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Abstract

In this paper we consider a multivariate switching model, with constant states means
and covariances. In this model, the switching mechanism between the basic states of
the observed time series is controlled by a hidden Markov chain. As illustration, under
Gaussian assumption on the innovations and some rather simple conditions, we prove
the consistency and asymptotic normality of the maximum likelihood estimates of the
model parameters.

1 Introduction

Hidden Markov Models (HMM) are a popular class of models for time series data which,
locally within a state, could behave like independent identically distributed (i.i.d.) data, but
their statistical properties repeatedly change between states. A prominent example which
motivates our approach is portfolio analysis which involves high-dimensional time series data.
A simple but wide-spread model for the vector of returns of all assets in a stock portfolio is
based on the assumption that the data are independent random Gaussian vectors, e.g., the
Delta-Normal model (see Riskmetric [9]), with perhaps constant mean µ = 0, covariance
matrix Σ and volatility matrix Σ1/2, respectively. However, if the market environment
changes, e.g., if it moves to a more volatile state, the covariance matrix changes too. This
behavior can be modeled by a HMM with a finite number, say K, of states represented
by the different state means µk and covariance matrices Σk, k = 1, . . . ,K. As such, the
HMM model is particularly interesting for analyzing financial returns which are known to
exhibit some particularities (“stylized facts”, see, e.g., Rydén et al. [10]) such as departure
from the normality assumption and existence of dependence between the data. Indeed,
it is well known that a hidden Markov mixture model can circumvent both the problem
∗Email: tadjuidj@mathematik.uni-kl.de
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of normality violation as well as that of dependence. Although locally within a state the
data could behave as, e.g., i.i.d. Gaussian, the mixture is not necessarily Gaussian. For
illustration, if one considers the one dimensional version of the model defined in (2.1), under
Gaussian assumption on the residuals, the computation of the skewness or the kurtosis
(function of the transition probabilities, states means and variances) indicates that the data
from this generating mechanism are not necessarily Gaussian. Moreover, the dependence
in time between the data is inherent to the Markovian structure of the hidden switching
mechanism. Hence, in this paper we consider a multivariate time series model that can be
regarded as a hidden Markov mixture of K different high-dimensional i.i.d. processes that
are not necessarily Gaussian.

A prime goal in HMM (Hidden Markov mixture models) is to estimate the model parameters
represented by all the µk,Σk, k = 1, . . . ,K, as well as the transition probability matrix of the
hidden Markov chain. In particular, we focus here on investigating the asymptotic behavior
of the maximum likelihood estimators of the model parameters under Gaussian assumption.

2 The Model and the Parameter Estimates

Let {Qt} be a hidden stationary Markov chain with a finite numberK of states which controls
the data generating mechanism of the observed time series {Xt}. Let A = (aij)i,j=1,...,K

denote the corresponding transition matrix and π = (π1, . . . , πK)′ the stationary distribution
of the chain. To simplify notation, we consider a multivariate hidden Markov mixture of
processes with constant states trends and covariances, i.e.

Xt =

K∑
k=1

Stk

(
µk + Σ

1/2
k εt

)
(2.1)

where the current state is indicated by

Stk =

{
1 if Qt = k
0 otherwise . (2.2)

Σ−1
k is the inverse of the covariance matrix Σk and the innovations εt are assumed to be

i.i.d. Nd(0, Id) random variables. This serves only as example. Using the method developed
here, other distributions of the innovations could be handled. The state variable Stk as
defined here indicates that at each time instant one and only one of the hidden states is
activated and the remaining K − 1 are off. The vector of parameters θ combines all the
free parameters of the model, i.e. the entries of µk ∈ Rd,Σk, k = 1, . . . ,K, as well as
aij ≥ 0, i = 1, . . . ,K, j = 1, . . . ,K− 1. From the Markov chain theory, see e.g. Brémaud [1],
A is a stochastic matrix, i.e.,

∑K
j=1 aij = 1, for all i = 1, . . . ,K.

In the following, Θ ⊂ Rp denotes the parameter set, and we sometimes write A = Aθ to
stress the dependence of the transition matrix on the parameters.

As stated in the introduction, the model defined in (2.1) belongs to the general framework
of hidden Markov mixture of models for which an abundant literature exists, e.g., Cappé et
al. [2] or Frühwirth-Schnatter [5] and some of the references therein, just to name a few.
Additionally, if we observe that this model also includes states means, it could be regarded as
a multivariate extension of the white noises driven by hidden Markov introduced in Francq
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et al. [4] or a multivariate version of the CHARME model introduced in Stockis et al. [11]
with constant states means and covariances.

Below, we shall give conditions on θ which guarantee the existence of a stationary solution
to equation (2.1) as well as its geometric ergodicity. Given those conditions are satis-
fied, we consider the observed process to be sampled from a stationarity and geometrically
ergodic mechanism {(Qt,Xt)}, and we assume the starting values (Q0,X0) to be gener-
ated accordingly to the corresponding stationary distribution. Then, the combined process
{(Qt,Xt)}∞t=0 is a stationary Markov process defined on the product space {1, . . . ,K}×Rd.
We always assume that the evolution of the hidden Markov chain does not directly depend
on the observed time series, which follows from

A. 2.1. {εt}∞t=0 is independent of {Qt}∞t=0.

Then, we have e.g. for t > 0, k = 1, . . . ,K,

P
(
Qt = k

∣∣Qs,Xs, s = 0, . . . , t− 1
)

= P
(
Qt = k

∣∣Qs, s = 0, . . . , t− 1
)

(2.3)
= P

(
Qt = k

∣∣Qt−1

)
(2.4)

by the Markov property.

To define the parameter estimates of interest, we first have to introduce some notation. Let
gθ(·|k) denotes the conditional density of Xt given Qt = k, which under model (2.1) is the
Gaussian density with mean µk and covariance Σk.

Given a sequence {yt}t∈Z of real vectors andm,n ∈ Z, m ≤ n, we set ynm = {ym, . . . , yn}. For
q0 ∈ {1, . . . ,K}, we then get the conditional likelihood function as the conditional density
of Xn

1 given X0 and Q0 = q0

pθ(X
n
1 |X0, Q0 = q0) =

K∑
qn=1

. . .
K∑
q1=1

n∏
t=1

aqt−1,qt gθ(Xt | qt) (2.5)

and the conditional log-likelihood function given X0 and Q0 = q0

ln(θ, q0) = log pθ(X
n
1 |X0, Q0 = q0) (2.6)

=
n∑
t=1

log pθ(Xt|Xt−1
0 , Q0 = q0).

with

pθ(Xt|Xt−1
0 , Q0 = q0) =

K∑
qt−1=1

K∑
qt=1

gθ(Xt | qt)aqt−1,qtP (Qt−1 = qt−1|Xt−1
0 , Q0 = q0).

Similarly, the conditional log-likelihood function given only X0

ln(θ) =
n∑
t=1

log pθ(Xt|Xt−1
0 ) (2.7)

with

pθ(Xt|Xt−1
0 ) =

K∑
qt−1=1

K∑
qt=1

gθ(Xt|qt)aqt−1,qtP(Qt−1 = qt−1|Xt−1
0 ). (2.8)
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The maximum likelihood estimate

θ̂n = arg max
θ∈Θ

ln(θ)

is the classical likelihood estimate that one will consider, e.g. in the i.i.d. framework
without switching mechanism. Indeed, assuming e.g. a Gaussian residuals, one obtains a
closed form for the conditional density of Xt. However, assuming a switching mechanism
this is not always guaranteed, as one can observe at the begin of Section 5. Therefore, we
get interested in

θ̂n,q0 = argmax
θ∈Θ

ln(θ, q0),

which takes at least into account the switching mechanism. Furthermore, we let θ̂n,q0 depend
on an arbitrary initial value q0 ∈ {1, . . . ,K} which asymptotically will make no difference
by Proposition 3.2 below.

3 Asymptotic Properties of the Parameter Estimates

In this section, we state our main results. Under rather weak conditions, we may conclude
that the assumptions of Douc et al. [3] are fulfilled for our model and, therefore, make use
of their results to derive the asymptotics of the parameter estimates. We assume that the
data X0, . . . ,Xn are generated by a multivariate hidden Markov mixture of processes as in
(2.1) with unknown parameter θ∗. Moreover, we assume that assumption A.2.1 holds.

A. 3.1. The parameter set Θ is a compact subset of Rp, where p is a function of the number
of hidden states and θ∗ is an interior point of Θ.

The compactness of the parameter set Θ as well as the assumption on the unknown true
parameter value θ∗ are quite standard in the literature and will be considered here without
any further justification.

A major condition to apply the results of Douc et al. [3] is stationarity, irreducibility and
geometric ergodicity of the Markov process {(Qt,Xt)}. We follow the development in Stockis
et al. [11], however, with a rather strong assumption on the transition probabilities,

A. 3.2. There exist a− and a+ such that

0 < a− ≤ aij ≤ a+ < 1, for all i, j = 1, . . . ,K; θ ∈ Θ

Indeed, the above assumption on the transition probabilities is rather motivated by the proof
of the asymptotics of the parameter estimates than by the proof of the geometric ergodicity.
In fact, we could have considered weaker assumptions as in [11].
For the covariance matrices let us assume,

A. 3.3. there exist 0 < δl ≤ δu <∞ such that

δl ≤ min
k
λl,k ≤ max

k
λu,k ≤ δu

where λl,k is the smallest eigenvalue of the covariance matrix Σk and λu,k is its largest
eigenvalue.
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Assumption 3.3 implies that all the covariance matrices are positive definite and

δdl ≤ λdl,k ≤ |Σk| ≤ λdu,k ≤ δdu.

Moreover, the existence of δu can also be regarded as a consequence of the compactness
assumption on the parameter set. Furthermore, Σk positive definite implies

Σk = P−1
k DkPk

where Dk is the diagonal matrix of the eigenvalues of Σk and Pk is unitary matrix whose
rows comprise an orthonormal basis of eigenvectors of Σk.

From the later observation, it is straightforward to see that the squared Mahalanobis dis-
tance, see [8],

d2
Σk

(Xt,µk) = (Xt − µk)′Σ−1
k (Xt − µk)

satisfies

1

δu
‖Xt − µk‖2 ≤ d2

Σk
(Xt,µk) ≤

1

δl
‖Xt − µk‖2. (3.1)

Now, using the compactness of Θ, it first follows the existence of 0 ≤ M < ∞, such that
‖Xt − µk‖2 ≤ (‖Xt‖+M)2, for all k = 1, . . . ,K. Therefore, we have

1

δu
‖Xt − µk‖2 ≤ d2

Σk
(Xt,µk) ≤

1

δl
(‖Xt‖+M)2. (3.2)

Given the above assumption we have the following probabilistic result, which induces the
stationarity and mixing properties of the observed process. Indeed, the stationarity and
mixing properties are key ingredients for deriving the asymptotic properties of the parameter
estimates.

Proposition 3.1. Let {Xt} be generated from model (2.1), and let A.2.1 and A.3.2 to 3.3
hold. It follows

1. {Qt} is a strictly stationary, irreducible and aperiodic Markov chain with finite state
space {1, . . . ,K}.

2. {(Qt,Xt)} is geometrically ergodic.

3. The existence of moments for Xt follows from the existence of the corresponding mo-
ments of εt.

The following result implies that in estimating the model parameter by maximizing the log
likelihood, it makes no difference if we assume Q0 = q0 to be given. The proof is postponed
to the technical appendix.

Proposition 3.2. Consider A.2.1, A.3.1 to A.3.3 hold. It follows

sup
θ

sup
1≤q0≤K

∣∣∣∣ 1nln(θ, q0)− l(θ)
∣∣∣∣ −→ 0 a.s. as n→∞

For proving consistency, we need a standard identifiability condition for the true parameter
vector which is essentially a condition on the parameter set Θ.
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A. 3.4. For all n ≥ 1, θ∗ is the unique solution in Θ of

E
(

log
pθ∗(Xn

1 |X0)

pθ(X
n
1 |X0)

)
= 0

Giving the above mentioned assumptions and the subsequent results in Proposition 3.1 and
3.2, we are now in position to state and prove the results on the consistency as well as the
asymptotic normality of the parameter estimates.

Theorem 3.1. Let A.2.1 and A.3.1 to A.3.4 hold. Then, for all q0 = 1, . . . ,K,

lim
n→∞

θ̂n,q0 = θ∗ a.s.

where

θ̂n,q0 = arg max
θ∈Θ

ln(θ, q0).

To formulate the asymptotic normality of the parameter estimates, we have to introduce
the notation

I(θ) = −Eθ∇2
θ log pθ(Xt |Xt−1

−∞),

which does not depend on t for stationary processes. I(θ∗) is the Fisher information in our
model, and we can estimate it consistently as described in the following theorem.

Theorem 3.2. Consider A.3.1 to A.3.4 and assume, additionally, some moment assump-
tions, and that I(θ∗) is positive definite. Then, for all q0

1

n
∇2
θln(θ̂n,q0 , q0) −→ I(θ∗) a.s.

and
√
n(θ̂n,q0 − θ∗) −→ N (0, (I(θ∗))−1).

The later theorem formulates the asymptotic normality of the parameter estimates which is
of great importance to the practitioner who wishes e.g., to conduct formal tests of hypothesis
and construct confidence interval estimates.

4 Summary and perspectives

In this paper we have proven the consistency and asymptotic normality of the maximum
likelihood estimates, for the parameters under Gaussianity assumption on the innovations,
for multivariate hidden Markov mixture of AR-ARCH with constant state means and covari-
ances. This should be regarded as an illustration that the theory works and could easily be
extended, given different probabilistic type of residuals. However, we always have to check,
e.g., that the conditions of Douc et al. [3] hold. Nevertheless, we need to observed that
assumption A.3.2 on the transition probabilities could be, perhaps for some applications,
rather restrictive. Therefore, it will be worth investigating the asymptotic of the param-
eter estimates under weaker considerations, for example, allowing some of the transition
probabilities to be equal to zero.
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5 Technical Appendix

5 Technical Appendix

Throughout the whole appendix, we assume that {Qt,Xt} is a stationary process gener-
ated from model (2.1). We first start with some technical lemmas which are needed for
proving consistency and asymptotic normality of the maximum likelihood estimates of the
parameters. Under model (2.1), the conditional density of Xt given Xt−1

gθ(Xt |Xt−1) =
K∑
j=1

gθ(Xt | Qt = j)P(Qt = j |Xt−1)

with

P(Qt = j |Xt−1) =

K∑
i=1

P(Qt = j |Qt−1 = i,Xt−1)P(Qt−1 = i |Xt−1)

=
K∑
i=1

aijP(Qt−1 = i | ,Xt−1).

Moreover,

P(Qt−1 = i |Xt−1) = P(St−1,i = 1 |Xt−1)

= E(St−1,i |Xt−1)

and using A.2.1 together with the subsequent consequences in equations (2.3) and (2.4), it
follows

P(Qt−1 = i |Xt−1) = E(E(St−1,i |St−2,Xt−1) |Xt−1)

= E(aQt−2,i |Xt−1)

Now, putting everything together, we derive

gθ(Xt |Xt−1) =
K∑
i=1

K∑
j=1

gθ(Xt | Qt = j)aijE(aQt−2,i |Xt−1) (5.1)

where

gθ(Xt | Qt = k) =
1

(2π)
d
2 |Σk|

1
2

exp

(
−1

2
(Xt − µk)′Σ−1

k (Xt − µk)
)
,

i.e., the conditional density of the observation given we are in the state k.

Lemma 5.1. Consider A.2.1and A.3.1 to A.3.3 hold. Then,

1. For all Xt,Xt−1 ∈ Rd,

inf
θ∈Θ

gθ(Xt|Xt−1) > 0, (5.2)

and

sup
θ∈Θ

gθ(Xt|Xt−1) <∞. (5.3)
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2. We also obtain,

b+ = sup
θ

sup
Xt,k

gθ(Xt | k) <∞ (5.4)

and

E
∣∣∣∣log inf

θ
gθ(X1 |X0)

∣∣∣∣ <∞. (5.5)

Proof. 1. Using δu ≤ mink λl,k, for all Xt,

gθ(Xt|Xt−1) ≤ 2K

(2πδu)d/2
< +∞

since exp(−1
2u) ≤ 1 for all u ≥ 0 and aij < 1 for all i, j = 1, . . . ,K. On the other hand, by

compactness of Θ, we can choose M > 0 such that ‖µk‖ ≤M,k = 1, . . . ,K. Then,

gθ(Xt|Xt−1) ≥ max
i,j

aij
a−

(2π)
d
2 |Σj |

1
2

exp

(
−1

2
(Xt − µj)′Σ−1

j (Xt − µj)
)

≥ max
j

a2
−

(2πδu)
d
2

exp

(
− 1

2δu
‖Xt − µj‖2

)
≥

a2
−

(2πδu)
d
2

exp

(
− 1

2δu
(‖Xt‖+M)2

)
> 0

as gθ( | ) sums over positive terms, each of the summand is less than the sum and the first
inequality follows since aQt−2,i ≥ a−. The second equation follows using mini,j aij ≥ a− and
(3.1). Finally, the third equation uses the compactness assumption as in (3.2) and the fact
that exp(−1

2u) is decreasing on the positive real line.

2. By definition and moving along the same line of arguments as in the proof of part 1.
above, we see that b+ is trivially dominated by a positive constant. Hence the first part of our
assertion holds. For the expectation in the second part, we get from the above development:

2K

δσ
≥ inf

θ
gθ(X1|X0) ≥

a2
−

(2πδu)
d
2

exp

(
− 1

2δu2
(‖Xt‖+M)2

)
Henceforth, there exist a positive constant C such that∣∣∣∣log inf

θ
gθ(X1|X0)

∣∣∣∣ ≤ C +
(‖X1‖+M)2

2δ2
u

.

Using the stationarity and 2nd moment assumption for Xt, the assertion follows.

Proof of Proposition 3.2 and Theorem 3.1:

Under our conditions, the proof of Proposition 3.2 follows along the lines of the proof of
Theorem 1 of Stockis et al. [11], which implies that {(Qt,Xt)} is not only geometrically
ergodic, but also irreducible and aperiodic, and every compact set is a petite set. Choosing
only the θ for which the drift (one could choose a completely different drift function here)
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condition is fulfilled, the transition kernel of the combined Markov process {(Qt,Xt)} is
positive Harris recurrent. Therefore, assumption (A2) of Douc et al. [3] is satisfied. Then,
Proposition 3.2 follows from going through the proof of Proposition 2 of Douc et al. [3],
where we only have to check, if their other assumptions are satisfied too. Our assumptions
A.3.2 represents (A1) of Douc et al., (A3) is implied by our Lemma 5.1 below, and (A4) is
immediate from the representation (5.1) of gθ(Xt|Xt−1).

Marking that any stationary process {Zt}t≥0 can be extended to a two-sided process {Zt}−∞<t<∞,
see e.g. Theorem 4.8 of Krengel [7], our Theorem 3.1 follows from Theorem 1 of Douc et
al. [3] once we have checked their conditions. (A1)-(A4) have been discussed already in
the previous paragraph. The identifiability condition(A5) follows immediately from our
Assumption 3.4. Finally, the required geometric ergodicity follows from Proposition 3.1.

In the next lemma, Θ∗ ⊂ Θ denotes an open neighborhood of θ∗ contained in Θ which exists
by A.3.1. Again, to stress the dependence on the model parameters, we write Aθ, akl(θ) for
the transition matrix of {Qt} and its elements.

Lemma 5.2. Consider A.3.1 to A.3.3 hold. It follows

(a) for all k, l ∈ {1, . . . ,K} and Xt ∈ Rd, the functions

θ 7−→ akl(θ) and θ 7−→ gθ(Xt|k)

are twice continuously differentiable on Θ∗.

(b)

sup
θ∈Θ∗

sup
k,l
‖∇θ log akl(θ)‖ <∞ and sup

θ∈Θ∗
sup
k,l
‖∇2

θ log akl(θ)‖ <∞

(c)

E
{

sup
θ∈Θ∗

sup
k
‖∇θ log gθ(X1|k)‖

}
<∞ and E

{
sup
θ∈Θ∗

sup
k
‖∇2

θ log gθ(X1|k)‖
}
<∞.

Proof. The first part of (a) and (b) follow immediately from the fact that the transition
probabilities akl(θ) are parameters themselves or, for l = K, linear functions of the param-
eters. Additionally, let us recall that gθ(Xt|k), the conditional density of Xt given that the
hidden process is in state k, is a multivariate Gaussian density and in particular

Gk(θ) = log gθ(Xt|k)

= −d
2

log 2π − 1

2
log |Σk| −

1

2
(Xt − µk)′Σ−1

k (Xt − µk)

= −d
2

log 2π − 1

2
log |Σk| −

1

2
d2
Σk
, (5.6)

therefore, the required differentiability of gθ(Xt|k), in (a), follows trivially.

For the rest of the proof of (c), it is enough to investigate and control the first and sec-
ond order partial derivatives of Gk(θ) with respect to the entries of states means µk and
covariances Σk.
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It is easy to observe that the partial derivatives which include only the entries of the state
means are straightforward and using some matrix algebra could be written in the vector
form as (see (7.7) and (3.9) in Harville [6])

∂

∂µk
Gk(θ) = −2Σ−1

k (Xt − µk), (5.7)

and
∂

∂µk∂µ
′
k

Gk(θ) = 2Σ−1
k . (5.8)

However, using the matrix differentiation as exposed in Harville [6], for the more general
framework including the covariance matrices component, for all i, j = 1, . . . , d, we have,

∂

∂Σk,ij
log |Σk| = tr

(
Σ−1
k

{
∂

∂Σk,ij
Σk

})
. (5.9)

Since Σk is non singular, we derive, using ΣkΣk = Id,

∂

∂Σk,ij
Σ−1
k = −Σ−1

k

{
∂

∂Σk,ij
Σk

}
Σ−1
k . (5.10)

Additionally, recalling the symmetric property of Σk and considering uj( the jth-column of
the identity matrix Id),

∂

∂Σk,ij
Σk =

{
uiu
′
i i = j

uiu
′
j + uju

′
i i > j or i < j

.

Therefore,

∂2

∂Σk,ij∂Σk,ul
Σk = 0d×d, for all i, j, u, l = 1 . . . , d. (5.11)

Using (5.10), we then derive, for all i, j = 1 . . . , d,

∂

∂Σk,ij
d2
Σk

(Xt,µk)

=
∂

∂Σk,ij
tr
(
(Xt − µk)′Σ−1

k (Xt − µk)
)

=
∂

∂Σk,ij
tr
(
Σ−1
k (Xt − µk)(Xt − µk)′

)
= tr

(
−Σ−1

k

{
∂

∂Σk,ij
Σk

}
Σ−1
k (Xt − µk)(Xt − µk)′

)
Similarly, using (5.9) to (5.11) and allowing for repetitions of the covariances entries, i.e.,
for all i, j, u, l = 1 . . . , d,

∂2

∂Σk,ij∂Σk,ul
log |Σk|

= tr

(
∂

∂Σk,ul
Σ−1
k

∂

∂Σk,ij
Σk

)
= tr

(
−Σ−1

k

{
∂

∂Σk,ul
Σk

}
Σ−1
k

{
∂

∂Σk,ij
Σk

})
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and

∂2

∂Σk,ij∂Σk,ul
d2
Σ(Xt,µk)

= tr

(
Σ−1
k

{
∂

∂Σk,ul
Σk

}
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k (Xt − µk)(Xt − µk)′

)
+ tr

(
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k

{
∂

∂Σk,ul
Σk

}
Σ−1
k (Xt − µk)(Xt − µk)′

)
.

We can now derive the partial derivatives with respect to the covariance entries, i.e., for all
i, j = 1, . . . , d,

∂

∂Σk,ij
Gk(θ) (5.12)

= −tr
(

Σ−1
k

{
∂

∂Σk,ij
Σk

})
+ tr

(
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k (Xt − µk)(Xt − µk)′

)
.

Moreover, the second order partial derivatives with respect to the covariance entries and
allowing for repetitions, i.e for all i, j, u, l = 1, . . . , d, are given by

∂2

∂Σk,ij∂Σk,ul
Gk(θ) (5.13)

= tr

(
Σ−1
k

{
∂

∂Σk,ul
Σk

}
Σ−1
k

{
∂

∂Σk,ij
Σk

})
+tr

(
Σ−1
k

{
∂

∂Σk,ul
Σk

}
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k (Xt − µk)(Xt − µk)′

)
+tr

(
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k

{
∂

∂Σk,ul
Σk

}
Σ−1
k (Xt − µk)(Xt − µk)′

)
.

Finally, the cross second order partial derivatives, with respect to the µk and the entries of
the covariances matrices, are given by

∂2

∂µk∂Σk,ij
Gk(θ) = 2Σ−1

k

{
∂

∂Σk,ij
Σk

}
Σ−1
k (Xt − µk) (5.14)

and, using relation (3.7) in [6],

∂2

∂Σk,ij∂µk
Gk(θ) (5.15)

= −
[
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k

+

(
Σ−1
k

{
∂

∂Σk,ij
Σk

}
Σ−1
k

)′]
(Xt − µk).

We have designed expressions for first and second order partial derivatives. To conclude
with the proof, we need to observe that, for the control of the expectations of the norms of
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some of the above partial derivatives as desired in the statement of the Lemma, e.g. (5.11)
where the trace is involved, we make use of

(VecA)′(VecB) = trAB,

where Vec is the vectorization operator. Furthermore, applying the Cauchy-Schwartz in-
equality

|(VecA)′(VecB)| ≤ ‖VecA‖‖VecB‖.

For other partial derivatives, e.g., (5.8), we just need to use the definition of a matrix norm
or for some other, e.g., (5.7), remark that for any suitable matrix A and a vector X the
induced norm satisfies

‖AX‖ ≤ ‖A‖‖X‖.

Together with the compactness of the parameter set Θ, we can conclude with the proof of
the Lemma by means of some straightforward calculations.

Before we embark with the proof of asymptotic normality, let us state an additional auxiliary
result.

Lemma 5.3. If A.3.1 to A.3.2 and, additionally, E‖Xt‖2 <∞ hold then

1. There exists a function f0 : Rd 7−→ R+ satisfying Ef0(Xt) <∞, such that

sup
θ∈Θ∗

gθ(Xt|k) ≤ f0(Xt)

for all Xt ∈ Rd.
2. There exist functions f1, f2 : Rd 7−→ R+ satisfying Efi(Xt) < ∞, for i = 1, 2, such

that

‖∇θgθ(Xt|k)‖ ≤ f1(Xt) and ‖∇2
θgθ(Xt|k)‖ ≤ f2(Xt)

for all Xt ∈ Rd.

Proof. We use the notation

gk(θ) = gθ(Xt | k) = exp(Gk(θ))

1. follows immediately with a constant f0 from 0 < gk(θ) ≤ 1
δσ

which we have shown above.

For showing 2., let γk, ρk represent an arbitrary selection of µk or Σk entries, with repetitions
allowed. We have

∂gk(θ)

∂γk
=
∂Gk(θ)

∂γk
gk(θ), (5.16)

and

∂2gk(θ)

∂γk∂ρk
=

(
∂2Gk(θ)

∂γk∂ρk
+
∂Gk(θ)

∂γk

∂Gk(θ)

∂ρk

)
gk(θ) (5.17)

where Gk(θ) and its partial derivatives are given in the proof of Lemma 5.2. The conclusion
follows using similar idea as in the proof of Lemma 5.2, part (c).
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Proof of Theorem 3.2:

Proof. The assertion follows from Theorems 3 and 4 of Douc et al. (2004). We have already
discussed in the proof of Theorem 3.1 that their assumptions (A1) to (A5) are fulfilled. The
remaining assumptions (A6)-(A8) follow from Lemma 5.2 and 5.3.
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