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S. Kühn (kuehn@mathematik.uni-kl.de)

A. Meurer (meurer@mathematik.uni-kl.de)

Department of Mathematics, University of Kaiserslautern,

P.O.Box 3049, 67653 Kaiserslautern, Germany.

In the present paper scalar macroscopic models for traffic and pedestrian flows are cou-

pled and the resulting system is investigated numerically. For the traffic flow the classical

Lighthill-Whitham model on a network of roads and for the pedestrian flow the Hughes
model are used. These models are coupled via terms in the fundamental diagrams mod-

eling an influence of the traffic and pedestrian flow on the maximal velocities of the

corresponding models. Several physical situations, where pedestrians and cars interact,
are investigated.

Keywords: traffic, pedestrians, networks, coupling

2010 AMS Subject Classification:

1. Introduction

In recent years a large number of models for traffic and pedestrian flow have ap-

peared on different levels of description. For a recent review on traffic and pedestrian

flow models see [5].

On the microscopic level, models which are based on Newton’s equations have

been developed for traffic flow among many others in [32, 7, 24] and for pedestrian

flow in [22, 21, 4]. See [5] for further references in both cases. Traffic and pedestrian

flow equations on the mesoscopic or kinetic level can be found for example in [35, 33,

29, 20, 14]. Macroscopic traffic and pedestrian flow equations involving equations

for density and mean velocity of the flow are derived in [40, 3, 13, 2, 17, 16, 19]

and [20, 6]. The classical macroscopic traffic flow model based on scalar continuity

equations is described in [37]. Traffic models on networks for this equation can be

found among many others in [25, 26, 9, 23, 18]. In [27, 28, 15, 10] pedestrian traffic

modeling with scalar conservation laws based on the solution of the eikonal equation

have been presented and investigated, see again [5] for further developments and

historical comments. Additionally, in [5, 6], a variety of other macroscopic models

are discussed.

The purpose of the present paper is to develop and investigate a model coupling
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pedestrian and traffic flow simulations and describing the interaction of the two

types of flows. We restrict ourselves to coupling scalar macroscopic models.

Traffic flow is considered on a network using a Lighthill-Whitham equation and

coupling conditions at the nodes of the network as discussed in [26, 9]. Pedestrian

flow is described using the model in [27, 28], where a nonlocal term including a global

knowledge of the physical setting described by the eikonal equation is included into

the continuity equation.

Both models are coupled together via their flux functions. The state of the ve-

hicular traffic on the one hand influences the pedestrian velocity. On the other hand

the fundamental diagram for the traffic is influenced by the pedestrian density. The

numerical methods are based on a first order approach and use a straightforward

splitting method to couple the two equations.

The paper is organized in the following way: in section 2 the macroscopic traffic

flow model on a network and the pedestrian model are presented. Section 3 contains

the coupling conditions for the two models. Section 4 describes the numerical meth-

ods and shows numerical results for several different physical situations including

crosswalks and more complicated network situations.

2. The traffic network model and the optimal path pedestrian

model

2.1. The traffic model

We consider the scalar Lighthill-Whitham traffic flow model. The car density ρ =

ρ(x, t), x ∈ R, t ∈ R+, ρ : R× R+ → R+ is governed by the equation

∂tρ+ ∂x(f(ρ)) = 0 (2.1)

with f(ρ) = ρV (ρ) and f : (0, ρm)→ R+. Here, f denotes the traffic flux and V is

the velocity function for traffic flow with the maximal velocity V (0) = Vm, V (ρm) =

0. V is chosen such that (ρV )′ = V + ρV ′ is zero for a value σ ∈ (0, ρm), positive

for smaller values of ρ and negative for larger ones. The simplest example is given

by the function

V (ρ) = Vm(1− ρ/ρm). (2.2)

The traffic network is described in the usual way: a finite number of roads are

represented by intervals [ai, bi], where ai and bi are the vertices of road ei. We solve

∂tρi+∂xfi(ρi) = 0 on every edge ei = (ai, bi). To find the junction value ρ̄i which is

derived from ρ̂i = ρi((bi)−) for ingoing edges and ρ̂i = ρi((ai)+) for outgoing edges

we use the coupling conditions as defined in [9]. The first condition is given by the

conservation of fluxes at the junctions

n∑
i=1

f(ρ̄i) =

n+m∑
j=n+1

f(ρ̄j) ,
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where ρi, i = 1, . . . , n are the car densities on incoming roads while ρj , j = n +

1, . . . , n+m are the car densities on outgoing roads. However, these conditions are

not sufficient to obtain a unique solution on the network problem.

To state further coupling conditions we introduce the following notations as

defined in [9]. We denote the distribution rates at the junctions by

A := {αji}j=n+1,...,n+m; i=1,...,n ∈ Rm×n ,

such that

0 ≤ αji ≤ 1,

n+m∑
j=n+1

αji = 1 ,

where αji denotes the distribution rate from edge ei to edge ej . Moreover, we define

the sets

Ωi : =

{
[0, f(ρ̂i)], if 0 ≤ ρ̂i ≤ σ
[0, f(σ)], if σ ≤ ρ̂i ≤ ρmax

i = 1, . . . , n, (2.3)

Ωj : =

{
[0, f(σ)], if 0 ≤ ρ̂j ≤ σ
[0, f(ρ̂j)], if σ ≤ ρ̂j ≤ ρmax

j = n+ 1, . . . , n+m, (2.4)

and define the maximal possible flux on every incoming road as

ci = max
c∈Ωi

c, i = 1, . . . , n ,

and cj , the maximal possible flux on every outgoing road, respectively. We restrict

from now on to junctions with three roads and use the so called NON-FIFO model

[26, 23] for three roads. The coupling conditions on ρ̄i are stated first as conditions

on the fluxes γi on road ei. In case of one ingoing road ei with i = 1 and two

outgoing roads ej with j = 2, 3 we use

γ2 := min(α21c1, c2),

γ3 := min(α31c1, c3),

γ1 := γ2 + γ3.

In the situation of two ingoing roads ei with i = 1, 2 and one outgoing road e3 we

have to consider two possible cases:

(1) c1 + c2 > c3, i.e. the outgoing road has not enough capacity for the whole

incoming flow. Then,

γ1 := min
(
c1,max

(
c3 − c2,

c3
2

))
,

γ2 := min
(
c2,max

(
c3 − c1,

c3
2

))
,

γ3 := γ1 + γ2.
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(2) c1 + c2 < c3, i.e the outgoing edge has enough capacity for the whole

incoming flow. Then,

γ1 := c1,

γ2 := c2,

γ3 := γ1 + γ2.

To find the corresponding densities ρ̄i we define as in [9] a function τ :

[0, ρmax]→ [0, ρmax], τ(σ) = σ, as a map satisfying the following condition

τ(ρ) 6= ρ, f(τ(ρ)) = f(ρ) ,

for each ρ 6= σ. Then, for i ∈ {1, . . . , n}, let ρ̄i ∈ [0, ρmax] such that

f(ρ̄i) = γi, ρ̄i ∈
{
{ρ̂i} ∪ (τ(ρ̂i), ρmax] if 0 ≤ ρ̂i ≤ σ,
[σ, ρmax] if σ ≤ ρ̂i ≤ ρmax.

For j ∈ {n+ 1, . . . , n+m}, let ρ̄j ∈ [0, ρmax] be such that

f(ρ̄j) = γj , ρ̄j ∈
{

[0, σ] if 0 ≤ ρ̂j ≤ σ,
{ρ̂j} ∪ [0, τ(ρ̂j)) if σ ≤ ρ̂j ≤ ρmax.

With the above definitions we are able to find a unique solution to the Lighthill-

Whitham equations on a network [9].

2.2. Pedestrian model

We consider the pedestrian model of Hughes [27], where the crowd density is denoted

as ξ = ξ(x), x ∈ R2, with ξ : R2 → R+, and the flux function as F : (0, ξm)→ R2.

Then the equation is given by

∂tξ +∇xF(ξ) = 0

with

F = ξUZ, (2.5)

where U ∈ R describes the crowd velocity and Z ∈ R2, with ‖Z‖ = 1 indicates the

desired walking direction. The classical choice for the velocity function is the same

as in the traffic case

U(ξ) = Um(1− ξ/ξm). (2.6)

Moreover, the walking direction is given by

Z =
∇Φ

‖∇Φ‖
where Φ, with Φ : R2 → R is determined by solving the eikonal equation

U(ξ(x))‖∇Φ(x)‖ = 1. (2.7)
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Altogether this gives the system of equations

∂tξ +∇x

(
ξU(ξ)

∇Φ(x)

‖∇Φ(x)‖

)
= 0. (2.8)

combined with (2.7).

Boundary conditions for Φ are chosen as Φ = 0 on ∂ΩD , where ∂ΩD denotes

the pedestrians aim and with Φ =∞ otherwise.

3. The coupling

For the construction of a suitable coupling, we can re-use some ideas of the design of

the separate models. We start with the description of the influence of the pedestrians

on the flow of cars on the roads.

3.1. Pedestrian to traffic

A road is an object with spatial extension in two space dimensions, but the car

traffic is modeled by 1D equations. In order to match both models, we average the

density of the pedestrians on the road ξ̃(x), x ∈ (a, b) orthogonal to the driving

direction. Suppose the center of the road is a straight line xn, x ∈ (a, b),n ∈ R2.

We define the projection Px : R× L1(R2,R+)→ R as

Px(ξ) =

∫ z/2

−z/2
ξ(xn+ yn⊥)dy = ξ̃(x), (3.1)

where z denotes the width of the road. In Figure 1 the averging is sketched for one

edge.

In order to model the influence of the pedestrian flow on the road traffic, we

extend the traffic flux function to

f(ρ, ξ̃) = ρgPtoT (ξ̃)V (ρ) , (3.2)

where the rate of driving gPtoT is decreasing with increasing pedestrian density. If

there are no people on the street the cars should behave as in the original model,

i.e. gPtoT is 1 for ξ̃ = 0, whereas on a fully crowded road the cars should not drive

at all, i.e. gPtoT is 0 for ξ̃ = ξm. One possible choice is

gPtoT (ξ̃) = (1− ξ̃/ξm)n1 , . n1 ≥ 1. (3.3)

The exponent n1 depends on the situation we want to consider. In front of a school

for example we should use n1 large to enforce a stronger reduction of speed.

3.2. Traffic to pedestrian

From the perspective of the pedestrians the cars on the road occupy some space in

their 2D region. To reflect this we extend the 1D traffic data onto the domain of

the pedestrians.
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Prolongation: Suppose that the road is located at xn, x ∈ (a, b),n ∈ R2. We

define the characteristic function for the road i as

χi = χ0((x− nx) · n) · χ(−z/2,z/2)((x− nx) · n⊥)

+ χ(−z/2,0)((x− a) · n) · χ(−z/2,z/2)((x− nx) · n⊥

+ χ(0,z/2)((x− b) · n) · χ(−z/2,z/2)((x− nx) · n⊥)) .

The road is not only stretched to the width z, but also elongated at both ends.

This construction is chosen in order to avoid empty edges when two or more roads

overlap, as illustrated in Figure 2. Based on this we define the 2D car density of the

road i as

ρ̌i(x) = ρi(x)(χ0((x− nx) · n) · χ(−z/2,z/2)((x− nx) · n⊥))

+ ρ̄i(a)(χ(−z/2,0)((x− a) · n) · χ(−z/2,z/2)((x− nx) · n⊥))

+ ρ̄i(b)(χ(0,z/2)((x− b) · n) · χ(−z/2,z/2)((x− nx) · n⊥)).

(3.4)

As data for the extensions at the ends we can use the respective junction values ρ̄.

The averaged 2D car density ρ̃ of a network of M roads is thus given by

ρ̃(x) =

{∑M
i ρ̌i(x)∑m

i χi
, if

∑M
i χi(x) > 0

0 , else.
(3.5)

z

z

Fig. 1: Enlarged road.

zz

Fig. 2: Enlarging the roads and filling the
corners.

The influence of the vehicular traffic on the speed of the pedestrians we model

by modifying (2.6) to

U(ξ, ρ̃) = gTtoP (ρ̃)U(ξ) . (3.6)
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Accordingly the flux function (2.5) is changed to

F(ξ, ρ̃) = ξU(ξ, ρ̃)Z . (3.7)

For the pedestrian crossing rate gTtoP ∈ [0, 1] different choices might be reasonable.

The first one is similar to (3.3)

g
(1)
TtoP (ρ̃) = (1− ρ̃/ρm)n2 , (3.8)

i.e. the more cars are on the road, the more careful the pedestrians have to cross

the street. Again, the exponent n2 depends on the situation. Another possibility is

to relate the hindrance of the pedestrians to the speed of the cars. This leads to a

coupling of the form

g
(2)
TtoP (ρ̃) = (ρ̃/ρm)n2 , (3.9)

i.e. the faster the cars move, the more complicated is the passage for the pedestrians.

Finally we introduce as third option the coupling function

g
(3)
TtoP

(
ρ̃) = (1− ρ̃/ρm(1− ρ̃

ρm
)

)n2

. (3.10)

Here the pedestrians prefer to cross the street, if there are few but very fast cars or

there are many, but very slow cars. In all above coupling conditions the exponent

n2 can be used to model the sensitivity of the pedestrians. Higher exponents lead

to more destiguished decisions of the pedestrians, whereas smaller values represent

a less rigid judgement on the situations.

Remark 3.1. If the car traffic or the pedestrian flow is described by two equations

for density ρ̃ and mean velocity ũ, as e.g. in the AW-Rascle equations [3], then more

sophisticated coupling conditions could be applied. For example, conditions like

gTtoP (ρ̃) = (1− ρ̃/ρm)(1− u/um)

seem to be more appropriate for the complex decision-making process of the pedes-

trians.

4. Numerical methods and results

In this section we study the behavior of the above discussed model numerically.

Several test cases compare the influence of the choice of the coupling conditions.

For the numerical methods we discretize the roads into cells of a constant width

h and the 2D domain of the pedestrians with a quadratic grid of the same spacing.

The respectively averaged densities are denoted by ρi and ξij .

4.1. Projections

In order to facilitate the discretization of the projections, we consider only roads

aligned with the 2D grid of the pedestrians.
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Pedestrian to Traffic: Consider a situation as depicted in Figure 3. The

indices of the cells orthogonal to the orientation of the road are given by

{ξij−s, ..., ξij , ..., ξij+s}. Then formula (3.1) can be approximated by

ξ̃i =
1

2s+ 1

∑
ij∈{ij−s,...,ij+s}

ξij , s =
⌊ z

2h

⌋
,

where z is the width of the road, h the grid spacing and b·c denotes the floor

function.

z

grid
edge

grid points which 
overlap the road

s=1

Fig. 3: Illustration of the restriction of the pedestrian data onto a 1D road.

Traffic to Pedestrian: Since the roads are discretized such that their grid is

aligned with the grid of the pedestrians, we can easily evaluate the expression (3.5)

for ρ̃. To every grid point xij ∈ R in the pedestrian domain, we can find all points

of the roads which contribute to the discrete prolongated car density ρ̃ij . If there is

no road closer than z/2 to xij , ρ̃ij is set to 0. In case that only one road is nearby,

we can just pick the value at the associated road section, as depicted in Figure

6. If several streets are involved or at a junction point, we simply average over

all contributions as in (3.5). Here we recall, that due to formula (3.4), the junction

values can appear in the 2D domain, although they have no spatial representation in

the road network. This enlargement is introduced in order to avoid shorter passages

for the pedestrians at junctions, as shown in Figure 4.

4.2. Numerical methods

For the solution of the 1D conservation law on the network we use a classical Go-

dunov scheme. The 2D conservation law for pedestrians is solved using the FORCE

scheme, see [38]. The eikonal equation is solved by a fast marching method and

implemented as discussed in [36]. We solve the coupled problem by a first order

splitting method:

Algorithm (Coupling procedure)
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z

z/2

z
z/2

z/2

z/2

edge

enlarged road

grid points

Fig. 4: Enlarging the roads and filling corners.

(1) Project the pedestrian density onto the network as described in section 4.1.

(2) Compute f at the cell interfaces.

(3) Update the traffic network t→ t+ ∆t.

(4) Project the new traffic density onto the pedestrian domain as described in

section 4.1.

(5) Compute the speeds U(ξ, ρ̃) according to (3.6).

(6) Solve the eikonal equation (2.7) for the actual time step.

(7) Compute the pedestrian fluxes at the cell interfaces by (3.7).

(8) Update the pedestrian densities t→ t+ ∆t.

4.3. Numerical convergence of the coupling procedure

In order to verify the numerical method we study the numerical convergence on the

following test problem. Consider a single road from v1 = (0, 0.5) to v2 = (1, 0.5).

The maximal density is ρm = 1 and the maximal velocity is Vm = 1. As initial

condition for the cars we choose ρinit(x) = 0.5, ∀x and set the boundary condition

to ρbound(t) = 0.5, ∀t. The road width is z = 0.2, the pedestrian domain Ω =

[−0.1 1.1]×[−0.1 1.1] and the pedestrian destination ΩD = [0.0 1]×{−0.1} (bottom

boundary of Ω). As initial condition for ξ we choose

ξ0(x, y) =

{
0.5, if(x, y) ∈ [0.40.8]× [0.61]

0, else.

The coupling functions are (3.8) and (3.3) with n1 = n2 = 1. The reference solution

is computed with a grid spacing of h = 1
240 and ∆t = 1

240 . For coarser grids the

time step grows linearly as h.
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h L∞ ρ O L∞ ξ O
1/10 0.001 0.010

1/20 7.2 · 10−4 1.3 0.0065 0.77

1/30 3.8 · 10−4 1.5 0.0049 0.67

1/40 2.3 · 10−4 1.6 0.0037 0.95

1/60 1.1 · 10−4 1.8 0.0026 0.87

1/80 6.3 · 10−5 1.9 0.0019 1.09

1/120 2.5 · 10−5 2.2 0.0011 1.4

(a) Numerical convergence of the coupling model

 

 

Traffic

Pedestrian

E
rr
or

Grid size

10−210−1

10−4

10−3

10−2

(b) L∞ ρ for different grid sizes h.

Fig. 5: Convergence of the numerical method

In Figure 5 the errors and the rates of convergence for different grid sizes at

time T = 1 are shown. The numerical convergence is close to order 1 in case of the

pedestrians and even better for the road traffic. The advantage of the car model, is

that the Godunov method is less diffusive than the FORCE scheme and no extra

equation as the eikonal equation has to solved.

4.4. Comparison of coupling functions

In the following the influence of the choice of the coupling conditions on the overall

dynamics of the model is investigated. Therefore we choose a specific test case and

compare the results of different coupling functions gTtoP .

We consider an example of two roads with different maximal velocities. The

vertices of the network are located at

v1 = (0, 2), v2 = (1, 1), v3 = (1, 2).

 

 

pedestrians

Edge 2

Edge 1

Domain Ω with network edges

y

x
0 0.5 1 1.5 2

0

0.5

1

1.5

2

Fig. 6: Network plot with pedestrian initial
condition.

The first edge e1 = (v1, v2) has maximal velocity Vm = 2 and ρm = 1, whereas

the second edge e2 = (v2, v3) has Vm = ρm = 1. We choose the initial conditions
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for the network as ρ1,init(x) = 0.5−
√

0.125, ρ2,init(x) = 0.5 ∀x and the boundary

condition as ρ1,bound(t) = 0.5 −
√

0.125, ∀t. For the pedestrian domain we set

Ω = [−0.1 2.1]× [−0.1 2.1] and choose a road width of z = 0.2. The destination of

the pedestrians id ΩD = [−0.1 2.1]×{−0.1} ∪ {2.1}× [−0.1 2.1] (bottom and right

boundary of Ω). The pedestrian initial condition is

ξ0(x, y) =

{
0.5, if(x, y) ∈ [0.2 0.4]× [1.6 1.8]

0, else.

In the coupling conditions the exponents n1 = 4 and n2 = 1 are used and for the

numerical computations the grid size is h = 0.05 and the time steps are ∆t = 0.025.

We consider three test cases, one for each choice of g
(i)
TtoP for i = 1, 2, 3. In Figures

7 to 10 one can see the resulting traffic density on the left and the pedestrian density

on the right.

 

 

destination

Pedestrian density at time step: 0

y x

ξ

Traffic density at time step: 0

y x

ρ

0

1

2

0

1

2

0

1

2

0

1

2
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 7: Initial condition for all test cases.
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destination

Pedestrian density at time step: 25

y x

ξ

Traffic density at time step: 25

y x

ρ

0

1

2

0

1

2

0

1

2

0

1

2
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 8: Test case 1: Densities with coupling function g
(1)
TtoP (ρ). Most of the pedestrians

choose the first edge to cross the road.

 

 

destination

Pedestrian density at time step: 25

y x

ξ

Traffic density at time step: 25

y x

ρ

0

1

2

0

1

2

0

1

2

0

1

2
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 9: Test case 2: Densities with coupling function g
(2)
TtoP (ρ). Most of the pedestrians

choose the second edge to cross the road.
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destination

Pedestrian density at time step: 25

y x

ξ

Traffic density at time step: 25

y x

ρ

0

1

2

0

1

2

0

1

2

0

1

2
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 10: Test case 3: Densities with coupling function g
(3)
TtoP (ρ). One half of the pedestrians

takes the first and the other half the second road.

The pedestrians are trapped in the upper left corner, so they need to cross one

road. Which one depends strongly on the coupling conditions. In Figure 8 we observe

that most of the pedestrians choose the road with the smaller density. In the second

case, where the coupling condition depends on the velocity, most of the pedestrians

choose the road with smaller maximal velocity but greater density (compare Figure

9). In Figure 10 it does not matter which road to take since the fluxes are the same.

Thus the pedestrians split up into two groups of equal size, both choosing their

shortest path to the destination.

The above examples show that the solution strongly depends on the choice of

the coupling conditions. Therefor a careful selection of the appropriate functions is

necessary in order to obtain realistic results.

4.5. Crosswalk

An interesting example to investigate the interaction of pedestrians and cars is a

crosswalk. Therefore we consider two vertices
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v1 = (0 0.5), v2 = (1 0.5),

and connect them via one edge:

e1 = (v1, v2).

 

 

pedestrians

Edge 1

Domain Ω with network edges

y
x

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 11: Network for the crosswalk with
pedestrian initial condition.

To model the priority of the pedestrians at the crosswalk on the edge, we choose

at the location of the crosswalk a different exponent for the coupling function. For

the coupling function on the edge we take n2 = 1 on the crosswalk and n2 = 5

otherwise. The maximal density and maximal velocity are ρm = Vm = 1. As the

initial condition for the network we set ρinit(x) = 0.5 ∀x and the boundary condition

to ρbound(t) = 0.5, ∀t. The grid size is h = 0.025, ∆t = 0.025 and the road width is

z = 0.1. For the pedestrian domain we choose Ω = [−0.05 1.05]× [−0.05 1.05] and

set the destination as ΩD = [0.0 0.3] × {−0.1} (left-bottom boundary of Ω). The

pedestrian initial condition is

ξ0(x, y) =

{
0.5, if (x, y) ∈ [0.05 0.2]× [0.8 0.95]

0, else

and coupling function gPtoT is gPtoT (ξ) = (1 − ξ/ξm)4. For the domain of the

crosswalk we set Ωcross = [0.4 0.6]× [0.45 0.55].

Now we investigate numerically whether the pedestrians choose the crosswalk

(although this way to their destination is longer) or if they choose the shorter path

where they are more hindered by cars. In the following Figures 12 to 16 the traffic

density on the left and the pedestrian density on the right are plotted. Initially the

roads have the same initial density and the pedestrians are located in the upper

left corner, Figure 12. Then the pedestrians walk towards the crosswalk and enter

the road on it, Figure 13. Due to this crossing, congestion in front of the crosswalk

arises, Figure 14. In time step 38 the first pedestrians reach the destination. In

Figure 15 we can see a small congestion of pedestrians in front of the destination.

This ist due to the fact that at this point people from top and right want to leave

the domain at the corner point of ΩD. When all pedestrians have crossed the road,

the congestion in traffic relaxes again towards the initial state, Figure 16.
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Fig. 12: Crosswalk at time step 0: Initial condition of the crosswalk.

 

 

crosswalk
destination

Pedestrian density at time step: 12

y x

ξ

Traffic density at time step: 12

y x

ρ

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 13: Crosswalk at time step 12: Pedestrians enter the road on the crosswalk.
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Fig. 14: Crosswalk at time step 38: A congestion arises in front of the crosswalk.The first
pedestrians reach the destination.
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Fig. 15: Crosswalk at time step 60: The congestion has reached the front of road one and
most of the pedestrians already have crossed the street.
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Fig. 16: Crosswalk at time step 90: All pedestrians have crossed the road and the congestion
wave relaxes.

In conclusion, as one observes, with the above assumptions, pedestrians choose

the crosswalk to cross the road even though this way is longer.

4.6. Rectangle

Finally, we consider a network which forms a rectangle with one ingoing and one

outgoing road. The vertices are given by

v1 = (0, 1.5), v2 = (1, 1.5),

v3 = (1, 2.5), v4 = (1, 0.5),

v5 = (2, 2.5), v6 = (2, 0.5),

v7 = (2, 1.5), v8 = (3, 1.5)
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Fig. 17: Rectangle network with pedestrian
initial condition.

and construct eight edges as shown in Figure 17. We use ei for Edge i as short

form. The maximal density and maximal velocity is given by ρm = Vm = 1 on every

edge. As initial conditions for the network we set ρ1,init(x) = ρ8,init(x) = 0.5 ∀x and

ρi,init(x) = 0.5−
√

0.125 ∀x and i = 2, . . . , 7. The external boundary condition for

the network is ρ1,bound(t) = 0.5, ∀t. As grid size we choose h = 0.05, ∆t = 0.05 and
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set the road width to z = 0.2. The pedestrian domain is Ω = [−0.1 3.1]× [−0.1 3.1]

with the destination ΩD = [−0.05 3.05]×{−0.1} (bottom boundary of Ω). As initial

condition for the pedestrians we set

ξ0(x, y) =

{
0.5, if (x, y) ∈ [0.2 0.8]× [2.7 2.9]

0, else.

The coupling functions are (3.8) with n2 = 3 and (3.3) with n1 = 4. In the beginning

it is unclear which way the pedestrians choose. Either they need to cross the network

only once but with high density on this road, or they cross the network twice, where

the density on both roads is much smaller. In the following Figures 18 to 23 we can

see the traffic density on the left and the pedestrian density on the right. At first

the traffic is stationary and the pedestrians are located on top (compare Figure 18).

In Figure 19 we can see that first pedestrians choose edge e4 to cross. Hence, in

front of this edge congestion in traffic arises and on edge e6 the density decreases. In

Figure 20 we can observe that most of the pedestrians try to enter the inner of the

rectangle. So they want to cross twice. The congestion on edge e4 gets higher and

there are no cars anymore on edge e6. Then, most of the pedestrians have entered

the inner of the rectangle. Due to the crossing of pedestrians on edge e2, e4 and e6,

density on edge e8 is smaller than before. Therefore a few pedestrians choose edge

e8 to cross. The traffic congestion has reached edge e1 (compare Figure 21). In time

step 60, the part of edge e8 where pedestrians cross the street is now at the end of

edge eight, since the part with smaller density is moving with the cars. At t = 60

the first pedestrians reach the destination (see Figure 22). Then the pedestrians

leave the road and the traffic congestion relaxes again (compare Figure 23).
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Fig. 18: Rectangle at time step 0: Initial condition of the rectangle.
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Fig. 19: Rectangle at time step 10: First pedestrians cross edge four.
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Fig. 20: Rectangle at time step 25: Most of the pedestrians try to enter the inner of the
rectangle.
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Fig. 21: Rectangle at time step 50: Most of the pedestrians have entered the inner of the
rectangle. A few pedestrians choose edge e8 to cross.
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Fig. 22: Rectangle at time step 60: The part of edge eight where pedestrians cross the
street is now at the end of edge eight.
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Fig. 23: Rectangle at time step 150: Most pedestrians reached the destination and the
traffic congestion relaxes.

In conclusion, for these parameters most of the pedestrians choose the way where

they have to cross the roads twice. Some pedestrians cross edge e8 because the traffic

density there was small enough due to crossings of pedestrians on other edges.

5. Concluding Remarks

We have developed a coupled model for pedestrian and traffic flow modeling the

influence of the two flows on each other. The model is based on scalar macro-

scopic conservation laws and first order numerics. For the traffic flow we used the

Lighthill-Whitham equation on networks and for the pedestrian dynamics Hughes’

model. There we changed the flux functions by multiplying suitable coupling func-

tions which may differ in special situations. To couple both systems we defined

projections from 1D to 2D and vice versa. Then we have shown in different nu-

merical experiments how the coupled model behaves and what influence the choice

of coupling function has. Further research will include the development of higher

order coupling and numerical procedures. Moreover, other traffic and pedestrian

flow models can be coupled and more detailed coupled models can be developed.
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