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Abstract

The high complexity of fluid extraction process which involves droplet
coalescence, breakup, mass transfer, and counter-current flow often makes
design difficult. While the simulation output of extraction columns pro-
vides a mathematical understanding of how fluids are mixed inside a mix-
ing device, intuitive and physically plausible visualization techniques are
in high demand to help chemical engineers to explore and analyze bubble
column simulation data. Among multi-fluid researchers, fluid interfaces
and free surfaces are topics of growing interest in the field of multi-phase
computational fluid dynamics. Texture based visualisation have proven
to be a useful tool in analysing complex time dependent fluid interfaces.
In addition, High-level visualization techniques such as topology-based
methods can reveal the hidden structure underlying simple simulation data.
In this thesis, we first presents the joint research on droplet simulation
within an extraction column. The major contribution of this work lies in
the visualisation of the multi-fluid simulation. We presents the visualiza-
tion of such fluid simulation from three perspectives, namely the stochas-
tic visualisation of bubble dynamics, the fluid interface stability and the
topology of fluid material interfaces.
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Chapter 1

Introduction

Fluid extraction is a typical chemical process where two types of fluids are mixed

together. The high complexity of this process which involves droplet coalescence,

breakup, mass transfer, and counter-current flow often makes design difficult. The

industrial design of these processes is still based on expensive mini-plant and pilot

plant experiments. Therefore, there is a strong need for research into the stimulation

of fluid-fluid interaction processes using computational fluid dynamics (CFD).

Previous multi-phase fluid simulations have focused on the development of models

that couple mass and momentum using the Navier-Stokes equation. Recent population

balance models (PBM) have proved to be important methods for analyzing droplet

breakage and collisions. A combination of CFD and PBM facilitates the simulation

of flow property by solving coupling equations, and the calculation of the droplet size

and numbers. In our study, we successfully coupled an Euler-Euler CFD model with

the breakup and coalescence models proposed by Luo and Svendsen (59).

The simulation output of extraction columns provides a mathematical understand-

ing of how fluids are mixed inside a mixing device. This mixing process shows that

the dispersed phase of a flow generates large blobs and bubbles. Current mathemati-

cal simulation results often fail to provide an intuitive representation of how well two
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1. INTRODUCTION

different types of fluid interact, so intuitive and physically plausible visualization tech-

niques are in high demand to help chemical engineers to explore and analyze bubble

column simulation data. In chapter 3, we present the visualization tools we developed

for extraction column data.

Fluid interfaces and free surfaces are topics of growing interest in the field of multi-

phase computational fluid dynamics. However, the analysis of the flow field relative

to the material interface shape and topology is a challenging task. In chapter 5, we

present a technique that facilitates the visualization and analysis of complex material

interface behaviors over time. To achieve this, we track the surface parameterization

of time-varying material interfaces and identify locations where there are interactions

between the material interfaces and fluid particles. Splatting and surface visualization

techniques produce an intuitive representation of the derived interface stability. Our

results demonstrate that the interaction of a flow field with a material interface can

be understood using appropriate extraction and visualization techniques, and that our

techniques can help the analysis of mixing and material interface consistency.

In addition to texture-based methods for surface analysis, the interface of two-

phase fluid can be considered as an implicit function of the density or volume fraction

values. High-level visualization techniques such as topology-based methods can re-

veal the hidden structure underlying simple simulation data, which will enhance and

advance our understanding of multi-fluid simulation data. Recent feature-based vi-

sualization approaches have explored the possibility of using Reeb graphs to analyze

scalar field topologies(19, 107). In chapter 6, we present a novel interpolation scheme

for interpolating point-based volume fraction data and we further explore the implicit

fluid interface using a topology-based method.

The main contributions of this thesis are as follows.

• Two-phase fluid simulations were converted to three dimensions. PBMs were

combined with conservation laws.

• Stochastic approaches to the visualization of droplet distributions.

12



• An adaptive approach to droplet path-line integration for capturing droplet break-
age and collisions.

• A novel technique to facilitate the visualization and analysis of complex material
interface instability over time.

• A physically plausible interpolation scheme for randomly initialized point-based
data using volume fractions.

• A topology-based fluid interface analyzer using Reeb graphs.

This thesis is organized as follows.
Chapter 2 presents our joint research on droplet simulation in an extraction column.

In chapter 3, we describe the visualization tools we developed to represent the output
of an extraction column simulation. An in-depth analysis of fluid interface instability
is given in chapter 5. In chapter 6, we further explore fluid interface behavior using
a topology-based method. Our conclusions and future work are presented in the last
chapter.
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Chapter 2

Multi-phase fluid simulation

1The Navier-Stokes equations (11) were derived from Newton’s law to describe the

motion of fluids. In mathematical terms, they are partial differential equations that de-

scribe the changes of fluid quantities in space and time. According to Newton’s law,

we normally obtain an equation for mass conservation and another for momentum con-

servation. In the case of multi-phase fluids, however, a complete set of Navier-Stokes

equations is used for each phase of the fluid. The fluids are coupled using further

equations such as phase exchange or interface interactions. Recent developments in

multi-phase fluid simulation typically exploit the concept of marker functions (5, 96).

Existing solvers for multi-phase fluids include a particle-based method (64) smooth

particle hydrodynamics (43), and a finite point-set method (49).

In this chapter, we describe the mathematical foundations of multi-phase fluid sim-

ulation and the mathematical modeling of an extraction column. In Section 2.1, we

introduce the mathematical formulation of a two-phase extraction column problem.

Section 2.2 illustrates our choice of mesh handling and the numerical boundary condi-

tions for the simulation.

In chapter 3, we describe the results of our joint research with the Center for Math-

ematical and Computational Modeling (CMCM). This interdisciplinary research col-

1Part of the work in this chapter was published in (40, 41, 106)

15



2. MULTI-PHASE FLUID SIMULATION

laboration was aimed at developing a complete framework for modeling, simulating,

and visualizing multiphase fluids in an extraction column.

2.1 Mathematical foundations of the extraction column

The simulation of extraction columns using computational fluid dynamics (CFD) started

with Rieger et al. (85), who used the CFD program Fire for single-phase simulations of

a type of extraction column with a rotating disc contactor (RDC). Modes & Bart (67)

used the program FIDAP to perform two-phase simulations. The change in droplet

size in an RDC column was considered by Vikhansky & Kraft (105) and Drumm

& Bart (29) using population balance models (PBMs). Drumm & Bart (29) focused

mainly on moment-based PBMs while Vikhansky & Kraft (105) used the Monte Carlo

method. Hlawitschka (42) translated the results of (29) to a three-dimensional test case

for a Kühni extraction column. Similar to PBMs, a one-group model (OPOSPM) was

used that guaranteed a low computational time and a good prediction of the hydrody-

namics and flow field (28). Hlawitschka (42) investigated an adaptation of coalescence

and breakage kernels using the models proposed by Martinez-Bazán et al. (63) and

Prince & Blanch (82).

We present the mathematical formulation of our extraction column simulation in

the following sequence:

In section 2.1.1, we introduce the general Navier-Stokes equations for multi-phase

fluid simulations. Section 2.1.2 integrates PBMs into the system, which provides fur-

ther possibilities for the simulation of bubble movements with variable diameters and

quantity. The two-phase fluid simulation was carried out in a DN32 extraction column

using the model of Andersson (4) for breakage and an adapted model of Coulaloglou

& Tavlarides (25) for coalescence, which are described in detail in section 2.1.3.

2.1.1 Conservation laws for two-phase fluids

We assume that each phase of the fluid is continuous and incompressible. Each phase

can be represented using the volume fraction α , which is identical to the statistical

16



2.1 Mathematical foundations of the extraction column

probability of the droplets being at a specific position. In each computational cell, the

sum of the phase fractions in the continuous phase αc and dispersed phase αb must be

1, as follows.

αc +αd = 1. (2.1)

The mass transportation of each phase is described using a conservation equation

and they are solved separately for each phase. The continuity equation consists of a

storage term and a convective term on the left side of the equation and a source term

on the right side: 
∂ (αcρc)

∂ t
+∇ · (αcρcuc) = ρcSc.

∂ (αdρd)

∂ t
+∇ · (αdρdud) = ρdSd.

(2.2)

The momentum balance of the continuous phase is given as follows.

∂ (αcρc)uc

∂ t
+∇ · (αcρcucuc)− τl =−αc∇p+αcρcg+Fc +ρcucSc. (2.3)

The left side of the equation shows the rate of change of the momentum while the

right side shows the effects of pressure and stress-strain. The interaction between the

two phases is considered by the resistance force Fc. The source term S is set to 0. In the

dispersed phase, the momentum equation is similar to equation (2.3). Analogous to the

work of (29), only the drag force is considered to be interphase resistance. The mass

force and buoyancy force can be neglected in liquid-liquid systems. The resistance

between the continuous phase and the dispersed phase is calculated based on the model

of Schiller & Naumann (89). The drag coefficient CD is defined as

Fc,d =
3ρcαcαdCd|uΓ

d −uΓ
c |(uΓ

d −uΓ
c )

4dd
(2.4)

where

CD =

24(l +0.15Re0.678)/Re, Re≤ 1000

0.44 Re > 1000.
(2.5)

Furthermore, the Reynolds number Re is defined (29, 42) as

Re =
ρc|uΓ

d −uΓ
c |dd

µc
.
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2. MULTI-PHASE FLUID SIMULATION

2.1.2 Population balance models

In this section, we present a model that couples mass transportation and PBMs. Varia-
tions in the droplet size and number are taken into consideration by introducing break-
age and coalescence kernels.

In addition to the four mass and momentum equations (2.2) (2.3), a population
balance equation is added to the system to describe the change in the droplet number
and size. In general, the formulation of the population balance equation can be written
in terms of the number concentration function n(V, t) (9):

∂

∂ t
(ρdn(V, t))+∇ · (uρdn(V, t))+∇ · (Gρdn(V, t)) = ρdS(V, t). (2.6)

The number function n(V, t) is dependent on the volume of a droplet V and the current
time t.

S(V, t) is the source term that describes the total number of droplets per unit vol-
ume. S(V, t) is variable because of the interactions among droplets and the turbulence
of the continuous phase. The source term S(V, t) is described in term of the birth and
death rates of the droplets

S(V, t) = BC(V, t)−DC(V, t)+BB(V, t)−DB(V, t). (2.7)

The first two terms describe the droplet birth rate and death rate due to collision,
while the latter two describe those due to droplet breakage. A detailed formulation is
given as follows (9).

BC(V, t) =
1
2

V∫
0

a(V −V
′
,V
′
)n(V −V

′
, t)n(V

′
, t)dV

′

BB(V, t) =
∞∫
0

g(V
′
)β (V |V ′)n(V ′, t)dV

′

DC(V, t) =
∞∫
0

a(V,V
′
)n(V, t)n(V

′
, t)dV

′

DB(V, t) = g(V )n(V, t)

(2.8)

a(V,V
′
) is known as the aggregation kernel, which is a combination of the collision

frequency h(V,V
′
) and the probability of a successful collision λ (V,V

′
) between two

droplets with volume V and V
′
:

a(V,V
′
) = h(V,V

′
) ·λ (V,V

′
). (2.9)
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2.1 Mathematical foundations of the extraction column

g(V ) denotes the breakage frequency, i.e., the g-percent of droplets with volume V

that break per time unit. More details of the PBM can be found in (60).

2.1.3 Droplet sizes, breakage, and coalescence

The previous section introduced the general formulation of PBMs. In the above mod-

els, however, it is not sufficient to calculate the changes in individual droplets. The

variations in droplet size have been studied using various models, such as the class

method and the Quadrature Method of Moments (QMOM). In our approach, which is

a one group model, the One Primary One Secondary Particle Method is used ( (28)).

This model calculates the mean droplet size in each cell based on the volumetric diam-

eter, which is defined based on the third and zeroth momentum:

d30 = 3

√
m3

m0
= 3

√
6α

π0m0
. (2.10)

The third momentum refers to the total volume of the droplets while the zeroth mo-

mentum gives the total number of droplets.

The number of droplets increases due to breakage and decreases due to coales-

cence. In addition to the equations above, an additional conservation equation has to

be added that describes the droplet concentration in the dispersed phase d,

∂ (αdm0ρd)

∂ t
+∇ · (αdρdm0ud) = αdρdSd. (2.11)

The source term on the right side describes the generation and reduction of the

droplet number. In this study, we used the coalescence model of (25) and the breakage

model of (4). The coalescence of two droplets is given by the coalescence efficiency

τ and the coalescence rate h, where

τ(d1,d2) = exp(−C1
µcρcε

δ 2 (
d1d2

d1 +d2
)4)

h(d1,d2) =C2
ε1/3

1+α
(d1 +d2)

2(d2/3
1 +d2/3

2 )1/2.

(2.12)
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2. MULTI-PHASE FLUID SIMULATION

The constants C1 and C2 are adjusted for a fluid mixture of butyl acetate/water. The

breakup rate g is given by:

g(d) =

10d0∫
d0/10

ωs(d0,λ )P(d0,λ )dλ . (2.13)

The interaction frequency ωs between a droplet of size d0 and an eddy of size λ is

defined as:

ωs(d0,λ ) =
C3πd3

0ε1/3

6λ 14/3 . (2.14)

The constant C3 is taken from the model of (59), where it is given as 0.822. The

probability of an eddy breaking up a fluid particle of size d is given by the integral of

the normalized energy distribution φ(χ):

P(d0,λ ) =

∞∫
χmin

φ(χ)dχ. (2.15)

χ is defined as the ratio of the eddy viscosity relative to the average eddy viscosity.

The breakage and coalescence kernels can be modeled further if fluctuations or sur-

factants are present. The corresponding parameters for the coalescence and breakage

kernels need to be adjusted in these cases.

2.2 Geometry and boundary setup for 3D simulation

The numerical mesh setup and boundary conditions are discussed in this section.

A seven-compartment section of a Kühni Miniplant column mesh was rebuilt in

Gambit with over 500,000 cells. This mesh was a scaled-down duplicate of the labo-

ratory device. Figure 2.1 shows a comparison between the laboratory device (left) and

a realistic rendering of our simulation mesh.

The inflow and outflow are defined at the column bottom and top, respectively. A

close-up of the mesh is shown in Fig. 2.2. We treat the mesh parts (pink) around the

stirrers as a moving reference frame (MRF). A six-baffled stirrer was installed in the

middle of each compartment (Fig. 2.2). The neighboring compartments were separated
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2.2 Geometry and boundary setup for 3D simulation

by two stators, which in this case were two metal rings. Three stream-breakers were
orientated at an angle of 120 degrees to each other.

The volume stream of each phase (water and butyl acetate) was set to 8 l/h and
the stirring speed was set to 300 rpm. The simulation was performed in FLUENT for
20,000 time steps using a time step size of 0.05 s, and the standard relaxation factors
in the commercial CFD code of FLUENT were used. A converged and steady state
solution was reached at the end of the simulation.
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2. MULTI-PHASE FLUID SIMULATION

(a) (b)

Figure 2.1: Left: the extraction column used in our laboratory. Right: the computational

mesh rendered using Blender.
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2.2 Geometry and boundary setup for 3D simulation

Figure 2.2: Stirrer

Figure 2.3: Left: the extraction column rendered using Blender. Right: the computational

mesh in one compartment.
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Chapter 3

Visualization techniques for the

extraction column dataset

1Domain experts commonly acquire a better understanding of simulation results by

visual inspections, which require visualization techniques. The simulation output pro-

vides numerical and quantitative results, whereas visualization is a postprocessing step

that gives users robust and sophisticated visual insights into the simulated data. Using

the visualization methods proposed in this section, domain experts can analyze and

study the complex patterns in large-scale time-variable simulation datasets.

The time-variable distribution of droplets needs to be displayed intuitively because

it is a key feature of extraction column simulations. One challenge when visualizing

two-phase flow is the representation of the dispersed phase, which requires a scheme

that couples the cell volume fraction and the droplet size. A recent stochastic modeling

study (37) suggested how these two fields can be combined and brought together. In

section 3.1, we present a stochastic approach that addresses the problem of coupling

the volume fraction and particle diameter.

1Visualization results this chapter were published in (10, 22, 41)
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3. VISUALIZATION TECHNIQUES FOR THE EXTRACTION COLUMN
DATASET

In addition to single-framed droplet distributions, the dynamic behaviors of droplet

sets are of great interest to engineers and researchers. Recent fluid visualization re-

search showed that line integrals can be useful visual tools for tracking fluid parti-

cles (34, 56, 86). As well as the accurate computation of line integrals, the start

and end points of a droplet path should be handled with special care in the extrac-

tion column, because fluid droplets break or merge along their paths. We propose a

novel re-seeding approach for capturing droplet path lines in time-variable multi-flow

fields. Further exploration of the simulation data is conducted using feature-based vi-

sualization techniques. Using our technique, the path lines of fluid droplets can be

re-initialized after interrupting the stirring device. Furthermore, droplet breakage is

captured using bifurcating path lines.

In this chapter, we present our 3D extraction column data visualizations as follows.

In section 3.1, we present a stochastic approach that addresses the bubble distribution

problem. The challenge in visualizing the simulation output is that the droplet size and

droplet number needs to be coupled. Thus, we use a stochastic approach to address

the underlying problem. In section 3.2, we present an adaptive path line integration

algorithm that can tracks events such as collisions and breakups. In the last section

(3.3), we provide an overview of the visualization tool we developed for 2D finite

point-set datasets.

3.1 Stochastic approach to droplet distribution

Postprocessing of the 3D simulation data is aimed at developing visualization tech-

niques that depict the droplet distribution and the dynamics of droplet movements.

As previously mentioned, we are faced with a dilemma when we display droplets

as data points. Each single mesh point carries the particle diameter d30 and the cell

phase volume fraction α . Mathematical simulation provides an estimate of the number

of droplets but it does not show the exact locations of these droplets. Thus, we use a
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3.2 Adaptive path line integration

Figure 3.1: Droplet distribution

stochastic distribution to locate the droplets in space and time, as follows.

f (x) =


1

xmax− xmin
, ∀x ∈ Volume

0 otherwise
(3.1)

Furthermore, the number of particles in space is estimated using the following equa-
tion, so the volume fraction is fulfilled.

∑N×VeachDroplet = α×Vtotal (3.2)

An example of a droplet distribution visualization in a single column is shown in
Figure 3.1. The average droplet diameter is between 1 mm and 3.6 mm. The total
droplet distribution is shown in figure 3.2. It can be seen that droplet breakage occurs
due to the effect of stirring.

3.2 Adaptive path line integration

In the previous section, we considered the droplet distribution during a single time
frame. Thus, we propose an adaptive path line integration algorithm to allow temporal
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3. VISUALIZATION TECHNIQUES FOR THE EXTRACTION COLUMN
DATASET

(a) (b) (c) (d)

Figure 3.2: Time sequence of droplets inside the extraction column

visualization, which serves as a tracking tool for the droplet dynamics. Line integrals

such as path lines, stream lines, and streak lines are well-known representations used

in visualization ((34, 56)). Unlike the single frame visualization of velocity fields

(Figure 3.3), path line visualization allows domain experts to track the trajectory of a

single droplet, thereby facilitating the temporal analysis of droplet dynamics.

A path line denotes the trace/path of a droplet, which is defined mathematically as:
∂

∂ t l(x,y,z) = u(l, t),

l(t0) = l0.
(3.3)
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3.2 Adaptive path line integration

(a) (b)

Figure 3.3: Velocity field distribution
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3. VISUALIZATION TECHNIQUES FOR THE EXTRACTION COLUMN
DATASET

However, conventional path line computation has the following disadvantages.

• The path line is interrupted at the mesh boundaries around stirrers where it ter-

minates, and automatic re-seeding is required.

• The path line computation continues even if a droplet vanishes after a certain

time period.

• Droplet breakup cannot be captured.

Thus, we propose the following coalescence and breakage detection and re-seeding

methods to resolve these problems.

• Re-seeding near stirrers: if a path-line is interrupted at a mesh point near the

stirrer, select another point near the stirrer and start a new path line integral from

that point.

• Path line termination after droplet interaction: the physical trace of a droplet

vanishes when the droplet disappears. Therefore, further integration should

be stopped when a large droplet breaks. We incorporate this feature detection

method into path line integration, which records the lifespan of a droplet in its

path line.

• Droplet collision is detected when two or more path lines intersect.

We now describe the path line termination process in detail. Suppose a droplet

has position P0 at point t0 after time t1, and the droplet moves over to P1, as shown in

Figure 3.4. The volume fraction and particle size at each time step are given as αi , di.

Using the following detection method, we can test whether t1 is the time period when

a larger droplet breaks. {
di+1/di >

3
√

2
αi > αthreshold

(3.4)

Condition di+1/di >
3
√

2 guarantees that the volume breaks into two or more equal

parts. The threshold check on the volume fraction ensures that a droplet actually exists

in the region. The pseudocode of the proposed algorithm is given in Algorithm 1.
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3.2 Adaptive path line integration

Figure 3.4: Pathline integration

Algorithm 1 Adaptive path line integration with breakup detection
for each pathline do

for t = 0→ ti do

if di+1/di >
3
√

2 and αi > αthreshold then

terminate current path line integration,

select a neighboring point and start a new path line

end if

end for

end for
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Figure 3.5a shows straightforward integration without feature detection or line re-

seeding. This shows that all particle paths are interrupted after they reach the stirrers.

Furthermore, the overextension of all the path lines demonstrates that no droplet break-

ages are recorded.

We implement the proposed re-seeding and termination criteria using the Runge-

Kutta 4 integration method in C++. The integration length is set smaller than the

average cell size to obtain a smooth line output. Figure 3.5b shows an example of the

proposed algorithm. In this case, the path lines are re-seeded after droplet breakage

and integration can be continued after interruption of the stirrer.

In chapter 2 and chapter 3, we presented an actual example of the workflow when

simulating and visualizing two-phase fluid data in a Kühni Miniplant. The main contri-

butions of our research for the visualization community are the development of feature

detection and re-seeding algorithms for droplet tracing. Our visualization techniques

allow engineers to analyze large-scale simulation outputs effectively. The intuitive rep-

resentation of the bubble distribution and lifespan provides parameter feedback during

extraction column design.

3.3 Visualization of the 2D FPM dataset

In addition to the 3D simulation visualization pipeline, we also developed visualiza-

tion tools for 2D simulation outputs based on a finite-point set (49). This dataset was

provided by Dr Tiwari & Dr Kuhnert at ITWM, Fraunhofer Institute, Kaiserslautern,

Germany.

In this section, we briefly describe the visualization tool we designed for visualiz-

ing the 2D FPM dataset. We implemented the software using Qt and C++.

The underlying visualization tool allows the user to interactively select part of the

mesh and view the mesh using points, lines, or surfaces (see Figure 3.6). We also pro-

vide the user with the option of studying the velocity field (figure 3.7) and conducting

path line integration (Figure 3.8).
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3.3 Visualization of the 2D FPM dataset

(a) Straightforward path line integration (b) Path-lines with collision and bifurcation detec-

tion

Figure 3.5: Comparison of the straightforward integration method and the proposed

method
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3. VISUALIZATION TECHNIQUES FOR THE EXTRACTION COLUMN
DATASET

Only the volume fraction field is given for the 2D data-set. In this case, we do
not need to apply any special treatments to match the particle diameter. The nature of
FPM method means that the point-based mesh does not provide cell information, so
the cell volumes are not defined. Therefore, we apply a Voronoi tessellation (6) to the
point-cloud, as shown in Figure 3.9b 1. The cell volume is defined as the area size of
the voronoi cell Vvoronoi. Thus, we define the bubble volume as

Vbubble = αVvoronoi.

An example of the droplet distribution is shown in Figure 3.10. Furthermore, a Runge-
Kutta 4 (2) path line visualization is shown in Figure 3.8.

1This image was created using the online fortune code at

http://www.diku.dk/hjemmesider/studerende/duff/Fortune
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3.3 Visualization of the 2D FPM dataset

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: A visualizer for 2D FPM data sets.
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(a) (b)

(c) (d)

Figure 3.7: Velocity visualization of the FPM dataset in different time periods.
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3.3 Visualization of the 2D FPM dataset

Figure 3.8: Stream line integration of a 2D FPM dataset

(a) (b)

Figure 3.9: a) Close-up of the bubble distribution. b) An example of Voronoi tessellation.

Figure 3.10: Bubble distribution using Voronoi cells.
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Chapter 4

Reconstruction and tracking of fluid

interfaces

1The major features of interest for scientists during multi-fluid simulations are the

dynamics of fluid interfaces, known as material boundaries. In the visualization com-

munity, one method used to study fluid interfaces is to treat them as continuous integral

surfaces. Another perspective when considering fluid interfaces is to study the under-

lying topological changes in the reconstructed material boundary.

In this chapter, we consider the state of the art in material interface reconstruction

and tracking analysis. A survey of existing interface tracking algorithms, including

their backgrounds, terms, procedures, and comparisons is given in section 4.1. In

section 4.2, we explain the mathematical modeling of multi-phase fluid simulations

using a one phase formulation.

1This chapter is based on our published paper (21)
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4. RECONSTRUCTION AND TRACKING OF FLUID INTERFACES

4.1 State of the art

This section gives an overview of current interface tracking methods. A list of existing
techniques for fluid interface reconstruction is given in section 4.1.1, which includes
comparisons of their advantages and disadvantages. The level set method (LSM) and
volume of fluid (VOF) method are the two main concepts in multi-fluid visualization,
and they are introduced in section 4.1.2.

4.1.1 Overview of existing methods

Simulation experts are focused on the mass and momentum transportation of the flow,
whereas scientists in the visualization community are interested mainly in locating the
fluid interfaces between the components of fluids. Implicit surfaces, dynamic bound-
aries, and material interfaces are addressed in many publications for marking the inter-
face between two fluids.

Recent studies of interface tracking have focused on the following three methods:
the Front Tracking Method (FTM) (102), the LSM (74), and the VOF method (39).

The Front Tracking Method (38, 97, 102) determines the marked interface based
on the initial configuration and it assumes that the topology of the interface remains
unchanged during the simulation. Unverdi and Tryggvason (102) discretized the flow
field by conservative finite difference approximation on a stationary grid and they rep-
resented the fluid interface as a separate, unstructured grid that moves through the
stationary grid.

In (97), the ghost fluid method was combined with FTM. The proposed method
defined fluid interface conditions using the ghost fluid method. An advantage of this
method is that nonphysical oscillations are avoided. However, FTM does not auto-
matically keep track of the interface topology. Glimms (35) tried to re-compute the
fluid interface while advecting the front grids. This method is limited to topological
changes in multiphase fluids, such as the merging or breaking of droplets. To avoid
this problem, we propose a new technique for capturing topological changes in fluid
interfaces, which we discuss in chapter 6.

The Level Set Method was introduced by Osher (75) in 1988. The material bound-
ary or interface is defined as the zero set of the isocountour or isosurface of the given
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4.1 State of the art

scalar field (74, 76, 90). Topological changes in the fluid interface can be handled in a

natural manner.

Sethian (91) and Lakehal (50) applied LSM to fluid simulation and generalized

the idea of a one-phase fluid. In 2002, Enright and Fedkiw et. al. (32) combined

Lagrangian marker particles with LSM to provide a smooth geometrical description of

the fluid interface. Although LSM is more flexible at handling topology changes in the

interface, Müller (69) and Garimella et. al. (33) noted that the material volume is not

well-preserved by LSM, which is the main drawback of LSM.

Volume of Fluid Methods (39) is a well-established interface tracking method that

is in current use (61, 96). As the name suggests, it keeps the track of the volume of each

fluid phase using a computational cell. Therefore, this method is based on subcells or

subvolumes. Each phase of the fluid is represented as a volume fraction that indicates

the proportion of the cell occupied by this phase. Newton’s law of mass conservation

is expressed in the form of a volume fraction.

In the VOF method, the fluid interface is implicitly given in cells that occupy fifty

percent of each fluid. Further reconstruction is needed to compute the explicit location

of the material boundaries.

The reconstruction of the material interface can be achieved by postprocessing the

given multi-volume data and it has become an important issue when defining the loca-

tion of fluid interfaces. Several discrete approaches have been developed by the visual-

ization community for reproducing snapshot-like interfaces. Reconstruction methods

are focused mainly on building continuous interfaces from discrete pieces or piecewise

functions. By contrast, interface tracking algorithms focus on tracking the dynamic be-

havior of the interface.

The Simple Line Interface (SLI) method was introduced by Noh and Woodward

(71), in which cells are partitioned using simple axis aligned lines or planes to match

and preserve their volume. Similar to the SLI method, Youngs (108) and Rider et

al. (84) developed a Piecewise Linear Interface Calculation (PLIC) algorithm.

Recent material interface reconstruction approaches have focused on finding a

smooth and continuous interface based on fractional material data. Discrete approaches

to interface reconstruction were studied by Bonnell et al. (14) and Anderson et al. (3).

The first approach constructs boundaries by calculating the intersections between tetra-

hedrons in material space using Voronoi cells to represent the dominance of one ma-

41



4. RECONSTRUCTION AND TRACKING OF FLUID INTERFACES

terial, whereas the second approach uses a volume-adaptive active interface model to
generate high quality boundary meshes.

4.1.2 LSM and VOF

LSM and VOF are used widely for simulating multi-phase fluids or tracking fluid in-
terfaces. During our research, the concepts of marker functions and one phase fluid
formulations formed the basis of our new techniques. In the following section, we
briefly review the main concepts of LSM and VOF methods.

4.1.2.1 One-phase formulation of a two-phase problem

In the previous chapter, we introduced the two-phase fluid formulation (2.2). However,
a one phase fluid model is used widely by the visualization community for decoupling
the system and reducing the number of variables.

A detailed description of one-phase fluid formulation can be found in Lakehal (50)
and Osher (74). Rather than searching for coupled equation systems, we can reduce
the computation complexity by introducing the marker/indicator function χ .

χ =

{
1 in fluid 1
0 in fluid 2 (4.1)

As the name suggests, a marker function indicates a phase change by attaching a
marker to one of the phases. In some cases, markers can also be assigned to the
exact interface between two materials, as in LSM. Details of LSM are found in sec-
tion 4.1.2.2.

Rather than having two sets of variables for both phases of the fluid mixture, a
marker function can mark the integration volume (if we consider a small volume ele-
ment, as shown in Fig. 4.1b) based on a characteristic function. Thus, we obtain only
one set of conservation laws for the two phase (50) problem:

42



4.1 State of the art

∂ρ

∂ t
+∇ · (ρu) = 0 (4.2)

where ρ = ρ1 +(ρ1−ρ2)χ , and u is the interfacial velocity given by

u = ρ1u1 +ρ2u2.

(a) Two phase. (b) One fluid formula-

tion. Close-up of the vol-

ume element

Figure 4.1: One and two phase formulation

The choice of marker function is not always the same. For applications, the marker
function is defined by (73) in the following form:

χ =

{
1 in fluid 1
−1 in fluid -1 (4.3)

and in (100):

χ =

{
2 in fluid 1
1 in fluid -1 (4.4)

Furthermore, the surface normal~n and curvature κ can be computed with the smoothed
marker function χ̃ using the continuum surface tension model (15, 100):

χ̃ =
∑ωiχi

∑ωi
. (4.5)

The unit normal of the surface was represented by (99) as follows.

~n =
∇χ̃

|∇χ̃|
(4.6)

A detailed description of surface tension models can be found in (15, 95).
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4.1.2.2 Level set method

In 1988, the American mathematicians Osher and Sethian developed LSM (75) as
a simple and versatile method for interface computation and analysis. A fast PDE-
based LSM approach was introduced by Peng (80) that require no allocation of exact
interfaces. Duan (31) proposed an improved shape optimization for LSM that was
capable of handling large time steps. The concept of LSM has since become a very
popular in the field of CFD and image processing. An overview of LSM and recent
developments was provided by Osher and Fredkiw (76).

In this section, we introduce the general concept of LSM, which is fundamental to
our visualization approaches.

Like the VOF method, LSM exploits the concept of one fluid simulation. The
implicit material boundary/interface is given by the zero set Γ of the scalar field φ :

Γ : {(x,y,z)|φ(x,y,z) = 0}

The scalar function is set to zero at the interface. The scalar function has different
signs inside and outside the boundary:

φ =


> 0 in fluid 1
< 0 in fluid 2
= 0 at boundary Γ

(4.7)

The marker function φ in equation (4.7) is similar to that in equation (4.1). In LSM,
φ = 0 points to the exact location of the interface. The norm |φ(x)| generally corre-
sponds to the distance between a point x and the interface. The evolution of the zero
sets satisfies the topology equation (4.8). Finding the initial zero sets normally involves
extracting the isocontour or isosurface at the start time.

φt +~v|∇φ |= 0. (4.8)

For a dataset containing the volume fraction information α , we consider α to be the
scalar function φ while the fluid interface is defined as cells where α = 0.5.

The normal of the interface is given by the equation 4.6 while the curvature of the
level set was given in (32, 50, 74), as follows.

κ = ∇ · ∇φ

|∇φ |
(4.9)
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Constraints on the surface curvature should be considered when performing physi-
cally correct simulations. A general concern with curvature is the minimization of the
surface energy, which is also related to the surface tension. LSM is the most widely
used method for identifying isosurfaces or fluid interfaces. It has a simple mathe-
matical formulation and it is easy to solve. It is popular in many disciplines such as
medical visualization, image processing, and multi-fluid visualization. However, LSM
has the disadvantage that the volume is not always preserved while advecting the inter-
face. This disadvantage can be overcome by applying a volume correction after each
numerical advection.

Most current approaches solve the level set equation (4.8) using grid-based numer-
ical methods. A semi- Lagrangian method was proposed by Enright et al. (32) that
achieved a fast first order accuracy and improved the mass conservation.

4.1.2.3 Volume of fluid method

In contrast to the nonvolume-preserving LSM, Hirt and Nichols (39) introduced the
VOF method in 1988, which ensures the conservation of mass. Sussman and Puck-
ett (96) presented a hybrid LSM/VOF method, which had the goal of higher accuracy
for flows where the surface tension and surface topology were the dominant features.
Linear approximation is widely used during the reconstruction of VOF interfaces, as
in (62). In addition to the conventional first order numerical schemes, Pilliod (46)
proposed design criteria to ensure second order accuracy with VOF.

VOF algorithms also employ one phase fluid formulation. A fraction variable C is
defined as the integral of the marker function χ in the controlled volume V :

C =
1
V

∫
V

χ(x, t)dV (4.10)

In general, the controlled volume V is the volume of a computational cell.
A zero value of C indicates that the cell is fully occupied by fluid type one. If

C = 1, the cell is filled fully by the other fluid. If 0 <C < 1, the line/surface separating
the two fluids is across this cell.

Given a velocity field V , the volume fraction function should satisfy the transporta-
tion theory, as follows.

dC
dt

+~v ·∇C = 0 (4.11)
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VOF does not simply compute the advection of the fluid because it also involves the
approximation and reconstruction of the material interface at certain time periods. This
method is accurate in terms of volume preservation, but the interface reconstruction
process makes it difficult to maintain the topology of the interface.

Pillido (46) summarized the four main reasons why VOF algorithms are effective:
the natural conservation of mass, coincidence of the interface and density jump, the
handling of global topology change, and local updates of the interface location.

There are a number of numerical methods for solving the governing equations (4.11).
Some are grid-based methods where the computational domain is represented using a
structured mesh grid, whereas others use particles to characterize the flow property.

In the following section, we introduce several numerical approaches for solving the
governing equations (4.8) and (4.11).

4.2 Numerical methods for solving the governing equa-

tions

Depending on the frame of reference, the flow properties can be considered in two
different ways for computational fluid dynamics, i.e., the fixed frame–Eulerian speci-
fication and the co-moving frame–Lagrangian specification.

• Eulerian specification: in this fixed reference frame (see fig. 4.2a), the grid points
remain unchanged over time. The flow property is generally recalculated based
on neighboring points. This type of method is normally computationally expen-
sive. To advect the flow quantity, we have to update each grid point based on the
previous quantity at this point and its four neighboring points.

• Lagrangian specification: the Lagrangian specification of flow dynamics is also
known as particle-based specification, see fig. 4.2b. An observer moves with
the particle in the flow direction and measures changes in the flow quantities.
Changes in the flow properties are related to the material derivative:

D f
Dt

=
∂ f
∂ t

+~v ·∇ f
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4.2 Numerical methods for solving the governing equations

(a) Fixed mesh grid, Euler types of methods (b) Co-moving points, La-

grangian type

Figure 4.2: Eulerian and Lagrangian methods

With the Lagrangian method, no connectivity information is provided or needed

from the neighboring mes -points.

4.2.1 Grid-based method

The classical way of handling hyperbolic partial differential equations is to solve them

numerically using a fixed grid of points. These types of methods solve partial differ-

ential equations in a Eulerian manner. To solve the governing parabolic equations for

VOF and LS methods, we can apply standard advection schemes such as the upwind

scheme (26):
φ

t+1
i −φ t

i
∆t

+~v
φ

t+1
i −φ t

i−1

∆x
= 0,

and the central difference scheme (55):

∂φ

∂x
|i =

φi+ 1
2
−φi− 1

2

h
,

where h is a full step length. To avoid dissipation, a second order scheme with flux

limiters may also be considered. A large body of literature discusses the computational

accuracy and convergence such as (36, 39, 74, 76, 76).
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4.2.2 Particle-based method

To solve the hyperbolic governing equations (4.8) and (4.11), we need to discretize the

computational domain. Eulerian methods discretize the domain into grids, whereas

Lagrangian-based numerical methods discretize the domain into computational parti-

cles. The fluid properties are updated using the particles. There is no connectivity

information between the particles.

One popular Lagrangian particle method is smoothed particle hydrodynamics (SPH).

Monaghan (68) presented a SPH method for modeling free surface incompressible

flows. Free surfaces can be modeled as particles that repel the fluid interface. (81)

also studied the possibility of simulating mixing fluids with interface breakup.

In multi-fluid simulation, the general mass conservation equation yields

∂ f
∂ t

+∇ · ( f~v) = 0 (4.12)

where f is a fluid property such as mass or density. The Lagrangian formulation of

equation (4.12) yields
D f
Dt

=− f ∇ ·~v. (4.13)

where − f ∇ ·~v is the advected term.

The left term in equation (4.13) is known as the material derivative. Incompressible

fluids are divergence-free, i.e.,

∇ · v = 0.

Therefore, a change in the material derivative at a material point (the same as a com-

putational particle) yields zero, which is the main concept in Lagrangian particle ad-

vection.

In most Lagrangian-based simulations, the particle identifiers are retained through-

out the simulation. An initial set of points is injected into the computational domain

and advected by the flow (see fig. 4.3b). However, the particle identities are not

retained throughout the simulation by some algorithms, such as the finite point set

method (100). During each computational time step, the insertion and deletion of par-

ticles is conducted to ensure a better discretization quality in the domain (see fig. 4.3a).

Therefore, the particles do not correspond between time steps. In this case, a special

interpolation scheme is required for interpolation and approximation.
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4.2 Numerical methods for solving the governing equations

(a) At each time step, a new set of points are ini-

tialized

(b) Lagrangian advection on a point

Figure 4.3: Point initialization for Lagrangian method.

4.2.3 Remarks

In grid-based and particle based methods, stability or convergence are not negligible
issues. The first order upwind scheme is unstable so it may result in poor convergence.
With particle-based methods, the advection term of computational particles can be
approximated using finite difference schemes based on a radial basis function. Moving
particles must be conducted with care when the velocity deviation is high. A common
way of addressing the deviation problem is to apply an adaptive integration length.

In this chapter, we reviewed current methods for material interface reconstruction
and tracking analysis. Grid-based and point-based numerical methods can be used to
solve the governing equations.

In Chapter 6, we introduce a new interpolation scheme for point-based data that
has a random point distribution at each time step.
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Chapter 5

Fluid interface instability

1Flow simulations, one of the most widely used classic simulation types in physical

modeling and visualization, are, for example, no longer limited to simulating just one

homogeneous fluid, but have successfully been applied to multi-fluid problems with

highly heterogeneous fluid properties. These multi-fluid simulations are capable of ac-

curately modeling fluid interactions and are an important numerical tool to investigate

fluid mixing in a number of application areas such as chemical extraction processes,

petroleum industry, and combustion systems.

Previous researches presented in chapter 4 are focusing on the extraction of accu-

rate snap-shot representations of multi-fluid interfaces. However, the real challenge

in multi-fluid visualization lies in the analysis the flow field in connection with mate-

rial interface shape and topology. Novel visualization techniques are needed to give

insights into interface coherency, interface behavior, and fluid mixing.

In this chapter, we present a novel approach that facilitates visualization and anal-

ysis of complex material interface behavior over time, provide a stability or coherency

visualization of extracted material interfaces, and for the first time allow a completely

consistent display and tracking of material interface evolution. We introduce a ma-

terial interface stability visualization technique by using parametrization transfer and

comparisons between the development of material interface meshes and time-surfaces.

1This work on material interface instability was published in (72)
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In section 5.3, fundamentals on multi-fluid simulations, resulting material interfaces
and their reconstruction are presented. In section 5.4, we elaborate our categorization
of interface behaviors and further analysis on interface stability. Detailed studies on
choice of visualization techniques and user-interactions can be found in section 5.5.
Section 5.6 provides an analysis of the developed methods by the use of different nu-
merical examples.

5.1 State of the art

In this section, we will present a literature review on the visualization topics that re-
late to our approach. Difference between our approach to the existing ones will be
demonstrated in section 5.2.

Recently material interface reconstruction work includes simple Line Interface
method. It is introduce by Noh and Woodward (71) in 1976. In this method, cells
are partitioned with simple axis-aligned lines or planes in order to match and preserve
the volume. Later in 1982 Youngs (108) and Rider et al. (84) developed the Piecewise
Linear Interface Calculation algorithm. Othert MIR approaches find a smooth and con-
tinuous interface based on fractional material data. Such discrete approaches on MIR
are done by Bonnell et al. (14), Meredith and Childs (65), and Anderson et al. (3). The
former two approaches construct boundaries by calculating intersections between cells
in material space with cells that represent the dominance of one material, while the
latter uses a volume-adaptive active interface model to generate high-quality boundary
meshes. All material interface meshes shown in this work were extracted by a variant
of Bonnell’s method.

One important characteristic of fluid interfaces is time dependency. In classic
vector-field visualization, the dynamics of fluids are captured by integral lines or sur-
faces. A large body of work has been devoted to address the computation and vi-
sual capabilities of these integral surfaces. Following Hultquist’s (44) fundamental
work on the construction of stream surfaces, van Wijk (103) presented stream surface
construction based on implicit surfaces, which can handle irregular surface topology.
Computation and visualization of such surfaces has been studied in mesh-based (88)
and in point-based settings (87). A recent line of research addresses the computation
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efficiency and accuracy of integral surfaces (17, 34, 48) by applying mesh adaptivity
schemes during extraction.

Texturing of surfaces, adaptive meshes, or flow based texturing has been researched
by several authors over the last few years. Texture synthesis models (8, 101, 104)
focus on how texture can be aligned to a vector field or given surface shape. However,
these models are applied individually to surfaces at each time frame or show loose
correspondence only, hence the dynamics of material surfaces are commonly not fully
captured. To study how texture evolves along the fluid, van Wijk introduced an image-
based flow visualization technique for curved surfaces (104). In the meantime, Neyret
(70) and Bargteil et al. (7) proposed texture advection methods to animate a textured
surface which is passively advected by the flow field. Texture advection has been
applied to iso-surfaces and stream surfaces by Laramee et al. (52, 53).

5.2 The goal of our approach

Our approach combines and develops techniques from three areas: material interface
reconstruction (MIR), flow integration, and mesh parametrization or texturing. In the
following we give a brief overview of relevant related work in these fields.

In this section, we present the correlation and difference between our approach and
the existing ones.

While numerous techniques in vector-field visualization perform domain segmen-
tation by analyzing properties of the underlying flow field, such as vector-field topol-
ogy or divergence oriented methods, multi-fluid simulations directly imply a separation
of the flow field into multiple domains. In many cases it is required to locate, recon-
struct or track these interfaces or boundaries between two or more given materials.

In recent years, several different methods to reconstruct material interfaces from
output of such multi-fluid simulations have been introduced in the visualization com-
munity, most of which can extract snapshot-like interfaces in single simulation time
steps (cf. (3, 14, 71)) and approximate interface topology. However, coherent extrac-
tion of volume-accurate time-varying material interfaces is still an open problem.

We aim to develop a visualization techniques which handle complex material in-
terface behavior over time. Given reconstructed material interfaces and a time-varying
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flow field, we make use of time-surface integration to track and perform consistent

parametrization of material interface meshes. Several challenges with respect to sur-

face matching and parametrization accuracy are handled by our dynamic remeshing

and parametrization seam tracking techniques. The resulting parametrized mesh is

used for feature tracking and identification of so-called interface instabilities. These

instabilities are visualized as volume rendered particles that detach from the multi-fluid

interface. Furthermore, direct user interaction techniques on the parameterized surface

are presented that facilitate interactive tracking of interface features over time.

The introduced techniques support the analysis of material interface stability and

relation to multi-fluid mixing. Our approach contributes to the visualization commu-

nity in the following ways:

• Consistent parameterization of material interfaces throughout a complete simu-

lation.

• Visualization of material interface stability and coherency.

• Interactive visual interface tracking.

The remainder of this Chapter is organized as followed. Section 5.3 presents the

fundamentals and background information on multi-fluid simulations, resulting mate-

rial interfaces and their reconstruction. In section 5.4, we define our classification of

interface stability types, introduce our algorithm, and illustrate how we handle initial

parameterization and advection. Interaction and visualization techniques for the pa-

rameterized interfaces and surface instabilities are presented in Section 5.5. An analy-

sis of the developed methods by the use of different numerical examples is performed

in Section 5.6.

5.3 Material interfaces

We describe the back ground information of the VOF simulation and MIR techniques.

We also prepare ourselves with the definition of interface behaviors, which is the basic

of understating surface stability. Material interfaces are given as free surfaces or fluid
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boundaries in multi-fluid simulations. These simulations and their output can take sev-

eral forms (39, 50, 102), one class of which, the volume of fluid (VOF) ((39)) method is

particularly wide spread and used throughout this work. In the following we introduce

the necessary background of VOF simulations, material interfaces and their origin and

reconstruction.

5.3.1 Volume of fluid simulations

In VOF methods, a fluid identification function is advected during simulation and dis-

cretized in the form of a volume fraction function f at output. For two fluids F1 and F2

in a three-dimensional time-varying simulation such a volume fraction function

f : R3×R→ [0,1] (5.1)

is given as the percentage of fluid F1 present in a given volume or cell V of the

data set. Consequently, an arbitrary cell or volume V of the domain contains a fraction

of f (V ) of fluid F1 and a fraction 1− f (V ) of fluid F2. When generalized to multiple

fluids, this volume fraction function becomes vector valued. During advection of the

fluid identification function, mass of the fluids as well as fluid identity of flow particles

is conserved. The VOF method is well-known as a simulation techniques that can

handle the occurrence of complex fluid interface behavior including interface topology

changes such as bubble break-off (see Figure 5.1).

5.3.2 Interface reconstruction

Material interface reconstruction in multi-fluid simulations is concerned with the ex-

traction of a geometric representation of fluid boundaries. In the context of VOF meth-

ods, this requires the processing of all cells or volumes V that are not covered entirely

by one fluid, i.e., f (V )i 6= 1 ∀i ∈ {Fi}.
In such a cell the concrete geometric representation of the fluid interface is not

unique as illustrated in Figure 5.1. More plausible interface representations can be ob-

tained by incorporating volume fraction data from neighboring cells into the extraction
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Figure 5.1: Two time steps of a 2D VOF simulation with possible topology change. The

interface lies in the region with a volume fraction between 0 and 1.

process. However, neither the shape, nor the topology of the extracted material inter-

faces is unique for a given non-trivial volume fraction function. Thus, different MIR

techniques may extract different surface representations, leading from discontinuous

representations that only approximate the given volume fractions (71, 84) to continu-

ous and smooth methods that adhere to the specified volume fraction data (3, 14).

In the remainder of this chapter, we assume that we are given an extracted material

interface mesh for every time step of the simulation along with the corresponding flow

field. Note that virtually all MIR techniques, even the discontinuous ones, yield a

representation that can be converted into a suitable triangulated mesh.

5.3.3 Interface behavior

In addition to topology variation caused by the volume fraction function itself, or re-

sampling, ambiguity of material interface reconstruction can lead to sudden changes
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in topology over time as well. As a consequence, subsequent material interface repre-

sentation often exhibit significantly different local topology. This is a stark contrast to

other surface representations known in the visualization community, namely integral

surfaces such as path- or streak-surfaces, and significantly complicates consistent and

coherent visualization of interface surfaces over time. In this chapter, we analyze the

behavior of classic material interfaces and time surfaces, making use of the following

definitions:

A material interface in a three-dimensional time-varying VOF simulation with n

time steps t1, . . . , tn consists of an ordered set of material interface surface meshes

{M1, . . . ,Mn} with M = {V,E} being a tessellated surface mesh with vertices vi ∈V ⊂
R3 and edges e j ∈ E = {v j1,v j2}. Edges in E delineate individual surface cells, such

as triangles or quadrilaterals. A point x ∈ R3 is said to lie on M if it is located on the

piecewise linear representation of M given by the surface cells. In the following, Mi

and M j with i 6= j are assumed to have no explicit relationship apart from the fact that

they were both extracted by the same MIR algorithm (this constraint may be weakened

as emphasized in the results section). Thus, material interface meshes of different time

steps do not have to show a consistent behavior or be comparable in a meaningful way.

This definition allows for arbitrary difference in topology between subsequent material

interface meshes.

In contrast to material interfaces, an integral time-surface in a three-dimensional

time-varying flow field g : R3×R→ R3 consists of individual mesh representations

{T1, . . . ,Tn} that are created by flow advection of an initial surface. Such a time surface

representation is again a tessellated surface mesh with vertices vi ∈V ⊂ R3 and edges

e j ∈ E = {v j1,v j2} that delineate individual surface elements. The iterative character

of time-surface creation guarantees that subsequent representations possess a shared

surface parametrization.

Thus, a parametrization function p with p : T→R2 exists for every T , and the prop-

erty of temporal parametrization consistency between subsequent time-surface repre-

sentations Ti and Ti+1,

p j(s(vi, t j)) = p j+1(s(vi, t j+1)) (5.2)
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holds, with

s(x, t) = x+
∫ t

t0
g(s(x,τ),τ)dτ, s(x, t0) = x (5.3)

corresponding to the common definition of integral path-lines. In other words, equa-

tions (5.2) and (5.3) ensure that surface parameterization is preserved during advection.

Thus, there is a unique correspondence between subsequent time-surface meshes that

implies a consistent parametrization but makes global topology changes of time sur-

faces impossible.

In summary, time-surfaces correspond well to flow behavior but not necessarily

material boundaries, since they cannot model topology changes. Material interfaces,

on the other hand, while corresponding to snapshots of material interfaces, do not

inherently possess a coherent parametrization. Both surface and mesh types can be

extracted from VOF data, a fact that allows the combination of both surface properties

as demonstrated in the remainder of this work.

5.4 Material surface stability

The definitions given in the previous section allow us to define the notion of material

surface stability. The central question we want to answer in this work is: How do

time-surfaces and material interfaces correspond and how stable is their behavior with

respect to one another? The answer to this question can help evaluate material interface

reconstruction methods, track interface features, and highlight interface mixing.

5.4.1 Definition

In the following, a material interface Mi and a time-surface Ti in time step i are said

to correspond, if the time-surface was created by advection of a material interface M j,

j <= i. Analysis of the evolution of corresponding time-surfaces and material interface

meshes reveals one of the following behaviors:
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1. Stability: If there exists a pair of positions xM and xT on a material and a cor-

responding time-surface at time step j with ‖x j
M − x j

T‖ < ε then there exists a

position x j+1
M such that ‖x j+1

M − p−1
j+1(p j(x

j
T ))‖< ε . Such a point x j

M is therefore

a stable material interface point with respect to the flow field and stays within

an ε band of the time-surface. Note that p−1 locates a point on the surface in

parameter space.

2. Detachment: If there exists a pair of positions xM and xT with ‖x j
M − x j

T‖ < ε

and there is no position x j+1
M with ‖x j+1

M − p−1
j+1(p j(x

j
T ))‖ < ε . Such a point x j

T

is therefore being detached from the material interface representation by flow

advection. That means it leaves an ε band of the material interface.

3. Attachment: If there is no such position x j+1
T for a given xM such that ‖x j+1

M −
x j+1

T ‖ < ε . Such a point x j+1
M in the flow field is therefore being attached to the

material interface representation by flow advection. That means it enters the ε

band of the material interface.

In the following, we denote detachment as material surface instability, whereas sta-

bility is used for parametrization transfer. There are numerous causes for attachment

or detachment behavior in surface evolution of reconstructed interface meshes. Most

frequent causes include natural topology changes in material interfaces, a non-unique

extraction process with respect to VOF interface topology (Section 5.3), sampling res-

olution or strategy of the reconstruction method, and accuracy of the reconstruction

with respect to fluid volumes.

5.4.2 Algorithm outline

Assuming a VOF simulation was run and provides extracted material interface meshes

for the whole length of a time-varying vector field g, our algorithm to detect and pro-

cess material surface stability, detachment, and attachment takes the following steps:

1. Parameterize material interface M0 with an injective function p, select M0 as

current interface M.
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2. Use material interface M as seed surface of a time-surface with a corresponding
parametrization function p of M.

3. Advect the time-surface to the next time step.

4. Parameterize the next material interface by identifying regions of surface stabil-
ity.

5. Advect instable regions of the surface through the flow field.

6. Repeat from step 2 with the material interface of the next time step.

In the following sections, we explain these six steps in more detail.

5.4.3 Initial parametrization

Material interfaces of all time steps will serve as seeding structures for time-surfaces
as indicated by step 2. Thus, obtaining a correct classification of stable and unsta-
ble material interface regions requires the presence of a well-defined parametrization
function p for the first material interface M0. This parametrization is created explicitly
for the first material interface mesh and transferred to subsequent material interfaces
as described in 5.4.5.

Mesh parametrization is a well-researched area and has led to a number of tech-
niques including patch-based local parametrization, methods related to texture synthe-
sis, and global parametrization techniques based on mesh flattening (12, 92, 101). We
prefer a global parametrization scheme over local patch-based schemes as they insure
that p is an injective function. Such schemes reduce the amount of parametrization
seams and allow interactive modification of the mesh in a shared parameter space as
demonstrated in Section 5.5.2.

The global parametrization scheme of our choice cuts the mesh along areas of
strong distortion and unwraps the resulting open 2-manifold to the plane by angle based
flattening. For this manner we use custom implementations of seam layouting (93) and
mesh flattening (92). Note that this parametrization function p is discontinuous along
the generated seam edges but minimizes angular distortion during parametrization.
Simpler global parametrization strategies such as sphere mapping are applicable as

60



5.4 Material surface stability

well, but often introduce high distortions, singularities, and complex discontinuities

and are frequently non-injective functions.

5.4.4 Interface advection

After parametrization a material interface mesh is used as seeding structure for time

surface advection. In the simplest case, we set T = M and advect the surface to the

next time step by using an adaptive Runge Kutta integrator of order five (20). In this

case mesh connectivity and resolution stays static during advection.

More complex time surface seeding and advection strategies include subsampling

of the material interface mesh and performing adaptive time-surface integration (48)

to save integration time, as described later in this paper. Hereby two constraints on

surface simplification have to be fulfilled. First, prevalent surface features such as

edges, ridges, and valleys must not be missed by the merging strategy, and secondly,

regions where the parametrization function behaves non-linearly must not be merged

during the simplification process.

5.4.5 Stability classification

The parametrization of the advected time-surface has to be transferred to the mate-

rial interface mesh in the next time step to facilitate stability analysis and consistent

interface parametrization. For this matter we perform two-sided mesh matching.

Given a distance threshold ε and a vertex v on the material interface mesh M in

the next time step, we loop through all cells, edges, and vertices of the advected time

surface T to find the closest interpolated position on T . This element search is locally

constrained by first voxelizing T and its elements into a uniform grid with cell sizes

corresponding to ε . If the closest position x ∈ T satisfies ‖x−v‖< ε , parameter values

of x as obtained by barycentric interpolation on cells of T are assigned to v, declaring it

as part of a stable region. If there is no such closest position, v represents an attachment

point. Since attachment points have not been part of the material interface previously,

they are assigned distinct parameter values outside of the mesh’s regular parameter

space that identify them as attachment points.
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The second matching is performed by swapping the roles of T and M. For every

vertex on T we find a closest point x ∈M. If ‖x− v‖ < ε , v is part of a stable region.

If there is no such x, v represents a detachment point, or a material surface instability.

There are certain cases especially during interface merging events, e.g., merging

of a bubbles, where several non-neighboring positions x ∈ T satisfy the distance con-

straint ‖x− v‖ < ε . There are several options to handle these cases. a) Mark v as

possessing multiple positions in parameter space, b) assign the parameter value of the

closer position to v, or c) store v as non-tracked, unparameterized vertex with param-

eter values outside of the valid parameter space. The examples shown in the results

section make use of option a) for computational simplicity.

5.4.6 Instability tracking

Instability points as identified in the previous section indicate regions, where subse-

quent extracted material interface meshes are not coherent with fluid motion, e.g., in

regions with strong topological changes. Tracking these detachment regions over time

can be used to evaluate consistency of the extracted material interfaces, analyze flow

divergence and quantify mixing, as these instabilities used to mark borders between

different liquids.

To this end we seed instability particles on these regions and advect them through

the complete simulation. Such instability particles store information about the time

step of detachment as well as their last valid parameter values for visualization pur-

poses. In the examples used, we seed particles at instable vertices and adjacent triangle

center positions.

5.4.7 Improvements and optimizations

The steps detailed in the previous sections describe a full run of our algorithm. There

are, however, several additional optimization and improvement considerations that we

detail in the following.
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5.4.7.1 Seam treatment

Global parametrization schemes introduce seams when applied to closed meshes. If

these seams are not handled specifically during parametrization transfer, severe visual

artifacts can occur that worsen as the simulation progresses.

Given a cell c of material interface mesh M, an edge e = (v1,v2) of c contains

a discontinuity of the parametrization function if vertices v1 and v2 map to opposing

sides of a parametrization seam. If mesh parametrization is used for texturing, the cell

is incorrectly mapped with a large part of the parametrization texture. Figure 5.4 shows

an occurrence of this phenomenon.

Such an invalid cell or triangle can be identified by analyzing its properties in

parameter space: It either has a flipped normal in parameter space, extremely large

edges in parameter space, or causes strong local compression of parameter space when

compared to the last time step. Several triangles that fulfill all of these properties are

visible in Figure 5.4.

Since the correct projection into parameter space is unknown for an invalid triangle

and cannot be computed analytically, we employ an iterative edge-bisection technique

to create sub-triangles that match the parametrization seam. For an edge e = (v1,v2)

this bisection techniques works as described by the following pseudocode (see also

Figure 5.5).

Control over accuracy of seam approximation is given by choice of δ . In practice

we chose δ around 2e−4. Lower values do not slow seam approximation significantly,

but produced no noticeable difference due to small triangle sizes in the used test data

sets. After one run of the algorithm, we have a position v on the edge that approximates

the seam location and two locations in parameter space p(w1) and p(w2) that lie on

opposing sides of the parametrization seam. Once this algorithm is run for each edge of

the invalid triangle, we are left with one, two, or three intersected edges. The affected

triangle is remeshed by splitting edges at p. Incorporation of p(w1) and p(w2) into

the re-meshing process ensures that all vertices of the new triangles are located on the

same sides of the seam. Figure 5.6 shows the triangle splitting and re-parametrization

process. In the special case of three cuts, parametrization of one of the new sub-

triangles is extrapolated by using laws of cosine, as common in mesh unwrapping (92).
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Algorithm 2 Pseudocode for edge bisection
1: w1← v1,w2← v2

2: while ‖w1−w2‖
‖v1−v2‖ > δ do

3: v← (w1 +w2) ·0.5

4: if edgeIsInvalid(p(v),p(w1)) then

5: w2← v

6: else if edgeIsInvalid(p(v),p(w2)) then

7: w1← v

8: end if

9: end while

If more than one seam crosses a triangle edge, the triangle is split and the procedure is

applied to all sub-triangles.

5.4.7.2 Parametrization accuracy

During parametrization transfer from the time surface to the material interface mesh,

significant parametrization details can be lost due to resampling of parameter space on

a mesh vertex level. This becomes especially critical if an adaptive time-surface was

used for advection and interface mesh vertices show very low correspondence in posi-

tion and density. If an accurate representation of small scale parametrization features is

desired, the material interface mesh has to be retriangulated during the parametrization

transfer process. That means vertices of the time-surface are not only used to transfer

surface parametrization, but serve to remesh their closest triangle of the material inter-

face mesh as well. This can be seen as projecting the time-surface connectivity onto the

material interface mesh. The major drawback of this retriangulation step is increased

resolution of subsequent time-surfaces and therefore largely increased advection times.
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5.4.7.3 Performance considerations

Analysis of algorithm performance in Section 5.6 indicates that time-surface advection

take up the largest part of overall computation times. In the following we briefly dis-

cuss optimization strategies to reduce computational overhead. Note that it is sufficient

to keep two subsequent time steps in memory for integration, since there is no other

complex interaction along the time-axis.

Parallelization Particle and time-surface advection is directly parallelizable on a

shared memory machine by distributing path-line computation to different threads.

If a non-adaptive integration scheme is sufficient, advection can be performed on the

GPU (17). Closest-point identification for parametrization transfer is parallelizable on

a per-vertex level as well.

Mesh subsampling An optimization strategy closely related to parametrization ac-

curacy is mesh subsampling as mentioned earlier. We simplify a material interface

mesh by removing a mesh vertex v if the following constraints hold for v and its pro-

jection point vpro j on the simplified mesh

curv(v)< δ1

‖p(v)− p(vpro j)‖< δ2,

where p(vpro j) is obtained by barycentric interpolation on the cell of the simplified

mesh that contains vpro j. By constraining the deviation between parametrizations of

the full and the simplified mesh, we ensure no significant parametrization detail is lost.

If additionally the maximal resulting mesh edge size is constrained, the mentioned

constraints guarantee that neither prevalent surface features, i.e., features with large

mesh curvature, are missed, nor regions with non-linear parametrization behavior are

merged. Feature preservation is controlled by choice of δ1, whereas parametrization

details are preserved by δ2. These two parameters influence computation times and

parametrization accuracy as demonstrated in the results section. Note that strong mesh

simplification is best used with subsequent adaptive time-surface integration to insure

no important flow features are missed. To improve coherency with high-resolution

surface advection, the surface can be upsampled during instability classification.
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5.5 Visualization and interaction

This section serves to define visualization challenges that come with material inter-
face stability visualization and detail the proposed visualization techniques to address
these challenges. Furthermore, we detail a direct interaction method that allows user-
specified visual feature tracking by direct surface drawing.

5.5.1 Visualization

The data to be visualized consists of a set of material interface meshes with according
parametrization and a set of detachment points that indicate material surface inco-
herencies and mixing regions. For visibility reasons neither detachment regions nor
material surfaces should be rendered in an opaque manner, thus more sophisticated
transparency rendering techniques are required.

For simple material interface mesh visualization we make use of shaders for depth-
peeling, texturing, and per pixel Phong shading. Attachment regions are identified
by large texture coordinate offsets and rendered either in black or fully transparent.
Transparency of the surface is modulated by normal direction relative to the viewer to
allow a clear look at interior structures.

Visualization of the instability particle set could be performed in numerous ways
including splatting, rasterization, particle geometry, or point set visualization (45, 47).
We opt for for two alternatives: Fast density-based volume rendering performed by
counting particles present in cells of a low resolution three-dimensional texture. This
texture is subsequently visualized by slicing-based volume rendering. Alternatively we
use particle splatting if individual particle properties are to be shown. In contrast to the
splatting technique, density map visualization requires no particle sorting for correct
transparency rendering and rendering performance is independent of the number of
particles. A trade-off, however, is the lack of individual particle information present in
density maps.

A challenge that arises from our choice of visualization is the combination of two
different transparency techniques, namely volume-rendering on proxy geometry for
particles and depth-peeling for surfaces. We combine both approaches by employing
the depth-buffer layers created during depth-peeling to perform depth-based interval
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clipping. First, layers of the material interface mesh are rendered to off-screen buffers

bi by the application of standard depth-peeling techniques. The final image is then

composed by traversing the stack in back to front order: We blend the color of layer bi

to the frame buffer, followed by drawing the transparent proxy geometry (e.g., slices

for volume rendering or textured splats) with parts that exceed the depth range specified

by depth-buffers bi and bi+1 being clipped in a fragment shader. Depth buffers b0 and

bn represent the near and far clipping plane.

5.5.2 Interactive surface drawing

As opposed to classic texture synthesis methods, the availability of a consistent global

parametrization of material interface meshes over time supports tracking of feature

development. Visual tracking of features can be aided significantly by facilitating in-

teractive modification of a parametrization texture directly on the mesh.

We give the user the capability to draw on the mesh and track the evolution of this

drawing over time to observe stretching, deformation, and movement in general. Our

implementation follows standard picking procedures. When the user clicks or drags

over the mesh, we redraw a small part of the surface around the mouse position by

frame-buffer scissoring and implement color based per-triangle picking. The exact po-

sition on the triangle is then found by ray-triangle intersection in three-space, allowing

the computation of selection position in parameter space by barycentric interpolation

on the selected triangle. The parametrization texture is then updated accordingly. In

the case of line drawing seam discontinuities have to be resolved by mesh seam treat-

ment as proposed in Section 5.4.7.1

5.6 Results and discussion

We have applied our algorithm to three time-varying three-dimensional VOF data sets

and present the obtained results in the following. All data sets were simulated with

the OpenFOAM simulation toolset (1) and consist of between 63 and 126 time steps.

Simulated phenomena include a dam-break scenario, a fluid-in-fluid drop, and a classic
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Rayleigh-Taylor instability. Material interface meshes are extracted with a marching-

cubes variant of the method of Bonnell et al. (14) and possess averages of between

14000 and 60000 vertices per time step. Note that, in theory, comparison of different

extraction methods (even for subsequent time-steps) is possible but lies beyond the

scope of this paper due to page limits.

• Dam break This data set consists of 126 time steps, modeling the first 2.5 sec-

onds of a dam break by letting an unconstrained column of fluid stream over an

undersized wall-like obstacle. The extracted material interfaces possess two in-

teresting regions which are highlighted by our parametrization and visualization

technique. A large part of the fluid describes a slow and relatively consistent

dropping motion, whereas a fast front with complex topology changes is ob-

served past the wall-like obstacle. In later time steps, backflow and splashing

affects almost all parts of the fluid interface. Corresponding results are shown in

fig. 5.7.

• Fluid drop A 2 seconds fluid droplet scenario is represented by 102 time steps.

In this simulation an accelerating fluid column is dropped into a slightly lighter

liquid, producing a mushroom or bullet-impact like deformation of the fluid col-

umn. The initial phase shows an acceleration and deformation of the fluid col-

umn, followed by a second phase, the impact of the fluid column with the data

set boundary and subsequent rapid topology changes (see fig. 5.8).

• Rayleigh-Taylor instability The mixing of two fluids, the heavier one on top of

the lighter one, is simulated for around 1.6 seconds and 63 time steps in this

three-dimensional Rayleigh-Taylor instability simulation. The interface exhibits

almost uniform deformation in the beginning and is soon governed by the form-

ing of Rayleigh-Taylor fingers (see fig. 5.9).

5.6.1 Results and analysis

Representative snap-shots of all three simulations are shown in Figure 5.7a, 5.8a and

5.9a . All simulations use a gridded color gradient as parametrization texture to support
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visualization of stretching and rotation as well as visual tracking of interface regions.

Observed stretching together with unique coloring in the dam-break and fluid drop sce-

narios allows in-depth analysis of shape and topology changes as the interface evolves

over time that are impossible if no consistent parametrization is available for the inter-

face. Such stretching regions are seen to be especially prevalent around the fronts of the

dam-break and fluid drop scenarios. Density-based instability visualization highlights

regions of the flow domain that detached from a material interface in prior time steps

and are potential mixing regions of the two fluids in a high resolution VOF simulation

of the same phenomenon. This facilitates simulation analysis and joint reconstruction

error-analysis. A comparison between instability visualization in the dam-break and

Rayleigh-Taylor simulations reveals how instabilities in the dam-break scenario are

largely caused around the fast advancing front with increased bubble break-off and

turbulence, whereas slow Rayleigh-Taylor evolution creates a more even distribution

of surface detachment.

A closer look at instability visualization is given in Figure 5.10 for the fluid-drop

scenario, where the surface is affected by rapid topology changes in later time steps.

No individual instability particle properties are visible in the computationally simpler

density based visualization. Particle splatting on the other hand allows depiction of

particle properties such as parametrization value in the form of color, indicating where

a particle detached from the material interface, thus providing the possibility to back-

track surface instabilities. Material interfaces, density map, and splatted volume par-

ticles are blended together correctly. It is interesting to note how instabilities caused

around areas with rapid topology changes propagate across the data set in later time

steps.

While topology changes, detachment, stability, and attachment are visible in this

direct form of visualization, consistent material interface parametrization allows for

a visualization in parameter space as well, which allows in-depth two-dimensional

analysis of surface behavior. Figure 5.14 shows such a rendering of multiple time steps

of a flattened material interface mesh for the dam-break example. Surface stretching

and compression can be observed, as well as surface detachment and topology changes

in the form of holes or splitting of the parameterized mesh, facilitating a 2D time-

varying topology analysis.

69



5. FLUID INTERFACE INSTABILITY

Data Full Detail Medium Detail Low Detail

Dam 134 113 93

Drop 139 119 117

R-T 142 135 128

Table 5.1: Total run-times in minutes for surface advection, stability classification, and

instability advection. Medium and low detail computations include time for surface sim-

plification.

A central advantage of consistent and injective parametrization is the possibility

for consistent parameter space operations, such as interactive interface highlighting.

Examples of such user interaction are shown in Figure 5.15 and Figure 5.16 where

the development of user drawings created directly on the mesh can be observed. As

shown, highlighting of interesting surface features such as bubbles or holes and feature

tracking is made possible by user interaction. When particle splatting is used for vi-

sualization, drawings influence the color of instability particles as well, thus allowing

forward and backward tracking of surface instabilities.

The performance of our method is heavily dependent on the speed of flow field

evaluation. Table 5.1 summarizes run-times of our algorithm on a 64bit Intel Core i7

at 2.2 Ghz with 8 GB of memory. The measurements were performed for full detail

time surfaces and two levels of interface simplification. Medium and low detail rep-

resentations contained between 80% and 40% of the original mesh vertices and were

obtained by increasing δ1 and δ2. Time spent for parametrization transfer and seam

treatment amounts to few seconds per time-step of the simulations. It is notable how

the Rayleigh-Taylor instability simulation does not benefit as strongly from simplifi-

cation, as the other simulations do, since high mesh-complexity avoids the removal of

vertices in complex flow regions. Similarly, the high number of instability particles

in the fluid drop scenario reduce the impact of mesh simplification after an initially

70



5.6 Results and discussion

high drop. Figure 5.12 shows visualizations of the dam break data set created with
full detail and simplified mesh advection. Note how the chosen δ2 limits the loss of
medium scale parametrization details in flat areas, while small scale details such as
local rotations are lost.

A characteristic of our algorithm is its dependability on discrete interface repre-
sentations. While this is a common computer-science problem, where discretization
and sub-sampling is often necessary from computational and representational points-
of-view, our method facilitates level-of-detail approaches and can theoretically work
on arbitrarily highly resolved meshes. From a computational point of view, used res-
olutions should stay within reasonable bounds of the resolution provided by the VOF
simulation data.
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5.7 Conclusion

In this chapter, we introduced a method for material interface stability visualization by
using parametrization transfer and comparisons between the development of material
interface meshes and time-surfaces. The resulting visualizations allow the distinction
between detachment, attachment, and stable regions of material interfaces in time-
varying VOF data and support visual analysis of material mixing. Furthermore, this
methods is suitable to evaluate the consistency of different MIR methods and can also
handle multi-fluid scenarios.

Possible extensions to the addressed method includes adaptive parametrization tex-
tures that refine with mesh stretching.

Textures and volume rendering are the main visualization techniques involved in
this chapter for studying fluid interface. In the next chapter, we will investigate fluid
interface from another perspective– topology.
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Figure 5.2: Four reconstructed interfaces for the highlighted cell with f = 0.5. One fluid

is shown in blue, the other in white. All four extracted interfaces are exact with respect

to reconstructed fluid volumes. An infinite number of other correct reconstructions exists,

leaving the true interface shape and topology unknown.
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Figure 5.3: Illustration of two consecutive 2D material interfaces. The three points A,B,C

are representatives of stable, detaching, and attaching flow particles. A remains on the

interface and can be used for parametrization. B detaches from the interface, whereas C

attaches to the interface in the second time step.
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Figure 5.4: Left column: Images of flattened material interface mesh before advection

(top) and after advection without and with seam treatment. Parametrization texture is

shown in the background. Large triangles across parameter space indicate invalid seam

treatment. Right column: Material interface mesh before advection (top) and after advec-

tion without and with seam treatment. Close ups of parametrization seams reveal artifacts

if discontinuities are not respected during the parametrization process.
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Figure 5.5: Left: A triangle (black outline) is stretched incorrectly over a large region of

parameter space, as it crosses the periodic boundary shown in blue. From left to right:

Edge bisection and subsequent point-location in parameter space finds intersections be-

tween triangle edges and parametrization seams that allow retriangulation of the mesh

(gray polygons).

Figure 5.6: Each edge of a triangle may be cut by a parametrization seam. Splitting and

reparametrization of the new triangles is straight-forward for the one and two cuts cases

(examples of seam locations shown in blue). In the three-cut case shown on the right,

we compute parameter values of the third vertex of the middle triangle by using known

parameter values of the remaining two vertices together with angle informations in the

triangle.
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(a)

(b)

(c)

Figure 5.7: Dam-break simulation with volume-rendered instability density in the last

frame
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(a)

(b)

(c)

Figure 5.8: Fluid-drop simulation before, immediately before and shortly after impact

with the data set boundary rendered without instability
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(a)

(b)

(c)

Figure 5.9: Rayleigh-Taylor Instability visualization with density based instability visual-

ization. A close-up at several Rayleigh-Taylor fingers reveals stable (consistent texturing),

detachment (red detachment particles), and attachment (no parameterization) situations.
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(a)

(b)

Figure 5.10: (a) Visualization of the fluid-drop interface after impact, (b) with density-

based visualization.
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(a)

(b)

Figure 5.11: (c) splatting. (d) shows a later time step with instability splatting.
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(a)

(b)

Figure 5.12: Full resolution and parametrization transfer with simplified low resolution

time surface.
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Figure 5.13: The contrast -enhansed image illustrate approximation accuracy of low res-

olution time surface.

Figure 5.14: The flattened material interface meshes in the foreground of a parametriza-

tion texture for three different time steps. Detachment causes topology changes in the

parameter space of individual material interfaces. Parameter space seams are treated cor-

rectly by the proposed method.
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(a)

(b)

(c)

Figure 5.15: Interactive on-mesh drawing for feature tracking: User-made drawing on the

initial material interface mesh deforms strongly over time.
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(a)

(b)

Figure 5.16: Full resolution and parametrization transfer with simplified low resolution

time surface. the contrast enhansed image illustrate approximation accuracy of low reso-

lution time surface.
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Chapter 6

The topology-based method

1The previous chapter focused on the analysis of fluid interfaces using texture ad-

vection. We described texture-based surface visualization using different classes of

interface stability. Two interesting classes of interface stability are detachment and

attachment. In multi-phase fluids, especially bubbly flows, these two cases are highly

related to bubble breakage and collision.

In this chapter, we will study the interface behavior of multi-fluids from the new

perspective of interface topology. We treat the fluid density as a scalar function. Inves-

tigating the topological structure of the level sets of scalar functions gives us a deeper

understanding of the dynamic behavior of fluid interfaces.

We present a topology-based approach for tracking any splitting and merging events

in these regions using Reeb graphs. Time is used as the third dimension for the 2D

point-based simulation data. The low time resolution of the input dataset means that

a physics-based interpolation scheme is required to improve the accuracy of our pro-

posed topology tracking method. The model used for interpolation produces a smooth

time-dependent density field after applying Lagrangian-based advection to the given

simulated point cloud data, which conforms to the physical laws of flow evolution.

The spatial and temporal locations of bifurcations and merging events can be readily

1This part of the work was published in our paper (23)
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identified using the Reeb graph, which supports the in depth analysis of the extraction
process.

6.1 Introduction

Multi-fluid interface studies are a growing topic in a variety of application areas.
Liquid-liquid extraction is a widely used process in chemical engineering, where the
molecules in one liquid are separated by mixing it with a finely dispersed solvent (30).
Numerical simulations can model this process as a multi-fluid flow with two liquid
phases. The preferred output of these simulations is the predicted evolution of the den-
sity distribution for each of the phases, which indicates how well the two liquids are
mixed. The density of the fluid phase denotes the fraction of the space occupied by
the fluid. During liquid-liquid extraction, a finely dispersed solvent produced low den-
sity values for the second phase in large regions of the dataset. FLUENT, OpenFOAM,
and FPM are popular CFD solvers used for simulating two phase fluids. FPM was used
during the current study, which produces scattered point-sets that possess velocity and
density information.

In general, three types of multi-phase fluid models are used to tackle different flow
regimes. VOF modeling focuses on tracking the interface of two fluids during slug
and surface flow. Eulerian multi-phase modeling deals with the heat and momentum
transfer between phases based on discrete phase modeling of the mixture. The final
type of modeling is used widely for simulating bubbly flows and slurry flows, such as
the fluid mixture found in a bubble column reactor used for liquid-liquid extraction.
However, the traditional approaches used for capturing fluid material boundaries can-
not cope when multiple regions in a cell are occupied by different fluids, as is the case
with finely dispersed liquids. Thus, a higher level visualization technique is required
to understand these flow density distributions.

We present a topology-based approach for studying the volume fraction field of an
arbitrarily distributed computational point set. The simulation data we considered was
a two-dimensional, time-variable fluid field, which was discretized as particles with
their associated density and velocity values. The low time resolution of this reference
dataset complicates the tracking of material boundaries because a nonphysically-based
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interpolation scheme can produce an incorrect topology. Thus, we used a physically-

based interpolation scheme to improve correspondence between the time steps of the

simulation, which facilitated more robust feature extraction.

The major goal of this chapter is to develop plausible and practical interpolation

schemes for point-based multi-fluid density data and to characterize the fluid interface

behavior using Reeb graphs. To identify interesting time intervals containing regions

that are densely occupied by a certain phase of fluid, we first define these regions using

a specific level set of the density field. Using a physically-based interpolation scheme,

we compute a time-continuous density field when resampling the grid points. Finally,

we perform a topological analysis of the extracted time-variable level sets using the

Reeb graph. The major contributions of this chapter are as follows.

• We propose an interpolation scheme for point-based time-dependent density

datasets with no connectivity information. The proposed interpolation scheme

is capable of handling sparse data with large time intervals, while preserving the

physical properties and the topology of the flow.

• We introduce a framework for extracting and analyzing the fluid interface topol-

ogy. This framework is practical for the analysis of point-based multi-fluid

datasets. It provides novel insights and tools for domain experts that facilitate

further analysis and the estimation of solvent efficiency.

The remainder of the chapter is organized as follows. In section 6.1.1, we present

related research on particle-based fluid simulation and topology-based feature track-

ing techniques. In section 6.2, suitable interpolation schemes are applied separately

for time and spatial direction to develop a topologically clean extraction method for

level sets. Section 6.3 presents examples and an analysis of our proposed visualization

techniques. We include possible future work in the final section.

6.1.1 State of the art

A level set of a scalar field is given by the set of points with an identical scalar value.

Our idea of studying the level sets of the density field was inspired by previous research

89



6. THE TOPOLOGY-BASED METHOD

on material boundary and fluid interface tracking, including the front tracking (FT)

method (102), level set method (75), and volume of fluid method (39).

The FT method (38, 97, 102) advects the marked interface from an initial con-

figuration and constantly retains the topology of the interface during the simulation.

Therefore, this method is limited to topological changes in multi-phase-fluids, such as

the merging or breaking of droplets.

However, the interface tracking algorithms mentioned above are not fully appli-

cable to liquid-liquid extraction simulations because one of the fluid phases is fully

dispersed and there is no continuous interface between the two fluids. Therefore, a

material interface is not traceable in a slurry flow. Instead, topology-based techniques

are more suitable for the analysis of level sets and more useful in this context because

they can capture the absolute and relative behavior of small-scale features directly,

such as dispersed bubbles (98).

The topology of 2D scalar fields can be studied using contour trees (27), which

were introduced by de Berg and van Kreveld. Carr et al. (18) extended this approach

with a simple and robust algorithm for the computation of contour trees. In three or

more dimensions, a Reeb graph (83) is more efficient because it automatically encodes

the behavior of level sets defined on an arbitrary manifold (98). Applications of the

Reeb graph include fast isosurface extraction (19) and feature tracking (107).

Bremer et al. (16) proposed a hierarchical segmentation strategy for feature track-

ing in time-dependent isosurfaces. Isotherm extraction and vertex classification during

the original times steps was carried out in discrete time slices based on structured

spatial discretization. Unlike (16, 107), the extraction approach presented in the cur-

rent study was directed at dynamic particle-based datasets, where the spatial structure

changes randomly over time.

Particle-based fluid simulation is a particular class of numerical algorithms used to

simulate fluids. Unlike traditional mesh-based simulation algorithms, particle-based

methods are capable of handling complex flow problems where the geometry changes

dramatically (30, 81). Smooth particle hydrodynamics (SPH) was the first particle

method, which was introduced by Lucy (58) in 1977 to simulate astrophysical prob-

lems. Later, it was applied to the simulation of flow problems (68, 81) including free

surfaces, multi-fluid interfaces, turbulent flow, and incompressible fluids, where grid-

based methods were inadequate.
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6.2 Reconstruction of the time-variable density field

Given a two-dimensional time-variable density field, we need to provide an appropri-

ate interpolation scheme to obtain the corresponding density snapshots in sufficient

time to perform accurate topology extraction and track phase movements. In order to

use concepts from 3D visualization and convey an instantaneous representation of the

unsteady field, we explored the use of a 2D time-dependent density field as a station-

ary 3D field where time was the third dimension. We examined a numerical dataset

produced by a finite point set method (FPM) simulation of a two phase fluid, which

contained seven time steps. The simulation technique advects the highly adaptive set

of fluid particles that constitutes an implicit computational grid. However, particle cre-

ation and destruction means there is no correspondence between the particles from one

time step to the next. Each of these computational particles carries information about

the fluid density ρ and fluid velocity~v.

The reconstruction of a smooth time-dependent density field requires interpolation

of the spatial and temporal axes. Our method is a hybrid of a moving least squares

(MLS) approach for spatial interpolation and a Lagrangian-based scheme for temporal

interpolation, which we derived from the FPM method. After considering the underly-

ing equations of flow motion and applying Lagrangian advection to the computational

particles, we obtained a physically meaningful interpolation of the scalar field over

time. In the following subsections, we describe our scheme in detail.

6.2.1 Time interpolation

The given numerical dataset contains few time slices (7–10 available), so we propose

the following algorithm to interpolate incrementally between two neighboring time

steps T0 and T1 and obtain N intermediate steps, thereby increasing the resolution

along the time-axis significantly. In general, our time interpolation consists of three

steps. First, we re-initialize and re-sample a point cloud in the first intermediate time

frame. Second, we update the density field in the new point cloud. Finally, we use

the underlying physical model to re-compute the velocities of each re-sampled point.

Given the flow fields f ,~v at time T0 and T1, we use an iterative technique to interpolate
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and re-compute f ,~v at intermediate time steps T0 +∆, ...,T0 +N∆, which is described

in the following pseudocode.

Algorithm 3 Interpolation scheme
Input: (xi,ρ,~v)T0 and (xi,ρ,~v)T1

Output: (xi,ρ,~v)T0+ j∆, for 0 < j ≤ N.

1: for j = 1→ N do

2: T ∗← T0 + j∆

3: forward advect particles xi from T0 +( j−1)∆ to T ∗,

4: backward advect particles xi from T1 to T ∗,

5: recalculate velocities (~vi)T ∗ at advected points using equation (6.2).

6: resample particles at time T .

7: for all xi do

8: update density values (ρi)T ∗ and velocities vT∗
i at resampled points using

equation (6.1).

9: end for

10: (xi,ρ,~v)Tj∆ ← (xi,ρ,~v)T ∗

11: end for

In other words, for the first interpolation point T ∗ = T0+∆, we advect the particles

from T0 to T ∗ forward along the velocity field v0 (see Figure 6.1) and we advect the

particles backward from T1 to T ∗. The corresponding advection equations yield:

(x)T ∗ = (x)T0 + ~vT0∆.

(x)T ∗ = (x)T1− ~vT1(T1−T0−∆).
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Therefore, a new set of particles is formed. We resample these points into a regular grid

and approximate the density function using Shepard’s interpolation (94), as follows.

ρ(x) =
∑

m
i=1 wiρi

wi
(6.1)

Subsequently, we recompute the velocity vectors of the resampled points using

a numerical estimation derived from the SPM method (100). In computational fluid

dynamics, the flow properties are often described under two different reference frames,

i.e., the Eulerian fixed reference frame and the Lagrangian co-moving reference frame.

Unlike the Eulerian types of conservation laws, the Lagrangian specifications employ

the idea of co-moving computational frames in the flow fields. Changes in the flow

properties are described by the moving computational particles, which are known as

material derivatives:
D f
Dt

=
∂ f
∂ t

+~v ·∇ f

.

In the proposed algorithm, the fluid velocities are recomputed at the advected

points. Therefore, we consider the momentum equation (100) in the material derivative

form. Thus, a Lagrangian formulation of the momentum equation yields

D~v
Dt

=− 1
ρ
+

1
ρ

∇ · (2µD)+
1
ρ
~Fs +~g (6.2)

where µ is the fluid viscosity, which satisfies the mass conservation law. We use a con-

tinuous surface force (CSF) model (15) to define the surface tension force ~Fs = σκ~nδs

with the interface normal vector~n, curvature κ , and normalized surface delta function

δs. The values of ~n,κ,andδs can be obtained by introducing marking functions for

fluid types 1 and 2. For details, please refer to (15, 100). The velocities at the re-

sampled points during the intermediate time step T ∗ are computed component-wise by

solving the following equation using Chorin’s projection method (24).

~v− dt
ρ

∇µ ·∇~v−dt
µ

ρ
∆~v = ~vn +dt(

Fn
S

ρ
+g+

∇µ

ρ
·∇(~vn)) (6.3)

After resampling the points at T ∗ and re-evaluating the velocity field, we then use

T ∗ as the new T 0 and repeat the computations to interpolate the flow fields at T0 +2∆.
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Figure 6.1: Proposed interpolation scheme: forward advection of fluid particles from the

previous time step to intermediate stage t∗ and recalculation of the velocity field. Back-

ward advection of fluid particles from the last time step and recalculation of the velocity

field. The data are resampled at the intermediate time t∗ at the blue points using a radial

basis function.
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Figure 6.2: Left: the first inserted time frame where the values were resampled at regular

points. The second inserted frame was created by advecting particles from T0 +∆ and T1.

We the resampled the points in the same grid used at T0 +∆.

Two main characteristics distinguish our method from current interpolation schemes:
recalculation of the velocity field of the resampled points using a physical model and
iterative advection of the resampled points to the next interpolated time frame using the
recomputed velocity. While resampling the points and interpolating the density fields,
it is important to reconstruct the velocity field at intermediate time frames appropri-
ately. To obtain a physically meaningful interpolation, we use the velocity updating
schemes proposed for the SPM method. By solving the original momentum equa-
tion (6.2) in the simulation model, we obtain a good interpolation by reconstructing
the missing time steps.

The additional computational effort required to recalculate the velocities is justified
by the quality of the results, as demonstrated in the following example. We compared
our method with a linear interpolation scheme without velocity recomputation. A naive
way of interpolating the density field between two time steps is a linear combination
of the two, such as:

f (t0 +∆t) =
t0− t1 +∆t

t0− t1
f (t0)+

−∆t
t0− t1

f (t1).

. However, linear interpolation yields physically incorrect results because it fails to
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consider the flow, which leads to errors during tracking or topology extraction. As

shown in Figure 6.3a, the middle layer is a linear interpolation of the two slices. In our

proposed velocity recalculation method, the interpolation provides a physical, mean-

ingful description of the fluid properties from one time step to the next (6.3b).

(a) Left: the slice in the middle

is a linear blending of the top and

bottom slices.

(b) Right: the slice in the middle

was interpolated using our pro-

posed method.

Figure 6.3: Linear and nonlinear interpolation

6.2.2 Spatial Approximation

At each given time step Ti, the positions of the point clouds and the number of points

are variable. In order to achieve a continuous representation of the field that can be re-

sampled by a uniform distribution of spatial points, we perform a MLS approximation

to fit the velocity and density values.

The MLS method is one of the most popular mesh-free interpolation schemes and

it was introduced by Lancaster and Salkauskas (51) in 1981 to derive a smooth surface

from a set of scattered data points in space. To interpolate flow quantities at a given

evaluation point, we construct a weighted least squares fit based on a consideration of

a local set of neighboring points. A global approximation is obtained by moving this

evaluation point across the whole domain. The differentiability of the global fitting

function is ensured by selecting a continuously differentiable weight function (also
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6.2 Reconstruction of the time-variable density field

known as a kernel function), see Levin (54). For a finite set of points xi, we approxi-
mate the given scalar value fi using a polynomial f (x) at x = (x,y,z) to minimize the
weighted square error:

G(x) = min∑
i

w(ri)‖ f (xi)− fi‖2 (6.4)

where f is a n degree polynomial in m-dimensional space and the weight w is a scaling
function that depends on the distance ri = ‖x−xi‖. For example, a quadratic approxi-
mation of 2D scattered data can be written as follows.

f (x) = b(x) · c =
[
1 x y x2 xy y2]


c1
c2
c3
c4
c5
c6


To address the problem of variable point densities during different time steps, the

spatial interpolation can be controlled by adjusting the size of the neighborhood radius
r. We will specify the selection of this parameter later. First, let us consider how the
minimization problem can be solved.

The minimization problem (6.4) can be solved by setting the partial derivatives

with respect to ci as zero,
∂G
∂ci

= 0.

As a result, the coefficients ci can be obtained by solving the following linear sys-
tem,

∑
i

w(ri)b(xi)b(xi)
T c = ∑

i
w(ri)b(xi) fi, (6.5)

and the solution of the coefficient ci yields

c = [∑
i

w(ri)b(xi)b(xi)
T ]−1

∑
i

w(ri)b(xi) fi. (6.6)

The idea of using a weight function is based on the fact that points closer to point
x should have greater effects than distant points, as shown in Figure 6.4.

Therefore, the intuitive choices for weight functions are radial basis functions that
depend on the inverse distance. Cubic splines and Gaussian functions are commonly
used in mesh-free/particle-based numerical simulations such as smoothed particle hy-
drodynamics (13), see (30, 49, 100).
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Figure 6.4: Neighborhood structure of a

given point inside the point cloud.

Figure 6.5: Level sets of a function and

its Reeb graph.

To define a good weight function, we need to restrict the number of points by im-

posing a small compact support on the weight function, so points outside the compact

support will have zero influence. Moreover, a minimal number of points should be

guaranteed in order to produce a nonsingular system of equations for a second order

approximation (30).

To ensure consistency with the FPM simulation data, we select a Gaussian weight

function. The size of h is set so there are at least six points in a circle with the radius

h:

w(x−xi,h) =

 exp(−2
‖x−xi‖2

h2 ), if
‖x−xi‖

h
≤ 1

0, elsewhere.

To approximate vector fields of the flow, e.g., velocity, we apply the MLS method

to each component of the vector. In our implementation, we used a quadratic basis

function for b(xi). If there are not enough points in the neighborhood, the basis func-

tion is reduced to a linear function.

Previously, we obtained a continuous density field in spatial directions using MLS

and in the time direction using a Lagrangian method. In the next section, we discuss

the use of Reeb graphs for analyzing this interpolated density field.
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(a) Torus Manifold. (b) Level sets of the height

field. Each ribbon color indi-

cates one level set in the height

field

(c) Reeb graph of the height

function showing the dynamics

of the level sets

Figure 6.6: A double torus example of a Reeb graph

6.3 Reeb Graph

After constructing a continuous density function over time, we can extract a spatiotem-

poral isosurface in all three dimensions for any given density value. We perform Reeb

graph extraction to analyze the topology changes in these surfaces using time as a

Morse function.

We recall the definition of a Reeb graph (see (83, 98) for more details), as follows.

A real-valued function f : M→ R is defined on a manifold M. The Reeb graph is a

graph that describes the topology change in the level sets of f . For a given value t∗,

the level set L(t∗) (Figure 6.5) is defined as the inverse image of t∗ on M through f :

L(t∗) = f−1(t∗)

.

Each connected component of the level set L(t∗) is known as a contour, see Fig-

ure 6.5. In Morse theory (66), topological changes in contours only occur at the critical

points of f (79). A Reeb graph has nodes that correspond to the critical points of f
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while the edges represent the connectivity of the contours of f , and t∗ evolves contin-

uously in R, see Figure 6.5.

If we use a double torus as an example (see Figure 6.6a) and let the height field

z be our scalar function, the connected level sets L(z) of z are contours with a certain

height value z = z∗(shown in 6.6b). There are four types of nodes on a Reeb graph,

which correspond to four different events during contour evolution.

Birth node A birth node in a Reeb graph corresponds to a minimum critical point

of f . In the torus example, this is the point where the bottom purple node is shown

in Figure 6.6c. A contour of the scalar function z emerges for the first time from the

position of the birth node, hence its name.

Bifurcation node The blue node on the torus example is a bifurcation node. As

the name implies, it is a node where the contour of a given scalar function splits.

In mathematical terms, a bifurcation node is a type of saddle point where its second

derivative degenerates.

Merging node In contrast to the bifurcation case, the situation where two contours

merge into one is characterized as a merging node. (See the second node from the top

in Figure 6.6c). It may be viewed as symmetric to the bifurcation node with respect to

time reversal (inverting the z direction). Therefore, merging and bifurcation nodes are

topologically equivalent and both correspond to a saddle point on the manifold M.

Death node The pink node at the very top of Figure 6.6c is a death node on the

torus. At this point, the contours of z vanish, so it is known as a death node. A death

node corresponds to a maximum critical point of the scalar function z. Similar to the

bifurcation/merging pair, death nodes can be considered symmetric to birth nodes.

Extraction of the high density area and computation of the Reeb graph We are

interested in regions where the density of the solvent is above a certain threshold ε

(well-mixed regions with high concentrations of the solvent phase), so we extract an

implicit surface f (x) = ε that encloses regions with a higher solvent density. Each

segment of the surface (which is perpendicular to the time axis) corresponds to the
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6.3 Reeb Graph

(a) Bifurcation: regions split-

ting after a certain time point.

The outer normals of the plane

points are in the time direction.

(b) Level sets of time. (c) Extracted Reeb graph for

the bifurcation case.

Figure 6.7: Bifurcation example.

original given 2D slices or the interpolated intermediate slices. Therefore, the level sets

of the implicit surface yield isocontours on the original 2D data. As a straightforward

interpretation, our surface can be interpreted as a sweeping of the 2D isocontours.

Using a standard Marching Cubes algorithm (57), we extracted the time surface

from the interpolated density function discussed in the previous chapter. The results

are shown in Figure 6.7, 6.8 and 6.9. A tracking Reeb graph was computed for this

time surface using time as the Morse function (similar to the height field in the torus

example). We used a vtkReebGraph Filter based on Pascucci’s streaming algorithm

(77, 78). Note that the Reeb graph algorithm operates on a closed surface, so we intro-

duced ghost cells in the first and last time slices, as well as the ingoing and outgoing

flow boundaries.
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6.4 Results

Figures 6.7a, 6.8a, and 6.9a show the extracted isosurfaces (swept level sets over

time). The corresponding Reeb graphs are shown in Figures 6.7c, 6.8c, and 6.9c.

Figures 6.7b, 6.8b, and 6.9b are the colored level sets over time, which provide an

intuitive understanding of how the flow propagates over time. The node coordinates

(x,y, t) indicate that one of the four types of contour evolution events occurs at point

(x,y) for time t.

Moreover, the edge connectivity of the Reeb graph defines the type of nodes and

indicates the connectivity of contours. We discuss the results using the following three

examples. The first example (Figure 6.7 ) is a typical case where the high density flow

regions split into two. As shown in Figure 6.7c, a bifurcation event occurs between the

yellow and green level sets, which points to the contour splitting event in Figure 6.7b.

In contrast to bifurcation events, another example (Figure 6.8) shows a case where

nodes meet and merge to produce a larger one.

During the classification of Reeb graph nodes, the birth and death nodes both have

multiple meanings that depend on the positions of the nodes, i.e., those on the ingoing

boundary of the flow show that a new contour is entering the domain because of the

feed-in fluid. Similarly, for death nodes, those that are on the outgoing boundary show

that the flow is exiting the area whereas those inside the xy-plane indicate an event

where fluid blobs smear out and vanish.

A complete scenario is shown in Figure 6.9. The white plane at the bottom corre-

sponds to the xy-plane. The outer normal points up and indicates the time direction.

The flow is coming in from the side of the red plane and it exits freely at the left

side. This example was generated from ten time slices with one intermediate inter-

polation step between each of the slices. All four node types occur in this scenario,

e.g., the circled orange node is a birth node that indicates an increase in the density of

the second fluid phase in the region. Compared with the direct coloring of level sets

(Figure 6.9b), the Reeb graph on the right side (Figure 6.9c) provides a better illustra-

tion of the topological skeleton of the surface. Moreover, we also show a comparison

between the conventional graph layout (Figure 6.10) and our 3D Reeb graph represen-

tation (Figure 6.9c). Both representations contain exactly the same information, but

the 3D representation is clearly better at illustrating the topological evolution.
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Furthermore, the visualization technique presented in this paper facilitates visual
tracking of fluid bubbles in a stationary view. It also facilitates further analysis and
an estimation of the solvent efficiency, such as finding the regions where no solvent
mixing occurred.

6.5 Conclusions and future research possibilities

In this chapter, we presented a method for characterizing the evolution of time-dependent
density fields using Reeb graphs. The proposed method can be utilized by mechanical
engineers to evaluate the design of mixing devices and to adjust the choice of inflow
velocities to optimize the mixing results. The challenge of our dataset was the low time
resolution, which can lead to a low tracking accuracy and an ill-defined topology. To
improve the quality of our topology tracking, therefore, we proposed the application
of Lagrangian advection to the point set where the extra velocity information was used
to obtain a physically-based interpolation of the density field.

Possible future work includes extending our approach to a 3D simulation of multi-
fluid data, which will require the computation of a Reeb graph for a scalar function t

over a 4D manifold. Techniques such as tracking the Jacobi set of a time-dependent
scalar field could also be a good choice for representing topology changes in the density
field. Further work could also be done to evaluate how the time resolution of the
input data affects the extracted topology. Apparently, the topology of the extracted
surface will change if the time steps are large. Thus, finding a threshold for the time
stepping length (below which the extracted Reeb graph does not change) will probably
be related to the maximum gradient of the velocity field and the Courant-Friedrichs-
Lewy (CFL) conditions of the numerical scheme.
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(a) Merging: regions merge to

produce a large region after a

certain time point.

(b) Level sets of time. (c) Extracted Reeb graph for

the merged case.

Figure 6.8: Example of merged regions.

(a) Extracted surface for the

whole domain for all time

steps.

(b) Level sets of time. The

colored wall is the incoming

boundary of the flow.

(c) Extracted Reeb graph of

the left image.

Figure 6.9: A complete scenario. The white plane denotes the spatial domain. The flow

is entering the domain from the red wall.
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6.5 Conclusions and future research possibilities

Figure 6.10: Conventional graph layout. The spatial and time coordinates are printed

inside the nodes. This representation is convoluted and hard to understand. By contrast,

our 3D Reeb graph representation provides an intuitive understanding of how the topology

changes.
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Chapter 7

Conclusions and future work

In this study, we simulated a two phase fluid in an extraction column using CFD and
PBM models. We developed stochastic and feature-based visualization techniques for
visualizing the distribution of droplets and their dynamic behavior. The fluid interface
was our main focus because it is a major issue during multi-phase fluid visualization.
We developed a novel visualization technique for analyzing complex fluid interface
behaviors over time. Further investigations of the fluid interface were conducted using
a topology-based method. We proposed a physically plausible scheme for interpolating
fluid volume fraction data using a randomly distributed point cloud.

In future studies, we plan to take the topological analysis of the fluid interface to
higher dimensions. The application of Reeb graphs to multi-dimensional data may pro-
vide new insights into droplet behavior. Uncertainty visualization could also be a new
direction for addressing droplet dynamics, especially during breakage and collision
modeling.
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