

Synthese und Charakterisierung von Cobalt(II)-, Eisen(II)- und Eisen(III)-Komplexen mit interessanten magnetischen Eigenschaften

(Teil B)

Dipl.-Chem. Sabine Reh

Dissertation Fachrichtung Anorganische Chemie Mai 2013

Synthese und Charakterisierung von Cobalt(II)-, Eisen(II)- und Eisen(III)-Komplexen mit interessanten magnetischen Eigenschaften

(Teil B: Anhang)

Vom Fachbereich Chemie der Technischen Universität Kaiserslautern zur Erlangung des akademischen Grades "Doktor der Naturwissenschaften" (Dr. rer. nat.) genehmigte Dissertation (D 386)

> vorgelegt von Dipl.-Chem. Sabine Reh

Betreuer der Arbeit: Prof. H.-J. Krüger, Ph. D.

Tag der wissenschaftlichen Aussprache: 15.05.2013

Kaiserslautern 2013

Vom Fachbereich Chemie der Technischen Universität Kaiserslautern am 15.05.2013 als Dissertation angenommen.

Dekan:

Berichterstatter:
 Berichterstatter:

Vorsitzender der Prüfungskommission:

Prof. Dr.-Ing. Jens Hartung

Prof. Dr. Stefan Kubik Prof. Hans-Jörg Krüger, Ph.D. Prof. Dr. Helmut Sitzmann

Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden in der Zeit von Juli 2007 bis Februar 2013 im Fachbereich Chemie der Technischen Universität Kaiserslautern in der Arbeitsgruppe von Herrn Prof. Hans-Jörg Krüger, Ph. D. durchgeführt.

Inhaltsverzeichnis Teil A

	Abk	ürzungs	sverzeichnis	V
	Verb	oindung	sverzeichnis	VIII
1.	Einl	eitung		1
	1.1.	Das S _l	pincrossover-Phänomen	1
		1.1.1.	Thermisch induzierte Spinübergänge in Eisen(II)- und Cobalt(II)-	
			Komplexen	5
	1.2.	Der in	termediate-spin-Zustand	12
	1.3.	Vorste	llung der primären Liganden	16
	1.4.	Zielset	zung	17
2.	Eige	ene Erg	gebnisse	19
	2.1.	Cobalt	-Komplexe	19
		2.1.1.	Synthese und Charakterisierung von Cobalt(II)-Komplexen mit	
			dem Liganden $N,N^\prime\text{-Dimethyl-2,11-diaza}[3.3](2,6)$ pyridinophan .	19
		2.1.2.	Synthese und Charakterisierung von Cobalt(II)-Komplexen mit	
			dem Liganden N, N' -Di-tert-butyl-2,11-diaza[3.3](2,6)pyridinopha	n 80
		2.1.3.	Vergleich der Cobalt(II)- mit den analogen Eisen(II)-Komplexen	134
		2.1.4.	Der Cobalt(III)-Komplex $[Co(L-N_4^tBu_2)(NCS)_2](BF_4) \cdot EtCN$.	138
	2.2.	Eisen-	Komplexe	146
		2.2.1.	Eisen(II)-Komplexe	146
		2.2.2.	$\label{eq:entropy} Der \ Eisen(II)-Radikal-Komplex \ [Fe(L-N_4^{\ t}Bu_2)(bmi_{red})](BPh_4) .$	181
		2.2.3.	Der Eisen(III)-Komplex [Fe(L-N ₄ Me ₂)(edt)](B(p-Tol) ₄) \cdot MeCN .	192
3.	Zus	ammen	fassung und Ausblick	207
4.	Ехр	erimen	teller Teil	217
	4.1.	Analys	semethoden und -geräte	217
	4.2.	Ausga	ngsverbindungen	221
	4.3.	Versue	chsbeschreibungen	223
		4.3.1.	Synthese von 2,2'-Bis-2-imidazolin	224
		4.3.2.	Synthese von $Fe(OTf)_2 \cdot 2 MeCN \dots$	225
		4.3.3.	Synthese von $[Co(L-N_4Me_2)(CN)_2]$ (1)	226
		4.3.4.	Synthese von $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (2a)	227
		4.3.5.	Synthese von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a)	229
		4.3.6.	Synthese von $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a)	231
		4.3.7.	Synthese von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a)	233

4.3.8.	Synthese von $[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$ (6a) und	
	$[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2 \cdot 3 \operatorname{MeCN}(\mathbf{6c}) \dots \dots \dots \dots$	235
4.3.9.	Synthese von $[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2 \cdot MeCN$ (7b) und	
	$[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2 \cdot 1.5 MeCN (7d) \dots \dots$	238
4.3.10.	Synthese von $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a)	241
4.3.11.	Synthese von $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (9a)	243
4.3.12.	Synthese von $[Co(L-N_4Me_2)(NCS)_2]$ (10)	245
4.3.13.	Synthese von [{Co(L-N ₄ Me ₂)} ₂ (μ -BiBzIm)](ClO ₄) ₂ · 2 MeCN (11b)247
4.3.14.	Synthese von $[Co(L-N_4^tBu_2)(CN)_2] \cdot EtOH (12a) \dots \dots \dots$	249
4.3.15.	Synthese von $[Co(L-N_4^tBu_2)(bipy)](BPh_4)_2$ (13a)	250
4.3.16.	Synthese von $[Co(L-N_4^tBu_2)(ampy)](ClO_4)_2 \cdot 0.5 \text{ MeCN } (14b)$.	252
4.3.17.	Synthese von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a)	254
4.3.18.	Synthese von $[Co(L-N_4^tBu_2)(pyc)](BPh_4) \cdot EtCN (16b) \dots$	256
4.3.19.	Synthese von $[Co(L-N_4^tBu_2)(NCSe)_2]$ (17)	258
4.3.20.	Synthese von $[Co(L-N_4^tBu_2)(NCS)_2]$ (18)	260
4.3.21.	Synthese von $[Co(L-N_4^tBu_2)(ox)]$ (19)	262
4.3.22.	Synthese von $[Co(L-N_4^tBu_2)Cl_2] \cdot MeCN (20a) \dots \dots \dots$	264
4.3.23.	Synthese von $[Co(L-N_4^tBu_2)(NCS)_2](BF_4) \cdot EtCN (21b) \dots$	266
4.3.24.	Synthese von [{Fe(L-N ₄ Me ₂)} ₃ (μ -ttcy)](OTf) ₃ · 3 H ₂ O (22a) und	
	$[{\rm Fe}(L-N_4Me_2)]_3(\mu-ttcy)]({\rm PF}_6)_3 \cdot 2 {\rm H}_2O~({\bf 22b})~\ldots~\ldots~\ldots~\ldots~$	268
4.3.25.	Synthese von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a)	270
4.3.26.	Synthese von $[Fe(L-N_4Me_2)(BzImCOO)] \cdot 2 EtOH (24a) \dots$	272
4.3.27.	Synthese von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a)	274
4.3.28.	Synthese von [{Fe(L-N ₄ Me ₂)} ₂ (μ -bimin)](ClO ₄) ₂ (26a)	276
4.3.29.	Synthese von $[Fe(L-N_4^tBu_2)(bmi)](BPh_4)_2$ (27)	278
4.3.30.	Synthese von $[Fe(L-N_4^{t}Bu_2)(bmi_{red})](BPh_4)$ (28)	280
4.3.31.	Synthese von $[Fe(L-N_4^{t}Bu_2)(bmi_{dep})](BPh_4)$ (29)	281
4.3.32.	Synthese von $[{\rm Fe}({\rm L-N_4Me_2})({\rm edt})]({\rm B}({\rm p-Tol})_4) \cdot {\rm MeCN}~({\bf 30b})~.~.~$	282
5. Literatur		285
Danksagung		299
Eidesstattliche	e Erklärung	303
Lebenslauf		305

Inhaltsverzeichnis Teil B

	Abkürzungsverzeichnis	V
	Verbindungsverzeichnis	VIII
^	Anhang	Λ 1
А.	A 1 Natriumtetraphonylhorat	
	A.1. Natrium tetraphenyiborat	
	A.2. Natrium-tetrakis- $(para-tory)$ borat	$A \ge$
	A.5. $2, 2$ -DIS-2-IIIIIdazoIIII	
	A.4. $Fe(O(1)_2 \cdot 2 \text{ MeCN} \dots \dots$	A 4
	A.5. $[Co(L-N_4Me_2)(CN)_2]$ (1)	A 4
	A.0. $[Co(L-N_4Me_2)(blpy)]^{-1}(\mathbf{Z})$	A 5
	A. (. $[Co(L-N_4Me_2)(en)]^{2+}$ (3)	A 10
	A.8. $[Co(L-N_4Me_2)(ampy)]^{2+}$ (4)	A 15
	A.9. $[Co(L-N_4Me_2)(o-ph)]^{2+}$ (5)	A 20
	A.10. $[Co(L-N_4Me_2)(1,2-dap)]^{2+}$ (6)	A 26
	A.11. $[Co(L-N_4Me_2)(1,3-dap)]^{2+}$ (7)	A 32
	A.12. $[Co(L-N_4Me_2)(NCMe)_2]^{2+}$ (8)	A 38
	A.13. $[Co(L-N_4Me_2)(pyc)]^+$ (9)	A 44
	A.14. $[Co(L-N_4Me_2)(NCS)_2]$ (10)	A47
	A.15.[{Co(L-N ₄ Me ₂)} ₂ (μ -BiBzIm)] ²⁺ (11)	A51
	A.16. $[Co(L-N_4^{t}Bu_2)(CN)_2]$ (12)	A55
	A.17. $[Co(L-N_4^tBu_2)(bipy)]^{2+}$ (13)	A55
	A.18. $[Co(L-N_4^tBu_2)(ampy)]^{2+}$ (14)	A 60
	A.19. $[Co(L-N_4^tBu_2)(NCMe)_2]^{2+}$ (15)	A65
	A.20. $[Co(L-N_4^tBu_2)(pyc)]^+$ (16)	A 70
	A.21. $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17)	A 74
	A.22. $[Co(L-N_4^{t}Bu_2)(NCS)_2]$ (18)	A 81
	A.23. $[Co(L-N_4^{t}Bu_2)(ox)]$ (19)	A87
	A.24. $[Co(L-N_4^{t}Bu_2)Cl_2]$ (20)	A 90
	A.25. $[Co(L-N_4^{t}Bu_2)(NCS)_2]^+$ (21)	A 93
	A.26.[{Fe(L-N ₄ Me ₂)} ₃ (μ -ttcy] ³⁺ (22)	A 99
	A.27. $[Fe(L-N_4Me_2)(Spy)]^+$ (23)	A 101
	A.28. $[Fe(L-N_4Me_2)(BzImCOO)]$ (24)	A 106
	A.29. $[Fe(L-N_4Me_2)(biminH_2)]^{2+}$ (25)	A 111
	A.30.[{Fe(L-N ₄ Me ₂)} ₂ (μ -bimin)] ²⁺ (26)	A 115
	A.31.[Fe(L-N ₄ ^t Bu ₂)(bmi)](BPh ₄) ₂ (27)	A 119
	A.32. $[Fe(L-N_4^{t}Bu_2)(bmi_{red})](BPh_4)$ (28) und	
	$[Fe(L-N_4^{t}Bu_2)(bmi_{dep})](BPh_4) (29) \dots \dots$	A 123

A.33. $[Fe(L-N_4Me_2)(edt)]^+$ (30)	A125
A.34.Kristallstrukturen	A 132
A.34.1. $[Co(L-N_4Me_2)(CN)_2] \cdot 1.5 MeCN (1a) \dots \dots \dots \dots \dots \dots$	A 133
A.34.2. $[Co(L-N_4Me_2)(bipy)](PF_6)_2(2a)$	A 134
A.34.3. $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a)	A 135
A.34.4. $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a)	A 138
A.34.5. $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a)	A 141
A.34.6. $[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2 \cdot 3 MeCN(6c) \dots \dots \dots \dots$	A 144
A.34.7. $[Co(L-N_4Me_2)(1,3-dap)]^{2+}$ (7)	A 145
A.34.8. $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a)	A 148
A.34.9. $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (9a)	A 149
A.34.10. $[Co(L-N_4Me_2)(NCS)_2]$ (10)	A 150
A.34.11. [{Co(L-N ₄ Me ₂)} ₂ (μ -BiBzIm)](ClO ₄) ₂ · 2 MeCN (11b)	A 151
A.34.12. $[Co(L-N_4^{t}Bu_2)(CN)_2] \cdot EtOH(\mathbf{12a}) \ldots \ldots \ldots \ldots \ldots \ldots$	A 153
A.34.13. $[Co(L-N_4^{t}Bu_2)(bipy)](BPh_4)_2$ (13a)	A 155
A.34.14. $[Co(L-N_4^{t}Bu_2)(ampy)](ClO_4)_2 \cdot 0.5 MeCN (14b) \dots \dots \dots \dots$	A 158
A.34.15. $[Co(L-N_4^{t}Bu_2)(NCMe)_2](BPh_4)_2 \cdot MeCN (15b) \ldots \ldots \ldots$	A 159
A.34.16. $[Co(L-N_4^{t}Bu_2)(pyc)](BPh_4) \cdot EtCN (16b) \ldots \ldots \ldots \ldots$	A 160
A.34.17. $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17)	A 163
A.34.18. $[Co(L-N_4^{t}Bu_2)(NCS)_2]$ (18)	A 167
A.34.19. $[Co(L-N_4^{t}Bu_2)(ox)]$ (19)	A 173
A.34.20. $[Co(L-N_4^{t}Bu_2)Cl_2] \cdot MeCN (20a) \dots \dots \dots \dots \dots \dots \dots \dots$	A 175
A.34.21. $[Co(L-N_4^{t}Bu_2)(NCS)_2](BF_4) \cdot EtCN(\mathbf{21b}) \ldots \ldots \ldots \ldots$	A 176
A.34.22. $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a)	A 177
A.34.23. $[Fe(L-N_4Me_2)(BzImCOO)] \cdot 2 EtOH (24a) \dots \dots \dots \dots$	A 179
A.34.24. [Fe(L-N ₄ Me ₂)(biminH ₂)](ClO ₄) ₂ (25a)	A 180
A.34.25. [{Fe(L-N ₄ Me ₂)} ₂ (μ -bimin)](ClO ₄) ₂ (26a)	A 181
A.34.26. $[Fe(L-N_4^tBu_2)(bmi)](BPh_4)_2$ (27)	A 183
A.34.27. $[Fe(L-N_4^{t}Bu_2)(bmi_{red})](BPh_4)$ (28)	A 185
A.34.28. $[Fe(L-N_4^{t}Bu_2)(bmi_{dep})](BPh_4)$ (29)	A 186
A.34.29. $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN (30b) \ldots \ldots \ldots$	A 187

Abkürzungsverzeichnis

1,2-dap	1,2-Diaminopropan
1,3-dap	1,3-Diaminopropan
$(6Mepy)_3$ tren	Tris{4-[(6-methyl)-2-pyridyl]-3-aza-3-butenyl}amin
abs.	absolut
ampy	2-(Aminomethyl)pyridin (2-Picolylamin)
arb. units	willkürliche Einheiten (engl. arbitrary units)
BIAN	Bis(phenyl)acenaphthenchinondiimin
BiBzIm	2,2'-Bibenzimidazolat
$BiBzImH_2$	2,2'-Bibenzimidazol
bimin	2,2'-Bis-2-imidazolinat
biminH_2	2,2'-Bis-2-imidazolin
bipy	2,2'-Bipyridin
bmi	Biacetyl-bis-methylimin
bmi _{red}	Biacetyl-bis-methylimin-Radikalanion
bmi _{dep}	einfach deprotoniertes Biacetyl-bis-methylimin
br	breit
BzImCOO	Benzimidazol-2-carboxylat
BzImHCOOH	Benzimidazol-2-carbonsäure
bzw.	beziehungsweise
cat	Catecholat
Ср	Cyclopentadienyl
d	Dublett
dabp	2,2'-Diaminobiphenyl
dbc	3,5-Di- <i>tert</i> -butylcatecholat
dbsq	3,5-Di- <i>tert</i> -butylsemichinonat
DMF	N,N-Dimethylformamid
DMSO	Dimethylsulfoxid
edt	1,2-Ethandithiolat
en	Ethylendiamin
engl.	englisch
ESR	Elektronenspinresonanz (engl. electron spin resonance)
Et	Ethyl
et al.	und andere (<i>lat.</i> et alii)
etc.	und so weiter (<i>lat.</i> et cetera)
EXAFS	engl. Extended X-Ray Absorption Fine Structure
Fc	Ferrocen
FT	engl. Fourier Transform
H_2edt	1,2-Ethandithiol
H_2 fsa ₂ en	N, N'-Ethylen-bis-(3-carboxysalicylaldimin)
Hpyc	2-Pyridincarbonsäure (Picolinsäure)
HS	high-spin
HSpy	2-Mercaptopyridin
H ₃ ttcv	Trithiocyanursäure
i	irreversibel
ⁱ Pr	iso-Propyl
IR	Infrarot

IS	intermediate-spin
k.A.	keine Angabe
lat.	lateinisch
LD-LISC	engl. Ligand-Driven Light-Induced Spin Change
LIESST	engl. Light-Induced Excited Spin State Trapping
LM	Lösungsmittel
LMCT	engl. Ligand-to-Metal Charge-Transfer
$L-N_4Me_2$	N, N'-Dimethyl-2,11-diaza[3.3](2,6)pyridinophan
$L-N_4R_2$	N, N'-Di-R-2,11-diaza[3.3](2.6)pyridinophan
$L-N_2S_2$	2.11-Dithia[3.3](2.6)pyridinophan
L-N ^t Bu ₂	N.N'-Di- <i>tert</i> -butyl-2.11-diaza[3.3](2.6)pyridinophan
LS	low-snin
max	maximal
Me	Methyl
min	minimal
MLCT	engl Metal-to-Ligand Charge-Transfer
MW	Molekulargewicht (<i>end</i> molecular weight)
na	nicht ausworthar
NIFSST	and Nuclear Decay Induced Excited Spin State Trapping
NIR	nabos Infrarot (anal, near infrarod)
NIIQ	Magnetische Kernregenanz (and pueleer magnetie regenange)
n nh	artha Dhanylandiamin
0-pii OTf	Triflet (Trifluormethenculfonet)
	Orelet
	Oxalat
$p - \bigcup_6 \Pi_4 \bigcup_1$	<i>para</i> -Chiorphenyi
Радан	2,0-Pyfidindiaidinydrazon
Ph	Phenyi 1 10 Dharaithail
pnen	1,10-Phenanthrolin
Pr Tul	Propyl
p-101	para-10lyl
ру	Pyridin
pyc	2-Pyridincarboxylat (2-Picolinat)
q	Quartett
r	reversibel
s	Singulett
Salen	N, N'-Ethylenbis-(salicylimin)
SCE	gesättigte Kalomelelektrode (<i>engl.</i> saturated calomel electrode)
$S_2C_6H_4^{2-}$	1,2-Benzoldithiolat
sh	Schulter (<i>engl.</i> shoulder)
Spy	2-Pyridinthiolat
SQUID	engl. Superconducting Quantum Interference Device
t	Triplett
techn.	technisch
tert	tertiär
TBAP	Tetrabutylammoniumperchlorat
^t Bu	<i>tert</i> -Butyl
THF	Tetrahydrofuran
TIP	temperaturunabhängiger Paramagnetismus
	(engl. temperature-independent paramagnetism)

$\operatorname{tripyam}$	Tris(2-pyridyl)amin
ttcy	Trithiocyanurat
UV/Vis	ultraviolett / sichtbar (engl. ultraviolet / visible)
vgl.	vergleiche
VS.	versus, gegen
z.B.	zum Beispiel

Verbindungsverzeichnis

1	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_4\mathrm{Me}_2)(\mathrm{CN})_2]$
1a	$[Co(L-N_4Me_2)(CN)_2] \cdot 1.5 MeCN$
$1\mathrm{b}$	$[Co(L-N_4Me_2)(CN)_2] \cdot 2 H_2O$
2	$[Co(L-N_4Me_2)(bipy)]^{2+}$
2a	$[Co(L-N_4Me_2)(bipy)](PF_6)_2$
3	$[Co(L-N_4Me_2)(en)]^{2+}$
3a	$[Co(L-N_4Me_2)(en)](BPh_4)_2$
4	$[Co(L-N_4Me_2)(ampy)]^{2+}$
4a	$[Co(L-N_4Me_2)(ampy)](ClO_4)_2$
5	$[Co(L-N_4Me_2)(o-ph)]^{2+}$
5a	$[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$
6	$[Co(L-N_4Me_2)(1,2-dap)]^{2+}$
6a	$[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$
6b	$[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2$
6c	$[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2 \cdot 3 MeCN$
7	$[Co(L-N_4Me_2)(1,3-dap)]^{2+}$
7a	$[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2$
7b	$[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2 \cdot MeCN$
7c	$[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2$
7d	$[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2 \cdot 1.5 MeCN$
8	$[\mathrm{Co}(\mathrm{L-N_4Me_2})(\mathrm{NCMe})_2]^{2+}$
8a	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_4\mathrm{Me}_2)(\mathrm{NCMe})_2](\mathrm{ClO}_4)_2$
9	$[Co(L-N_4Me_2)(pyc)]^+$
9a	$[Co(L-N_4Me_2)(pyc)](ClO_4)$
10	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_{4}\mathrm{Me}_{2})(\mathrm{NCS})_{2}]$
11	$[{Co(L-N_4Me_2)}_2(\mu-BiBzIm)]^{2+}$
11a	$[{\rm Co(L-N_4Me_2)}_2(\mu-{\rm BiBzIm})]({\rm ClO_4})_2$
11b	$[{\rm Co(L-N_4Me_2)}_2(\mu-{\rm BiBzIm})]({\rm ClO_4})_2 \cdot 2{\rm MeCN}$
12	$\left[\operatorname{Co}(\operatorname{L-N}_{4}^{t}\operatorname{Bu}_{2})(\operatorname{CN})_{2}\right]$
12a	$[\mathrm{Co}(\mathrm{L-N_4^{t}Bu_2})(\mathrm{CN})_2] \cdot \mathrm{EtOH}$
13	$[\mathrm{Co}(\mathrm{L-N_4^tBu_2})(\mathrm{bipy})]^{2+}$
13a	$[\mathrm{Co}(\mathrm{L-N_4^{t}Bu_2})(\mathrm{bipy})](\mathrm{BPh_4})_2$
13b	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_{4}^{\mathrm{t}}\mathrm{Bu}_{2})(\mathrm{bipy})](\mathrm{BPh}_{4})_{2} \cdot \mathrm{MeCN} \cdot 0.6 \mathrm{Et}_{2}\mathrm{O}$
13c	$[Co(L-N_4^{t}Bu_2)(bipy)](BPh_4)_2 \cdot 2 EtCN$
14	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_{4}^{\mathrm{t}}\mathrm{Bu}_{2})(\mathrm{ampy})]^{2+}$
14a	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_{4}^{\mathrm{t}}\mathrm{Bu}_{2})(\mathrm{ampy})](\mathrm{ClO}_{4})_{2}$
14b	$[\text{Co}(\text{L-N}_4^{\text{t}}\text{Bu}_2)(\text{ampy})](\text{ClO}_4)_2 \cdot 0.5 \text{ MeCN}$
15	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_{4}^{\mathrm{t}}\mathrm{Bu}_{2})(\mathrm{N}\mathrm{C}\mathrm{Me})_{2}]^{2+}$
15a	$[\mathrm{Co}(\mathrm{L}\text{-}\mathrm{N}_{4}^{\mathrm{t}}\mathrm{Bu}_{2})(\mathrm{NCMe})_{2}](\mathrm{ClO}_{4})_{2}$
15b	$[\operatorname{Co}(\operatorname{L-N}_{4}^{t}\operatorname{Bu}_{2})(\operatorname{NCMe})_{2}](\operatorname{BPh}_{4})_{2} \cdot \operatorname{MeCN}$
16	$[\operatorname{Co}(\operatorname{L-N}_{4}^{\operatorname{t}}\operatorname{Bu}_{2})(\operatorname{pyc})]^{+}$
16a	$[Co(L-N_4^{t}Bu_2)(pyc)](BPh_4)$
16b	$[\operatorname{Co}(L-N_4^{t}\operatorname{Bu}_2)(\operatorname{pyc})](\operatorname{BPh}_4) \cdot \operatorname{EtCN}$
17	$\left[\operatorname{Co}(\operatorname{L-N}_{4}^{\operatorname{t}}\operatorname{Bu}_{2})(\operatorname{NCSe})_{2}\right]$
18	$\left[\operatorname{Co}(\operatorname{L-N}_{4}^{\mathrm{t}}\operatorname{Bu}_{2})(\operatorname{NCS})_{2}\right]$
19	$[Co(L-N_4^tBu_2)(ox)]$

20	$[\mathrm{Co}(\mathrm{L-N_4^tBu_2})\mathrm{Cl_2}]$
20a	$[Co(L-N_4^{t}Bu_2)Cl_2] \cdot MeCN$
21	$[\mathrm{Co}(\mathrm{L} ext{-}\mathrm{N}_4^{\mathrm{t}}\mathrm{Bu}_2)(\mathrm{NCS})_2]^+$
21a	$[Co(L-N_4^{t}Bu_2)(NCS)_2](BF_4)$
21b	$[Co(L-N_4^{t}Bu_2)(NCS)_2](BF_4) \cdot EtCN$
22	$[{\rm Fe}({ m L-N_4Me_2})]_3(\mu{ m -ttcy})]^{3+}$
22a	$[{\rm Fe}(L-N_4Me_2)]_3(\mu-ttcy)](OTf)_3 \cdot 3H_2O$
22b	$[{\rm Fe}({\rm L-N_4Me_2})]_3(\mu\text{-ttcy})]({\rm PF_6})_3\cdot 2{\rm H_2O}$
23	$[Fe(L-N_4Me_2)(Spy)]^+$
23a	$[Fe(L-N_4Me_2)(Spy)](ClO_4)$
24	$[Fe(L-N_4Me_2)(BzImCOO)]$
24a	$[Fe(L-N_4Me_2)(BzImCOO)] \cdot 2 EtOH$
25	$[\mathrm{Fe}(\mathrm{L}\text{-}\mathrm{N}_4\mathrm{Me}_2)(\mathrm{biminH}_2)]^{2+}$
25a	$[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$
26	$[{\rm Fe}({\rm L-N_4Me_2})]_2(\mu-{\rm bimin})]^{2+}$
26a	$[{\rm Fe}({\rm L-N_4Me_2})\}_2(\mu\text{-bimin})]({\rm ClO_4})_2$
27	$[Fe(L-N_4^tBu_2)(bmi)](BPh_4)_2$
28	$[Fe(L-N_4^tBu_2)(bmi_{red})](BPh_4)$
29	$[Fe(L-N_4^tBu_2)(bmi_{dep})](BPh_4)$
30	$[\mathrm{Fe}(\mathrm{L}\text{-}\mathrm{N}_4\mathrm{Me}_2)(\mathrm{edt})]^+$
30a	$[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4)$
30b	$[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN$

A. Anhang

A.1. Natriumtetraphenylborat

 $\begin{array}{c} \textbf{Abbildung A.1.: } Cyclovoltammogramme der Oxidation von Natriumtetraphenylborat (NaBPh_4) in \\ 0.2\,M\ TBAP \,/\, DMF bei verschiedenen Scangeschwindigkeiten. \end{array}$

A.2. Natrium-tetrakis-(para-tolyl)borat

Abbildung A.2.: IR-Spektrum (KBr-Pressling) von Natrium-tetrakis-(para-tolyl)borat $(NaB(p-Tol)_4)$.

Abbildung A.3.: Cyclovoltammogramme der Oxidation von Natrium-tetrakis-(para-tolyl)borat $(NaB(p-Tol)_4)$ in 0.2 M TBAP / DMF bei verschiedenen Scangeschwindigkeiten.

A.3. 2,2'-Bis-2-imidazolin

Abbildung A.4.: IR-Spektrum (KBr-Pressling) von 2,2'-Bis-2-imidazolin (biminH₂).

Abbildung A.5.: ¹H-NMR-Spektrum von 2,2'-Bis-2-imidazolin (biminH₂) in CDCl₃ (400 MHz).

A.4. $Fe(OTf)_2 \cdot 2 MeCN$

Abbildung A.6.: IR-Spektrum (KBr-Pressling) von $Fe(OTf)_2 \cdot 2 MeCN$.

A.5. $[Co(L-N_4Me_2)(CN)_2]$ (1)

Abbildung A.7.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(CN)_2]$ (1).

A.6. $[Co(L-N_4Me_2)(bipy)]^{2+}$ (2)

Abbildung A.8.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (2a).

Abbildung A.9.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (2a) in CD₃CN (400 MHz).

Abbildung A.10.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(bipy)]^{2+}$ (2) in Acetonitril.

Abbildung A.11.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(bipy)]^{2+}$ (2) in gefrorener Lösung (ca. 4 mM in MeCN) bei 135 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.12.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(bipy)]^{2+}$ (2) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 140 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.13.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (**2a**) (Feststoff) bei 130 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.44 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.15.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (2a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.17.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (2a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.7. $[Co(L-N_4Me_2)(en)]^{2+}$ (3)

Abbildung A.18.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a).

Abbildung A.19.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a) in CD_3CN (400 MHz).

Abbildung A.20.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(en)]^{2+}$ (3) in Acetonitril.

Abbildung A.21.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(en)]^{2+}$ (3) in gefrorener Lösung (ca. 2 mM in MeCN) bei 135 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.25.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a) in 0.2 M TBAP / MeCN.

Abbildung A.26.: Cyclovoltammogramme der Oxidation 1 von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.27.: Cyclovoltammogramm der Reduktionen von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a) in 0.2 M TBAP / MeCN.

Abbildung A.28.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.8. $[Co(L-N_4Me_2)(ampy)]^{2+}$ (4)

Abbildung A.29.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a).

Abbildung A.30.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a) in CD₃CN (400 MHz).

Abbildung A.31.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(ampy)]^{2+}$ (4) in Acetonitril.

Abbildung A.32.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(ampy)]^{2+}$ (4) in gefrorener Lösung (ca. 4 mM in MeCN) bei 137 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.33.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(ampy)]^{2+}$ (4) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 140 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.36.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.37.: Cyclovoltammogramm der Reduktionen von $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a) in 0.2 M TBAP / MeCN.

Abbildung A.38.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.9. $[Co(L-N_4Me_2)(o-ph)]^{2+}$ (5)

Abbildung A.39.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a).

Abbildung A.40.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) in CD₃OD (400 MHz).

Abbildung A.41.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(o-ph)]^{2+}$ (5) in Acetonitril.

Abbildung A.42.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(o-ph)]^{2+}$ (5) in gefrorener Lösung (ca. 2 mM in MeOH) bei 136 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.43.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(o-ph)]^{2+}$ (5) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 136 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.44.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(o-ph)]^{2+}$ (5) in Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 294 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.45.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) (Feststoff) bei 130 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.44 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.46.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) (Feststoff) bei 292 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.44 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.47.: Cyclovoltammogramme der Oxidationen von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) in 0.2 M TBAP / MeCN.

Abbildung A.48.: Cyclovoltammogramme der Oxidationen 1 & 2 von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.49.: Cyclovoltammogramme der Reduktionen von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) in 0.2 M TBAP / MeCN.

Abbildung A.50.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.10. $[Co(L-N_4Me_2)(1,2-dap)]^{2+}$ (6)

 $[Co(L-N_4Me_2)(1,2-dap)](CIO_4)_2$ (6a)

Abbildung A.51.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$ (6a).

Abbildung A.52.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$ (6a) in CD_3CN (400 MHz).

Abbildung A.53.: UV/Vis-Spektrum von [Co(L-N₄Me₂)(1,2-dap)](ClO₄)₂ (6a) in Acetonitril.

Abbildung A.54.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(1,2-dap)]^{2+}$ (6) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 77 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.49 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.55.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$ (6a) (Feststoff) bei 130 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.44 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.57.: Cyclovoltammogramm der Oxidation von $[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$ (6a) in 0.2 M TBAP / MeCN.

Abbildung A.58.: Cyclovoltammogramm der Reduktionen von $[Co(L-N_4Me_2)(1,2-dap)](ClO_4)_2$ (6a) in 0.2 M TBAP / MeCN.

Abbildung A.60.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2$ (6b).

Abbildung A.61.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2 \cdot 3 \text{ MeCN } (6c)$ in $CD_3CN (400 \text{ MHz}).$

A.11. $[Co(L-N_4Me_2)(1,3-dap)]^{2+}$ (7)

 $[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2$ (7a)

Abbildung A.62.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [Co(L-N₄Me₂)(1,3-dap)](BPh₄)₂ · MeCN (7b) (H = 5000 Oe).

Abbildung A.63.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Co(L-N₄Me₂)(1,3-dap)](BPh₄)₂ · MeCN (7b) (H = 5000 Oe).

Abbildung A.64.: IR-Spektrum (KBr-Pressling) von [Co(L-N₄Me₂)(1,3-dap)](BPh₄)₂ (7a).

Abbildung A.65.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2 \cdot MeCN$ (7b) in CD_3CN (400 MHz).

Abbildung A.66.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(1,3-dap)]^{2+}$ (7) in Acetonitril.

Abbildung A.67.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(1,3-dap)]^{2+}$ (7) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 77 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.49 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.69.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2$ (7a) in 0.2 M TBAP / MeCN.

Abbildung A.71.: Cyclovoltammogramme der Reduktionen von $[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2$ (7a) in 0.2 M TBAP / MeCN.

 $[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2$ (7c)

Abbildung A.73.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2$ (7c).

Abbildung A.74.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2 \cdot 1.5 \text{ MeCN} (7d)$ in $CD_3CN (400 \text{ MHz}).$

A.12. $[Co(L-N_4Me_2)(NCMe)_2]^{2+}$ (8)

Abbildung A.75.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a) (H = 5000 Oe).

Abbildung A.76.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Co(L-N₄Me₂)(NCMe)₂](ClO₄)₂ (8a) (H = 5000 Ce).

Abbildung A.77.: IR-Spektrum (KBr-Pressling) von [Co(L-N₄Me₂)(NCMe)₂](ClO₄)₂ (8a).

Abbildung A.78.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a) in CD₃CN (400 MHz).

Abbildung A.79.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(NCMe)_2]^{2+}$ (8) in Acetonitril.

Abbildung A.80.: UV/Vis-Spektren von $[Co(L-N_4Me_2)(NCMe)_2]^{2+}$ (8) bei verschiedenen Temperaturen in Acetonitril.

Tabelle A.1.: Temperaturabhängige Veränderung einer Bande im UV/Vis-Spektrum des Komplexes $[Co(L-N_4Me_2)(NCMe)_2]^{2+}$ (8).

T / K	$egin{array}{l} oldsymbol{\lambda_{max}} / \mathrm{nm} \left(oldsymbol{arepsilon_{M}} / \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{cm}^{-1} ight) \end{array}$
233	893 (15.7)
253	893 (16.0)
273	891 (15.7)
293	902 (14.7)
313	906 (14.2)
333	910 (14.0)
353	918 (13.7)

Abbildung A.82.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.83.: Cyclovoltammogramme der Reduktionen von $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a) in 0.2 M TBAP / MeCN.

Abbildung A.84.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2$ (8a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.13. $[Co(L-N_4Me_2)(pyc)]^+$ (9)

Abbildung A.85.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (9a).

Abbildung A.86.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (9a) in CD_3CN (400 MHz).

Abbildung A.87.: UV/Vis-Spektrum von $[Co(L-N_4Me_2)(pyc)]^+$ (9) in Acetonitril.

Abbildung A.88.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (**9a**) (Feststoff) bei 77 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.50 GHz; Modulationsamplitude 10 G; Power 4.5 mW).

Abbildung A.89.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (9a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.90.: Cyclovoltammogramme der Reduktion von $[Co(L-N_4Me_2)(pyc)](ClO_4)$ (9a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.91.: Cyclovoltammogramm von [Co(L-N₄Me₂)(pyc)](ClO₄) (9a) in 0.2 M $\operatorname{TBAP}/\operatorname{MeCN}$.

A.14. $[Co(L-N_4Me_2)(NCS)_2]$ (10)

Abbildung A.92.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4Me_2)(NCS)_2]$ (10).

Abbildung A.93.: ¹H-NMR-Spektrum von $[Co(L-N_4Me_2)(NCS)_2]$ (10) in DMSO-d₆ (400 MHz).

Abbildung A.94.: UV/Vis-Spektrum von [Co(L-N₄Me₂)(NCS)₂] (10) in Dimethylsulfoxid.

Abbildung A.95.: X-Band-ESR-Spektrum von $[Co(L-N_4Me_2)(NCS)_2]$ (10) (Feststoff) bei 30 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.70 GHz; Modulationsamplitude 5 G; Power 0.020 mW).

Abbildung A.96.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4Me_2)(NCS)_2]$ (10) in 0.2 M TBAP / DMF.

Abbildung A.97.: Cyclovoltammogramme der Oxidationen 1 & 2 von $[Co(L-N_4Me_2)(NCS)_2]$ (10) in 0.2 M TBAP / DMF bei verschiedenen Scangeschwindigkeiten.

Abbildung A.98.: Cyclovoltammogramm der Reduktionen von $[Co(L-N_4Me_2)(NCS)_2]$ (10) in 0.2 M TBAP / DMF.

Abbildung A.99.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4Me_2)(NCS)_2]$ (10) in 0.2 M TBAP / DMF bei verschiedenen Scangeschwindigkeiten.

A.15. $[{Co(L-N_4Me_2)}_2(\mu-BiBzIm)]^{2+}$ (11)

Abbildung A.100.: IR-Spektrum (KBr-Pressling) von $[{Co(L-N_4Me_2)}_2(\mu-BiBzIm)](ClO_4)_2$ (11a).

Abbildung A.101.: ¹H-NMR-Spektrum von [{Co(L-N₄Me₂)}₂(μ -BiBzIm)](ClO₄)₂ · 2 MeCN (11b) in CD₃CN (400 MHz).

Abbildung A.102.: UV/Vis-Spektrum von $[{Co(L-N_4Me_2)}_2(\mu-BiBzIm)]^{2+}$ (11) in Acetonitril.

Abbildung A.103.: Cyclovoltammogramm der Oxidationen von $[{\rm Co(L-N_4Me_2)}_2(\mu-{\rm BiBzIm})]({\rm ClO_4})_2~({\bf 11a})~{\rm in}~0.2\,{\rm M}~{\rm TBAP}\,/\,{\rm MeCN}.$

Abbildung A.104.: Cyclovoltammogramme der Oxidationen 1 & 2 von [{Co(L-N₄Me₂)}₂(μ -BiBzIm)](ClO₄)₂ (11a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.105.: Cyclovoltammogramme der Oxidation 1 von [{Co(L-N₄Me₂)}₂(μ -BiBzIm)](ClO₄)₂ (11a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.106.: Cyclovoltammogramme der Reduktionen von [{Co(L-N₄Me₂)}₂(μ -BiBzIm)](ClO₄)₂ (11a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.
A.16. $[Co(L-N_4^{t}Bu_2)(CN)_2]$ (12)

Abbildung A.107.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4^{t}Bu_2)(CN)_2]$ (12).

A.17. $[Co(L-N_4^{t}Bu_2)(bipy)]^{2+}$ (13)

Abbildung A.108.: IR-Spektrum (KBr-Pressling) von [Co(L-N₄^tBu₂)(bipy)](BPh₄)₂ (13a).

Abbildung A.109.: ¹H-NMR-Spektrum von $[Co(L-N_4^tBu_2)(bipy)](BPh_4)_2 \cdot MeCN \cdot 0.6 Et_2O$ (13b) in CD₃CN (600 MHz).

Abbildung A.110.: UV/Vis-Spektrum von $[Co(L-N_4^{t}Bu_2)(bipy)]^{2+}$ (13) in Acetonitril.

Abbildung A.112.: X-Band-ESR-Spektrum von $[Co(L-N_4^{t}Bu_2)(bipy)]^{2+}$ (13) in Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 294 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 10 G; Power 6.4 mW).

Abbildung A.113.: X-Band-ESR-Spektrum von $[Co(L-N_4^{t}Bu_2)(bipy)](BPh_4)_2$ (13a) (Feststoff, Pulver) bei 183 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.115.: Cyclovoltammogramm der Oxidation von $[Co(L-N_4^tBu_2)(bipy)](BPh_4)_2$ (13a) in 0.2 M TBAP / MeCN.

Abbildung A.116.: Cyclovoltammogramme der Reduktionen 1 & 2 von $[{\rm Co}({\rm L-N_4^{\ t}Bu_2})({\rm bipy})]({\rm BPh_4})_2 \ ({\bf 13a}) \ {\rm in} \ 0.2 \ {\rm M} \ {\rm TBAP} \ / \ {\rm MeCN} \ {\rm bei} \ {\rm verschiedenen} \ {\rm Scangeschwindigkeiten}.$

A.18. $[Co(L-N_4^{t}Bu_2)(ampy)]^{2+}$ (14)

Abbildung A.118.: IR-Spektrum (KBr-Pressling) von [Co(L-N₄⁺Bu₂)(ampy)](ClO₄)₂ (14a).

Abbildung A.119.: ¹H-NMR-Spektrum von $[Co(L-N_4^{t}Bu_2)(ampy)](ClO_4)_2 \cdot 0.5 \text{ MeCN} (14b)$ in $CD_3CN (400 \text{ MHz}).$

Abbildung A.120.: UV/Vis-Spektrum von $[Co(L-N_4^tBu_2)(ampy)]^{2+}$ (14) in Acetonitril.

Abbildung A.121.: X-Band-ESR-Spektrum von $[Co(L-N_4^{t}Bu_2)(ampy)]^{2+}$ (14) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 140 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.122.: X-Band-ESR-Spektrum von $[Co(L-N_4^tBu_2)(ampy)](ClO_4)_2 \cdot 0.5 \text{ MeCN} (14b)$ (Feststoff) bei 130 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.44 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.123.: X-Band-ESR-Spektrum von $[Co(L-N_4^{t}Bu_2)(ampy)](ClO_4)_2 \cdot 0.5 \text{ MeCN} (14b)$ (Feststoff) bei 294 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.124.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4^tBu_2)(ampy)](ClO_4)_2$ (14a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.125.: Cyclovoltammogramme der Reduktionen 1 & 2 von $[Co(L-N_4^{t}Bu_2)(ampy)](ClO_4)_2 (14a)$ in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.126.: Cyclovoltammogramme der Reduktion 1 von [Co(L-N₄^tBu₂)(ampy)](ClO₄)₂ (14a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.19. $[Co(L-N_4^{t}Bu_2)(NCMe)_2]^{2+}$ (15)

Abbildung A.127.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a).

Abbildung A.128.: ¹H-NMR-Spektrum von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a) in CD₃CN (400 MHz).

Abbildung A.129.: UV/Vis-Spektrum von $[Co(L-N_4^{t}Bu_2)(NCMe)_2]^{2+}$ (15) in Acetonitril.

Abbildung A.131.: X-Band-ESR-Spektrum von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a) (Feststoff) bei 130 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.44 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.132.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a) in 0.2 M TBAP / MeCN.

Abbildung A.133.: Cyclovoltammogramme der Oxidation 1 von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.134.: Cyclovoltammogramm der Reduktionen 1 & 2 von $[\operatorname{Co}(\operatorname{L-N}_4^{\,\,t}\operatorname{Bu}_2)(\operatorname{NCMe})_2](\operatorname{ClO}_4)_2 \ (\mathbf{15a}) \ \mathrm{in} \ 0.2 \ \mathrm{M} \ \mathrm{TBAP} \ / \ \mathrm{MeCN}.$

Abbildung A.135.: Cyclovoltammogramme der Reduktion 2 von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.136.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4^tBu_2)(NCMe)_2](ClO_4)_2$ (15a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.20. $[Co(L-N_4^{t}Bu_2)(pyc)]^+$ (16)

Abbildung A.137.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für $[\operatorname{Co}(L-N_4^{t}\operatorname{Bu}_2)(\operatorname{pyc})](\operatorname{BPh}_4) \cdot \operatorname{EtCN}(\mathbf{16b}) (H = 5000 \operatorname{Oe}).$

Abbildung A.138.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für $[\operatorname{Co}(L-N_4^{\,t}\operatorname{Bu}_2)(\operatorname{pyc})](\operatorname{BPh}_4) \cdot \operatorname{EtCN}(\mathbf{16b}) (H = 5000 \, \operatorname{Oe}).$

 $\textbf{Abbildung A.139.: IR-Spektrum (KBr-Pressling) von [Co(L-N_4^{\,t}Bu_2)(pyc)](BPh_4) \ \textbf{(16a)}. }$

Abbildung A.140.: ¹H-NMR-Spektrum von $[Co(L-N_4^tBu_2)(pyc)](BPh_4) \cdot EtCN$ (16b) in CD₃CN (400 MHz).

Abbildung A.141.: UV/Vis-Spektrum von $[Co(L-N_4^{t}Bu_2)(pyc)]^+$ (16) in Acetonitril.

Abbildung A.143.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4^tBu_2)(pyc)](BPh_4)$ (16a) in 0.2 M TBAP / MeCN.

Abbildung A.144.: Cyclovoltammogramme der Oxidation 1 von [Co(L-N₄^tBu₂)(pyc)](BPh₄) (16a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.145.: Cyclovoltammogramme der Reduktion von [Co(L-N₄^tBu₂)(pyc)](BPh₄) (16a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.21. $[Co(L-N_4^tBu_2)(NCSe)_2]$ (17)

Abbildung A.146.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für $[\operatorname{Co}(\operatorname{L-N}_4^{t}\operatorname{Bu}_2)(\operatorname{NCSe})_2]$ (17) $(H = 5000 \operatorname{Oe}).$

Abbildung A.147.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Co(L-N₄^tBu₂)(NCSe)₂] (17) (H = 5000 Oe).

Abbildung A.148.: SQUID-Messung: Auftragung von lnK $(K = \frac{\gamma_{\text{HS}}}{\gamma_{\text{LS}}}$, berechnet mit $(\chi_M T)_{\text{HS}} = 3.26 \text{ cm}^3 \cdot \text{K} \cdot \text{mol}^{-1})$ gegen T^{-1} für $[\text{Co}(\text{L-N}_4^{\text{ t}}\text{Bu}_2)(\text{NCSe})_2]$ (17); Fitparameter: $\frac{\Delta S}{R} = 2$) 4.41 ± 0.10 , 3) 4.39 ± 0.12 , $\frac{\Delta H}{RT} = 2$) $-1004 \pm 22 \cdot 10^3 \text{ K}$, 3) $-999 \pm 24 \cdot 10^3 \text{ K}$.

Abbildung A.149.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17).

Abbildung A.150.: Raman-Spektrum von $[Co(L-N_4^tBu_2)(NCSe)_2]$ (17) bei Raumtemperatur.

Abbildung A.151.: ¹H-NMR-Spektrum von $[Co(L-N_4^tBu_2)(NCSe)_2]$ (17) in DMSO-d₆ (400 MHz).

Abbildung A.152.: UV/Vis-Spektrum von $[Co(L-N_4^tBu_2)(NCSe)_2]$ (17) in N,N-Dimethylformamid.

Abbildung A.153.: X-Band-ESR-Spektrum von [Co(L-N₄^tBu₂)(NCSe)₂] (17) in Lösung (ca. 4 mM in 0.2 M TBAP / DMF) bei 140 K (experimentelle Bedingungen: Mikrowellenfrequenz 9.30 GHz; Modulationsamplitude 5 G; Power 6.4 mW).

Abbildung A.154.: X-Band-ESR-Spektren von [Co(L-N₄^tBu₂)(NCSe)₂] (17) (Feststoff) bei verschiedenen Temperaturen (experimentelle Bedingungen: Mikrowellenfrequenz 9.72 - 9.75 GHz; Modulationsamplitude 5 G; Power 2.0 mW).

B / G

Abbildung A.156.: Cyclovoltammogramme der Oxidationen von $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17) in 0.2 M TBAP / DMF.

Abbildung A.157.: Cyclovoltammogramme der Oxidation 1 von $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17) in 0.2 M TBAP / DMF bei verschiedenen Scangeschwindigkeiten.

Abbildung A.158.: Cyclovoltammogramme der Reduktionen von $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17) in 0.2 M TBAP / DMF.

A.22. $[Co(L-N_4^tBu_2)(NCS)_2]$ (18)

Abbildung A.159.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für $[\operatorname{Co}(\operatorname{L-N}_4^{\operatorname{t}}\operatorname{Bu}_2)(\operatorname{NCS})_2]$ (18) $(H = 5000 \operatorname{Oe}).$

Abbildung A.160.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für $[\text{Co}(\text{L-N}_4^{\text{t}}\text{Bu}_2)(\text{NCS})_2]$ (18) (H = 5000 Oe).

Abbildung A.161.: SQUID-Messung: Auftragung von lnK ($K = \frac{\gamma_{\text{HS}}}{\gamma_{\text{LS}}}$, berechnet mit $(\chi_M T)_{\text{HS}} = 3.26 \text{ cm}^3 \cdot \text{K} \cdot \text{mol}^{-1}$) gegen T^{-1} für [Co(L-N_4^{\,\text{t}}\text{Bu}_2)(\text{NCS})_2] (**18**); Fitparameter: $\frac{\Delta S}{R} = 1$) 2.17 ± 0.07, 2) 2.10 ± 0.06, 3) 2.26 ± 0.06, $\frac{\Delta H}{RT} = 1$) -279 ± 9 · 10³ K, 2) -274 ± 8 · 10³ K, 3) -284 ± 8 · 10³ K.

Abbildung A.162.: IR-Spektrum (KBr-Pressling) von [Co(L-N₄^tBu₂)(NCS)₂] (18).

Abbildung A.163.: Raman-Spektrum von $[Co(L-N_4^tBu_2)(NCS)_2]$ (18) bei Raumtemperatur.

Abbildung A.164.: ¹H-NMR-Spektrum von $[Co(L-N_4^{t}Bu_2)(NCS)_2]$ (18) in DMSO-d₆ (400 MHz).

Abbildung A.165.: UV/Vis-Spektrum von $[Co(L-N_4^tBu_2)(NCS)_2]$ (18) in *N*,*N*-Dimethylformamid.

Abbildung A.167.: X-Band-ESR-Spektren von [Co(L-N₄^tBu₂)(NCS)₂] (18) (Feststoff) bei verschiedenen Temperaturen (experimentelle Bedingungen: Mikrowellenfrequenz 9.73 - 9.75 GHz; Modulationsamplitude 5 G; Power 2.0 mW).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

B / G

Abbildung A.168.: X-Band-ESR-Spektren von [Co(L-N₄^tBu₂)(NCS)₂] (18) (Feststoff) bei verschiedenen Temperaturen (experimentelle Bedingungen: Mikrowellenfrequenz 9.75 - 9.76 GHz; Modulationsamplitude 5 G; Power 2.0 mW).

Abbildung A.169.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4^tBu_2)(NCS)_2]$ (18) in 0.2 M TBAP / DMF.

Abbildung A.170.: Cyclovoltammogramme der Oxidation 1 von $[Co(L-N_4^tBu_2)(NCS)_2]$ (18) in 0.2 M TBAP / DMF bei verschiedenen Scangeschwindigkeiten.

Abbildung A.171.: Cyclovoltammogramme der Reduktion von $[Co(L-N_4^tBu_2)(NCS)_2]$ (18) in 0.2 M TBAP / DMF bei verschiedenen Scangeschwindigkeiten.

A.23. $[Co(L-N_4^tBu_2)(ox)]$ (19)

Abbildung A.172.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4^tBu_2)(ox)]$ (19).

Abbildung A.173.: ¹H-NMR-Spektrum von $[Co(L-N_4^{t}Bu_2)(ox)]$ (19) in CD₃OD (600 MHz).

Abbildung A.174.: UV/Vis-Spektrum von $[Co(L-N_4^tBu_2)(ox)]$ (19) in Methanol.

Abbildung A.175.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4^tBu_2)(ox)]$ (19) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.176.: Cyclovoltammogramme der Reduktion von $[Co(L-N_4^tBu_2)(ox)]$ (19) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.24. $[Co(L-N_4^{t}Bu_2)Cl_2]$ (20)

Abbildung A.177.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4^tBu_2)Cl_2]$ (20).

Abbildung A.178.: ¹H-NMR-Spektrum von $[Co(L-N_4^tBu_2)Cl_2] \cdot MeCN$ (20a) in CD₃CN (600 MHz).

Abbildung A.179.: UV/Vis-Spektrum von [Co(L-N₄^tBu₂)Cl₂] (20) in Acetonitril.

Abbildung A.180.: Cyclovoltammogramme der Oxidationen von $[Co(L-N_4^tBu_2)Cl_2]$ (20) in 0.2 M TBAP / MeCN.

Abbildung A.181.: Cyclovoltammogramme der Oxidationen 1 & 2 von $[Co(L-N_4^tBu_2)Cl_2]$ (20) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.182.: Cyclovoltammogramme der Reduktionen 1 & 2 von $[Co(L-N_4^tBu_2)Cl_2]$ (20) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.183.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4^tBu_2)Cl_2]$ (20) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.25. $[Co(L-N_4^{t}Bu_2)(NCS)_2]^+$ (21)

Abbildung A.184.: IR-Spektrum (KBr-Pressling) von $[Co(L-N_4^tBu_2)(NCS)_2](BF_4)$ (21a).

 $(600 \,\mathrm{MHz}).$

Abbildung A.187.: ¹H,¹³C-HMQC-NMR-Spektrum von $[Co(L-N_4^{t}Bu_2)(NCS)_2](BF_4) \cdot EtCN$ (21b) in CD₃CN (600 MHz).

Abbildung A.188.: UV/Vis-Spektrum von $[Co(L-N_4^tBu_2)(NCS)_2]^+$ (21) in Acetonitril.

Abbildung A.189.: Cyclovoltammogramm der Oxidationen von $[Co(L-N_4^tBu_2)(NCS)_2](BF_4)$ (21a) in 0.2 M TBAP / MeCN.

Abbildung A.190.: Cyclovoltammogramme der Oxidation von $[Co(L-N_4^tBu_2)(NCS)_2](BF_4)$ (21a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.191.: Cyclovoltammogramm der Reduktionen 1, 2 & 3 von $[Co(L-N_4^{t}Bu_2)(NCS)_2](BF_4)$ (21a) in 0.2 M TBAP / MeCN.

Abbildung A.192.: Cyclovoltammogramme der Reduktion 1 von $[Co(L-N_4^tBu_2)(NCS)_2](BF_4)$ (21a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.193.: Cyclovoltammogramme der Reduktionen 2 & 3 von $[\mathrm{Co}(\mathrm{L-N_4^{\,t}Bu_2})(\mathrm{NCS})_2](\mathrm{BF}_4)~(\mathbf{21a})~\mathrm{in}~0.2~\mathrm{M}~\mathrm{TBAP}\,/\,\mathrm{MeCN}$ bei verschiedenen Scangeschwindigkeiten.

Abbildung A.194.: Cyclovoltammogramme der Reduktion 2 von [Co(L-N₄^tBu₂)(NCS)₂](BF₄) (21a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.26. $[{Fe(L-N_4Me_2)}_3(\mu-ttcy)]^{3+}$ (22) $[{Fe(L-N_4Me_2)}_3(\mu-ttcy)](OTf)_3 \cdot 3H_2O$ (22a)

Abbildung A.195.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [{Fe(L-N₄Me₂)}₃(μ -ttcy)](OTf)₃ · 3 H₂O (**22a**) (H = 5000 Oe).

Abbildung A.196.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [{Fe(L-N₄Me₂)}₃(μ -ttcy)](OTf)₃ · 3 H₂O (**22a**) (H = 5000 Oe).

Abbildung A.197.: IR-Spektrum (KBr-Pressling) von [{Fe(L-N₄Me₂)}₃(μ -ttcy)](OTf)₃ · 3 H₂O (22a).

 $[{Fe(L-N_4Me_2)}_3(\mu-ttcy)](PF_6)_3 \cdot 2H_2O$ (22b)

Abbildung A.198.: IR-Spektrum (KBr-Pressling) von [{Fe(L-N₄Me₂)}₃(μ -ttcy)](PF₆)₃ · 2 H₂O (22b).

A.27. $[Fe(L-N_4Me_2)(Spy)]^+$ (23)

Abbildung A.199.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [Fe(L-N₄Me₂)(Spy)](ClO₄) (**23a**) (H = 5000 Oe).

Abbildung A.200.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Fe(L-N₄Me₂)(Spy)](ClO₄) (**23a**) (H = 5000 Oe).

Abbildung A.201.: Mößbauer-Spektren von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a) bei verschiedenen Temperaturen.

Abbildung A.202.: IR-Spektrum (KBr-Pressling) von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a).

Abbildung A.203.: ¹H-NMR-Spektrum von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a) in CD₃CN (400 MHz).

Abbildung A.204.: UV/Vis-Spektrum von $[Fe(L-N_4Me_2)(Spy)]^+$ (23) in Acetonitril.

Abbildung A.205.: Cyclovoltammogramm der Oxidationen von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a) in 0.2 M TBAP / MeCN.

Abbildung A.206.: Cyclovoltammogramme der Oxidationen 1 & 2 von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.207.: Cyclovoltammogramme der Oxidation 1 von [Fe(L-N₄Me₂)(Spy)](ClO₄) (23a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.208.: Cyclovoltammogramme der Reduktionen von $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a) in 0.2 M TBAP / MeCN.

A.28. [Fe(L-N₄Me₂)(BzImCOO)] (24)

Abbildung A.209.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [Fe(L-N₄Me₂)(BzImCOO)] (24) (H = 5000 Oe).

Abbildung A.210.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Fe(L-N₄Me₂)(BzImCOO)] (24) (H = 5000 Oe).

Abbildung A.211.: Mößbauer-Spektren von $[Fe(L-N_4Me_2)(BzImCOO)]$ (24) bei verschiedenen Temperaturen.

Abbildung A.212.: IR-Spektrum (KBr-Pressling) von [Fe(L-N₄Me₂)(BzImCOO)] (24).

Abbildung A.213.: ¹H-NMR-Spektrum von $[Fe(L-N_4Me_2)(BzImCOO)] \cdot 2 EtOH (24a)$ in CD₃CN (400 MHz).

Abbildung A.214.: UV/Vis-Spektrum von [Fe(L-N₄Me₂)(BzImCOO)] (24) in Acetonitril.

Abbildung A.215.: Cyclovoltammogrammder Oxidationen von $[Fe(L-N_4Me_2)(BzImCOO)]$ (24) in 0.2 M TBAP / MeCN.

Abbildung A.216.: Cyclovoltammogramme der Oxidation 1 von $[Fe(L-N_4Me_2)(BzImCOO)]$ (24) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.217.: Cyclovoltammogramme der Reduktion von $[Fe(L-N_4Me_2)(BzImCOO)]$ (24) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.29. $[Fe(L-N_4Me_2)(biminH_2)]^{2+}$ (25)

Abbildung A.218.: Mößbauer-Spektren von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a) bei verschiedenen Temperaturen.

Abbildung A.219.: IR-Spektrum (KBr-Pressling) von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a).

Abbildung A.220.: ¹H-NMR-Spektrum von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a) in CD₃CN (600 MHz).

Abbildung A.221.: UV/Vis-Spektrum von $[Fe(L-N_4Me_2)(biminH_2)]^{2+}$ (25) in Acetonitril.

Abbildung A.222.: Cyclovoltammogramm der Oxidationen von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a) in 0.2 M TBAP / MeCN.

Abbildung A.224.: Cyclovoltammogramme der Reduktionen von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a) in 0.2 M TBAP / MeCN.

Abbildung A.225.: Cyclovoltammogramme der Reduktionen 1 & 2 von $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.30. [{Fe(L-N₄Me₂)}₂(μ -bimin)]²⁺ (26)

Abbildung A.226.: Mößbauer-Spektren von [{Fe(L-N₄Me₂)}₂(μ -bimin)](ClO₄)₂ (26a) bei verschiedenen Temperaturen.

Abbildung A.227.: IR-Spektrum (KBr-Pressling) von $[{Fe(L-N_4Me_2)}_2(\mu-bimin)](ClO_4)_2$ (26a).

Abbildung A.228.: ¹H-NMR-Spektrum von [{Fe(L-N₄Me₂)}₂(μ -bimin)](ClO₄)₂ (26a) in CD₃CN (600 MHz).

Abbildung A.229.: UV/Vis-Spektrum von $[{Fe(L-N_4Me_2)}_2(\mu-bimin)]^{2+}$ (26) in Acetonitril.

Abbildung A.230.: Cyclovoltammogramme der Oxidationen 1, 2 & 3 von [{Fe(L-N₄Me₂)}₂(μ -bimin)](ClO₄)₂ (26a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.231.: Cyclovoltammogramme der Oxidationen 1 & 2 von [{Fe(L-N₄Me₂)}₂(μ -bimin)](ClO₄)₂ (26a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.232.: Cyclovoltammogramme der Oxidation 1 von [{Fe(L-N₄Me₂)}₂(μ -bimin)](ClO₄)₂ (26a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.233.: Cyclovoltammogramme der Reduktion von $[{Fe(L-N_4Me_2)}_2(\mu-bimin)](ClO_4)_2$ (26a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.234.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [Fe(L-N₄^tBu₂)(bmi)](BPh₄)₂ (27) ($H = 500 (\bullet, \bigcirc)$ bzw. 1000 Oe (\blacktriangle))^[127].

Abbildung A.235.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Fe(L-N₄^tBu₂)(bmi)](BPh₄)₂ (27) ($H = 500 (\bullet, \bigcirc)$ bzw. 1000 Oe (\blacktriangle))^[127].

Abbildung A.236.: SQUID-Messung: Temperaturabhängigkeit von γ_{HS} für [Fe(L-N₄^tBu₂)(bmi)](BPh₄)₂ (27) ($H = 500 (\bigcirc, \bigcirc)$ bzw. 1000 Oe (\blacktriangle)) (berechnet mit ($\chi_M T$)_{HS} = 3.00 cm³ · K · mol⁻¹ und ($\chi_M T$)_{LS} = 0.0025 cm³ · K · mol⁻¹)^[127].

Abbildung A.237.: Mößbauer-Spektrum von $[Fe(L-N_4^{t}Bu_2)(bmi)](BPh_4)_2$ (27) bei 130 K^[127].

Abbildung A.238.: IR-Spektrum (KBr-Pressling) von $[Fe(L-N_4^{t}Bu_2)(bmi)](BPh_4)_2$ (27)^[127].

Abbildung A.239.: UV/Vis-Spektrum von $[Fe(L-N_4^tBu_2)(bmi)]^{2+}$ (27) in Acetonitril^[127].

Abbildung A.240.: Cyclovoltammogramme der Oxidationen von $[Fe(L-N_4^{t}Bu_2)(bmi)](BPh_4)_2$ (27) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten ^[127].

Abbildung A.241.: Cyclovoltammogramme der Reduktion von $[Fe(L-N_4^{t}Bu_2)(bmi)](BPh_4)_2$ (27) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten ^[127].

A.32. $[Fe(L-N_4^{t}Bu_2)(bmi_{red})](BPh_4)$ (28) und $[Fe(L-N_4^{t}Bu_2)(bmi_{dep})](BPh_4)$ (29)

Abbildung A.242.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [Fe(L-N₄^tBu₂)(bmi_{red})](BPh₄) (28) und [Fe(L-N₄^tBu₂)(bmi_{dep})](BPh₄) (29) (77:23) (H = 1000 Oe).

Abbildung A.243.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Fe(L-N₄^tBu₂)(bmi_{red})](BPh₄) (28) und [Fe(L-N₄^tBu₂)(bmi_{dep})](BPh₄) (29) (77:23) (H = 1000 Oe).

Abbildung A.244.: Mößbauer-Spektren von $[Fe(L-N_4^{t}Bu_2)(bmi_{red})](BPh_4)$ (28) und $[Fe(L-N_4^{t}Bu_2)(bmi_{dep})](BPh_4)$ (29) (77:23) bei verschiedenen Temperaturen.

Abbildung A.245.: Mößbauer-Spektren von $[Fe(L-N_4^tBu_2)(bmi_{dep})](BPh_4)$ (29) mit einem Nebenprodukt (72:28) bei verschiedenen Temperaturen.

Abbildung A.246.: SQUID-Messung: Temperaturabhängigkeit von $\chi_M T$ für [Fe(L-N₄Me₂)(edt)](B(p-Tol)₄) · MeCN (**30b**) ($H = 500 (\bullet, \bigcirc)$ bzw. 1000 Oe (\blacktriangle)).

Abbildung A.247.: SQUID-Messung: Temperaturabhängigkeit von μ_{eff} für [Fe(L-N₄Me₂)(edt)](B(p-Tol)₄) · MeCN (**30b**) ($H = 500 (\bullet, \bigcirc)$ bzw. 1000 Oe (\blacktriangle)).

Abbildung A.248.: X-Band-ESR-Spektren von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4)$ (30a) in gefrorener Lösung (ca. 4 mM in 0.2 M TBAP/DMF) bei verschiedenen Temperaturen (experimentelle Bedingungen: Mikrowellenfrequenz 9.38 GHz; Modulationsamplitude 10 G; Power 6.4 mW.

Abbildung A.249.: ESR-Messung: Temperaturabhängigkeit des Produkts *IT*; Fitparameter: $a = -224 \pm 101$, $b = 467 \pm 213$, $\Delta = 10.3 \pm 6.3 \text{ cm}^{-1}$.

Abbildung A.250.: Mößbauer-Spektren von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN$ (30b) bei verschiedenen Temperaturen.

Abbildung A.251.: Mößbauer-Spektrum von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN$ (30b) bei 200 K in einem Feld von 5 T.

Abbildung A.252.: Mößbauer-Spektren von [Fe(L-N₄Me₂)(edt)](B(p-Tol)₄) · MeCN (**30b**) bei verschiedenen Temperaturen *T* und verschiedenen Werten für die magnetische Flussdichte *B*; die Linien entsprechen Spin-Hamilton-Simulationen für ein S = $\frac{3}{2}$ Spinsystem mit $D = -5.8 \text{ cm}^{-1}$, E/D = 0.2, $\tilde{g} = (2.0, 2.0, 2.0)$, $\tilde{A}/\mu_N g_N = (-30.5, -12.1, 1.3)$ T, $\delta_{\rm IS} = 0.38 \text{ mm} \cdot \text{s}^{-1}$, $\Delta E_{\rm Q} = 2.66 \text{ mm} \cdot \text{s}^{-1}$, $\eta = 0.6$, $\Gamma = 0.35 \text{ mm} \cdot \text{s}^{-1}$ und Euler-Winkeln von $\alpha = 70^{\circ}$, $\beta = 0^{\circ}$, $\gamma = 14^{\circ}$.

Abbildung A.253.: IR-Spektrum (KBr-Pressling) von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4)$ (30a).

Abbildung A.254.: ¹H-NMR-Spektrum von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN$ (30b) in CD_3CN (400 MHz).

Abbildung A.255.: ¹H-NMR-Spektren (NMR-Evans) von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN$ (30b) in CD₃CN bei verschiedenen Temperaturen (600 MHz).

Abbildung A.256.: UV/Vis-Spektrum von $[Fe(L-N_4Me_2)(edt)]^+$ (30) in Acetonitril.

Abbildung A.257.: Cyclovoltammogramme der Oxidationen von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4)$ (30a) in 0.2 M TBAP / MeCN.

Abbildung A.258.: Cyclovoltammogramme der Oxidationen 1 & 2 von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4)$ (30a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

Abbildung A.259.: Cyclovoltammogramme der Reduktion von $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4)$ (30a) in 0.2 M TBAP / MeCN bei verschiedenen Scangeschwindigkeiten.

A.34. Kristallstrukturen

Komplex

Strukturnummer (Messtemperatur) 08670 (150 K) 081290 (150 K) 081080 (150 K), 081090 (293 K), $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a) 08110o (373 K) $[Co(L-N_4Me_2)(ampy)](ClO_4)_2$ (4a) 081710 (150 K), 081760 (293 K), 081770 (373 K) $[Co(L-N_4Me_2)(o-ph)](ClO_4)_2$ (5a) 0826 (193 K), 081940 (293 K), 081950 (373 K) $[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2 \cdot 3 MeCN$ (6c) 11068ocu (150 K) $\frac{[\text{Co}(\text{L-N}_4\text{Me}_2)(1,3-\text{dap})]^{2+}}{[\text{Co}(\text{L-N}_4\text{Me}_2)(1,3-\text{dap})](\text{BPh}_4)_2 \cdot \text{MeCN} (7b)}$ 082110 (150 K) $\frac{[Co(L-N_4Me_2)(1,3-dap)](DI n_4)_2 (NCOV(16))}{[Co(L-N_4Me_2)(1,3-dap)](B(p-Tol)_4)_2 \cdot 1.5 MeCN (7d)} \\ \frac{[Co(L-N_4Me_2)(NCMe)_2](ClO_4)_2 (8a)}{[Co(L-N_4Me_2)(pyc)](ClO_4) (9a)}$ 11182ocu (150 K), 11184ocusq (400 K) 081430 (150 K) 08830 (150 K) $Co(L-N_4Me_2)(NCS)_2$ (10) 0884ob (150 K) $\begin{array}{l} [\{Co(L-N_4Me_2)\}_2(\mu-BiBZIm)](ClO_4)_2 \cdot 2 \, MeCN \ (11b) \\ [Co(L-N_4^tBu_2)(CN)_2] \cdot EtOH \ (12a) \\ [Co(L-N_4^tBu_2)(bip)](BPh_4)_2 \ (13a) \\ \end{array}$ 100440 (108 K), 100430 (150 K) 081120 (150 K), 081130 (293 K) $[Co(L-N_4^{t}Bu_2)(bipy)](BPh_4)_2 \cdot MeCN \cdot 0.6 Et_2O$ (13b) 08160o (150 K), 08161o (293 K) $[Co(L-N_4^{t}Bu_2)(bipy)](BPh_4)_2 \cdot 2 EtCN (13c)$ 081750 (150 K) $[\dot{Co}(L-N_4^{t}\dot{B}u_2)(ampy)](\dot{ClO}_4)_2 \cdot 0.5 \, MeCN (14b)$ 0823 (193 K) $[Co(L-N_4^{t}Bu_2)(NCMe)_2](BPh_4)_2 \cdot MeCN$ (15b) 0944c (150 K) $[Co(L-N_4^{t}Bu_2)(pyc)](BPh_4) \cdot EtCN$ (16b) 08204o (150 K), 10009o (293 K), 11147ocu (373K) $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17) 09164ocu (110 K), 0907 (193 K), 0911 (293 K), 09580 (373 K) $[Co(L-N_4^{t}Bu_2)(NCS)_2]$ (18) hjk1002 (30 K), 09150 (110 K) 0901 (293 K), 10183ocu (450 K) $[Co(L-N_4^{t}Bu_2)(ox)]$ (19) 101810 (110K), 101770 (150K) $[Co(L-N_4^{t}Bu_2)Cl_2] \cdot MeCN (20a)$ 11059ocu (150K) $[Co(L-N_4^{-t}Bu_2)(NCS)_2](BF_4) \cdot EtCN$ (21b) 0964ocu (150 K) $[Fe(L-N_4Me_2)(Spy)](ClO_4)$ (23a) 081990 (150 K), 082050 (373 K) $[Fe(L-N_4Me_2)(BzImCOO)] \cdot 2 EtOH (24a)$ 081670 (150 K) $[Fe(L-N_4Me_2)(biminH_2)](ClO_4)_2$ (25a) 10214ocu (150 K) $\{Fe(L-N_4Me_2)\}_2(\mu-bimin)|(ClO_4)_2|(26a)$ 0994o (110 K), 0992o (150 K) $\begin{array}{l} [Fe(L-N_4^+Bu_2)(bmi)](BPh_4)_2 \ (\mathbf{27})^{[127]} \\ [Fe(L-N_4^+Bu_2)(bmi_{red})](BPh_4) \ (\mathbf{28}) \\ [Fe(L-N_4^+Bu_2)(bmi_{dep})](BPh_4) \ (\mathbf{29}) \\ [Fe(L-N_4^+Bu_2)(bmi_{dep})](BPh_4) \ (\mathbf{29}) \end{array}$ 07480 (150 K), 0703 (293 K) 11042ocu (110 K) 11227ocu (150 K) $[Fe(L-N_4Me_2)(edt)](\dot{B}(p-Tol)_4) \cdot \dot{MeCN} (30b)$ 0983
o $(110\,{\rm K}),$ 0979
oa $(150\,{\rm K}),$ 0981
o $(295\,{\rm K})$

Im Folgenden sind die Aufnahme- und Verfeinerungsparameter der im Rahmen dieser Arbeit gezeigten Kristallstrukturen aufgelistet. Die vollständigen Daten sind dem beigefügten Datenträger zu entnehmen. Die folgenden Definitionen gelten für alle Kristallstrukturen:

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}} \qquad \qquad R_{1} = \frac{\sum ||F_{o}| - |F_{c}||}{\sum |F_{o}|} \qquad \qquad GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}}$$

n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

A.34.1. $[Co(L-N_4Me_2)(CN)_2] \cdot 1.5 MeCN$ (1a)

Kristalldaten und Strukturverfeinerung für 08670.

Summenformel C21H24CoN7.5 Molmasse 440.91150 KTemperatur Strahlung MoKα Wellenlänge 0.71073 Å Scanmodus Ω -scans Monoklin Kristallsystem Raumgruppe $P2_1/n$ Zelldimensionen a = 9.5421(2) Å $\alpha = 90^{\circ}$ b = 16.6912(3) Å $\beta = 96.842(2)^{\circ}$ $c = 13.2851(2) \text{ Å} \quad \gamma = 90^{\circ}$ 2101.50(7) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 1.394 Mg/m^3 Berechnete Dichte Absorptionskoeffizient 0.840 mm^{-1} 0.31 x 0.21 x 0.15 mm Kristallgröße 2.44 bis 30.00° Gemessener θ -Bereich Anzahl der gemessenen Reflexe 17100 Unabhängige Reflexe 6060 (Rint = 0.0324)Absorptionskorrektur Semi-empirisch aus Äquivalenten 0.8843 und 0.7807 Max. und min. Transmission Diffraktometer Oxford Diffraction Gemini S Ultra Strukturlösung Direkte Methoden SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung SHELXL-97 (Sheldrick, 1997) Strukturverfeinerungsprogramm 6060 / 0 / 312 Daten / Restraints / Parameter R1 = 0.0621, wR2 = 0.1354Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.0778, wR2 = 0.1394 $w=1/[\sigma^2(Fo^2)+(0.000P)^2+6.6240P]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema 1.229GooF (alle Daten) 0.402 und $-0.375~{\rm e}{\rm \AA}^{-3}$ Größtes Maximum und Minimum

A.34.2. $[Co(L-N_4Me_2)(bipy)](PF_6)_2$ (2a)

Kristalldaten und Strukturverfeinerung für 081290.

Summenformel	$C_{26}H_{28}CoF_{12}N_6P_2$
Molmasse	773.41 150 V
Stachlang	100 K MaKa
Stranung	$MOK\alpha$
Wellenlange	0.71073 A
Scanmodus	M-scans Monolulin
Rristansystem Deurogrammen e	
Kaungruppe	12/a
Zelldimensionen	$a = 22.2052(4) \text{ A}$ $\alpha = 90^{\circ}$
	$b = 21.9164(4) \text{ A} \beta = 91.102(17)^{\circ}$
	$c = 24.5254(4) \; \mathrm{\AA} \gamma = 90^\circ$
Zellvolumen	$11933.3(4) \text{ Å}^3$
Formeleinheiten pro Zelle Z	16
Berechnete Dichte	$1.722 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.789 mm^{-1}
Kristallgröße	$0.28 \ge 0.26 \ge 0.14 \text{ mm}$
Gemessener θ -Bereich	$2.49 \text{ bis } 29.50^{\circ}$
Anzahl der gemessenen Reflexe	83209
Unabhängige Reflexe	$16611 \; ({ m Rint} = 0.0716)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8976 und 0.8094
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$16611\ /\ 105\ /\ 915$
Endgültige R-Werte $[I > 2\sigma(I)]$	${ m R1}=0.0379,{ m wR2}=0.0736$
R-Werte (alle Daten)	R1 = 0.0985, wR2 = 0.0873
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0370P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.863
Größtes Maximum und Minimum	$0.552 \text{ und } -0.401 \text{ e} \text{\AA}^{-3}$

Die asymmetrische Einheit enthält mehrere unabhängige Komplexionen, von denen zwei auf speziellen Lagen liegen. Weiterhin ist von den vier PF_6 -Ionen eins fehlgeordnet. Die thermischen Auslenkungsparameter wurden mit der Option ISOR partiell isotrop gehalten.

A.34.3. $[Co(L-N_4Me_2)(en)](BPh_4)_2$ (3a)

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 081080.

Summenformel $C_{66}H_{68}B_2CoN_6$ 1025.81Molmasse $150 \mathrm{K}$ Temperatur $MoK\alpha$ Strahlung 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Monoklin $P2_{1}/c$ Raumgruppe Zelldimensionen a = 18.3181(3) Å $\alpha = 90^{\circ}$ b = 12.2409(2) Å $\beta = 90.100(2)^{\circ}$ $c = 24.3249(3) \text{ Å} \quad \gamma = 90^{\circ}$ 5454.36(14) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 Berechnete Dichte 1.249 Mg/m^3 Absorptionskoeffizient 0.362 mm^{-1} $0.46 \ge 0.37 \ge 0.15 \ {\rm mm}$ Kristallgröße Gemessener θ -Bereich 2.61 bis 30.00° Anzahl der gemessenen Reflexe 36673 15430 (Rint = 0.0380)Unabhängige Reflexe Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.9476 und 0.8510 Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Strukturverfeinerung Vollmatrix Least-Squares gegen F^2 Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 15430 / 0 / 678 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0380, wR2 = 0.0872 ${\rm R1}=0.0628, {\rm wR2}=0.0986$ ${\rm w}{=}1/[\sigma^2({\rm Fo}^2){+}(0.0479{\rm P})^2]$ mit ${\rm P}{=}({\rm Fo}^2{+}2{\rm Fc}^2)/3$ R-Werte (alle Daten) Wichtungsschema GooF (alle Daten) 1.0580.312 und $-0.430~\mathrm{e}\mathrm{\AA}^{-3}$ Größtes Maximum und Minimum

(b) Messung bei 293 K

Kristalldaten und Strukturverfeinerung für 081090.

Summenformel	$C_{66}H_{68}B_2CoN_6$
Molmasse	1025.81
Temperatur	293 K
Strahlung	MoKα
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 18.4650(3) ext{ A} lpha = 90^\circ$
	$b = 12.3211(2) \text{ \AA} \beta = 90.2310(10)^{\circ}$
	$c=24.4501(4)$ Å $\gamma=90^{\circ}$
Zellvolumen	5562.58(16) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.225 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.355 mm^{-1}
Kristallgröße	$0.43 \ge 0.38 \ge 0.15 \text{ mm}$
Gemessener θ -Bereich	$2.76 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	41528
Unabhängige Reflexe	$15841 \; ({ m Rint} = 0.0422)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9486 und 0.8622
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$15841 \ / \ 0 \ / \ 678$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0526, wR2 = 0.1248
R-Werte (alle Daten)	m R1 = 0.1096, wR2 = 0.1617
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0791P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.035
Größtes Maximum und Minimum	$0.477 \text{ und } -0.276 \text{ e} \text{\AA}^{-3}$

(c) Messung bei 373 K

Kristalldaten und Strukturverfeinerung für 081100.

Summenformel	$C_{66}H_{68}B_2CoN_6$
Molmasse	1025.81
Temperatur	373 K
Strahlung	MoKa
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 18.5712(4) \; { m \AA} lpha = 90^\circ$
	$b = 12.3772(3) \; { m \AA} \;\;\; eta = 90.294(2)^\circ$
	$c = 24.5051(6) ~{ m \AA}$ $\gamma = 90^{\circ}$
Zellvolumen	5632.7(2) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.210 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.351 mm^{-1}
Kristallgröße	$0.43 \ge 0.38 \ge 0.15 \text{ mm}$
Gemessener θ -Bereich	$2.86 \text{ bis } 28.00^{\circ}$
Anzahl der gemessenen Reflexe	30052
Unabhängige Reflexe	$13132 \; ({ m Rint} = 0.0489)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9492 und 0.8637
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	13132 / 0 / 678
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0701, wR2 = 0.1849
R-Werte (alle Daten)	R1 = 0.1379, wR2 = 0.2418
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.1235P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.074
Größtes Maximum und Minimum	$0.649 \text{ und } -0.325 \text{ e} \text{\AA}^{-3}$

A.34.4. $[Co(L-N_4Me_2)(ampy)](CIO_4)_2$ (4a)

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 081710.

C₂₂H₂₈Cl₂CoN₆O₈ Summenformel Molmasse $6\bar{3}\bar{4}.3\bar{3}$ Temperatur $150 \mathrm{K}$ Strahlung $MoK\alpha$ 0.71073 Å Wellenlänge Ω -scans Scanmodus Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 15.7565(3) Å $\alpha = 90^{\circ}$ b = 9.2524(2) Å $\beta = 100.241(2)^{\circ}$ c = 17.7244(3) Å $\gamma = 90^{\circ}$ 2542.79(8) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 Berechnete Dichte $1.657 \ {\rm Mg/m^3}$ Absorptionskoeffizient 0.946 mm^{-1} $0.31 \ge 0.16 \ge 0.08 \ \mathrm{mm}$ Kristallgröße 2.63 bis 30.00° Gemessener θ -Bereich Anzahl der gemessenen Reflexe 20404 Unabhängige Reflexe 7374 (Rint = 0.0386) Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.9282 und 0.7580 Oxford Diffraction Gemini S Ultra Diffraktometer Direkte Methoden Strukturlösung SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Strukturverfeinerung Vollmatrix Least-Squares gegen F^2 Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 7374 / 48 / 400 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0316, wR2 = 0.0649 $\begin{array}{l} {\rm R1}=0.0571^{'}\!\!\!,\,{\rm wR2}=0.0710\\ {\rm w}{=}1/[\sigma^2({\rm Fo}^2){+}(0.0336{\rm P})^2] \mbox{ mit }{\rm P}{=}({\rm Fo}^2{+}2{\rm Fc}^2)/3 \end{array}$ R-Werte (alle Daten) Wichtungsschema GooF (alle Daten) 0.9360.395 und $-0.447~\mathrm{e}\mathrm{\AA}^{-3}$ Größtes Maximum und Minimum

Auf ein Komplexion entfallen zwei Perchlorationen. Eins davon ist fehlgeordnet. Zur Beschreibung des Modells wurden die restraints "isor" und "same" benutzt.

(b) Messung bei 293 K

Kristalldaten und Strukturverfeinerung für 081760.

Summenformel	$C_{22}H_{28}Cl_2CoN_6O_8$
Molmasse	634.33
Temperatur	293 K
Strahlung	CuKa
Wellenlänge	1.54184 A
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 15.8951(2) \text{ A}_{\alpha} \ lpha = 90^{\circ}$
	$b = 9.36260(10)$ Å $\beta = 100.1510(10)^{\circ}$
	$c = 17.8343(2)~{ m \AA}~~\gamma = 90^{\circ}$
Zellvolumen	2612.55(5) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.613 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	7.555 mm^{-1}
Kristallgröße	$0.20 \ge 0.13 \ge 0.11 \text{ mm}$
Gemessener θ -Bereich	$5.33 \text{ bis } 62.68^{\circ}$
Anzahl der gemessenen Reflexe	13083
Unabhängige Reflexe	$4113 \; ({ m Rint} = 0.0346)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.4904 und 0.3134
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$4113 \ / \ 32 \ / \ 398$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0329, wR2 = 0.0790
R-Werte (alle Daten)	m R1 = 0.0449, wR2 = 0.0846
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0534P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
Extinktionskoeffizient	0.00104(9)
GooF (alle Daten)	0.935
Größtes Maximum und Minimum	$0.366 \text{ und } -0.327 \text{ e}^{\text{Å}-3}$

Ein Perchloratgegenion ist fehlgeordnet. Zur Beschreibung des Modells wurden die restraints EADP, EXYZ und SAME verwendet.

Die Lagen der Wasserstoffatome an N5 wurden einer Differenzmap entnommen und deren Abstände mit der Option DFIX gehalten. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(c) Messung bei 373 K

Kristalldaten und Strukturverfeinerung für 081770.

Summenformel	$C_{22}H_{28}Cl_2CoN_6O_8$
Molmasse	634.33
Temperatur	373 K
Strahlung	$CuK\alpha$
Wellenlänge	1.5418 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 15.9787(3) \; { m \AA} lpha = 90^\circ$
	$b = 9.4246(2)$ Å $\beta = 100.203(2)^{\circ}$
	$c = 17.8997(3) \text{ Å}$ $\gamma = 90^{\circ}$
Zellvolumen	2652.94(9) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.588 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	7.440 mm^{-1}
Kristallgröße	$0.20 \ge 0.13 \ge 0.10 \text{ mm}$
Gemessener θ -Bereich	$5.02 \text{ bis } 62.85^{\circ}$
Anzahl der gemessenen Reflexe	12125
Unabhängige Reflexe	$4095 \; ({ m Rint} = 0.0383)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.4949 und 0.3177
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$4095 \ / \ 0 \ / \ 355$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0518, wR2 = 0.1419
R-Werte (alle Daten)	m R1 = 0.0449, wR2 = 0.0846
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.1012P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.040
Extinktionskoeffizient	0.00103(19)
Größtes Maximum und Minimum	$0.503 \text{ und } -0.479 \text{ e}\text{\AA}^{-3}$

Auf ein Komplexion entfallen zwei Perchlorationen im Kristallverband. Die Lagen der Wasserstoffatome an N5 wurden einer Differenzmap entnommen und deren Abstände mit der Option DFIX gehalten. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH_3 -Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.5. $[Co(L-N_4Me_2)(o-ph)](CIO_4)_2$ (5a)

(a) Messung bei 193 K

A 141

Kristalldaten und Strukturverfeinerung für 0826.

C₂₂H₂₈Cl₂CoN₆O₈ Summenformel Molmasse $6\bar{3}\bar{4}.3\bar{3}$ Temperatur 193(2) K Strahlung MoΚά 0.71073 Å Wellenlänge Φ -Oszillation Scanmodus Kristallsystem Orthorhombisch Pnma Raumgruppe Zelldimensionen $a = 17.1466(9) \text{ Å} \quad \alpha = 90^{\circ}$ $b = 8.6547(4) \text{ Å} \quad \beta = 90^{\circ}$ $c = 18.9119(8) \text{ Å} \quad \gamma = 90^{\circ}$ 2806.5(2) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 Berechnete Dichte $1.501 \ {\rm Mg/m^3}$ Absorptionskoeffizient 0.857 mm^{-1} $0.40 \ge 0.24 \ge 0.16 \text{ mm}$ Kristallgröße 2.59 bis 27.50° Gemessener θ -Bereich Anzahl der gemessenen Reflexe 32452 Unabhängige Reflexe 3421 (Rint = 0.0507)Absorptionskorrektur keine Max. und min. Transmission 0.8750 und 0.7255 Diffraktometer Stoe IPDS Strukturlösung Direkte Methoden SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung SHELXL-97 (Sheldrick, 1997) 3421 / 30 / 231 Strukturverfeinerungsprogramm Daten / Restraints / Parameter R1 = 0.0373, wR2 = 0.0970Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.0501, wR2 = 0.1009 $w=1/[\sigma^2(Fo^2)+(0.0751P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema GooF (alle Daten) 0.936 $1.036 \text{ und } -0.464 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Beide Perchlorat-Ionen "liegen" auf speziellen Lagen. Eins davon ist fehlgeordnet und zur Beschreibung des Modells wurden die restraints SAME, ISOR und EADP verwendet. Die Lagen der Wasserstoffatome an C8 und C9 wurden einer Differenzmap entnommen und frei isotrop verfeinert. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen

Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(b) Messung bei 293 K

Kristalldaten und Strukturverfeinerung für 081940.

Summenformel	$C_{22}H_{28}Cl_2CoN_6O_8$
Molmasse	634.33
Temperatur	293 K
Strahlung	CuKa
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	P n m a
Zelldimensionen	$a=17.5862(4)$ Å $lpha=90^\circ$
	$b = 8.6703(2) \ { m \AA} \ \ eta = 90^\circ$
	$c = 19.0525(5) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	2905.08(12) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.450 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	6.794 mm^{-1}
Kristallgröße	$0.35 \ge 0.14 \ge 0.08 \text{ mm}$
Gemessener θ -Bereich	$5.28 \text{ bis } 62.63^{\circ}$
Anzahl der gemessenen Reflexe	9741
Unabhängige Reflexe	$2464 \; ({\rm Rint}=0.0386)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.6125 und 0.1966
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	2464 / 36 / 233
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0327, wR2 = 0.0808
R-Werte (alle Daten)	m R1 = 0.0614, wR2 = 0.0910
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0544P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.936
Größtes Maximum und Minimum	$0.244 \text{ und } -0.185 \text{ e}\text{\AA}^{-3}$

Ein Perchlorat-Gegenion ist fehlgeordnet. Zur Beschreibung des Modells wurden die restraints ISOR verwendet. Generell war das "Streuverhalten" trotz Cu-Strahlung und langer Belichtungszeit nicht so gut.

gut. Die Lagen der Wasserstoffatome an den Stickstoffdonoratomen des Phenylendiamins wurden einer Differenzmap entnommen. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und N–H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(c) Messung bei 450 K

Kristalldaten und Strukturverfeinerung für 081950.

Summenformel	$C_{22}H_{28}Cl_2CoN_6O_8$
Molmasse	634.33
Temperatur	450(2) K
Strahlung	CuKa
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	Pnma
Zelldimensionen	$a = 17.854(3) ~{ m \AA}_{} lpha = 90^\circ$
	$b = 8.6379(10)$ Å $eta = 90^{\circ}$
	$c=19.210(3)$ Å $\gamma=90^\circ$
Zellvolumen	2962.5(7) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.422 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	6.663 mm^{-1}
Kristallgröße	$0.35 \ge 0.14 \ge 0.08 \text{ mm}$
Gemessener θ -Bereich	$4.95 \text{ bis } 62.67^{\circ}$
Anzahl der gemessenen Reflexe	9187
Unabhängige Reflexe	$2505 \; ({ m Rint} = 0.0403)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.6177 und 0.2039
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	2505 / 26 / 234
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0385, wR2 = 0.0957
R-Werte (alle Daten)	R1 = 0.0878, wR2 = 0.1136
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0666P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.887
Größtes Maximum und Minimum	$0.187 \text{ und } -0.192 \text{ e}^{\text{Å}-3}$

Ein Perchlorat-Gegenion ist fehlgeordnet. Zur Beschreibung des Modells wurden die restraints ISOR und EADP verwendet. Generell war das "Streuverhalten" trotz Cu-Strahlung und langer Belichtungszeit nicht so gut (1342 Reflexe > 4σ).

Die Lagen der Wasserstoffatome an den Stickstoffdonoratomen des Phenylendiamins wurden einer Differenzmap entnommen und deren Abstand mit der Option DFIX gehalten. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und N–H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.6. $[Co(L-N_4Me_2)(1,2-dap)](B(p-Tol)_4)_2 \cdot 3 MeCN (6c)$

Kristalldaten und Strukturverfeinerung für 11068ocu.

Summenformel $C_{81}H_{95}B_2CoN_9$ 1275.21 Molmasse $150 \mathrm{K}$ Temperatur $CuK\alpha$ Strahlung Wellenlänge 1.54184 Å Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/n$ Zelldimensionen a = 12.0856(3) Å $\alpha = 90^{\circ}$ $b = 48.0708(12) \text{ Å} \quad \beta = 93.845(2)^{\circ}$ c = 12.2874(3) Å $\gamma = 90^{\circ}$ 7122.5(3) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 1.189 Mg/m^3 Berechnete Dichte Absorptionskoeffizient 2.268 mm^{-1} Kristallgröße $0.52 \ge 0.16 \ge 0.04 \text{ mm}$ 3.68 bis 62.90° Gemessener θ -Bereich Anzahl der gemessenen Reflexe 30759Unabhängige Reflexe 11340 (Rint = 0.0729)Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.9148 und 0.3851 Diffraktometer Oxford Diffraction Gemini S Ultra Strukturlösung Direkte Methoden Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung SHELXL-97 (Sheldrick, 1997) Strukturverfeinerungsprogramm Daten / Restraints / Parameter 11340 / 4 / 864 R1 = 0.0548, wR2 = 0.1177Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.0912, wR2 = 0.1299Wichtungsschema $w=1/[\sigma^2(Fo^2)+(0.0693P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ GooF (alle Daten) 0.975 $0.348 \text{ und } -0.408 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Auf ein Komplex-Ion entfallen drei Moleküle Acetonitril als Lösungsmittel im Kristallverband. Die Lagen der Wasserstoffatome an den Stickstoffatomen N5 und N6 wurden einer Differenzmap entnommen und der Abstand mit der Option DFIX fixiert. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und N–H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.7. $[Co(L-N_4Me_2)(1,3-dap)]^{2+}$ (7) (1) $[Co(L-N_4Me_2)(1,3-dap)](BPh_4)_2 \cdot MeCN$ (7b)

Kristalldaten und Strukturverfeinerung für 082110.

Summenformel $C_{69}H_{73}B_2CoN_7$ 1080.89 Molmasse Temperatur $150 \mathrm{K}$ $MoK\alpha$ Strahlung 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 19.4479(6) Å $\alpha = 90^{\circ}$ b = 12.7298(4) Å $\beta = 92.824(3)^{\circ}$ $c = 23.1569(7) \text{ Å} \quad \gamma = 90^{\circ}$ 5725.9(3) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 Berechnete Dichte 1.254 Mg/m^3 Absorptionskoeffizient 0.349 mm^{-1} $0.37 \ge 0.21 \ge 0.19 \ {\rm mm}$ Kristallgröße Gemessener θ -Bereich 2.75 bis 30.00° Anzahl der gemessenen Reflexe 49526 16476 (Rint = 0.0797) Unabhängige Reflexe Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.9366 und 0.8816 Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 16476 / 0 / 731 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0454, wR2 = 0.0764 ${\rm R1}=0.1261, {\rm wR2}=0.0883$ w=1/[$\sigma^2({\rm Fo}^2)+(0.0344{\rm P})^2]$ mit P=(Fo^2+2Fc^2)/3 R-Werte (alle Daten) Wichtungsschema GooF (alle Daten) 0.800 $0.459 \text{ und } -0.419 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Auf ein Komplex-Ion entfallen zwei Tetraphenylborat-Gegenionen und ein Molekül Acetonitril im Kristallverband.

Die Lagen der Wasserstoffatome an den Aminstickstoffatomen N5 und N6 des Co-Liganden wurden einer Differenzmap entnommen und frei verfeinert. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und N–H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 11182ocu.

Summenformel $C_{156}H_{181}B_4Co_2N_{15}$ Molmasse 2427.26 Temperatur $150 \mathrm{K}$ Strahlung $CuK\alpha$ Wellenlänge 1.54184 Å Scanmodus Ω -scans Kristallsystem Triklin Raumgruppe P-1 Zelldimensionen a = 12.2703(3) Å $\alpha = 117.407(2)^{\circ}$ $b = 24.3650(5) \text{ Å} \quad \beta = 94.347(2)^{\circ}$ c = 25.5137(5) Å $\gamma = 93.276(2)^{\circ}$ 6715.5(3) Å³ Zellvolumen Formeleinheiten pro Zelle Z 2 1.200 Mg/m^3 Berechnete Dichte 2.374 mm^{-1} Absorptionskoeffizient Kristallgröße $0.58 \ge 0.44 \ge 0.13 \text{ mm}$ Gemessener θ -Bereich 3.44 bis 62.68° Anzahl der gemessenen Reflexe 59530 Unabhängige Reflexe 21379 (Rint = 0.0391) Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.7478 und 0.3398 Oxford Diffraction Gemini S Ultra Diffraktometer Strukturlösung Direkte Methoden Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 21379 / 0 / 1641 R1 = 0.0393, wR2 = 0.0930Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.0523, wR2 = 0.0969Wichtungsschema $w=1/[\sigma^2(Fo^2)+(0.042P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ GooF (alle Daten) 0.935 $0.268 \text{ und } -0.465 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Die asymmetrische Einheit enthält zwei unabhängige Komplex-Ionen. Auf ein Komplex-Ion entfallen 1.5 Moleküle Acetonitril als Lösungsmittelmoleküle im Kristallverband.

Die Lagen der Wasserstoffatome an den Stickstoffatomen (N5, N6, N11 und N12) wurden einer Differenzmap entnommen. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und N–H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(b) Messung bei 400 K

Kristalldaten und Strukturverfeinerung für 11184ocusq.

Summenformel	$C_{75}H_{82}B_2CoN_6$
Molmasse	1148.02
Temperatur	400 K
Strahlung	$CuK\alpha$
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Triklin
Raumgruppe	P-1
Zelldimensionen	$a = 12.3509(6) \; { m \AA}_{} \; lpha = 83.641(6)^{\circ}$
	$b = 12.4578(11) \text{ \AA} eta = 89.687(5)^\circ$
	$c=23.1748(16) \; { m \AA} \gamma=85.681(6)^{\circ}$
Zellvolumen	3533.8(4) Å ³
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.079 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	2.225 mm^{-1}
Kristallgröße	$0.58 \ge 0.44 \ge 0.13 \text{ mm}$
Gemessener θ -Bereich	$3.58 \text{ bis } 63.48^{\circ}$
Anzahl der gemessenen Reflexe	23790
Unabhängige Reflexe	$11194 \; (\text{Rint} = 0.0908)$
Absorptionskorrektur	keine
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	11194 / 0 / 760
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.1487, wR2 = 0.4145
R-Werte (alle Daten)	R1 = 0.2270, wR2 = 0.4782
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.2P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.442
Größtes Maximum und Minimum	$0.506 \text{ und } -0.536 \text{ e}^{\text{Å}-3}$

Die Qualität des Datensatzes ist schlecht. Während der Dauer der Messung verliert der Kristall das Lösungsmittel Acetonitril. Die Lagen konnten nicht eindeutig bestimmt werden und die Restelektronendichte wurde mit Option SQUEEZE aus dem Datensatz "herausgerechnet". Weiterhin sind die Lagen der Wasserstoffatome an den Stickstoffatomen N5 und N6 nicht bestimmbar. Der Datensatz ist nicht zur Veröffentlichung geeignet.

A.34.8. $[Co(L-N_4Me_2)(NCMe)_2](CIO_4)_2$ (8a)

Kristalldaten und Strukturverfeinerung für 081430.

Summenformel	$C_{20}H_{26}Cl_2CoN_6O_8$
Molmasse	608.30
Temperatur	150 K
Strahlung	MoKα
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/n$
Zelldimensionen	$a = 9.1721(3) \; { m \AA} lpha = 90^\circ$
	$b = 16.4303(5) \text{ Å} \beta = 90.281(3)^{\circ}$
	$c = 17.6126(5)$ Å $\gamma = 90^{\circ}$
Zellvolumen	2649.87(14) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.525 \mathrm{Mg/m^3}$
Absorptionskoeffizient	0.904 mm^{-1}
Kristallgröße	$0.20 \ge 0.19 \ge 0.18 \text{ mm}$
Gemessener θ -Bereich	$2.55 \text{ bis } 29.00^{\circ}$
Anzahl der gemessenen Reflexe	32816
Unabhängige Reflexe	$7024 \; ({ m Rint} = 0.0613)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8546 und 0.8399
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$7024 \ / \ 0 \ / \ 338$
Endgültige R-Werte $[I > 2\sigma(I)]$	${ m R1}=0.0697,{ m wR2}=0.1842$
R-Werte (alle Daten)	R1 = 0.1070, wR2 = 0.1977
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0815P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.100
Größtes Maximum und Minimum	$0.812 \text{ und } -0.489 \text{ e}\text{\AA}^{-3}$

A.34.9. $[Co(L-N_4Me_2)(pyc)](CIO_4)$ (9a)

Kristalldaten und Strukturverfeinerung für 08830.

Summenformel	$C_{22}H_{24}ClCoN_5O_6$
Molmasse	548.84
Temperatur	150 K
Strahlung	MoKlpha
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1$
Zelldimensionen	$a = 8.1466(2) ~{ m \AA}_{} lpha = 90^\circ$
	$b = 14.9453(3)$ Å $\ eta = 91.840(2)^\circ$
	$c=9.7198(2)$ Å $\gamma=90^\circ$
Zellvolumen	$1182.79(4) \text{ Å}^3$
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.541 \mathrm{Mg/m^3}$
Absorptionskoeffizient	0.888 mm^{-1}
Kristallgröße	$0.20 \ge 0.15 \ge 0.13 \text{ mm}$
Gemessener θ -Bereich	$2.50 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	9693
Unabhängige Reflexe	$5670 \; ({ m Rint} = 0.0336)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8933 und 0.8425
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$5670 \ / \ 1 \ / \ 318$
Absolutstrukturparameter	0.001(6)
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0311, wR2 = 0.0584
R-Werte (alle Daten)	m R1 = 0.0463, wR2 = 0.0611
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0269P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.902
Größtes Maximum und Minimum	$0.427 \text{ und } -0.323 \text{ e}^{\text{Å}-3}$

A.34.10. $[Co(L-N_4Me_2)(NCS)_2]$ (10)

Kristalldaten und Strukturverfeinerung für 0884ob.

Summenformel	$C_{18}H_{20}CoN_6S_2$
Molmasse	443.45
Temperatur	150 K
Strahlung	MoKa
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	Pbcn
Zelldimensionen	$a = 9.7445(3) ~{ m \AA}_{} lpha = 90^{\circ}$
	$b = 14.7703(3) \ { m \AA} \ \ \ eta = 90^\circ$
	$c = 14.0721(4) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	2025.39(9) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.454 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	1.069 mm^{-1}
Kristallgröße	$0.19 \ge 0.07 \ge 0.07 \mod$
Gemessener θ -Bereich	$2.50 \text{ bis } 29.00^{\circ}$
Anzahl der gemessenen Reflexe	15294
Unabhängige Reflexe	$2698 \; ({ m Rint} = 0.0804)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9289 und 0.8227
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$2698 \ / \ 0 \ / \ 124$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0392, wR2 = 0.0573
R-Werte (alle Daten)	m R1 = 0.0884, wR2 = 0.0689
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0233P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.927
Größtes Maximum und Minimum	$0.313 \text{ und } -0.325 \text{ e}^{\text{Å}-3}$

A.34.11. [{Co(L-N₄Me₂)}₂(μ -BiBzIm)](ClO₄)₂ · 2 MeCN (11b)

(a) Messung bei 108 K

Kristalldaten und Strukturverfeinerung für 10044o.

Summenformel $C_{50}H_{54}Cl_2Co_2N_{14}O_8$ 1167.83 Molmasse Temperatur $108 \mathrm{K}$ $MoK\alpha$ Strahlung 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Triklin Raumgruppe P-1 Zelldimensionen a = 12.4557(4) Å $\alpha = 73.273(3)^{\circ}$ $b = 12.5859(4) \text{ Å} \quad \beta = 71.401(3)^{\circ}$ $c = 18.6066(6) \text{ Å} \quad \gamma = 80.332(3)^{\circ}$ 2638.24(15) Å³ Zellvolumen Formeleinheiten pro Zelle Z 2Berechnete Dichte $1.470 \ {\rm Mg/m^3}$ Absorptionskoeffizient 0.797 mm^{-1} Kristallgröße $0.48 \ge 0.47 \ge 0.30 \ {\rm mm}$ Gemessener θ -Bereich 2.82 bis 30.00° Anzahl der gemessenen Reflexe 27925Unabhängige Reflexe 15372 (Rint = 0.0303) Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.7959 und 0.7008 Oxford Diffraction Gemini S Ultra Diffraktometer Direkte Methoden Strukturlösung Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 15372 / 0 / 691 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0351, wR2 = 0.0757R-Werte (alle Daten) R1 = 0.0542, wR2 = 0.0787 $w=1/[\sigma^2(Fo^2)+(0.0391P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema GooF (alle Daten) 0.922Größtes Maximum und Minimum $0.546 \text{ und } -0.560 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfallen zwei Moleküle Acetonitril als Lösungsmittel im Kristallverband. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(b) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 100430.

Summenformel	$\mathrm{C}_{50}\mathrm{H}_{54}\mathrm{Cl}_{2}\mathrm{Co}_{2}\mathrm{N}_{14}\mathrm{O}_{8}$
Molmasse	1167.83
Temperatur	150 K
Strahlung	MoKα
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Triklin
Raumgruppe	P-1
Zelldimensionen	$a=9.3260(4)~{ m \AA}_{lpha}~~lpha=79.995(3)^{\circ}$
	$b = 12.5104(5) \text{ \AA} eta = 73.390(3)^\circ$
	$c = 12.6390(5) \; { m \AA} \gamma = 71.050(4)^{\circ}$
Zellvolumen	1331.16(9) Å ³
Formeleinheiten pro Zelle Z	1
Berechnete Dichte	$1.457 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.790 mm^{-1}
Kristallgröße	$0.48 \ge 0.47 \ge 0.30 \text{ mm}$
Gemessener θ -Bereich	$3.84 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	14336
Unabhängige Reflexe	$7749 \; ({ m Rint} = 0.0220)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.7975 und 0.7029
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	7749 / 0 / 346
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0437, wR2 = 0.1134
R-Werte (alle Daten)	m R1 = 0.0592, wR2 = 0.1173
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0664P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.076
Größtes Maximum und Minimum	$0.711 \text{ und } -1.017 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfallen zwei Moleküle Acetonitril als Lösungsmittel im Kristallverband. Die Sauerstoffatome im Perchlorat-Ion weisen erhöhte thermische Auslenkungsparameter auf. Auf die Beschreibung durch ein Fehlordnungsmodell wurde verzichtet.

A.34.12. $[Co(L-N_4^{t}Bu_2)(CN)_2] \cdot EtOH (12a)$

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 081120.

Summenformel C₂₆H₃₈CoN₆O 509.55 Molmasse Temperatur $150 \mathrm{K}$ ${\rm MoK}\alpha$ Strahlung 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Orthorhombisch P212121 Raumgruppe Zelldimensionen $a = 13.8222(7) \text{ Å} \quad \alpha = 90^{\circ}$ $b = 16.1252(8) \text{ Å} \quad \beta = 90^{\circ}$ $c = 25.3481(11) \text{ Å} \quad \gamma = 90^{\circ}$ 5649.7(5) $Å^3$ Zellvolumen Formeleinheiten pro Zelle Z 8 Berechnete Dichte 1.198 Mg/m^3 Absorptionskoeffizient 0.635 mm^{-1} $0.32 \ge 0.28 \ge 0.22 \text{ mm}$ Kristallgröße 2.65 bis 30.00° Gemessener θ -Bereich Anzahl der gemessenen Reflexe 54224 Unabhängige Reflexe 16279 (Rint = 0.0599) Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.8730 und 0.8227 Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Strukturverfeinerung Vollmatrix Least-Squares gegen F² Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) 16279 / 9 / 655 Daten / Restraints / Parameter R1 = 0.0614, wR2 = 0.1535Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.0944, wR2 = 0.1740 $w=1/[\sigma^2(Fo^2)+(0.0978P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema Absolutstrukturparameter 0.470(12)1.008 GooF (alle Daten) 0.960 und $-0.348~{\rm e}{\rm \AA}^{-3}$ Größtes Maximum und Minimum

Die Kristallqualität ist nicht sehr gut und die im Kristallverband vorhandenen Ethanolmoleküle sind zum Teil fehlgeordnet. Auch die im Ligandbereich vorhandene Restelektronendichte lässt sich nicht befriedigend erklären. Weiterhin handelt es sich um einen "Inversionszwilling".

(b) Messung bei 233 K

Kristalldaten und Strukturverfeinerung für 081130.

Summenformel	$C_{26}H_{38}CoN_6O$
Molmasse	509.55
Temperatur	233(2) K
Strahlung	MoKa
Wellenlänge	0.71073 A
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	P212121
Zelldimensionen	$a = 13.8498(3) \text{ \AA} \alpha = 90^{\circ}$
	$b = 16.0850(5) \; { m \AA} eta = 90^\circ$
	$c = 25.4500(7) \; { m \AA} \; \; \; \gamma = 90^{\circ}$
Zellvolumen	5669.6(3) Å ³
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	$1.194 \mathrm{Mg/m^3}$
Absorptionskoeffizient	0.633 mm^{-1}
Kristallgröße	$0.32 \ge 0.28 \ge 0.22 \text{ mm}$
Gemessener θ -Bereich	$3.96 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	26626
Unabhängige Reflexe	$14474 \; ({ m Rint} = 0.0903)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8734 und 0.8232
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$14474 \ / \ 3 \ / \ 623$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0803, wR2 = 0.1868
R-Werte (alle Daten)	m R1 = 0.1563, wR2 = 0.2317
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.042P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
Absolutstrukturparameter	0.46(2)
GooF (alle Daten)	0.987
Größtes Maximum und Minimum	$0.593 \text{ und } -0.374 \text{ e}\text{\AA}^{-3}$

Die Kristallqualität ist nicht sehr gut und die im Kristallverband vorhandenen Ethanolmoleküle sind zum Teil fehlgeordnet. Diese wurden daher nicht anisotrop verfeinert. Weiterhin handelt es sich um einen "Inversionszwilling".

A.34.13. [Co(L-N₄^tBu₂)(bipy)](BPh₄)₂ (13a) (1) $[Co(L-N_4^tBu_2)(bipy)](BPh_4)_2 \cdot MeCN \cdot 0.6 Et_2O$ (13b)

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 08160o.

Summenformel Molmasse Temperatur Strahlung Wellenlänge Scanmodus Kristallsystem	C _{84.4} H ₈₉ B ₂ CoN ₇ O _{0.6} 1291.18 150 K MoK α 0.71073 Å Ω-scans Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 18.6708(3)$ Å $\alpha = 90^{\circ}$ $b = 14.3938(3)$ Å $\beta = 92.8710(10)^{\circ}$ $c = 26.5019(4)$ Å $\gamma = 90^{\circ}$
Zellvolumen	7113.3(2) $Å^3$
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	1.206 Mg/m^3
Absorptionskoeffizient	0.293 mm^{-1}
Kristallgröße	$0.31 \ge 0.29 \ge 0.24 \text{ mm}$
Gemessener θ -Bereich	2.68 bis 30.00°
Anzahl der gemessenen Reflexe	52928
Unabhangige Reflexe	20409 (Rmt = 0.0488)
Absorptionskorrektur	Semi-empirisch aus Aquivalenten
Max. und min. Transmission	0.9331 und 0.9148 Outend Diffusction Comini & Illtra
Strukturlögung	Direkte Methoden
Strukturlösungsprogramm	SIR07 (Ciacovaggo et al. 1007)
Strukturverfeinerung	Vollmetrix Leget-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick 1997)
Daten / Restraints / Parameter	20409 / 44 / 921
Endgültige R-Werte $[I > 2\sigma(I)]$	B1 = 0.0485, $wB2 = 0.1084$
R-Werte (alle Daten)	R1 = 0.0977, wR2 = 0.1294
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0617P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.970
Größtes Maximum und Minimum	0.711 und $-0.434 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfallen zwei Tetraphenylborationen, ein Molekül Acetonitril und 0.6 Moleküle Diethylether im Kristallverband. Der Diethylether ist fehlgeordnet und zur Beschreibung des Modells wurden die restraints DFIX, ISOR EADP und FLAT verwendet. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-

Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(b) Messung bei 233 K

Kristalldaten und Strukturverfeinerung für 081610.

C_{84.4}H₈₉B₂CoN₇O_{0.6} 1291.18 Summenformel Molmasse Temperatur 233 K Strahlung $MoK\alpha$ Wellenlänge 0.71073 Å Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 18.7837(3) Å $\alpha = 90^{\circ}$ $b = 14.4522(2) \text{ Å} \quad \beta = 92.9890(10)^{\circ}$ $c = 26.6526(4) \text{ Å} \quad \gamma = 90^{\circ}$ 7225.43(19) Å³ Zellvolumen Formeleinheiten pro Zelle Z $\mathbf{4}$ Berechnete Dichte 1.187 Mg/m^3 0.288 mm^{-1} Absorptionskoeffizient Kristallgröße $0.31 \ge 0.29 \ge 0.24 \text{ mm}$ Gemessener θ -Bereich 2.59 bis 30.00° Anzahl der gemessenen Reflexe 50983Unabhängige Reflexe 20773 (Rint = 0.0580) Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.9341 und 0.9160 Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung Strukturl"osungsprogrammSIR97 (Giacovazzo et al., 1997) Strukturverfeinerung Vollmatrix Least-Squares gegen F^2 SHELXL-97 (Sheldrick, 1997) 20773 / 75 / 920 Strukturverfeinerungsprogramm Daten / Restraints / Parameter R1 = 0.0521, wR2 = 0.1081Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.1282, wR2 = 0.1395Wichtungsschema $w=1/[\sigma^2(Fo^2)+(0.0603P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ GooF (alle Daten) 0.9580.571 und $-0.356 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Auf ein Komplex-Ion entfallen zwei Tetraphenylborationen, ein Molekül Acetonitril und 0.6 Moleküle Diethylether im Kristallverband. Der Diethylether ist fehlgeordnet und zur Beschreibung des Modells wurden die restraints DFIX, ISOR EADP und FLAT verwendet.

(2) $[Co(L-N_4^tBu_2)(bipy)](BPh_4)_2 \cdot 2 EtCN$ (13c)

Kristalldaten und Strukturverfeinerung für 081750.

Summenformel	$C_{86}H_{90}B_2CoN_8$
Molmasse	1316.21
Temperatur	150 K
Strahlung	$MoK\alpha$
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 18.5192(2) ext{ \AA} lpha = 90^{\circ}$
	$b = 14.4399(2) \; { m \AA} eta = 92.246(1)^{\circ}$
	$c = 26.4736(3) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	$7074.01(15) \text{ Å}^3$
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.236 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.295 mm^{-1}
Kristallgröße	$0.51 \ge 0.33 \ge 0.27 \text{ mm}$
Gemessener θ -Bereich	$2.61 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	55286
Unabhängige Reflexe	$20388 \; ({\rm Rint} = 0.0455)$
Absorptionskorrektur	keine
Max. und min. Transmission	0.9245 und 0.8639
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$20388 \ / \ 15 \ / \ 915$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0404, wR2 = 0.0782
R-Werte (alle Daten)	m R1=0.0842,wR2=0.0848
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0393P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.864
Größtes Maximum und Minimum	$0.331 \text{ und } -0.469 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfallen zwei Moleküle Propionitril als Lösungsmittel im Kristallverband. Ein Molekül ist fehlgeordnet und zur Beschreibung des Modells wurden die "restraints SAME" verwandt. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und O–H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.14. $[Co(L-N_4^tBu_2)(ampy)](CIO_4)_2 \cdot 0.5 MeCN (14b)$

Kristalldaten und Strukturverfeinerung für 0823.

Summenformel	$C_{58}H_{83}Cl_4Co_2N_{13}O_{16}$
Molmasse	1478.03
Temperatur	193(2) K
Strahlung	$Mo\dot{K}\dot{lpha}$
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 12.6830(8) \ { m \AA} lpha = 90^\circ$
	$b = 18.7595(8)$ Å $\beta = 91.366(8)^{\circ}$
	$c = 27.1964(18) \text{ Å}$ $\gamma = 90^{\circ}$
Zellvolumen	$6468.9(7) \text{ Å}^3$
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.518 { m Mg/m^3}$
Absorptionskoeffizient	0.756 mm^{-1}
Kristallgröße	$0.35 \ge 0.28 \ge 0.24 \text{ mm}$
Gemessener θ -Bereich	$2.17 \text{ bis } 27.50^{\circ}$
Anzahl der gemessenen Reflexe	75429
Unabhängige Reflexe	$14863 \; ({ m Rint} = 0.0617)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8394 und 0.7778
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	14863 / 0 / 879
Endgültige R-Werte $[1>2\sigma(1)]$	R1 = 0.0326, WR2 = 0.0630
R-Werte (alle Daten)	R1 = 0.0670, WR2 = 0.0680
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0336P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.818
Größtes Maximum und Minimum	$0.479 \text{ und } -0.426 \text{ eA}^{-3}$

In der asymmetrischen Einheit befinden sich zwei unabhängige Komplexionen, vier Perchlorationen und ein Molekül Acetonitril als Lösungsmittelmolekül. Das Acetonitrilmolekül ist fehlgeordnet. Die Summenformel, die Molmasse und Formeleinheiten pro Zelle beziehen sich auf den "Inhalt" der asymmetrischen Einheit.

A.34.15. $[Co(L-N_4^{t}Bu_2)(NCMe)_2](BPh_4)_2 \cdot MeCN$ (15b)

Kristalldaten und Strukturverfeinerung für 0944c.

Summenformel	$C_{76}H_{81}B_2CoN_7$
Molmasse	1173.03
Temperatur	150 K
Strahlung	CuKa
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a=18.9656(4)$ Å $lpha=90^\circ$
	$b = 17.9069(6) \text{ \AA} \beta = 91.274(2)^{\circ}$
	$c = 18.7315(7) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	6359.9(3) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.225 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	2.489 mm^{-1}
Kristallgröße	$0.24 \ge 0.20 \ge 0.05 \text{ mm}$
Gemessener θ -Bereich	$3.41 \text{ bis } 62.91^{\circ}$
Anzahl der gemessenen Reflexe	34732
Unabhängige Reflexe	$10022 \; ({ m Rint} = 0.0654)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8856 und 0.5865
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$10022 \ / \ 0 \ / \ 784$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0467, wR2 = 0.1160
R-Werte (alle Daten)	m R1 = 0.0776, wR2 = 0.1286
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0768P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.909
Größtes Maximum und Minimum	$0.674 \text{ und } -0.345 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfällt ein Molekül Acetonitril als Lösungsmittel im Kristallverband. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.16. [Co(L-N₄^tBu₂)(pyc)](BPh₄) · EtCN (16b)

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 082040.

 $\substack{ C_{55}H_{61}BCoN_6O_2\\ 907.84 }$ Summenformel Molmasse Temperatur $150 \mathrm{K}$ Strahlung $MoK\alpha$ 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 14.0178(3) Å $\alpha = 90^{\circ}$ b = 24.2033(5) Å $\beta = 101.891(2)^{\circ}$ $c = 14.2474(3) \text{ Å} \quad \gamma = 90^{\circ}$ 4730.09(17) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 Berechnete Dichte $1.275 \ {\rm Mg/m^3}$ Absorptionskoeffizient 0.412 mm^{-1} $0.38 \ge 0.34 \ge 0.16 \ {\rm mm}$ Kristallgröße Gemessener θ -Bereich 4.08 bis 30.00° Anzahl der gemessenen Reflexe 30983 Unabhängige Reflexe 13383 (Rint = 0.0394) Absorptionskorrektur Semi-empirisch aus Äquivalenten 0.9370 und 0.8592 Max. und min. Transmission Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 13383 / 0 / 593 R1 = 0.0415, wR2 = 0.0763Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) Wichtungsschema 0.905GooF (alle Daten) $0.416 \text{ und } -0.456 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Auf ein Komplexmolekül entfällt ein Molekül Propionitril als Lösungsmittel im Kristallverband. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(b) Messung bei 293 K

Kristalldaten und Strukturverfeinerung für 10009o.

Summenformel	$C_{55}H_{61}BCoN_6O_2$
Molmasse	907.84
Temperatur	293 K
Strahlung	MoKa
Wellenlänge	0.71073 A
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 14.1585(5) \ { m \AA} lpha = 90^{\circ}$
	$b=24.3887(8)~{ m \AA}~~eta=101.539(3)^{\circ}$
	$c = 14.3414(4) \ { m \AA} \gamma = 90^{\circ}$
Zellvolumen	4852.1(3) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.243 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.401 mm^{-1}
Kristallgröße	$0.51 \ge 0.38 \ge 0.13 \text{ mm}$
Gemessener θ -Bereich	$2.90 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	30022
Unabhängige Reflexe	$14132 ({\rm Rint}=0.0403)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9497 und 0.8214
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	14132 / 0 / 593
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0458, wR2 = 0.0772
R-Werte (alle Daten)	m R1 = 0.1120, wR2 = 0.0883
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0376P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.827
Größtes Maximum und Minimum	$0.571 \text{ und } -0.400 \text{ e}^{\text{Å}-3}$

Auf ein Komplex-Ion entfällt ein Molekül Propionitril als Lösungsmittel im Kristallverband. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(c) Messung bei 373 K

Kristalldaten und Strukturverfeinerung für 11147ocu.

Summenformel	$C_{55}H_{61}BCoN_6O_2$
Molmasse	907.84
Temperatur	373(2) K
Strahlung	CuKα
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 14.2513(4) \text{ Å} lpha = 90^{\circ}$
	$b = 24.5949(7)$ Å $\beta = 101.376(3)^{\circ}$
	$c = 14.3746(4) \ { m \AA} \gamma = 90^{\circ}$
Zellvolumen	4939.4(2) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.221 \mathrm{Mg/m^3}$
Absorptionskoeffizient	3.083 mm^{-1}
Kristallgröße	$0.58 \ge 0.43 \ge 0.24 \text{ mm}$
Gemessener θ -Bereich	$3.59 \text{ bis } 62.63^{\circ}$
Anzahl der gemessenen Reflexe	18000
Unabhängige Reflexe	$7822 \; ({ m Rint} = 0.0606)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.5249 und 0.2679
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	7822 / 1 / 593
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0685, wR2 = 0.1616
R-Werte (alle Daten)	m R1 = 0.1121, wR2 = 0.1878
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0738P)^2+5.0920P]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.059
Größtes Maximum und Minimum	$0.710 \text{ und } -0.420 \text{ e}^{\text{Å}-3}$

Auf ein Komplex-Ion entfällt ein Molekül Propionitril als Lösungsmittel im Kristallverband. Für die "Fixierung" der Bindungslänge zwischen C54 und C55 im Propionitril wurde das restraint DFIX verwendet.
A.34.17. $[Co(L-N_4^{t}Bu_2)(NCSe)_2]$ (17)

(a) Messung bei 110 K

Kristalldaten und Strukturverfeinerung für 09164ocu.

Summenformel $C_{24}H_{32}CoN_6Se_2$ Molmasse 621.41 Temperatur $110 \mathrm{K}$ Strahlung $CuK\alpha$ 1.54184 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Orthorhombisch Raumgruppe P212121 $a = 11.98330(10) \text{ Å} \quad \alpha = 90^{\circ}$ Zelldimensionen $\beta = 90^{\circ}$ b = 13.4319(2) Å c = 15.6935(2) Å $\gamma = 90^{\circ}$ 2526.00(5) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 1.634 Mg/m^3 Berechnete Dichte Absorptionskoeffizient 8.807 mm^{-1} $0.48 \ge 0.18 \ge 0.09 \ {\rm mm}$ Kristallgröße Gemessener θ -Bereich 4.33 bis 62.68° Anzahl der gemessenen Reflexe 12641 3887 (Rint = 0.0320)Unabhängige Reflexe Absorptionskorrektur analytisch Max. und min. Transmission 0.5045 und 0.1012 Diffraktometer Oxford Diffraction Gemini S Ultra Strukturlösung Direkte Methoden Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) 3887 / 0 / 304 Daten / Restraints / Parameter Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0233, wR2 = 0.0566R-Werte (alle Daten) R1 = 0.0244, wR2 = 0.0570 $w=1/[\sigma^2(Fo^2)+(0.0422P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema GooF (alle Daten) 0.964Absolutstrukturparameter -0.022(3)0.259 und $-0.421 \text{ e}^{\text{Å}-3}$ Größtes Maximum und Minimum

(b) Messung bei 193 K

Kristalldaten und Strukturverfeinerung für 0907.

Summenformel	$C_{24}H_{32}CoN_6Se_2$
Molmasse	621.41
Temperatur	193(2) K
Strahlung	MoKα
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	P2(1)2(1)2(1)
Zelldimensionen	$a = 12.0044(5) \; { m \AA} lpha = 90^\circ$
	$b = 13.4617(8) \text{ \AA} eta = 90^{\circ}$
	$c = 15.7817(7) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	2550.3(2) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.618 \mathrm{Mg/m^3}$
Absorptionskoeffizient	3.551 mm^{-1}
Kristallgröße	$0.56 \ge 0.24 \ge 0.20 \text{ mm}$
Gemessener θ -Bereich	$2.61 \text{ bis } 28.00^{\circ}$
Anzahl der gemessenen Reflexe	21053
Unabhängige Reflexe	$6099~({ m Rint}=0.0353)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.5369 und 0.2410
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6099 / 0 / 304
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0285, wR2 = 0.0681
R-Werte (alle Daten)	R1 = 0.0335, wR2 = 0.0697
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0455P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.977
Absolutstrukturparameter	-0.013(8)
Größtes Maximum und Minimum	$0.477 \text{ und } -0.534 \text{ e} \text{\AA}^{-3}$

(c) Messung bei 293 K

Kristalldaten und Strukturverfeinerung für 0911.

Cumpus on formal	C II CoN Co
Molmasso	$C_{24}\Pi_{32} \cup ON_6 Se_2$ 621 41
Tomporatur	021.41 203(2) K
Strahlung	255(2) R MoKo
Wellerlänge	0.71072 Å
Seenmodus	0.71075 A
Kristellavatom	0rthorhomhiach
Rumgruppo	D10101101101101SCII D010101
Zalldimensionen	1212121 21212121 21212121 21212121 21212121 21212121 2121212121
Zendimensionen	$a = 12.0476(7)$ A $\alpha = 90$
	$b = 13.5247(8) \text{ A} \beta = 90^{\circ}$
	$c = 15.9708(7) \text{ A} \gamma = 90^{\circ}$
Zellvolumen	2602.3(2) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.536~\mathrm{Mg/m^3}$
Absorptionskoeffizient	3.481 mm^{-1}
Kristallgröße	$0.56 \ge 0.24 \ge 0.20 \text{ mm}$
Gemessener θ -Bereich	$2.55 \text{ bis } 28.00^{\circ}$
Anzahl der gemessenen Reflexe	20819
Unabhängige Reflexe	$6260 \; ({ m Rint} = 0.0387)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.1464 und 0.1988
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6260 / 0 / 304
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0356, wR2 = 0.0771
R-Werte (alle Daten)	m R1 = 0.0533, wR2 = 0.0827
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0492P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
Absolutstrukturparameter	-0.001(10)
GooF (alle Daten)	0.902
Größtes Maximum und Minimum	$0.473 \text{ und } -0.499 \text{ e}\text{\AA}^{-3}$

(d) Messung bei 373 K

Kristalldaten und Strukturverfeinerung für 09580.

Summenformel	$C_{24}H_{32}CoN_6Se_2$
Molmasse	621.41
Temperatur	373(2) K
Strahlung	MoKa
Wellenlänge	0.71073 A
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	P212121
Zelldimensionen	$a = 12.0668(4) \ { m \AA} lpha = 90^\circ$
	$b = 13.5549(3) \ { m \AA} \ \ \ eta = 90^\circ$
	$c = 16.0458(4) \; { m \AA} \; \; \; \gamma = 90^{\circ}$
Zellvolumen	$2624.52(12) \text{ Å}^3$
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.573~\mathrm{Mg/m^3}$
Absorptionskoeffizient	3.451 mm^{-1}
Kristallgröße	$0.41 \ge 0.39 \ge 0.38 \text{ mm}$
Gemessener θ -Bereich	$2.54 \text{ bis } 29.00^{\circ}$
Anzahl der gemessenen Reflexe	12073
Unabhängige Reflexe	$5969 \; ({ m Rint} = 0.0333)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.3538 und 0.3319
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	5969 / 0 / 304
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0369, wR2 = 0.0631
R-Werte (alle Daten)	R1 = 0.0802, wR2 = 0.0792
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0349P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
Absolutstrukturparameter	-0.008(11)
GooF (alle Daten)	0.960
Größtes Maximum und Minimum	$0.426 \text{ und } -0.493 \text{ e}^{\text{Å}-3}$

A.34.18. $[Co(L-N_4^{t}Bu_2)(NCS)_2]$ (18)

(a) Messung bei 30 K

Summary of details for X-ray crystallography

- 1. Compound name: $[Co(L-N_4^{t}Bu_2)(NCS)_2]$
- 2. Formula: $C_{24}H_{32}CoN_6S_2$
- 3. Crystal data (e.s.d.'s in parentheses):

 $\begin{array}{ll} {\rm a}({\rm \AA}) = 11.5860(2) & \alpha(^{\circ}) = 90 \\ {\rm b}({\rm \AA}) = 13.8548(2) & \beta(^{\circ}) = 90.160(1) \\ {\rm c}({\rm \AA}) = 15.2593(3) & \gamma(^{\circ}) = 90 \\ {\rm V}({\rm \AA}^3) = 2449.44(7) & {\rm Z} = 4 \end{array}$

Number of reflections used for cell refinement: 9962 Range (°): $4.4 \le 2\Theta \le 58.9$

- 4. Crystal system, space group (number in "International Tables") monoclinic, $P2_1/n$ (Nr. 14)
- 5. Experimental conditions:

Radiation: MoK_{α} (Graphitmonochromator), $\lambda = 0.71073$ Å 2 Θ -range (°): $3.9 \le 2\Theta \le 59.1$ Diffractometer: Bruker-SMART APEX2 Scan: ϕ - and ω -rotations with 0.50° and 10 s per frame Temperature (K): 30 Crystal shape and color: prism, red Crystal size (mm): $0.50 \times 0.40 \times 0.28$ D_{textber} (g·cm⁻³): 1.431 μ (mm⁻¹): 0.896

6. Absorption correction: SADABS (semiempirical from multiple measurements of equivalent reflections)

 $T_{\rm min}=0.651, ~~T_{\rm max}=0.746$

7. Extinction correction: none

8.	Number of reflections (N)	collected: unique: observed ($F_0 > 4.0\sigma(F)$):	$29688 \\ 6598 \\ 5831$
	Structure solution: direct me	thods	

Number of refined parameters (p): 304

9. Fractional atomic coordinates and equivalent isotropic displacement parameters

(Tab. 2 containing x, y, z with e.s.d.'s, Ueq included)

10. Source of atomic scattering factors and anomal dispersion correction terms

(f' and f"): International Tables for Crystallography, Vol. C (1992), Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht: Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222) und 4.2.4.2 (pp. 193-199).

- 11. Table of anisotropic displacement parameters included (Tab. 4) (anisotropic according to: $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_i$)
- 12. Table of bond distances and angles (Tab. 3) with e.s.d.'s in parentheses included.
- 13. Table of hydrogen coordinates and isotropic displacement parameters (Tab. 5) included. Geometrically positioned H-atoms are given without e.s.d.'s (see also Remarks)
- 14. Final R indices:

$$wR_{2} = \left[\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}\right]^{\frac{1}{2}} = 0.0773$$

$$R_{1} = \left[\frac{\sum ||F_{o}| - |F_{c}||}{\sum |F_{o}|}\right] = 0.0298 \quad \text{(for observed reflections)}$$

$$GooF = S = \left[\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{(n-p)}\right]^{\frac{1}{2}} = 1.065$$

1

- 15. Weighting scheme: $w = 1/[\sigma^2(Fo^2) + (0.0374 \cdot P)^2 + 1.0537P]$ $P = (F_o^2) + 2 \cdot F_c^2)/3$
- Residual electron density (largest peak and hole, e ·Å⁻³) in the final difference fourier synthesis: max.: 0.535

min.: -0.558

17. Remarks:

Representation of the molecular structure with the atomic numbering scheme is included. All non-hydrogen atoms were refined anisotropically.

Treatment of hydrogen atoms: All hydrogen atoms were placed in positions of optimized geometry, their isotropic displacement parameters were tied to those of their corresponding carrier atoms by a factor of 1.2 or 1.5.

18. Software:

Measurement:	APEX 2 (Bruker AXS, 2009)
Data reduction:	SAINT (Bruker AXS, 2009)
Absorption correction:	SADABS (Bruker AXS, 2009)
Structure solution:	SHELXTL NT 6.12 (Bruker AXS, 2002)
Refinement:	SHELXTL NT 6.12 (Bruker AXS, 2002)
Graphical representation:	SHELXTL NT 6.12 (Bruker AXS, 2002)

Crystal data and structure refinement for hjk1002.

hjk1002
$\mathring{C}_{24}H_{32}CoN_6S_2$
527.61
30(2) K
0.71073 Å
Monoclinic, $P2(1)/n$
$a = 11.5860(2)$ Å $\alpha = 90^{\circ}$
$b = 13.8548(2) \ { m \AA} \ \ \ eta = 90.1600(10)^{\circ}$
$c = 15.2593(3) \ { m \AA} \gamma = 90^{\circ}$
$2449.44(7) \text{ Å}^3$
$4, 1.431 { m Mg/m^3}$
0.896 mm^{-1}
1108
$0.50 \ge 0.40 \ge 0.28 \text{ mm}$
$1.99 \text{ to } 29.52^{\circ}$
$-16 \le h \le 15, -18 \le k \le 18, -21 \le l \le 20$
$29688 \ / \ 6598 \ [{ m R(int)} = 0.0359]$
100.0~%
Semi-empirical from equivalents
0.746 and 0.651
Bruker-SMART APEX2
direct methods
Full-matrix least-squares on F^2
$6598 \ / \ 0 \ / \ 304$
1.065
R1 = 0.0298, wR2 = 0.0748
R1 = 0.0351, wR2 = 0.0773
$0.535 \text{ and } -0.558 \text{ e} \text{\AA}^{-3}$

(b) Messung bei 110 K

Kristalldaten und Strukturverfeinerung für 09150.

Summenformel	$C_{24}H_{32}CoN_6S_2$
Molmasse	527.61
Temperatur	110(2) K
Strahlung	MoKα
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/n$
Zelldimensionen	$a = 11.6122(3) ext{ \AA} lpha = 90^{\circ}$
	$b = 13.9565(2) \; { m \AA} eta = 90.240(2)^\circ$
	$c = 15.2951(3) ext{ Å} \gamma = 90^{\circ}$
Zellvolumen	2478.79(9) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.414 \mathrm{Mg/m^3}$
Absorptionskoeffizient	0.886 mm^{-1}
Kristallgröße	$0.25 \ge 0.19 \ge 0.10 \text{ mm}$
Gemessener θ -Bereich	$2.64 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	22146
Unabhängige Reflexe	$7053 \; ({ m Rint} = 0.0328)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9167 und 0.8090
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	7053 / 0 / 304
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0299, wR2 = 0.0626
R-Werte (alle Daten)	m R1 = 0.0496, wR2 = 0.0692
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0337P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.991
Größtes Maximum und Minimum	$0.351 \text{ und } -0.302 \text{ e}^{\text{Å}-3}$

(c) Messung bei 293 K

Kristalldaten und Strukturverfeinerung für 0901.

Summenformel	$C_{24}H_{32}CoN_6S_2$
Molmasse	527.61
Temperatur	293(2) K
Strahlung	MoKa
Wellenlänge	0.71073 Å
Scanmodus	Φ -Oszillation
Kristallsystem	Monoklin
Raumgruppe	$P2_1/n$
Zelldimensionen	$a = 11.7788(8) ext{ \AA} lpha = 90^{\circ}$
	$b = 14.0734(8) \; { m \AA} eta = 90.139(7)^{\circ}$
	$c = 15.3420(9) \; { m \AA} \; \; \; \gamma = 90^{\circ}$
Zellvolumen	2543.2(3) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.378 \mathrm{Mg/m^3}$
Absorptionskoeffizient	0.863 mm^{-1}
Kristallgröße	$0.23 \ge 0.18 \ge 0.14 \text{ mm}$
Gemessener θ -Bereich	2.89 bis 28.00°
Anzahl der gemessenen Reflexe	31039
Unabhängige Reflexe	$6106 \; ({ m Rint} = 0.1026)$
Absorptionskorrektur	keine
Max. und min. Transmission	0.8887 und 0.8262
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6106 / 0 / 298
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0548, wR2 = 0.1349
R-Werte (alle Daten)	${ m R1}=0.0691,{ m wR2}=0.1428$
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0853P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.038
Größtes Maximum und Minimum	$0.656 \text{ und } -0.867 \text{ e} \text{\AA}^{-3}$

(d) Messung bei 450 K

Kristalldaten und Strukturverfeinerung für 10183ocu.

Summenformel	$C_{24}H_{32}CoN_6S_2$
Molmasse	527.61
Temperatur	450 K
Strahlung	CuKa
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/n$
Zelldimensionen	$a = 11.9540(5) \ { m \AA} lpha = 90^{\circ}$
	$b = 14.1782(5) \; { m \AA} eta = 90.008(4)^\circ$
	$c=15.3992(7)$ Å $\gamma=90^\circ$
Zellvolumen	2609.95(19) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.343 { m Mg/m^3}$
Absorptionskoeffizient	6.829 mm^{-1}
Kristallgröße	$0.40 \ge 0.16 \ge 0.12 \text{ mm}$
Gemessener θ -Bereich	$4.24 \text{ bis } 62.64^{\circ}$
Anzahl der gemessenen Reflexe	9783
Unabhängige Reflexe	$3897 \; ({ m Rint} = 0.0350)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.4946 und 0.1709
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	3897 / 0 / 304
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0420, wR2 = 0.0978
R-Werte (alle Daten)	m R1 = 0.0658, wR2 = 0.1055
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0643P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.909
Größtes Maximum und Minimum	$0.363 \text{ und } -0.353 \text{ e}^{\text{Å}-3}$

A.34.19. $[Co(L-N_4^{t}Bu_2)(ox)]$ (19)

(a) Messung bei 110 K

Kristalldaten und Strukturverfeinerung für 101810.

Summenformel C₂₄H₃₂CoN₄O₄ Molmasse 499.47 Temperatur $110 \mathrm{K}$ $MoK\alpha$ Strahlung Wellenlänge 0.71073 Å Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 14.4552(3) Å $\alpha = 90^{\circ}$ b = 18.1930(3) Å $\beta = 111.113(2)^{\circ}$ $c = 18.8763(3) \text{ Å} \quad \gamma = 90^{\circ}$ 4629.96(14) Å³ Zellvolumen Formeleinheiten pro Zelle Z 8 Berechnete Dichte $1.433 \mathrm{Mg/m^3}$ Absorptionskoeffizient 0.780 mm^{-1} $0.52 \ge 0.41 \ge 0.38 \text{ mm}$ Kristallgröße Gemessener θ -Bereich 3.02 bis 30.00° Anzahl der gemessenen Reflexe 31221 Unabhängige Reflexe 13483 (Rint = 0.0335) Absorptionskorrektur Semi-empirisch aus Äquivalenten 0.7559 und 0.6872 Max. und min. Transmission Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung StrukturverfeinerungsprogrammSHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 13483 / 0 / 607 R1 = 0.0354, wR2 = 0.0816Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0594, wR2 = 0.0866R-Werte (alle Daten) $w=1/[\sigma^2(Fo^2)+(0.0547P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema 0.830 GooF (alle Daten) $0.771 \text{ und } -0.456 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

(b) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 101770.

Summenformel	$C_{24}H_{32}CoN_4O_4$
Molmasse	499.47
Temperatur	150 K
Strahlung	ΜοΚα
Wellenlänge	0.71073 A
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 14.4291(3) \ { m \AA} lpha = 90^\circ$
	$b = 18.2341(3) \text{ \AA} eta = 111.025(2)^\circ$
	$c = 18.8838(3) \ { m \AA} \gamma = 90^{\circ}$
Zellvolumen	4637.58(14) Å ³
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	$1.431 { m Mg/m^3}$
Absorptionskoeffizient	0.779 mm^{-1}
Kristallgröße	$0.52 \ge 0.41 \ge 0.38 \text{ mm}$
Gemessener θ -Bereich	$3.02 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	25449
Unabhängige Reflexe	$13494 \; ({ m Rint} = 0.0228)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.7562 und 0.6876
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	13494 / 0 / 607
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0339, wR2 = 0.0791
R-Werte (alle Daten)	m R1 = 0.0541, wR2 = 0.0828
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0463P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.935
Größtes Maximum und Minimum	$0.537 \text{ und } -0.460 \text{ e}^{\text{Å}-3}$

Die asymmetrische Einheit weist zwei voneinander unabhängige Komplexmoleküle auf. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.20. $[Co(L-N_4^tBu_2)Cl_2] \cdot MeCN$ (20a)

Kristalldaten und Strukturverfeinerung für 11059ocu.

Summenformel	$C_{24}H_{35}Cl_2CoN_5$
Molmasse	523.40
Temperatur	150 K
Strahlung	CuKa
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a=10.2665(2)$ Å $lpha=90^\circ$
	$b = 18.1018(3) \; { m \AA} eta = 90.1120(10)^\circ$
	$c = 40.6608(5) \; { m \AA} \gamma = 90^\circ$
Zellvolumen	7556.5(2) Å ³
Formeleinheiten pro Zelle Z	12
Berechnete Dichte	$1.380~\mathrm{Mg/m^3}$
Absorptionskoeffizient	7.452 mm^{-1}
Kristallgröße	$0.31 \ge 0.30 \ge 0.04 \text{ mm}$
Gemessener θ -Bereich	$3.27 \text{ bis } 62.66^{\circ}$
Anzahl der gemessenen Reflexe	34174
Unabhängige Reflexe	$12025 \; ({\rm Rint} = 0.0655)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.7548 und 0.2060
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$12025 \ / \ 0 \ / \ 886$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1=0.0436,wR2=0.0927
R-Werte (alle Daten)	R1 = 0.0779, wR2 = 0.1045
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0562P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.915
Größtes Maximum und Minimum	$0.438 \text{ und } -0.479 \text{ e} \text{\AA}^{-3}$

In der asymmetrischen Einheit sind drei unabhängige Komplexmoleküle enthalten. Auf jedes Komplexmolekül entfällt weiterhin ein Molekül Acetonitril als Lösungsmittelmolekül im Kristallverband. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.21. $[Co(L-N_4^tBu_2)(NCS)_2](BF_4) \cdot EtCN$ (21b)

Kristalldaten und Strukturverfeinerung für 0964ocu.

Summenformel	$C_{27}H_{37}BCoF_4N_7S_2$
Molmasse	669.50
Temperatur	150 K
Strahlung	CuKα
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Triklin
Raumgruppe	P-1
Zelldimensionen	$a = 8.646(2) ext{ \AA} lpha = 98.89(2)^{\circ}$
	$b = 13.377(2) \text{ Å} \beta = 93.83(3)^{\circ}$
	$c = 13.798(6)$ Å $\gamma = 105.458(17)^{\circ}$
Zellvolumen	1555.0(8) Å ³
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.430 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	6.050 mm^{-1}
Kristallgröße	$0.26 \ge 0.19 \ge 0.07 \text{ mm}$
Gemessener θ -Bereich	5.11 bis 62.31°
Anzahl der gemessenen Reflexe	12796
Unabhängige Reflexe	$47821 \; ({ m Rint} = 0.0387)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.6768 und 0.3022
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	4782 / 48 / 462
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0578, wR2 = 0.1548
R-Werte (alle Daten)	m R1 = 0.0743, wR2 = 0.1701
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.1069P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.057
Größtes Maximum und Minimum	$0.822 \text{ und } -0.934 \text{ e}^{\text{Å}-3}$

Auf ein Komplex-Ion entfällt ein BF₄-Gegenion und ein Molekül Propionitril als Lösungsmittel im Kristallverband. Das BF₄-Ion und das Propionitril-Molekül sind fehlgeordnet (60:40). Zur Beschreibung des Modells wurden die restraints SADI (BF₄⁻), bzw DFIX und EADP (EtCN) verwendet. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.22. [Fe(L-N₄Me₂)(Spy)](ClO₄) (23a)

(a) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 081990.

Summenformel	$C_{21}H_{24}ClFeN_5O_4S$
Molmasse	533.81
Temperatur	150 K
Strahlung	$MoK\alpha$
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Triklin
Raumgruppe	P-1
Zelldimensionen	$a=9.9553(5)~{ m \AA}~~lpha=107.284(3)^{\circ}$
	$b = 9.9946(5)$ Å $\beta = 100.831(3)^{\circ}$
	$c = 12.7301(3) \text{ Å}$ $\gamma = 100.987(4)^{\circ}$
Zellvolumen	$1146.15(9) \text{ Å}^{3}$
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.547~\mathrm{Mg/m^3}$
Absorptionskoeffizient	0.905 mm^{-1}
Kristallgröße	$0.35 \ge 0.21 \ge 0.14 \text{ mm}$
Gemessener θ -Bereich	$4.31 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	13365
Unabhängige Reflexe	$6561 \; ({ m Rint} = 0.0335)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8838 und 0.7425
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6561 / 61 / 346
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0401, wR2 = 0.0824
R-Werte (alle Daten)	m R1 = 0.0624, wR2 = 0.0874
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0450P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.961
Größtes Maximum und Minimum	$0.526 \text{ und } -0.355 \text{ e}\text{\AA}^{-3}$

Das Perchloration ist fehlgeordnet. Zur Modellbeschreibung wurden die restraints SADI, SAME und

(b) Messung bei 373 K

Kristalldaten und Strukturverfeinerung für 082050.

Summenformel	$C_{21}H_{24}ClFeN_5O_4S$
Molmasse	533.81
Temperatur	337(2) K
Strahlung	MoKa
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Triklin
Raumgruppe	P-1
Zelldimensionen	$a = 10.2220(4) \ { m \AA} \ \ lpha = 106.890(4)^{\circ}$
	$b = 10.2878(6) \text{ \AA} \beta = 102.501(4)^{\circ}$
	$c = 13.0262(5) \text{ Å} \gamma = 103.414(4)^{\circ}$
Zellvolumen	1214.27(10) Å ³
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.460 { m Mg/m^3}$
Absorptionskoeffizient	0.854 mm^{-1}
Kristallgröße	$0.35 \ge 0.21 \ge 0.14 \text{ mm}$
Gemessener θ -Bereich	$4.12 \text{ bis } 28.50^{\circ}$
Anzahl der gemessenen Reflexe	12642
Unabhängige Reflexe	$6016 \; ({ m Rint} = 0.0440)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8898 und 0.7543
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$6016 \ / \ 27 \ / \ 300$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0592, wR2 = 0.1493
R-Werte (alle Daten)	m R1 = 0.1103, wR2 = 0.1693
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0994P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.933
Größtes Maximum und Minimum	$0.630 \text{ und } -0.407 \text{ e} \text{\AA}^{-3}$

Zur Modellbeschreibung des Perchlorations wurden die restraints SADI und ISOR benutzt. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.23. [Fe(L-N₄Me₂)(BzImCOO)] · 2 EtOH (24a)

Kristalldaten und Strukturverfeinerung für 081670.

Summenformel	$C_{28}H_{36}FeN_6O_4$
Molmasse	576.48
Temperatur	150 K
Strahlung	$MoK\alpha$
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	P212121
Zelldimensionen	$a = 8.25610(10) ext{ \AA} lpha = 90^\circ$
	$b = 16.6328(2)$ Å $\ eta = 90^{\circ}$
	$c=19.6803(3) ext{ \AA} \gamma=90^\circ$
Zellvolumen	2702.54(6) Å ³
Formeleinheiten pro Zelle Z	4
Berechnete Dichte	$1.417 { m Mg/m^3}$
Absorptionskoeffizient	0.604 mm^{-1}
Kristallgröße	$0.48 \ge 0.32 \ge 0.21 \text{ mm}$
Gemessener θ -Bereich	$2.75 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	18189
Unabhängige Reflexe	7287 (Rint = 0.0301)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8836 und 0.7602
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$7287 \ / \ 0 \ / \ 358$
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0327, wR2 = 0.0728
R-Werte (alle Daten)	R1 = 0.0417, wR2 = 0.0760
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0442P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.991
Absolutstrukturparameter	-0.007(10)
Größtes Maximum und Minimum	$0.516 \text{ und } -0.360 \text{ e}\text{\AA}^{-3}$

Auf ein Komplexmolekül entfallen zwei Moleküle Ethanol als Lösungsmittelmoleküle im Kristallverband.

A.34.24. $[Fe(L-N_4Me_2)(biminH_2)](CIO_4)_2$ (25a)

Kristalldaten und Strukturverfeinerung für 10214ocu.

Summenformel C₂₂H₃₀Cl₂CoN₈O₈ $6\bar{61.29}$ Molmasse $150 \mathrm{K}$ Temperatur Strahlung $CuK\alpha$ Wellenlänge 1.54184 Å Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 19.2324(6) Å $\alpha = 90^{\circ}$ b = 16.9148(5) Å $\beta = 106.296(4)^{\circ}$ $c = 17.8735(6) \text{ Å} \quad \gamma = 90^{\circ}$ 5580.9(3) Å³ Zellvolumen Formeleinheiten pro Zelle Z 8 1.574 Mg/m^3 Berechnete Dichte Absorptionskoeffizient 6.636 mm^{-1} Kristallgröße $0.26 \ge 0.25 \ge 0.14 \text{ mm}$ Gemessener θ -Bereich 3.68 bis 63.10° Anzahl der gemessenen Reflexe 22352Unabhängige Reflexe 8882 (Rint = 0.0329) Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.4568 und 0.2773 Diffraktometer Oxford Diffraction Gemini S Ultra Strukturlösung Direkte Methoden Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung SHELXL-97 (Sheldrick, 1997) Strukturverfeinerungsprogramm Daten / Restraints / Parameter 8882 / 4 / 759 R1 = 0.0355, wR2 = 0.0865Endgültige R-Werte $[I > 2\sigma(I)]$ R-Werte (alle Daten) R1 = 0.0459, wR2 = 0.0890Wichtungsschema $w=1/[\sigma^2(Fo^2)+(0.0589P)^2]$ mit $P=(Fo^2+2Fc^2)/3$ 0.930GooF (alle Daten) $0.492 \text{ und } -0.3990 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Die asymmetrische Einheit enthält zwei voneinander unabhängige Komplex-Ionen. Die Lagen der Wasserstofffatome an den Stickstoffatomen N7, N8, N15 und N16 wurden einer Differenzmap entnommen und der Abstand mit der Option DFIX gehalten. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

A.34.25. [{Fe(L-N₄Me₂)}₂(μ -bimin)](ClO₄)₂ (26a)

(a) Messung bei 110 K

Kristalldaten und Strukturverfeinerung für 0994o.

Summenformel $C_{38}H_{48}Cl_2Fe_2N_{12}O_8$ Molmasse 983.48 Temperatur $110 \mathrm{K}$ Strahlung $MoK\alpha$ 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Monoklin Raumgruppe $P2_1/c$ Zelldimensionen a = 12.4562(4) Å $\alpha = 90^{\circ}$ b = 10.3538(3) Å $\beta = 109.553(4)^{\circ}$ $c = 17.5041(6) \text{ Å} \quad \gamma = 90^{\circ}$ 2127.30(12) Å³ Zellvolumen Formeleinheiten pro Zelle Z 2Berechnete Dichte $1.535 \ {\rm Mg/m^3}$ Absorptionskoeffizient 0.874 mm^{-1} $0.51 \ge 0.37 \ge 0.20 \text{ mm}$ Kristallgröße Gemessener θ -Bereich 3.46 bis 30.00° Anzahl der gemessenen Reflexe 19651 Unabhängige Reflexe 6141 (Rint = 0.0241)Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.8446 und 0.6641 Diffraktometer Oxford Diffraction Gemini S Ultra Direkte Methoden Strukturlösung SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Strukturverfeinerung Vollmatrix Least-Squares gegen F^2 Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 6141 / 0 / 282 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0351, wR2 = 0.0937 ${\rm R1}=0.0467,\,{\rm wR2}=0.1004$ ${\rm w}{=}1/[\sigma^2({\rm Fo}^2){+}(0.0560{\rm P})^2{+}0.8457{\rm P}]$ mit ${\rm P}{=}({\rm Fo}^2{+}2{\rm Fc}^2)/3$ R-Werte (alle Daten) Wichtungsschema GooF (alle Daten) 1.066 1.434 und $-0.523 \text{ e}\text{\AA}^{-3}$ Größtes Maximum und Minimum

Die hohe Restelektronendichte ist nicht befriedigend zu erklären. Es handelt sich um den gleichen Kristall, der bei 150K unter 09920 vermessen wurde und diese Problematik nicht aufweist. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

(b) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 0992o.

Summenformel	$C_{38}H_{48}Cl_2Fe_2N_{12}O_8$
Molmasse	983.48
Temperatur	150 K
Strahlung	MoKa
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	$P2_1/c$
Zelldimensionen	$a = 12.4560(3) \; { m \AA} lpha = 90^\circ$
	$b = 10.3474(3) \; { m \AA} eta = 109.617(3)^{\circ}$
	$c = 17.5097(5) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	2125.79(10) Å ³
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.536~\mathrm{Mg/m^3}$
Absorptionskoeffizient	0.875 mm^{-1}
Kristallgröße	$0.51 \ge 0.37 \ge 0.20 \text{ mm}$
Gemessener θ -Bereich	$2.47 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	19303
Unabhängige Reflexe	$6157 \; ({ m Rint} = 0.0216)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8445 und 0.6639
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6157 / 0 / 283
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0338, wR2 = 0.0882
R-Werte (alle Daten)	m R1 = 0.0463, wR2 = 0.0941
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0503P)^2+0.6470P]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.069
Größtes Maximum und Minimum	$0.920 \text{ und } -0.580 \text{ e}\text{\AA}^{-3}$

A.34.26. [Fe(L-N₄^tBu₂)(bmi)](BPh₄)₂ (27)^[127]

(a) Messung bei 150 K

Tabelle 1. Kristalldaten und Strukturverfeinerung für 07480.

Summenformel	$C_{76}H_{84}B_2FeN_6$
Molmasse	1158.96
Temperatur	150(2) K
Strahlung	MoKá
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Triklin
Raumgruppe	Pī
Zelldimensionen	${ m a}=12.8418(19)~{ m \AA}~~lpha=93.04(3)^\circ$
	${ m b}=14.204(7)~{ m \AA}~~eta=97.470(15)^\circ$
	$ m c = 17.508(4) ~ { m \AA} ~~ \gamma = 96.96(2)^{\circ}$
Zellvolumen	$3135.5(17) \text{ Å}^3$
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.228 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.290 mm^{-1}
Kristallgröße	$0.26 \ge 0.18 \ge 0.18 \text{ mm}$
Gemessener θ -Bereich	$2.66 \text{ bis } 32.38^{\circ}$
Anzahl der gemessenen Reflexe	41882
Unabhängige Reflexe	$20020 ({\rm Rint}=0.0279)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9496 und 0.9284
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$20020 \ / \ 0 \ / \ 776$
Endgültige R-Werte $[I>2 (I)]$	m R1 = 0.0418, wR2 = 0.0994
R-Werte (alle Daten)	m R1 = 0.0672, wR2 = 0.1113
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0580P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.039
Größtes Maximum und Minimum	$0.490 \text{ und } -0.488 \text{ e}\text{\AA}^{-3}$

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium F² > $2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

(b) Messung bei 293 K

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0703.

Summenformel	$\rm C_{76}H_{84}B_2FeN_6$
Molmasse	1158.96
Temperatur	293(2) K
Strahlung	MoK α
Wellenlänge	0.71073 Å
Scanmodus	Φ -Oszillation
Kristallsystem	Triklin
Raumgruppe	PĪ
Zelldimensionen	$a = 12.8896(8) ~{ m \AA}_{oldsymbol{lpha}} = 93.078(8)^{\circ}$
	$b = 14.2669(10) \text{ \AA} \beta = 97.138(7)^{\circ}$
	$c = 17.6570(11) ext{ \AA} \gamma = 96.773(8)^{\circ}$
Zellvolumen	3191.7(4) Å ³
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	$1.206 { m Mg/m^3}$
Absorptionskoeffizient	0.285 mm^{-1}
Kristallgröße	$0.26 \ge 0.18 \ge 0.18 \text{ mm}$
Gemessener θ -Bereich	$2.27 \text{ bis } 28.21^{\circ}$
Anzahl der gemessenen Reflexe	47275
Unabhängige Reflexe	$14420 \; ({ m Rint}=0.0437)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.93927 und 0.91225
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	14420 / 6 / 776
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0356, wR2 = 0.0785
R-Werte (alle Daten)	m R1 = 0.0678, wR2 = 0.0855
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0460P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.839
Größtes Maximum und Minimum	$0.212 \text{ und } -0.268 \text{ e} \text{\AA}^{-3}$

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungs-kriterium F² > $2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

A.34.27. $[Fe(L-N_4^{t}Bu_2)(bmi_{red})](BPh_4)$ (28)

Kristalldaten und Strukturverfeinerung für 11042ocu.

Summenformel	$C_{52}H_{64}BFeN_6$
Molmasse	839.75
Temperatur	110 K
Strahlung	CuKα
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	Pbca
Zelldimensionen	$a = 17.5548(3) \; { m \AA} lpha = 90^{\circ}$
	$b = 22.2028(4) \text{ Å} eta = 90^{\circ}$
	$c = 22.8466(4) \ { m \AA} \gamma = 90^{\circ}$
Zellvolumen	$8904.8(3) \text{ Å}^3$
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	$1.253 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	3.036 mm^{-1}
Kristallgröße	$0.13 \ge 0.07 \ge 0.04 \text{ mm}$
Gemessener θ -Bereich	$3.75 \text{ bis } 62.73^{\circ}$
Anzahl der gemessenen Reflexe	23531
Unabhängige Reflexe	$7106 \; ({ m Rint} = 0.0447)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8630 und 0.6932
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	7106 / 0 / 551
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0316, wR2 = 0.0605
R-Werte (alle Daten)	R1 = 0.0524, wR2 = 0.0636
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0291P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.844
Größtes Maximum und Minimum	$0.256 \text{ und } -0.206 \text{ e}\text{\AA}^{-3}$

A.34.28. $[Fe(L-N_4^{t}Bu_2)(bmi_{dep})](BPh_4)$ (29)

Kristalldaten und Strukturverfeinerung für 11227ocu.

Summenformel	$C_{52}H_{63}BFeN_6$
Molmasse	838.74
Temperatur	150 K
Strahlung	CuKα
Wellenlänge	1.54184 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	Pbca
Zelldimensionen	$a = 17.6422(4) \; { m \AA} lpha = 90^{\circ}$
	$b = 22.2922(6)$ Å $\beta = 90^{\circ}$
	$c = 22.8723(6) ~{ m \AA}$ $\gamma = 90^{\circ}$
Zellvolumen	$8995.3(4) \text{ Å}^3$
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	$1.239~\mathrm{Mg/m^3}$
Absorptionskoeffizient	3.006 mm^{-1}
Kristallgröße	$0.53 \ge 0.44 \ge 0.09 \text{ mm}$
Gemessener θ -Bereich	$3.73 \text{ bis } 62.64^{\circ}$
Anzahl der gemessenen Reflexe	22655
Unabhängige Reflexe	$7146 \; ({ m Rint} = 0.0871)$
Absorptionskorrektur	Analytisch
Max. und min. Transmission	0.7737 und 0.2998
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	$7146 \ / \ 0 \ / \ 551$
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0620, wR2 = 0.1496
R-Werte (alle Daten)	m R1 = 0.0868, wR2 = 0.1651
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.1001P)^2+3.8461P]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.032
Extinktionskoeffizient	0.00054(6)
Größtes Maximum und Minimum	$0.542 \text{ und } -0.803 \text{ e}\text{\AA}^{-3}$

Einige Kohlenstoffatome im Tetraphenylborat-Gegenion weisen große thermische Auslenkungsparameter auf. Die Kristallqualität war nicht so gut und von einer Veröffentlichung sollte daher abgesehen werden.

A.34.29. $[Fe(L-N_4Me_2)(edt)](B(p-Tol)_4) \cdot MeCN (30b)$

(a) Messung bei 110 K

Kristalldaten und Strukturverfeinerung für 09830.

 $C_{48}H_{55}BFeN_5S_2$ Summenformel Molmasse 832.75 Temperatur $110 \mathrm{K}$ $MoK\alpha$ Strahlung 0.71073 Å Wellenlänge Scanmodus Ω -scans Kristallsystem Orthorhombisch Raumgruppe Pcab Zelldimensionen a = 21.4442(3) Å $\alpha = 90^{\circ}$ $b = 16.4592(3) \text{ Å} \quad \beta = 90^{\circ}$ $c = 24.3388(3) \text{ Å} \quad \gamma = 90^{\circ}$ 8590.5(2) Å³ Zellvolumen Formeleinheiten pro Zelle Z 8 Berechnete Dichte 1.288 Mg/m^3 0.488 mm^{-1} Absorptionskoeffizient $0.59 \ge 0.37 \ge 0.17 \text{ mm}$ Kristallgröße Gemessener θ -Bereich 2.61 bis 30.00° Anzahl der gemessenen Reflexe 39582Unabhängige Reflexe 12291 (Rint = 0.0366)Absorptionskorrektur Semi-empirisch aus Äquivalenten Max. und min. Transmission 0.9216 und 0.7615 Oxford Diffraction Gemini S Ultra Diffraktometer Strukturlösung Direkte Methoden Strukturlösungsprogramm SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F^2 Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 12291 / 0 / 540 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0373, wR2 = 0.0830R-Werte (alle Daten) R1 = 0.0671, wR2 = 0.1022 $w=1/[\sigma^2(Fo^2)+(0.0455P)^2+2.4716P]$ mit $P=(Fo^2+2Fc^2)/3$ Wichtungsschema GooF (alle Daten) 1.056Größtes Maximum und Minimum $0.393 \text{ und } -0.430 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfällt ein Molekül Acetonitril als Lösungsmittel im Kristallverband. Der Ethandithiolat-Ligand im Komplex-Ion ist fehlgeordnet.

(b) Messung bei 150 K

Kristalldaten und Strukturverfeinerung für 09790a.

Summenformel	$C_{48}H_{55}BFeN_5S_2$
Molmasse	832.75
Temperatur	150 K
Strahlung	MoKa
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	Pbca
Zelldimensionen	$a = 21.5170(5) \; { m \AA} lpha = 90^\circ$
	$b = 16.5207 (4) \ { m \AA} \ \ eta = 90^{\circ}$
	$c = 24.3825(5) ext{ Å} \gamma = 90^{\circ}$
Zellvolumen	8667.4(3) Å ³
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	$1.276 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.484 mm^{-1}
Kristallgröße	$0.49 \ge 0.39 \ge 0.24 \text{ mm}$
Gemessener θ -Bereich	$2.52 \text{ bis } 30.00^{\circ}$
Anzahl der gemessenen Reflexe	64227
Unabhängige Reflexe	$12540 \; ({\rm Rint}=0.0584)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8927 und 0.7973
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	12540 / 0 / 540
Endgültige R-Werte $[I > 2\sigma(I)]$	m R1 = 0.0425, wR2 = 0.0868
R-Werte (alle Daten)	R1 = 0.0836, wR2 = 0.1045
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0459P)^2+0.3062P]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.034
Größtes Maximum und Minimum	$0.336 \text{ und } -0.379 \text{ e}\text{\AA}^{-3}$

Auf ein Komplex-Ion entfällt ein Molekül Acetonitril als Lösungsmittel im Kristallverband. Der Ethan-

(c) Messung bei 295 K

Kristalldaten und Strukturverfeinerung für 09810.

Summenformel	$C_{48}H_{55}BFeN_5S_2$
Molmasse	832.75
Temperatur	295 K
Strahlung	MoKα
Wellenlänge	0.71073 A
Scanmodus	Ω -scans
Kristallsystem	Orthorhombisch
Raumgruppe	Pbca
Zelldimensionen	$a = 21.7646(5) \ { m \AA} \ \ lpha = 90^{\circ}$
	$b = 16.6345(3) \ { m \AA} \ \ \ eta = 90^{\circ}$
	$c = 24.5312(5) \; { m \AA} \gamma = 90^{\circ}$
Zellvolumen	8881.4(3) Å ³
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	$1.246 \mathrm{~Mg/m^3}$
Absorptionskoeffizient	0.472 mm^{-1}
Kristallgröße	$0.48 \ge 0.39 \ge 0.24 \text{ mm}$
Gemessener θ -Bereich	$2.59 \text{ bis } 29.00^{\circ}$
Anzahl der gemessenen Reflexe	37963
Unabhängige Reflexe	$11515 \; ({ m Rint} = 0.0643)$
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8951 und 0.8050
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	11515 / 9 / 556
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0544, wR2 = 0.1130
R-Werte (alle Daten)	R1 = 0.1410, wR2 = 0.1577
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0674P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.024
Größtes Maximum und Minimum	$0.319 \text{ und } -0.275 \text{ e}^{\text{Å}^{-3}}$

Auf ein Komplex-Ion entfällt ein Molekül Acetonitril als Lösungsmittel im Kristallverband. Das Acetonitril-Molekül ist fehlgeordnet und zur Beschreibung des Modells wurden die restraints SIMU, EADP und SAME verwendet. Weiterhin ist auch der Ethandithiolat-Ligand fehlgeordnet (50:50). Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.