasonable effort. The first problem concerns
the incomplete rewriting that leads to the observations described in 6.1.4. The problem
is caused by an incomplete handling of statements and expressions in the implementa-
tion and not about extending the implementation for completely unhandled ones. Ideally,
the rewriting process injects the tracking code for covered constructs and changes nothing
about unknown constructs. Obviously this is not the case. But it can be solved by identi-
fying the constructs that we missed in the design or implementation and as a consequence
are rewritten wrongly.

The second issue is to extend IF4JS to cover all statements and expressions in V8. As
indicated in Section 4.3, new nodes cannot be easily generated for all statements and ex-
pressions. To fully rewrite the uncovered control flow statements, like for instance loops, it
is necessary to understand how V8 captures jump labels and targets. This could be found
in the AST or its nodes directly, or possibly also somewhere in the CompilationInfo data
structure mentioned in Section 5.4. With the understanding about the control flow infor-
mation it should be possible to arbitrarily rewrite also these AST nodes. Perhaps, another
way to solve this issue could be to directly modify nodes by their pointers instead of re-
placing them by newly created nodes. As the original nodes would still exist, the control
flow information collected by V8 would not be corrupted and thus could still work as ex-
pected. To do the proposed modifications of AST nodes it would be required to extend
their classes by methods that provide write access to their nested nodes.

59

7 Conclusion and future work

7.2 Performance improvements

In 6.1.3 we already gave hints on where and how the performance of the current implemen-
tation could be enhanced. But besides the pure implementation also the overall approach
could be extended.

In Section 1.4 about related work we mentioned an information flow analysis approach
combining static and dynamic analysis [4]. There program dependence graphs are used to
statically analyze data and control dependency between statements in the handled code.
The work referred to, done by Hammer et al. for WebKit’s original JavaScript engine
JavaScript Core, creates such graphs for each function to deal with implicit flows. Cov-
ering implicit flows is not possible in Chromium and V8, due to the lazy compilation ap-
proach and the fact that JavaScript execution, if possible, already starts before all code was
loaded.

But it should be possible to statically calculate information flow graphs for functions
that do not use dynamic code generation. Using them to track information flows in the
respective functions could significantly reduce the amount of required runtime tracking
calls. We guess that this approach could seriously speed up computations like the MD5
test from SunSpider which only depends on the given input. If the overall flows in a
function are known there is no need to anymore track local variables that will not leave
the scope of that function.

60

Bibliography

[1] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie,
Mike Champion, and Steve Byrve. Document object model (dom) level 3 core speci-
fication. W3C Recommendation, April 2004.

[2] P. Wenz. Data Usage Control for ChromiumOS. Diploma thesis, Certifiable Trustwor-
thy IT Systems (IPD), KIT Karslruhe, 2012.

[3] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of javascript.
In CSF, pages 3–18, 2012.

[4] Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer. Information flow
analysis for javascript. In Proceedings of the 1st ACM SIGPLAN international workshop on
Programming language and systems technologies for internet clients, PLASTIC ’11, pages
9–18, New York, NY, USA, 2011. ACM.

[5] Jonas Magazinius, Ro Russo, and Andrei Sabelfeld. On-the-fly inlining of dynamic
security monitors. In In Proc. IFIP International Information Security Conference, 2010.

[6] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged information
flow for javascript. In Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’09, pages 50–62, New York, NY, USA, 2009.
ACM.

[7] Alexander Pretschner, Enrico Lovat, and Matthias Büchler. Representation-
independent data usage control. In Proceedings of the 6th international conference, and
4th international conference on Data Privacy Management and Autonomous Spontaneus Se-
curity, DPM’11, pages 122–140, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] R.S. Sandhu and P. Samarati. Access control: principle and practice. IEEE Communi-
cations Magazine, 32(9):40 –48, September 1994.

[9] Prachi Kumari, Alexander Pretschner, Jonas Peschla, and Jens-Michael Kuhn. Dis-
tributed data usage control for web applications: a social network implementation.
In Proceedings of the first ACM conference on Data and application security and privacy,
CODASPY ’11, pages 85 –96, New York, NY, USA, 2011. ACM.

[10] M. Harvan and A. Pretschner. State-Based usage control enforcement with data flow
tracking using system call interposition. In Network and System Security, 2009. NSS
’09. Third International Conference on, pages 373 –380, October 2009.

[11] Alexander Pretschner, Matthias Büchler, Matus Harvan, Christian Schaefer, and
Thomas Walter. Usage control enforcement with data flow tracking for x11. In 5th
International Workshop on Security and Trust Management (STM 2009), 2009.

61

Bibliography

[12] ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 5.1
edition, June 2011.

[13] v8 - V8 JavaScript Engine. http://code.google.com/p/v8/.

[14] Chromium - The Chromium Projects. https://sites.google.com/a/chromium.org/
dev/Home.

[15] Chromium blog - Google Chrome, Chromium, and Google. http://blog.chromium.
org/2008/10/google-chrome-chromium-and-google.html.

[16] The WebKit Open Source Project. http://www.webkit.org/.

[17] For Developers - The Chromium Projects. https://sites.google.com/a/chromium.
org/dev/developers.

[18] Design Elements - Chrome V8. https://developers.google.com/v8/design.

[19] Wingolog - posts tagged "v8". http://wingolog.org/tags/v8.

[20] Embedder’s Guide - Chrome V8. https://developers.google.com/v8/embed.

[21] How WebKit Works - presentation by Adam Barth on October 30, 2012. https:
//docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_
nhLm2Gi__F0#slide=id.p.

[22] Document Object Model (DOM) Level 3 Events Specification. http://www.w3.org/
TR/DOM-Level-3-Events/.

[23] Jonas’ weblog - "A script’s tale - exploring V8". http://blog.peschla.net/2012/10/
exploring-v8/.

[24] Chromium source code, revision 157275. http://chromium-browser-source.
commondatastorage.googleapis.com/chromium.r157275.tgz.

[25] Chromium source code, revision 157275. http://code.google.com/p/chromium/wiki/
LinuxEclipseDev.

[26] XMLHttpRequest - Living Standard as of 22th November 2012. http://xhr.spec.
whatwg.org/#toc.

[27] SunSpider JavaScript Benchmark. http://www.webkit.org/perf/sunspider/
sunspider.html.

[28] Alexa Top 500 Global Sites. http://www.alexa.com/topsites.

[29] Google. https://www.google.de/.

[30] Facebook. https://www.facebook.com/.

[31] Youtube. https://www.youtube.com/.

[32] Yahoo. http://www.yahoo.com/.

62

http://code.google.com/p/v8/
https://sites.google.com/a/chromium.org/dev/Home
https://sites.google.com/a/chromium.org/dev/Home
http://blog.chromium.org/2008/10/google-chrome-chromium-and-google.html
http://blog.chromium.org/2008/10/google-chrome-chromium-and-google.html
http://www.webkit.org/
https://sites.google.com/a/chromium.org/dev/developers
https://sites.google.com/a/chromium.org/dev/developers
https://developers.google.com/v8/design
http://wingolog.org/tags/v8
https://developers.google.com/v8/embed
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.p
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.p
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.p
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/
http://blog.peschla.net/2012/10/exploring-v8/
http://blog.peschla.net/2012/10/exploring-v8/
http://chromium-browser-source.commondatastorage.googleapis.com/chromium.r157275.tgz
http://chromium-browser-source.commondatastorage.googleapis.com/chromium.r157275.tgz
http://code.google.com/p/chromium/wiki/LinuxEclipseDev
http://code.google.com/p/chromium/wiki/LinuxEclipseDev
http://xhr.spec.whatwg.org/#toc
http://xhr.spec.whatwg.org/#toc
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.alexa.com/topsites
https://www.google.de/
https://www.facebook.com/
https://www.youtube.com/
http://www.yahoo.com/

Bibliography

[33] Baidu. http://www.baidu.com/.

[34] Wikipedia. http://en.wikipedia.org/.

[35] Closure compiler - a javascript optimizing compiler. http://code.google.com/p/
closure-compiler/.

63

http://www.baidu.com/
http://en.wikipedia.org/
http://code.google.com/p/closure-compiler/
http://code.google.com/p/closure-compiler/

	Abstract
	Acknowledgements
	Introduction
	The route planning example
	Issues with third-party scripts

	The photo gallery example
	Issues with dynamic content

	Information flow
	Kinds of information flow

	Related work on information flow analysis
	Runtime information flow tracking
	Data and representation

	Usage control
	Usage control enforcement
	Enforcement along different levels of abstraction

	Problem statement
	Considered solution
	Contribution

	Organization

	The Chromium browser
	Architecture overview
	The V8 JavaScript engine
	The V8 API

	JavaScript
	The formal basis: ECMAScript
	Core language characteristics

	Information flow model for JavaScript
	Definitions
	Containers
	Data
	Variables and container identification

	Actions
	Expressions
	Statements

	Application of the model

	IF4JS - Design
	Requirements
	Limitation of data sources
	Covered subset of the DOM API

	Design overview
	WebKit hooks
	Usage Control architecture
	PIP interface
	Information flow tracking within in V8

	Abstract syntax tree based rewriting
	Coverage of AST nodes
	Overview about the rewriting process
	Rewrite rules

	Dynamic information flow tracking
	The XMLHttpRequest Interceptor
	The runtime tracking function

	IF4JS - Implementation
	Notes on Chromium, WebKit and V8
	Modifications in V8 Bindings
	Overview of V8

	PDP Interface
	PIP Interface
	Mappings and their implementation

	AST Rewriter
	Context and utilities
	A rewriting life-cycle

	Runtime Tracker
	The XMLHttpRequest Interceptor
	The runtime tracking function

	Integration into WebKit and V8
	V8 API extensions
	Tracking function registration
	Signaling DOM events
	Redirecting the compilation process

	Evaluation
	Performance analysis
	Test setup
	Test results
	Further experiments
	Field testing

	Completeness and correctness
	Proof ideas

	Conclusion and future work
	AST rewriting
	Performance improvements

	Bibliography

