
Fibre Processes and their Applications

Na Zhang

Faserprozesse und ihre Anwendungen

Na Zhang

Vom Fachbereich Mathematik

der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

1. Gutachter: Prof. Dr. Jürgen Franke

2. Gutachter: Prof. Dr. Aila Särkkä

Datum der Disputation: 28. Mai 2013

D 386

Abstract

The main purpose of the study was to improve the physical properties of the modelling of
compressed materials, especially fibrous materials. Fibrous materials are finding increasing
application in the industries. And most of the materials are compressed for different appli-
cations. For such situation, we are interested in how the fibre arranged, e.g. with which
distribution. For given materials it is possible to obtain a three-dimensional image via micro
computed tomography (µCT). Since some physical parameters, e.g. the fibre lengths or the
directions for points in the fibre, can be checked under some other methods from image, it
is beneficial to improve the physical properties by changing the parameters in the image.

In this thesis, we present a new maximum-likelihood approach for the estimation of pa-
rameters of a parametric distribution on the unit sphere, which is various as some well known
distributions, e.g. the von-Mises Fisher distribution or the Watson distribution, and for some
models better fit. The consistency and asymptotic normality of the maximum-likelihood es-
timator are proven. As the second main part of this thesis, a general model of mixtures
of these distributions on a hypersphere is discussed. We derive numerical approximations
of the parameters in an Expectation Maximization setting. Furthermore we introduce a
non-parametric estimation of the EM algorithm for the mixture model. Finally, we present
some applications to the statistical analysis of fibre composites.

Chapter 1 establish some fundaments of the study, i.e. the point processes and the fibre
processes in 3D, and a briefly introduction of the software MAVI and the models of fibre
systems.

The well known von Mises-Fisher distribution and Watson distribution are introduced
in Chapter 2. Furthermore we focus on the Schladitz distribution, which we mainly worked
with. The Schladitz distribution is a special case of the angular central Gaussian distribution
(ACG distribution). Finally in this Chapter a comparison of the Watson distribution and
the Schladitz distribution is made.

A maximum-likelihood approach for the estimation of the parameter of Schladitz distribu-
tion is introduced in Chapter 3 and consistency and asymptotic normality of the maximum-
likelihood estimator are proven. A numerical approximation of the maximum-likelihood
estimator is performed for some fibre composites.

Chapter 4 presents a general model of mixtures of Schladitz distributions. We derive
numerical approximations of the parameters in an expectation maximization setting. The
consistency of the EM estimator is proven. A non-parametric estimation of the EM algorithm
for the mixture model is also discussed here.

i

ii

Acknowledgements

First and foremost I would like to thank my supervisor Prof. Jürgen Franke. It has been an
honor to be his PhD student. I have very much appreciated all his contributions of ideas,
time and helping me with the funding during my PhD experience. He has taught me how
excellent and useful statistic is.

I would also like to thank Dr. Claudia Redenbach. She has supported me in my daily
research, supplied me with useful advice and many tips. Additionally, I am also thankful for
the excellent example she has provided as a successful woman researcher.

The members of the statistic group have contributed immensely to my PhD time in
Kaiserslautern. The group has been a source of friendship as well as good advice and
cooperation. I owe thanks to all members of my group.

The members of the image processing group at Fraunhofe ITWM have contributed to
the software MAVI and testmaterials for my PhD. I would like to acknowledge all the group
members, especially Katja Schladitz and Oliver Wirjadi. They provided useful advice and
examples.

My PhD was supported by the (CM)2 (Center for Mathematical and Computational
Modelling). I would like to thank all the members of (CM)2, they have helped me to
understand the various aspects of mathematics and the possibility of co-work with other
subjects.

And, not the least, I thank my parents. They not only brought me into the world, but
also constantly showed a great interest in my work and research. I thank my husband Pu
Huang for providing unconditional love and care. I also thank my friends (too many to list
here but you know who you are!) the providing support and the friendship that I needed.

I would also like to thank all people who supported me in writing this thesis.

iii

iv

Nomenclature

M (a, b, z) Kummer’s function of the first kind

(a)n Rising factorial

∗ Convolution

λ Intensity measure

νd Lebesgue measure

1IB Indicator function of B

⊕ Kronecker product

Φ Point process

φ−x φ−x = {y + x : y ∈ φ}

Ψ Random measure

R
d d−dimensional Euclidean space

S Convex ring

sec sec(β) = 1
cos(β)

d
= With the same distribution

L→ Convergence in law

Var Variance

P−−→ Convergence in probability

pFq Hypergeometric function

gσ Gaussian convolution filter

H Hessian matrix

h1 1-dimensional Hausdorff measure

Iν Modified Bessel function of the first kind and order ν

v

vi

r−1φ r−1φ = {r−1y : y ∈ φ}

SOd Group of all d× d special orthogonal matrix

tr Trace of matrix

vec Vector formed by stacking the columns of matrix

cond Condition number of normal matrix

det Determinant

Contents

Abstract ii

Acknowledgements iv

Normenclature vi

1 Fundaments 1

1.1 Spatial point processes . 1

1.2 Spatial fibre processes . 2

1.3 Fibre orientations with MAVI . 4

1.4 Geometric models for fibre systems . 5

2 Distributions in 3D 7

2.1 The von Mises-Fisher distribution . 7

2.2 The Watson distribution . 10

2.3 The angular central Gaussian distribution and the Schladitz distribution . . 15

2.4 Differences between the Watson distribution and the Schladitz distribution . 18

3 Maximum-likelihood Estimation 33

3.1 Maximum-likelihood estimation of β . 33

3.2 Evaluation of the numerical estimator . 37

3.3 Applications . 38

3.4 Goodness-of-fit . 41

3.5 Discussion . 44

4 Mixtures of Schladitz Distributions 45

4.1 Introduction . 45

4.2 Mixtures of ACG Distributions . 45

4.3 Mixtures of the Schladitz Distributions . 52

4.4 Applications . 60

4.5 A smooth non-parametric estimate for spherical densities using Gaussian mix-
tures . 62

A Application Results 70

B Curriculum Vitae 79

vii

viii Abstract

Bibliography 80

Chapter 1

Fundaments

1.1 Spatial point processes

A point process is a random collection of points falling in some space. In one dimension, each
point represents the time when a particular event occurs. A spatial point process is a random
collection of points falling in d-dimensional space (d ≥ 2). In most applications, each point
represents the location of an event. Examples of events include receiving emergency calls in
a hospital, sightings of birds in a view point or occurrences of earthquakes or floods. These
point processes play a very important role in stochastic geometry, especially as the fundamental
components of the fibre processes.

We use the following notations and concepts:

(i) E is a locally compact space with countable base. The space E is equipped with the Borel
σ− field B(E).

(ii) The space M = M(E) is the set of all locally finite measures on E.

(iii) The space N = N(E) is the set of all locally finite counting measures on E.

(iv) M is the smallest σ−algebra on M such that the mapping µ 7→ µ(B) is measurable for
all measurable sets B ∈ B(E).

(v) N is the trace of M on N .

There are several ways of characterizing a point process. Here we use the definition of Stoyan
et al. (2008).

Definition 1.1.1 (Random measure, point process)
Let (Ω,A,P) be a probability space. A random measure on E is a measurable mapping
Ψ from (Ω,A,P) into (M,M). A point process on E is a measurable mapping Φ from a
probability space (Ω,A,P) into (N,N).

Definition 1.1.2 (Stationary, isotropic random measure)
Let E = R

d. A random measure Ψ on R
d is called

• stationary, if Ψ
d
= Ψ+ x for all x ∈ R

d.

• isotropic, if Ψ
d
= νΨ for all ν ∈ SOd.

1

2 Chapter 1 Fundaments

where A
d
= B denotes that A and B have the same distribution. and SOd denotes the group

of all d× d special orthogonal matrix.

Definition 1.1.3 (Intensity measure of point process)
The intensity measure Λ of a point process Φ is the measure Λ on (E,B(E)) defined as

Λ(B) := E[Φ(B)], B ∈ B(E)

Definition 1.1.4 (Poisson point process)
Let E be defined as in Definition 1.1.1. A Poisson process on E is a simple point process Φ
with the following properties:

(i) For pairwise disjoint Borel sets A1, · · · , Ak the random variables Φ(A1), · · · ,Φ(Ak) are
independent.

(ii) For each A ∈ B(E) with Λ(A) < ∞, the random variable Φ(A) has a Poisson dis-
tribution. Since EΦ(A) = Λ(A), the parameter of the Poisson distribution is Λ(A),
hence

P(Φ(A) = k) = e−Λ(A)Λ(A)
k

k!
.

1.2 Spatial fibre processes

The theory of fibre processes is similar to the theory of point processes. In the case of stationarity
(the most cases of application models) one basic characteristic is the intensity, i.e. the mean
fibre length per unit area. Fibre processes also associate directions to their constituent points and
this leads to a further important characteristic: the rose of directions. Statistical investigation
begins with estimation of intensity and rose of directions and furthermore consider the suitability
of various stochastic models for the sample. Such stochastic models of these systems are called
fibre processes.

A fibre is a sufficiently smooth simple curve in the space, of finite length.

Definition 1.2.1 (Fibre)
A fibre γ is a subset of R3 which is the image of a curve γ(t) = (γ1(t), γ2(t), γ3(t)) such that:

(i) γ : [0, 1] → R
3 is continuously differentiable,

(ii) |γ′(t)|2 = |γ′
1(t)|2 + |γ′

2(t)|2 + |γ′
3(t)|2 > 0 for all t,

(iii) the mapping γ is injective, so that a fibre does not intersect itself.

Remark 1.2.2
γ is also used for denoting the measure

γ(B) = h1(γ ∩ B) =

1
∫

0

1IB(γ(t))
√

(γ′
1(t))

2 + γ′
2(t))

2 + γ′
3(t))

2dt

for B ∈ B(R3), where h1 is the 1-dimensional Hausdorff measure and 1IB is the indicator
function of B. It represents the length of the part of the fibre γ, which lies in B.

1.2 Spatial fibre processes 3

Definition 1.2.3 (Fibre system)
A fibre system φ is a closed subset of R3 which

(i) can be represented as

φ =
∞
⋃

i=1

γ(i)

for fibres γ(i),

(ii) for any compact set K ⊂ R
3, K ∩ γ(i) 6= ∅ only for finitely many i.

(iii)
γ(i)((0, 1)) ∩ γ(j)((0, 1)) = ∅ if i 6= j.

It excludes fibres which are crossing, but it is possible that an endpoint of one fibre
touches another fibre (like a T-intersection).

Definition 1.2.4 (Length of the fibre system)
The corresponding length measure of the fibre system φ is defined as

φ(B) =
∑

γ(i)∈φ

γ(i)(B) =
∑

γ(i)∈φ

h1(γ
(i) ∩B)

for B ∈ B(R3), i.e. the total length of all fibres of φ, which lie in B. Here again h1 is the
1-dimensional Hausdorff measure, which is equal to the length of the curve.

Note that, the measure φ depends only on the closed set that is the union of all the fibres.
The family of all spatial fibre systems D is endowed with a σ-algebra D generated by sets of

the form
{φ ∈ D : φ(B) < x}

for x ∈ R and B ∈ B(R3) compact.

Definition 1.2.5 (Fibre process)
A fibre process Φ is a random variable with values in [D,D], i.e. a measurable mapping from
[Ω,A, P] to [D,D].

Note that Φ is also used to denote the corresponding random length measure. The distribution
of the fibre process P is defined as

P (D) = P ({ω : φ(ω) ∈ D})

for D ∈ D.

Definition 1.2.6 (Stationary, isotropic fibre process)
The fibre process Φ is stationary if it has the same distribution as the translated fibre process
Φx. Thus

P (Y) = P (Yx) for all Y ∈ D and all x ∈ R
3

where Yx = {φ ∈ D : φ−x ∈ Y }. It is isotropic if the distribution remains invariant under
rotations about the origin. Thus

P (Y) = P (rY) for all Y ∈ D and r rotation about the origin

4 Chapter 1 Fundaments

where rY = {φ ∈ D : r−1φ ∈ Y } . For the notations φ−x and r−1φ, we have

φ−x = {y + x : y ∈ φ}
r−1φ =

{

r−1y : y ∈ φ
}

Definition 1.2.7 (Intensity of fibre process)
The intensity measure Λ of a fibre process is given by

Λ(B) = E(Φ(B)) = E

(

∑

γ∈φ
h1(γ ∩ B)

)

for B ∈ B(R3). If Φ is stationary, the intensity LV of Φ is the mean fibre length per unit
volume, i.e.

Λ(B) = LV ν3(B) = E(Φ(B))

where νd denotes the Lebesgue measure, in the case d = 3 the Lebesgue measure is equal to
the volume measure.

Definition 1.2.8 (Rose of directions)
The rose of directions R is defined as a measure on the projective plane of the spatial system
of all straight lines through the origin. The corresponding σ−algebra L is the system of
all spatial Borel sets which are unions of lines through the origin. The quantity R of a
stationary spatial fibre process Φ is defined by

R(A) =
1

LV ν3(B)
E

∫

B

1I(l(x) ∈ A)(x)Φ(dx)

 for A ∈ L

If γ is a fibre, x = γ(t) for some 0 < t < 1, then l(x) is the fibre tangent line through x.

1.3 Fibre orientations with MAVI

For the estimation of the parameters of fibre distributions in 3D we need to get the rose of
directions, or to put it simply, a sample of fibre directions, which are chosen from the points
in the fibre system. We use MAVI to obtain the fibre directions during our works. MAVI is a
software tool for 3D image processing, developed by Fraunhofer ITWM (2012).

Firstly it yields a 3D image of fibre system obtained by micro computer tomography (µCT).
Then, MAVI measures the local fibre direction in each fibre voxel with use of a method based on
partial second derivatives, i.e. the Hessian matrix Wirjadi (2009).

Let σ be the scale parameter of an isotropic Gaussian convolution filter gσ. Then the Hessian
matrix at scale σ for a d−dimensional image is defined as

H =

fx1x1 · · · fx1xd

...
. . .

...
fxdx1 · · · fxdxd

(1.1)

1.4 Geometric models for fibre systems 5

where

fxixj
=

∂2

∂xi∂xj

f ∗ gσ

are the partial second derivatives, i.e., more detailed,

fxixj
(t) =

∫

Rd

∂2

∂xi∂xj

f(t− u)gσ(u)du

where gσ is the density of the d-variate Gaussian distribution with mean 0 and covariance matrix
σId, Id denoting the unit matrix. Therefore, H is a matrix of locally smoothed second derivation
which can be estimated easier from randomly distributed data. As the order of differentiation
is unimportant, the matrix H is symmetric. The second order gradient in direction v can be
computed as

∇2
v = vtHv

Low curvatures are expected along a fibre, which implies that ∇2
v is minimized if v is the tangent

vector to the fibre direction in a fibre point x. Therefore, the local direction v(x) in a pixel x
is given by the eigenvector corresponding to the smallest eigenvalue of H in x. In practice, the
scale parameter σ should be chosen as the mean radius of the fibres in the data.

Additionally MAVI have also other functions, which are used during our works, such as the
function “crop” can crop a large image in some small images. This function is mainly used for
measuring the local directions for some materials consistency of several layers. It is possible to
measure the directions of corresponding fibres in each layer. An example of such material can be
found in 3.3.

Further informations on MAVI can be found in the handbook of ITWM (2012).

1.4 Geometric models for fibre systems

In this section we discuss the models used to simulate the structure of fibre systems in which
the fibre positions are represented by sets of random cylinders in 2D or 3D. There are two
common geometric models for fibre systems, i.e. Poisson cylinder model and Random Sequential
Adsorption (RSA) model. Here we make a brief introduction of RSA model, which we use mainly
in our work. The main difference between both models is that Poisson cylinder model produces
overlapping fibres and RSA model produces non-overlapping fibres.

Both models start with an empty observation window W . Size, shape and direction of a
particle are drawn from given distributions. Then, a position for this object is suggested from
a uniform distribution on W . By the Poisson cylinder model, this procedure is repeated until a
given number of fibres is obtained. On the other hand it requires a reject-accept process by the
RSA model. If the newly introduced particle overlaps with any of the previously placed objects,
the proposal is rejected. Otherwise, the proposal is accepted and the particle is placed inside W .
This procedure is repeated until either a given volume fraction is obtained or the jamming limit
has been reached, which means that it is not possible to place any further particles into W .

The pseudo code of RSA model for simulation fibres reads in Algorithm 1

6 Chapter 1 Fundaments

Algorithm 1 Simulate Fibres of the RSA model

Require: a window W, a natural number n ≥ 0 as the capacity of fibres in window W (not
necessary), a maximal permitted run time t > 0 and some fibre parameters for description
of the fibre F, e.g. the fibre length l, the fibre radius r.

Ensure: maximal n non-overlapping fibres in the Window W.
Simulation
place a fibre in window W and mark F as F1

while run time <t do
for i = 1 → n− 1 do

place a new fibre F in the window W
if F ∩ F1 ∩ · · · ∩ Fi = ∅ then

accept F and mark F as Fi+1

else
reject F

end if
end for

end while
return the fibre system F1, · · · , Fk (k ≤ n)

Chapter 2

Distributions in 3D

We make in this chapter a brief introduction of some 3D distributions, which are used by our
research.

Several models for the distribution of spherical data in 3D can be found in the literature.
These include the von Mises-Fisher distribution and the Watson distribution. Common to these
distribution families is that their probability density elements can be written in the form CeT ,
where C is a normalization constant which varies for every model and T is a function with several
parameters for the location and spherical shape of the distribution (see Fisher et al. (1993) for
an overview). Furthermore a new distribution called the Schladitz distribution Schladitz et al.
(2006) will also be introduced. The Schladitz distribution is a special case of the angular central
Gaussian distribution, introduced in Schladitz et al. (2006) and Ohser and Schladitz (2009). The
density function of the Schladitz distribution is no more of the form CeT . In the end of this
subsection we will discuss the differences between the density function of the Watson distribution
and of the Schladitz distribution.

In the following we use the polar coordinates (θ, φ) (θ the colatitude, φ the longitude) to
describe a point on the unit sphere in 3D.

2.1 The von Mises-Fisher distribution

Definition 2.1.1 (von Mises-Fisher distribution)
A d-dimensional unit random vector x (i.e. x ∈ R

d and ‖x‖ = 1) is said to have d-variate
von Mises-Fisher distribution if its density function is given by

fF (x) = CFd
(κ) exp(κµTx) (2.1)

where κ ≥ 0, ‖µ‖ = 1 and the normalization constant CFd
(κ) is equal to

CFd
(κ) =

κd/2−1

(2π)d/2Id/2−1(κ)
(2.2)

where Iν(·) represents the modified Bessel function of the first kind and order ν, given in
series form by

Iν(x) =
∞
∑

m=0

1

m!Γ(m+ ν + 1)

(x

2

)2m+ν

7

8 Chapter 2 Distributions in 3D

Especially if d = 3, the normalization constant reduces to

CF3 = κ/(4π sinhκ) = κ/(2π(exp(κ)− exp(−κ)))

and in this case, using polar coordinates, the density fF is given by

fF (θ, φ) = CF3(κ) exp(κµ
Tx(θ, φ))

with

x(θ, φ) =

sin θ cosφ
sin θ sinφ

cos θ

 .

The parameter µ is the location parameter called the mean direction, and the distribution
shows the rotational symmetry about this direction. κ is a shape parameter called the con-
centration parameter, which characterizes how strongly the unit vectors drawn according to the
distribution fF (x) are concentrated about the mean direction µ. The greater the value of κ,
the stronger the concentration of the distribution about the mean direction. In extreme cases
the distribution is uniform on the sphere S

d−1 for κ = 0, and the distribution tends to total
concentration at µ, i.e. the point density as κ → ∞.

Fisher et al. (1981) describes a method to simulate unit vectors from the von Mises-Fisher
distribution. The pseudo code reads as in Algorithm 2.

Figure 2.1 shows points sampled from von Mises-Fisher distributions on the sphere with
different parameter κ. 1000 points were simulated using Fisher’s method. The top subfigures
show the 1000 points distributed on the unit sphere and in the bottom subfigures, a density
estimation is constructed and displayed. The areas with the colour more approach to yellow
describes more intensive the points in these areas distributed and with the colour approach to
red otherwise. Note that for large κ, the von Mises-Fisher distribution is stark polar distribution,
there exist as many points by the south pole as by the north pole, but unfortunately it shows
only the points by the north pole in our figure.

An estimation method based on a series of independent measurements drawn from a von
Mises-Fisher distribution is given by Banerjee et al. (2006) by maximizing the log-likelihood.

Let X be a finite set of sample unit vectors drawn independently from a von Mises-Fisher
distribution, i.e.

X =
{

xT
i ∈ S

d−1|xT
i drawn from f(θ, φ) for 1 ≤ i ≤ n

}

Then the maximum likelihood estimates for the parameters µ, κ are given by

µ̂ =
r

‖r‖ =

∑n
i=1 xi

‖∑n
i=1 xi‖

κ̂ = A−1
d (r̄) = A−1

d

(‖∑n
i=1 xi‖
n

)

where

r =
n
∑

i=1

xi and Ad(κ) =
Id/2(κ)

Id/2−1(κ)

2.1 The von Mises-Fisher distribution 9

Algorithm 2 Simulate data from the von Mises-Fisher distribution (Fisher’s Method)

Require: a natural number n > 0, a non-negative real number κ and a direction with the
polar coordinates (α, β)

Ensure: n unit vectors drawn from the von Mises-Fisher distribution with the parameter
κ, rotational symmetry about the axis (α, β)
Main-step: Simulation
λ = exp(−2κ);
for i = 1 → n do
θi = 2arcsin(

√

− log(R1(1− λ) + λ)/(2κ));
φi = 2πR2;

end for
Post-step: rotate the data towards its mean direction
calculate the rotation matrix

A =

cosα cos β cosα sin β − sinα
− sin β cos β 0

sinα cos β sinα sin β cosα

calculate (θ′i, φ
′
i) from

sin θ′i cosφ
′
i

sin θ′i sinφ
′
i

cosθ′i

 = A ·

sin θi cosφi

sin θi sinφi

cosθi

return (θ′i, φ
′
i)

where R1, R2 are independent pseudo-random numbers, which are uniformly distributed
in the interval [0, 1]

10 Chapter 2 Distributions in 3D

*

*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*
*

*

*

*
*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*
*

*

*
*

* *

* *

*

*

*

*

*

*

*
*

**

*

*

*
*

*

*

*

*

* *

*
*

*

*

*

*

*

*
**

*

*

*

**

*

* **
*

*
*

*
*

*

**

*

*

*

*

*

*

* **

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*
**

*

*

**

*

*
*

**

*

**

*
*

*
*

*

*

*
*

* **
**

*

*
*

*

*

* *
*

**
*

**

*
*

*

*

*
*

*

*
*

*

*

*
**

*

*

*
** **

*

*

* *
*

*

* *

*

*

*

**

*
*

*

*

*

*
*

*

*

*

*

*

* *

*

*

**

*

** *

*
*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

**
*

*

*
*

*

*
*

*

*
** *

**
*

*

*

*

*
*

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*
**

* *

*

*
*

**

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

**

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**
*

*

* **

*

*

*

*

*

* *
*

*

*

*
*

*

*
*

*

**

*

*

*

*

*

* *

*
*

*

*

*

*
*

*

*

*

*
*
*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
** *

*

*

*

* *
*

*

*
* *

*

*
*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*
*
*

*

*

*

*

*

*

*

*
*

*

* **
*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*
*

*
*
*

*

*

*
*

*

*

*

* *

*

*

* *

*

*

**

*

*

*

*
*

*

*

*

**

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

**

**

*

**
*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*
*

*
*
*
*

*

**
*
*

*

*

*

*

*

*
*

*

*
*

*

*
*

*

*

*

*

*

*

*

*
*

* *

*
**
**
*

*

*
*

*

*

*

**

*
*

*
*

**
**

*
*

*

*

* *

*

*

*
*

*
**

*

*

* *

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*
*

**
*

*
*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

**

*

*
*

*

*

*

*
*

*

*

*

*
* *

*

*

*

*

*

*

**

*

*

**

*

**
*

*

**
* *

*

*

* *

*

*

*

* **

*

*

**

*

*
*

*
*

* *

*

*

* *

*

*

*

**

*

* **

*

*

**

*

*

*
*

*

*

*

*

*
*

*

* *

*

*
*

* *

*

*

*

*

*
** *

* *

*

*

*

*

*
*

*

**
*

*
*

*

*

*
*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

*

*

*

*
*

**
* *

* *

*

*

*
**

*

*

* ** *
*

*

**
*
**

** *

*
*

*
* *

* *
*

*

*

*

*

*

*

*

*

*

*

* *

*

* *

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

* *

*
*

*
*

*

*

*
* *

* *
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *
*

*

*

* *

*

*

*
*

*

* *
*

*

*

*

*

*

**

*

*

*

*

**

**
*

*

*

*
*

*

*

*

*
*

* *

*
*

*

*

*

*

*

*

*

*

* *

*

*
**

*

*
* *

*

*

*

*
*

*

*

*

*
**

*

*

*

*

**
*

*

*

*

* *

*

**
*

*
*

*
*

**

*
* *

** **
*

*

*

*

*

*

*
*

*

*
*

*

*

*

* *
*

*
*
*

*

*

*

*

*

* *
*

*

*
*

*

*
*

*

*

*

*

*

*

**
*

*
* *

*

* *

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

** *

*

*

*

*
*

*

*

*
*

* *

*

*

** **

*

*

*

**

*

* *

*
*

*

* *
*

*

*

*

*

*
*

*

*
**

*

* *
*

*

*

*

*

**
*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

* *
* *

*

*

*

*
*

* *

*

*

*

*

*

*

*

* *

**
*

*

*

*

*

**

*

*

* *

*

**

*

*

*

*

*

*
*

*

*

*
*

*
*** *

*
*

*
*

* *

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

**

*

*
*

* *

*

* *

*

*

*

*

*
*

*
* *

*

*

*
*

*

*

*
*

*
*

*

*

**
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

**

*
**

*

*
*

*

* *
*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*** *
*

** **
*

*

*

*

*

*
*

*

* **

*

*
**

*

*

*

*

*

*** *
*

*

*

* **

*

*

*

*

*

*

**

*

*
*

*

*

*

*

* *

*
* *

*

*

*
*

*

*

*

*

*

*

* *
*

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*
* *

**

*

*
*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

*

**

*

*

*

*

*

* *

*

**

* *

*

*

**

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

* *

*

*

*
* **

*
*

*

*
*

*

*
*

*

*

*

* *

*

*

* *

*

**

*

*
*

*

*
*
*

*

*
*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

**
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *
*

** **

*

*

*

*
*

*

*
*

*

*

*
**

*
*

*
*

*

*
*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

* *

**
*

*
*

*

*

**

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

**

*
* *

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

* *

** *

** *

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**
* **

*

*

*
*

** *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*
*

*

*
*

*

*
*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*

*

*

*
*

*

**

Figure 2.1: Simulation data from von Mises-Fisher distributions using the Fisher’s Method
for 1000 points with κ = 2 (left) and κ = 50 (right).

A simple approximation of κ is

κ̂ =
r̄d− r̄3

1− r̄2
(2.3)

Sra (2012) improved this approximation by performing a few iterations of Newton’s method,
where the initial value κ0 is calculated from (2.3), and the estimation is obtained from computing
the following two Newton steps

κ1 = κ0 −
Ad(κ0)− r̄

1− Ad(κ0)2 − p−1
κ0

Ad(κ0)

κ2 = κ1 −
Ad(κ1)− r̄

1− Ad(κ1)2 − p−1
κ1

Ad(κ1)

2.2 The Watson distribution

Definition 2.2.1 (the Watson distribution)
A d−dimensional unit random vector x (i.e. x ∈ R

dand ‖x‖ = 1) is said to have d−variate

2.2 The Watson distribution 11

Watson distribution if its density function is given by

fW (x) = CWd
(κ) exp(κ(µTx)2) (2.4)

where ‖µ‖ = 1 and the normalization constant CWd
(κ) is equal to M

(

1
2
, d
2
, κ
)−1

. M
(

1
2
, d
2
, κ
)

is the confluent hypergeometric function known as Kummer’s function of the first kind, which
is defined as

M(a, b, z) =
∞
∑

n=0

(a)nz
n

(b)nn!

where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) is the rising factorial.
Especially if d = 3, the normalization constant reduces to

CW3 = 1

/

4π

1
∫

0

exp(−κu2)du

Again, for d = 3, we write fW (θ, φ) = fW (x(θ, φ)) if we use polar coordinates.
The Watson distribution is the basic model for undirected lines distributed with rotational

symmetry in either bipolar or girdle form, which is determined by the shape parameter κ. For
positive values of κ the distribution is bipolar. The larger the value of κ the more the distribution
is concentrated round the axis µ. For negative values of κ the distribution is girdle. The larger the
value of |κ| the more the distribution is concentrated round the great circle in the plane orthogonal
to the axis µ. The parameter µ is a location parameter, the distribution has rotational symmetry
about this axis and it is called principal axis in the bipolar case and polar axis in the girdle case.

In extreme cases the distribution is uniform on the sphere S
d−1 for κ = 0, the Watson

distribution tends to total concentration at the two ends (the two intersection points of the
principal axis and the unit sphere) for κ → ∞, and the distribution tends to a uniform distribution
on the great circle in the plane normal to the polar axis for κ → −∞.

Best and Fisher (1986) was giving a method to simulate unit vectors from the Watson distri-
bution, which is still in use. The pseudo code reads in Algorithm 3.

Figure 2.2 shows points sampled from the Watson distribution on the unit sphere with different
parameter κ. 1000 points were simulated under the method of Algorithm 3. The left subfigures
show the 1000 points distributed on the unit sphere and the right subfigures display the density
estimation. Note that the Watson distribution describes the axial directions, which are identical
for the upper half-sphere and lower half-sphere, therefore we consider here only the upper half-
sphere.

An estimation based on a series of independent measurements drawn from a Watson distri-
bution is calculated by Fisher et al. (1993) by maximizing the log-likelihood.

Let X be a finite set of sample unit vectors drawn independently from a Watson distribution,
i.e.

X =
{

xT
i ∈ S

d−1|xT
i drawn from fW (θ, φ;µ, κ) for 1 ≤ i ≤ n

}

The corresponding log-likelihood is

l(µ, κ) =
n
∑

i=1

log

(

M

(

1

2
,
d

2
, κ

)−1

· eκ(µT x)2

)

= n

(

κµTSµ− logM

(

1

2
,
d

2
, κ

))

12 Chapter 2 Distributions in 3D

Algorithm 3 Simulate data from the Watson distribution
Require: a natural number n > 0, a real number κ and a direction with the polar coordi-

nates (α, β)
Ensure: n unit vectors drawn from the Watson distribution with the parameter κ, rotational

symmetry about the axis (α, β)
Main-step: Simulation
for i = 1 → n do

if κ > 0 then
C = 1/(exp(κ)− 1);
U = R1, V = R2;
S = 1/κ log(U/C + 1);
while V > exp(κS2 − κS) do
U = R3, V = R4;
S = 1/κ log(U/C + 1);

end while
θi = arccosS;
φi = 2πR0;

else
C1 =

√−κ;
C2 = arctanC1;
U = R1, V = R2;
S = (1/C1) · tan(C2 · U);
while V > (1− κS2) · exp(κS2) do
U = R3, V = R4;
S = (1/C1) · tan(C2 · U);

end while
θi = arccosS;
φi = 2πR0;

end if
end for
Post-step: rotate the data towards its mean direction
calculate the rotation matrix

A =

cosα cos β cosα sin β − sinα
− sin β cos β 0

sinα cos β sinα sin β cosα

calculate (θ′i, φ
′
i) from

sin θ′i cosφ
′
i

sin θ′i sinφ
′
i

cosθ′i

 = A ·

sin θi cosφi

sin θi sinφi

cosθi

return (θ′i, φ
′
i)

where R0, R1, R2, R3, R4 are independent pseudo-random numbers, which are uniformly
distributed in the interval [0, 1].

2.2 The Watson distribution 13

*

**

*

*
**** **
*

*

*
**

*
* *

* *

*

*

**
*

*
*

*

*
*

*** *
*

* ** *
*

*
*

*
*
**

*

**

*

* *
*** *

*
**

* *

**
** **

*

*
*
**
*
**
*

* *

*
*

*

* *******

*
* *

* *
**

**
** * *

*

*
*

**

*

*
*
* ** *

* ***
*
*

* **
*

**

*

* * *
*

*

*
* *

*

*

**
**

*
*

*
* * *

*

* **
*

*

* **
*

*
** *** *

* **

*
*

*

*
*

**
*

*
**
*

*

*** ** **

* ***

* *
*

*

*

*

**

*

*

**

**
*

*
*
*
*

*** **
*
* *

* ****
**

*

*
*

**

*

*
** **
*

*
*

*

*

*
*

*
*

*

*** ****
**

**
*

*
* *

*

*
* *

* *

*

** *

*

*

**

**
*

*

*** *
*

*
*

* ** *

*

*
*

*
*

** ***
*

**
*

*

*

*
**** *** *

**
* *
*
*

*

* *
**
*

*
***** *

*

*
*

**

**

*
*

* ** ***

*
*

*

*
**

*

*

* ** **

**
**

**

**
*

*
**

**
*

* *
*

*

*
** **
*

* *
*

*
*

*

*

*
** *

**
*

*

** *
*

**

*
* **
*

*
*

*

* ** *

*

*

*
** **

*

*

*

* ** *

**
*
* ***

*

* ** ***
*

*
**
*

*

* *** **

*** *
*

* * **
** *

*
* ** **

* *

**
**** **

*

*
*

*** *
** *

** **
*** **

*
**

** ***
* ** * ***

*

*

*
*

*

*

*
*

**
***** *
* *

*
*

*

** ****
*
*** *

* **
*

*
** *

*

*
*
*

*

*
**

*
*

*

*
*

**
* *

*

*

* *
** ****

* *
*

*
*

* **
*

*
*

*
*

*

**

*

*
*

*
*

*
**** *

* *

*
*

* * **
*

*

*

*

*
*

*
*

*
*

*
** *** **

**
*

*
**
*

*

*

**
*
** *

*** **
*** **
*
*

*

*
** ** *
*

* *
*
* ** ****** ***

** **
*

*

*

* *

*
*
*

*
* * *

**

*
**** **

*
**** **

**
*

*

* *

*
* *

*
* **

** * **

*
*

*

*

*

*
* **

*
*

**
*

** *
* *****

*
*

*
* *

**** ** **
* *

* *

*
*

*

*

*

*

**
*
*

* *

*

*
** **
*

*
*

*

**

*

*

*

*

*

*

*
* *

*
*

*

*** **
*

**

*
*
*

*
**

*
**

*
* *

** **

*

*
*

**
*

*

*

*

*

* *

**
**

**
* *

*

*
*

*
**

*
*

*
*

*** *
*

* ** **

*

**

*

*
**** **
*

*

*
**

*
* *

* *

*

*

**
*

*
*

*

*
*

*** *
*

* ** *
*

*
*

*
*
**

*

**

*

* *
*** *

*
**

* *

**
** **

*

*
*
**
*
**
*

* *

*
*

*

* *******

*
* *

* *
**

**
** * *

*

*
*

**

*

*
*
* ** *

* ***
*
*

* **
*

**

*

* * *
*

*

*
* *

*

*

**
**

*
*

*
* * *

*

* **
*

*

* **
*

*
** *** *

* **

*
*

*

*
*

**
*

*
**
*

*

*** ** **

* ***

* *
*

*

*

*

**

*

*

**

**
*

*
*
*
*

*** **
*
* *

* ****
**

*

*
*

**

*

*
** **
*

*
*

*

*

*
*

*
*

*

*** ****
**

**
*

*
* *

*

*
* *

* *

*

** *

*

*

**

**
*

*

*** *
*

*
*

* ** *

*

*
*

*
*

** ***
*

**
*

*

*

*
**** *** *

**
* *
*
*

*

* *
**
*

*
***** *

*

*
*

**

**

*
*

* ** ***

*
*

*

*
**

*

*

* ** **

**
**

**

**
*

*
**

**
*

* *
*

*

*
** **
*

* *
*

*
*

*

*

*
** *

**
*

*

** *
*

**

*
* **
*

*
*

*

* ** *

*

*

*
** **

*

*

*

* ** *

**
*
* ***

*

* ** ***
*

*
**
*

*

* *** **

*** *
*

* * **
** *

*
* ** **

* *

**
**** **

*

*
*

*** *
** *

** **
*** **

*
**

** ***
* ** * ***

*

*

*
*

*

*

*
*

**
***** *
* *

*
*

*

** ****
*
*** *

* **
*

*
** *

*

*
*
*

*

*
**

*
*

*

*
*

**
* *

*

*

* *
** ****

* *
*

*
*

* **
*

*
*

*
*

*

**

*

*
*

*
*

*
**** *

* *

*
*

* * **
*

*

*

*

*
*

*
*

*
*

*
** *** **

**
*

*
**
*

*

*

**
*
** *

*** **
*** **
*
*

*

*
** ** *
*

* *
*
* ** ****** ***

** **
*

*

*

* *

*
*
*

*
* * *

**

*
**** **

*
**** **

**
*

*

* *

*
* *

*
* **

** * **

*
*

*

*

*

*
* **

*
*

**
*

** *
* *****

*
*

*
* *

**** ** **
* *

* *

*
*

*

*

*

*

**
*
*

* *

*

*
** **
*

*
*

*

**

*

*

*

*

*

*

*
* *

*
*

*

*** **
*

**

*
*
*

*
**

*
**

*
* *

** **

*

*
*

**
*

*

*

*

*

* *

**
**

**
* *

*

*
*

*
**

*
*

*
*

*** *
*

* ** **

*

*

*

*

**
*

*

*

*

*

*
*

*

*
*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* **

*

*

*

*

*

*
*

*

*

**

* *

*

*

*
*

*

* *

*

*
**

*

* *

*

*

*

*

*

*

*

*

*

*

*

* *

** *
*

*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*
**

*

*

*

*
**

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*
*

*

*
*

*

* *
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

* *

* *

*

*
*

*
*

*

*

* *

*
*

*

*

*

*
*

*

*

*

*

* *

*

*
**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*
*

*

**
*

*

*

**

*

*

*

*

*

* *

*

*

** *
*

*

*

*

*

*
*

*

*

**

*

*

*
*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*
*

*

* **

*

*

*
*

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
**

*
*
*

* **

*

*

*

*

*

*

*

*

**

* *

*
*

**

*
*

*

*

**

*

*

*

*

* *

*
*

**

*

*

*

*

*

*

* *

*

*
*

*
* **

*

*

**

*
*

*

*

*

*
*

*

*

*
*

**
*

* *
*

*

*

*

*

*

** *

*

*

*

* *

*
*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

* *

*

*

*

*

*

*

*

* *

*
*

*
*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* **

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

**

* *
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

* **

**

*

*

*

*
*

*

*

*

*
**

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*
*

*

*

*
*

*
*

*
*

*
*

* *

*
*

*
*

*
*

*
*

*
**

* *

*

*
*

*

*

*

* *

*

*

*

* **
*

*

**
*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *
*

*
* *

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

**

*

*

*

*

*
*

*
*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*
* *

*
*

*

*

*

*

*

*

*

**

*
*

*

*

** *

*

*
*

*

*

*

*

*
**

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

* *
*

*

*

*

*
*

*

*
*

*
*

*

*

*
**

*

*

*

*

*

*

*
* *

*
*

*

*

*

*

*
*

*

**

*

* **

*

*

*

**

*
*

*

*
*

*
*

*

*

*

*
*

* *

*

*

*

*

* *

*

*

*

*
* *

*

* *

*

*

*

*

* *

*

*

*

*

*

**
*

*

*

*

*

*
*

*

*
*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* **

*

*

*

*

*

*
*

*

*

**

* *

*

*

*
*

*

* *

*

*
**

*

* *

*

*

*

*

*

*

*

*

*

*

*

* *

** *
*

*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*
**

*

*

*

*
**

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*
*

*

*
*

*

* *
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

* *

* *

*

*
*

*
*

*

*

* *

*
*

*

*

*

*
*

*

*

*

*

* *

*

*
**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*
*

*

**
*

*

*

**

*

*

*

*

*

* *

*

*

** *
*

*

*

*

*

*
*

*

*

**

*

*

*
*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*
*

*

* **

*

*

*
*

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
**

*
*
*

* **

*

*

*

*

*

*

*

*

**

* *

*
*

**

*
*

*

*

**

*

*

*

*

* *

*
*

**

*

*

*

*

*

*

* *

*

*
*

*
* **

*

*

**

*
*

*

*

*

*
*

*

*

*
*

**
*

* *
*

*

*

*

*

*

** *

*

*

*

* *

*
*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

* *

*

*

*

*

*

*

*

* *

*
*

*
*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* **

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

**

* *
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

* **

**

*

*

*

*
*

*

*

*

*
**

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*
*

*

*

*
*

*
*

*
*

*
*

* *

*
*

*
*

*
*

*
*

*
**

* *

*

*
*

*

*

*

* *

*

*

*

* **
*

*

**
*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *
*

*
* *

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

**

*

*

*

*

*
*

*
*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*
* *

*
*

*

*

*

*

*

*

*

**

*
*

*

*

** *

*

*
*

*

*

*

*

*
**

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

* *
*

*

*

*

*
*

*

*
*

*
*

*

*

*
**

*

*

*

*

*

*

*
* *

*
*

*

*

*

*

*
*

*

**

*

* **

*

*

*

**

*
*

*

*
*

*
*

*

*

*

*
*

* *

*

*

*

*

* *

*

*

*

*
* *

*

* *

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

* *

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
* *
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

* *

*
*

*

**
* *

*

*

*

*
*

*
** *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*
* *

*

*

*

*

*

*
*

*
**

*

*

*

*

* *
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*
*

*

*
*
*

*
*

*

*

*

*

*
*

*

** *

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

* *

*

*
*

*

*

*

*

*

*

* *

*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

**

*

* *
*

*

*

*

*

*

*

**

*
*

*

*

* *

*

*

*

*
*

*

*

* *

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

* *

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
* *
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

* *

*
*

*

**
* *

*

*

*

*
*

*
** *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*
* *

*

*

*

*

*

*
*

*
**

*

*

*

*

* *
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*
*

*

*
*
*

*
*

*

*

*

*

*
*

*

** *

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

* *

*

*
*

*

*

*

*

*

*

* *

*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

**

*

* *
*

*

*

*

*

*

*

**

*
*

*

*

* *

*

*

*

*
*

*

*

* *

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

* *

*

*

*

*

*
*

* *

*
* *

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

* *

*

* * *

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*
* *

*

*

*

* *
*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

**

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

* *

*
*

**

*

*
*

*
*

*

*

**

*

*

*

**

*

**

*
**

*
*

*
*

*
*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

* **
* *

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*
* **

* **

*

*
*

*
*

*

**

*

*
*

*

* *

*

*

**
* *

*

*

**
*

**

*

*

*

*

*

*

*

*
* *

*

*

*
* *

*

* *

**

*
* *

*

*

*
**

*

*

*

**

*

*

*

*
*

*

**
*

*

*

*
*

*

*
*

*
*

*
*

*

*
*

*

*

*
*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*
*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

**

*

*

*

*

*
*

*

*

*

* *

*

*

**

*

* **

*

*

*
* **

*
*

*
**

*

*

*

*

*
*** *

*

*
*

*

*

*

*

*
*

*

* *
*

*
*

*

*
*

*
*

*

** *

*

**
*

*

*

* *

*

*

*

**
*

*

*
* *

*
*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *
*

*

* *

*

*
*

*
*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

**

*

*

**

*

*
*

*

* *
*

*

*

* *

*

*

*

*

*
*

* *

*
* *

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

* *

*

* * *

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*
* *

*

*

*

* *
*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

**

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

* *

*
*

**

*

*
*

*
*

*

*

**

*

*

*

**

*

**

*
**

*
*

*
*

*
*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

* **
* *

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*
* **

* **

*

*
*

*
*

*

**

*

*
*

*

* *

*

*

**
* *

*

*

**
*

**

*

*

*

*

*

*

*

*
* *

*

*

*
* *

*

* *

**

*
* *

*

*

*
**

*

*

*

**

*

*

*

*
*

*

**
*

*

*

*
*

*

*
*

*
*

*
*

*

*
*

*

*

*
*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*
*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

**

*

*

*

*

*
*

*

*

*

* *

*

*

**

*

* **

*

*

*
* **

*
*

*
**

*

*

*

*

*
*** *

*

*
*

*

*

*

*

*
*

*

* *
*

*
*

*

*
*

*
*

*

** *

*

**
*

*

*

* *

*

*

*

**
*

*

*
* *

*
*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *
*

*

* *

*

*
*

*
*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

**

*

*

**

*

*
*

*

* *
*

*

*

Figure 2.2: Simulation data from the Watson distributions for 1000 points with κ = 20,
κ = 2, κ = −2 and κ = −20 (from top to bottom).

14 Chapter 2 Distributions in 3D

where S = 1
n

∑n
i=1 xix

T
i . After some simple steps by the maximizing l(µ, κ), it leads to the

following parameter estimates for the parameter µ (see Fisher et al. (1993))

µ̂ =

{

sd if κ̂ > 0

s1 if κ̂ < 0

where ±s1, · · · ,±sd are normalised eigenvectors of the matrix S corresponding to the eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λd. The concentration estimate κ̂ is obtained by solving

M ′(1
2
, d
2
, κ̂)

M(1
2
, d
2
, κ̂)

= µ̂TSµ̂ =: r (2.5)

where

M ′
(

1

2
,
d

2
, κ̂

)

=
∂M(1

2
, d
2
, κ̂)

∂κ̂

A reasonable approximation to the solution of (2.5) for d = 3, which was given by Fisher
et al. (1993), is

κ̂ =

3.75× (3s3 − 1) 0.333 < s3 ≤ 0.36

3.34× (3s3 − 1) 0.36 < s3 ≤ 0.65

0.7 + 1/(1− s3) 0.65 < s3 ≤ 0.99

1/(1− s3) s3 > 0.99

for bipolar cases and

κ̂ =

{

−1/(2s1) s1 ≤ 0.06

−(0.961− 7.08s1 + 0.466/s1) 0.06 < s1 ≤ 0.333

for girdle cases.
Sra and Karp (2011) solved (2.5) using a root-finding method (e.g. Newton-Raphson). A

slightly more general equation is to be considered

g(a, c;κ) :=
M ′(a, c, κ)

M(a, c, κ)
= r

Starting at κ0, Newton-Raphson solves the equation g(a, c;κ)− r = 0 by iterating

κn+1 = κn −
g(a, c;κn)− r

g′(a, c;κn)
n = 0, 1, · · ·

After several steps of simplify by rewriting g′(a, c;κ) we can get

g′(a, c;κ) = (1− c/κ)g(a, c;κ) + (a/κ)− (g(a, c;κ))2.

Furthermore, Sra and Karp (2011) provided also an approximation of this solution, i.e.

κ =
cr − a

r(1− r)
+

r2

2cr(1− r)

2.3 The angular central Gaussian distribution and the Schladitz distribution 15

2.3 The angular central Gaussian distribution and the

Schladitz distribution

Definition 2.3.1 (angular central Gaussian (ACG) distribution)
A d-dimensional unit random vector x (i.e. x ∈ R

d and ‖x‖ = 1) is said to have d-variate
angular central Gaussian distribution if its density function is given by

f(x; Σ) = α−1
d [det(Σ)]−1/2(xTΣ−1x)−d/2 (2.6)

where αd = 2πd/2/Γ(d/2) is the surface area of the d-dimensional unit sphere Sd, and espe-
cially if d = 3, α3 = 4π, and Σ is a d× d symmetric positive-definite matrix.

Remark 2.3.2
The ACG density has a number of attractive properties, which are discussed by Tyler (1987)

(i) The ACG density is unique only up to factor of Σ, and there are various methods of
normalization, e.g. tr(Σ−1Σ) = d described by Tyler (1987) or detΣ = 1.

(ii) It is simple to transform between the Gaussian distributions and the ACG distributions.
If W is a sample from a d−dimensional Gaussian Nd(0,Σ) distributed, then

X =

{

Xi : Xi =
wi

‖wi‖
, wi ∈ W

}

is a sample from the density (2.6). If X is a sample from the d-dimensional ACG(Σ)
distributed, then

W =
{

wi : wi = Σ−1/2x/(x−1Σ−1x)1/2, xi ∈ X
}

is a sample from a Gaussian distribution Nd(0,Σ).

(iii) The ACG distribution has the geometric interpretation of a uniform distribution on
the ellipse

{

X : xTΣ−1x = 1
}

.

Definition 2.3.3 (the Schladitz distribution)
A three-dimensional unit random vector x (i.e. x ∈ R

dand ‖x‖ = 1) with altitude θ ∈ [0, π)
and longitude φ ∈ [0, 2π) in polar coordinates is said to have a Schladitz distribution if its
probability density function is given by

f(θ, φ) =
1

4π

β sin θ

(1 + (β2 − 1) cos2 θ)3/2
, (2.7)

Remark 2.3.4
The density can be interpreted as the compression of a uniform distribution on the unit
sphere by a factor β which serves as an anisotropy parameter for the model. Depending on
the value of β both axial and girdle distributions with rotational symmetry around the z-axis
(0, 0, 1)T can be realised: β = 1 describes the isotropic case, i.e., a uniform distribution on
the sphere, β < 1 describes a bipolar axial model with the principal axis (0, 0, 1)T , and β > 1
describes a girdle model with the principal plane in the x-y plane.

16 Chapter 2 Distributions in 3D

Theorem 2.3.5
The Schladitz distribution is a special case of the ACG distribution with d = 3 and 3 × 3
diagonal matrix Σ = diag(1, 1, β−2).

Proof It follows directly from replacing d = 3, Σ = diag(1, 1, β−2) in (2.6) and the translation
of the vector x from the direction cosines to the polar coordinates (θ, φ).

In the following we write A for the Schladitz distribution instead of Σ.
The density described in (2.7) applies only for the case that the sample is rotationally sym-

metric about the z-axis. We discuss here the density function of the Schladitz distribution with
variant principal axis.

Theorem 2.3.6
Let µ = (θ0, φ0) be a three-dimensional unit vector as the principal axis, then the density
function of the corresponding Schladitz distribution is given by

p(θ, φ) =
1

4π

β sin θ

(1 + (β2 − 1)(sin θ0 sin θ cos(φ0 − φ) + cos θ0 cos θ)2)3/2

Proof We include the rotation as part of the model parameters, the density function with
rotation can be shown that

f(x; β, θ0, φ0) = f(x;A)

taking A = QT
θ0,φ0

diag(1, 1, β−2)Qθ0,φ0 , where the rotation matrix Qθ0,φ0 is given by

Qθ0,φ0 =

cos θ0 cosφ0 cos θ0 sinφ0 − sin θ0
− sinφ0 cosφ0 0

sin θ0 cosφ0 sin θ0 sinφ0 cos θ0

and
det(A) = det(QT

θ0,φ0
)det(diag(1, 1, β−2))det(Qθ0,φ0) = β−2

Therefore

p(θ, φ) =
1

4π
[det(A)]−1/2(xT (QT

θ0,φ0
diag(1, 1, β−2)Qθ0,φ0)

−1x)−3/2

=
β

4π

(

(

(

Q−1
θ0,φ0

)T
x
)T

diag(1, 1, β2)
(

(

Q−1
θ0,φ0

)T
x
)

)−3/2

=
1

4π

β sin θ

(1 + (β2 − 1)(sin θ0 sin θ cos(φ0 − φ) + cos θ0 cos θ)2)3/2

This theorem can also be proved under the use of the theorem of transformation for densities.

Proof Since detQθ0,φ0 = 1, Qθ0,φ0 is invertible and it yields

Q−1
θ0,φ0

=

cos θ0 cosφ0 − sin θ0 sin θ0 cosφ0

cos θ0 sinφ0 cosφ0 sin θ0 sinφ0

− sinφ0 0 cos θ0

 = QT
θ0,φ0

2.3 The angular central Gaussian distribution and the Schladitz distribution 17

Let (θ′, φ′) be a three-dimensional Schladitz distribution with principal axis z-axis, and (θ, φ)
comes from (θ′, φ′) with the rotation to the principal axis µ, then we have

sin θ′ cosφ′

sin θ′ sinφ′

cos θ′

 =

x′

y′

z′

= Qθ0,φ0 ·

x
y
z

=

cos θ0 cosφ0x+ cos θ0 sinφ0y − sin θ0z
− sin θ0x+ cos θ0y

sin θ0 cosφ0x+ sin θ0 sinφ0y + cos θ0z

Therefore

θ′ = arccos(z′)

= arccos(sin θ0 cosφ0 sin θ cosφ+ sin θ0 sinφ0 sin θ sinφ+ cos θ0 cos θ)

= g1(θ, φ)

φ′ = arctan(y′/x′)

= arctan

(− sin θ0 sin θ cosφ+ cos θ0 sin θ sinφ

cos θ0 cosφ0 sin θ cosφ+ cos θ0 sinφ0 sin θ sinφ− sin θ0 cos θ

)

= g2(θ, φ)

Then

p(θ, φ)

=
1

2

β sin θ

(1 + (β2 − 1)(sin θ0 cosφ0 sin θ cosφ+ sin θ0 sinφ0 sin θ sinφ+ cos θ0 cos θ)2)3/2

·
∣

∣

∣

∣

det

(

∂(g1(θ, φ), g2(θ, φ))

∂(θ, φ)

)∣

∣

∣

∣

=
1

2

β sin θ

(1 + (β2 − 1)(sin θµ sin θ cos(φ0 − φ) + cos θ0 cos θ)2)3/2

·
∣

∣

∣

∣

det

(

∂(g1(θ, φ), g2(θ, φ))

∂(θ, φ)

)∣

∣

∣

∣

Hence, the matrix
∂(g1(θ, φ), g2(θ, φ))

∂(θ, φ)

and the matrix Q−1
θ0,φ0

describe both the transformation of data from µ−axis to z−axis. The
single difference is the first matrix with the Cartesian coordinates and the second matrix
with the polar coordinates. Therefore

∣

∣

∣

∣

det

(

∂(g1(θ, φ), g2(θ, φ))

∂(θ, φ)

)∣

∣

∣

∣

=
∣

∣detQ−1
θ0,φ0

∣

∣ = 1

18 Chapter 2 Distributions in 3D

For the estimation of the d−dimensional matrix Σ we use here the maximum likelihood
estimation. Given a random sample {xj, 1 ≤ j ≤ n} from a distribution having density of (2.6)
with unknown Σ, the likelihood function for Σ is proportional to

L(Σ) = |Σ|−n
2

n
∏

i=1

(xT
j Σ

−1xj)
− d

2

Tyler (1987) proved that a maximum likelihood estimate for Σ exists if n > d(d− 1) and that it
is unique up to multiplication by a positive scalar. It corresponds to a solution to the equation

Σ̂ = dn−1

n
∑

i=1

xjx
T
j

xT
j Σ̂

−1xj

(2.8)

Furthermore it can also be proven that the maximum likelihood estimate for Σ is asymptoti-
cally normal. Let Σ̂0 represent the solution to (2.8) which is normalized so that tr(Σ−1Σ̂0) = d,
then we have

√
n(Σ̂0 − Σ)

L→ N (0, C(Σ))

where
C(Σ) = (1 + 2d−1)

{

(I +Kd,d)(Σ⊕ Σ)− 2d−1vec(Σ)vec(Σ)T
}

and
L→ denotes convergence in law. As the notation, for matrix Σ, tr(Σ) denotes the trace of Σ,

vec(Σ) represents the vector formed by stacking the columns of Σ, the product ⊕ refers to the
Kronecker product, and Kd,d is the commutation matrix, which satisfies

Kd,dvec(Σ) = vec(ΣT)

Note that the Σ are not unique. We use some standardization, e.g. det(Σ) = 1 or
tr(Σ−1Σ̂0) = d as mentioned above to make it unique.

The pseudo code of simulation reads in Algorithm 4 (see Altendorf (2012))
Figure 2.3 shows points sampled from the Schladitz distribution on the unit sphere with

different parameter β. 1000 points were simulated under the method of Algorithm 4. The top
subfigures show the 1000 points distributed on the unit sphere and the bottom subfigures display
the density estimation. The same as by the Watson distribution, we consider here also only the
upper half-sphere.

We believe that the Schladitz model is useful for applications since, for instance, many mate-
rials are compressed during their production process. Examples of application of the distribution
given by (2.7) can be found in Louis et al. (2011); Redenbach and Vecchio (2011); Schladitz
et al. (2006).

A maximum likelihood approach for the estimation of parameter β in the Schladitz distribution
will be discussed in Chapter 3.

2.4 Differences between the Watson distribution and the

Schladitz distribution

With some slight abuse of notation, we write θ for the colatitude of a random direction as well
as for the corresponding argument of its probability density.

2.4 Differences between the Watson distribution and the Schladitz distribution 19

Algorithm 4 Simulate data from the Schladitz distribution

Require: a natural number n > 0, a non-negative real number β and a direction with the
polar coordinates (θ0, φ0)

Ensure: n unit vectors drawn from the Schladitz distribution with the parameter β, rota-
tional symmetry about the axis (θ0, φ0)
Main-step: Simulation
φ = 2 ∗ π ∗R1

ξ = 2 ∗R2 − 1
η =

√

1− ξ2

if |β − 1| > eps then
norm =

√

ξ2 − ξ2 ∗ β2 + β2

ξ = ξ/norm
η = η ∗ β/norm

end if
θ = arccos(ξ)
Post-step: rotate the data with its mean direction
calculate the rotation matrix

A =

cos θ0 cosφ0 cos θ0 sinφ0 − sin θ0
− sinφ0 cosφ0 0

sin θ0 cosφ0 sin θ0 sinφ0 cos θ0

calculate (θ′i, φ
′
i) from

sin θ′i cosφ
′
i

sin θ′i sinφ
′
i

cosθ′i

 = A ·

sin θi cosφi

sin θi sinφi

cosθi

return (θ′i, φ
′
i)

where R1, R2 are independent pseudo-random numbers, which are uniformly distributed
in the interval [0, 1].

20 Chapter 2 Distributions in 3D

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
* *
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

**

*

*

*

*

*

**

**

*

* *

*

** *

* *

*

*
**

**

*

* *
*

*

*

*

*

*

*

**

*
* *
* *

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

** *

*

**
**

*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

* *

*

*

*

*
*

**

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

* *
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

* *

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *
*

*

*

* ** *

*

*

*

**
*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* **

*
*
*

*

*

*

**

*

*

*

**

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

**

*
**

*

*

*

*

* *

*

*

*

* *
* *

*

*

*

*

**

*

* *

*

*

*

*

*
*

*

*

**

*

*
*

*
*

*

*

*

*
**

*

* * **

*

*

** *** *

*

*

*

*

*

*

*
* *

*

*
*

*
*

*

*

*
*

*

*

* **

*

**
*

* *

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

**
*

* *

*

*

* *

*

*

**
*

*

*

*
*

*
*
**

*

*

*

** *

*

*

* *
*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*
*

** *
**

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* ***

*

*

**

*

*

*

*

*
*

* **

*

*

*

*

*

*

*

** ** **

*

*

*

*
*
*

*
* *

*

*

*

* * *
* *

*

*

*

*

*

*

*

**

*

*

*

*

*
**

*

*
*

*

*
*

*

*

*

**

*

* * *

**

*

*

*

*

*

* **

*

*
* *

*

*

*

*
*

*

*

*

**

*

* *

*

*

* *

*

*

*

*

**

*

*
*

*

*

*

*

*** *

*
*

*

**

*

*
*

*

*

*

* *

*

*
*

*

*

*

*

*
*

*

*
**
*** *

*

*

*

*

*

*

*

*

*

** *
**

*

*
*

*

*

*

*
*

*

*

**
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

**

*

*

* *** *

*

*

**

*

*

**

*

*

*

** *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*
*

*

*
*

*

*
*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*

**

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

* *

*

*

*

*

** *

**

*

*

*

*

*

**

*

*

*

*

*

*

*

**

* *

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

* *

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

* *

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**
*

*

*
**

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*
*

* *

*

*

*

**

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *
*

*
*

*

*

**

*

*

*

*

*

* *

*
*

*

* *

**

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*
*

**

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

**

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*

*

**

* **

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

* *
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*
*

*
*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

** *

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

* *
*

**

*

*

*

*

*
**

*
* *

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

**

*

*

**

*
*

*

*

* *

*

*
*

*
*

*

**

*

**

*
*

*

* *

*
*

*
*

**

* *

* *

*
*

* *

*

*

*
* *

*
**

*

*

*

*

**
*

*

*

*

*

*

*

*

** **

*

*

*

*

*

*

*

* **

**

*

*

*

* *

** *
*

*

*

*

*

*

*

*

* *

*

* * *

*

*

*

*

*

*

*

*

**
*

*
*

*

*

*
*

*

*

*

* *

*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

**

*

*

*
*

*

*
*

*
*

**

*

*

*

*

*

* **

*

*

*

*

*

* *

**

*

*

*

* *

*

*

*

*
*

*

*
*

*
*

*

*

*

*
*

*
*

*

*

*
*

* *
*

**

*

**

*

*

*

* *
* *

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*
*

*

*

*

*

*
*

*
*

*
*

*
*

*
*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*
**

*

*

*

* **

*

*

* **

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
* *
*

*

*
*

*

*

*
*

**
* *

*

**

*
*

*

*

*

*

* *

*

*

*
*

*

*

*

*
*

*
*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
* *

*

*

* *

**

*

*

*

*

*
**

** *

*

*
*

*

*

*

*

*

*

*
*

**
*

*

*

*
*

**
**

*

**

*

*
*

*

*
*

*

*
*

*

*
*

**
*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
* *
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

**

*

*

*

*

*

**

**

*

* *

*

** *

* *

*

*
**

**

*

* *
*

*

*

*

*

*

*

**

*
* *
* *

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

** *

*

**
**

*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
*

* *

*

*

*

*
*

**

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

* *
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

* *

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *
*

*

*

* ** *

*

*

*

**
*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* **

*
*
*

*

*

*

**

*

*

*

**

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

**

*
**

*

*

*

*

* *

*

*

*

* *
* *

*

*

*

*

**

*

* *

*

*

*

*

*
*

*

*

**

*

*
*

*
*

*

*

*

*
**

*

* * **

*

*

** *** *

*

*

*

*

*

*

*
* *

*

*
*

*
*

*

*

*
*

*

*

* **

*

**
*

* *

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

**
*

* *

*

*

* *

*

*

**
*

*

*

*
*

*
*
**

*

*

*

** *

*

*

* *
*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*
*

** *
**

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* ***

*

*

**

*

*

*

*

*
*

* **

*

*

*

*

*

*

*

** ** **

*

*

*

*
*
*

*
* *

*

*

*

* * *
* *

*

*

*

*

*

*

*

**

*

*

*

*

*
**

*

*
*

*

*
*

*

*

*

**

*

* * *

**

*

*

*

*

*

* **

*

*
* *

*

*

*

*
*

*

*

*

**

*

* *

*

*

* *

*

*

*

*

**

*

*
*

*

*

*

*

*** *

*
*

*

**

*

*
*

*

*

*

* *

*

*
*

*

*

*

*

*
*

*

*
**
*** *

*

*

*

*

*

*

*

*

*

** *
**

*

*
*

*

*

*

*
*

*

*

**
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

**

*

*

* *** *

*

*

**

*

*

**

*

*

*

** *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*
*

*

*
*

*

*
*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*

**

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

* *

*

*

*

*

** *

**

*

*

*

*

*

**

*

*

*

*

*

*

*

**

* *

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

* *

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

* *

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**
*

*

*
**

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*
*

* *

*

*

*

**

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *
*

*
*

*

*

**

*

*

*

*

*

* *

*
*

*

* *

**

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*
*

**

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

**

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*

*

**

* **

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

* *
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*
*

*
*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

** *

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

* *
*

**

*

*

*

*

*
**

*
* *

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

**

*

*

**

*
*

*

*

* *

*

*
*

*
*

*

**

*

**

*
*

*

* *

*
*

*
*

**

* *

* *

*
*

* *

*

*

*
* *

*
**

*

*

*

*

**
*

*

*

*

*

*

*

*

** **

*

*

*

*

*

*

*

* **

**

*

*

*

* *

** *
*

*

*

*

*

*

*

*

* *

*

* * *

*

*

*

*

*

*

*

*

**
*

*
*

*

*

*
*

*

*

*

* *

*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

**

*

*

*
*

*

*
*

*
*

**

*

*

*

*

*

* **

*

*

*

*

*

* *

**

*

*

*

* *

*

*

*

*
*

*

*
*

*
*

*

*

*

*
*

*
*

*

*

*
*

* *
*

**

*

**

*

*

*

* *
* *

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*
*

*

*

*

*

*
*

*
*

*
*

*
*

*
*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*
**

*

*

*

* **

*

*

* **

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
* *
*

*

*
*

*

*

*
*

**
* *

*

**

*
*

*

*

*

*

* *

*

*

*
*

*

*

*

*
*

*
*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
* *

*

*

* *

**

*

*

*

*

*
**

** *

*

*
*

*

*

*

*

*

*

*
*

**
*

*

*

*
*

**
**

*

**

*

*
*

*

*
*

*

*
*

*

*
*

**
*

**

*

*

Figure 2.3: Simulation data from the Schladitz distributions for 1000 points with β = 0.1
(left), β = 0.9 (middle) and β = 10 (right).

We discuss here the differences between the Watson distribution and the Schladitz distribution.
The idea is to find the parameter κ of the Watson distribution and the parameter β of the Schladitz
distribution with the same expected value of θ, optimally to obtain some parameter-relationships
between the two distributions, and then to compare the variances of θ of the two distributions
with the same expected value of θ. Mark that both the Watson and the Schladitz distribution
with principal axis (0, 0, 1)T are rotationally symmetric, i.e. the density in polar coordinates
depends only on θ and not on φ.

For the Watson distribution with principal/polar axis (0, 0, 1)T , the marginal distribution of
φ is uniform and the marginal distribution of θ is given by

fW (θ) =
1

M
(

1
2
, 3
2
, κ
) exp(κ cos2 θ) sin θ (2.9)

for 0 ≤ θ < π/2. These results follow at once from (2.4). We rewrite M(a, b, z) as 1F1(a, b, z),
where pFq describes the whole family of hypergeometric functions with

pFq(a1, · · · , ap; b1, · · · , bq; k) =
∞
∑

z=0

p
∏

i=1

Γ(z + ai)

Γ(ai)

q
∏

j=1

Γ(bj)

Γ(z + bj)

kz

z!

for p, q ∈ N0.
Figure 2.4 represents the marginal density function of θ in 3D for bipolar distributions and

girdle distributions, respectively.

2.4 Differences between the Watson distribution and the Schladitz distribution 21

0

5

10

15
0.0

0.5

1.0

1.5

0

2

4

6

(a) bipolar cases

-15

-10

-5

0
0.0

0.5

1.0

1.5

0

2

4

6

8

(b) girdle cases

Figure 2.4: The marginal density function of θ of Watson distribution in 3D

Table 2.1: Expected value EfW (θ) of Watson distribution for some given κ from −10000 to
1000

κ -10000 -1000 -100 -50 -20
EfW (θ) 1.56515 1.55295 1.51428 1.49074 1.44354

κ -15 -14 -13 -12 -11
EfW (θ) 1.42339 1.41808 1.41215 1.40546 1.39785

κ -10 -9 -8 -7 -6
EfW (θ) 1.38908 1.37882 1.36661 1.35176 1.33326

κ -5 -4 -3 -2 -1
EfW (θ) 1.30955 1.2783 1.23608 1.17839 1.10047

κ 1 2 3 4 5
EfW (θ) 0.881031 0.755741 0.639628 0.543377 0.469393

κ 6 7 8 9 10
EfW (θ) 0.414441 0.373631 0.342678 0.318482 0.298975

κ 11 12 13 14 15
EfW (θ) 0.282815 0.269121 0.257305 0.246961 0.237797

κ 20 50 100 1000 10000
EfW (θ) 0.203721 0.126638 0.089075 0.028039 0.00886271

The expected value of θ is given by

EfW (θ) =

π/2
∫

0

θ

M
(

1
2
, 3
2
, κ
) exp(κ cos2 θ) sin θdθ

=
2F2

(

1
2
, 1; 3

2
, 3
2
;κ
)

1F1(0.5, 1.5, κ)
(2.10)

For each given κ, (2.10) can be simplified and numerically calculated. Table 2.1 shows the
expected value for some given κ from −10000 to 10000. Furthermore Figure 2.5 describes the
expected value function graphically for the Watson distribution.

Turning now to the Schladitz distribution with principal axis (0, 0, 1)T , the marginal distribu-

22 Chapter 2 Distributions in 3D

5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

The expected value of Watson bipolar distribution

kappa

ex
pe

ct
ed

 v
al

ue
 o

f t
he

ta

(a) bipolar cases

−20 −15 −10 −5

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

1.
40

1.
45

The expected value of Watson girdle distribution

kappa

ex
pe

ct
ed

 v
al

ue
 o

f t
he

ta

(b) girdle cases

Figure 2.5: Expected value of θ of Watson distribution for parameter 0 < κ ≤ 20 of bipolar
cases and parameter −20 ≤ κ < 0 of girdle cases, respectively

tion of θ is given by

f(θ) =
1

2

β sin θ

(1 + (β2 − 1) cos2 θ)3/2

for 0 ≤ θ < π. This result follows at once from (2.7). Since the standard Schladitz distribution
is symmetric, we can rewrite the marginal distribution of θ, for consideration only by the upper
half sphere, as

fS(θ) =
β sin θ

(1 + (β2 − 1) cos2 θ)3/2

for 0 ≤ θ < π/2.
Figure 2.6 represents the density function of the Schladitz distribution in 3D.

0.0

0.5

1.0
0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.8

(a) bipolar cases

2

4

6

8

10
0.0

0.5

1.0

1.5

0.0

0.5

1.0

(b) girdle cases

Figure 2.6: Density function of Schladitz distribution in 3D

The corresponding expected value for all θ from 0 to π/2 is then given by

EfS(θ) =

π/2
∫

0

θ · β sin θ

(1 + (β2 − 1) cos2 θ)3/2
dθ

=
β sec−1(β)
√

|1− β2|

2.4 Differences between the Watson distribution and the Schladitz distribution 23

Table 2.2: Expected value EfS(θ) of the Schladitz distribution for some given β from 0.01 to
100

β 0.01 0.02 0.03 0.04 0.05
EfS(θ) 0.0529856 0.0921198 0.126041 0.15659 0.184644
β 0.06 0.07 0.08 0.09 0.1

EfS(θ) 0.210719 0.235159 0.258209 0.280052 0.30083
β 0.2 0.3 0.4 0.5 0.6

EfS(θ) 0.467941 0.589289 0.683807 0.760346 0.823959
β 0.7 0.8 0.9 1 2

EfS(θ) 0.877852 0.924196 0.964534 1 1.2092
β 3 4 5 6 7

EfS(θ) 1.30563 1.36134 1.39768 1.42325 1.44224
β 8 9 10 11 12

EfS(θ) 1.4569 1.46855 1.47804 1.48591 1.49256
β 13 14 15 50 100

EfS(θ) 1.49824 1.50315 1.50743 1.55111 1.56087

where sec(β) = 1
cos(β)

.

Table 2.2 shows the expected value of the Schladitz distribution for some given β from 0.01
to 100. Furthermore Figure 2.7 describes it graphically.

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

The expected value for given beta

beta

ex
pe

ct
ed

 v
al

ue
 o

f t
he

ta

Figure 2.7: Expected value of θ of the Schladitz distribution for parameter 0 < β < 100

To compare the Watson distribution and the Schladitz distribution, we need to find the
parameter κ of the Watson distribution and the parameter β of the Schladitz distribution for
each given expected value of θ, i.e to solve κ and β with

EfW (θ) = EfS(θ) (2.11)

24 Chapter 2 Distributions in 3D

Table 2.3 shows the solutions of (2.11) as comparison of the parameter of the Watson distribution
and the Schladitz distribution for some given expected values.

Furthermore Figure 2.8 shows the relationship between the parameter of the Watson distri-
bution and the parameter of the Schladitz distribution with the same expected values of θ.

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(a) bipolar cases

2 3 4 5 6 7

−
20

−
15

−
10

−
5

Parameter of the Schladitz distribution
P

ar
am

et
er

 o
f t

he
 W

at
so

n
di

st
rib

ut
io

n

(b) girdle cases

Figure 2.8: Plots of the parameter of the Watson distribution and the parameter of the
Schladitz bipolar distribution with the same expected values of θ

We consider first the bipolar cases. It can be observed from Figure 2.8 that for not so small
expected values of θ (EfW (θ) = EfS(θ) ≥ 0.5), namely β ≥ 0.22 and 0 < κ ≤ 4.5, which is mainly
used by our applications, it is possible to fit with a polynomial curve the relationship between the
parameter of the Watson distribution and the parameter of the Schladitz distribution.

We assume that there exist a n−degree polynomial p(β) approximated κ(β) that

κ(β) ≈ p(β) = p1β
n + p2β

n−1 + · · · pnβ + pn+1

The question is how to determine the degree n and the corresponding coefficients p1, p2, · · · , pn+1.
Obviously we obtain better results for larger n, but for applications we prefer smaller n. Therefore
the smallest n to make sure that the polynomial fit shows as acceptable gap between the original
curve and the approximated curve will be chosen.

We use here the method of linear least squares to find the best-fitting curve p(β). As the
input data, a set of points (show in Table 2.3 from EfW (θ)/EfS(θ) = 0.5 to EfW (θ)/EfS(θ) = 1.5
except EfW (θ)/EfS(θ) = 1) is given and as (βi, κi) (1 ≤ i ≤ 18) marked. Linear least squares
fitting proceeds by finding the curve to minimize the sum of the squares err2 of a set of n data
points (here: n = 18), which err2 defined as

err2 =
n
∑

i=1

(κi − p(βi))
2

Table 2.4 shows the parameters for some given n and the value of corresponding err. Fur-
thermore Figure 2.9 represents the original κ(β) (black curve) and the approximated polynomial
p(β) (grey curve) graphically for degree n between 1 and 4. It can be observed not only from
err of Table 2.4, but also from Figure 2.9 that there exist no obviously differences between the
original function κ(β) and the approximating polynomial p(β) for n = 3, therefore we get

pb(β) = −9.9272× β3 + 23.2292× β2 − 21.7868× β + 8.2679

2.4 Differences between the Watson distribution and the Schladitz distribution 25

Table 2.3: The comparison of the parameter of the Watson distribution (κ) and the Schladitz
distribution (β) for some given expected values

EfW (θ)/EfS(θ) κ β
0.1 >1000 0.02
0.2 20 0.06
0.25 14 0.08
0.3 10 0.1
0.35 7.7 0.13
0.4 6.5 0.15
0.45 5.3 0.19
0.5 4.5 0.22
0.55 3.9 0.27
0.6 3.4 0.31
0.65 2.9 0.37
0.7 2.5 0.42
0.75 2 0.49
0.8 1.6 0.56
0.85 1.2 0.65
0.9 0.8 0.75
0.95 0.4 0.86
1 - 1

1.1 -1 1.4
1.15 -1.6 1.6
1.2 -2.5 2
1.25 -3.3 2.4
1.3 -5 2.9
1.35 -6.9 3.8
1.4 -11.3 5.1
1.45 -22 7.5
1.5 <-50 13.5

Table 2.4: Parameters of polynomial approximation the relationship of κ and β of bipolar
distribution

n p1 p2 p3 p4 p5 p6 err
1 -6.2451 5.3801 0.8623
2 7.2414 -13.9529 7.1228 0.2051
3 -9.9272 23.2292 -21.7868 8.2679 0.0608
4 4.7670 -20.1569 30.9631 -24.2033 8.5290 0.0589
5 -34.4720 96.5614 -113.4219 75.8966 -34.4133 9.4010 0.0566

26 Chapter 2 Distributions in 3D

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
2

3
4

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(a) degree n = 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
2

3
4

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(b) degree n = 2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
2

3
4

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(c) degree n = 3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
2

3
4

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(d) degree n = 4

Figure 2.9: Plots of the original function κ(β) and the approximated polynomial p(β) for
the bipolar cases

for the bipolar cases.
Turning now to the girdle cases, it is quite similar to the bipolar distributions. Table 2.5

shows the parameters of approximated polynomial of given degree n and Figure 2.10 represents
the κ(β) and p(β) graphically. It can also observed that the minimal degree of the polynomial
p(β) approximating well is equal to 2, therefore

pg(β) ≈ −0.2572× β2 − 1.1042× β + 0.8241

for the girdle cases.
Up to here we obtain already the parameter of the Waston distribution and the Schladitz

distribution with the same expected value of θ, and this relationship is also polynomially approxi-
mated. Then we want to investigate the differences between the two distributions by comparison
the variances of θ with the same expected value.

Table 2.6 shows the variances of θ for given κ from Table 2.3 of Watson distribution. For each
set of parameter we simulated 1000 directions with given parameter κ and the principal/polar
axis (0, 0, 1)T , calculated the variance of θ, this procedure was repeated 100 times to obtain the
mean values VarfW (θ). VarfW (θ) is the theoretical variance directly from the density function of
the Watson distribution

VarfW (θ) = Eθ2 − (EfW (θ))
2

For comparison with the results of the Watson distribution, Table 2.7 shows the corresponding

2.4 Differences between the Watson distribution and the Schladitz distribution 27

Table 2.5: Parameters of polynomial approximation the relationship of κ and β of girdle
distribution

n p1 p2 p3 p4 p5 p6 err
1 -3.3469 4.4703 2.5894
2 -0.2572 -1.1042 0.8241 0.5901
3 -0.0314 0.1534 -2.6443 2.4346 0.4157
4 0.0094 -0.1891 1.0466 -4.6546 3.9418 0.3969
5 0.0213 -0.4148 2.9426 -9.6490 12.1948 -5.8383 0.3411

2 3 4 5 6 7

−
20

−
15

−
10

−
5

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(a) degree n = 1

2 3 4 5 6 7

−
20

−
15

−
10

−
5

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(b) degree n = 2

2 3 4 5 6 7

−
20

−
15

−
10

−
5

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(c) degree n = 3

2 3 4 5 6 7

−
20

−
15

−
10

−
5

Parameter of the Schladitz distribution

P
ar

am
et

er
 o

f t
he

 W
at

so
n

di
st

rib
ut

io
n

(d) degree n = 4

Figure 2.10: Plots of the original function κ(β) and the approximated polynomial p(β) for
the girdle cases

parameters of the Schladitz distribution, where VarfS(θ) and VarfS(θ) denote the experimental
and theoretical value of the variance, respectively. VarfS(θ) is given by

VarfS(θ) = Eθ2 − (EfS(θ))
2

=

π/2
∫

0

θ2β sin θ

(1 + (β2 − 1) cos2 θ)3/2
dθ −

(

β sec−1(β)
√

|β2 − 1|

)2

28 Chapter 2 Distributions in 3D

Table 2.6: The experimental and theoretical variances of θ for given κ from Table 2.3 of the
Watson distribution

EfW (θ) κ Var(θ) VarfW (θ)

0.1 10000 3.07× 10−4 2.1464× 10−5

0.2 20 0.0119 0.0118813
0.3 10 0.0277 0.0278665
0.4 6.5 0.0540 0.0546655
0.5 4.5 0.0935 0.0933197
0.6 3.5 0.1210 0.119921
0.7 2.5 0.1440 0.144415
0.8 1.5 0.1578 0.156778
0.9 1 0.1563 0.156069
1.1 -1 0.1169 0.116892
1.2 -2.5 0.0804 0.0800775
1.3 -5 0.0433 0.0433026
1.4 -12 0.0163 0.0163113
1.5 -50 0.0037 0.00369329

= β

π/2
∫

0

θ2 sin θ

(1 + (β2 − 1) cos2 θ)3/2
dθ − β2(sec−1(θ))2

|β2 − 1|

Figure 2.11 and 2.13 show the plots of the density functions of the Watson distribution (blue
curves) and the Schladitz distribution (red curves) with the same expected values of bipolar distri-
butions and girdle distributions, respectively. For the girdle distributions and bipolar distributions
with not so concentrated cases (EfW (θ) = EfS(θ) ≥ 0.7), there is just slight differences between
the two distributions. Otherwise for the cases that EfW (θ) = EfS(θ) < 0.7, the density function of
the Watson distribution is more concentrated as to comparisons with the density function of the
Schladitz distribution. This is also consistent with the results of Table 2.6 and Table 2.7, i.e. the
density function of the Watson distributions has smaller variance than the Schladitz distributions
for the given same expected value of θ. Variance of the Schladitz distribution always large than
that of the Watson distribution. Difference, however, pretty small for medium-sized values of the
expected value of θ, but more prominent for small and large values. Figure 2.4 shows the plot of

relative scale

√

VarfS(θ)

VarfW (θ)
against EfS(θ) = EfW (θ).

2.4 Differences between the Watson distribution and the Schladitz distribution 29

Table 2.7: The experimental and theoretical variances for given β from Table 2.3 of the
Schladitz distribution

EfS(θ) β Var(θ) VarfS(θ)
0.1 0.02 0.0347 0.0342804
0.2 0.06 0.0784 0.0794357
0.3 0.1 0.1106 0.108972
0.4 0.15 0.1337 0.133414
0.5 0.2 0.1495 0.149154
0.6 0.3 0.1648 0.165424
0.7 0.4 0.1699 0.170456
0.8 0.55 0.1690 0.168103
0.9 0.75 0.1580 0.15758
1.0 1 0.1411 0.141593
1.1 1.5 0.1125 0.112716
1.2 2 0.0919 0.090867
1.3 3 0.0628 0.0626816
1.4 5 0.0361 0.0354929
1.5 13.5 0.0090 0.00923502

30 Chapter 2 Distributions in 3D

0.5 1.0 1.5

1

2

3

(a) EfW (θ) = EfS(θ) = 0.3

0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

(b) EfW (θ) = EfS(θ) = 0.4

0.5 1.0 1.5

0.5

1.0

1.5

2.0

(c) EfW (θ) = EfS(θ) = 0.5

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

(d) EfW (θ) = EfS(θ) = 0.6

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(e) EfW (θ) = EfS(θ) = 0.7

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(f) EfW (θ) = EfS(θ) = 0.75

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(g) EfW (θ) = EfS(θ) = 0.8

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(h) EfW (θ) = EfS(θ) = 0.85

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(i) EfW (θ) = EfS(θ) = 0.9

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(j) EfW (θ) = EfS(θ) = 0.95

Figure 2.11: Plots of the density functions of the Watson bipolar distribution (blue curves)
and the Schladitz bipolar distribution (red curves) with the same given expected values for
bipolar cases

2.4 Differences between the Watson distribution and the Schladitz distribution 31

0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.
0

1.
5

2.
0

2.
5

Expected value

Figure 2.12: Plot of relative scale

√

VarfS(θ)

VarfW (θ)
against EfS(θ) = EfW (θ)

32 Chapter 2 Distributions in 3D

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) EfW (θ) = EfS(θ) = 1.1

0.5 1.0 1.5

0.5

1.0

1.5

2.0

(b) EfW (θ) = EfS(θ) = 1.2

0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

3.0

(c) EfW (θ) = EfS(θ) = 1.3

0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

3.0

(d) EfW (θ) = EfS(θ) = 1.4

0.5 1.0 1.5

0.1

0.2

0.3

0.4

0.5

(e) EfW (θ) = EfS(θ) = 1.5

Figure 2.13: Plots of the density functions of the Watson girdle distribution (blue curves)
and the Schladitz girdle distribution (red curves) with the same given expected values for
girdle cases

Chapter 3

Maximum-likelihood Estimation of the

Parameter of the Schladitz Distribution

In this chapter, we discuss maximum-likelihood estimation of the parameter β and derive
properties of the resulting estimator. The methods are evaluated using simulated data and
are applied to fibre direction distributions estimated from three-dimensional image data.
Finally, we discuss statistical tools to evaluate the goodness-of-fit of the parametric model.

3.1 Maximum-likelihood estimation of β

Let (θ1, φ1), (θ2, φ2), · · · , (θn, φn) be a sample of independent and identically distributed unit
vectors with density (2.7) given in polar coordinates. Owing to the rotational symmetry of
f around the z-axis, the estimation of β requires only the sample θ1, . . . , θn. In practice, the
assumption of rotational symmetry has to be justified, e.g., by testing the hypothesis that
the sample φ1, . . . , φn is drawn from a uniform distribution on [0, 2π).

Now we restrict attention to the sample θ1, θ2, · · · , θn. We will write p(θ | β) for the
density of θ w.r.t. a given β, i.e.,

p(θ | β) := 1

2

β sin θ

(1 + (β2 − 1) cos2 θ)3/2
.

With Θ = (θ1, . . . , θn), the log-likelihood function is given by

L(β |Θ) = ln(
n
∏

i=1

p(θi | β))

= n ln

(

1

2

)

+ n ln(β) +
n
∑

i=1

(

ln(sin θi)−
3

2
ln(1 + (β2 − 1) cos2 θi)

)

For β → 0 we have L(β |Θ) → −∞, so this case does not cause any problems in the
maximum likelihood estimation. In practice, we may assume that β is contained in a compact
interval [a, b] such that the log-likelihood function for a given sample is bounded.

To compute the extreme values of L(β |Θ), we compute the derivative w.r.t. β.

∂L(β |Θ)

∂β
=

n

β
− 3β

n
∑

i=1

cos2 θi
1 + (β2 − 1) cos2 θi

(3.1)

33

34 Chapter 3 Maximum-likelihood Estimation

Since we were not able to compute the roots of (3.1) analytically, we will use a numerical
procedure based on Newton’s method in the following.

For β > 0 we can define g(β) := −β ∂L/∂β which makes the first term independent of
β. Finding the roots of (3.1) is equivalent to finding the roots of g. It turns out that g
has a unique root in a suitable bounded interval. This result is summarized in the following
Lemma 3.1.1. As a consequence, we may assume that the maximum-likelihood estimator β̂n

of β0 exists.

Lemma 3.1.1
With probability 1, g is increasing and continuous in [0,∞),g(0) = limβ→0 g(β) = −n < 0
and g(β) > 0 for any β > β∗ = (T(n)/2)

1/2, where T(n) = max {T1, · · · , Tn} with Ti = tan2 θi,
i = 1, · · · , n. In particular, with probability 1, g(β0) = 0 for some unique β0 ∈ (0, β∗].

Proof With probability 1 we have cos2 θi /∈ {0, 1}, i = 1, · · · , n. Hence, g is a continuous
function with g(0) = −n and g′(β) > 0 for any β > 0, i.e. g is strictly increasing. Define

Xi(β) = β2 cos2 θi
sin2 θi + β2 cos2 θi

=
1

1 + 1
β2Ti

with Ti = tan2 θi. With T(n) = max {T1, · · · , Tn} we obtain

Xi(β) ≥
1

1 + 1
β2T(n)

, i = 1, · · · , n

Hence

g(β) = 3
n
∑

i=1

Xi(β)− n ≥ 3n

(

1

1 + 1
β2T(n)

− 1

3

)

> 0

for β > (T(n)/2)
1/2. Consequently, there exists a unique root of g which is contained in

(0, β∗].

Using Newton’s method we can approximate the roots of (3.1) iteratively by

βt+1 = βt −
g(βt)

g′(βt)
(3.2)

where the derivative g′(β) of g(β) is

g′(β) =
n
∑

i=1

3/2β sin2(2θi)

(1 + (β2 − 1) cos2 θi)2

Given an initial value βinit for β this methods allows to find a root of (3.1) in finite
time. Since g has only a single root, the solution obtained by Newton’s method should be
insensitive to the choice of βinit.

The maximum-likelihood estimator β̂n is consistent and asymptotically normal. These
properties are summarized in the following theorems.

3.1 Maximum-likelihood estimation of β 35

Theorem 3.1.2 (Consistency of the maximum-likelihood estimator)
Let (θ1, φ1), · · · , (θn, φn) be independent and identically distributed with density (2.7) with
parameter β0, where 0 < a ≤ β0 ≤ b < ∞. Then β̂n is consistent, i.e. β̂n converges to β0 in
probability.

Theorem 3.1.3 (Asymptotic normality of the maximum-likelihood estimator)
Under the assumptions of Theorem 3.1.2 we have

n1/2(β̂n − β0)
L→ N (0,

4

5β2
0

), for n → ∞,

where
L→ denotes convergence in law.

The consistency and asymptotic normality of the maximum likelihood estimator (Theo-
rems 3.1.2 and 3.1.3) follow from (Serfling, 2001, Chapter 4.2.2) if the following conditions
hold.

(i) For each 0 < a ≤ β ≤ b < ∞, the derivatives

∂ ln p(θ | β)
∂β

,
∂2 ln p(θ | β)

∂β2
,
∂3 ln p(θ | β)

∂β3

exist for all θ ∈ [0, π).

(ii) For each 0 < a ≤ β0 ≤ b < ∞, there exist functions f(θ), h(θ) and H(θ) (possibly
depending on β0) such that for β in a neighborhood N(β0) the relations

∣

∣

∣

∣

∂p(θ | β)
∂β

∣

∣

∣

∣

≤ f(θ),

∣

∣

∣

∣

∂2p(θ | β)
∂β2

∣

∣

∣

∣

≤ h(θ),

∣

∣

∣

∣

∂3p(θ | β)
∂β3

∣

∣

∣

∣

≤ H(θ)

hold for all θ ∈ [0, π), and

π
∫

0

f(θ)dθ < ∞,

π
∫

0

h(θ)dθ < ∞, EβH(θ) < ∞ for β ∈ N(β0). (3.3)

(iii) For each 0 < a ≤ β ≤ b < ∞, we have 0 < I(Pβ) < ∞, where

I(Pβ) = Eβ

(

(

∂ ln p(θ | β)
∂β

)2
)

is the Fisher information.

In this case, the variance of the limiting normal distribution is I(Pβ0).

Proof (i) The partial derivatives of the log-density function are given by

∂ ln p(θ | β)
∂β

=
1

β
− 3β cos2 θ

1 + (β2 − 1) cos2 θ

∂2 ln p(θ | β)
∂β2

= − 1

β2
− 3 cos2 θ(sin2 θ − β2 cos2 θ)

(1 + (β2 − 1) cos2 θ)2

∂3 ln p(θ | β)
∂β3

=
2

β3
− 6β cos4 θ(β2 cos2 θ − 3 sin2 θ)

(1 + (β2 − 1) cos2 θ)3

36 Chapter 3 Maximum-likelihood Estimation

Since 1+ (β2 − 1) cos2 θ = sin2 θ+ β2 cos2 θ is positive for all θ ∈ [0, π), the derivatives
exist for all θ. In the following we write A(θ, β) = 1 + (β2 − 1) cos2 θ for simplicity.

(ii) We have

∣

∣

∣

∣

∂p(θ | β)
∂β

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

sin θ

A(θ, β)3/2
− 3β2 sin θ cos2 θ

A(θ, β)5/2

∣

∣

∣

∣

≤ 1

2

sin θ

A(θ, β)3/2

(

1 + 3β2 cos2 θ

A(θ, β)

)

≤ 1

2

sin θ

A(θ, β)3/2

(

1 + 3β2 cos2 θ

β2 cos2 θ

)

=
2 sin θ

A(θ, β)3/2
=

2 sin θ

A(θ, β)3/2
· (sin2 θ + cos2 θ)

=

(

2 sin3 θ

A(θ, β)3/2
+ 2 sin θ cos2 θ

1

A(θ, β)1/2
1

A(θ, β)

)

≤
(

2 sin3 θ

(sin2 θ)3/2
+ 2 sin θ cos2 θ

1

(sin2 θ)1/2
1

(β2 cos2 θ)

)

= 2 +
2

β2
≤ 2 +

2

a2
= f(θ)

By similar computations we get

∣

∣

∣

∣

∂2p(θ | β)
∂β2

∣

∣

∣

∣

≤ 12

a
+

12

a3
= h(θ)

and
∣

∣

∣

∣

∂3p(θ | β)
∂β3

∣

∣

∣

∣

≤ 102

a2
+

102

a4
= H(θ)

Obviously, (3.3) is fulfilled with this choice of f , h and H.

(iii) It can be shown that

I(Pβ0) = Eβ0

(

(

∂ ln p(θ | β0)

∂β

)2
)

=

π
∫

0

(

1− (1 + 2β2
0) cos

2 θ

β0 + β0(β2
0 − 1) cos2 θ

)2

p(θ | β0)dθ

=

π
∫

0

(−1 + (1 + 2β2
0) cos

2 θ)
2
sin θ

2β0 (1 + (β2
0 − 1) cos2 θ)

7/2
dθ.

Evaluation of this integral yields I(Pβ0) = 4/5β2
0 . Hence, 0 < I(Pβ0) < ∞ and the

variance of the normal distribution is obtained.

3.2 Evaluation of the numerical estimator 37

Table 3.1: Means and standard deviations of β̂n for various β0.
β0 0.1 0.5 0.9 1 2 5

n=1000
mean 0.1001 0.4992 0.9011 1.0012 2.0054 5.0031

sd 0.0034 0.0183 0.0311 0.0361 0.0713 0.1699

n=100
mean 0.1018 0.5073 0.8865 1.0188 1.9757 5.0624

sd 0.0121 0.0541 0.0932 0.1084 0.4566 0.5861

n=10
mean 0.1100 0.5615 0.9900 1.0808 2.1115 5.2449

sd 0.0386 0.2072 0.3498 0.3803 0.7665 1.9413

3.2 Evaluation of the numerical estimator

For small β0, a good initial value βinit is obtained by setting β = 0 in the denominator of the
sum in (3.1) which yields

βinit =

(

n

3
∑n

i=1 cot
2 θi

) 1
2

(3.4)

This βinit is suitable for the case of a bipolar distribution, but it turned out that it also yields
good results for the girdle case, which means in the case β0 > 1.

In order to evaluate our estimation procedure we chose several values of β0. For each β0

we simulated a series of unit vectors (θ1, φ1), (θ2, φ2), . . . , (θn, φn), and computed βinit using
(3.4). The application of Newton’s method with this initial value then yields an estimate
for β0. The procedure is stopped as soon as |βt+1 − βt| < ǫ for a given ǫ > 0. Here, we
have used the machine epsilon with the value of ǫ = 1.11× 10−16 on 64-bit machines. Table
3.1 shows the comparison of the results for various given β0 and different sample sizes. For
each set of parameters, the procedure was repeated 100 times to get the mean value and
standard deviation of β̂n. The results indicate that our method works well for large sample
sizes (such as n = 1000 and n = 100). However, even for the small sample size n = 10 the
estimated means do not differ too much from the true parameter. As expected, the root of
(3.1) is actually not dependent on the choice of the initial value of (3.2).

The methods described above apply only for the case that the sample is rotationally
symmetric about the z-axis. In applications, different symmetry axes may occur. The axis
of symmetry can be estimated using the methods described in Fisher et al. (1993):

Let (θ1, φ1), (θ2, φ2), . . . , (θn, φn) denote the given directions with θi ∈ [0, π), φi ∈ [0, 2π).
Using the direction cosines (xi, yi, zi) given by

xi = sin(θi) cos(φi), yi = sin(θi) sin(φi), zi = cos(θi)

we define the orientation matrix

T =

∑

x2
i

∑

xiyi
∑

xizi
∑

xiyi
∑

y2i
∑

yizi
∑

xizi
∑

yizi
∑

z2i

 (3.5)

In the bipolar case, an estimate of the principal axis is the eigenvector û = (x0, y0, z0)
T

corresponding to the largest eigenvalue of the matrix T . In the girdle case, the polar axis,

38 Chapter 3 Maximum-likelihood Estimation

the direction perpendicular to the principal plane, can be estimated using the eigenvector
û = (x0, y0, z0)

T corresponding to the smallest eigenvalue of T .
In both cases, a sample (θ′1, φ

′
1), (θ

′
2, φ

′
2), . . . , (θ

′
n, φ

′
n) with rotational symmetry about the

z-axis is obtained by a suitable rotation yielding the transformed direction cosines

x′
i

y′i
z′i

 =

cos θ0 cosφ0 cos θ0 sinφ0 − sin θ0
− sinφ0 cosφ0 0

sin θ0 cosφ0 sin θ0 sinφ0 cos θ0

xi

yi
zi

 (3.6)

where θ0 = arccos(z0) and φ0 = arctan(y0/x0).
The corresponding pseudo code can be found as Algorithm 5.
From this sample the value of β can be estimated using the method introduced above.

3.3 Applications

In the following, we will present an application of our method to the statistical analysis of
the fibre direction distribution in fibre composites. The direction distribution of the fibres
is estimated from a three-dimensional image of the material obtained by micro computer
tomography (µCT). A desirable approach would be to determine the direction of each single
fibre contained in the image. Unfortunately, in most cases the resolution which can be
obtained by µCT imaging is not sufficient to allow for a separation of single fibres. As an
alternative, the local fibre direction in each fibre voxel can be estimated using the methods
introduced in Altendorf and Jeulin (2009); Eberly et al. (1994); Wirjadi (2009). Since fibre
directions in neighbouring voxels are obviously not independent, the assumptions for the
derivation of the maximum likelihood estimator β̂n are not satisfied.

Therefore, we start by investigating the error introduced by the dependence within a
sample on the estimation of β0. For this purpose, random systems consisting of n non-
overlapping cylinders were simulated using a random sequential adsorption procedure Re-
denbach and Vecchio (2011). Fibre directions are drawn according to the density (2.7). The
cylinders were discretised into three-dimensional images of size 2563 voxels. For the length
and radius of the fibres the values 50 and 2 voxels were chosen. From the images, the fibre
direction in each voxel was estimated using the method based on the Hessian matrix which is
presented in Wirjadi (2009) and which is implemented in the MAVI software package ITWM
(2012).

Finally, β was estimated on the resulting (dependent) sample of directions. The results
for several choices of the parameter β are summarised in Table 3.2. Except for β0 = 5 a
slight overestimation of β0 is observed. Again, the results for n = 100 and n = 1000, which
are comparable in most cases, are better than for n = 10. For the extreme cases β0 = 0.1
and β0 = 5 the estimated parameters are biased towards the uniform distribution (β0 = 1).
Experience shows that this is a typical effect of the image analysis method applied.

As an example of application, we examine the method for three different samples of fibre
materials. The first sample is a silica gel provided by the Fraunhofer ISC. It consists of
slightly bent fibres which are almost parallel to the x-y plane (see Figure 3.1). The analysis
of this material is based on a cylindrical sample imaged by µCT in a 1023 × 1023 × 228
voxel image with a voxel edge length of 10.31 µm. The second and third sample are glass
fibre composites provided by the Institut für Verbundwerkstoffe GmbH in Kaiserslautern.

3.3 Applications 39

Algorithm 5 Estimation of the Parameter of Beta-distribution

Require: A set of n unit vectors with the polar coordinates (θi, φi), as well as the direction
cosines (xi, yi, zi) for 1 ≤ i ≤ n, the type of the distribution

Ensure: Principal axis of bipolar distributions or polar axis of girdle distributions, as well
as the estimated β
Pre-step: rotate the data with its principle/polar axis
calculate the orientation matrix

T =

∑

x2
i

∑

xiyi
∑

xizi
∑

xiyi
∑

y2i
∑

yizi
∑

xizi
∑

yizi
∑

z2i

if bipolar distribution then
principal axis = the eigenvector corresponding to the largest eigenvalue of T

else if girdle distribution then
polar axis = the eigenvector corresponding to the smallest eigenvalue of T

end if
rotate the original data with the principle axis for the bipolar distribution or with the
polar axis for the girdle distribution and get (x′

i, y
′
i, z

′
i) as well as (θ′i, φ

′
i) for 1 ≤ i ≤ n

Main-step: Newton’s Method
initial β0

repeat

β1 = β0

g(β1) = 3β2
1

n
∑

i=1

cos2 θ′i
1 + (β2

1 − 1) cos2 θ′i
− n

g′(β1) =
n
∑

i=1

3/2β1 sin
2(2θ′i)

(1 + (β2
1 − 1) cos2 θ′i)

2

β0 = β1 −
g(β1)

g′(β1)

until |β1 − β0| < ǫ
return β0, principle/polar axis

40 Chapter 3 Maximum-likelihood Estimation

Table 3.2: Estimation using image data. Means and standard deviations of β̂n for various
β0.

β0 0.1 0.5 0.9 1 2 5

n=1000
mean 0.1506 0.5781 0.8810 1.0323 2.0381 2.7879

sd 0.0123 0.0531 0.0286 0.0490 0.0501 0.0777

n=100
mean 0.1447 0.5619 0.9215 1.0378 2.1820 2.9026

sd 0.0143 0.0187 0.0404 0.1033 0.1291 0.2883

n=10
mean 0.2312 0.5576 0.9834 1.4728 2.8853 2.4812

sd 0.0495 0.1068 0.3763 0.4925 0.7418 0.7429

Table 3.3: p-values and test statistic for varied materials of Kolmogorov-Smirnov Test to
test the uniform distribution of φi

material silica gel GF30 GF60 GF60 GF60
bottom middle top

p-value 0.5428 0.7095 0.9300 0.7108 0.7520
test statistic 0.8009 0.7011 0.5427 0.7003 0.6752

Sample GF 30 consists of fibres which are almost parallel to the y-axis (see Figure 3.2).
It was analyzed using a µCT image consisting of 710 × 1000 × 1000 voxels with a voxel
edge length of 1 µm. Sample GF60 consists of three layers of fibres with different preferred
directions (see Figure 3.2). For this sample, an image with 760 × 1000 × 1000 voxels and a
voxel edge length of 3 µm was used.

For the analysis, ten cubes of size 1283 voxels were selected from each image. For GF60,
ten cubes for each layer were considered. Due to the small thickness of the middle layer of
GF60, the size of the cubes was reduced to 603 voxels in this case. The local fibre directions
for each subvolume were computed using the MAVI software package. From the resulting
sample of unit vectors, the principal axis (or polar axis) was estimated and the samples
were rotated according to (3.6). Then the parameter β was estimated from the transformed
direction data using the maximum-likelihood estimator presented above. The results are
summarised in Table 3.4. The estimated values are both reasonable and relatively stable on
the different samples for each material. For the middle layer of GF60, the standard deviation
of the estimate is comparably high. This is due to the small sample sizes which were analysed
in this case.

The uniform distribution of φ′
i (i.e. the spherical coordinates after transformation 3.6

w.r.t. the estimated symmetry axis) can be verified using the Kolmogorov-Smirnov test.
The p-values and the test statistics for the different materials can be found in Table 3.3. In
all cases, the null hypothesis cannot be rejected i.e. the φ′

i samples do not show a significant
deviation from the uniform distribution on [0, 2π).

3.4 Goodness-of-fit 41

Figure 3.1: Volume rendering of the silica gel fibres. Visualised are 600 × 600 × 200 voxels.
Image: Fraunhofer ITWM

Figure 3.2: Volume rendering of the glass fibre composites: GF30 (4003 voxels, left) and
GF60 (4003 voxels, right). Image: Institut für Verbundwerkstoffe GmbH, Kaiserslautern

3.4 Goodness-of-fit

For testing the goodness-of-fit of a spherical distribution model, Fisher et al. (1993) propose
the use of QQ-plots which consist of a colatitude plot and a longitude plot. The longitude
plot is based on the rotated sample φ′

1, . . . , φ
′
n according to (3.6). The plot is obtained by

plotting xi = φ′
i/2π against yi = (i− 0.5)/n and shows if the data is rotationally symmetric

about the main axis.

The colatitude plot is obtained by plotting the sample θ′1, . . . , θ
′
n obtained also via (3.6)

against yi = F−1((i− 0.5)/n), where F−1 is the inverse function of the distribution function

42 Chapter 3 Maximum-likelihood Estimation

Table 3.4: Estimation of β for the fibre materials.

β̂ silica gel GF30 GF60 GF60 GF60
bottom middle top

mean 2.5698 0.3762 0.4121 0.6455 0.4083
min 2.4950 0.3422 0.3970 0.4739 0.3921
max 2.6940 0.4156 0.4372 0.7894 0.4392
sd 0.0670 0.0241 0.0133 0.1288 0.0152

of θ. If θ is distributed with density (2.7) then

F−1(x) = arccos

(

(

1− β2x(4x− 4)

−1 + 4x− 4β2x− 4β2 + 4β2x2

)
1
2

)

Figure 3.3 and Figure 3.4 show the longitude and the colatitude plots of the silica gel
and glass fibres, respectively.

For comparison, we also fitted a Watson distribution to the observed direction distribu-
tions. The estimated values of κ, obtained as the means of the estimates for the ten samples,
for the materials are κ̂ = −3.92 for the silica gel, κ̂ = 2.60 for GF30, and κ̂ = 2.35, 1.83 and
2.32 for the bottom, middle and top layer of GF60, respectively.

Since the Watson distribution is rotationally symmetric around µ, the longitude plots
coincide with those for the Schladitz distribution. As indicated by the Komogorov-Simirnov
test, no significant deviation from the uniform distribution can be detected. The colatitude
plots obtained for the Watson distribution are also show in Figure 3.4. The fibre direction
distributions in both GF30 and the top and bottom layers of GF60 are more closely fitted
by the Schladitz distribution than by the Watson distribution. Only in the middle layer of
GF60 the Watson distribution yields the better fit. For the silica gel fibres none of the two
distribution families in clearly superior to the other.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Sample quantile

Q
ua

nt
ile

 o
f p

ar
am

et
ric

 d
is

tr
ib

ut
io

n

Figure 3.3: QQ-Plots of the silica gel fibres. Left: longitude plot, Middle: colatitude plot
for the Schladitz distribution, Right: colatitude plot for the Watson distribution

3.4 Goodness-of-fit 43

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

sample quantile
th

eo
re

tic
al

 q
ua

nt
ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Sample quantile

Q
ua

nt
ile

 o
f p

ar
am

et
ric

 d
is

tr
ib

ut
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Sample quantile
Q

ua
nt

ile
 o

f p
ar

am
et

ric
 d

is
tr

ib
ut

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

Sample quantile

Q
ua

nt
ile

 o
f p

ar
am

et
ric

 d
is

tr
ib

ut
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

sample quantile

th
eo

re
tic

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Sample quantile

Q
ua

nt
ile

 o
f p

ar
am

et
ric

 d
is

tr
ib

ut
io

n

Figure 3.4: QQ-Plots of the glass fibres: GF30, GF60 bottom, GF60 middle, GF60 top (from
top to bottom). Left: longitude plot, Middle: colatitude plot for the Schladitz distribution,
Right: colatitude plot for the Watson distribution

44 Chapter 3 Maximum-likelihood Estimation

3.5 Discussion

Our numerical procedure which is based on Newton’s method was evaluated on simulated
data as well as on fibre systems discretized in 3D images. The application to the modelling
of the fibre direction distribution in composite materials shows that this distribution is well
suited for applications. In particular, the direction distribution in most samples is fitted
more closely by our distribution than by the Watson distribution. The question whether the
use of methods from robust statistics can provide improved results when estimating β from
image data, is subject to future research.

Chapter 4

Mixtures of Schladitz Distributions

In this chapter, we present a general model given by mixtures of Schladitz distributions. A
maximum-likelihood method including the numerical approach of an expectation maximization
setting is used. The consistency of the maximum likelihood estimate, as well as the consistency
of the expectation maximization estimate are proven. A non-parametric estimation of the mixture
model is also discussed.

4.1 Introduction

In nature, some materials of fibres do not show one dominant direction, but the distributions seem
to be multimodal. In such cases, distributions which are mixtures of simple unimodal distributions,
provide better fits. We use a mixture of several distributions, where each distribution has its own
principal/polar axis and parameters. Some mixture models for the distributions on the unit sphere
have already been discussed, e.g. Banerjee et al. (2006) proposed a generative mixture-model
approach to clustering directional data based on the von Mises-Fisher distribution, Figueiredo and
Gomes (2006) provided a good identification of a mixture of bipolar Watson distribution and Peel
et al. (2001) described a model and a identification w.r.t. a mixture of Kent distribution. For
the compressed materials, the Schladitz distribution shows better fitting as other distributions.
Hence the clustering or identification of a mixture of the Schladitz distribution is of interest.

4.2 Mixtures of ACG Distributions

Since the Schladitz distribution is a special case of the ACG distribution, we consider here a general
model for directional data as a mixture of m ACG distributions. Let xj (1 ≤ j ≤ n) be the angu-
lar central Gaussian distribution component with the parameter Σk if Qj = k, where Q1, · · · , Qn

independent and identically distributed with values in {1, · · · ,m}. We define the mixture pro-
portions πk (1 ≤ k ≤ m) as πk = P(Qj = k). Therefore Φ = (π1, · · · , πm,Σ1, · · · ,Σm) is the
set of unknown parameters we need to estimate. Mark that πm is only used as an abbreviation
for 1 − π1 − π2 − · · · − πm−1. The corresponding density for xj of this mixture model is then
given by

g(x; Φ) =
m
∑

k=1

πkf(x; Σk)

45

46 Chapter 4 Mixtures of Schladitz Distributions

where f(x,Σ) denotes the ACG density given by (2.6).
We define indicator variables Sjk ∈ {0, 1} such that

Sjk =

{

1 if and only if Qj = k

0 otherwise

Then

E[Sjk | xj] = P [Sjk = 1 | xj]

= P [Qj = k | xj]

=
πkf(xj; Σk)

g(xj; Φ)

=
πkf(xj; Σk)

∑m
l=1 πlf(xj; Σl)

We assume that Φ = (πk,Σk) ∈ Θ, where the parameter set Θ satisfies for k = 1, · · · ,m

0 < δ ≤ πk ≤ 1− δ < 1 (4.1)

for some δ > 0, and

0 < λ ≤ λmin(Σk) ≤ λmax(Σk) ≤ λ < ∞ (4.2)

where λmin(Σk) and λmax(Σk) is the minimal and maximal eigenvalue of Σk, respectively.
The log-likelihood function of the complete data of the mixture model is given by

Lc(Φ |Q,X) =
n
∑

j=1

ln(
n
∏

j=1

πQj
f(xj; ΣQj

))

=
n
∑

j=1

ln πQj
+

n
∑

j=1

ln f(xj; ΣQj
)

=
n
∑

j=1

ln πQj
+

n
∑

j=1

m
∑

k=1

Sjk ln f(xj; Σk) (4.3)

Since x1, · · · , xn are observed, but Q1, · · · , Qn respective Sjk, k = 1, · · · ,m, j = 1, · · · , n
are hidden, we replace Sjk by

S∗
jk = E∗[Sjk | xj] =

π∗
kf(xj; Σ

∗
k)

∑m
l=1 π

∗
l f(xj; Σ∗

l)
(4.4)

where E∗ denotes that we calculate the conditional expectation pretending that

Φ∗ = (π∗
1, · · · , π∗

m,Σ
∗
1, · · · ,Σ∗

m)

is the true parameter of the data. Then, we get the following approximation of (4.3):

Q[Φ |Φ∗] =
n
∑

j=1

m
∑

k=1

S∗
jk ln(πkf(xj; Σk)) (4.5)

4.2 Mixtures of ACG Distributions 47

Now we start with some arbitrary initial guess Φ(0) = Φ∗ and get an update Φ(1) by maximizing
Q w.r.t. Φ. Then, we replace Φ(0) by Φ(1) and iterate. The maximization step is made easier by
the observation that

Q[Φ |Φ(i)] =
n
∑

j=1

m
∑

k=1

S
(i)
jk ln(πkf(xj,Σk))

=
n
∑

j=1

m
∑

k=1

S
(i)
jk ln πk +

n
∑

j=1

m
∑

k=1

S
(i)
jk ln(f(xj,Σk))

which consists of two unrelated summands which can be separately maximized w.r.t. πk respective
Σk. To take into account the constraint π1 + · · ·+ πk = 1, we introduce the Lagrange multiplier
λ and get for the first term

L1 =
n
∑

j=1

m
∑

k=1

S
(i)
jk ln(πk) + λ

m
∑

k=1

(πk − 1)

Differentiating with reference to each πk we obtain

n
∑

j=1

1

πk

S
(i)
jk + λ = 0

or

n
∑

j=1

S
(i)
jk = −λπk

Summing both sides over k, we get that

m
∑

k=1

n
∑

j=1

S
(i)
jk = −λ

m
∑

k=1

πk

and, as S
(i)
j1 + · · ·S(i)

jm = 1, π1 + · · ·+ πm = 1, it results λ = −n, therefore

πk =
1

n

n
∑

k=1

S
(i)
jk

The second term decomposes into m sums involving only one ACG parameter matrix Σk each,
such that we have to maximize

n
∑

j=1

S
(i)
jk ln f(xj; Σk) = max

Σk

!, k = 1, · · · ,m

These expression are similar to the log-likelihood from an i.i.d. ACG sample, but the single data
terms ln f(xj; Σk) are weighted by the conditional probability S

(i)
jk that xj is generated by the

k−th regime.
Iterating these considerations, we get the EM algorithm for a mixture of ACG distributions.

48 Chapter 4 Mixtures of Schladitz Distributions

E-step: Compute Q[Φ |Φ(i)] for given Φ(i) and mixture components 1 ≤ k ≤ m as in (4.5):

Q[Φ |Φ(i)] =
n
∑

j=1

m
∑

k=1

S
(i)
jk ln(πkf(xj,Σk))

with

S
(i)
jk =

π
(i)
k f(xj; Σ

(i)
k)

∑m
l=1 π

(i)
l f(xj; Σ

(i)
l)

M-step: Update the parameter estimated Φ(i+1) with

Φ(i+1) = argmax
Φ∈Θ

Q[Φ |Φ(i)]

i.e.

(i) calculate π
(i+1)
k by

π
(i+1)
k =

1

n

n
∑

j=1

S
(i)
jk

(ii) calculate Σ(i+1) by maximizing

n
∑

j=1

S
(i)
jk ln f(xj; Σ

(i)
k), k = 1, · · · ,m

In the following, we focus on the properties of this procedure, in particular the consistency of
the maximum likelihood estimate and the numerical convergence of the EM algorithm towards
this estimate. These properties are summarized in Theorem 4.2.1 and Theorem 4.2.2.

Let Φ∗ denote the true value of the parameter, and let Φ̂ denote the maximum likelihood
estimate of Φ∗. Further let Φ(i) denote the numerical approximation of Φ̂ after i iterations of
the EM algorithm, and let Φ̂EM = Φ(if) denote the parameter approximation which we get after
running the EM algorithm if times until some stopping criterion is satisfied. For the purpose of

verifying that Φ̂EM converges to the true value Φ∗ we need to prove that Φ(i) converges to Φ̂ for
i → ∞ such that Φ̂EM ≈ Φ̂ for large enough if , and that Φ̂ converges to Φ∗.

Theorem 4.2.1 (Consistency of the maximum likelihood estimate of the mixture
model of ACG distributions)
Let xj be independent and identically distributed from a mixture of m ACG distributions with
the parameter Φ∗ = ((π∗

k)1≤k≤m , (Σ∗
k)1≤k≤m), where Σ∗

k a symmetric positive-definite d × d

matrix parameter and
∑m

k=1 π
∗
k = 1. Let Θ satisfy 4.1 and 4.2. Then Φ̂ is consistent, i.e.,

Σ̂k
P−−−→

n→∞
Σ∗

k

π̂k
P−−−→

n→∞
π∗
k

where
P−−→ denotes convergence in probability.

4.2 Mixtures of ACG Distributions 49

Theorem 4.2.2 (Convergence of the expectation maximization estimate of the
mixture model of ACG distributions)
Under the assumption of Theorem 4.2.1, if Φ̂ is the unique maximum of the log-likelihood in
Θ and if it lies in the interior of Θ, then Φ(i) converges to Φ̂ for i → ∞ and, in particular,

Σ
(i)
k → Σ̂k, π

(i)
k → π̂k, k = 1, · · · ,m, i → ∞

Mark that the uniqueness assumption on Φ̂, Θ is standard in the formulation of consistency
results for maximum likelihood estimates. If Θ is so large that it contains several local maxima of
the likelihood, then estimates can always target a local maximum instead of the global maximum.
To counter this effect, in practice one starts the estimation algorithm with several initial values
for the parameter.

We begin with the proof of Theorem 4.2.2. It follows from Wu (1983) if the following
conditions hold.

(C1) Q[Φ |Φ∗] ≥ Q[Φ∗ |Φ∗] for all Φ,Φ∗ ∈ Θ

(C2) H[Φ∗ |Φ∗] ≥ H[Φ |Φ∗] for all Φ,Φ∗ ∈ Θ

(C3) Q(Φ |Φ∗) is continuous in both Φ and Φ∗

where

H[Φ |Φ∗] = Q[Φ |Φ∗]−
n
∑

j=1

ln

(

M
∑

l=1

πlf(xj; Σl)

)

It is simple to see that the difference term between H[Φ |Φ∗] and Q[Φ |Φ∗] is just the log-
likelihood function of the incomplete density of the mixture model. Note that, an EM algorithm
with assumptions (C1) and (C2) is a generalized EM algorithm (GEM algorithm).

Proof We begin with (C2). We use the notation introduced in the context of (4.4) and (4.5).
Since

∑m
k=1 S

∗
jk = 1, we have

H[Φ |Φ∗] =
n
∑

j=1

m
∑

k=1

S∗
jk ln(πkf(xj,Σk))

−
n
∑

j=1

m
∑

k=1

S∗
jk ln

(

m
∑

l=1

πlf(xj; Σl)

)

=
n
∑

j=1

m
∑

k=1

S∗
jk · ln

(

πkf(xj,Σk)
∑m

l=1 πlf(xj; Σl)

)

From (4.1) it yields

πkf(xj,Σk)
∑m

l=1 πlf(xj; Σl)
= E[Sjk | xj ; Φ] = Ŝjk

Therefore

H[Φ |Φ∗] =
n
∑

j=1

m
∑

k=1

S∗
jk ln Ŝjk

50 Chapter 4 Mixtures of Schladitz Distributions

It follows as in Dempster et al. (1977) and Franke et al. (2011) that

m
∑

k=1

S∗
jk ln

(

S∗
jk

Ŝjk

)

≥ 0

with equality if and only if Ŝjk = S∗
jk. Hence,

H[Φ∗ |Φ∗] ≥ H[Φ |Φ∗]

with equality if and only if Ŝjk = S∗
jk.

(C1) We define a mapping describing the iteration

M : Φ(i) → Φ(i+1)

M(Φ∗) = argmax
Φ∈Θ

Q(Φ |Φ∗)

which obviously satisfies
Q(M(Φ∗) |Φ∗) ≥ Q(Φ∗ |Φ∗)

for all Φ∗ ∈ Θ
(C3) Since 0 < δ ≤ πk ≤ 1− δ for all k, it is sufficient to proof that f(x; Σk) is positive

and bounded.
We have, as f is a density on the unit sphere,

xTΣ−1
k x ≤ 1

λmin(Σk)
· ‖x‖2 = 1

λmin(Σk)
< ∞

and

xTΣ−1
k x ≥ 1

λmax(Σk)
· ‖x‖2 = 1

λmax(Σk)
> 0

Since Σk is symmetric matrix

det(Σk) = λ1(Σk) · λ2(Σk) · . . . · λd(Σk)

where λ1, . . . , λd are the eigenvalues of Σk. Therefore

λd
min(Σk) ≤ det(Σk) ≤ λd

max(Σk)

It follows

f(x; Σk) =
1

αd

· 1

(det(Σk))
1/2

· 1

(xTΣ−1
k x)d/2

≥ 1

αd

· 1

(λmax(Σk))
d/2

· (λmin(Σk))
d/2

=
1

αd

(

λmin(Σk)

λmax(Σk)

)d/2

=
1

αd

(cond(Σk))
−d/2

≥ 1

αd

(

λ

λ

)d/2

> 0

4.2 Mixtures of ACG Distributions 51

where cond(Σk) it the condition number of the normal matrix Σk, and λ ≤ λmin(Σk), λ ≥
λmax(Σk) by assumption on Θ.

Analogously

f(x; Σk) ≤
1

αd

(

λmax(Σk)

λmin(Σk)

)d/2

≤ 1

αd

(

λ

λ

)d/2

< ∞

for all Σk.

We recall the log-likelihood function based on the incomplete observation from the mixture
model as

linc(Φ | x) = Q(Φ∗ |Φ)−H(Φ∗ |Φ)

=
n
∑

j=1

ρ(xj; Φ)

=
n
∑

j=1

ln

(

m
∑

k=1

πkf(xj; Σk)

)

where ρ(x; Φ) = ln (
∑m

k=1 πkf(x; Σk))

Theorem 4.2.1 follows from Franke et al. (2011) if the following conditions hold.

(C4) Θ is compact

(C5) ρ(x; Φ) is continuous in Φ and r(Φ) = E(ρ(x1; Φ)) < ∞.

(C6) r(Φ) is continuous.

(C7) ρ0(x; Φ) = ρ(x; Φ)− r(Φ) satisfies a uniform Lipschitz condition

|ρ0(x; Φ)− ρ0(x; Φ
∗)| ≤ L(x) ‖Φ− Φ∗‖

for all Φ,Φ∗ ∈ Θ, and the non-negative function L satisfying EL(x1) < ∞.

(C8) For n → ∞

1

n

n
∑

j=1

ρ(xj; Φ)
P→ r(Φ) for all Φ ∈ Θ

Proof of Theorem 4.2.1 We have to check (C4) - (C8).

(C4) follows immediately from (4.4) and (4.5).

(C5) It follows from the proof of (C3) that ρ(x; Φ) is continuous and f(x; Σk) is uniformly
bounded in ‖x‖ = 1, Σk ∈ Θ, then ρ(x; Φ) is bounded. Therefore r(Φ) = E(ρ(x1; Φ)) < ∞.

(C6) r(Φ) is continuous as ρ(x; Φ) is uniformly continuous in x.

(C7) It is sufficient to proof that ρ0(x; Φ) and ρ(x,Φ) are differentiable w.r.t. Φ and the
derivative is bounded uniformly in ‖x‖ = 1.

52 Chapter 4 Mixtures of Schladitz Distributions

Since πk and f(x; Σk) is positive and bounded, the ln-function is differentiable. And we
have

∂ρ

∂πk

=
1

∑m
l=1 πlf(x; Σl)

· f(x,Σk) < ∞

∂ρ

∂Σk

=
πk

∑m
l=1 πlf(x; Σl)

· ∂f(x,Σk)

∂Σk

f(x,Σk) continuous differentiable w.r.t. Σk as long as we stay in Θ if we look at the definition
of f and take into account ‖x‖ = 1.

(C8) follows directly from the law of large numbers as x1, · · · , xn are independent and
identically distributed.

Up to here, the consistency of parameter estimates for a mixture of general ACG distributions
is proven. Then the mixture model of Schladitz distributions has also consistent parameter
estimates as the Schladitz distribution is a special case of the ACG distribution with d = 3 and
Σ = diag(1, 1, β−2).

4.3 Mixtures of the Schladitz Distributions

Here we come back to the Schladitz distribution. We consider a general model of a mixture
of m Schladitz distributions. For 1 ≤ k ≤ m, let p(θ, φ | βk, µk) be the Schladitz distribution
component with the parameter βk and principal/polar axis µk, which described in Section 2.3.
The probability density function of this mixture model is

f(θ, φ |Φ) =
m
∑

k=1

πkp(θ, φ | βk, µk) (4.6)

where Φ = (π1, · · · , πm, β1, · · · , βm, µ1, · · · , µm) and
∑m

k=1 πk = 1.
Let (θ1, φ1), (θ2, φ2), · · · , (θn, φn) be a sample of independent and identically distributed unit

vectors from the mixture of Schladitz distributions. Furthermore, let Sjk, j = 1, · · · , n, k =
1, · · · ,m be the indicator variables as in the previous section, i.e. in particular, Sjk = 1, Sjl =
0, l 6= k, if (θj, φj) is generated by the k−th regime.

Again, we consider the maximum likelihood estimate Φ̂ which we get from maximizing the
incomplete log-likelihood

n
∑

j=1

ln f(θj, φj |Φ) =
n
∑

j=1

ln

[

m
∑

k=1

πkp(θj, φj | βk, µk)

]

The corresponding complete log-likelihood assuming knowledge of the Sjk or, equivalently, of
the state variables Qj = k if and only if Sjk = 1, is given by

Lc(Φ | (θ1, φ1), · · · , (θn, φn), Q) =
n
∑

j=1

ln πQj
+

n
∑

j=1

m
∑

k=1

Sjk ln p(θj, φj | βk, µk)

=
n
∑

j=1

m
∑

k=1

Sjk ln(πkp(θj, φj | βk, µk)) (4.7)

4.3 Mixtures of the Schladitz Distributions 53

(compare (4.3)). As in the previous section for mixtures of general ACG distributions, we replace
Sjk in (4.7) by the posterior probability of Sjk = 1 given the data, we apply the EM algorithm,
and we get the iterative scheme.

E-step: Compute Q[Φ |Φ(i)]:

Q[Φ |Φ(i)] =
n
∑

j=1

m
∑

k=1

S
(i)
jk ln (πkp(θj, φj | βk, µk))

with

S
(i)
jk =

π
(i)
k p
(

θj, φj | β(i)
k , µ

(i)
k

)

∑m
l=1 π

(i)
l p
(

θj, φj | β(i)
l , µ

(i)
l

)

M-step: Update from i to i+ 1

(i) calculate π
(i+1)
k by

π
(i+1)
k =

1

n

n
∑

j=1

S
(i)
jk (4.8)

(ii) calculate β
(i+1)
k , µ

(i+1)
k by

(

β
(i+1)
k , µ

(i+1)
k

)

= argmax
βk,µk

n
∑

j=1

S
(i)
jk ln p(θj, φj | βk, µk), k = 1, · · · ,m

Now, we discuss two methods for solving the maximization task of (ii).
Since p(θj, φj | βk, µk) is calculated pretending that (θj, φj) belongs to the k−th group, we

can rotate the data about the principal/polar axis µk under the method described in (3.6) and
obtain a new sample (θj | k, φj | k), j = 1, · · · , n. Under this transformation, µk is changed to
(0, 0, 1)T such that the density p

(

θj | k, φj | k | βk

)

does no longer depend on µk and has rotational
symmetry around the z−axis. Let T denote the term to be maximized in (ii) of the M-step, we
have

T =
m
∑

k=1

n
∑

j=1

S
(i)
jk ln p(θj, φj | βk, µk)

=
m
∑

k=1

n
∑

j=1

S
(i)
jk ln p

(

θj | k, φj | k | βk

)

=
m
∑

k=1

n
∑

j=1

S
(i)
jk ln

(

1

4π

βk sin θj | k
(

1 + (β2
k − 1) cos2 θj | k

)3/2

)

=
m
∑

k=1

n
∑

j=1

S
(i)
jk

(

ln

(

sin θj | k
4π

)

+ ln(βk)−
3

2
ln
(

1 + (β2
k − 1) cos2 θj | k

)

)

54 Chapter 4 Mixtures of Schladitz Distributions

Mark that T depends not only on βk but via the transformation θj → θj | k also on µk.

We introduce here two different methods to get
(

β
(i+1)
k , µ

(i+1)
k

)

. One of them takes into

account the constants µT
k µk = 1, as µk is a unit vector, by means of a Lagrangian term. Adding

it to T , we get

T ∗ =
m
∑

k=1

n
∑

j=1

S
(i)
jk ln pk(θj | k, φj | k | βk) +

m
∑

k=1

λk(1− µT
k µk)

=
m
∑

k=1

n
∑

j=1

S
(i)
jk

(

ln

(

sin θj | k
4π

)

+ ln(βk)−
3

2
ln
(

1 +
(

β2
k − 1

)

cos2 θj | k
)

)

+
m
∑

k=1

λk(1− µT
k µk)

To obtain the maximum of T ∗ we set each partial derivative of T ∗ to zero. By differentiating
with respect to each βk we have

n
∑

j=1

S
(i)
jk = 3β2

k

n
∑

j=1

S
(i)
jk cos2 θj|k

1 + (β2
k − 1) cos2 θj|k

(4.9)

This is similar to the problem of the estimation of parameter β as described in Algorithm 5. By
differentiating with respect to each λk we have

µT
k µk = 1 (4.10)

By differentiation with respect to each µk we have

1

2

n
∑

j=1

Tµ = λkµk (4.11)

where Tµ comes from differentiating of T w.r.t. µk, i.e.

Tµ =
n
∑

j=1

∂ ln p(θj, φj | βk, µk)

∂µk

· S(i)
jk (4.12)

As a result of Section 2.4, we believe that if we replace the density function p(θj, φj | βk, µk)
of (4.12) in the density function of Watson distribution, the estimate is still acceptable. Therefore

Tµ ≈
n
∑

ij=1

∂ ln exp(βk(v
T
j µk)

2)

∂µk

· S(i)
jk

= 2
n
∑

j=1

βk(v
T
j µk)vjS

(i)
jk (4.13)

where vj = (xj, yj , zj)
T as Cartesian representation of the point on the unit sphere with polar

coordinates (θj, φj).

4.3 Mixtures of the Schladitz Distributions 55

Table 4.1: Means and standard deviations of π̂, β̂ and µ̂ for mixture of two bipolar Schladitz
distributions with various mixing proportions (Algorithm 6). We simulate 2000 Schladitz
distributed unit vectors with the parameter β = 0.1, some of them are distributed with the
principal axis (0, 0, 1)T , the others are distributed with the principal axis (1, 0, 0)T , and the
mixing ratios are written as π1 : π2 for 0.5 : 0.5, 0.25 : 0.75 and 0.2 : 0.8.

π1 : π2 0.5:0.5 0.25:0.75 0.2:0.8

π̂
mean 0.5004 0.4996 0.2206 0.7794 0.3980 0.6020

sd 0.0083 0.0083 0.0073 0.0073 0.0835 0.0835

β̂
mean 0.1045 0.1036 0.0993 0.1070 0.6882 0.0830

sd 0.0053 0.0071 0.0096 0.0038 0.2137 0.0086

µ̂

mean
0.0041 1.0000 0.0065 1.0000 0.6815 0.9999
0.0053 0.0043 0.0083 0.0049 0.0106 0.0039
1.0000 0.0044 1.0000 0.0029 0.6836 0.0088

sd
0.0036 e-5 0.0090 e-5 0.2441 e-5
0.0036 0.0026 0.0056 0.0038 0.0139 0.0035

e-5 0.0034 e-5 0.0031 0.1264 0.0041

From (4.11) and (4.13) we have

βk

∥

∥

∥

∥

∥

n
∑

j=1

(vTj µk)vjS
(i)
jk

∥

∥

∥

∥

∥

= λk

Therefore

µk =

∑n
j=1(v

T
j µk)vjS

(i)
jk

∥

∥

∥

∑n
j=1(v

T
j µk)vjS

(i)
jk

∥

∥

∥

(4.14)

From equations (4.8), (4.9)and (4.14) we have the first EM algorithm for a mixture of Beta-
distributions with Lagrangian, which is shown in Algorithm 6.

Table 4.1 shows the adequacy of this method for various mixing proportions. We simulate
2000 β-distributed unit vectors with the parameter β = 0.1, part of them are distributed with the
principle axis (0, 0, 1)T , the other part of them are distributed with the principle axis (1, 0, 0)T , and
the mixing ratios are tested of 0.5 : 0.5, 0.25 : 0.75 and 0.2 : 0.8. We estimate the parameters of
the mixture distributions with the method described in Algorithm 6. For each set of parameters,
the procedure was repeated 10 times to get the mean value and standard deviation of πk, βk and
µk for k = 1, 2.

The results indicate that this method works well for not so large ratio of two distributions,
smaller or equal than 1 : 3. Note that for the case of 0.2 : 0.8 it yields sometimes good estimators,
but most of the time not, therefore the standard deviation is very large, and mostly the estimated
principal/polar axes are also not expected.

To show the adequacy of this method for various differences of the original parameter of the
two distributions we simulate 2000 unit vectors of β-distributions, a half of them are distributed
with parameter β = 0.1 and the principal axis (0, 0, 1)T , the other 1000 vectors are distributed
with the principal axis (1, 0, 0)T , but with various parameter β between 0.1 and 0.4. We estimate

56 Chapter 4 Mixtures of Schladitz Distributions

Algorithm 6 Estimation of the Parameter of Schladitz Distribution (with Lagrangian)

Require: A set of n unit vectors with the polar coordinates (θj, φj), as well as the direction
cosines (xj, yj , zj) for 1 ≤ j ≤ n, the number of different distributions m

Ensure: The mixture proportions πk, the principal axis of bipolar distributions or polar
axis of girdle distributions µk , as well as the estimated parameter βk for each 1 ≤ k ≤ m
initial πk, βk, µk with

∑m
k=1 πk = 1 and ‖µj‖ = 1 for each j

repeat
E-step
for j = 1 to n do

rotate the original data (θj, φj) to (θj | k, φj | k) with µk

for k = 1 to m do

p(θj | k|βk) =
1

4π

βk sin θj | k
(

1 + (β2
k − 1) cos2 θj | k

)3/2

end for
for k = 1 to m do

Sjk =
πkp(θj | k|βk)

∑m
l=1 πlp(θj | k | βl)

end for
end for
M-step
for k = 1 to m do

πk =
1

n

n
∑

j=1

Sjk

µk =

∑n
j=1((xj, yj , zj)

Tµk)(xj, yj , zj)Sjk
∥

∥

∥

∑n
j=1((xj, yj , zj)Tµk)(xj, yj , zj)Sjk

∥

∥

∥

rotate the original data (θj, φj) to (θj | k, φj | k) with µk

estimate βk with the Main-step of Algorithm5 (replace θj in θj | k)
end for

until there is no more significant improvement
return πk, βk, µk

4.3 Mixtures of the Schladitz Distributions 57

Table 4.2: Means and standard deviations of π̂, β̂ and µ̂ Algorithm 6 for mixture of two
bipolar Schladitz distributions with various original parameter (Algorithm 6). We simulate
2000 Schladitz distributed unit vectors, a half of them are distributed with the principal
axis (0, 0, 1)T with the parameter β = 0.1, the other half of them are distributed with the
principal axis (1, 0, 0)T with various parameter of β = 0.1, β = 0.2, β = 0.3 and β = 0.4.

β 0.1 0.2 0.3 0.4

π̂
mean 0.5004 0.4996 0.4306 0.5694 0.3350 0.6650 0.2372 0.7628

sd 0.0083 0.0083 0.0177 0.0177 0.0233 0.0233 0.0217 0.0217

β̂
mean 0.1045 0.1036 0.0949 0.2529 0.0842 0.4566 0.0749 0.7806

sd 0.0053 0.0071 0.0036 0.0144 0.0039 0.0284 0.0749 0.0155

µ̂

mean
0.0041 1.0000 0.0052 0.9998 0.0036 0.9991 0.0215 0.5655
0.0053 0.0043 0.0037 0.0106 0.0040 0.0095 0.0041 0.0182
1.0000 0.0044 1.0000 0.0126 1.0000 0.0283 0.9997 0.8188

sd
0.0036 e-5 0.0020 e-4 0.0018 0.0016 0.0067 0.0786
0.0036 0.0026 0.0035 0.0071 0.0026 0.0097 0.0043 0.0119

e-5 0.0034 e-5 0.0070 e-5 0.0307 e-4 0.0644

the parameters of the mixture distributions with the method described in Algorithm 6. To each
set of parameters, the procedure was repeated 10 times to get the mean value and standard
deviation for each parameter. The result is shown in Table 4.2.

It indicates that this method works well for mixtures of concentrated bipolar distributions, i.e.
for small β. For a mixture of a concentrated bipolar distribution and a bipolar distribution with
β ≥ 0.4, Algorithm 6 will recognize it as a concentrated bipolar distribution and an isotropic
distribution, this is not the result we expected.

Since there are many coincide points in the case of the mixture of two or more girdle distri-
butions, the method of 6 yields very unexpected results for such cases, therefore we improve it
through calculate the “weighted” principal/polar axis in each M-step. The idea is that we change

the original directions with multiplicate with the posterior probability S
(i)
jk in each M-step.

The pseudo code shows in Algorithm 7.
For this method we make the same tests as for Algorithm 6.
Table 4.3 indicates that Algorithm 7 works also well for the case of 0.25 : 0.75, especially for

the estimation of principal/polar axis, which is impossible for the method of Algorithm 6. But this
method is still not suitable for very large difference between the numbers of two distributions, for
the case of 0.1 : 0.9, which is not described in Table 4.3, it recognize just one distribution with
the principle axis of the group of 1800 unit vectors, i.e. ignore the unit vectors of distribution of
very small proportion.

Table 4.4 indicate that Algorithm 7 works well for almost all the cases of the mixture of bipolar
distributions of the same number of vectors, especially for the case of β2 = 0.4, β2 = 0.5 or even
larger β2 it makes acceptable results. But it still have the tendency that one of the estimated
distribution is more concentrated, the other is more isotropic for large β2. And there are also
some bias between the original simulated principle axis and the estimated principle axis.

An obvious advantage of Algorithm 7 with compare to Algorithm 6 is that it also works well
for the mixture of two girdle distributions. We simulate 2000 β-distributed unit vectors with
the parameter β = 2, some of them are distributed with the principal axis (0, 0, 1)T , the others

58 Chapter 4 Mixtures of Schladitz Distributions

Algorithm 7 Estimation of the Parameter of Schladitz Distribution (with “weighted” prin-
cipal/polar axis)

Require: A set of n unit vectors with the polar coordinates (θj, φj), as well as the direction
cosines (xj, yj , zj) for 1 ≤ j ≤ n, the number of different distributions m and the types of
the distributions.

Ensure: The mixture proportions πk, the principle axis of bipolar distributions or polar
axis of girdle distributions µk , as well as the estimated parameter βk for each 1 ≤ k ≤ m
initial πk, βk, µk with

∑m
k=1 πk = 1 and ‖µk‖ = 1 for each k

repeat
E-step
for j = 1 to n do

rotate the original data (θj, φj) to (θj|k, φj|k) with µk

for k = 1 to m do

p(θj | k | βk) =
1

4π

βk sin θj | k
(

1 + (β2
k − 1) cos2 θj | k

)3/2

end for
for k = 1 to m do

Sjk =
πkp(θj | k | βk)

∑m
l=1 πlp(θj | k | βl)

end for
end for
M-step
for k = 1 to m do

πj =
1

n

n
∑

j=1

Sjk

for j = 1 to n do

(x∗
jk, y

∗
jk, z

∗
jk)

T = (xj, yj , zj)
TSjk

end for
calculate the principal/polar axis µk with the method of Pre-step of Algorithm 5
((x∗

jk, y
∗
jk, z

∗
jk) instead of (xj, yj, zj))

rotate the original data (θj, φj) to (θj | k, φj | k) with µk

estimate βk with the main step of Algorithm 5 (θj | k instead of θj)
end for

until there is no more significant improvement
return πk, βk, µk

4.3 Mixtures of the Schladitz Distributions 59

Table 4.3: Means and standard deviations of π̂, β̂ and µ̂ for mixture of two bipolar Schladitz
distributions with various mixing proportions (Algorithm 7). We simulate 2000 Schladitz
distributed unit vectors with the parameter β = 0.1, some of them are distributed with the
principal axis (0, 0, 1)T , the others are distributed with the principal axis (1, 0, 0)T , and the
mixing ratios are written as π1 : π2 for 0.5 : 0.5, 0.25 : 0.75 and 0.2 : 0.8.

π1 : π2 0.5:0.5 0.25:0.75 0.2:0.8

π̂
mean 0.4990 0.5010 0.2236 0.7764 0.1720 0.8280

sd 0.0119 0.0119 0.0044 0.0044 0.0091 0.0091

β̂
mean 0.1072 0.1046 0.1008 0.1057 0.0991 0.1053

sd 0.0044 0.0068 0.0096 0.0041 0.0081 0.0031

µ̂

mean
0.0035 1.0000 0.0047 1.0000 0.0036 1.0000
0.0048 0.0044 0.0067 0.0051 0.0045 0.0034
1.0000 0.0043 1.0000 0.0044 1.0000 0.0037

sd
0.0028 e-5 0.0038 e-5 0.0030 e-5
0.0035 0.0024 0.0050 0.0020 0.0038 0.0028

e-5 0.0026 e-5 0.0032 e-5 0.0027

Table 4.4: Means and standard deviations of π̂, β̂ and µ̂ for mixture of two bipolar Schladitz
distributions with various original parameter (Algorithm 7). We simulate 2000 Schladitz
distributed unit vectors, a half of them are distributed with the principal axis (0, 0, 1)T with
the parameter β = 0.1, the other half of them are distributed with the principal axis (1, 0, 0)T

with various parameter of β = 0.1, β = 0.2, β = 0.3 and β = 0.4.
β2 0.1 0.2 0.3 0.4

π̂
mean 0.4990 0.5010 0.4367 0.5633 0.3515 0.6485 0.2364 0.7636

sd 0.0119 0.0119 0.0099 0.0099 0.0192 0.0192 0.0326 0.0326

β̂
mean 0.1072 0.1046 0.0949 0.2424 0.0865 0.4514 0.0732 0.7155

sd 0.0044 0.0068 0.0051 0.0108 0.0040 0.0332 0.0039 0.0655

µ̂

mean
0.0035 1.0000 0.0030 0.9998 0.0018 0.9996 0.0030 0.9959
0.0048 0.0044 0.0026 0.0106 0.0014 0.0129 0.0044 0.0196
1.0000 0.0043 1.0000 0.0100 1.0000 0.0160 1.0000 0.0637

sd
0.0028 e-5 0.0019 0.0002 0.0013 0.0003 0.0019 0.0066
0.0035 0.0024 0.027 0.0101 0.0010 0.0134 0.0033 0.0157

e-5 0.0026 e-5 0.0094 e-5 0.0100 e-5 0.0631

60 Chapter 4 Mixtures of Schladitz Distributions

Table 4.5: Means and standard deviations of π̂, β̂ and µ̂ for mixture of two girdle Schladitz
distributions with various mixing proportions (Algorithm 7). We simulate 2000 Schladitz
distributed unit vectors with the parameter β = 2, some of them are distributed with the
principal axis (0, 0, 1)T , the others are distributed with the principal axis (1, 0, 0)T , and the
mixing ratios are written as π1 : π2 for 0.5 : 0.5, 0.25 : 0.75 and 0.1 : 0.9.

π1 : π2 0.5:0.5 0.25:0.75 0.1:0.9

π̂
mean 0.4993 0.5007 0.3362 0.6638 0.2143 0.7857

sd 0.0235 0.0235 0.0229 0.0229 0.0150 0.0150

β̂
mean 2.3308 2.3508 2.2601 2.3904 2.0115 2.4132

sd 0.1076 0.0833 0.02170 0.0675 0.03663 0.1047

µ̂

mean
0.0086 0.9944 0.0246 0.9986 0.0239 0.9994
0.0392 0.0826 0.0472 0.0419 0.2723 0.0187
0.9973 0.0169 0.9934 0.0206 0.8985 0.0249

sd
0.0061 0.0092 0.0268 0.0013 0.0269 e-4
0.0634 0.0659 0.1021 0.0252 0.3132 0.0104
0.0058 0.0140 0.0189 0.0085 0.1796 0.0157

are distributed with the principal axis (1, 0, 0)T , and the mixing ratios are written as π1 : π2 for
0.5 : 0.5, 0.25 : 0.75 and 0.1 : 0.9. Table 4.5 shows that it yield acceptable results even for
the case of 0.1 : 0.9, but the estimated principle axis is with large bias. During the test of so
large mixing proportion, it can be found that it sometimes yields very good results (not only
for the parameter β, but also for the principal axis), but sometimes yields a mixture of a girdle
distribution and an isotropic distribution. Therefore the standard deviation for such case is large.

4.4 Applications

In the following, we present an application for both methods described in Section 4.3. Firstly,
we use the same samples of materials as in Section 3.3 and check which model fits to which
sample better, a single distribution or a mixture model. Then we consider some material, which
the mixture model fits better and compare the results of the two methods.

We use again glass fibre composites GF30 and GF60 described in Section 3.3. For the analysis,
we selected ten cubes of size 1283 voxels (for GF60 middle layer this is reduced to 603 voxels)
and estimated the parameters of the mixture model of Schladitz distributions using Algorithm
6, as well as Algorithm 7. The results are summarised in Appendix Table A.1- Table A.8. The
estimated values are a mixture of two bipolar distributions with quite similar parameters (like tube
7 in Table A.1), a mixture of two bipolar distributions with two different β̂ values and quasi the
same principal axis (like tube 1 in Table A.1),or a mixture of a bipolar distribution and a quasi
isotropic distribution (like tube 4 in Table A.5). It can be considered in all three cases as a single
bipolar distribution with the parameter β, which in the first case is equal to the estimated β̂, in
the second case is somehow between the two estimated β̂ and in the third case is somehow larger
than the estimated β̂ of the bipolar distribution. Here “somehow” depends on the estimated π̂,
which means the portion of the directions which lie in each group. Compare to the result of the
estimated value of a single Schladitz distribution in Table 3.4, there is no large difference in the

4.4 Applications 61

Table 4.6: Estimated parameters of the mixture model of Schladitz distributions using Al-
gorithm 6 for foam

foam π̂ β̂ µ̂

A
0.5383 0.7755 (0.1661,0.7646,0.6227)
0.4617 0.5672 (0.2005,0.9694,0.1413)

B
0.5795 0.4420 (0.2251,0.9736,0.0381)
0.4205 0.8594 (0.1585 0.7322,0.6624)

C
0.7968 0.7999 (0.1193,0.6563,0.7450)
0.2032 0.1663 (0.1391,0.6567,0.7412)

D
0.8862 0.6776 (0.1629,0.6739,0.7206)
0.1138 0.2253 (0.1272,0.6060,0.7852)

E
0.5443 0.7799 (0.1009,0.6636,0.7412)
0.4557 0.3447 (0.1268,0.6426,0.7556)

F
0.8204 0.6947 (0.1366,0.6402,0.7559)
0.1796 0.2911 (0.1320,0.5376,0.8328)

G
0.2554 0.8163 (0.1967,0.7527,0.6283)
0.7446 0.5068 (0.2608,0.9617,0.0844)

H
0.7895 0.7163 (0.1307,0.6172,0.7759)
0.2105 0.1925 (0.1033,0.4381,0.8930)

estimated values. Therefore we believe that a single Schladitz distribution fits better to each
material, i.e. GF30, GF60 bottom, GF60 middle and GF60 top.

Algorithm 6 and Algorithm 7 yield not always the same result, e.g. the estimated values of
GF30 tube 8 using Algorithm 6 is of the first case and using Algorithm 7 is of the second case.
This situation is not rare in our tests, which means both methods are not stable.

The Schladitz distribution shows prominent advantages for the compressed fibre system, es-
pecially for the compressed glass fibre, as compared to e.g. the Watson distribution or other axial
distributions. Usually a single distribution or a layer distribution (like GF60) fits better for the
compressed glass fibre, and it is difficult to find application examples for the mixture of Schladitz
distributions. It showed in Schlachter (2012) and the production processes that a mixture model
fits the normal directions of walls in ceramic foams. Therefore we examine the method for the
sample of ceramic foams instead of the fibres.

Here we consider the directions of the walls in eight 2.2× 5× 5cm ceramic foam. Since the
real direction for the walls in the edge of the foam is difficult to obtain , we consider here only
the walls inside the foam. For this sample, an image with 650× 650× 650 voxels was used.

The parameters πk, βk and µk (1 ≤ k ≤ m) were estimated from the direction data using
the two methods presented above. The results are summarised in Table 4.6 (using Algorithm 6)
and Table 4.7 (using Algorithm 7).

Furthermore, Figure 4.1 and Figure 4.2 show the density plots of the original data and the
data with the estimated parameters of the ceramic foam. The results of our methods showed a
mixture of a bipolar distribution with the principal axis somewhere in the x-y plane and a quasi
isotropic distribution.

The fitting of mixture of Watson distributions to these data has already been discussed by
Schlachter (2012) and the results are summarised in Appendix Table A.9. With compare to the

62 Chapter 4 Mixtures of Schladitz Distributions

Table 4.7: Estimated parameter of the mixture model of Schladitz distributions using Algo-
rithm 7

foam π̂ β̂ µ̂

A
0.6321 1.0076 (0.1703,0.7162,0.6768)
0.3679 1.1218 (0.1533,0.7293,0.6668)

B
0.4339 0.8129 (0.1349,0.6701,0.7300)
0.5661 0.4774 (0.2251,0.9376,0.2650)

C
0.7656 0.8326 (0.1177,0.6764,0.7271)
0.2344 0.1815 (0.1404,0.6750,0.7244)

D
0.8609 0.6939 (0.1642,0.6844,0.7103)
0.1391 0.2450 (0.1531,0.6679,0.7283)

E
0.7253 0.7186 (0.1503,0.6910,0.7070)
0.2747 0.2535 (0.1621,0.6849,0.7103)

F
0.6990 0.7693 (0.1427,0.6751,0.7238)
0.3010 0.3381 (0.1646,0.6585,0.7343)

G
0.7347 0.5266 (0.2551,0.9283,0.2704)
0.2653 0.7786 (0.1839,0.7398,0.6472)

H
0.9122 0.6360 (0.1217,0.5803,0.8053)
0.0878 0.0920 (0.1034,0.5589,0.8228)

results of the mixture of Watson distributions, it can be found that our methods recognize the
principal/polar axis not so well, if the points of the individual distributions intersect each other,
i.e the groups are not clearly separated on the sphere in such cases. The improvement of this
point is still a topic for the further research.

4.5 A smooth non-parametric estimate for spherical den-

sities using Gaussian mixtures

Based on Magder and Zeger (1996) let f(x; b) be a spherical density of the form

f(x; b) = c(‖b‖)Φ(bTx)

where
b = βµ ∈ R

3

β = ‖b‖ ≥ 0 is the concentration parameter and µ = b
‖b‖ ∈ S

2 is the direction parameter. Then

we have

f(x; b) = c(β)Φ(βµTx)

As examples for this form we have

von Mises-Fisher distribution β = κ, Φ(u) = exp(u).

Watson distribution β =
√

|κ|, Φ(u) = exp(sgn(u)u2)

4.5 A smooth non-parametric estimate for spherical densities using Gaussian mixtures 63

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*
*

*

*

*

**

*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

* *
*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

**

* *

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
* *

**
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*
*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

* *

*

*

**

*

*
*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*
*
*

**

*

*

*

*

*

*

*

*

*
* *

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*

** *
*

*

*

*

*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

* *

*

*

*

*

* *
*

*

*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

*

*

*

** *

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

* *

*
* *

*

* *
*

**

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
**

*

*

*

*

*

* *
*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*

*

**

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

* *

*

*
*

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

*

*

*

**

*
*

*

*
*

*

*

*

*

**

*

*

*

*

*

*
*

*

*

**

*
*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

* *

*

*

**

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

**

*

*

*

*

*

* **

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

*

*

* *
*

*

*

*
*

*

*

*
*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* **

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

**

*
*

*

*

*

*

*

*

*

*

Figure 4.1: The density plots of foam A-D. Left: original data, middle: data with the
estimated parameters of Algorithm 6, right:data with the estimated parameters of Algorithm
7

64 Chapter 4 Mixtures of Schladitz Distributions

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

*

**

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*

*
* *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

* *

*

*

*

*

*

*

**

*

* *

*

*

*

*

*

*
*

*

*

*

**

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*
*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

* *
*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**

**

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*
*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

**

*

*

*

* *

*

*

*

*

**

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

*
*

*

*

*

*

*

*

*
**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *
*

*

*

*

*

*

* *

*

*

*

*

* *

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*
*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* **

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*
*

* *

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

**

** *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *
*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
**

**

* *

*
*

*

* *

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*
*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*
*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

**

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

** *

*

**

*

**

*
*

*
*

*

*

* *

*

*

**

*

*

*
*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * **

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

**

*

*
*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

* *

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*
*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*
*

*

*

* *

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

* *

* *

*
*

*

*

*

*

*

*

*

*
*

*

* ** *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

* *
*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

* *

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

**

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

**

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
**

*

*

*
* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

* *

*

*
*

*
*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

**

*
*

*

*

**

*

*

*
*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

* ***

*

*

*

*

*

*

*
*

* *

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

* *
* *

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

* **** *

*

*

*

*

*

* *
*

*
*

*

*
*

**

*

*
*

* *

*

*
*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
**

*

*

*

Figure 4.2: The density plots of foam E-H. Left: original data, middle: data with the
estimated parameters of Algorithm 6, right:data with the estimated parameters of Algorithm
7

4.5 A smooth non-parametric estimate for spherical densities using Gaussian mixtures 65

Mark that the Watson parametrization is slightly different than usual for the sake of identifi-
ability of the parameters β ≥ 0, µ ∈ S

2.
For µTx > 0, we have

Φ(βµTx) = eβ
2(µT x)2 = eκ(µ

T x)2

i.e. κ = β2 > 0.
For µTx < 0, we have

Φ(βµTx) = e−β2(µT x)2 = eκ(µ
T x)2

i.e. κ = −β2 < 0.
Choosing f is a matter of convenience, depending only on the question “if we have axial data

or not”. In the first case, the Watson density would be appropriate, in the second case, the von
Mises-Fisher density. However, we could use other axial or non-axial densities instead.

We do not use f as a model for our data. It only serves as an auxiliary quantity for con-
struction of a nonparametric density estimate, similar to using the Gaussian density as kernel in
a Rosenblatt-Parzen density estimate on the plane.

We now randomize b by letting L(b) = N3(0,Σ) as in Magder and Zeger (1996). The only
difference is that we restrict our conditions to Eb = 0, which is more in line with the spherical
setup.

Then we consider the Gaussian mixture G with some mixture distribution H on the covariance
matrix Σ, such that we get as density of b

g(b) =

∫

ϕ(0,Σ)(b)dH(Σ)

where ϕ(0,Σ)(b) is the density of N3(0,Σ).
Given data x1, · · · , xn i.i.d. from some spherical distribution, which is a mixture of simple

distribution with various patameters.
We approximate it by a two-step procedure with hidden data B1, · · · , Bn from g. Let (xj;Bj)

(j = 1, · · · , n) be i.i.d. with L(Bj) has density g(b) and L(xj|Bj) has density f(x;Bj).
The parameter of the mixture density g(b) is the mixture distribution H. The density of the

observed data xj is, then, given by

∫

R3

f(xj; b)g(b)db

i.e. a continuous mixture of the densities f(x; b) and the likelihood is

L(H|X) =
n
∏

j=1

∫

R3

f(xj; b)g(b)db

=
n
∏

j=1

∫∫

R3

f(xj; b)ϕ0,Σ(b)dH(Σ)db (4.15)

It turns out that the maximum is assumed at a discrete distribution H with finite support if
we constrain Σ to be bounded away from 0, e.g. require detΣ ≥ h for some h > 0.

h has the usual interpretation as a parameter controlling the smoothness of the final estimate.
The smaller h, the rougher the spherical density estimate will be. In the limit h → 0, we would

66 Chapter 4 Mixtures of Schladitz Distributions

get the empirical distribution of the data. Mark that (4.15) is only a pseudo likelihood as we do
not assume that L(xj|Bj = b) really has density f(x; b).

Let Γh denote the set of distributions H over the covariance matrices Σ which have all mass
concentrated on {Σ, detΣ ≥ h}, then we have

Theorem 4.5.1
Assume that for almost all x, f(x;b) is bounded and continuous in b and f(x; b) → 0 for
‖b‖ → ∞. For any h > 0, L(H|x) is maximized over Γh by a discrete measure with finite
support {Σ1, · · · ,ΣM} for some M ≤ n. Hence, the maximum likelihood estimate of g is
almost surely of the form

ĝ(b) =
M
∑

k=1

π̂kϕ(0,Σ̂k)
(b)

where all Σ̂k satisfy det Σ̂k = h.

Proof The result follows from Theorem 2 of Magder and Zeger (1996) as, checking the proof
of said Theorem, it is easily seen that fixing the means of the Gaussian to 0 does not
change the arguments. The main property of the Gaussian family that it is invariant under
convolution may still be used to apply a general result on mixtures by Lindsay (1983).

Mark that Magder and Zeger (1996) use in their proof that f(xj; b) → 0 for ‖b‖ → ∞ for
j = 1, · · ·n, which obviously holds almost surely under our condition on f .

Many well-know spherical distributions have a density proportional to Φ(bTx) for some given
function Φ. Furthermore, the conditions on f(x; b) follows immediately from conditions on Φ
and the scaling factor:

Corollary 4.5.2
If f(x; b) = c(‖b‖)Φ(bTx), then the Theorem 4.5.1 holds if c(β)Φ(βu) is continuous and
bounded in u and β and c(β)Φ(βu) → 0 for β → ∞ for almost all u ∈ [−1, 1].

These conditions are satisfied for our two main examples, the Watson and the von Mises-Fisher
distribution.

Lemma 4.5.3
The condition of the Corollary 4.5.2 is satisfied for

Φ(u) = esgn(u)u
2

i.e. for the Watson density.

Proof For the sphere in R
3, the Watson density has the form

f(x; b) =
1

Mκ

eκ(µ
T x)2 =

1

Mκ

eβ
2sgn(µT x)(µT x)2

where

Mκ = c

1
∫

−1

eκt
2

dt = c

1
∫

−1

esgn(κ)β
2t2dt

with some universal constant c depending only on the dimension, here c = 3.

4.5 A smooth non-parametric estimate for spherical densities using Gaussian mixtures 67

(i) We first show that f(x; b) → 0 for ‖b‖2 = β2 = |κ| → ∞ for all x except for x = ±µ
in case of κ > 0 and except for x ⊥ µ in case of κ < 0, which both are sets of measure
0 on the sphere.

(a) We first consider the case κ > 0, x 6= ±µ. Then

|µTx| = τ < 1

1

f(x; b)
=

Mκ

eκτ2

= c

1
∫

−1

eκ(t
2−τ2)dt

= c

τ
∫

−τ

eκ(t
2−τ2)dt+ 2c

1
∫

τ

eκ(t
2−τ2)dt

≥ 2c

1
∫

τ

eκ(t
2−τ2)dt

≥ 2c

1
∫

τ

eκ(t−τ)2dt

= 2c

1−τ
∫

0

eκs
2

ds

≥ 2c

δ
∫

0

eκs
2

ds+ 2ceκδ
2

1−τ
∫

δ

ds

≥ 2c(1− τ − δ)eκδ
2 → ∞

for κ → ∞, for all suitably small δ > 0. Therefore f(x; b) → 0 for κ → ∞.

(b) Now, for κ < 0, µTx 6= 0, We have

|µTx| = τ > 0

and

1

f(x; b)
=

Mκ

e−|κ|τ2

= c

1
∫

−1

e|κ|(τ
2−t2)dt

≥ 2c

τ
∫

0

e|κ|(τ
2−t2)dt

68 Chapter 4 Mixtures of Schladitz Distributions

≥ 2c

τ
∫

0

e|κ|(τ−t)2dt

= 2c

τ
∫

0

e|κ|s
2

ds → ∞

for |κ| → ∞ as in (i), and again f(x; b) → 0 for κ → ∞.

(ii) The continuity of f(x; b) is immediate. The boundedness follows from the continuity,
the fact that µ ∈ S

2 which is compact and that β > 0 and f(x; b) → 0 for β → ∞.

Lemma 4.5.4
The condition of the Corollary 4.5.2 is satisfied for

Φ(u) = eu

i.e. for the von Mises-Fisher distribution.

Proof The density of the von Mises-Fisher distribution is

f(x; b) = cκ1/2 1

I1/2(κ)
eκµ

T x = c
1

Iκ
eκµ

T x

for κ ≥ 0, µ = 1, where

Iκ =
1√
κ
I1/2(κ) =

1

2π
√
κ

2π
∫

0

cos

(

θ

2

)

eκ cos θdθ

or, alternatively,

Iκ =
1

π
√
κ

π
∫

0

cos θeκ cos(2θ)dθ.

Using

π
∫

π/2

cos θeκ cos(2θ)dθ =

π/2
∫

0

cos(θ + π/2)eκ cos(2θ+π)dθ

=

π/2
∫

0

− sin θe−κ cos(2θ)dθ

we also have

Iκ =
1

π
√
κ

π/2
∫

0

(cos θeκ cos(2θ) − sin θe−κ cos(2θ))dθ (4.16)

4.5 A smooth non-parametric estimate for spherical densities using Gaussian mixtures 69

We define µTx = τ , |τ | ≤ 1, therefore

τ = cos(2θ∗)

for some unique θ∗ ∈ [0, π/2]. Assume |µTx| 6= 1, i.e. θ∗ ∈ (0, π/2). We have

1

f(x; b)
= const · Iκ

eκµT x
= const · Iκ

eκ cos(2θ∗)

We use (4.16) for Iκ, and we consider only the first term , as the second one can be dealt
with analogously.

1√
κ

π/2
∫

0

cos θeκ cos(2θ)e−κ cos(2θ∗)dθ

=
1√
κ

π/2
∫

0

cos θeκ(cos(2θ)−cos(2θ∗))dθ

≥ 1√
κ

θ∗
∫

0

cos θeκ(cos(2θ)−cos(2θ∗))dθ

≥ 1√
κ

θ∗
∫

0

eκ(cos(2θ)−cos(2θ∗))dθ · cos θ∗

As cos(2θ) decreases on [0, π/2], cos(2θ) − cos(2θ∗) ≥ 0 in the exponent for θ ≤ θ∗, and we
have for small enough δ > 0

1√
κ

π/2
∫

0

cos θeκ cos(2θ)e−κ cos(2θ∗)dθ

≥ 1√
κ

θ∗−δ
∫

0

eκ(cos(2θ)−cos(2θ∗))dθ · cos θ∗

≥ 1√
κ
(θ∗ − δ)(θ∗ − δ) · eκ(cos(2θ∗−2δ)−cos(2θ∗)) · cos θ∗ → ∞ for κ → ∞

as 1√
κ
eκz → ∞ for κ → ∞ if z > 0.

From Theorem 4.5.1 together with the last two lemmas, we get a simple nonparametric
estimate of the density f(x) of the xj of the form

f̂h(x) =
M
∑

k=1

π̂k

∫

f(x; b)φ(0,Σ̂k)
(b)db

where π̂k, Σ̂k can be derived by maximizing the likelihood (4.15) under the constraint det Σ̂k = h.
Magder and Zeger (1996) showed hat this approach works in a setting where the numerical
calculation is rather simple. In our case, the likelihood is a rather involved function of Σ̂k,
k = 1, · · · ,M , such that constrained maximization is rather cumbersome. Therefore, we do not
present simulations here, but this has to be postponed to future work.

Appendix A

Application Results

Table A.1: Estimated parameters of the mixture model of Schladitz distributions using
Algorithm 6 for GF30

tube π̂ β̂ µ̂

1
0.5341 0.2448 (0.0295,0.9794,0.1999)
0.4659 0.3781 (0.0160,0.9753,0.2203)

2
0.1820 0.1128 (0.0012,0.7696,0.6386)
0.8180 0.5038 (0.0500 0.9954,0.0813)

3
0.6472 0.1609 (0.0366,0.8149,0.5784)
0.3528 0.2246 (0.0229,0.8359,0.5483)

4
0.8770 0.3861 (0.0059,0.9673,0.2534)
0.1230 0.5298 (0.0037,0.9996,0.0275)

5
0.9853 0.3944 (0.0055,0.9697,0.2443)
0.0417 0.5272 (0.0036,0.9995,0.0324)

6
0.2736 0.4088 (0.1301,0.9443,0.3024)
0.7264 0.4400 (0.0399,0.9940,0.1017)

7
0.5963 0.2580 (0.0311,0.9770,0.2109)
0.4037 0.2580 (0.0311,0.9770,0.2109)

8
0.5064 0.3173 (0.0015,0.9984,0.0561)
0.4936 0.3177 (0.0013,0.9984,0.0559)

9
0.6234 0.3044 (0.1396,0.9805,0.1382)
0.3766 0.3499 (0.1488,0.9811,0.1238)

10
0.5081 0.2069 (0.0436,0.9982,0.0404)
0.4919 0.2076 (0.0437,0.9982,0.0407)

70

Appendix A Application Results 71

Table A.2: Estimated parameters of the mixture model of Schladitz distributions using
Algorithm 7 for GF30

tube π̂ β̂ µ̂

1
0.2843 0.2457 (0.0092,0.8981,0.4398)
0.7157 0.4345 (0.0154,0.9977,0.0656)

2
0.6289 0.2479 (0.1099,0.9909,0.0780)
0.3711 0.3481 (0.1397 0.9797,0.1437)

3
0.6789 0.4020 (0.0337,0.9728,0.2291)
0.3211 0.4211 (0.0485,0.9981,0.0390)

4
0.4360 0.3711 (0.1268,0.9777,0.1677)
0.5640 0.4718 (0.0317,0.9791,0.0404)

5
0.0747 0.1543 (0.1029,0.9631,0.2486)
0.9253 0.5970 (0.1948,0.9446,0.2641)

6
0.7217 0.3499 (0.1621,0.9241,0.1198)
0.2783 0.6426 (0.0461,0.9901,0.0176)

7
0.4337 0.4932 (0.2743,0.9614,0.0216)
0.5663 0.4936 (0.2739,0.9615,0.0218)

8
0.2134 0.3231 (0.1530,0.9881,0.0182)
0.7866 0.4955 (0.2448,0.9686,0.0430)

9
0.5317 0.3375 (0.1640,0.9865,0.0003)
0.4683 0.4763 (0.1764,0.9831,0.0483)

10
0.3582 0.4691 (0.0051,0.9935,0.0130)
0.6418 0.4692 (0.0051,0.9934,0.0131)

72 Appendix A Application Results

Table A.3: Estimated parameters of the mixture model of Schladitz distributions using
Algorithm 6 for GF60 bottom layer

tube π̂ β̂ µ̂

1
0.3418 0.1755 (0.0372,0.0271,0.9989)
0.6582 0.1759 (0.0372,0.0272,0.9989)

2
0.6481 0.1520 (0.0560,0.0198,0.9982)
0.3519 0.1522 (0.0560 0.0198,0.9982)

3
0.6384 0.1835 (0.0694,0.0389,0.9968)
0.3616 0.1841 (0.0695,0.0389,0.9968)

4
0.6357 0.1476 (0.0096,0.0046,0.9999)
0.3643 0.1477 (0.0093,0.0046,0.9999)

5
0.0223 0.0310 (0.0028,0.0018,1.0000)
0.9777 0.1251 (0.0107,0.0171,0.9998)

6
0.3327 0.0893 (0.0033,0.0018,1.0000)
0.6673 0.1596 (0.0031,0.0043,1.0000)

7
0.0396 0.0150 (0.0100,0.0094,0.9999)
0.9604 0.1622 (0.0013,0.0016,1.0000)

8
0.3688 0.1486 (0.0119,0.0018,0.9999)
0.6312 0.1524 (0.0136,0.0017,0.9999)

9
0.6344 0.1042 (0.0362,0.0084,0.9993)
0.3656 0.2230 (0.0328,0.0162,0.9993)

10
0.6251 0.1773 (0.0284,0.0172,0.9994)
0.3749 0.1774 (0.0284,0.0172,0.9994)

Appendix A Application Results 73

Table A.4: Estimated parameter of the mixture model of Schladitz distributions using Al-
gorithm 7 for GF60 bottom layer

tube π̂ β̂ µ̂

1
0.3889 0.1767 (0.0284,0.0150,0.9995)
0.6111 0.1777 (0.0284,0.0186,0.9994)

2
0.1741 0.0537 (0.0219,0.0126,0.9997)
0.8259 0.1717 (0.0210 0.0072,0.9998)

3
0.9196 0.1781 (0.0549,0.0292,0.9981)
0.0804 0.2091 (0.0082,0.0034,1.0000)

4
0.3696 0.1832 (0.0061,0.0014,1.0000)
0.6304 0.2063 (0.0930,0.0400,0.9949)

5
0.9611 0.2391 (0.0580,0.0901,0.9942)
0.0389 0.5958 (0.5902,0.4875,0.6434)

6
0.8743 0.1161 (0.0161,0.0182,0.9997)
0.1257 0.5008 (0.3795,0.1062,0.9191)

7
0.0775 0.0297 (0.0287,0.0034,0.9996)
0.9225 0.1217 (0.0283,0.0080,0.9996)

8
0.3287 0.1404 (0.0044,0.0021,1.0000)
0.6713 0.1616 (0.1004,0.0047,0.9949)

9
0.6030 0.3129 (0.0161,0.1411,0.9899)
0.3970 0.3168 (0.0160,0.1447,1.9894)

10
0.2162 0.0948 (0.0046,0.0073,1.0000)
0.7838 0.1897 (0.0113,0.0587,0.9982)

74 Appendix A Application Results

Table A.5: Estimated parameters of the mixture model of Schladitz distributions using
Algorithm 6 for GF60 middle layer

tube π̂ β̂ µ̂

1
0.6148 0.4875 (0.0283,0.9811,0.1913)
0.3852 0.5391 (0.0309,0.9769,0.2113)

2
0.5325 0.4544 (0.0152,0.9470,0.3209)
0.4675 0.4546 (0.0152 0.9470,0.3209)

3
0.3172 0.3530 (0.0678,0.9977,0.0062)
0.6828 0.4479 (0.0802,0.9967,0.0094)

4
0.2637 0.3434 (0.1653,0.9847,0.0557)
0.7363 0.9161 (0.2099,0.9244,0.3184)

5
0.1047 0.1799 (0.1358,0.9294,0.3432)
0.8953 0.4519 (0.1985,0.9315,0.3049)

6
0.3306 0.2203 (0.0401,0.9777,0.2064)
0.6694 0.5810 (0.1355,0.9676,0.2129)

7
0.1148 0.4757 (0.2051,0.9785,0.0206)
0.8852 0.9904 (0.1764,0.9075,0.3812)

8
0.3561 0.2088 (0.0172,0.9997,0.0181)
0.6439 0.8310 (0.0589,0.9542,0.2932)

9
0.6185 0.5837 (0.0435,0.8474,0.5292)
0.3815 0.5840 (0.0435,0.8474,0.5292)

10
0.2589 0.4370 (0.1329,0.9745,0.1807)
0.7411 0.6013 (0.1620,0.9565,0.2424)

Appendix A Application Results 75

Table A.6: Estimated parameter of the mixture model of Schladitz distributions using Al-
gorithm 7 for GF60 middle layer

tube π̂ β̂ µ̂

1
0.6652 0.3724 (0.1794,0.9315,0.3165)
0.3348 0.4852 (0.1423,0.9398,0.3106)

2
0.1749 0.1915 (0.0864,0.9747,0.2060)
0.8251 0.4971 (0.1456 0.9657,0.2152)

3
0.2890 0.2354 (0.0419,0.9988,0.0250)
0.7110 0.8488 (0.0519,0.8990,0.4348)

4
0.3140 0.4544 (0.0151,0.9470,0.3209)
0.6860 0.4545 (0.0152,0.9470,0.3209)

5
0.2788 0.4923 (0.6357,0.7663,0.0928)
0.7212 0.7600 (0.5823,0.7687,0.2646)

6
0.6299 0.5895 (0.1903,0.9567,0.2202)
0.3701 0.5895 (0.1902,0.9567,0.2202)

7
0.2304 0.3709 (0.2272,0.9650,0.1311)
0.7696 0.9727 (0.2684,0.8664,0.4210)

8
0.3772 0.2016 (0.4488,0.8798,0.1564)
0.6228 0.4832 (0.0391,0.9945,0.0969)

9
0.5875 0.5837 (0.0435,0.8474,0.5292)
0.4125 0.5839 (0.0435,0.8474,0.5292)

10
0.1418 0.2153 (0.0365,0.8685,0.4944)
0.8582 0.5571 (0.0195,0.8861,0.4631)

76 Appendix A Application Results

Table A.7: Estimated parameters of the mixture model of Schladitz distributions using
Algorithm 6 for GF60 top layer

tube π̂ β̂ µ̂

1
0.2307 0.0566 (0.0111,0.0083,0.9999)
0.7693 0.2245 (0.0726,0.0100,0.9973)

2
0.1082 0.0605 (0.0166,0.0029,0.9999)
0.8918 0.1810 (0.0288 0.0038,0.9996)

3
0.8560 0.1209 (0.0081,0.0315,0.9995)
0.1440 0.1547 (0.0036,0.0334,0.9994)

4
0.3854 0.1339 (0.0323,0.0789,0.9964)
0.6146 0.1340 (0.0323,0.0789,0.9964)

5
0.6196 0.1587 (0.0236,0.0177,0.9996)
0.3804 0.1587 (0.0236,0.0177,0.9996)

6
0.6299 0.1708 (0.0440,0.0214,0.9988)
0.3701 0.1712 (0.0440,0.0214,0.9988)

7
0.6466 0.1893 (0.0798,0.0202,0.9966)
0.3534 0.1896 (0.0795,0.0214,0.9966)

8
0.8096 0.1392 (0.0123,0.0130,0.9998)
0.1904 0.3433 (0.0676,0.0574,0.9961)

9
0.6273 0.2367 (0.0793,0.0215,0.9966)
0.3727 0.2369 (0.0794,0.0215,0.9966)

10
0.6388 0.1740 (0.0484,0.0124,0.9987)
0.3612 0.1742 (0.0484,0.0124,0.9987)

Appendix A Application Results 77

Table A.8: Estimated parameter of the mixture model of Schladitz distributions using Al-
gorithm 7 for GF60 top layer

tube π̂ β̂ µ̂

1
0.7772 0.1412 (0.0307,0.0004,0.9995)
0.2228 0.1923 (0.0058,0.0038,1.0000)

2
0.2026 0.0492 (0.0110,0.0143,0.9998)
0.7974 0.1520 (0.0117 0.0415,0.9991)

3
0.0642 0.0175 (0.0039,0.0007,1.0000)
0.9358 0.1515 (0.0026,0.0002,1.0000)

4
0.6078 0.1174 (0.0018,0.0568,0.9984)
0.3922 0.1185 (0.0005,0.0019,1.0000)

5
0.1220 0.0488 (0.0149,0.0215,0.9997)
0.8780 0.1949 (0.0028,0.0340,0.9994)

6
0.6527 0.1344 (0.0121,0.0707,0.9974)
0.3473 0.1444 (0.0010,0.0151,0.9999

7
0.9282 0.1714 (0.0519,0.0134,0.9986)
0.0718 0.2122 (0.0186,0.0080,0.9998)

8
0.6189 0.2367 (0.0793,0.0215,0.9966)
0.3811 0.2369 (0.0795,0.0216,0.9966)

9
0.7875 0.1710 (0.0563,0.0281,0.9980)
0.2125 0.1793 (0.0019,0.0037,1.0000)

10
0.1267 0.0486 (0.0390,0.0075,0.9992)
0.8733 0.2007 (0.0823,0.0071,0.9966)

78 Appendix A Application Results

Table A.9: Estimated parameters of the mixture model of Watson distributions obtained by
Schlachter (2012)

foam π̂ κ̂ µ̂1 µ̂2 µ̂3

A
0.70106 -3.37221 0.99693 0.02202
0.29894 2.00992 0.07826 -0.10440

0 -0.00333 -0.99429

B
0.52873 -3.8979 0.99127 0.06363
0.47127 2.22254 0.10226 -0.14811

0 -0.08318 -0.98692

C
0.91062 -3.72463 0.99843 0.01589
0.08938 2.47566 0.03009 0.08681

0 0.04719 -0.99610

D
0.68042 -4.03783 0.99871 -0.04822 -0.01831
0.07318 1.61011 -0.04063 -0.93259 0.29206
0.24640 2.16700 -0.03037 0.35771 -0.95622

E
0.29282 2.25718 0.05423 0.03945 0.02967
0.32573 2.25303 -0.96368 -0.25042 -0.60079
0.38145 2.30360 -0.26150 -0.96733 0.79885

F
0.75360 -3.25646 0.99855 -0.02775 -0.04618
0.08847 1.30225 -0.05001 -0.63990 -0.30016
0.15792 1.76363 0.01981 -0.76796 0.95277

G
0.44085 -3.84855 0.99090 -0.14631 0.07890
0.26493 1.99174 -0.08742 -0.29611 -0.31956
0.29422 2.03488 -0.10232 -0.94388 0.94420

H
0.83012 -4.34502 0.99815 0.07007 0.02233
0.11168 2.04129 0.05384 -0.98441 0.03885
0.05820 1.80007 0.02835 0.16131 -0.99900

Appendix B

Curriculum Vitae

since 06/2009 PhD Student in Mathematics (Mathematics Department of the University of
Kaiserslautern, Germany)

05/2009 Diplom Degree in Mathematics (Clausthal University of Technology, Ger-
many)

11/2004 – 05/2009 Study of Business Mathematics (Clausthal University of Technology, Ger-
many)

07/2004 Bachelor Degree in Medicine (Peking University Health Science Center, China)

10/1999 – 07/2004 Study of Clinical Medicine (Peking University Health Science Center, China)

07/1999 High School Diploma in Beijing, China

Lebenslauf

Juni 2009 - heute PhD im Fach Mathematik (Fachbereich Mathematik, Technische Universität
Kaiserslautern)

Mai 2009 Diplom der Wirtschaftsmathematikerin (Technische Universität Clausthal,
Deutschland)

Nov. 2004 – Mai 2009 Studium der Wirtschaftsmathematik (Technische Universität Clausthal,
Deutschland)

Juli 2004 Bachelor der Humanmedizin (Peking University Health Science Center, China)

Okt. 1999 – Juli 2004 Studium der Medizin (Peking University Health Science Center, China)

Juli 1999 Abitur in Beijing, China

79

Bibliography

H. Altendorf. 3D Morphological Analysis and Modeling of Random Fiber Networks - applied on
Glass Fiber Reinforced Composites. PhD thesis, Technische Universität Kaiserslautern, 2012.

H. Altendorf and D. Jeulin. 3D directional mathematical morphology for analysis of fiber orien-
tations. Image Anal Stereol, 28:143–153, 2009.

A. Banerjee, I. S Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere using von
Mises-Fisher distributions. Journal of Machine Learning Research, 6(2):1345, 2006.

D. J Best and N. I Fisher. Goodness-of-fit and discordancy tests for samples from the watson
distribution on the sphere. Australian Journal of Statistics, 28(1):13–31, 1986.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages 1–38,
1977.

D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for image analysis. J.
Mathematical Imaging and Vision, 4(4):353–373, 1994.

A. Figueiredo and P. Gomes. Performance of the em algorithm on the identification of a mixture
of distributions defined on the hypersphere. REVSTAT-Statistical Journal, 4(2):111–130, 2006.

N. I. Fisher, T. Lewis, and M. E. Willcox. Tests of discordancy for samples from fisher’s distribution
on the sphere. Journal of the Royal Statistical Society. Series C (Applied Statistics), 30(3):pp.
230–237, 1981. ISSN 00359254. URL http://www.jstor.org/stable/2346346.

N. I Fisher, T. Lewis, and B. J. J. Embleton. Statistical analysis of spherical data. Cambridge
Univ Pr, 1993. ISBN 0521456991.

J. Franke, J.P. Stockis, J. Tadjuidje-Kamgaing, and WK Li. Mixtures of nonparametric autore-
gressions. Journal of Nonparametric Statistics, 23(2):287–303, 2011.

Fraunhofer ITWM. Mavi - modular algorithmus for volume images, 2012.

B.G. Lindsay. The geometry of mixture likelihoods, part ii: The exponential family. The Annals
of Statistics, 11(3):783–792, 1983.

A. K. Louis, M. Riplinger, M. Spiess, and E. Spodarev. Inversion algorithms for the spherical
radon and cosine transform. Inverse Problems, 27:035015, 2011.

Bibliography 81

L.S. Magder and S.L. Zeger. A smooth nonparametric estimate of a mixing distribution using
mixtures of gaussians. Journal of the American Statistical Association, 91(435):1141–1151,
1996.

J. Ohser and K. Schladitz. 3D images of materials structures: processing and analysis. Wiley-
VCH, 2009.

D. Peel, W. J Whiten, and G. J McLachlan. Fitting mixtures of kent distributions to aid in joint
set identification. Journal of the American Statistical Association, 96(453):56–63, 2001.

C. Redenbach and I. Vecchio. Statistical analysis and stochastic modelling of fibrecomposites.
Composites Science and Technology, 71:107–112, 2011.

Anna-Lena Schlachter. Segmentierung und statistische analyse des wandsystems in schäumen.
Master’s thesis, Technische Universität Kaiserslautern, 2012.

K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, and J. Ohser. Design of acoustic trim
based on geometric modeling and flow simulation for non-woven. Computational materials
science, 38(1):55–56, 2006. ISSN 0927-0256.

R.J. Serfling. Approximation theorems of mathematical statistics. Wiley Se-
ries in Probability and Statistics. Wiley, 2001. ISBN 9780471219279. URL
http://books.google.de/books?id=a3O-JfZboegC.

S. Sra. A short note on parameter approximation for von mises-fisher distributions: and a fast
implementation of i s (x). Computational Statistics, 27(1):177–190, 2012.

Suvrit Sra and Dmitrii Karp. The multivariate watson distribution: Maximum-likelihood estima-
tion and other aspects. eprint arXiv:1104.4422, 96(453):56–63, 2011.

P.D. Stoyan, D.W.S. Kendall, and J. Mecke. Stochastic Geometry and Its Applications. Wiley-
interscience paperback series. John Wiley & Sons, 2008. ISBN 9780470743645. URL
http://books.google.de/books?id=Le3kQgAACAAJ.

D.E. Tyler. Statistical analysis for the angular central gaussian distribution on the sphere.
Biometrika, 74(3):579–589, 1987.

O. Wirjadi. Models and Algorithms for Image-Based Analysis of Microstructures. PhD thesis,
Technische Universität Kaiserslautern, 2009.

CF Wu. On the convergence properties of the em algorithm. The Annals of Statistics, 11(1):
95–103, 1983.

