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Chapter 1

Introduction

Multivariate polynomial factorization is a cornerstone of many applications
in computer algebra. It is used in computing primary decompositions of
ideals, Gröbner basis, and many other applications. On the other hand, it
can serve as a benchmark for many basic operations such as univariate
polynomial factorization, polynomial multiplication, computation of
greatest common divisors, and various others, as these operations are
extensively used in almost all known algorithms. Last but not least,
multivariate polynomial factorization is a challenge in itself.

Its beginnings in modern mathematics can be traced back to Zassenhaus
[Zas69]. He first described an algorithm to factorize univariate polynomials
over Z, whereas Musser [Mus71] generalized it to the multivariate case.
Musser also states a general algorithm whose outline looks like this:

1. remove multiple factors

2. reduce to univariate problem by plugging in a suitable point

3. factorize the resulting univariate poly

4. reconstruct tentative multivariate factors from univariate factors by
Hensel lifting

5. recombine tentative factors to obtain true factors

An algorithm of this kind is also referred to as Extended Zassenhaus (EZ)
algorithm.

In the course of this thesis we address each step of the algorithm and the
problems that arise therein, and always focus on a fast implementation of
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each step. Furthermore, we restrict ourselves to the coefficient rings Fq, Z,
and Q(α).

During the past 40 years numerous improvements, variants, and
generalizations of the original outline and its underlying steps have been
made. For a survey and historic context we refer the reader to [Kal82],
[Kal90], [Kal92], [Kal03]; a more recent survey can be found in [BL12].

Our contribution is a new bound on the coefficients of a factor of a
multivariate polynomial over Q(α). The new bound does not require α to
be an algebraic integer, and only depends on the height of the polynomial
and the height of the minimal polynomial. This bound is used to design an
Extended Zassenhaus algorithm which computes the Hensel lift of the
univariate factors modulo some high enough power of a prime. A similar
idea is used by Lenstra [Len84] requiring α to be an algebraic integer, but it
is impractical due to reduction of large lattices; or in [JM09] in the more
general setting of algebraic function fields, but only with a heuristic bound.
We compare an implementation of the latter in Maple to our algorithm in
11.3.5.

Furthermore, we adapt a method by Kaltofen [Kal85c] to precompute the
leading coefficients of multivariate factors and enhance it by various
heuristics to obtain a smaller multiplier.

Moreover, we improve the complexity of Bernardin’s Hensel lifting
algorithm [Ber99] by a constant factor.

Almost all algorithms mentioned here were implemented by the author in
the C++ library factory, which is part of the computer algebra system
Singular [DGPS12]. To the best of our knowledge, our implementation is
the first open-source implementation of [BvHKS09] and the only
open-source implementation that is able to factorize polynomials over such
a range of coefficient domains at such speed.
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Chapter 2

Preliminaries

All rings considered here are commutative with 1.

Since a thorough introduction to the rich field of algebra is beyond the
scope of this thesis, we restrict ourselves to some very basic definitions and
facts that are used throughout this text. A short summary of concepts of
univariate polynomial rings and finite fields can be found in [Lee09]. For an
extensive introduction, we refer the reader to [Bos06] or any other
introductory book on this topic.

Definition 2.1. An n-variate polynomial over a ring R is a sequence
(aα)α∈Nn , where aα ∈ R for all α ∈ Nn and only finitely many aα are
non-zero. Usually a polynomial is represented by

∑d
|α|=0 aαx

α1
1 · . . . · xαn

n ,

where |α| =
∑n

i=1 αi. With the rules for adding and multiplying sums, the
set of polynomials over R becomes a ring, denoted by R [x1, . . . , xn] = R[x].
For a polynomial f =

∑d
|α|=0 aαx

α ∈ R[x], which is not the zero polynomial,
we define the following:

• tdeg(f) = max {|α| | aα 6= 0}, the total degree of f .

The above definition leads to a distributive representation of a polynomial
but one can also consider the recursive representation

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

This way one can define degxi(f) for f ∈ R[x1, . . . , xn] as the degree of f in
the polynomial ring R[x1, . . . , xi−1, xi+1, . . . , xn][xi], and analogously the
leading coefficient as lcxi(f).

Definition 2.2. A ring R is called a unique factorization domain (UFD) if
it is a domain, that is a ring, where only the zero-element is a zero-divisor,
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and any non-zero non-unit element r can be decomposed in the following
way: r = p1 · · · ps, where pi is irreducible, and this decomposition is unique
up to multiplication by units and reordering.

Proposition 2.1. If R is a unique factorization domain, then so is R[x].

Proof : see [Bos06, 2.7 Satz 7]

Thus, any polynomial ring K[x] over a field K is a unique factorization
domain, and a multivariate polynomial ring R[x] is a UFD if and only if R
is a UFD.

Definition 2.3. Let R be a UFD and f =
∑n

i=0 aix
i ∈ R[x]. The content

cont(f) of f is defined as gcd(a0, . . . , an). If cont(f) = 1, f is called
primitive. The primitive part pp(f) of f is defined as f/cont(f).

Definition 2.4. Let R[x] be a unique factorization domain. Any
non-constant polynomial f ∈ R[x] can be decomposed as f = f1 · · · fr,
where fi is irreducible. Collecting those factors that are equal, yields
f = f e11 · · · f ess , where fi is irreducible, fi 6= fj for all i 6= j, and ei ∈ N>0. If
f is a univariate polynomial over a field, we require the factors to be monic
(that is, their leading coefficient equals 1) and add lc(f) as f1. If f is a
univariate polynomial over a UFD, which is not a field, we require the
factors to be primitive and add cont(f) as f1. We denote this
decomposition by Irr(f).

Enforcing the normalization of the factors in the univariate case is not
mandatory, although it is usually done by any implementation that
computes Irr(f). If f is not univariate, it is still possible to normalize the
factors. However, we do not require it to keep our following presentation
lean.

Since we are concerned with computing the irreducible decomposition of a
polynomial, we assume from now on that all rings considered are UFDs.

Let p be a prime number. Then we write Fp for Z/pZ which is a finite field
of characteristic p with exactly p elements. By Fq we denote a finite field
with q = pn elements for some n ∈ N>0.

For an extensive introduction to finite fields and various ways to represent
them, we refer the reader to [LN02].

We now introduce the O notation, and give some cost estimates for basic
univariate operations.
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Definition 2.5. O-notation (big-O)

1. A partial function f : N −→ R, that is, one that need not be defined
for all n ∈ N, is called eventually positive if there is a constant N ∈ N
such that f(n) is defined and strictly positive for all n ≥ N .

2. Let g : N −→ R be eventually positive. Then O(g) is the set of all
eventually positive functions f : N −→ R for which there exist
N, c ∈ N such that f(n) and g(n) are defined and f(n) ≤ cg(n) for all
n ≥ N .

We state some properties of the O-notation:
Let f, g : N −→ R be eventually positive, then:

• c · O(f) = O(f) for any c ∈ R>0

• O(f) +O(g) = O(f + g) = O(max(f, g)), where one takes the
point-wise maximum

• O(f) · O(g) = O(f · g) = f · O(g)

• f(n) ∈ g(n)O(1) ⇔ f is bounded by a polynomial in g.

By M(n) we denote the cost of multiplying two degree n univariate
polynomials and assume that M satisfies the following properties for all
m,n ∈ N>0:

• M(n)/n ≥M(m)/m if n ≥ m

• M(mn) ≤ m2M(n)

• M(mn) ≥ m ·M(n)

• M(n+m) ≥M(n) +M(m)

• M(n) ≥ n

The following table gives an overview of values for M :

Algorithm M(n)

classical 2n2

Karatsuba O(n1.59)

Fast-Fourier Transform (FFT) if R supports FFT O(n log(n))

Schönhage & Strassen O(n log(n) log log(n))



6 CHAPTER 2. PRELIMINARIES

For a detailed description of these algorithms see [vzGG03, Chapter 8].

We assume that
M(n) ∈ O(n log(n) log log(n))

if not mentioned otherwise. Next, we give an overview of the cost of some
basic univariate polynomial operations:

operation cost

division with remainder O(M(n))
modular multiplication

powering with exponent d of modulars O(M(n) log(d))

gcd

O(M(n) log(n))
multipoint evaluation

reduction modulo several moduli

interpolation
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Chapter 3

Square-free factorization

To remove multiple factors from a polynomial, one can compute its
square-free decomposition. Removing multiple factors from a polynomial is
not a mandatory step of the Extended Zassenhaus algorithm and may be
omitted.

Definition 3.1. Let R be a ring and f ∈ R[x]. Then f is called square-free
if its decomposition into irreducible polynomials has no repeated
non-constant factors. A square-free decomposition of a primitive
polynomial f is defined to be Sqr(f) = {(g1,m1), . . . , (gr,mr)},
(gi,mi) ∈ (R[x]\R)× N for all i, satisfying:

1. f =
∏

(gi,mi)∈Sqr(f)
gi
mi

2. all of the gi’s are pairwise co-prime

3. all of the gi’s are square-free

4. all of the mi’s are distinct

The square-free decomposition is unique up to multiplication by units.

From now on we write f ′ for the derivative of a univariate polynomial f .

Lemma 3.1. Let R be a finite field or a field of characteristic zero. Then a
non-constant f ∈ R[x] is square-free if and only if gcd(f, f ′) = 1.

Proof : See [vzGG03, Corollary 14.25].

In characteristic p > 0 the derivative of a univariate polynomial f may
vanish. This is the case if and only if f is a p-th root. In the multivariate
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setting, f is a p-th root if and only if ∂f
∂xi

= 0 for all i. Hence, one needs to
be able to compute a p-th root of a polynomial to compute the square-free
decomposition of a polynomial in positive characteristic. This is, for
example, the case if R is a perfect field.

We present an algorithm by Yun [Yun76] for computing the square-free
decomposition of a univariate polynomial in characteristic zero, which
generalizes to the multivariate case. A modified version serves as a
subroutine when computing the square-free decomposition of a multivariate
polynomial in positive characteristic.

Algorithm 3.1 (Yun’s square-free factorization algorithm).
Input: f ∈ R[x] monic, where R is a ring of characteristic 0

Output: Sqr(f) ⊂ (R[x]\R)× N such that f =
∏

(gi,mi)∈Sqr(f)
gi
mi

Instructions:

1. u = gcd(f, f ′), v1 = f
u
, w1 = f ′

u

2. i = 1
while deg(vi) > 0

(a) hi = gcd(vi, wi − v′i), vi+1 = vi
hi
, wi+1 =

wi−v′i
hi

(b) if deg(hi) > 0 then append (hi, i) to Sqr(f)

(c) i = i+ 1

3. return Sqr(f)

Theorem 3.1. Let f be a polynomial of degree n. Then the algorithm uses
O(M(n) log(n)) operations in R and it correctly computes the square-free
decomposition of f .

Proof : see [vzGG03, Theorem 14.23]

[vzGG03, Exercise 14.30] modifies Yun’s algorithm so as to work over a
finite field. For a recent survey and further readings on square-free
factorization and the related separable factorization we refer to [Lec08].

For the multivariate case we use an algorithm by L. Bernadin [Ber99]. As a
first step, we need a modification of Yun’s algorithm:
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Algorithm 3.2 (Modified Yun’s square-free factorization algorithm).
Input: f ∈ Fq=pk [x1, . . . , xn] primitive with respect to each xi and
x ∈ {x1, . . . , xn}

Output: as specified in theorem 3.2

Instructions:

1. u = gcd(f, ∂f
∂x

), v1 = f
u
, w1 =

∂f
∂x

u

2. i = 1
while deg(vi) > 0 and i < p− 1

(a) hi = gcd(vi, wi − ∂vi
∂x

), vi+1 = vi
hi
, wi+1 =

wi−
∂vi
∂x

hi

(b) u = u
vi+1

(c) i = i+ 1

3. hi = vi

4. return u and h1, . . . , hi

Theorem 3.2. Let f ∈ Fq=pk [x1, . . . , xn] be primitive and x ∈ x1, . . . , xn
such that ∂f

∂x
6= 0. Moreover, let

f =
r∏
j=1

gjj =
∏

(gi,mi)∈Sqrf(f)

gmi
i ,

where r = max{mi} and some of the gj may be one. Then the output of the
previous algorithm satisfies the following:

1.

u =
f∏p−1
i=0 h

i
i

and hi =
r∏

j=i

p|(j−i)

kj,

where kj is the product of those irreducible factors of gj, whose
derivative with respect to x is not zero

2. ∂u
∂x

= 0

Proof : see [Ber99].
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Algorithm 3.3 (Square-free factorization).
Input: f ∈ Fq=pk [x1, . . . , xn] primitive with respect to each xi and
x ∈ {x1, . . . , xn}

Output: Sqr(f) ⊂ (Fq[x]\Fq)× N such that f =
∏

(gi,mi)∈Sqr(f)
gi
mi

Instructions:

1. for all xj ∈ {x1, . . . , xn} such that ∂f
∂xj
6= 0

(a) call Algorithm 3.2 with input f and xj to compute u and h
(xj)
i

(b) f = u

2. hi =
∏

xj∈{x1,...,xn} h
(xj)
i

3. b = p
√
f

4. recursively call the algorithm with input b to compute Sqr(b)

5. (a) for all (kl, nl) ∈ Sqr(b)

i. for all hi with deg(hi) > 0 and 0 < i < p
if deg(gcd(kl, hi)) > 0 then

Sqr(f) = Sqr(f) ∪ {(gj,mj) = (gcd(kl, hi), nlp+ i)}
ii. kl = kl/

∏
mj=nlp+i

0<i<p

gj

iii. if deg(kl) > 0 then Sqr(f) = Sqr(f) ∪ {(kl, nlp)}
(b) for all hi with deg(hi) > 0 and 0 < i < p

i. hi = hi/
∏

mj=nlp+i

(kl,nl)∈Sqr(b)

gj

ii. if deg(hi) > 0 then Sqr(f) = Sqr(f) ∪ {(hi, i)}

6. return Sqr(f)

Proof : see [Ber99].

In the above algorithms we assumed the input to be primitive with respect
to each variable. The discussion in [Zip93, Chapter 21.1] suggests that this
approach avoids intermediate expression swell when computing the
square-free decomposition. Furthermore, one already obtains a coarse
decomposition by extracting contents.
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As the square-free factorization algorithm is based on repeated GCD
computations, the author has also implemented several algorithms to
compute multivariate polynomial GCDs: EZGCD [GCL92, Algorithm 7.3],
modular GCD [GCL92, Algorithm 7.1, Algorithm 7.2], sparse modular
GCD [Zip79],[Zip93],[dKMW05],[Yan09], and a modular GCD over number
fields [Enc95].
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Chapter 4

Reduction

In the multivariate Extended Zassenhaus factorization algorithm the
problem of factoring a multivariate polynomial is reduced to factoring a
polynomial in fewer, say i, variables by plugging in a suitable point
ai+1, . . . , an for xi+1, . . . , xn. From a quick glance one is tempted to assume
that univariate and multivariate factors are in one-to-one correspondence.
However, this does not need to be the case as the following example shows:

Example: Consider f = 2x2y − x2 + 6xy − 44y + 1 over Q, which is
irreducible. Now f(x, 0) = −x2 + 1 = −1(x− 1)(x+ 1). However,
f(x, 1) = x2 + 6x− 43 is irreducible.

In fact, this kind of behavior is typical when factoring polynomials over Q.

Over a finite field there are even bivariate polynomials that do never admit
a one-to-one correspondence of univariate and bivariate factors, no matter
what evaluation point is chosen.

Example: Consider the following irreducible polynomial over F17:

f = y8+5x2y6 + 10y6 + 13x4y4 + x2y4 + 9y4 + 6x6y2 + 2x4y2+

3x2y2+12y2 + 9x8 + 4x6 + 5x4 + 5x2 + 13.

f(a, y) splits into 4 factors of degree 2 for every a ∈ F17.

Let f ∈ R[x1, . . . , xn] be an irreducible polynomial. A point ai+1, . . . , an
such that f(x1, . . . , xi, ai+1, . . . , an) remains irreducible is called Hilbertian
point for f .
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Now if R = Q or Q(α), the set of Hilbertian points for f is dense. If R is a
finite field, one needs different substitutions, namely, linear polynomials in
a new variable to maintain irreducibility with high probability. We give two
results:

Theorem 4.1. [Zip93] Let f ∈ Q[x1, . . . , xn, y] be irreducible and let R(N)
denote the number of n-tuples a1, . . . , an over Z with |ai| < N such that
f(a1, . . . , an, y) remains irreducible. Then

R(N) < cNn− 1
2 log(N),

where c solely depends on the degree of f .

Theorem 4.2. [Kal85a] Let R = K[x1, . . . , xn] for a perfect field K and
f ∈ R[y]. Moreover, let d = degy(f) and the total degree of f in x1, . . . , xn
be D. Then

Prob(f(a1 + b1t, . . . , an + bnt, y) is irreducible over K[t, y]|ai, bi ∈ S)

≤ 1− 4dD2d

B

where S is a subset of K of size B.

From a theoretical point of view, the latter result can be used to design
algorithms that reduce multivariate polynomial factorization to bivariate
factorization in polynomial time, see [vzGK85a] and [Kal89].
However, from a practical point of view, substituting linear polynomials
leads to very large bivariate polynomials that have to be factorized, and
thus, to slow implementations.

Hence, similar to [Ber99] we allow evaluation points that may lead to
extraneous factors which need to be recombined to obtain true factors. In a
naive algorithm one checks all possible combinations by brute force, which
means, one has to check 2r−1 combinations in the worst-case, where r is the
number of modular factors. In practice however, there is almost always a
one-to-one correspondence between bivariate and multivariate factors when
reducing from a multivariate problem to a bivariate one by plugging in a
point a = (a3, . . . , an) ∈ Rn−2. Therefore, we suggest the following
reduction strategy:

First, reduce the multivariate problem to a bivariate one; then reduce the
bivariate problem to a univariate one.
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This strategy also has advantages when precomputing leading coefficients
as for this a bivariate factorization is necessary (see Section 6.4). To the
best of our knowledge, it is still an open problem to find an effective Hilbert
Theorem for these kind of substitutions.

The evaluation points need to satisfy the following conditions:
For a square-free f ∈ R[x1, . . . , xn] choose a point a = (a3, . . . , an) ∈ Rn−2

such that

1. g = f(x1, x2, a3, . . . , an) remains square-free

2. degx1(f) = degx1(g) and degx2(f) = degx2(g)

Now to reduce g, one chooses a2 in R such that the above holds true for g
instead of f .

The first condition is necessary to apply Hensel lifting, and the second one
is necessary since by Hensel lifting one cannot reconstruct terms involving
x1 and x2 of degree higher than degx1(g) respectively degx2(g).

Various different evaluation points may be chosen to obtain a factorization
in less variables which has few factors. If one of the reduced polynomials
turns out to be irreducible, then by the second condition the original
polynomial f is irreducible, too.

For the bivariate problem of computing an irreducible decomposition of g
over a finite field, extraneous factors occur frequently. Nevertheless, it is
shown in [GL02] that the brute force search for true factors, after lifting to
high enough precision, is polynomial-time on average; and there are also
algorithms that are polynomial-time in the worst-case, which we discuss
later. If R = Q or R = Q(α), extraneous factors are rare as the above
theorem indicates.

If Fq or Fn−2q do not contain any feasible evaluation point, one has to pass
to a field extension. As a matter of fact, if one chooses an extension of
degree m, where m is prime and larger than the total degree d of the
polynomial considered, then the factors over Fq and Fqm coincide [vzG85].
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Chapter 5

Univariate factorization

Univariate factorization can be seen as a black box in the Zassenhaus
approach. So, we only give a quick overview of basic algorithms and some
references for the gentle reader. For a detailed description of the basic
algorithms we refer the reader to [vzGG03, Chapter 14-16].

Over a finite field classical algorithms due to Berlekamp and Cantor and
Zassenhaus can be used. The latter has several derivations, for example,
von zur Gathen-Shoup [vzGS92], Kaltofen-Shoup [KS98] and Umans
[KU11],[Uma08]. Special variants for polynomials over F2 are presented in
von zur Gathen-Gerhard [vzGG02] and Brent-Zimmermann [BZ07].
Kaltofen and Lobo [KL94] developed a variant of the Berlekamp algorithm,
which is based on black-box linear algebra and was later refined in [KS98].
The Kaltofen-Shoup variant of the Cantor-Zassenhaus algorithm is
implemented in NTL [Sho]. Some techniques used for the implementation of
the latter algorithm are explained in [Sho95].
Another possibility to factorize univariate polynomials over a finite field is
Niederreiter’s algorithm, which is based on solutions of h(p−1) + hp = 0,
where h ∈ Fp(x) and h(p−1) denotes the p− 1-th derivative of h, and using
linear algebra [Nie93]. For a generalization of this method to arbitrary
finite fields see, for example, [FR96].

Over Z techniques similar to the ones presented here can be used. A basic
description of the Berlekamp-Zassenhaus algorithm can be found in
[vzGG03]. The first polynomial-time algorithm is the famous
LLL-algorithm [LLL82]. Even though being polynomial-time in theory, on
most examples the LLL-algorithm is slow compared to the naive algorithm.
In fact, using clever conditions on the true factors, one can make the naive
algorithm factorize polynomials with an abundance of modular factors
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[ASZ00]. A first fast recombination algorithm based on lattice reduction is
described in [vH02], later improved and shown to be polynomial-time in
[BvHKS09], and further improved in [HvHN11]. The first one of these fast
factorization algorithms using lattice reduction is implemented in NTL.

Over Q(α) the best algorithm is due to Belabas [Bel04], based on lattice
reduction as well.

Due to lack of time and efficient prerequisite algorithms in factory - such
as LLL - we have not implemented fast univariate factorization over Q(α),
but Trager’s classical norm based algorithm [Tra76]. To get an efficient
algorithm, it is necessary to compute the norm, that is resultants, efficiently.
As resultants tend to become dense with large coefficients, one can apply a
modular resultant algorithm by Collins [Col71]. Another interesting fact is
that the resultant based algorithm produces hard-to-factor polynomials
over Z [Enc97]. Therefore, also fast factorization over Z is necessary.
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Chapter 6

Hensel lifting

As we have seen, the Extended Zassenhaus approach requires the ability of
recovering the solution in the original ring. This reconstruction can be
accomplished by using Hensel lifting which is based on Hensel’s Lemma:

Theorem 6.1 (Hensel’s Lemma).
Let m ∈ R be such that f ≡ g · h mod m and sg + th ≡ 1 for f, g, h, s, t in
R[x] and lc(f) is not a zero-divisor in R/m. Furthermore, let h be monic,
deg(f) = deg(g) + deg(h), deg(s) < deg(h), and deg(t) < deg(g). Then
there exist polynomials g′, h′, s′, t′ such that:

f ≡ g′h′ mod m2

and
s′g′ + t′h′ ≡ 1 mod m2,

h′ is monic, g′ ≡ g mod m, h′ ≡ h mod m, s′ ≡ s mod m, t′ ≡ t mod m,
deg(g′) = deg(g), deg(h′) = deg(h), deg(s′) < deg(h′), and deg(t) < deg(g).

Proof : see [vzGG03, Alg. 15.10]

One can think of the input s and t as the result of the Extended Euclidean
algorithm for co-prime g and h. Theorem 6.1 gives a way to lift two factors
with quadratic convergence. Note that the assumption of h to be monic is
necessary since otherwise any leading coefficient can be imposed on h as the
next example shows:

Example: Let f = gh over F5 with g = x3y2 + 3x3 + 4x+ 1 and
h = x2y + 2x2 + 2x+ 2. Then lcx(g) = y2 + 3 and lcx(h) = y + 2. Modulo y
a possible factorization reads f = (3x3 + 4x+ 1) · (2x2 + 2x+ 2). Then
h′ = 2x2 + 4xy+ 2x+ 4y+ 2 and g′ = 4x3y+ 3x3 + 2xy+ 4x+ 3y+ 1 mod y2.
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As you can see, lcx(h
′) 6= lcx(h), even though h′ ≡ h mod y and g′ ≡ g mod

y and f ≡ gh mod y2. This is due to the introduction of zero-divisors.

However, if one knows lcx(g) and lcx(h) before the lifting and replaces the
leading coefficient accordingly, then the above process yields the correct
factors because the leading coefficients of the factors are not zero-divisors.
Also note that in the above example the number of terms of g′ and h′ is
larger than in the original g and h. This behavior is typical and can be
avoided if the correct leading coefficients are imposed on the factors.

6.1 Bivariate Lifting

We follow the approach in [Ber99] and use linear Hensel lifting to
reconstruct the factorization of f . It lifts all factors at once, instead of
building a tree and using two factor Hensel lifting as described in [vzGG99].
Even though, the algorithm from [vzGG99] has quadratic convergence, we
found it less performant than the linear algorithm since it involves division
of multivariate polynomials. However, it might be advantageous to use this
algorithm or a modification of the below algorithm with quadratic
convergence, also described in [Ber99], if the lift bound exceeds a certain
threshold, say 1000 or more. Another way to lift with quadratic
convergence is given in [BLS+04], based on fast computation of sub-product
trees and applying Telegen’s principle.

Let f (k) denote f mod yk+1 and f =
∏r

i=1 f
(0)
i be the univariate

factorization of f mod y, where all factors are monic. If f has lcx(f)
different from 1, it can be added as an additional factor.

Now to lift a factorization from yk to yk+1, the following Diophantine
equation has to be solved:

f −
r∏
i=1

f
(k−1)
i ≡

r∑
i=1

δi(k)yk
∏
j 6=i

f
(k−1)
j mod yk+1 (6.1.1)

such that deg(δi(k)) < deg
(
f
(0)
i

)
.

Then f
(k)
i = δi(k)yk + f

(k−1)
i satisfies f −

∏r
i=1 f

(k)
i ≡ 0 mod yk+1.
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Since f −
∏r

i=1 f
(k−1)
i ≡ 0 mod yk, the Diophantine equation above reads:

f −
∏r

i=1 f
(k−1)
i

yk
≡

r∑
i=1

δi(k)
∏
j 6=i

f
(0)
j mod y.

Now let e = f −
∏r

i=1 f
(k−1)
i denote the error and e[k] the coefficient of yk in

e. Let δi be the solution of the univariate Diophantine equation

1 ≡
r∑
i=1

δi
∏
j 6=i

f
(0)
j mod y. (6.1.2)

Then δi(k) = e[k]δi mod f
(0)
i is a solution of (6.1.1).

[Ber99] gives a fast way to compute the product
∏r

i=1 f
(k−1)
i , and hence the

error e.
We define U

(k)
j =

∏j
i=1 f

(k−1)
i . Then U

(k)
2 reads as follows:

f
[0]
1 f

[0]
2 +(

f
[1]
1 f

[0]
2 + f

[0]
1 f

[1]
2

)
y+(

f
[2]
1 f

[0]
2 + f

[1]
1 f

[1]
2 + f

[0]
1 f

[2]
2

)
y2+(

f
[3]
1 f

[0]
2 + f

[2]
1 f

[1]
2 + f

[1]
1 f

[2]
2 + f

[0]
1 f

[3]
2

)
y3+(

f
[4]
1 f

[0]
2 + f

[3]
1 f

[1]
2 + f

[2]
1 f

[2]
2 + f

[1]
1 f

[3]
2 + f

[0]
1 f

[4]
2

)
y4+

...

And U
(k)
j as:

U
[0]
j−1f

[0]
j +(

U
[1]
j−1f

[0]
j + U

[0]
j−1f

[1]
j

)
y+(

U
[2]
j−1f

[0]
j + U

[1]
j−1f

[1]
j + U

[0]
j−1f

[2]
j

)
y2+(

U
[3]
j−1f

[0]
j + U

[2]
j−1f

[1]
j + U

[1]
j−1f

[2]
j + U

[0]
j−1f

[3]
j

)
y3+(

U
[4]
j−1f

[0]
j + U

[3]
j−1f

[1]
j + U

[2]
j−1f

[2]
j + U

[1]
j−1f

[3]
j + U

[0]
j−1f

[4]
j

)
y4+

...
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Now the U
(k)
j can be computed even faster than in [Ber99] by using

Karatsuba’s trick:
First, compute M

[0]
j = U

[0]
j−1f

[0]
j and M

[1]
j = U

[1]
j−1f

[1]
j , then U

[1]
j can be

computed as
(
U

[0]
j−1 + U

[1]
j−1

)(
f
[0]
j + f

[1]
j

)
−M [0]

j −M
[1]
j . The M

[k]
j can be

stored and then the computation of U
[2]
j only takes two multiplications in

contrast to the original three.

Another advantage of Bernardin’s Hensel lifting is that one needs to
compute δi only once, and δi(k) can be easily computed by one
multiplication and one division with remainder. In the tree-Hensel lifting
algorithm one needs to lift not only the factors themselves but also the
corresponding Bézout coefficients.

Algorithm 6.1 (Bivariate Hensel lifting).

Input: f ∈ R[x][y], f ≡
∏r

i=1 f
(0)
i mod y, where the f

(0)
i are pairwise

co-prime, lcx(f) = f
(0)
1 not vanishing mod y, f

(0)
i is monic in x for

i = 2, . . . , r , and an integer l ≥ 1

Output: f
(l−1)
i ∈ Quot(R)[x][y] such that f ≡

∏r
i=1 f

(l−1)
i mod yl and

f
(l−1)
i ≡ f

(0)
i mod y for all i = 2, . . . , r

Instructions:

1. initialize U
[0]
2 = f

[0]
1 f

[0]
2 , . . . , U

[0]
r = U

[0]
r−1f

[0]
r , and M

[0]
i = U

[0]
i for

i = 2, . . . , r.

2. solve 1 ≡
∑r

i=1 δi
∏

j 6=i f
(0)
j

3. for k = 1, . . . , l − 1
call the next algorithm 6.2 with input f, f

(k−1)
i , f

(0)
i , δi, Ui,Mi, and k

4. return f
(l−1)
i

For convenience, we set U1 = f1 in the following.

Algorithm 6.2 (Hensel step).

Input: as in algorithm 6.1 with additional input f
(k−1)
i , δi, Ui,Mi, and an

integer k ≥ 1

Output: f
(k)
i ∈ Quot(R)[x][y] such that f ≡

∏r
i=1 f

(k)
i mod yk+1 and

f
(k)
i ≡ fi mod y for all i = 2, . . . , r, Mi such that M

(k)
i = U

(k)
i−1f

(k)
i , and

Ui =
∏i

j=1 f
(k)
j mod yk+2 for all i = 2, . . . , r.
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Instructions:

1. e = f [k] − U [k]
r

2. δi(k) = δi · e mod f
(0)
i for i = 1, . . . , r

3. f
[k]
i = δi(k) for i = 1, . . . , r

4. for j = 2, . . . , r

(a) tj = 0

(b) M
[k]
j = U

[k]
j−1f

[k]
j

(c) U
[k]
j = U

[k]
j +

(
U

[0]
j−1 + U

[k]
j−1

)(
f
[0]
j + f

[k]
j

)
−M [k]

j −M
[0]
j

(d) for m = 1, . . . , dk/2e
i. if m 6= k −m+ 1
tj =

tj +
(
U

[0]
j−1 + U

[k−m+1]
j−1

)(
f
[0]
j + f

[k−m+1]
j

)
−M [k]

j −M
[k−m+1]
j

ii. else
tj = tj +M

[k]
j

(e) U
[k+1]
j = tj

5. return f
(k)
i , Ui,Mi

Now one can use the following algorithm to compute δi in step 2 of
algorithm 6.1:

Algorithm 6.3 (univariate Diophantine equation).
Input: pairwise co-prime polynomials f1, . . . , fr ∈ Quot(R)[x]

Output: δi such that 1 =
∑r

i=1 δi
∏

j 6=i fj and deg(δi) < deg(fi)

Instructions:

1. compute pi =
∏

j 6=i fj

2. compute h2 = gcd(p1, p2) = s1p1 + s2p2

3. for i = 3, . . . , r

(a) hi = gcd(hi−1, pi) = si+1hi−1 + sipi

(b) for j = 1, . . . , i− 1
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i. sj = sjsi+1

ii. sj = sj mod fj

4. return s1, . . . , sr

Proof : see [GCL92]

Note that algorithm 6.1 can be halted and resumed at any stage of the
lifting if one buffers Ui,Mi, and δi.

For the complexity estimate, note that at step k of the lifting one needs to
compute dk/2e+ 2 multiplications per Uj. Now assuming that each factor
has degree m/r in x, this yields

O

(
r∑
j=2

(dk/2e+ 2)M

(
(j − 1)m

r

))

≤ O

(
r∑
j=2

(dk/2e+ 2)(j − 1)M
(m
r

))

≤ O
(
r2

2
(dk/2e+ 2)M

(m
r

))
.

If naive multiplication is used, this gives O
(
k
4
m2
)

which is to be compared
with the original estimate of O

(
k
2
m2
)

in [Ber99]. Though we did not
improve on the asymptotic complexity here, we improved on the constant.
Finally to lift up to precision n, the time amounts to O(n2m2) omitting any
constant factor.
For the total running time of Hensel lifting, note that the initial
Diophantine equation in step 2 of algorithm 6.1 can be solved in
O(rM(m) log(m)). It takes O(rM(m)) to solve for the δi(k) at step k.
Hence, the overall time is

O
(
r2n2M

(m
r

)
+ r(nM(m) + log(m))

)
.

One may need to pass to the quotient field of R since the factors are
required to be monic in x. This can lead to very large coefficients and
makes solving the initial Diophantine equation very expensive as one needs
to compute the Bézout coefficients. For instance, over Q the absolute value
of the numerator and the denominator of the Bézout coefficients can be
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bounded by (n+ 1)nAn+m if the input of the Extended Euclidean algorithm
is of degree n and m (n ≥ m) respectively and max-norm less than A
[vzGG03]; wheras the bound on the coefficients of a bivariate factor can be
much less as shown in the following.

Therefore, we proceed in the following way:
First, a bound B on the coefficients of a divisor of f is computed. Then one
chooses a suitable prime number p and uses algorithm 6.6 to lift a solution
of 6.1.2 modulo p to a solution modulo pk, where k is chosen such that
pk > 2B. Over a number field Q(α) with minimal polynomial µ,
(Z/pZ)[t]/(µp) may contain zero-divisors, as the reduction µp of µ modulo p
may be reducible. Therefore, one may encounter zero-divisors when solving
6.1.2 modulo p. In this case, a different p has to be chosen. By [LM89,
Theorem 3.2] there are only finitely many primes for which this fails. If one
passes a solution δi of 6.1.2 modulo p to algorithm 6.6, then step 4a in 6.6
cannot fail since f

(0)
i is monic.

All subsequent steps of algorithms 6.4 and 6.5 are performed modulo pk.
When reducing in step 2 of algorithm 6.2 zero-divisors are never
encountered because all factors are monic in x.

The approach of bounding coefficients of a factor and computing modulo
some power of a prime is classical in the integer case (see e.g. [Mus75],
[WR75]). In the number field case similar techniques are used (see e.g.
[Wan76], [JM09]). However, to the best of our knowledge ours is the only
one that neither requires α to be an algebraic integer, nor µ to stay
irreducible modulo p, nor uses a heuristic bound.

The input specifications of algorithm 6.1 have to be altered accordingly:

Algorithm 6.4 (Bivariate Hensel lifting over Z).

Input: f ∈ Z[x][y], f ≡
∏r

i=1 f
(0)
i mod y, where the f

(0)
i are pairwise

co-prime, lcx(f) = f1 not vanishing mod y, f
(0)
i is primitive for i = 2, . . . , r,

an integer l ≥ 1, B a bound on the coefficients of the factors of f , a prime p
such that p - lcx(f)(0), f

(0)
i are pairwise co-prime mod p, and k > 0 such

that pk > 2B

Output: f
(l−1)
i ∈ (Z/pkZ)[x][y] such that f ≡

∏r
i=1 f

(l−1)
i mod < yl, pk >

and f
(l−1)
i ≡ lc

(
f
(0)
i

)−1
f
(0)
i mod < y, pk > for all i = 2, . . . , r

Instructions:
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1. for i = 2, . . . , r f
(0)
i = lc

(
f
(0)
i

)−1
f
(0)
i mod pk

2. initialize U
[0]
2 = f

[0]
1 f

[0]
2 , . . . , U

[0]
r = U

[0]
r−1f

[0]
r , and M

[0]
i = U

[0]
i for

i = 2, . . . , r.

3. solve 1 ≡
∑r

i=1 δ
(p)
i

∏
j 6=i f

(0)
j mod p

4. call algorithm 6.6 with input p, k, f
(0)
i ,

∏
j 6=i f

(0)
j , and δ

(p)
i to obtain a

solution δi of 6.1.2 mod pk

5. for j = 1, . . . , l − 1
call algorithm 6.2 with input f, f

(j−1)
i , f

(0)
i , δi, Ui,Mi, p, k, and j

6. return f
(l−1)
i

Algorithm 6.5 (Bivariate Hensel lifting over Q(α)).

Input: f ∈ Z[α][x][y], f ≡
∏r

i=1 f
(0)
i mod y, where the f

(0)
i are pairwise

co-prime, lcx(f) = f1 not vanishing mod y, f
(0)
i is primitive for i = 2, . . . , r,

an integer l ≥ 1, B a bound on the coefficients of the factors of f , a prime p
such that p - lcx(f)(0)disc(µ), f

(0)
i are pairwise co-prime mod p, and k > 0

such that pk > 2B

Output: a prime p̃, k̃ > 0 which satisfy the conditions in the input
specifications, f

(l−1)
i ∈ (Z/p̃k̃Z)[t]/(µp)[x][y] such that f ≡

∏r
i=1 f

(l−1)
i mod

< yl, p̃k̃ >, and f
(l−1)
i ≡ lc

(
f
(0)
i

)−1
f
(0)
i mod < y, p̃k̃ > for all i = 2, . . . , r

Instructions:

1. for i = 2, . . . , r f
(0)
i = lc

(
f
(0)
i

)−1
f
(0)
i mod pk

2. solve 1 ≡
∑r

i=1 δ
(p)
i

∏
j 6=i f

(0)
j mod p

3. if the previous step failed, choose a different prime p̃ and k̃ which
satisfy the same conditions as the input p and k, set p = p̃, k = k̃ and
goto step 1

4. else p̃ = p, k̃ = k

5. call algorithm 6.6 with input p̃, k̃, f
(0)
i ,

∏
j 6=i f

(0)
j , and δ

(p̃)
i to obtain a

solution δi of 6.1.2 mod p̃k̃
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6. initialize U
[0]
2 = f

[0]
1 f

[0]
2 , . . . , U

[0]
r = U

[0]
r−1f

[0]
r , and M

[0]
i = U

[0]
i for

i = 2, . . . , r.

7. for j = 1, . . . , l − 1
call algorithm 6.2 with input f, f

(j−1)
i , f

(0)
i , δi, Ui,Mi, p̃, k̃, and j

8. return f
(l−1)
i , p̃, and k̃

Algorithm 6.6 (Diophantine equation).
Input: a prime p, k > 0, f1, . . . , fr ∈ (Z/pkZ)[x] or (Z/pkZ)[t]/(µp)[x]
monic, such that fi mod p are pairwise co-prime, products Pi =

∏
j 6=i fj,

and solutions δ
(p)
i of 6.1.2 mod p

Output: δi such that 1−
∑r

i δiPi = 0 mod pk

Instructions:

1. set δi = δ
(p)
i for i = 1, . . . , r

2. if k = 1, return δi

3. set e = 1−
∑r

i δiPi mod p2

4. for j = 2, . . . , k

(a) set δ
(pj)
i = e[p

j−1]δ
(p)
i mod f

[p]
i , where g[p

l] denotes the coefficient
of pl in the p-adic expansion of g

(b) δi = δi + pj−1δ
(pj)
i for i = 1, . . . , r

(c) e = 1−
∑r

i=1 δiPi mod pj+1

5. return δ1, . . . , δr

Algorithm 6.6 is an adaption of [GCL92, Algorithm 6.3.].

Now how can we bound the coefficients? A result by Gelfond [Gel03] reads:
If f is a polynomial in s variables over the complex numbers, f = f1 · . . . · fr,
nk is the degree of f in the k-th variable and n = n1 + . . .+ ns, then

‖f1‖∞ · . . . · ‖fr‖∞ ≤ ((n1 + 1) · . . . · (ns + 1)/2s)1/2 · 2n · ‖f‖∞

Therefore, over Z one can choose

B = ((n1 + 1)(n2 + 1))1/2 · 2n−1 · ‖f‖∞ (6.1.3)
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and p needs to satisfy p - lc(f) mod y.

Over an algebraic number field the situation is more involved, so we first
need to introduce some notation:
The minimal polynomial is denoted by µ ∈ Z[t], D denotes the discriminant
of µ, and by df we denote res(µ, lc(f)). Then by [Enc95, Theorem 3.2] if
f ∈ Z[α][x] and g is a monic factor of f over Q(α), then

g ∈ (1/df d)Z[α][x]

where d2 divides D.

Let k be the degree of µ and l the leading coefficient of µ. Using the norms
from [Enc95], for a polynomial

h =
∑
i

hix
i ∈ Q(α)[x]

where hi =
∑k−1

j=0 hijα
j, hij ∈ Q, we set

‖h‖∞ = max
ij

(|hij|)

and

‖h‖2 = max
j

(∑
i

|h(j)i |2
)1/2


where the maximum is taken over all k conjugates of hi. Furthermore, we
denote by h̃ the monic associate of h.

Theorem 6.2. Any monic divisor g of f over Q(α) satisfies:

‖dfDg‖∞ ≤

(
s∏
i=1

(ni + 1)

)
2n+k−s/2l−k(k + 1)7k/2‖f‖k∞‖µ‖4k∞ (6.1.4)

Proof : By Gelfond [Gel03] each coefficient η of g satisfies

‖η‖2 ≤ ((n1 + 1) · . . . · (ns + 1)/2s)1/22n‖f̃‖2

Now by [Enc95, Proof of Lemma 4.1]:

‖dfDg‖∞ ≤

((
s∏
i=1

(ni + 1)

)
/2s

)1/2

2n‖f̃‖2|D|1/2|df |(k + 1)3k/2‖µ‖k∞
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From

‖f̃‖2 ≤ ((n1 + 1) · . . . · (ns + 1))1/2‖f̃‖∞
k−1∑
j=0

‖α‖j2

and
‖α‖2 ≤ 2l−1‖µ‖∞

one obtains

‖f̃‖2 ≤ ((n1 + 1) · . . . · (ns + 1))1/2‖f̃‖∞2kl−k‖µ‖k∞

By Hadamard’s bound, |D| ≤ (k + 1)2k‖µ‖2k∞. Hence,

‖dfDg‖∞ ≤

(
s∏
i=1

(ni + 1)

)
2n+k−s/2l−k‖df f̃‖∞(k + 1)5k/2‖µ‖3k∞

By [Enc95, Proof of Lemma 4.1],

‖df f̃‖∞ ≤ ((k + 1)‖µ‖∞‖f‖∞)k

6.2 Multivariate Lifting

Now the modular factors are lifted to bivariate ones. To proceed further, we
assume the following: The bivariate factors are in one-to-one
correspondence to the multivariate factors and the leading coefficient of
each multivariate factor is known.

Let

F =
r∏
i=1

Fi,

f =F (x1, x2, 0, . . . , 0) =
r∏
i=1

fi,

fi =Fi mod (x3, x4, . . . , xn),

lcx1(F ) =
r∏
i=1

lcx1(Fi) =
r∏
i=1

li,

degx1(F ) = degx1(f) = deg(f(x1, 0)),

fi(x1, 0) are pairwise co-prime

(6.2.1)
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Without loss of generality and to simplify the presentation, we restrict to
the case n = 3.
As above, we want to lift from xk3 to xk+1

3 . If the fi’s were monic in x1, one
could use the above Ansatz, that is, compute a solution of

1 ≡
r∑
i=1

δi
∏
j 6=i

fj mod x3

and obtain δi(k) = e[k]δi mod fi. However, this is prohibitive as it involves
costly division with remainder of multivariate polynomials. Instead, one
solves for δi(k) directly. The equation

e[k] =
r∑
i=1

δi(k)
∏
i 6=j

fj

can be solved by solving it modulo x2 and lifting the solution. Note that∏
i 6=j fj needs to be computed only once.

Algorithm 6.7 (Diophantine equation).
Input: f1, . . . , fr ∈ R[x1, . . . , xn], such that fi mod (x2, . . . , xn) are
pairwise co-prime, products pi =

∏
j 6=i fj, positive integers k2, . . . , kn , and

E ∈ R[x1, . . . , xn]

Output: δi ∈ Quot(R)[x1, . . . , xn] such that
E ≡

∑r
i=1 δipi mod

(
xk22 , . . . , x

kn
n

)
Instructions:

1. if n = 1, solve the univariate Diophantine equation E =
∑r

i=1 δipi
and return δ1, . . . , δr

2. set p′i = pi mod xn, f ′i = fi mod xn, E ′ = E mod xn for i = 1, . . . , r

3. call the present algorithm with input
f ′1, . . . , f

′
r, p
′
1, . . . , p

′
r, k2, . . . , kn−1, and E ′ to obtain δ′1, . . . , δ

′
r

4. δi = δ′i for i = 1, . . . , r

5. e = E −
∑r

i=1 δ
′
ipi mod

(
xk22 , . . . , x

kn−1

n−1

)
6. for j = 1, . . . , kn − 1 and e 6= 0
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(a) call the present algorithm with input
f ′1, . . . , f

′
r, p
′
1, . . . , p

′
r, k2, . . . , kn−1, e

[j] to obtain δ′′1 , . . . , δ
′′
r

(b) δi = δi + xjnδ
′′
i for i = 1, . . . , r

(c) e = e−
∑r

i=1 x
j
nδ
′′
i pi mod

(
xk22 , . . . , x

kn−1

n−1

)
7. return δ1, . . . , δr

The above algorithm is a generalization of algorithm 6.6 to the multivariate
case. Its original description can be found in [GCL92, Algorithm 6.2.].

Since the true leading coefficients are known in advance, they can be
imposed on each factor before each lifting step.

Algorithm 6.8 (Multivariate Hensel lifting).
Input: as specified in 6.2.1, and positive integers k3, . . . , kn

Output: g1, . . . , gr such that F ≡
∏r

i=1 gi mod
(
xk33 , . . . , x

kn
n

)
Instructions:

1. I = ∅

2. for l = 3, . . . , n

(a) f ′ = F mod (xl+1, . . . , xn)

(b) replace lcx1(fi) by li mod (xl+1, . . . , xn) for i = 1, . . . , r

(c) U
[0]
2 = f

[0]
1 f

[0]
2 , . . . , U

[0]
r = U

[0]
r−1f

[0]
r , and M

[0]
i = U

[0]
i for

i = 2, . . . , r

(d) U
[1]
2 = f

[1]
1 f

[0]
2 + f

[0]
1 f

[1]
2 , . . . , U

[1]
r = U

[1]
r−1f

[0]
r + U

[0]
r−1f

[1]
r

(e) compute pi =
∏

j 6=i fj for i = 1, . . . , r

(f) set f
(0)
i = fi for i = 1, . . . , r

(g) for m = 1, . . . , kl − 1

i. call the next algorithm 6.9 with input
f ′, f

(m−1)
i , fi, pi, Ui,Mi, I, and m

(h) set fi = f
(kl)
i for i = 1, . . . , r

(i) I = I ∪ {xkll }

3. return f1, . . . , fr



30 CHAPTER 6. HENSEL LIFTING

Algorithm 6.9 (Hensel step).

Input: f ′, f
(m−1)
i , fi, pi, Ui,Mi, I, and an integer m ≥ 1

Output: f
(m)
i ∈ R[x1, . . . , xl] such that f ′ ≡

∏r
i=1 f

(m)
i mod < I, xm+1

l >

and f
(m)
i ≡ fi mod xl for all i = 1, . . . , r, Mi such that

M
[m]
i = U

[m]
i−1f

[m]
i ,M

[m+1]
i = U

[m+1]
i−1 f

[m+1]
i , and Ui =

∏i
j=1 f

(m+1)
j mod xm+2

l

for all i = 2, . . . , r.

Instructions:

1. e = f ′[m] − U [m]
r

2. call algorithm 6.7 with input fi, pi, k2 = degx2(f
′), k3, . . . , kl−1,m, e to

obtain δ
(m)
i

3. f
[m]
i = f

[m]
i + δ

(m)
i

4. for j = 2, . . . , r

(a) tj = 0

(b) M
[m]
j = U

[m]
j−1f

[m]
j , M

[m+1]
j = U

[m+1]
j−1 f

[m+1]
j

(c) U
[m]
j = U

[m]
j + U

[0]
j−1f

[m]
j + U

[m]
j−1f

[0]
j

(d) for l = 1, . . . , dm/2e

i. if l 6= m− l + 1
tj =

tj +
(
U

[0]
j−1 + U

[m−l+1]
j−1

)(
f
[0]
j + f

[m−l+1]
j

)
−M [m]

j −M [m−l+1]
j

ii. else
tj = tj +M

[m]
j

(e) tj = tj + U
[0]
j−1f

[m+1]
j + U

[m+1]
j−1 f

[0]
j

(f) U
[m+1]
j = tj

5. return f
(m)
i , Ui, and Mi

The algorithm differs from algorithm 6.2 only in the way the δi’s are
computed. Small adjustments have to be made to the way the Ui’s are
computed due to the a priori knowledge of the leading coefficients.
Essentially, algorithm 6.8 coincides with [GCL92, Algorithm 6.4.], though
we have adapted it such that it uses the faster error computation of [Ber99].
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6.3 Sparse Lifting

As most multivariate polynomials are sparse, one can also apply sparse
heuristic methods for Hensel lifting. Zippel has proposed a sparse variant of
Hensel lifting in [Zip93] similar to his sparse modular interpolation.
However, it constructs a solution only variable by variable, whereas the
below approach by Lucks [Luc86] constructs a solution at once.

Let F =
∏r

i=1 Fi be the irreducible decomposition of F in R[x1, x2, . . . , xn]
and f =

∏r
i=1 fi be the decomposition of F (x1, x2, a3, . . . , an) = f in

R[x1, x2]. Furthermore, assume Fi(x1, x2, a3, . . . , an) = fi for all i and
li = lcx1(Fi) are given.

The aim is to compute Fi from fi. For that, consider F and Fi as elements
of R[x3, . . . , xn][x1][x2]. Now each coefficient F (α,β) of F is of the form∑

(ηi,νi)

∏
|η|=α
|ν|=β

F
(ηi,νi)
i

From the above equation, one can derive a system of equations for each
coefficient of F by replacing the coefficient of f

(ηi,νi)
i by some indeterminant

Λ
(i)
ηi,νi .

In the dense case this system of equation is dense and large either. However,
if the bivariate factors are sparse and F is too, only few equations arise.
To actually solve this system, one can feed it the precomputed leading
coefficients li as starting solution, that is, all Λ

(i)
di,νi

, where di = degx1(fi),
are known. So, after plugging in these values, one searches the system for
linear equations, solves those, and plugs in the newly found solutions, and
so on. If there are no linear equations, one can try more elaborate system
solving methods or abandon the heuristic. It is also possible to not only
precompute the leading coefficient but also the trailing coefficient. This
way more starting solutions are known and the heuristic is more likely to
succeed.

Algorithm 6.10 (Lucks’ heuristic sparse lifting).
Input: F ∈ R[x1, x2, . . . , xn], F (x1, x2, a3, . . . , an) = f =

∏r
i=1 fi, and

degx1(f) = degx1(F ), degx2(f) = degx2(F ), furthermore lcx1(Fi)

Output: Fi such that F =
∏r

i Fi or “failure”

Instructions:
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1. for i = 1, . . . , r hi = 0

2. for i = 1, . . . , r

(a) for each monomial xνi1 x
ηi
2 occuring in fi do

i. hi = hi + xνi1 x
ηi
2 Λ

(i)
νi,ηi

3. H =
∏r

i=1 hi

4. if there are monomials xα1x
β
2 not occuring in both F and H return

“failure”

5. for each monomial xα1x
β
2 occuring in F and H build an equation

A(α,β) = F (α,β) −H(α,β)

6. for each Λ
(i)
di,ηi

with di = degx1(fi) plug in the coefficient of xηi2
occurring in lcx1(Fi)

7. if there are equations not yet solved then:

(a) if there are no linear equations then return “failure”

(b) else solve all linear equations

(c) plug the new solutions in the remaining equations

(d) if any of the two preceding steps reveals inconsistent solutions
return “failure”

(e) go back to step 7

8. else

(a) from the solutions for Λ
(i)
νi,ηi construct Fi

(b) return F1, . . . , Fr

Before we prove correctness of the algorithm, we need to introduce the
notion of a skeleton [Zip93]: Let f =

∑T
i=1 fix

αi ∈ R[x1, . . . , xn] be a
polynomial and let T be the number of non-zero terms of f . Then the
skeleton skel(f) = {α1, . . . , αT} and let skelk(f) be the canonical projection
of skel(f) on the first k components.

Proof : Since it is checked whether there are monomials in x1 and x2 which
occur in F but not in H and vice versa, it is ensured that
skel2(F ) = skel2(H). Now there may be terms in Fi that cancel after
multiplying and hence may lead to inconsistent solutions. These are
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detected by checking the consistency of the solutions.

Example: Consider F = F1F2F3 = 57(xyz + 84xy + 28x+ 92)(76x2y +
27x2 + z + 78)(64y3 + xz + 71x+ 51) ∈ F101[x, y, z]. If we choose z as main
variable and y as second variable, we obtain:

F (26, y, z) = 80f1f2f3 = 80((z + 84)y + 16)(y + 52z + 23)(y3 + 73z + 47).

The leading coefficients of F1, F2,F3 are precomputed as 35x, 52, 30x. Then:

Λ
(1)
0,0Λ

(2)
0,0Λ

(3)
0,0 + 27x4 + 76x3 + 96x2 + 40x+ 52

(Λ
(1)
0,0Λ

(2)
0,1 + Λ

(1)
0,1Λ

(2)
0,0)Λ

(3)
0,0 + 56x4 + 16x3 + 49x2 + 87x

Λ
(1)
0,1Λ

(2)
0,1Λ

(3)
0,0 + 26x4 + 77x3

Λ
(1)
0,0Λ

(2)
0,0Λ

(3)
0,3 + 3x3 + 82x2 + 76x+ 91

(Λ
(1)
0,0Λ

(2)
0,1 + Λ

(1)
0,1Λ

(2)
0,0)Λ

(3)
0,3 + 96x3 + 55x2 + 26x

Λ
(1)
0,1Λ

(2)
0,1Λ

(3)
0,3 + 59x3

Λ
(1)
0,0Λ

(2)
0,0Λ

(3)
1,0 + Λ

(1)
0,0Λ

(2)
1,0Λ

(3)
0,0 + 90x4 + 36x3 + 59x2 + 32x+ 68

(Λ
(1)
0,0Λ

(2)
0,1 + Λ

(1)
0,1Λ

(2)
0,0)Λ

(3)
1,0 + (Λ

(1)
0,1Λ

(2)
1,0 + Λ

(1)
1,1Λ

(2)
0,0)Λ

(3)
0,0 + 71x4 + 32x3 + 86x2 + 89x

Λ
(1)
0,1Λ

(2)
0,1Λ

(3)
1,0 + Λ

(1)
1,1Λ

(2)
0,1Λ

(3)
0,0 + 99x4 + 43x3

Λ
(1)
0,0Λ

(2)
1,0Λ

(3)
0,3 + 45x+ 18

(Λ
(1)
0,1Λ

(2)
1,0 + Λ

(1)
1,1Λ

(2)
0,0)Λ

(3)
0,3 + 47x3 + 80x

Λ
(1)
1,1Λ

(2)
0,1Λ

(3)
0,3 + 50x3

Λ
(1)
0,0Λ

(2)
1,0Λ

(3)
1,0 + 37x2 + 35x

(Λ
(1)
0,1Λ

(2)
1,0 + Λ

(1)
1,1Λ

(2)
0,0)Λ

(3)
1,0 + Λ

(1)
1,1)Λ

(2)
1,0Λ

(3)
0,0 + 97x4 + 59x2 + 71x

Λ
(1)
1,1Λ

(2)
0,1Λ

(3)
1,0 + 86x4

Λ
(1)
1,1Λ

(2)
1,0Λ

(3)
0,3 + 99x

Λ
(1)
1,1Λ

(2)
1,0Λ

(3)
1,0 + 41x2


After plugging in the precomputed values for the leading coefficients the
above system looks like follows:



34 CHAPTER 6. HENSEL LIFTING



Λ
(1)
0,0Λ

(2)
0,0Λ

(3)
0,0 + 27x4 + 76x3 + 96x2 + 40x+ 52

(Λ
(1)
0,0Λ

(2)
0,1 + Λ

(1)
0,1Λ

(2)
0,0)Λ

(3)
0,0 + 56x4 + 16x3 + 49x2 + 87x

Λ
(1)
0,1Λ

(2)
0,1Λ

(3)
0,0 + 26x4 + 77x3

Λ
(1)
0,0Λ

(2)
0,0Λ

(3)
0,3 + 3x3 + 82x2 + 76x+ 91

(Λ
(1)
0,0Λ

(2)
0,1 + Λ

(1)
0,1Λ

(2)
0,0)Λ

(3)
0,3 + 96x3 + 55x2 + 26x

Λ
(1)
0,1Λ

(2)
0,1Λ

(3)
0,3 + 59x3

52Λ
(1)
0,0Λ

(2)
0,0 + 30xΛ

(1)
0,0Λ

(2)
0,0 + 90x4 + 36x3 + 59x2 + 32x+ 68

(35xΛ
(2)
0,0 + 52Λ

(1)
0,1)Λ

(2)
0,0 + 30xΛ

(1)
0,0Λ

(2)
0,1 + 30xΛ

(1)
0,1Λ

(2)
0,0 + 71x4 + 32x3 + 86x2 + 89x

35xΛ
(2)
0,1Λ

(2)
0,0 + 30xΛ

(1)
0,1Λ

(2)
0,1 + 99x4 + 43x3

52Λ
(1)
0,0Λ

(3)
0,3 + 45x+ 18

(35xΛ
(2)
0,0 + 52Λ

(1)
0,1)Λ

(3)
0,3 + 47x3 + 80x

35xΛ
(2)
0,1Λ

(3)
0,3 + 50x3

45xΛ
(1)
0,0 + 37x2 + 35x

2xΛ
(2)
0,0 + 40x2Λ

(2)
0,0 + 45xΛ

(1)
0,1 + 97x4 + 59x2 + 71x

40x2Λ
(2)
0,1 + 86x4

2xΛ
(3)
0,3 + 99x

0



Now one can read off the solutions for Λ
(1)
0,0 = 71x+ 89, Λ

(2)
0,1 = 13x2, and

Λ
(3)
0,3 = 1. Substituting these solutions back, one eventually arrives at

Λ
(1)
0,1 = 11x, Λ

(2)
0,0 = 91x2 + 16, and Λ

(3)
0,0 = 9x+ 15. The final solution then

reads: F1 = 35xyz + 11xy + 71x+ 89, F2 = 52z + 13x2y + 91x2 + 16, and
F3 = 30xz + y3 + 9x+ 15.

Obviously, this method fails if F has terms that vanish after substituting
b3, . . . , bn for x3, . . . , xn. By [Zip93, Proposition 116] this has probability
(n−2)(n−3)DT

B
if one chooses a point b3, . . . , bn in Sn−2, where S is a subset of

R of cardinality B, degxi < D for i ≥ 3, and T denotes the number of
terms. On the other hand, it fails if there is term-cancellation when
multiplying the factors.

We now present a genuine idea to lift very sparse polynomials:
Assume a polynomial F ∈ R[x1, x2, . . . , xn], an evaluation point
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a = (a2, . . . , an), and factorizations

f (j) = F (x1, a2, . . . , aj−1, xj, aj+1, . . . , an) =

rj∏
i=1

f
(j)
i

for all 2 ≤ j ≤ n such that degx1
(
f (j)
)

= degx1(F ) and rk = rl for all k 6= l
are given. Furthermore, let us assume that no extraneous factors occur in
the bivariate factorizations, and that the number of terms t

(j)
i in each factor

f
(j)
i coincides for all 2 ≤ j ≤ n and equals the number of terms ti in the

factors Fi of F . Note that f (k)(ak) = f (l)(al) for all k 6= l. If one now splits

each f
(j)
i into terms and evaluates each of these terms separately at aj, one

obtains lists l
(j)
i of polynomials in R[x1]. Given the entries in l

(j)
i are all

distinct for all i and j, one can reconstruct the terms of Fi by comparing
the entries of l

(j)
i in the following way: For fixed i, one initializes h0 to an

entry of l
(2)
i , which has not been considered yet, and h1 to the corresponding

monomial in f
(2)
i . Now h0 occurs among the entries of l

(j)
i because t

(j)
i = ti

for all j. For 3 ≤ j ≤ n, one computes hj−1 as the least common multiple of

hj−2 and the to h0 corresponding monomial of f
(j)
i . Eventually, hn−1 equals

a monomial which occurs in Fi. The coefficient of the corresponding term
can be determined as h0/hn−1(a). One can finally determine all terms of all

Fi by repeating the above procedure for all i and all entries in l
(2)
i .

Example: Let

F = F1F2 = (−xy + 3xz + 3)(xyz − 3x+ y + 3z) ∈ Q[x, y, z].

Choosing z as main variable, one obtains

F (x,−5, z) = f
(x)
1 f

(x)
2 = (−3xz − 5x− 3)(5xz + 3x− 3z + 5)

and

F (−22, y, z) = f
(y)
1 f

(y)
2 = (−22y + 66z − 3)(22yz − y − 3z − 66).

Then

l
(x)
1 ={66z, 110,−3},
l
(y)
1 ={110, 66z,−3},
l
(x)
2 ={−110z,−66,−3z, 5},
l
(y)
2 ={−110z, 5,−3z,−66}.
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Now one sets h0 = 66z and h1 = xz. Then h2 = lcm(xz, z) = xz. The
proper coefficient is computed as h0/h2(−22,−5) = 66/− 22 = −3.
Repeating this procedure yields F1 = −3xz + xy − 3 and
F2 = −xyz + 3x− 3z − y.

Requiring the number of terms t
(j)
i of the bivariate factors to coincide

mutually and to coincide with the number of terms ti of the multivariate
factors is a very strong restriction. Even though, the condition is not met,
one may still deduce a factor of F by examining its bivariate factorizations
as the next example shows:

Example: Let
F = F1F2 = (5xy5 + 11s5 + y2z + 11yz + 8s+ 12)(16xz3s2 + 11y4z +
9xz2s+ 7xys+ 13xz + 12y + 6) ∈ F17[x, y, z, s].
Choosing y as main variable one obtains

F (x, y, 14, 10) =(5xy5 + 14y2 + y + 3)(y4 + 2xy + 3x+ 12y + 6),

F (2, y, z, 10) =(10y5 + y2z + 11yz + 3)(11y4z + 4z3 + 10z2 + 16y + 9z + 6),

F (2, y, 14, s) =(10y5 + 11s5 + 14y2 + y + 8s+ 10)(y4 + 14ys+ 3s2 + 12y + 9s+ 13).

Then

l
(x)
2 ={y4, 4y, 6, 12y, 6},
l
(z)
2 ={y4, 11, 5, 16y, 7, 6},
l
(s)
2 ={y4, 4y, 11, 12y, 5, 13}.

As before, we find y4 in each l
(j)
2 and conclude that 11y4z occurs as term in

F2. Now 4y and 12y can only be found in l
(s)
2 and l

(s)
2 , but since

f
(k)
2 (ak) = f

(l)
2 (al), we conclude that 7xys+ 12y occurs in F2. To deduce the

remaining terms of F2, note that F contains a constant term and hence F1

and F2 do, too. Therefore, we conclude that the last entry 6 of l
(x)
2

corresponds to this constant term as the first 6 corresponds to the
monomial x. Since 11 and 5 occur in both l

(z)
2 and l

(s)
2 , we assume that F2

contains a part that looks like az3s2 + bz2s for some a, b ∈ F17[x].

Examining l
(z)
2 , we find that 11 + 5 + 7 = 6 and hence conclude that F2

contains a part that looks like cxz3 + dxz2 + exz for some c, d, e ∈ F17[s].
Comparing these two equations, we deduce the following equation:
fxz3s2 + gxz2s+ hxz for some f, g, h ∈ F17. Now f, g, h can be determined
as f = 11/(2 · 143 · 102) = 16, g = 5/(2 · 142 · 10) = 9, h = 7/(2 · 14) = 13. In
all, this yields a tentative factor which looks like
16xz3s2 + 11y4z + 9xz2s+ 7xys+ 13xz + 12y + 6 and, in fact, it divides F .
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6.4 Leading coefficient precomputation

Precomputed leading coefficients are necessary in the bivariate to
multivariate lifting since if requiring the factors to be monic in x1, the
Hensel lifting would compute lcx1(Fi)

−1Fi mod
(
xk22 , . . . , x

kn
n

)
which leads to

tremendous coefficient swell. Another solution is to impose lcx1(F ) as
leading coefficient of each factor and multiply F by lcx1(F )r−1. This is
disadvantageous as sparseness of F may be destroyed, too. Hence, it is
desirable to apply a multiplier as small as possible on F .

There are two methods to precompute leading coefficients, one is due to
Wang [Wan78], another is due to Kaltofen [Kal85c]. Wang’s method can be
used over Z and Q(α), and also in the case where one lifts from univariate
to bivariate polynomials, whereas Kaltofen’s method works over any UFD
but requires bivariate factors. Both require a one-to-one correspondence of
univariate to bivariate factors and bivariate to multivariate factors
respectively. As we have seen, one-to-one correspondence of bivariate to
multivariate factors is very likely, but a one-to-one correspondence of
univariate to bivariate factors is only likely in case R = Z or Q(α) or more
general R is Hilbertian. Even though, Wang’s method eventually produces
the correct leading coefficients, and Kaltofen’s method probably only a
partial solution, Wang’s method requires an irreducible factorization of the
leading coefficient and may need “large” evaluation points. Computing the
irreducible factorization of the leading coefficient is quite expensive, and
using “large” evaluation points makes subsequent steps more expensive.
Therefore, we did not use Wang’s method.

Example: Consider f = (x2y7 + 1)(64x3y3 + 7). Then lcx(f) = 64y10. The
smallest evaluation point that is feasible for Wang’s method is 4. Hence,
one needs to factorize 67108864x5 + 4096x3 + 114688x2 + 7. In contrast, if
one does not use Wang’s method, 1 is a feasible evaluation point and one
needs to factorize 64x5 + 64x3 + 7x2 + 7.

In Kaltofen’s method [Kal85c], the precomputation of leading coefficients is
achieved as follows:
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Let F ∈ R[x1, . . . , xn], a = (a3, . . . , an) in Rn−2 be such that:

F =F1 · · ·Fr,
F (x1, x2, a3, . . . , an) = f = f1 · · · fr,

Fi(a) = fi,

lcx1(F )(a) 6= 0,

degxi(F ) = degxi(F (x1, x2, . . . , xi, ai+1, . . . , an)).

(6.4.1)

Furthermore, let l denote lcx1(F ), li = lcx1(Fi), l
′ = lcx1(f), and l′i = lcx1(fi).

Now let

sqrf(l) =
∏

(si,mi)∈Sqr(l)

si

be the square-free part of l such that

(sqrf(l))(a) = sqrf(l(a))

The aim is to use Hensel lifting to lift the square-free factors of each l′i, but
for that one needs coprimality. Therefore, a so-called GCD-free basis is
introduced:

Definition 6.1. Let A = {a1, . . . , ar} ⊂ R\{0}, R a ring. A set
B = {b1, . . . , bs} is called a GCD-free basis of A if:

1. gcd(bi, bj) = 1 for all i = 1, . . . , s

2. for all i = 1, . . . , r and j = 1, . . . , s there exists eij ∈ N such that

ai = u
s∏
j=1

b
eij
j

for some unit u ∈ R

To achieve uniqueness up to multiplication with units, one needs the notion
of a standard GCD-free basis:

Definition 6.2. A GCD-free basis B of A ⊂ R{0} is called standard if:

1. s = |B| = min{|C| | C is a GCD-free basis of A}

2. for all j = 1, . . . , s and m > 1: {b1, . . . , bj−1, bmj , bj+1, . . . , bs} is not a
GCD-free basis of A
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Now for each l′i its square-free decomposition is computed. Afterwards a
standard GCD-free basis B of all square-free decompositions is computed.
Since all elements of B are pairwise co-prime and sqrf(l)(a) =

∏
b∈B b, one

can apply Hensel lifting to it.

The result is
sqrf(l) =

∏
b′|b′(a)∈B

b′

Now if b′(a) occurs in Sqr(l′i) with exponent mi, (b′,mi) is part of Sqr(li).

Algorithm 6.11 (Leading coefficient precomputation).
Input: F, f1, . . . , fr , and a satisfying the conditions in 6.4.1

Output: a list m, p1, . . . , pr of polynomials such that m
∏r

i=1 pi = l and
pi | li

Instructions:

1. compute the square-free part sqrf(l) of l = lcx1(F )

2. if sqrf(l(a)) 6= sqrf(l)(a) then

(a) m = l

(b) pi = 1

(c) return m and p1, . . . , pr

3. for i = 1, . . . , r compute the square-free decompositions Sqr(l′i) of
l′i = lcx1(fi)

4. for i = 1, . . . , r form the set S consisting of all sij such that
(sij,mj) ∈ Sqr(l′i) for some mj

5. compute a minimal GCD-free basis B of S

6. use Hensel lifting to lift the elements b in B from R[x2] to
R[x2, . . . , xn], yielding b′ such that b′(a) = b

7. for i = 1, . . . , r pi = 1

8. for all b′ and i = 1, . . . , r

(a) if (b′(a),mj) ∈ Sqr(l′i) for some mj then
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i. pi = pib
mj

9. m = l/
∏r

i=1 pi

10. return m and p1, . . . , pr

Proof : To prove correctness, it suffices to show that
∏

b∈B b = sqrf(l(a)). A
square-free factor s of l′ is of the form

r∏
i=1

∏
(sij ,mj)∈Sqr(l′i)

sij/
∏
k 6=m

gcd(skv, smu)

Since B is a minimal GCD-free basis of all Sqr(l′i), the claim follows.

The choice of x1 and x2 in the above description is just for convenience. If
possible, they should be chosen such that degx2(l) > 0, contx2(l) = 1, and
sqrf(l)(a) = sqrf(l′). In the factorization algorithm a main variable x1 is
fixed. Hence, one can only alter the choice of x2.

Kaltofen argues that using the square-free part may result in an exponential
growth of terms and therefore does not use it [Kal85c, Remark 1]. However,
in our experiments we never experienced this kind of bad behavior.

Kaltofen’s original method uses a recursion in algorithm 6.11 to also
distribute m. However, in same cases this recursion may be abridged, or
may fail as the last condition of 6.4.1 may not be met or
(sqrf(l))(a) 6= sqrf(l(a)). Therefore, we propose the following heuristics to
make m smaller:

Heuristic 1: If contx2(l) 6= 1, the above algorithm is not able to distribute
contx2(l) on the fi’s. Let us consider contx2(l) as element of
R[xj][x3, . . . , xj−1, xj+1, . . . , xn]. If cont(contx2(l)) 6= 1 and given a bivariate
irreducible decomposition of

F (x1, a2, . . . , aj−1, xj, aj+1, . . . , an) = f
(j)
1 · . . . · f (j)

r

it is possible to distribute a divisor of cont(contx2(l)) on the f
(j)
i ’s (and

hence on the fi’s) by considering gcd(lcx1(f
(j)
i ), cont(contx2(l))). This

heuristic may be used as part of algorithm 6.11.

Heuristic 2: Assume algorithm 6.11 returned an m 6= 1 and we have run
the heuristic sparse Hensel lifting by Lucks with the output of algorithm
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6.11, but it was unable to find more linear equations. It therefore failed,
but recovered at least one coefficient a besides the leading coefficient. And
let h1, . . . , hr be the output of the sparse Hensel lifting. Then there is at
least one hi which looks like follows:

xd11 pim+ . . .+ xη1a+ . . . (6.4.2)

with non-zero a.
Now if contx1(hi) = 1, m does not occur in the leading coefficient of Fi.

Heuristic 3: Under the assumptions of heuristic 2: If contx1(hi) 6= 1 for all
i, but at least one coefficient besides the leading coefficient has been
reconstructed in each factor, and

∏r
i lcx1(ppx1(hi)) = lcx1(F ). Then one can

try to lift the fi with the obtained leading coefficients.
If there is a factor in which only the leading coefficient has been
reconstructed, one can still try to use lcx1(ppx1(hi)) of those factors of the
form 6.4.2 and combine the current heuristic with the following heuristic:

Heuristic 4: Assume m 6= 1 and bivariate irreducible decompositions of

F (x1, a2, . . . , aj−1, xj, aj+1, . . . , an) = f
(j)
1 · . . . · f (j)

r

such that degx1(F ) = degx1(F (x1, a2, . . . , aj−1, xj, aj+1, . . . , an)) for all j
with degxj(m) > 0 are given. Then one can try to determine the variables
which occur in lcx1(Fi) by examining the given bivariate irreducible
decompositions. If there is a square-free factor of m whose variables do not
occur among the variables of lcx1(Fi), then it does not contribute to
lcx1(Fi). Note that instead of the square-free decomposition of m one could
also consider the irreducible decomposition of m. This heuristic is
independent of the result of algorithm 6.10, but we found it to be more
error-prone than heuristic 2 and 3 since it requires
degxj(lcx1(F (x1, a2, . . . , aj−1, xj, aj+1, . . . , an))) > 0, whenever
degxj(lcx1(F )) > 0. To discard wrong results, one can check if the product
of the obtained leading coefficients is a multiple of the leading coefficient of
F .
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Chapter 7

Recombination

Since modular and bivariate factors do not need to be in one-to-one
correspondence, the lifted modular factors need to be recombined to yield
true bivariate factors.

7.1 Naive recombination

A naive recombination algorithm tests each combination of factors by brute
force. Nevertheless, an easy way to reduce the number of combinations to
check is given in [Ber99]: From the univariate factorizations one can deduce
a set of possible degrees in x of the true factors, called possible degree
pattern. For example, consider a polynomial of degree 8 in x whose
modular factors have the following degrees in x: (2, 3, 3),(1, 2, 5), and (4, 4).
From the first set, we conclude that a true factor can have the following
degrees in x: {2, 3, 5, 6, 8}, the second gives {1, 2, 3, 5, 6, 7, 8}, and the third
gives {4, 8}. Now as the degree in x of any true factors has to occur in each
set, we can intersect them, which gives {8}, and conclude that the
polynomial in question is irreducible. One can also consider the sets
{(2, 3, 3), (2, 6), (3, 5), 8}, {(1, 2, 5), (1, 7), (2, 6), (3, 5), 8}, and {(4, 4), 8} of
all possible combinations of degrees. In the worst-case these contain 2d

elements, where d is the degree of f in x, and do not help to exclude any
combinations. Hence, we do not use them.

Another way to exclude combinations is to test divisibility at certain
points. We propose 0 and 1 and call these tests 0− 1 tests: For this, plug in
0 and/or 1 for x in the candidate factor and test for divisibility. This way,
one just has to check divisibility of a univariate polynomial to exclude a
bad combination, which is much cheaper than a multivariate divisibility
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test. From our experience the 0− 1 tests almost always detect a bad
combination.

One can also adapt the d− 1 and d− 2 tests, proposed in [ASZ00], to the
bivariate case by using Newton polygons. However, due to lack of time and
the use of a polynomial time recombination algorithm which can be used if
the combinations of a few factors did not yield a complete factorization, we
refrained from implementing these tests.

Since the result of the bivariate Hensel lifting 6.1 is polynomials in
R[x][y]/yn that are monic with respect to x, one needs to reconstruct
leading coefficients of the factors. For this, one needs to note that a factor g
of f has a leading coefficient that divides the leading coefficient of f . After
the Hensel lifting one has reconstructed lcx(g)−1g mod yn. Now multiplying
by lcx(f) in R[x][y]/yn and taking the primitive part with respect to x in
R[x][y] yields g if n was big enough. Since neither degy(g) nor deg(lcx(f))
exceed degy(f), choosing n as degy(f) + 1 suffices to reconstruct any factor
of f .

Algorithm 7.1 (Naive factor recombination).
Input: f ∈ R[x][y] square-free such that lcx(f)(0) 6= 0 and f(x, 0) is

square-free, f
(n)
i ∈ Quot(R)[x][y] such that f ≡

∏r
i=1 f

(n)
i mod yn+1,

n = degy(f) and f
(n)
i ≡ fi mod y for all i = 2, . . . , r , where fi are the monic

irreducible factors of f(x, 0) in Quot(R)[x], and f1 = lcx(f)

Output: all irreducible factors g1, . . . , gs ∈ R[x][y] of f

Instructions:

1. T = {f (n)
2 , . . . , f

(n)
r }, s = 1, G = ∅, h = f

2. while T 6= ∅

(a) for all subsets S of T of size s

i. g = lcx(h)
∏

f
(n)
i ∈S f

(n)
i mod yn+1

ii. g = ppx(g)

iii. if g | h
A. h = h/g

B. T = T\S
C. G = G ∪ {g}
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(b) s = s+ 1

(c) if 2s > |T |

i. g = lcx(h)
∏

f
(n)
i ∈T f

(n)
i mod yn+1

ii. g = ppx(g)

iii. G = G ∪ {g}
iv. return G

Proof : Since the lifting precision n suffices to reconstruct any factor of f
and any possible combination of lifted factors is checked, the algorithm is
correct.

In essence, the naive recombination algorithm 7.1 is an adaption of
[vzGG03, Algorithm 15.22], tough we use a lower lifting precision.

For the degree pattern test one passes a set of possible degrees dp as
additional input, and checks in step 2a if

∑
f
(n)
i ∈S degx(f

(n)
i ) occurs in dp.

Every time a factor g of f is found, one needs to update dp as
dp = dp ∩ dpT\S before step 2(a)iiiB. If |dp| = 1, h is irreducible.

The 0-1 tests can be applied before step 2(a)i.

If one has passed to a field extension Fqk of Fq, one first can check if g is an
element of Fq[x][y] before attempting any divisibility testing.

Remark 7.1. If one factorizes a polynomial over Q, the factors f
(n)
i passed

to algorithm 7.1 by algorithm 8.2 are polynomials in (Z/pkZ)[x][y] mod
yn+1 that are monic with respect to x and pk > 2B, where B is a bound on
the absolute value of the coefficients of a factor g of f . The input f is in
Z[x][y]. In this case, one needs to alter step 2(a)i in algorithm 7.1 to:

g = lcx(h)
∏

f
(n)
i ∈S

f
(n)
i mod < yn+1, pk >

where ’mod pk’ means symmetric remaindering here.

Remark 7.2. If one factorizes a polynomial over Q(α), the factors f
(n)
i

passed to algorithm 7.1 by algorithm 8.3 are polynomials in
(Z/pkZ)[t]/(µp)[x][y] mod yn+1. The input f is in Z[α][x][y]. In addition to
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the above case, also the possible denominators dfD of a factor are passed.
Hence, one needs to alter step 2(a)i to:

g = dfD · lcx(h)
∏

f
(n)
i ∈S

f
(n)
i mod < yn+1, pk >

Again, ’mod pk’ means symmetric remaindering here. Clearing the
denominators is necessary because reduction modulo µ may introduce
denominators to lcx(h)

∏
f
(n)
i ∈S f

(n)
i .

If there are irreducible factors g of f whose reduction g(x, a) remains
irreducible in R[x], one may be able to reconstruct them before reaching
precision degy(f) + 1 in the Hensel lifting. We call this early factor
reconstruction. To find promising lifting precisions for conducting a
successful early factor reconstruction, one may factorize the leading
coefficient of f and stop the lifting process at every degree of a possible
factor of the leading coefficient. In the worst case, this means after every
Hensel step and furthermore requires a relatively expensive factorization of
the leading coefficient. So, instead we propose to take the shape of the
Newton polygon of f into account.

Definition 7.1. The Newton polygon N (f) of a polynomial
f =

∑
aijx

iyj ∈ R[x, y] is the convex hull of all (i, j) ∈ N2 for which aij 6= 0.

A classic theorem by Ostrowski relates the decomposition of a polynomial
to the decomposition of its Newton polygon as Minkowski sum [Ost99]:

Theorem 7.1. Let f, g, h ∈ R[x, y] such that f = gh then
N (f) = N (g) +N (h).

One can show that each face of N (f) is a sum of faces of N (g) and
N (h)[Grü67] .

Considering all edges e = (u, v) of N (f) with positive slope in y-axis
direction, that is, u2 − v2 > 0 (when passing through N (f)
counter-clockwise), we stop the lifting at all combinations of u2 − v2 and
perform an early factor reconstruction. If the number of combinations
exceeds a certain threshold or if there is only one edge e with the above
property, we stop the lifting at 1/4 degy(f), 1/2 degy(f), and 3/4 degy(f).
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7.2 Polynomial time recombination

One of the first polynomial time recombination algorithms over a finite field
is due to Lenstra [Len83a]. It reduces a lattice in Fq[x]m+1 for
m = degy(h), degy(h) + 1, . . . , degy(f)− 1, where h is an irreducible factor
of f mod y, and needs the modular factors to be lifted up to precision
k = 2 degy(f) degx(f) + 1. Since reducing such a large lattice and lifting up
to such high precision is very expensive; this method was almost
impracticable and only useful in very rare cases.

We follow the ideas of [BvHKS09] and assume that f is square-free.
Now each true bivariate factor gj of f is equal to a product of modular
factors fi lifted to high enough precision. Or more mathematically:

gj =
∏

lcx(gj)f
µji
i mod yk,

where µji is an element in {0, 1}. To determine the true factors, one has to
determine the µji. This is also called knapsack factorization. The
µj = (µj1, . . . , µjr) span a lattice W over Fp, which we call target lattice.
And any lattice with entries in {0, 1} and exactly r entries equal to 1 is
called reduced.

The aim is to compute lattices L′ ⊂ L = Frp that contain W such that
eventually L′ = W holds.
To do so, linearized logarithmic derivatives are used: Let g be a factor of f ,
then Φ(g) of g is defined to be fg′/g. One can show the following:

Lemma 7.1. Let Bi = sup{j ∈ N|(i+ 1, j) ∈ N (f)}, where N (f) is the
Newton polygon of f , and let g ∈ Fq[y][x] be a polynomial that divides f .
Then Φ(g) =

∑n−1
i=0 ai(y)xi ∈ Fq[y][x] with

deg(ai) ≤ Bi.

Proof : see [BvHKS09, Lemma 4.3]

Now let mi = Bi + 1 and

Φ(fj) =
n−1∑
i=0

aijx
i mod yl.

Furthermore, let Ai be the matrix whose j-th column consists of the
coefficients of ymi , . . . , yl−1 in aij. This is a (l −mi)× r matrix satisfying
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Aie = 0 for all e ∈ W since Φ(fg) = Φ(f) + Φ(g) and the above lemma.
Now intersecting the kernels of all Ai gives a lattice L′ which contains W .

It is possible to show that if

l > min((2n− 1) degy(f), tdeg(f)(tdeg(f)− 1))

then L′ = W [BvHKS09, Theorem 4.4].
This gives rise to the following algorithm:

Algorithm 7.2 (Polynomial time recombination).
Input: f ∈ Fq[x][y] square-free of degree n in x, lcx(f)(0) 6= 0, and f(x, 0)
square-free, f = lcx(f)f1 · . . . · fr mod y the irreducible decomposition of
f(x, 0) in Fq[x]

Output: s vectors µj ∈ {0, 1}r such that gj = lcx(gj)
∏
f
µji
i mod yk, where

f = g1 · . . . · gs is the irreducible decomposition of f in Fq[x][y]

Instructions:

1. compute Bi as in Lemma 7.1

2. l = 1, l′ = l, N = 1r ∈ Fr×rq

3. while

(a) l = l + l′

(b) call algorithm 6.1 to compute f = lc(f)f1 · . . . · fr mod yl

(c) for j = 1, . . . , r compute Φ(fj) =
∑n−1

i=0 aijx
i mod yl

(d) for i ∈ {i′ ∈ {0, . . . , n− 1}|l − l′ ≥ Bi′ + 1}
i. k0 = min(Bi, l − l′)

ii. write aij =
∑l−1

k=0 ckjy
k for j = 1, . . . , r

iii. Ci =

 ck01 . . . ck0r
...

. . .
...

c(l−1)1 . . . c(l−1)r

 ∈ F(l−k0)×r
q

iv. compute N ′ ∈ Fd×d′q of maximum rank such that
(CiN)N ′ = 0

v. N = NN ′ ∈ Fr×dq

(e) if d = 1 return N

(f) if l > min((2n− 1) degy(f), tdeg(f)(tdeg(f)− 1)) break
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(g) l′ = 2l′

4. return the columns of N

If q = pm, then Fq can be considered as an m-dimensional vector space over
Fp and each element of Fq can be written as

∑m−1
i=0 ciα

i. Now if p > n, then
rewriting each element of Fq in this way leads to lower lift bounds
[BvHKS09, Theorem 4.11]; namely l > min(p, n)(n− 1) instead of
l > min(q, n)(n− 1) if we assume tdeg(f) = n. Furthermore, one can show
that if l > 2(n− 1), then all 0-1 vectors in L′ belong to the target lattice W
[BvHKS09, Theorem 4.14].

Remark 7.3. In the above algorithm we assumed 0 to be a good
evaluation point. This may not always be possible because Fq may be too
small. In this case one has to switch to an extension Fq(α). Then one can
identify Fq(α)[ỹ]/(ỹl) with Fq[y]/(µl), where µ is the minimal polynomial of
α, by setting ỹ = y − α. Note that in [BvHKS09] the algorithm is described
“mod µl”, instead of our simpler description with µ = y, and hence all
preceding statements remain valid. If one needs to pass to a field extension,
the lifting takes place in Fq(α)[ỹ]/(ỹl), and one can divide all bounds from
above by deg(µ) due to the above identification.
The isomorphism between Fq(α)[ỹ]/(ỹl) and Fq[y]/(µl) can be implemented
using linear algebra. Then the aij in step 3.(d)ii. can be considered as
polynomials in ỹ and α, and therefore by identifying ỹ with ỹdeg(µ) and α
with ỹ, one can map the aij by simple matrix-vector products.

Since the lattices L′ always contain the target lattice W , one can stop as
soon as L′ is reduced. That is, step 3.(f) can be changed to step 3.(f’): if N
is reduced break. Then the factors lifted so far can be recombined
accordingly, and lifted further until they divide f . In case they do not, one
can switch to a naive recombination algorithm if the number of factors has
already dropped below a certain threshold; or call the above algorithm
again, but now use a higher lifting precision.

Even though, the bound on the precision seems to be high, in practice this
bound is almost never reached. For example, to factorize the polynomial S ′9
from 11.3.3, the precision needed to arrive at the target lattice is 34.
Since the computation of Φ(g) can become a bottleneck, it makes sense to
introduce a threshold depending on the bounds Bi when to use the above
algorithm. If the Bi’s exceed this threshold, then one can use a naive
recombination algorithm, and if checking subsets of factors of size - for
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instance 1, 2 and 3 - did not yield the complete factorization, switch to the
above algorithm.

A similar approach as above is taken in [BLS+04],[Lec06], and [Lec10] also
using a knapsack and linearized logarithmic derivatives. The best lifting
precision that is needed to solve the recombination problem is degy(f) + 1
[Lec10, Proposition 4]. However, the bottleneck in practice happens to be
Hensel lifting; and the algorithm in [Lec10] does not admit to (partially)
solve the recombination problem at low lifting precisions. Hence, the
number of factors does not decrease during lifting, which makes it not
competitive with [BvHKS09] in general, even though its worst case
complexity is better.
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Chapter 8

Bivariate factorization

As mentioned before, bivariate factorization is reduced to univariate
factorization by plugging in a suitable point for one of the variables. The
resulting univariate polynomial is factorized and then y-adic factors are
constructed from the univariate factors by Hensel lifting. Afterwards these
factors are recombined to yield the true bivariate factors.
We give three versions to describe the full bivariate factorization algorithm:
one for bivariate polynomials over finite fields, one over Q, and one over
Q(α). For convenience, we assume that the input polynomial is square-free
and primitive with respect to x and y

Algorithm 8.1 (Bivariate polynomial factorization over a finite field).
Input: a square-free polynomial f ∈ Fq[x, y] which is primitive with
respect to x and y

Output: the irreducible decomposition Irr(f)

Instructions:

1. if ∂f
∂x

= 0 swap x and y

2. if deg(gcd(∂f
∂x
, f)) > 0

(a) call the present algorithm with input g = gcd(∂f
∂x
, f) and f/g

(b) return Irr(f/g) ∪ Irr(g)

3. choose a ∈ Fq at random such that f(x, a) remains square-free and
deg(f(x, a)) = degx(f)

4. if there is no such a, pass to a suitable field extension Fqk and goto
step 3
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5. compute l = Irr(f(x, a)) and remove f1 = lc(f(x, a)) from it

6. f(x, y) = f(x, y + a)

7. call algorithm 7.2 with input f and l to compute s vectors in {0, 1}r
such that gj = lcx(gj)

∏
f
µji
i mod yk for j = 1, . . . , s , where gj is an

irreducible factor of f over Fq

8. reconstruct the leading coefficients of gj for j = 1, . . . , s

9. gj = gj(x, y − a) for j = 1, . . . , s

10. return g1, . . . , gs

Proof : Correctness follows from [vzGG03, Exercise 15.25] as eventually a
large enough field extension contains a feasible evaluation point and the
correctness of algorithm 7.2.

In [vzGG03, Exercise 15.25] the field is required to contain at least
4 degx(f) degy(f) elements to prove that only an expected number of 2
values needs to be tested in step 3. However, this theoretic bound relies on
estimating the number of roots of a resultant. These bounds are usually
very poor. Hence, one should not pass to such large extensions, but try
small ones first. If it is necessary to pass to a field extension, one needs to
use the modifications of algorithm 7.2 as discussed in remark 7.3

Remark 8.1. When replacing the call to algorithm 7.2 by a call to the
naive recombination algorithm 7.1, the above algorithm can be used over
any UFD with effective univariate polynomial factorization that contains a
feasible evaluation point (see [vzGG03, Algorithm 15.22.]).

In an implementation one should try several different values for a and also
try to factorize f(b, y) for random b if possible. This way, one can choose a
univariate factorization with few factors and can detect irreducible input
before any lifting by computing possible degree patterns. Also note that
one should not use the polynomial recombination algorithm if the necessary
bounds Bi are large, as otherwise computing the linearized logarithmic
derivatives becomes a bottleneck. In this case, one should first use the
naive algorithm on subsets of small size. If this does not yield the full
factorization, then switching to algorithm 7.2 is usually more favorable.

As mentioned above, since each lattice contains the target lattice W after
step 3.(e) of algorithm 7.2, one may leave algorithm 7.2 as soon as N is
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reduced. At this point, the lifting precision may not be sufficient to
reconstruct the irreducible factors. Hence, one can first recombine the
fi ∈ Irr(f(x, a)) according to N , and lift the resulting factors to a precision
high enough to reconstruct the leading coefficient. If some of the factors
now turn out to be no divisors of f in Fq[x, y], N does not coincide with W .
In this case, one can enter algorithm 7.2 again with the remaining factors or
try to use the naive algorithm 7.1.

To complete the description, we state the variants over Q and Q(α):

Algorithm 8.2 (Bivariate polynomial factorization over Q).
Input: a square-free polynomial f ∈ Q[x, y] which is primitive with respect
to x and y

Output: the irreducible decomposition Irr(f)

Instructions:

1. compute the lowest common denominator g of the coefficients of f
and set f = gf

2. choose a ∈ Z at random such that f(x, a) remains square-free and
deg(f(x, a)) = degx(f)

3. compute l = Irr(f(x, a)), where the irreducible decomposition is
computed over Z, and remove f1 = cont(f(x, a)) from it

4. f(x, y) = f(x, y + a)

5. compute a bound B on the coefficients of a factor of f as described in
6.1.3

6. choose k > 0 and a prime p such that p - lcx(f)(0), fi ∈ l are pairwise
co-prime in Fp, and pk > 2B

7. for fi ∈ l set fi = lc(fi)
−1fi mod pk

8. f̃ = (lcx(f)(0))−1f mod pk

9. call algorithm 6.4 with input f̃ , l, p, k, and n = degy(f) + 1 to

compute f
(n)
i such that f̃ = lcx(f̃)

∏
i f

(n)
i mod < yn+1, pk > and

f
(n)
i (x, 0) ∈ l

10. call algorithm 7.1 with input f , f
(n)
i , p, k to compute the irreducible

factors g1, . . . , gs of f
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11. gj = gj(x, y − a) for j = 1, . . . , s

12. return g1, . . . , gs

As lcx(f)(0) =
∏

lc(fi) before step 7 and p - lcx(f)(0), step 7 and step 8
cannot fail. Furthermore, note that before step 9 the following holds:
f̃ = lcx(f̃)

∏
fi mod < y, pk >. Therefore, the lifting returns the correct

result.

Algorithm 8.3 (Bivariate polynomial factorization over Q(α)).
Input: a square-free polynomial f ∈ Q(α)[x, y] which is primitive with
respect to x and y

Output: the irreducible decomposition Irr(f)

Instructions:

1. choose a ∈ Z at random such that f(x, a) remains square-free and
deg(f(x, a)) = degx(f)

2. compute l = Irr(f(x, a)) and remove f1 = lc(f(x, a)) from it

3. set f = f/lc(f(x, a))

4. f(x, y) = f(x, y + a)

5. for all fi ∈ Irr(f(x, a)) compute the smallest g ∈ Z such that
gfi ∈ Z[α][x] and set fi = gfi

6. compute the smallest g ∈ Z such that

• gf(x, a) = lc(gf(x, a))
∏

fi∈Irr(f(x,a)) fi

• gf ∈ Z[α][x][y]

and set f = gf

7. compute a bound B on the coefficients of a factor of f as described in
6.2

8. choose k > 0 and a prime p such that p - lcx(f)(0) · disc(µ) and
pk > 2B

9. for fi ∈ l set f̃i = lc(fi)
−1fi mod pk
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10. f̃ = (lcx(f)(0))−1f mod pk

11. call algorithm 6.5 with input f̃ , f̃i, p, k, and n = degy(f) + 1 to

compute f
(n)
i such that f̃ = lcx(f̃)

∏
i f

(n)
i mod < yn+1, pk > and

f
(n)
i (x, 0) = f̃i

12. compute D = disc(µ) and df = res(µ, lc(f))

13. call algorithm 7.1 with input f , f
(n)
i , p, k, and dfD to compute the

irreducible factors g1, . . . , gs of f

14. gj = gj(x, y − a) for j = 1, . . . , s

15. return g1, . . . , gs

Note that lcx(f)(0) ∈ Z holds in step 8 due to steps 3 and 6. Therefore,
steps 9 and 10 cannot fail and f̃ = lcx(f̃)

∏
f̃i mod < y, pk > holds before

step 11. Now step 11 may fail if solving 6.1.2 modulo p failed. As there are
only finitely many primes that lead to failure, step 11 eventually returns
the correct result.
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Chapter 9

Multivariate factorization

We state the multivariate polynomial factorization algorithm to complete
the description.

As for the bivariate factorization algorithm, we assume F to be square-free
and primitive with respect to any variable occurring in F . Furthermore, we
assumed ∂F

∂x1
6= 0. As F is square-free this is no restriction.

Algorithm 9.1 (Multivariate polynomial factorization over a finite field).
Input: a square-free polynomial F ∈ Fq[x1, x2, x3, . . . , xn] which is
primitive with respect to xi for i = 1, . . . , n and ∂F

∂x1
6= 0

Output: the irreducible decomposition Irr(F ) or “failure”

Instructions:

1. if tdeg(gcd( ∂F
∂x1
, F )) > 0

(a) call the present algorithm with input G = gcd( ∂F
∂x1
, F ) and F/G

(b) return Irr(F/G) ∪ Irr(G)

2. choose an evaluation point a = (a2, a3, . . . , an) ∈ Fn−1q such that:

• f = F (x1, x2, a3, . . . , an) is square-free

• f(x1, a2) is square-free

• degx1(F ) = degx1(f) = deg(f(x1, a2))

• f is primitive with respect to x1

• degxi(F ) = degxi(F (x1, x2, . . . , xi, ai+1, . . . , an))
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3. if there is no such a, pass to a suitable field extension Fqk and goto
step 2

4. call algorithm 8.1 with input f to obtain the irreducible bivariate
factors f1, . . . , fr of f

5. call algorithm 6.11 with input F , f1, . . . , fr , and (a3, . . . , an) to
obtain m and p1, . . . , pr

6. if m is non-constant, set F = mr−1F , fi = m(x2, a3, . . . , an) · fi for
i = 1, . . . , r, and pi = mpi for i = 1, . . . , r

7. call algorithm 6.10 with input F , f1, . . . , fr and p1, . . . , pr

8. if algorithm 6.10 returns F1, . . . , Fr return ppx1(F1), . . . , ppx1(Fr)

9. F = F (x1, x2 + a2, . . . , xn + an)
pi = pi(x2 + a2, . . . , xn + an) for i = 1, . . . , r
fi = fi(x1, x2 + a2) for i = 1, . . . , r

10. call algorithm 6.8 with input F , f1, . . . , fr , p1, . . . , pr , and
degx3(F ) + 1, . . . , degxn(F ) + 1 to obtain F1, . . . , Fr

11. if ppx1(Fi) | F for all i = 1, . . . , r

(a) Fi = (ppx1(Fi))(x1, x2 − a2, . . . , xn − an) for i = 1, . . . , r

(b) return F1, . . . , Fr

12. return “failure”

Proof : To show the correctness of the first 3 steps of the above algorithm,
the proof of the bivariate case carries over to the multivariate case. That is,
since after step 1 gcd( ∂F

∂x1
, F ) = 1, the resultant resx1(F,

∂F
∂x1

) is a non-zero
polynomial, and thus has only finitely many roots. Furthermore, any root
of lcx1(F ) is a root of resx1(F,

∂F
∂x1

). In addition to the bivariate case, lcxi(F )

has finitely many roots. Let F =
∑dx

i=1 gix
i and since F is primitive with

respect to x only finitely many evaluation points yield a non-constant
gcd(g1(a3, . . . , an), . . . , gdx(a3, . . . , an)). In total, this show that a large
enough field extension eventually contains a suitable evaluation point a.
“failure” is returned if and only if there is no one-to-one correspondence
between bivariate and multivariate factors, since otherwise algorithm 6.11
had returned the right leading coefficients and algorithm 6.8 had returned
the right factors.
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To obtain the factorization even in cases where the above algorithm returns
“failure”, one can make the fi monic in x1 by inverting their leading
coefficients mod x2

degx2 (F )+1, add the leading coefficient lcx1(F ) as factor,
and use a generalization of algorithm 6.1 to keep the lifted factors monic.
Then one has to recombine the lifted factors similar as in 7.1. This,
however, is very inefficient.

In algorithm 9.1 we have chosen x1 as main variable and x2 as second
variable to keep the presentation simple. In our implementation we choose
the main variable x ∈ {x1, . . . , xn} such that lcx(F ) has as few terms as
possible to keep down the cost of algorithm 6.11. Besides, in case a
non-constant m is returned by algorithm 6.11 this choice contains the term
growth in step 6. Furthermore, we try to order the remaining variables
decreasingly by degxi(F ) to minimize the cost for Hensel lifting. This may
not always be possible because we also try to choose the second variable
such that the conditions for algorithm 6.11 are satisfied.

On the other hand, the main and second variable x respectively y may be
chosen such that degx(F ) and degy(F ) is minimal to decrease the cost for
bivariate factorization. Another possibility is to choose x such that lcx(F )
has as much terms as possible. This makes the sparse heuristic Hensel
lifting more likely to succeed as more starting solutions are known.

Algorithm 9.2 (Multivariate polynomial factorization over Q or Q(α)).
Input: a square-free polynomial F ∈ K[x1, x2, x3, . . . , xn] - where K is
either Q or Q(α) - which is primitive with respect to xi for i = 1, . . . , n

Output: the irreducible decomposition Irr(F ) or “failure”

Instructions:

1. if K = Q, compute the lowest common denominator g of the
coefficients of F and set F = gF

2. else compute the smallest g ∈ Z such that gF ∈ Z[α][x1, . . . , xn] and
set F = gF

3. choose an evaluation point a = (a2, a3, . . . , an) ∈ Kn−1 such that:

• f = F (x1, x2, a3, . . . , an) is square-free

• f(x1, a2) is square-free
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• degx1(F ) = degx1(f) = deg(f(x1, a2))

• f is primitive with respect to x1

• degxi(F ) = degxi(F (x1, x2, . . . , xi, ai+1, . . . , an))

4. call algorithm 8.2 or 8.3 with input f to obtain the irreducible
bivariate factors f1, . . . , fr of f

5. call algorithm 6.11 with input F , f1, . . . , fr , and (a3, . . . , an) to
obtain m and p1, . . . , pr

6. if m is non-constant, set F = mr−1F , fi = m(x2, a3, . . . , an) · fi for
i = 1, . . . , r, and pi = mpi for i = 1, . . . , r

7. call algorithm 6.10 with input F , f1, . . . , fr and p1, . . . , pr

8. if algorithm 6.10 returns F1, . . . , Fr return ppx1(F1), . . . , ppx1(Fr)

9. F = F (x1, x2 + a2, . . . , xn + an)
pi = pi(x2 + a2, . . . , xn + an) for i = 1, . . . , r
fi = fi(x1, x2 + a2) for i = 1, . . . , r

10. call algorithm 6.8 with input F , f1, . . . , fr , p1, . . . , pr , and
degx3(F ) + 1, . . . , degxn(F ) + 1 to obtain F1, . . . , Fr

11. if ppx1(Fi) | F for all i = 1, . . . , r

(a) Fi = (ppx1(Fi))(x1, x2 − a2, . . . , xn − an) for i = 1, . . . , r

(b) return F1, . . . , Fr

12. return “failure”
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Chapter 10

Newton Polygon Methods

As we have seen, Newton polygons carry powerful information about the
irreducible decomposition of a bivariate polynomial. Since Newton
polygons only depend on the support of a polynomial, they are independent
of the underlying coefficients.

The Newton polygon of a bivariate polynomial f can be computed by
means of Graham scan [Gra72], which takes O(m log(m)), where m denotes
the number of non-zero terms of f .

A classic theorem by Ostrowski [Ost99] relates the decomposition of a
polynomial to the decomposition of its Newton polytope as Minkowski sum:

Let f, g, h ∈ R[x1, . . . , xn] such that f = gh then N (f) = N (g) +N (h),
where N (f) denotes the Newton polytope of f .

Now if one can show that the Newton polytope of a polynomial f is
integrally indecomposable, then f is irreducible. Since the Newton polytope
is independent of the ring R, f is irreducible over any ring S that contains
R. Therefore, if R is a field, f is absolutely irreducible over R.

For the case of bivariate polynomials Gao and Lauder in [GL01] show that
deciding whether an integral convex polygon is integrally indecomposable is
NP-complete.

However, some very simple irreducibility tests can be derived:
Let f be a two term bivariate polynomial in the indeterminates x, y of
degree n in x and m in y. Then f is absolutely irreducible if gcd(n,m) = 1
[Gao01, Corollary 4.4].
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Let f = axn + bym + cxuyv +
∑

(i,j) cijx
iyj with non-zero a, b, c such that

the Newton polygon of f is of the form (n, 0), (0,m), (u, v) and
gcd(n,m, u, v) = 1 then f is absolutely irreducible [Gao01, Example 1].

All algorithms for computing the irreducible decomposition of a bivariate
polynomial f described so far depend on the dense size of the input. That
is, their run-time depends on degx(f) and degy(f). Let the convex size of f
be the number of integral points contained in its Newton polygon N (f),
and its sparse size be the number of non-zero terms. Furthermore, the
dense size of f is defined as (degx(f) + 1)(degy(f) + 1). If we assume f to
be primitive with respect to x and y, then its Newton polygon N (f) is
always contained in [0, degx(f)]×

[
0, degy(f)

]
; and it contains at least one

point on the x-axis and one point on the y-axis. Now one can apply an
algorithm described in [BL12, Algorithm 1] to it that only uses the
following elementary operations:

ρ : (i, j)→ (i− j, j)

and
σ : (i, j)→ (j, i)

and
τk : (i, j)→ (i+ k, j).

Algorithm 1 of [BL12] returns a map U

U : (i, j)→M

(
i

j

)
+

(
a

b

)
,

where M ∈ GL(Z, 2), a, b ∈ Z that when applied to N (f) yields a polygon
whose dense size is at most 9π, where π denotes the convex size of N (f)
(see [BL12, Theorem 1.2]).

If U is applied to the monomials of a polynomial f , then U(f) is irreducible
if and only if f is irreducible. One can recover the factors of f from those of
U(f) by applying U−1 and normalizing. In 11.3.2 we give an example that
illustrates the power of the reduction of convex-dense to dense polynomials.

Based on Ostrowski’s theorem, [ASGL04] derive a Las Vegas algorithm to
compute the irreducible factorization of a bivariate polynomial f given a
decomposition of N (f) which turns out to be very efficient over F2, see
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[Sal08]. However, computing the integral decomposition of an integral
polygon is NP complete [GL01, Proposition 14]. Nevertheless, they devise a
pseudo-polynomial time algorithm that is able to compute the integral
decomposition of an integral polytope.
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Chapter 11

Implementation and results

11.1 factory

factory is a C++ library originally developed by R. Stobbe, J. Schmidt, H.
Schönemann, G. Pfister and G.-M. Greuel at the University of
Kaiserslautern to support operations such as greatest common divisor,
factorization, and resultants. factory is used by Singular [DGPS12] for
these very operations.

The following coefficient domains are supported by factory:
Z,Q,Q(α),Fp,Fq, where two different representations of extensions of Fp
are available: either by roots of Conway polynomials [JLPW95] with
addition tables for p ≤ 251 and pn < 216 or as residue classes modulo a
given irreducible polynomial. For finite fields p must be less than 229.
Polynomial data is implemented in sparse recursive representation as linked
list, that is, every polynomial is considered univariate with coefficients
being, possibly, polynomial again. As interface the type CanonicalForm is
used, which can represent polynomial data as well as coefficients. To
distinguish between these two, each variable has a level which is an integer.
Coefficients of the intrinsic domains Z,Q,Fp have level 0. Algebraic
variables used to represent Fq,Q(α) have level < 0, whereas polynomial
variables have level > 0. Hence, each polynomial has a level, namely the
maximum of the levels of its variables.

As sparse recursive representations are rather ill-suited for univariate
operations, there is an interface to Shoup’s NTL library [Sho] to handle
univariate operations such as factorization and gcd over Fp,Fq, and Z. The
author has also implemented an interface to FLINT [HPN+] since in contrast
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to NTL, FLINT is actively developed, thread-safe, and supports univariate
polynomials over Q. Besides this FLINT provides almost the same
functionality as NTL at a comparable or even better level of performance.

During the course of this thesis the author has revised and reimplemented
large parts of factory. This was necessary since many implemented
algorithms were outdated and/or badly implemented. Together with the
newly implemented algorithms, the author has contributed approximately
30,000 physical lines of code to factory.

11.2 Some implementation details

As shown in section 6.1, lifting univariate polynomials to bivariate
polynomials can be implemented such that only univariate polynomial
arithmetic and cheap additions of bivariate polynomials are needed. To
speed up this step, we use FLINT or NTL to handle the univariate
polynomial arithmetic as they surpass factory’s built-in polynomial
arithmetic in the univariate case. NTL, as well as FLINT, have implemented
asymptotically fast univariate arithmetic for various rings. In both,
univariate polynomials are represented as dense polynomials, in contrast to
factory’s sparse linked list representation.

Bivariate polynomial multiplication can be reduced to univariate
polynomial multiplication by Kronecker substitution in the following way:
Let f =

∑m
i=0 fiy

i and g =
∑l

i=0 giy
i be polynomials in R[x][y] with

degx(fi) ≤ d and degx(gi) ≤ d. Then the product h = fg can be obtained
by

h(x, x2d−1) = f(x, x2d−1)g(x, x2d−1)

in O(M(ld)) operations over R if we assume l > m (see [vzGG03]).

In [Har07] faster versions of Kronecker substitution are described, using 2
or 4 evaluation points. We have implemented the reciprocal evaluation
point method which uses two evaluation points.

One frequently used operation is multiplication in R[x][y]/(yn). Here only
the first (2d− 1)(n− 1) coefficients of the above product are needed. FLINT
and NTL provide special functions to compute only the first m coefficients of
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a product which we use in conjunction with the above methods.

Another way to speed up multiplication in R[x][y]/(yn) is Karatsuba
multiplication.
Let us assume m, l ≤ n, then

f =f0 + f1y
n
2

g =g0 + g1y
n
2

where deg(fi), deg(gi) ≤ n
2
. Hence,

h = f · g = f0g0 + (f0g1 + f1g0)y
n
2

in R[x][y]/(yn). One can proceed similarly in the recursive calls to compute
f0g1 and f1g0 in R[x][y]/(y

n
2 ).

It is easy to generalize this method to the multivariate case
R[x1, . . . , xn]/(xk22 , . . . , x

kn
n ) by recursion on the variables. We found

Kronecker substitution to be superior to Karatsuba multiplication if
asymptotically fast multiplication is available. However, this is not always
the case, for instance, if a finite field is represented by roots of a Conway
polynomial.

In the polynomial time recombination algorithm it is necessary to compute
linearized logarithmic derivatives of the form

f/g · g′ mod yk

Since g is monic in x, it is possible to use Newton iteration (see [vzGG03,
Chapter 9]) to compute an inverse of the reversal revl(g) mod (xm−l+1, yk).
Hence, computing f/g comes down to one computation of an inverse of
revl(g) mod (xm−l+1, yk) and one multiplication of this inverse with revm(f)
mod (xm−l+1, yk).

However, using Newton inversion is best if asymptotically fast
multiplication is used. In case this is not possible, one can adapt a method
of Burnikel and Ziegler [BZ98] - originally proposed for fast division of
integers. This method uses Karatsuba multiplication to compute an
approximation to the remainder and corrects this approximation until the
actual remainder is recovered.
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f/g has to be computed mod yk for different k. Assume f/g mod yk was
already computed for some k, and one wants to compute f/g mod yl for
l ≥ k. Then one can write

f =f0 + f1y
k

g =g0 + g1y
k

q =f/g = q0 + q1y
k

A short computation gives

f − q0g = q1gy
k mod yl

Since this is divisible by yk, it suffices to compute q1 as

f−q0g
yk

g
mod yl−k

For all these operations one has to keep in mind: The polynomials that
occur in Hensel lifting tend to become dense due to shifting the evaluation
point and by requiring the lifted factors to be monic in the main variable.
Hence, it makes sense to use methods that can manage dense input.
Nevertheless, the conversion between factory and NTL respectively FLINT

does constitute overhead.

11.3 Benchmarks

All tests in this section were performed on a Xeon X5460 with 64 GB Ram
using a development version of Singular 3-1-6 1, FLINT 2.3 and
NTL 5.5.2 compiled with gcc-4.5.4 unless mentioned otherwise. For
convenience we drop the version numbers in the following. Timings are
given in milliseconds.

11.3.1 A bivariate polynomial over F2

f = x^4120 + x^4118*y^2 + x^3708*y^400 + x^3706*y^402

+ x^2781*y^1300 + x^2779*y^1302 + x^1339*y^2700

+ x^927*y^3100 + y^4000 + x^7172*y^4167 + x^8349*y^4432

+ x^8347*y^4434 + x^6760*y^4567 + x^5833*y^5467

+ x^5568*y^7132 + x^11401*y^8599

1available from https://github.com/Singular/Sources/tree/master,
git revision 08ec4da8348e9b9c3f1b17d21725a8cef13b289a

https://github.com/Singular/Sources/tree/master


66 CHAPTER 11. IMPLEMENTATION AND RESULTS

The above polynomial is taken from [Sal08]. It factorizes as follows:

g = x^5568*y^4432 + x^1339 + x^927*y^400 + y^1300

h = x^5833*y^4167 + x^2781 + x^2779*y^2 + y^2700

First, f is transformed to

ff=y^8120+x^2*y^8116+x^4432*y^7917+x^4434*y^7913+x^400*y^7308+

x^402*y^7304+x^4167*y^7005+x^8599*y^6802+x^4567*y^6193+

x^1300*y^5481+x^1302*y^5477+x^5467*y^4366+x^2700*y^2639+

x^7132*y^2436+x^3100*y^1827+x^4000

then ff splits into

gg= y^2639+x^4432*y^2436+x^400*y^1827+x^1300

hh= y^5481+x^2*y^5477+x^4167*y^4366+x^2700

As one can see, the first factor gg has derivative zero with respect to x.
Hence gcd(ff, ∂ff

∂x
) = hh. Now each factor can be proven to be irreducible

by applying [Gao01, Example 1].

Singular Magma V2.19-3

3,680 80,100

Table 11.1: Abu Salem benchmark

We attempted to factorize f with Maple 16 but aborted the computation
after 1,000,000 milliseconds.

11.3.2 A family of sparse bivariate polynomials over
F17

This family of sparse bivariate polynomials is given in [Ber99] by

fn = xnyn + xb
n
2
c+1yb

n
2
c(y + 1) + x2y + (n+ 1)xy + (n2 + 3)x− 2 ∈ F17[x, y]

In [Ber99] the first 700 of these polynomials are factorized. Due to the
algorithm by [BL12] we can factorize the first 70,000 polynomials. Each
polynomial is transformed to a polynomial of the form

(xb
n
2
c+1 + x+ (n2 + 3))︸ ︷︷ ︸

g0

·y + xn + xb
n
2
c+1 + (n+ 1)x− 2︸ ︷︷ ︸

g1

Now if gcd(g0, g1) = 1, the polynomial is irreducible as its degree in y is
one. Otherwise, one just needs to factorize gcd(g0, g1) which is a univariate
polynomial. Note that this experiment was performed on an i7-860 with 8
GB Ram using NTL for the univariate factorizations.
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11.3.3 Bivariate Swinnerton-Dyer polynomials

To demonstrate the polynomial time behaviour of the implemented factor
recombination algorithm, we consider the following family of polynomials
due to Swinnerton-Dyer [Zip93], which are also considered in [BLS+04]:

Sk(x, y) =
∏

x±
√
y + 1±

√
y + 2± . . .±

√
y + k

Sk has total degree d = 2k and is irreducible, when considered in Fp[x, y], if
p > k; but for any evaluation at y it has 2k−1 factors of degree 2 in Fp[x].
However, since evaluating at x exhibits much fewer modular factors, for
example, S7(4134, y) has only 5 factors over F43051, one can consider
S ′k = Sk(x

2, y)Sk(y
2, x). For odd k, these polynomials are monic of degree

2k+1 and symmetric. Hence, these polynomials do not admit the above
shortcut, but one can first substitute x for x2 and y for y2, factorize the
resulting polynomial, and prove irreducibility of each obtained factor after
reverting the variable substitution.

Singular Magma V2.19-3

S ′7 1,540 600

S ′9 69,190 9,070

Table 11.2: Time to factorize Swinnterton-Dyer polynomials over F43051

univariate factorizations lifting and recombination

S ′7(x, y) 30 890

S7(x
2, y) 90 30

S7(y
2, x) 90 30

S ′9(x, y) 580 43,700

S9(x
2, y) 1,300 1,260

S9(y
2, x) 1,300 960

Table 11.3: Time to factorize Swinnterton-Dyer polynomials over F43051 with
Singular

The timings in the second table give more detailed timing information on
our implementation. Note that we computed 3 univariate factorizations per
variable. Hence, in total 18 univariate factorizations were computed. S ′9 has
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131, 839 terms.

We attempted to factorize S ′7 with Maple 16 but aborted the computation
after 1,000,000 milliseconds.

11.3.4 Multivariate polynomials over Q
The following benchmark was proposed in [Fat03] and is also considered in
[MP11] to demonstrate the gain of using parallelized multiplication in
Maple 14.

f multiply f · (f + 1) factorize

(1 + x+ y + z)20 + 1 460 670

(1 + x2 + y2 + z2)20 + 1 490 720

(1 + x+ y + z)30 + 1 6,230 4,370

(1 + x+ y + z + s)20 + 1 80,190 22,100

Table 11.4: Singular

f multiply f · (f + 1) factorize

(1 + x+ y + z)20 + 1 280 5,630

(1 + x2 + y2 + z2)20 + 1 310 6,140

(1 + x+ y + z)30 + 1 3,490 96,760

(1 + x+ y + z + s)20 + 1 11,680 264,790

Table 11.5: Magma V2.19-3

f multiply f · (f + 1) factorize

(1 + x+ y + z)20 + 1 54 3,851

(1 + x2 + y2 + z2)20 + 1 44 5,168

(1 + x+ y + z)30 + 1 307 24,516

(1 + x+ y + z + s)20 + 1 1,209 88,356

Table 11.6: Maple 16 showing real time
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The difference between the time for multiplication and factorization is due
to the following: Multiplication is carried out in Singular, which uses a
sparse distributive representation for polynomials, whereas the factorization
takes place in factory.

11.3.5 Bivariate polynomials over Q(α)

For this test, random bivariate polynomials over Q(α), where α is a root of
1000x8 + x5 + 233x+ 1, were produced. These polynomials are not
square-free, their coefficients are at most 110 bits and 148 bits integers
respectively after clearing denominators over Q. The first polynomial has
54 terms and the second has 110 terms.

Singular Magma V2.19-3 Maple 16

f1 780 38,880 1,511

f2 6,640 1,029,690 11,730

Table 11.7: Time to factorize random bivariate polynomials over Q(α)

minimal polynomial univariate factorizations Hensel lifting total time

m11 6,650 1,400 8,100

m12 6,550 2,300 8,930

m13 46,030 10,430 56,630

Table 11.8: Time to factorize example 1 from [BCG10] with Singular

minimal polynomial univariate factorizations Hensel lifting total time

m21 277,730 16,640 294,790

m22 355,740 94,740 452,690

m23 2,466,520 399,190 2,875,420

Table 11.9: Time to factorize example 2 from [BCG10] with Singular

In table 11.8 and 11.9 we list the times needed to factorize example 1 and
example 2 from [BCG10] modulo different minimal polynomials. Note that
we have computed two univariate factorizations per variable. Example 1
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has total degree 50, height < 2115, one factor of total degree 10, and one
factor of total degree 40 modulo m1i. Example 2 has total degree 100,
height < 2151, one factor of total degree 10, and one factor of total degree
90 modulo m2i. For example 1 we have used

m11 =90− 87a5 − 13a4 − 87a3 − 63a2 − 31a,

m12 =a5 − 2a4 + 7503a3 + 409158a2 + 17755875a− 5213231199,

m13 =− 74527024257430706547a5 + 41335820027733619678494a4−
8802799100134299620570628a3 + 922073391541923032455143510a2−
52359505826960725537487720825a+

1005890903726501112584295778604

m11 is used in [BCG10] to construct the example, m12 is obtained from m11

via Pari’s [The12] ’polred’ function, and m13 is computed by the algorithm
from [BCG10]. m21, m22, and m23 were obtained in the same way:

m21 =− 31 + 18a10 + 16a9 − 22a8 + 38a7 − 48a6 − 87a4 − 13a3 − 87a2 − 63a,

m22 =a10 − 5a9 − 7557a8 − 234341a7 + 15536729a6 + 1443526148a5+

50269318270a4 + 956924873772a3 + 9666707037426a2 + 33611122836488a−
116472457328530,

m23 =− 433811768034816a10 + 33653605742220745728a9−
41979440162252823423552a8 + 8983316356270124034782880a7−
830445404102177467708458648a6 + 38782444401126273604523137248a5−
1447463636120153038050247433813a4+

109757276883932691425161095554960a3−
6413200189177252734877344709381706a2+

168253497650205610550475245468397336a−
1881432616892874111676690016171428193

Maple 16 needed 5,073,001 ms to factorize example 1 modulo m11,
5,057,951 ms modulo m12, and 13,446,070 ms modulo m13. We have also
tried to factorize example 2 modulo m21, m22, and m23 via Maple 16, but
had to abort the computation as Maple 16 used all of the available main
memory. Magma V2.19-3 needed 15,042,240 ms to factorize example 1
modulo m11, 14,047,390 ms modulo m12, and 33,135,530 ms modulo m13.
We aborted all attempts to factorize example 2 via Magma V2.19-3 modulo
m2i after one day of computation.
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11.3.6 Very sparse polynomials over Q
The following polynomials are from [Ina05]. They were used to illustrate
the expression swell caused by shifting the evaluation point to zero for
Hensel lifting.

fk =(x2y2z + x(yk + zk) + 3y + 3z − 3z2 − 2yk/2zk/2)

(x3y2z2 + x(yk + zk)− 2y − 5z + 4y2 + 3yk/2zk/2)

and

gk =((x(y3 + 2z3) + 5yz)(x(y + 4z) + 2) + (2x− 7)(ykzk − yk−1zk−1))
((x(3y3 + 4z3) + 3yz)(x(y + 3z) + 7)− (3x+ 5)(ykzk − yk−1zk−1))

k Singular Magma V2.19-3 Maple 16

10 10 10 90

20 50 0 160

30 80 20 369

40 180 40 870

50 250 70 2,110

Table 11.10: Time to factorize polynomials fk
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k Singular Magma V2.19-3 Maple 16

5 10 20 110

6 20 20 59

7 20 20 70

8 30 30 99

9 30 40 130

10 30 30 139

11 30 50 370

12 30 60 250

13 30 70 250

14 40 70 399

15 30 90 359

Table 11.11: Time to factorize polynomials gk

11.3.7 Multivariate polynomials over different
domains

For these tests we have created 1,000 polynomials as the product of three
random polynomials f1, f2, and f3 over F2, F2[t]/(t

2 + t+ 1), F17,
F17[t]/(t

2 + t+ 1), F43051, F536870909, and Z in 7 variables. In the figures the
average computation time of Singular is indicated by a blue line. For the
specifications of the random polynomials see tables 11.12 and 11.13.

total degree random coefficients in percentage of zero terms

f1 6 [1, 100) 98

f2 6 [1, 1000) 97

f3 4 [1, 10000) 95

Table 11.12: Three sparse random factors
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total degree random coefficients in percentage of zero terms

f1 6 [1, 100) 99

f2 6 [1, 1000) 99

f3 4 [1, 10000) 98

Table 11.13: Three very sparse random factors

Figure 11.1: Multivariate polynomials in 7 variables with 3 sparse factors
over Q
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Figure 11.2: Multivariate polynomials in 7 variables with 3 very sparse factors
over Q
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Figure 11.3: Multivariate polynomials in 7 variables with 3 sparse factors
over F2
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Figure 11.4: Multivariate polynomials in 7 variables with 3 very sparse factors
over F2
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Figure 11.5: Multivariate polynomials in 7 variables with 3 sparse factors
over F17
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Figure 11.6: Multivariate polynomials in 7 variables with 3 very sparse factors
over F17
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Figure 11.7: Multivariate polynomials in 7 variables with 3 sparse factors
over F43051
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Figure 11.8: Multivariate polynomials in 7 variables with 3 very sparse factors
over F43051
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Figure 11.9: Multivariate polynomials in 7 variables with 3 sparse factors
over F536870909
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Figure 11.10: Multivariate polynomials in 7 variables with 3 very sparse
factors over F536870909
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Figure 11.11: Multivariate polynomials in 7 variables with 3 sparse factors
over F22
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Figure 11.12: Multivariate polynomials in 7 variables with 3 very sparse
factors over F22
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Figure 11.13: Multivariate polynomials in 7 variables with 3 sparse factors
over F172



86 CHAPTER 11. IMPLEMENTATION AND RESULTS

Figure 11.14: Multivariate polynomials in 7 variables with 3 very sparse
factors over F172



11.4. CONCLUSION AND FURTHER WORK 87

The timings indicate that on average our implementation performs quite
well. However, there are some peaks due to failed heuristics and/or poor
GCD performance in case the field is small.

11.4 Conclusion and further work

In Chapter 10 we have only presaged the power of factorization algorithms
based on Newton polygons. They preserve sparseness as no shifting of the
evaluation point is necessary and only depend on the shape of the Newton
polygon. A new algorithm by [WCF11], based on ideas by
[SS93],[SK99],[Ina05] for Hensel lifting, seems very promising since it is able
to factorize bivariate polynomials over Q of degree > 100,000. Combining
their ideas with the Newton polygon decomposition algorithm of [GL01]
may further improve on [ASGL04] in the finite field case.

With the current implementation one may be able to program [Lec10] with
little effort which may improve our software in corner cases. With more
effort one can also implement [CL07].

On the technical side by interfacing to a thread-safe FLINT, we have
undertaken first steps towards thread-safety of factory. As Hensel lifting
usually constitutes the bottleneck of the factorization algorithm, it should
be parallelized - [Ber99] shows how to do this. Furthermore, faster
parallelized multiplication, as described in [MP11], may show fruitful.

Another improvement is to integrate FLINT’s or NTL’s polynomial types into
factory’s CanonicalForm type to reduce conversion overhead.

By allowing an arbitrary large characteristic of finite fields, all modular
methods may profit as fewer primes need to be used. Besides, it makes the
use of Monte-Carlo algorithms possible. One can bound the coefficients
occurring in some problem, create several pseudo-primes that exceed the
bound, solve the problem modulo these pseudo-primes, and check if the
reconstructed result has changed. If this is not the case, one has obtained a
result that with high probability is correct. This strategy is used in NTL to
compute resultants of univariate polynomials over Z.

Instead of the square-free decomposition one should compute the separable
decomposition, as pointed out in [Lec08]. This will make step 2 of
algorithm 8.1 and step 1 of algorithm 9.1 obsolete.
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From the timings one can see that the bottleneck when factoring the
examples of [BCG10] is the univariate factorization stage, in contrast to all
other examples. One may remedy this by using an algorithm in the spirit of
[Rob04] or [Bel04] since they use a modular approach and do not need to
compute resultants.
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