
Variability Erosion and Improvement: from
Conditional Compilation to Parameterized Inclusion

Bo Zhang
Software Engineering Research Group

University of Kaiserslautern
Kaiserslautern, Germany
bo.zhang@cs.uni-kl.de

Abstract—Conditional Compilation (CC) is frequently used as
a variation mechanism in software product lines (SPLs).
However, as a SPL evolves the variable code realized by CC
erodes in the sense that it becomes overly complex and difficult to
understand and maintain. As a result, the SPL productivity goes
down and puts expected advantages more and more at risk. To
investigate the variability erosion and keep the productivity
above a sufficiently good level, in this paper we 1) investigate
several erosion symptoms in an industrial SPL; 2) present a
variability improvement process that includes two major
improvement strategies. While one strategy is to optimize
variable code within the scope of CC, the other strategy is to
transition CC to a new variation mechanism called
Parameterized Inclusion. Both of these two improvement
strategies can be conducted automatically, and the result of CC
optimization is provided. Related issues such as applicability and
cost of the improvement are also discussed.

Keywords—variability erosion; product line improvement; code
refactoring; conditional compilation

I. INTRODUCTION
In software product line (SPL) engineering, similar

products are created in a cost-efficient way so that their
common and varying characteristics are fully utilized. Ideally,
a SPL should contain a majority of commonality, which is
shared and reused all products, and a minority of variability,
that is currently required by existing products. However, trying
to maximize the commonality tends to fail in evolution. When
being exposed to a number of products, application engineers
tend to invent new combinations of features, new
improvements to existing features, and completely new
features that are difficult to predict during domain engineering.
This drives the increase of variability in SPL evolution to allow
matching the changing development requests.

On the downside, the newly added variability makes the
variability realization in the product line more complex, and
the increased complexity tends to reduce the overall SPL
productivity. If no corrective actions are done, the SPL
becomes less competitive and new products will eventually
start to use solutions beyond the product line core or efforts to
create a new product line will be started. Based on our practical
experience, it is often the better choice to evolve an existing
asset base than try to create a new product line, especially in

the light of long-lived products. However, there is a lack of
methods and tools to support efficient SPL evolution in current
industrial practice, e.g. in analyzing existing asset bases to
detect erosion problems and planning and executing necessary
improvement strategies. Also a lot of research results focus on
engineering new product lines rather than supporting evolving
existing product lines to target new requirements.

Once SPL evolution is not conducted appropriately,
variability realizations will gradually erode over time. The
concept of erosion was introduced by Perry and Wolf in [17] to
indicate software architecture problems. In our context of SPL
evolution, erosion means that realization artifacts become
overly complex due to unforeseeable changes (also known as
software aging [15]). Considering the frequently used variation
mechanism of Conditional Compilation (CC), eroded
variability realizations comprise nested, tangled, and scattered
#IFDEF blocks with complex interdependencies [11]. They
lead to practical problems in evolution as it becomes more
difficult to assess change impact on core assets and to adapt the
change with other related VEs [14] in a consistent manner.
This increases the risk for missing, obsolete or incorrect
variability realizations in core assets. Besides change
propagation, the effort of Quality Assurance (QA) after change
is also non-trivial, especially when the products fall under
some regulation. If a code change involves multiple
independent variable features and each feature has multiple
optional values, then it will cause tremendous QA efforts
because all possible configurations have to be checked.

Fig. 1. SPL Productivity with and without Improvement.

Technical Report of AGSE June 2013

The overly complex variability realizations cause a serious
impact on productivity of SPL maintenance, and put the
expected SPL advantages more and more at risk. In the worst
case, a new generation of the SPL is created to develop new
products, while the old SPL infrastructure still needs to be
maintained to support the old products, as illustrated in Fig.
1(a). In order to sustain SPL productivity above a sufficiently
good level as illustrated in Fig. 1 (b), we investigate variability
realization erosion and propose corresponding improvements
in this paper. Specifically, our research contributions are as
follows:

• We identify and automatically measure typical
variability erosion symptoms in an industrial SPL.

• We propose an improvement strategy to optimize
variable code realized in Conditional Compilation (CC),
including standardizing, merging, pruning, and splitting
#IFDEF statements.

• We propose another improvement strategy to transition
CC to a new variation mechanism called Parameterized
Inclusion (PI).

• We discuss advisable improvement strategies in
different variability evolution scenarios, so that they can be
selectively adopted in variable code realized in CC.

The paper is organized as follows: Section II introduces
related research, including various variability realization
erosion symptoms identified in an industrial SPL and studies
related to variability realization improvement. Section III
presents two variability realization improvement strategies
against the erosion problems, and the QA issue after
conducting the improvements is discussed as well. Section IV
discusses the adoption of a specific improvement strategy in
different SPL evolution scenarios, while the conclusion and
future work is presented in section V.

II. RELATED RESEARCH
In this section, we introduce several variability realization
erosion symptoms identified from our previous case study of
an industrial SPL, based on which our variability
improvement strategies are motivated and derived. Moreover,
we also discuss current studies related to variability realization
improvement and compare them with our approach.

A. Variability Realization Erosion
In variability realizations, CC is a frequently used

mechanism to enable or disable variant code [5] [9] [16]. To be
specific, macro constants are defined in product configurations
and used in #IFDEF expressions (in this paper we use #IFDEF
to imply the directives of #if, #elif, #ifdef, and #ifndef) in code
core assets. Based on the defined values of macro constants, a
C-preprocessor adapts the core assets by enabling or disabling
enclosed code fragments in an intuitive way.

In our previous study [23], we have considered various
types of Variability Elements (VEs) as illustrated in Fig. 2, i.e.,
Variability (Var), Variation Point (VP), and Variation Point
Group (VPG). A Var represents a variable feature in the
problem space and is realized in VPs (solution space) to enable
or disable enclosed code fragments (i.e., variants). In CC a Var

is represented by a macro constant, while a VP is represented
by a #IFDEF block. Moreover, VPs with logically equivalent
#IFDEF expressions are clustered as a VPG because they have
the same effect on their enclosed code fragments. As shown in
Fig. 2, each Var can be used in multiple VPGs, while each
VPG may contain multiple VPs. These VPs may be scattered
in either one or multiple code files. The concept of VPG helps
to understand the alignment of VEs between problem space
and solution space.

Fig. 2. Variation Mechanism: Conditional Compilation.

Although CC is a straightforward mechanism to implement
variation, its usage also brings negative effects: i) the
realizations of commonality and variability (#IFDEF code) are
mixed in the same core code file; ii) adding a new variant
needs to change the entire VP, which is known as closed
variation [10]; iii) a VP written as a single #IFDEF block
innately only supports one optional variant (i.e., an #IFDEF
block without #else or #elif) or two alternative variants (i.e.,
the positive and negative branch of the #IFDEF block). A VP
with multiple co-existing or alternative variants (i.e. OR/XOR)
in CC needs to be implemented using multiple #IFDEF blocks.

Moreover, the aforementioned disadvantages of CC cause
variability erosion during SPL evolution. In our previous case
study [23], several erosion symptoms, such as variability
nesting, tangling, and scattering, have been investigated in an
industrial SPL of Danfoss in the embedded system domain. All
these symptoms indicate the increasing code complexity,
which makes the code difficult to understand and maintain [6]
[13]. We classify the symptoms of variability erosion in the
following subsections.

1) Variability Nesting
VPs realized by #IFDEF blocks can be nested to another. If

a VP is deeply nested, then its logic would be very complex,
which impair program comprehension and make the code
maintenance error-prone[11]. In the case study [23], most VPs
(94%) are not nested (nesting level equals one) or only nested
in one degree (nesting level equals two), and the average
nesting degree is 1.50, which is not very high in general.
However, a few VPs (6%) are nested with a high nesting

degree (up to 5), which are difficult to understand due to their
complex logic.

2) Variability Tangling
The #IFDEF expression of a VPG may contain only one or

multiple tangled Vars. The tangling degree is defined as the
number of Vars that are used in the #IFDEF expression of a
given VPG. For instance, in Fig. 2 the tangling degree of the
VPG “#if Var_X<20 && Var_Y==1” is two, since it has two
Vars. If the #IFDEF expression of a VPG uses too many Vars,
then its logic would be very complicated to understand. In the
Danfoss case study, most VPGs (98%) only contain one or two
Vars in their #IFDEF expressions, and average tangling degree
of all core code is 1.21, which also indicates a low tangling
level. However, there are a few VPGs (2%) with a high
tangling degree (up to 11), which are very difficult to
understand.

3) Variability Scattering
In conditionally compiled core code, Vars are scattered in

different VPGs as well as in different files. The issue of Var
scattering in VPGs depicts the situation when a Var is used in
the #IFDEF expressions of different VPGs. It indicates the
change impact of a Var on VPGs in the scenario of SPL
maintenance. For instance, in Fig. 2 the Var “Var_X” is used in
two different #IFDEF expressions, and thus the scattering
degree is two. In the Danfoss case study, most Vars (88%) are
scattered in one or two VPGs, and the average scattering
degree is 1.68. However, some Vars (12%) have significantly
higher scattering degree (up to 21), which means each of these
Vars crosscuts the variability realizations in many different
#IFDEF blocks. Note that since the change propagation of a
Var on different VPGs might be different, the Vars with high
scattering degree on VPGs would cause a tremendous
maintenance effort if they are changed.

Besides analyzing Var scattering in VPGs, we also
investigate Var scattering in files. For instance, in Fig. 2 the
Var “Var_X” is scattered in three files. This scattering degree
indicates the change impact of a Var on files, because the
change of a Var needs to be propagated to all relevant files.
Since each file shall be quality-assured after change, this metric
also indicates the QA effort during SPL maintenance. In the
Danfoss case study, most Vars (86%) are scattered in up to ten
files, while some Vars (14%) have a significantly higher
scattering degree (up to 144). The average scattering degree on
file is 6.20, which is also high compared to the scattering
degree on VPGs.

4) Complex Variable Code
As a SPL evolves, the variable code files become complex

in the sense that they contain more and more VEs, making
these files difficult to understand for adapting changes in SPL
maintenance. In our previous study, we measured the number
of Vars used in #IFDEF expressions and the number of VPs in
each variable code file. For instance, the left file in Fig. 2
contains one Var and one VP. In the Danfoss case study, most
files (75%) contain one to three Vars, and the average number
of Vars per file is 3.91. However, some more complex files
(25%) contain up to 118 Vars, which would be very difficult to
understand and error-prone during maintenance.

Moreover, the number of VPs in a code file indicates the
complexity of a code file. For instance, given N VPs being
independent and not nested in one method of a file, the
Cyclomatic Complexity of the method is propositional to N. In
the Danfoss case study, most files (76%) contain up to ten VPs,
and the average number of VPs per file is 10.57, which is
already a non-trivial problem. Additionally, some more
complex files (24%) contain from 11 up to 407 VPs in the
extreme case. Understanding and maintaining such files would
be very time-consuming and error-prone.

B. Variability Realization Improvement
To the best of our knowledge, there is not many studies in

the field of variability realization improvement. Patzke [16]
defined the term variability refactoring as a family engineering
activity to change a SPL infrastructure in order to evolve or
reuse it in a more cost-efficient way. He claimed that while
conventional refactoring is to make existing artifacts easier to
use, variability refactoring is to make existing core assets easier
to reuse. Moreover, he summarized a number of variability
refactoring activities. Among these activities, our first strategy
of CC optimization is related to the activities of renaming VPs
and increasing VP visibility, while our second strategy of
transitioning CC to PI is related to the activities of separating
variants from commonality, separating variants from each
other, replacing closed with open variants, and extracting reuse
hierarchy. However, all the refactoring activities were only
discussed conceptually without implementation.

Besides, Alves [2] et al. presented a catalogue of Feature
Model refactorings in terms of configurability. Based on that
Borba [4] extended it into a SPL refactoring catalogue
including formalized transformation templates not only for
Feature Models, but also for other artifacts such as
Configuration Knowledge. The refactoring activities in their
study are aiming at deriving a SPL from existing products
(extractive SPL development) and extending an existing SPL
to encompass another product (reactive SPL development).
Thus their refactoring activities are driven by product
characteristics that need to be included as SPL features. On the
Contrast, our goal is to improve variability realizations of an
existing SPL mainly in terms of maintenance and sustain its
productivity during evolution.

In our previous study [21], we analyzed variability-related
CPP code in both core assets and product realizations, and
extracted a realization variability model including variabilities,
variation points, and a graphical tree of variation points based
on #ifdef nesting. Moreover, we also presented a feature
correlation mining approach [22] to identify implicit variability
interdependencies from existing product configurations. Both
of these two approaches help to understand complex variability
realizations via automatic analysis.

Beyond the scope of variability realization improvement,
there are several studies focusing on preprocessor code
analysis and refactoring. Baxter and Mehlich [3] presented an
automated approach to detecting and removing obsolete
#IFDEF statements (also known as dead #IFDEFs) based on
heuristic transformation rules. Therefore, their approach can
only deal with preprocessor code that satisfies certain patterns.

Similarly, Garrido [7][8] presented an automated approach to
conduct various refactoring activities on preprocessor-aware C
code. The refactoring activities on preprocessor code involves
not only CC, but also file inclusion and macro expansion. The
refactoring of CC includes removing obsolete #IFDEF
statements and fixing incomplete #IFDEF blocks, which is also
based on heuristic rules. Liebig et al [12] also discussed the
issue of incomplete (also known as undisciplined) #IFDEF
code based on an comprehensive code analysis of 40 open
source systems. Based on extraction of an AST (Abstract
Syntax Tree) from the preprocessor code, it turned out that
84% of #IFDEF code in their analysis is disciplined. Regarding
the 16% undisciplined #IFDEF code, they recommended to
manually rewrite them into disciplined annotations.

Adams et al. [1] investigated the feasibility of replacing
#IFDEF blocks with aspects considering the issues of #IFDEF
tangling and scattering. They provided abstract refactoring
ideas in term of different patterns of CC usage, but did not
apply them in real systems. In general, the idea of transitioning
CC to Aspect Orientation (AO) in variability realizations is
helpful to separate common and variable code. However, this
refactoring also faces several practical challenges: i) AO is not
applicable to arbitrary preprocessor code; ii) it could be
difficult to automatically apply this refactoring even to limited
preprocessor code; iii) This refactoring will change the
compiled source code, which therefore needs to be quality
assured afterwards.

III. VARIABILITY REALIZATION IMPROVEMENT
Given the variability erosion symptoms discussed in

section II, we present two major strategies of variability
realization improvement as illustrated in Fig. 3. The first
strategy is to optimize the variation mechanism of CC, and the
second strategy is to refactor the #IFDEF blocks by
transitioning CC to a new variation mechanism called
Parameterized Inclusion (PI). These two improvement
strategies are introduced in the following subsections.

Fig. 3. Variability Realization Improvement Strategies.

A. Optimizing Conditional Compilation
In the variation mechanism of CC, Vars are defined as

macro constants and used in different #IFDEF statements. An
#IFDEF statement consists of a C preprocessor directive (i.e.,
either #if, #elif, #ifdef, or #ifndef) and an arbitrary Boolean
predicate (called #IFDEF expression in this paper). From our
practical observation, the #IFDEF statements are usually
written in an ad-hoc way, which makes them complex (e.g.,
variability tangling) and difficult to understand. Therefore, we
propose to a set optimization activities on #IFDEF statements,
which are presented in the following subsections.

1) Standardizing #IFDEF Statements.
Since such #IFDEF statements are usually originated and

maintained by different developers over a long time span, they
are probably written in very different programming styles
during SPL evolution. Moreover, #IFDEF statement written in
a different style may contain redundant characters, such as “#if
((Var_X)>0)” compared to “#if Var_X>0”. Although such
#IFDEF statements are correct and acceptable to the C
preprocessor, the different programming styles lack
consistency and may cause unnecessary code complexity,
which impairs code comprehensibility. Especially, the different
programming styles lead to VPs with syntactically different
#IFDEF statements but sharing the equivalent inclusion logic.
In this case, clustering such VPs into VPGs would be difficult,
which will impair the change impact assessment of a Var on
VPGs during code maintenance. Before adopting any semantic
analysis, we propose to conduct several syntactical
standardization activities on #IFDEF statements in order to
adapt them into a canonical form.

a) Rewriting #ifdef and #ifndef statements. The C
preprocessor accepts both the keyword “defined” and the
directives of #ifdef and #ifndef. While some developers are
used write “#ifdef Var_X”, other developers prefer to write
“#if defined(Var_X)”. However, these different forms cause a
problem in clustering VPs into VPGs. There is a dilemma that,
on the one hand the clustering of VPs should only depend on
#IFDEF expressions and regardless of the directives like #if
and #elif; but on the other hand the directives of #ifdef and
#ifndef affect the logic of the corresponding expressions. For
instance, “#ifdef Var_X” and “#if Var_X” have different
semantics, and thus should be clustered into different VPGs.
As a result, the Var scattering degree on VPGs will be either
overestimated (if VPGs are clustered by #IFDEF statements)
or underestimated (if VPGs are clustered by #IFDEF
expressions).

In order to solve this issue, we propose to unify these
different forms by i) rewriting #ifdef statements like “#ifdef
Var_X” as “#if defined(Var_X)”; and ii) rewrite #ifndef
statements like “#ifndef Var_X” as “#if !defined(Var_X)”.
After this adaptation, the #IFDEF statements will only contain
“#if” and “#elif” directives, which do not affect the logic of
#IFDEF expressions. Therefore, it is necessary to conduct this
adaptation at the beginning of CC optimization, so that we can
focus on #IFDEF expressions in the following steps.

We have analyzed #IFDEF statements of all 13970 VPs in
the Danfoss SPL, and found 13 #ifdef directives and 5 #ifndef

directives. After rewriting these 18 #ifdef and #ifndef
statements, we continue to conduct further standardization
activities on #IFDEF statements (which actually only contain
#if and #elif directives).

b) Removing Extra Spaces. In the variable code of
Danfoss SPL, we find that some #IFDEF expressions are only
different in spaces. Therefore, we propose to remove the extra
spaces based on two rules: i) no space character between a
parenthesis/bracket and another token; ii) only one space
character between two tokens that are neither parentheses nor
brackets. We have conducted this adaptation automatically in
the Danfoss SPL, and removed extra spaces in the #IFDEF
expressions of 128 VPGs (9.1%). After this step, the number
of VPGs is reduced from 1287 to 1221 (66 equivalent VPGs
merged).

c) Removing Extra Parentheses. #IFDEF expressions
might be different in parentheses, and we propose to remove
extra parentheses in three cases: i) parentheses enclosing a
single token; ii) parentheses enclosing an entire #IFDEF
expression; iii) parentheses directly enclosing another pair of
parentheses, e.g., ((Var_X>0)). We have analyzed the 1221
different #IFDEF expressions from the previous optimization
step, and have removed redundant parentheses in 47 #IFDEF
expressions. After this step, the number of VPGs is reduced
from 1221 to 1196 (25 equivalent VPGs merged).

d) Unifying Negation Expressions. While an #IFDEF
expression can be written as negation of a proposition, the
negation sign can also be moved into each part of the
proposition with equivalent semantic. For instance, based on
De Morgan's theorem expressions like “!(Var_X && Var_Y)”
are equivalent to “!Var_X || !Var_Y”. To unify these two
forms, we rewrite each negation expression (in the form of
“!(proposition)”) by moving the external negation sign inside
the proposition and then removing the parentheses. In the
variable code of Danfoss SPL, there are six negation
expressions, all containing only a single equation (i.e., in the
form like “!(Var_X==0)”). Thus they are rewritten into the
form like “Var_X!=0”. After this step, the number of VPGs is
reduced from 1196 to 1193 (3 equivalent VPGs merged).

2) Merging #IFDEF Statements
As introduced in section II.A.3, a Var is usually used in

different #IFDEF expressions, and its change impact on VPGs
should be measured by the number of semantically different
#IFDEF expressions that use a given Var, i.e., the scattering
degree on VPGs. Otherwise, if the calculation of Var scattering
on VPGs is simply based on syntactic clustering of #IFDEF
expressions, then the syntactically different but semantically
equivalent expressions will be counted as different VPGs, and
thus change impact of each Var in the expressions would be
overestimated. This overestimation will cause unnecessary
effort in change propagation. Therefore, we propose to merge
equivalent #IFDEF expressions into a unique form (which is
the shortest expression in the equivalence class).

In our previous optimization activities, #IFDEF statements
are syntactically standardizing into a canonical form, so that
slight differences in similar #IFDEF expressions (e.g., extra

parentheses and spaces) will be eliminated. However, there
might be still equivalent #IFDEF expressions after the
standardization activity, such as “#if Var_X>0 && Var_Y<1”
and “#if 1>Var_Y && Var_X>0”. In order to analyze the
equivalence of these #IFDEF expressions, for each pair of
expressions <expr1, expr2> we first parse them in Python, and
then check the satisfiability of their equivalence (i.e.,
“expr1==expr2”) in Z3 [20], which is an open source theorem
prover.

Currently, we have managed to automatically analyze the
equivalence of all #IFDEF expressions in the Danfoss SPL,
which are simple conjunctive or/and disjunctive propositions
(no nested conjunction or disjunction in parentheses). Finally,
12 equivalent #IFDEF expressions are identified in the Danfoss
SPL. Moreover, if we assume each related Var as a binary
constant, then another 27 equivalent #IFDEF expressions are
identified. These 39 expressions are rewritten and merged into
their corresponding VPGs. However, considering the fact that
an expression might involve other functions or code structures,
comparing the equivalence of two arbitrary expressions is
equivalent to comparing the equivalence of two arbitrary
programs, which is theoretically an undecidable problem [19].

TABLE I. #VPG REDUCTION BY STANDARDIZATION AND MERGING

Tangling
Degree 1 2 3 4 7 11 Total

#VPG
Reduction 96 33 3 1 0 0 133

Reduction
Percentage 9% 17% 13% 25% 0% 0% 10%

Note that even for the purpose of merging equivalent
#IFDEF statements, the former standardization activity is
necessary, because some expressions might be too complex to
parse semantically but can be standardized. After conducting
the optimization of standardizing and merging #IFDEF
statements, relevant expressions are rewritten, and the number
of VPGs are reduced. As shown in Table I, most merging
activities (i.e., #VPG reduction) are conducted among #IFDEF
statements at the tangling degree of one or two. Totally 133
(10%) equivalent #IFDEF statements are merged into their
corresponding VPGs.

Besides standardizing and merging #IFDEF statements, we
have two further optimization activities, which have not been
applied to the Danfoss SPL.

3) Pruning #IFDEF Statements
As introduced in section II.A.2, the issue of variability

tangling is that an #IFDEF expression contains too many Vars.
If the expression is a conjunctive or disjunctive proposition and
not all the premises of the proposition affect the inclusion of
variant code, then the irrelevant premise(s) should be removed
from the #IFDEF expression. On the one hand, for conjunctive
#IFDEF expressions like “P1 && P2 && ... && Pn”, if a Pi is
always true (perhaps due to a mandatory feature) in all product
configurations then it can be removed. On the other hand, for
disjunctive #IFDEF expressions like “P1 || P2 || ... || Pn”, if a Pi

is always false (perhaps due to an obsolete feature) in all
product configurations then it can be removed.

For instance given the #IFDEF statement “#if
defined(Var_X) && (Var_X>0)”, if Var_X is always assigned
a positive value when defined, then the statement can be
pruned as “#if defined(Var_X)”. Especially, if premises in a
conjunctive #IFDEF expression are proved to be implicatively
correlated, then the consequent of the implication should be
removed from the expression. For instance given the
expression “#if defined(Var_X) && Var_Y>0”, if the feature
correlation “(Var_Y>0) ⟹ defined(Var_X)” is specified in the
variability model, then the #ifdef statement can be pruned and
rewritten as “#if Var_Y>0”. This is a typical scenario in
practice when Var_Y is a child feature of Var_X.

The opposite scenario is that if a premise is constantly false
(or true) in a conjunctive (or disjunctive) #IFDEF expression,
then the expression will be constantly false (or true). In this
case, the entire #IFDEF statement should be removed because
the variant code becomes dead (or common code). In
conclusion, this optimization can be conducted in either
conjunctive or disjunctive #IFDEF statements, and it requires
further domain knowledge.

4) Splitting #IFDEF Statements
The optimization activity of splitting #IFDEF statements is

to decompose a conjunctive #IFDEF statement into two
#IFDEF statements and rewrite the entire #IFDEF block into
two nested blocks. For instance, the #IFDEF block “#if
defined(Var_X) && Var_Y>0 ... #endif” can be rewritten as
“#if defined(Var_X) #if Var_Y>0 ... #endif #endif”. While
this activity can automatically relieve the issue of variability
tangling without domain knowledge, it will create another issue
of variability nesting. Therefore, it is only suitable for
conjunctive #ifdef statements with high tangling degree and
low nesting degree.

B. Transitioning CC to Parameterized Inclusion
Although the aforementioned optimization strategy helps to

standardize #IFDEF statements and reduce their complexity,
the improvement is limited and still within the scope of CC.
Considering the disadvantages of CC, we propose to
selectively refactor some VPs using a new variation
mechanism, Parameterized Inclusion.

1) Parameterized Inclusion.
The variation mechanism of Parameterized Inclusion (PI) is

similar to Module Replacement [16], but it is applied at
preprocessing time instead of link time. The idea is to
encapsulate each variant code fragment into a separate file, and
use the C preprocessor directive “#include” to dynamically
include the corresponding variant code fragment into the main
core code.

In order to transition from CC to PI, each VP (i.e., an #ifdef
block) is indexed with a number i, and replaced by a statement
such as “#include VPi_File” in Fig. 4. The VPi_File is defined
as a macro constant in each product code, and its value is
determined by the #IFDEF expression of the VP. For instance,
the VP “#if Var_X>0” in Fig. 2 is replaced by “#include
VP1_File”, and the constant VP1_File will be defined as either

“V_1_1.inc” or “V_1_0.inc” in different products depending
on the value of Var_X. The two .inc files are positive and
negative variants of this VP, containing respectively the
positive and negative branch of the corresponding #IFDEF
block. If a VP only has the positive variant (i.e., no #else or
#elif statement), then the negative variant is bound to an empty
file, such as “Null.inc” in Fig. 4.

Fig. 4. Variation Mechanism: Parameterized Inclusion.

The advantages of PI are numerous as follows.

a) Explicit variant binding without complex #IFDEF
statements. Since each variant is explicitly selected by
defining the corresponding VP parameter VPi_File in product
configurations, there will be no #IFDEF code in VPs using PI,
and thus the issues of #IFDEF nesting and tangling are
automatically solved.

b) The common code and variable code are separated.
As the common code and the code of each variant are
separated in different files, they can be maintained in parallel.
Moreover, since each code change action is restricted in a
smaller scope, the maintenance process should be less error-
prone. Particularly, this shall provide more protection to the
common code, because they are usually less frequently
modified than variable code.

c) PI is an open variation mechanism. Since the code of
each variant is separated in an individual file, adding a new
variant or modifying an existing variant does not contaminate
other variants in terms of code quality assurance.

d) Stronger support for multiple variants. While one
#IFDEF block in CC innately only support two variants in the
positive and negative branch, in PI a VP may be linked to any
number of varaints by creating the relevant .inc files.

Despite the advantages of PI, its disadvantages should also
be considered. One disadvantage of PI is that if the variant
code is strongly interrelated with the common code, then it
might be difficult to understand both the common code and the
encapsulated variant code. Moreover, another disadvantage is
that for each VP an additional macro constant (e.g., VPi_File in

Fig. 4) needs to be created. As a result of this overhead, the
consistency between the constant VPi_File and its values (i.e.,
the .inc files) as well as their binding rules must be maintained,
which could be a non-trivial effort.

To maintain the binding rules between VPs and variants, a
variation binding table can be created as an auxiliary
documentation. As shown in Fig. 5, for each VP refactored
from CC, the macro constant VPi_File is linked to its positive
and negative variants (i.e., the .inc files) in the format of a
ternary expression. If there is no negative variant, then the null
variant (i.e., Null.inc) can be omitted.

Fig. 5. A variation Binding Table.

2) Parameterized Inclusion with String Concatenation.
Although the mechanism of PI avoids the complex #IFDEF

blocks and adapts the variable code in a modularized style, it
hands over the work of variation binding to developers during
product configuration (in CC it is automatically done via
#IFDEF statements). This increases the risk of incorrect
variation binding. In order to facilitate variation binding, we
have improved PI with the idea of automatic string
concatenation.

For any VP in which each variant depends on a different
value of a Var, then the value of the VP constant VPi_File can
be dynamically generated by concatenating the index of the VP
and the corresponding Var value. For instance given the VP
“#if Var_X>0” in Fig. 2, if Var_X is a Boolean constant, then
the positive variant is actually bound under the condition “#if
Var_X==1”, while the negative variant is bound under the
condition “#if Var_X==0”. In this case, it is not necessary to
define the VP constant VP1_File, because the variant file name
“V_1_1.inc” and “V_1_0.inc” can be dynamically
concatenated using the VP index (1) and the value of Var_X (1
or 0), as shown in Fig. 6.

Note that since this string concatenation is conducted
during preprocessing time, the code is preprocessed as merely
tokens, and the normal string concatenation operations
supported by C/C++ cannot be used. To concatenate tokens as
a string file name during preprocessing time, a feasible solution
is to define macros using the “##” and “#” operators [5] [18] as
shown in Fig. 6. While the “##” operator helps to concatenate
tokens (of VP index and the Var value), the “#” operator helps
to convert a token into a string (of the variant file name).

Fig. 6. Parameterized Inclusion with String Concatenation.

C. Code Validation after Improvement
We have introduced two variability realization

improvement strategies, optimization of #IFDEF code and
transitioning from CC to PI. Applying either of these strategies
would change the core code. Theoretically, the changed code
needs to be re-validated (typically via testing) in order to
ensure that the refactoring is behavior-preserving and does not
affect the code quality (i.e., correctness, reliability, etc.).
However, we argue that such Quality Assurance (QA) is
unnecessary because these two improvement approaches do
not change the product code after preprocessing.

Fig. 7. Validation of Refactored Code.

As illustrated in Fig. 7, the core code is developed during
variability realization and reused by various products. If the
variation mechanism is CC or PI, then variants are bound at
preprocessing time depending on product configurations. Since
the optimization of #IFDEF statements and the transition from
CC to PI only change the organization of variant code in each
VP instead of the variant content, the core code with and
without improvement should generate exactly the same product
code. In another words, the variable code improvement process
should neither affect the product code nor affect the derived
software products. In that case, there will be no additional cost
of conducting the two variability improvement strategies.

IV. ADOPTION OF IMPROVEMENT STRATEGIES
As discussed in section II, variability realizations often

becomes overly complex during SPL evolution, which is
known as variability erosion [23] and makes related core code
difficult to understand and maintain. In other words, this
problem only exists when the core code is going to be read and
changed manually. Otherwise, if some variable code is only
developed once and does not need to be changed, then it is
unnecessary to improve the code no matter how complex it is.

In this paper, we have introduced different strategies for
variability realization improvement for different purposes.
They should be only applied to evolving core code that is going
to be changed manually. Moreover, the adoption of an
improvement strategy should depend on how the core code is
going to be changed, i.e., specific variability evolution
scenarios. Given the context of variability realizations using
CC, we discuss following basic evolution scenarios and their
suitable improvement strategies. The evolution scenarios are
categorized based on concrete VEs defined in Fig. 2, including
Var, VP and variant (VPG is an abstract concept and does not
count).

//Core.cpp
#define _PI_ToStr(token) #token
#define _PI_Variant(vp, var) _PI_ToStr(V_##vp##_##var.inc)
#define PI_Variant(vp, var) _PI_Variant(vp, var)
...
void foo()
{
 #include PI_Variant(1, VAR_X)
}
...

VP1_File: Var_X>0 ? V1_1.inc : V1_0.inc;
VP2_File: Var_X>0 && Var_Y==1 ? V2_1.inc;
VP3_File: Var_X>0 && Var_Y==1 ? V3_1.inc;

//V_1_1.inc
printf("Var_X = 0");

//V_1_0.inc
printf("Var_X = 1");

A. Adding a Var or VP
Since a Var is used in VPs to enable or disable variants, a

new Var can be created and used in either a new VP or an
existing VP, while a new VP can be added into the core code
that contains either new Vars or existing Vars. In either of
these two evolution scenarios, if the code operation is
independent and does not involve further propagation, then
none of our proposed improvement strategies needs to be
conducted because it is not sure whether the added code is
going to be read and changed manually afterwards.

B. Changing a Var
In the context of CC, changing a Var is to rename or delete

a macro constant used in #IFDEF expressions of existing VPs.
This operation requires understanding of #IFDEF expressions,
and is usually conducted not only on a single VP but on VPs
with equivalent #IFDEF expressions, i.e., a VPG. In order to
correctly determine the change impact of a Var on a certain
VPG, it is advisable to standardize and merge #IFDEF
statements of VPs, so that VPGs can be calculated precisely.
Besides, if the related #IFDEF statements are complex
containing many Vars, it is advisable to adopt the optimization
strategy of #IFDEF pruning and splitting.

C. Changing a VP
In the context of CC, changing a VP is to change the

corresponding #IFDEF block, which involves two possible
operations. One operation is to change the predicate of the VP,
i.e., the #IFDEF statements, which affects variant binding.
Besides, another possible operation is to change the cardinality
of the VP, e.g., to change its alternative variants into optional
variants. Both of these two operations are manual and require
understanding of the corresponding #IFDEF statement.
Therefore, if the #IFDEF statement is complex containing
many Vars, it is advisable to adopt the optimization strategy of
#IFDEF pruning and splitting.

D. Adding a variant
If a variant is only added into a given VP, then it is usually

unnecessary to conduct any improvement strategies because it
is not sure whether the added variant will be changed
afterwards. However, since the mechanism of CC innately only
support VPs with two variants, one exception is that if a third
variant is added then it is advisable to transition the variation
mechanism of that VP from CC to PI, which supports multiple
variants.

E. Changing a variant
In CC variants of a VP are written in one code file, which

may even include other VPs as well as common code. As a
consequence, the code change tends to be error-prone due to
the file complexity, and after changing one variant the entire
code file needs to be quality assured. To mitigate these issues,
it is advisable to transition the variation mechanism of the
corresponding VP from CC to PI, where each variant is
encapsulated in a separate file. Considering the advantages and
disadvantages of PI (discussed in section III.B), this strategy
can be applied to each VP satisfying the following criteria.

1) There is certain evidence that variants of the VP is
expected to be frequently changed. This trend can be either
predicted by domain experts or by analyzing the evolution
history of the corresponding SPL.

2) Changing the variant code in CC is effort-consuming
and error-prone. E..g, the variant has a huge size or high
cyclomatic complexity, or the code file containing the VP is
variability-intensive with numerous Vars or VPs.

3) Its variant code should have low coupling and high
cohesion, so that the variant encapsulation will not impare
code comprehensibility.

V. CONCLUSION AND FUTURE WORK
In this paper we have introduced several variability erosion

symptoms in practice, and propose a variability improvement
process including two improvement strategies to solve these
issues. While one strategy is to optimize variable code within
the scope of CC, the other strategy is to transition CC to a new
variation mechanism call Parameterized Inclusion. Both of
these two improvement strategies can be conducted
automatically. Since these improvement strategies are
behavior-preserving and do not change the product code after
preprocessing, no QA effort is required after improvement.
Besides, the adoption of a specific strategy should depend on
different SPL evolution scenarios.

Our future work includes: 1) conducting the transition from
CC to PI in an industrial SPL; 2) obtaining the product code
with and without improvement after preprocessing, and
validate their identity; 3) investigating further variability
improvement strategies.

ACKNOWLEDGMENT
This work is within the MOTION project of

“Innovationszentrum Applied System Modeling”, sponsored
by the German state of Rhineland-Palatinate and Fraunhofer
IESE. See http://www.applied-system-modeling.de/.

REFERENCES
[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan, "Can we

refactor conditional compilation into aspects?" in Proceedings of the 8th
ACM international conference on Aspect-oriented software
development, ser. AOSD '09. New York, NY, USA: ACM, 2009, pp.
243-254.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena,
"Refactoring product lines," in Proceedings of the 5th international
conference on Generative programming and component engineering,
ser. GPCE '06. New York, NY, USA: ACM, 2006, pp. 201-210.

[3] I. D. Baxter and M. Mehlich, "Preprocessor conditional removal by
simple partial evaluation," in Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE'01), ser. WCRE '01.
Washington, DC, USA: IEEE Computer Society, 2001.

[4] P. Borba, "An introduction to software product line refactoring," in
Proceedings of the 3rd international summer school conference on
Generative and transformational techniques in software engineering III,
ser. GTTSE'09. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 1-26.

[5] M. D. Ernst, G. J. Badros, and D. Notkin, "An empirical analysis of c
preprocessor use," IEEE Transactions on Software Engineering, vol. 28,
no. 12, pp. 1146-1170, Dec. 2002.

[6] J. M. Favre, "The CPP paradox," in 9th European Workshop on
Software Maintenance, 1995.

[7] A. Garrido and R. Johnson, "Refactoring c with conditional
compilation," 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), vol. 0, p. 323, 2003.

[8] A. Garrido, "Program refactoring in the presence of preprocessor
directives," Ph.D. dissertation, Champaign, IL, USA, 2005.

[9] C. Gacek and M. Anastasopoulos, "Implementing product line
variabilities," SIGSOFT Softw. Eng. Notes, vol. 26, no. 3, pp. 109-117,
May 2001.

[10] J. Van Gurp, J. Bosch, and M. Svahnberg, "On the notion of variability
in software product lines," in Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, ser. WICSA '01. Washington,
DC, USA: IEEE Computer Society, 2001.

[11] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An
analysis of the variability in forty preprocessor-based software product
lines,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE '10. New York, NY,
USA: ACM, 2010, pp. 105-114.

[12] J. Liebig, C. Kästner, and S. Apel, "Analyzing the discipline of
preprocessor annotations in 30 million lines of c code," in Proceedings
of the tenth international conference on Aspect-oriented software
development, ser. AOSD '11. New York, NY, USA: ACM, 2011, pp.
191-202.

[13] P. E. Livadas and D. T. Small, "Understanding code containing
preprocessor constructs," in Program Comprehension, 1994.
Proceedings., IEEE Third Workshop on, 1994, pp. 89-97.

[14] S. Livengood, "Issues in software product line evolution: complex
changes in variability models," in Proceeding of the 2nd international
workshop on Product line approaches in software engineering, ser.
PLEASE '11. New York, NY, USA: ACM, 2011, pp. 6-9.

[15] D. L. Parnas, "Software aging," in Proceedings of the 16th international
conference on Software engineering, ser. ICSE '94, vol. 7, no. 4. Los
Alamitos, CA, USA: IEEE Computer Society Press, Dec. 1994, pp. 279-
287.

[16] T. Patzke, "Sustainable evolution of product line infrastructure code,"
Ph.D. dissertation, 2011.

[17] D. E. Perry and A. L. Wolf, "Foundations for the study of software
architecture," SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40-52,
Oct. 1992.

[18] S. Prata, C Primer Plus (5th Edition). Indianapolis, IN, USA: Sams,
2004.

[19] Undecidable problems. http://www.cs.rochester.edu/~nelson/courses/
csc_173/computability/undecidable.html (retrieved in May 2013)

[20] Z3. http://z3.codeplex.com/. (retrieved in May 2013)
[21] B. Zhang and M. Becker, "Code-based variability model extraction for

software product line improvement," in Proceedings of the 16th
International Software Product Line Conference - Volume 2, ser. SPLC
'12. New York, NY, USA: ACM, 2012, pp. 91-98.

[22] B. Zhang and M. Becker, "Mining complex feature correlations from
software product line configurations," in Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive
Systems, ser. VaMoS '13. New York, NY, USA: ACM, 2013.

[23] B. Zhang and M. Becker, "Variability Evolution and Erosion in
Industrial Product Lines - A Case Study," submitted to 17th
International Software Product Line Conference. SPLC '13. New
York, NY, USA: ACM. Unpublished.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

