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Abstract

This thesis deals with generalized inverses, multivariate polynomial interpolation and
approximation of scattered data. Moreover, it covers the lifting scheme, which basically
links the aforementioned topics. For instance, determining filters for the lifting scheme is
connected to multivariate polynomial interpolation. More precisely, sets of interpolation
sites are required that can be interpolated by a unique polynomial of a certain degree. In
this thesis a new class of such sets is introduced and elements from this class are used to
construct new and computationally more efficient filters for the lifting scheme.

Furthermore, a method to approximate multidimensional scattered data is introduced
which is based on the lifting scheme. A major task in this method is to solve an ordinary
linear least squares problem which possesses a special structure. Exploiting this struc-
ture yields better approximations and therefore this particular least squares problem is
analyzed in detail. This leads to a characterization of special generalized inverses with
partially prescribed image spaces.
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Preface

This thesis consists of four chapters where each chapter is devoted to one of the following
subjects: Generalized inverses, multivariate polynomial interpolation, the lifting scheme
and approximation of scattered data. Each chapter starts with an abstract that contains
a sketch of my own contributions and an outline of the chapter. This is followed by an
introductory section, where the corresponding subject is motivated.

Here, in this preface, I present a more personal view on this thesis, where I give an
overview of my main contributions and comment at some points why I approached exactly
those problems which are now topics in this thesis. Furthermore, it is revealed how the
different subjects in this thesis are connected to each other.

Substantial parts of this thesis were motivated by the paper [KS00], which deals with the lifting
scheme in arbitrary dimensions d. The lifting scheme is a filter bank structure that can be used to
efficiently perform the discrete wavelet transform. Moreover, the structure of the lifting scheme
gives an idea on how to construct new filters, and so new wavelets, by solving a linear system of
equations

Zp_kka =7% for |ao|<N, (1)
keK
with @ := (a1,...,aq4), |a| == a1 + -+ a4, 7 € RY and N € Z;. The crucial point is to

find a finite set K C Z% of points k € K such that the system (1) possesses a unique solution
(p—x €ER: k€ K). As we will learn in this thesis this is the case when the set K is correct, i.e.,
for any f : R? — R there exists a unique polynomial ¢ € T4, in d variables and with total degree
at most N, which interpolates the values (f(k) : k € K). However, in [KS00] it is written:

“It is not clear a priori how many interpolation points and which geometric configura-
tions are needed to uniquely solve the interpolation problem for a space of polynomials  (2)
up to a certain degree.”

Implementing the system of equations (1) makes it necessary to provide all multi-indices o with
la| < N, which results in a set Iy g = {a € Z% : |a] < N} of dimII% points. So without
putting much thoughts on how to choose K a natural choice is to try K = I'y 4. Interestingly
for any tried choice of N and d, the matrix representing the system of equations (1) was non-
singular, meaning that the set K = I'y 4 is correct. My “advantage” at this point was my little
knowledge on multivariate polynomial interpolation, because for d = 2 this configuration was
already discussed in 1903 by Biermann. But having the quote (2) in mind I started thinking why
this special configuration of points always led to a uniquely solvable system.

At the point when realizing why for arbitrary N and d the set K = I'y 4 is correct, it
also became clear from the proof that one can even characterize a whole class of correct sets
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based on I'y q. Moreover, this characterization can be used as a concrete recipe to construct
correct sets. Then fortunate circumstances brought me together with Carl de Boor, who noticed
that my characterization is more general than known characterizations and that for d = 2 my
characterization is a special case of Radon’s recipe. We started collaboration at which end
we came up with the article [SB11], in which we present a new characterization of a class of
correct sets, where we show that this characterization covers all sets that are constructible by
the recursive application of Radon’s recipe. These and more results on correct sets are written
down in Chapter II.

In Chapter III T discuss the lifting scheme and its connection to wavelets. Moreover, I
construct a new family of filters for the lifting scheme by using the new recipe on correct sets
from Chapter II together with equation (1). When determining new filters for the lifting scheme
one has to be aware that the coefficients (p_y, : k € K) of the determined filter implicitly define a
Riesz basis via some refinement equation. I verified this property for all my filters in Chapter III.
In comparison, not all filters which are derived in [KS00] meet this property. Additionally my
filters have less filter coefficients which reflects in saving computing time when applying the lifting
scheme. Furthermore, I provide a result on the geometrical configuration of K such that many
filter coefficients vanish to zero. Exploiting this result yields an extension of the one-dimensional
Deslaurier—Dubuc filters to the two-dimensional quincunx case.

Besides working on the aforementioned topics I developed a method to approximate scattered
data by using the lifting scheme. This approach is introduced in Chapter I'V. A major task in
my approach is to solve a least squares problem

min ||Az — b||§ , (3)

where the matrix A has the property AE, = E,,, with E, :=[1,...,1]T € R". Like in similar
methods, e.g., [FE98] and [NM99], I used the minimal norm solution to (3) in the beginning.
But using the minimal norm solution yields bad effects near the boundary of the corresponding
approximant, even for constant valued scattered data. I prove that constant valued scattered data
is approximated exactly if and only if the solution to the least squares problem min, || Az — E,,||3
equals ¢ = F,,, which is unlikely the case for the minimal norm solution within my approach.
However, it is a well-known fact that all {1,3}-inverses A3 of A give a solution to the least
squares problem by z = A3, where the Moore Penrose inverse Af is the unique {1,3}-
inverse with | Afb|| minimal. Hence, I started thinking of a {1, 3}-inverse A% with the property
A'E,, = E,,. Therefore, I considered the more general case

AYAY) =Y with AeC™" Y ecC"™" and rank AY =/ (4)

and characterized all {1,3}-inverses A" satisfying this condition (4). Moreover, I determined
conditions such that matrices out of this subset of all {1,3}-inverses coincide with the Moore—
Penrose inverse on certain subspaces of C™. This leads to two natural choices of {1, 3}-inverses
A® satisfying (4). All this is discussed in detail in Chapter I on generalized inverses where also
focus is put on computational aspects and the connection to the Tikhonov regularization. Some
of the results presented in there can also be found in the article [DS12], which I published together
with my supervisor Tobias Damm.

The results from Chapter I are then exploited in Chapter IV on scattered data approximation,
where I also compare different solutions and regularizations to the least squares problem (3) and
the corresponding approximations. More precisely, I reveal why the minimal norm solution
is not the method of choice and that the newly derived {1, 3}-inverses from Chapter I and a
regularization to (3) that restricts the roughness of the solution deliver much better results. I
also compare this new method to existing methods and show that it yields similar or even better

2
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results. At the end of Chapter IV, I introduce an idea to significantly speed up the convergence
of a conjugate gradient method applied on a Tikhonov regularization to (3).

Structure of the thesis

In summary, in Chapter I on generalized inverses I discuss the solution of a least squares problem
with additional constraints. This is exploited in Chapter IV in the approach of scattered data
approximation. Chapter II deals on how to construct correct sets for multivariate polynomial
interpolation. These results are then used in Chapter III to construct a new family of Neville
filters. Besides that I explain in Chapter III the lifting scheme, which is used in the method to
approximate scattered data in Chapter IV. Hence:

/. /\
Chapter 1 Chapter II Chapter III Chapter IV

\/

Notation

The j-th labeled equation in Section ¢ within Chapter K is tagged by (i.j). In Chapter L # K
this equation is referenced by (K.i.j). Same, but without brackets, applies for subsections,
figures, tables and the class of mathematical “environments” like definitions and theorems.
Mathematical notation used in this thesis can be found in the glossary of notation at page 101,
where the page number behind each entry corresponds to its first appearance in this thesis.
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Chapter 1

Generalized Inverses

We start this chapter by discussing the Moore—Penrose inverse and its properties in Sec-
tion 1. In Section 2, we deal with the least squares problem and how generalized inverses
and the Tikhonov regularization are connected to it. Until this point these are all well-
known results, this changes in Section 3 where we construct generalized inverses with
partially prescribed image spaces to solve least squares problems. This ends in a char-
acterization of a special subset of {1,3}-inverses. Furthermore, we discuss properties of
particular {1,3}-inverses from this set, where we also deal with several computational
aspects, see Section 3.2. In Section 4 we present Tikhonov regularizations that have pre-
scribed solutions, where it is also shown that in the limit of every Tikhonov regularization
its solution can also be obtained by a {1, 2, 3}-inverse. In the last section of this chapter
we discuss the new results related to a special case.

1 Introduction

According to [BIG03] a generalized inverse of a matrix A should exist also for non-singular and
even for non-square matrices while preserving properties that the usual inverse possesses. It
should further coincide with the usual inverse when A is non-singular. The best-known gener-
alized inverse that meets these conditions is the Moore—Penrose inverse. It was first discovered
as reciprocal of a matrix by E. H. Moore in 1920, see [M0020] and [MB35]. The problem of
Moore’s work was its use of a very complicated notation, which made the work accessible only
to a few readers. Hence, the work of Moore was barely noticed. This made an independent
rediscovery necessary. That was done by R. Penrose in [Penb5] by introducing the generalized
inverse of a matrix. Shortly later R. Rado noticed in [Rad56] that Moore’s reciprocal and Pen-
rose’s generalized inverse coincide. Hence, this generalized inverse is nowadays referred to as the
Moore—-Penrose inverse.

Since then the Moore-Penrose inverse found application in various fields. For instance in
providing the minimal norm solution to the ordinary linear least squares problem, as we will
learn in Section 2.
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1.1 The Moore—Penrose inverse

The Moore-Penrose inverse A' of a matrix A is the unique matrix X that satisfies the four
Penrose equations

1) AXA=A

2) XAX =X 1)
3) AX = (AX)* '
4) XA= (XA,

see [Pen55]. In the next lemma we state some properties of the Moore—Penrose inverse A which
are immediate consequences of the above equations (1.1).

Lemma 1.1 [Penb5] Let A € C™*™ and T € C, where

T“:{Tlif7¢0.
0 if 7=0

The following hold

(a) (AT =4

(b) (A7) = (4l)* ;

(c) if A is non-singular AT = A=1 ;

(d) (AA)T=XTAT;

(e) (A A) = AT(AT)" ;

(f) ATAA* = A* = A*AAT ;

(g) if U and V are unitary (UAV)t = V*ATU* .

Readers that are interested in Moore’s original work on the reciprocal are referred to [BI02],
where Ben-Israel presents a restatement of Moore’s work using modern and more simple notation.

1.2 {i,j,...,k}-inverses

In this thesis we also consider generalized inverses which only satisfy some of the four Penrose
equations (1.1). Consider for instance that X only satisfies Penrose equation 1) and 3), then we
call such a matrix the {1,3}-inverse of A. More generally:

Definition 1.2 [BIG03, page 40] For any A € C™*"™ let A{4,],...,k} denote the set of matrices
X € C™*™ which satisfy equations i),j),...k) from among (1.1). A matrix X € A{i,j,...,k}
is called an {i,7, ..., k}-inverse of A, and also denoted by A(3+¥),

In this notation the Moore-Penrose inverse AT = A(1:234) is the {1,2,3,4}-inverse of A. In
Section 2.1 we will learn that {1, 3}-inverses can be used to obtain a solution to the least squares
problem.
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1.3 The four subspaces

To every matrix A € C™*" four subspaces are connected, namely

R(A*) c C» q RA) c Cm
N@A) c ¢ MY o nNUn ¢ oom

Obviously, if A € C"*™ is non-singular R(A4) = R(A*) = C"™ and N (A) = N (4*) = {0}. Hence,
the inverse A~! just maps R(A) to R(A*). In case A € C™*" with m # n there is no inverse.
Though an inverse from R(A) to R(A*) still exists — the restriction of the Moore—Penrose inverse
to R(A), i.e., AT|R(A) = (A\R(A*))_l. This is what we show in this section.

We start with the following relation:
Theorem 1.3 [BIGO03, page 12] For any A € C™*"™,

R(A*) = N(A)*

R(A) = N(A"):. (1.2)

Proof. Recall that
(Az,y) = {x,A*y) forall ze€C" yeC™. (1.3)

Let x € N(A). Then the left hand side of equation (1.3) vanishes for all y € C™. It follows then
that = L A*y for all y € C™, or, i.e., x L R(A). This proves that N'(A4) C R(A*)*1.

Conversely, let © € R(A*)*, so that the right hand side of equation (1.3) vanishes for all
y € C™. This implies that Az 1 y for all y € C™. Therefore Az = 0. This proves that
R(A*)L C N(A), and completes the proof.

The proof of relation R(A) = N'(A*)* works analogously. O

Let R(X) € C™ and R(Y) C C™ then we denote by L(R(X),R(Y)) the set of all linear
transformations from R(X) to R(Y"). Since £(C™,C™) and the space of all matrices C™*™ are
isomorph we use the same symbol A for elements in that class. So let A € £(C",C™) and
R(X) C C" then we denote the restriction of A to R(X) by Algr(x) € L(R(X),C™), where

In the next lemma we prove that for every {1,2}-inverse X of A it holds that

Xlr(a) € LIR(A), R(X))

is a bijection. In the subsequent Theorem 1.5 we show that R(AT) = R(A*).

Lemma 1.4 Let A € C™*" and X € A{1,2}, then the following hold

(a) R(X)NN(A) ={0} and R(A) NN (X) = {0};

(b) Alrx) € L(R(X),R(A)) and X|ga) € L(R(A),R(X)) are one-to-one;

(¢) R(Alr(x)) = R(A) and R(X|r(a)) = R(X);

(d) Xlr(a) = (Alrx)) ™" € L(R(A), R(X)).

Proof. (a) Let z € R(X) NN (A), then there exists a y such that Xy = x. Then
= Xy=XAXy= XAz =0.

Hence R(X) NN (A) = {0}. The case R(4A) NN (X) = {0} can be proved analogously.
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(b) We start with Algx) € £(R(X),R(A)), for X|r(a) the proof works also analogously.
Let z,y € R(X). Assume z # y with Az = Ay. Hence A(x —y) = 0 and thus z —y € N (A),
which is a contradiction to (a). Hence x =y and A|z(x) is one-to-one.

(c) Az = AXAx = APgr(x)x = Alg(x)z for all z € C". Same for the second case.

(d) Since Alg(x) € L(R(X),R(A)) is one-to-one and onto there exists an inverse. Let x € R(X),
then there is a unique y such that y = Az. Due to the first Penrose equation this is equivalent
toy = AXAr = AXy. Since y € R(A) and X|g4) and A|g(x) are one-to-one and onto (b
and c) it holds that z = Xy.

O
Theorem 1.5 For any A € C™*",
j\z/(m*) = R(4) (1.4)
(A") N(AD)
Proof. Let y € R(A") and = € N(A). Then
ary =a*Alu

since AT € A{1,2} it holds that u € R(A), see Lemma 1.4 (c). Hence, there exists a v € C™
such that
oy =" AT Av .

Because of Penrose equation 3)
rry = x* A* (AN =0.
Thus R(A") L AN(A). Since the orthogonal complement is unique it follows from Theorem 1.3
that R(A") = R(A*).
The case N(A*) = N(A") works analogously. O

2 Least squares problem

Consider the system of equations Az = b with A € C™*™. If b € R(A) the system has at least one
solution and is called consistent. On the other hand, the system is called inconsistent if b ¢ R(A).
In this case only an approximate solution can be obtained. Such an approximate solution is for
instance obtainable by minimizing the Euclidean norm of the residual vector r := Az — b, i.e.,

min ||Az — b||§ . (2.1)
xr

Because (2.1) means nothing else than minimizing the sum of the squares of the absolute value of
the residuals (3, |r;|?), this is known as least squares problem. A solution to (2.1) is for instance
often needed in statistical problems like regression analysis.

In [Pen56] Penrose proved that a unique solution to the least squares problem (2.1) can be
obtained by the Moore—Penrose inverse.

Theorem 2.1 [Pen56] Let A € C™*™ and b € C™. Then x = A'b is the unique solution to the
least squares problem min, | Az — b||3 which has minimal norm ||z||s.

Proof. See Corollary 2.5. O
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Though, one can obtain more general solutions to the least squares problem, by obviously
loosing the property that the solution has minimal norm. These solutions are subject of the next
Section 2.1.

Penrose also dealt with the more general matrix equation AXB = D.

Theorem 2.2 [Penb5, Pen56] Let A € C™*" B € CP*4, D € C™*1,
(a) A necessary and sufficient condition for the matrix equation
AXB=D (2.2)

to have a solution is
AA'DB'B=D (2.3)

in which case the general solution is
X =A"DB' + K — ATAKBB'
for arbitrary K € C"*P.

(b) In general, X = A'DB' is the minimum norm least squares approximate solution of equa-
tion (2.2), i.e., ATDBT is the unique element of least Frobenius norm in the set

{Y i |AYB = D|lp = min | AXB — Dl s} . (2.4)

2.1 {1,3}-inverses and the least squares problem

In this section we show that every {1, 3}-inverse of A yields a solution to the least squares problem
(2.1) by z = A3, The whole set A{1,3} can be characterized as follows.

Theorem 2.3 [BIG03, page 55] Let A € C™*™ and A3 € A{1,3} arbitrary. Then
(a) the set A{1,3} consists of all solutions X of
AX = AALS) (2.5)
(b) ,
A{1,3} = {40 4 (1 — AP Az . Z e C™™) . (2.6)

Proof. (a) Multiplying equation (2.5) with A to the left side shows that the first Penrose condition
is satisfied if X is a solution to (2.5). Since A(1?) satisfies Penrose equation 3) AA(3) is hermitian
by definition and so is AX.

Vice versa, let X € A{1,3} then

AALD) — AXAADD = (AX)*AADD) = X* A (AL A* = X*A* = AX .

(b) According to [BIG03, page 52] we can replace AT and Bt by A3 and B(1:3) respectively,
in Theorem 2.2 (a). Hence, a general solution to equation (2.5) is

X = AGDAAL3) Ly A0S Ay
If we set Y = Z + A1) for an arbitrary Z € C"*™ we finally obtain

X = A03) 4 (I - A(lv?’)A) 7.
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As mentioned above, a general solution to the least squares problem can be obtained by
ATy if and only if A1) € A{1,3}.

Theorem 2.4 [BIGO03, page 104] Let A € C™*™ and b € C™. Then ||Az — b||2 is minimal for
x = AL for an AT € A{1,3}. Conversely, if X € C™™ has the property that, for all b,
|Az — b||2 is minimal when x = Xb, then X € A{1,3}.

Proof. According to Section 1.3 it holds that
b= (Pr(a) + Pr(ayL)b,

which is equivalent to
Ar — b= (ACL’—PR(A)b) _PN(A*)b~ (2.7)

Let Y and Z be subspaces of C™. Then the Pythagorean theorem states that ||y + z||3 =
llyll3 + ||z|3 if and only if Y L Z, for all y € Y and 2z € Z. Hence, applying the norm to both
sides of equation (2.7) we get

lAz — b3 = | Az — Preaybll3 + [ Parcas)bll3 - (2.8)
This is obviously minimal if and only if
Ax = PR(A)b . (29)

The Penrose equations (1.1) imply that AAT = Pr(a)y and by Theorem 2.3 it holds that AAT =
AAWD) for every A3 € A{1,3}. Hence,

x=AL3p,

Vice versa, if for all b € C™ it holds that = X'b minimizes || Az — bl|2, equation (2.9) implies
that AXb = Pr(a)b. Hence AX = Pr(4) and thus due to Theorem 2.3 X € A{1,3}. O

Thus, for an A3 € A{1,3} the general solution to the least squares problem (2.1) reads
x=ANDp 4 (I — A1 A)y (2.10)
for an arbitrary y € C™.
Corollary 2.5 The solution x = A'b to the least squares problem (2.1) has minimal norm ||z ||z.
Proof. In equation (2.10) set A3 = A, then
]I = I AT0]13 + 11 — ATA)y3

by Theorem 1.5 and the Pythagorean theorem. Hence ||z||2 is minimal if y = 0. O

2.2 Tikhonov regularization

If the matrix A from the least squares problem (2.1) is ill-conditioned or the solution to the least
squares problem should fulfill certain properties, like being smooth, the Tikhonov regularization
is applied. In the standard case the Tikhonov regularization reads

min|| Az — b3 + 72|« .

10
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which for 7 # 0 has the unique solution
z=(A"A+721)"1A*D

We even have that
lir%(A*A—kTI)*lA* = At (2.11)
T—

which was first proved in [dBC57]. So in the standard case the Tikhonov regularization just gives
the standard minimal norm solution to the least squares problem for 7 — 0.
Let T € CF*" for 1 < k < n, then the general case of the Tikhonov regularization reads

min || Az — b||3 + 72||Tz|3 with 7>0, (2.12)

which is equivalent to
2

: A b
min |:TT:| x— {0} . (2.13)
If N(A)NN(T) = {0} the general Tikhonov regularization possesses the unique solution
rr, = (A*A+T2T*T) 1A% . (2.14)

The discrete Tikhonov regularization (2.12) can be seen as a discretization of the continuous
problem

min|Kf — g} + 72S(f)°

with K being a linear operator describing some model and g representing corresponding ob-
servations. To preserve for instance physical effects in the solution f, S(f) is often chosen as
a so-called smoothing norm, see, e.g., [Cul79], [Jen06] or [Hanl0, Chapter 8]. One choice for
smoothing norms that restrict the roughness of the solution f are weighted Sobolev norms, for
example in the 2-dimensional case the so-called bending energy

<//<(ax2> 2(6a;gy)2+<235)2>dxdy>; |

Another common choice for S(f) which restricts the roughness of the solution is

o= (Jf (G4 52) o)

where measures connected to the Laplacian Af are often used in image restoration and two-
dimensional smoothing, see [Jen06, Chapter 5] and the references therein.

Thus, solutions z7 , in the discrete setting (2.12) that should possess a certain smoothness
can for instance be obtained by choosing T" as discrete Laplace operator, see, e.g., (IV.2.11).

Choosing the regularization parameter

A natural question that arises when using the Tikhonov regularization is how to choose the
regularization parameter 7. There are several methods which can be used for an automated
determination of a regularization parameter 7. We briefly explain one of the most popular
methods, the generalized cross-validation, short GCV, cf. [Wah90, Chapter 4]. For a discussion

11
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and comparison of this and other methods we refer to [Han10, Chapter 5], from which we also
partially borrow the following.

Let A € R™*" and b € R™. Moreover, let b = b+ § for some non-zero § € R™, where b
expresses the exact data here. Furthermore, let 7~ be the solution to the corresponding problem
(2.12) for a regularization matrix 7' with N'(A) NN(T) = {0}. Then the idea is to choose T such
that Azt , predicts the exact data b as well as possible. But usually b and § are not known.
Therefore one uses the leave-out-one strategy, i.e., one leaves one b; out and also removes the
corresponding i-th row of A and then computes the Tikhonov solution to this reduced problem.

We denote its solution by m(TZ)T Then we can compute an estimate of b; by

The idea of cross validation is now to choose 7 such that all prediction errors for all components

of b are minimized, i.e.,
m

1 . ; 2
min — ; (A(i, )ng)T —b;)

which can be shown to be equivalent to the numerical more efficient form

. 1 U A(Z, Z)l‘T’T — bi 2
m}nm;( 1— H(i,i) ’
with H := A(ATA+72TTT)~tAT. The problem with H (i, ) is that it is dependent of the order-
ing of the data b, so one ends up with different 7 for different orderings. This is circumvented by

the generalized cross-validation, where H (4,14) is replaced by the average of all diagonal elements
of H. Hence in the GCV-case 7 is finally obtained by minimizing the function

G(’T) _ ”AxT,T — b”% ,
(m — trace(H))?

see also [GVMOT7]. To efficiently evaluate the function G for large matrices A, z7 , is computed
iteratively, see the next paragraph for more details. Moreover, the trace of the matrix H can be
estimated by the use of Hutchinson’s stochastic trace estimator trace(H) ~ u? Hu with u being a
random vector which has values 1 and —1 with probability 0.5, see [Hut90] and [GVM97]. Hence
the effort for evaluating G at a point 7 can basically be reduced to two Tikhonov solutions.

Efficient computation of the Tikhonov solution

In case that the matrix A is very large and sparse, the effort to obtain a solution to the system
of linear equations (2.14) is quite high when using direct methods, like QR~ or singular value-
decomposition. In this case it is much more appropriate to use iterative methods. Since the
leading matrix of the normal equation (A+7T)*(A+7T)x = A*b is symmetric positive definite if
N(A)NN(T) = {0} one could apply directly a conjugate gradient method to the normal equation.
But numerically this also is not the choice since one has to perform a matrix multiplication on
two large matrices. An option, also suggested in [Hanl0, page 121], is the CGLS Algorithm
(Conjugate Gradients Least Squares). It directly works on the least squares problem (2.13) and
performs in every iteration step two matrix vector multiplications, one with [A, 77] and the other
with its conjugate transpose. For a detailed discussion see [Bj696, Section 7.4].

12
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3 {1, 3}-inverses with partially prescribed image spaces

Motivated by an application of scattered data approximation, which we will present in Chap-
ter IV, we consider the following problem:

Problem 3.1 Let A € C"™*™ and Y € C**! so that rank AY = /.
Find a matrix A% € C**™ such that

(a) @ = A"b minimizes ||Ax — b||y for all b € C™,

(b) AS(AY) =Y .
From the previous Section 2.1 we know that a matrix A? satisfying Problem 3.1 (a) is necessarily
a {1,3}-inverse. In this section we characterize all A* € A{1,3} that additionally fulfill condition
(b), see Theorem 3.2. Out of this set of all matrices solving Problem 3.1 we present matrices that
coincide with the Moore—Penrose inverse on certain subspaces of C™, see Theorem 3.5 where we
also give two important choices for A®. In Section 3.2 we discuss several computational aspects

of these two important candidates. We (Tobias Damm and I) published most of the results in
this section in [DS12], therefore several parts here largely follow the presentation in [DS12].

We start now by presenting all matrices A% that satisfy Problem 3.1.

Theorem 3.2 [DS12] Let A € C™*" and Y € C"** so that rank AY = ¢. Then a matrix A"
solves Problem 3.1 if and only if A" = Ag,l, ’13() for an arbitrary matrix K € C"*™_ where

AP = AL (- ATA) (Y(AY) + K — KAY (AY)T) . (3.1)
Proof. In view of equation (2.6) we have to characterize all Z € C"*™ such that
(AT + (I - ATA)Z) AY =Y, (3.2)
where we chose A% as At. Equation (3.2) is equivalent to
(I — ATA)ZAY = (I — ATA)Y . (3.3)
For this equation, condition (2.3) of Theorem 3.2 reads
(I — ATAY(I — ATA) (I — ATA)Y (AY)TAY = (I — ATA)Y

which is obviously satisfied because of the Penrose conditions and the hypothesis rank AY = /.
Hence equation (3.3) is consistent, and the general solution is

Z=(1-ATAY(AY) + K — (I — ATA)KAY (AY)! for arbitrary K € C"™*™ .
Inserting this in (2.6) we get the form (3.1) of all solutions to Problem 3.1. O

Corollary 3.3 As above let Y € C"*¢ so that rank AY = /. Then for all non-singular S € C**¢
it holds that

1,3 1,3
Agfs,ir( = Agf,K) :

13
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Proof. By (3.1) it holds that
AV = AT+ (I - ATA) (YS(AYS)! + K — KAY S(AYS)1) . (3.4)

Since AY S has full rank it holds that

(AY )t = (5*(A4Y) Ays)*ls*(AY)*
= S ((AY)*AY) T (AY)*
= S7HAY)T.
(1,3) (1 3)
Hence, S cancels out in equation (3.4) and Ay 5 equals A O

Because K € C™*™ is arbitrary in Theorem 3.2 there is freedom in the choice of A(l’?’) In

the next lemma we show how to choose K such that ||A L||F is minimal for an L € (Cka

Lemma 3.4 [DS12] Let A € C™*", Y € C"** so that rank AY = ¢ and L € C™**. Then the

unique matrix K € C"*™ of minimal Frobenius norm that minimizes the expression HAg,l }:?L” F
is given by
K(L) = —(I — AtA)Y (AY)'L (L — AY (AY)'L)"

In particular K(I) = 0.

Proof. By definition of Ag,{ ’;? we have
min 1AV L r = min || (AT + (1 = ATA)Y (AY)T) L+ (I - ATA)K (1 — AY (AY))L], .

By Theorem 2.2(b) we know that
K =— (I— ATA)T (AT 4+ (1 — ATA)Y (AV)D) L (T — Ay (AY)1)L)'
= — (I - AYA)Y (AY)'L (L — AY(AY)'L)" = K (L)
is the minimal norm solution to ming ||A (. 3)L||F

In particular K(I) = —(I — ATA)Y (AY)t v (I — ATA)Y (AY)TAY (AY)T = 0. O

In the next Theorem we show that if R(L) is complementary to R(AY"), then the solution
= Ag,l ;)( 1)b to the least squares problem min, | Az — b||2 coincides with the minimal norm
solution x = AT for all b € R(L).

Theorem 3.5 [DS12] Let A € C™*", Y € C™* so that rank AY = { and let L € C™*(m=F)
with 1 < k < ¢ and rank L = m — k. Furthermore, let R(L) N R(AY) = {0}. Then

(a) AV L =ATL.
b) R(L)LR(AY) implies AL = A,
(b) R(L)LR( p )

Y,K (L

(¢c) R(Y)LR (AQQ(L)L) & R(L) C N(Y*Ah.

14
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Proof. (a) By definition of Ag,ly’]:? and K (L), we have

AL L = ATL 4 (I = ATAY (AV)'L (1 = (1 = AY (AV)D)L) (1 = AV (4Y)1)L) .

The second term vanishes, if I = ((I — AY(AY)T)L)T (I — AY (AY)")L. It thus suffices to show
that N ((I — AY (AY)T)L) = {0}. Note that N (I — AY (AY)") = R(AY). Since by assumption
R(L) NR(AY) = {0} it follows that (I — AY (AY)")Lv = 0 implies v = 0.

(b) Since AY has full column rank it holds that

(AY)T = (Y*A*AY) L (AY)* .

So R(L)LR(AY) implies (AY)TL = 0 and therefore K(L) = 0.
(c) Let R(L) C N(Y*A1), ie, 0=Y*ATL = VALY L by (a). Thus R(Y)LR (AQ’;)(L)L).

Vice versa, if R(Y)LR (Agﬁ)(L)L» then Y*ATL = 0 and thus R(L) C N(Y*AT). O

Theorem 3.5 allows to choose generalized inverses A% = Ag}ﬁ ’I‘? that coincide with the Moore—
Penrose inverse AT on an arbitrary complement R(L) of R(AY). This leads us to two natural
choices for L, where we require either R(L)LR(AY) or R(Y)LR(A%}?L) = R(ATL). In the
first case

A= AP = At 4 (1 - AT Ay (Ay)! (3.5)

coincides with A on the orthogonal complement of R(AY), i.e., 2 = A% is the minimal norm
solution of (2.1) for all b R(AY). In the second case, the space of all # = A% that are minimal
norm solutions of (2.1) for some b is orthogonal to R(Y), i.e., R(AT)NR(A?) LR(Y). This choice
is realized by

AP =AY with K:=Y(v*AtAy)ly=af,

which equals
A= ADY = A 4 (1 - ATA)Y (v At AY)ty Al (3.6)

It can easily be seen that A;}g)L = ATL if R(L) = N(Y*A'), in which case R(Y)J_R(Ag,{’,g)L).

Moreover, the two matrices Ag}, ’03) and Ag,{ ’,g) also fulfill the second Penrose condition.

Corollary 3.6 [DS12] Let A € C™*™ and Y € C"** so that rank AY = /, then A%bg) and Ag,l”,g)
are {1, 2, 3}-inverses of A.

Proof. According to Theorem 2.3 a matrix X is a {1,3}-inverses of a matrix A if and only if
AX = AAT. Thus we know that

1,3 1,3 1,3 1,3
AV AALY = AP AAt = ALY
Since (AY)" = (Y*A*AY)~1Y*A* and A*AAT = A* (cf. Lemma 1.1 (f)) we have
1,3 1,3 1,3 1,3
Agf,o)AAgf,o) = Ag/,o)AAJr = Ag/,o) :
O

In the next paragraph we briefly discuss the advantage of {1, 2, 3}-inverses and also charac-
terize all {1, 2, 3}-inverses fulfilling Problem 3.1.
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{1,2,3}-inverses solving Problem 3.1

Let X € A{1,2} then we know from Lemma 1.4 that X|z(4) is the inverse of A|gx). Further-
more, it is clear that for every X € A{1,2} it holds that rank X = rank A, this immediately
follows from Penrose equation 1) and 2). Moreover, Bierhammer proved in [Bje58] that also the
reverse direction holds if X € A{1},

Theorem 3.7 [Bje58] Let A € C™*™ and X € A{1}. Then
X € A{1,2} @ rank X =rank A .

Thus, if X € A{1,2,3}\A{2} is a pure {1, 3}-inverse, Theorem 3.7 implies together with Penrose
equation 1) that rank X > rank A. Hence X|g(4) ¢ L(R(A), R(X)) is not an inverse of A|z(x).

(1,3)

In the next proposition we show that A, K

tion if R(L) C R(A).

L) additionally satisfies the second Penrose equa-

Proposition 3.8 Let A € C™*" with rankA = r and Y € C"*’ such that rank AY = /.
Furthermore, let L € C™*("=k) with 1 < k < ¢ and rank L = m — k such that R(L) C R(A)
and R(L) NR(AY) = {0}. Then

1,3)
AP DL, € A{1,2,3)

Proof. Recall from Lemma 3.4 that

ALY = AT (- ATy (V) (1 L((1 - Ay (an)h)') .

. (1,3) s (1,3) (1,3) _ 4(1L,3)
Since Ay ) € A{1,3} it holds that Ay AAY ) = AY’K(L)AAT.

To prove that Ag,l ’l?;)( L)AAT = Ag,l ’l‘?( L) e first show

(1 — Ay (Av)H L)' a4t = (1 - av(av)hr)'

which is equivalent to
(I — Ay (av)hL)' (1 — a4t =0 (3.7)

Since R(L) C R(A) there exists a V such that L = AV. This together with the fact that
(I — AY(AY)T)L has full rank (see proof of Theorem 3.5a) yields that the left hand side of
equation (3.7) is equivalent to

(L*(I — AY (AY))L) "'V A*(I — AY (AY)")(I — AAT) . (3.8)

It is obvious that
(I-AAT)(I - AY(AY)NA=0.

Taking the conjugate transpose of the left hand side of the latter equation makes clear that (3.8)
is equal to 0. O

We present now the class of all {1,2,3}-inverses that satisfy also condition (b) of Problem
3.1. According to [BIGO03] all {1, 2, 3}-inverses X of a matrix A are characterized by the set

A{1,2,3} = {A" + (I — ATA)zA" . Z e C¥™) . (3.9)
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As in Theorem 3.2 we have to characterize all Z such that
(I — ATA)ZATAY = (I — ATA)Y .

Since we already know that there are {1,2,3}-inverses satisfying Problem 3.1 (e.g., Ag,l’g’)), we
do not have to explicitly verify the latter equation. Hence, by Theorem 2.2

AQZD At 4 (1 - ATA) (V(ATAY) + K — K(ATAY) (At AY)Y)
satisfies condition (b) of Problem 3.1 for all K € C™*™.

Remark 3.9 In [DSI12, Theorem 2.1(b)] there is a citation error which was pointed out by
Qingxiang Xu. Therefore, in [DS12, Theorem 2.1(b)] and [DS12, Lemma 2.3] the 2-norm has
to be replaced by the Frobenius norm. This is already corrected in the corresponding Theorem
2.2(b) and Lemma 3.4 in this thesis.

3.1 Geometrical ansatz

In this section we present a geometrical ansatz to solve Problem 3.1. Since we already character-
ized all solutions to Problem 3.1, this section does not bring new results but it might be useful
for a better understanding.

We start by introducing the singular value decomposition of A. Let A = UXV* have rankr,
and write the singular value decomposition of A as

* El 0 Vit *
A=UXV"* = [Ul Ug} {0 0} {VH =U 5V, (3.10)
where ¥, = diag(o1,...,0,) > 0 is nonsingular and U; and V; have r linearly independent

columns. Then Lemma 1.1 (g) implies that
AT =wixtuy .

It is also a known fact that U; and V; span R(A) and R(A*), respectively. Moreover, Us and V3
span N (A*) and N (A).

As we stated in Theorem 2.1 the Moore-Penrose inverse gives by Afb the minimal norm
solution to the least squares problem (2.1). Furthermore, it holds that R(A*) = R(AT), see
Theorem 1.5. Assume that R(Y') is not a subset of R(A*) and N'(A), then the Moore-Penrose
inverse does not satisfy Problem 3.1, i.e., ATAY # Y. But, we can obviously add any y € NV(A)
to Ab and still get a least squares solution, see equation (2.10). Hence an ansatz for an A"
satisfying Problem 3.1 is

AP = (Vi + VoL)S7'UF foran L e C=mxn

This means nothing else than rotating R(A") by adding linear combinations of the basis vectors
of N(A) to the basis vectors of R(A"). Hence, the only thing left is to determine L such
that R(Y) C R(A). Before doing this we state in the next Lemma 3.10 that for all L the
corresponding matrix A is a {1, 2, 3}-inverse. Then we characterize some L such that A% satisfies
Problem 3.1 in the subsequent Proposition 3.11.
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Al

Figure 3.1: Geometric interpretation where A € C™*™ can be decomposed as in eq. (3.10)

Lemma 3.10 Let A be as above and let L € C»=")%"_ Then the matrix
A = (1/1 + VQL)El_lUf

is a {1, 2, 3}-inverse of A.

Proof. Since AV, = 0 it is clear that AA" = AAf. Hence 1) and 3) hold. Moreover, from
A% = (I + Vo LVy) At it follows

APAAE = (I + VgLvl*)ATAAT — Y

Thus also condition 2) holds.
O

One could now determine all L such that Problem 3.1 is satisfied by applying Theorem 2.2
to the equation

Vo LS UTAY = (I - ViVHY .

This would end in cumbersome representations for L and since we already determined the class

of all {1, 2, 3}-inverses that satisfy Problem 3.1, we present here only a subset of that class. This
subset has an easy representation and will also cover the two most important choices A% ’03) and
Ag,l’,g), as we will see below.

In fact for any matrix M with M(AY) =Y the matrix L = V5" MU, % results in an A® that
solves Problem 3.1, as we show in the following proposition. Since for different M the matrix A®
can differ we introduce the notation A, to distinguish.

Proposition 3.11 Let A be as above and consider a matrix Y € C**¢ with rank AY = ¢. Let
M be any matrix that fulfills M(AY) =Y. Then the matrix

Al = AT VLV MULUT
satisfies Problem 3.1.
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Proof. Firstly, A?w is a {1,2,3}-inverse of A. This is clear by Lemma 3.10 choosing L =
VoMU 3.
Secondly, it holds that

A% AY = ATAY 4+ VoV MAATAY .

Now we use Penrose condition 1) and the fact that ATAY = V;V;*Y and obtain
A% AY = VY + VoV MAY
=WMVFY + BVSY
=Y.

In the last two steps we have used M AY =Y and the identity I = Vi V" + VLoV55. O

In the next proposition we show the existence of such a matrix M, by giving two possible
choices.

Proposition 3.12 Let AY =: C with Y € C**¢ and rank AY = ¢. Then

(a) My :=Y(C*C)™'C* and M, := Y(Y*ViVY)"YY* AT fulfill My(AY) =Y and My(AY) =
Y, respectively.

(b) A%, = A (1 . O(C*C)—10*> ry(Cro)ior
(c) A5, = AT+ VeV Y (Y VAVPY) 1y Af

Proof. (a) Note that rank AY = ¢ implies rank V;*Y = ¢ whence Y*V,V;*Y € C**¢ is regular.
For M it is trivial to see. For My we have

MyAY =Y (Y*ViVY) LY ATAY
=Y(Y*'Vi\VY) "ty vy
=Y.

(b) We will use the following facts:
(i) VY = AtAy = AtC
(i) C* Uy =cC*
By definition we have that
AL = AT+ By (Cro) e Uy
Using fact (ii) implies
A% = ATy vy (cro)Tier.
Now we use the identity I = Vi V¥ + VoV and get
A=Aty (Ccro)Tler -y (cro)Tier.
With (i) we have
Ay, = AT(1-c(Ccro)ier) +y(croyier.

(c) This holds because ATU U} = Af.

We will see in the next section (Remark 3.14) that A?wl = A%bs) and Ang = Ag,l”,g).
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3.2 Computational aspects

In this section we derive representations of A§,103) and A(1 > in terms of the singular value

decomposition. Then we show in the case AY = C that A(103) and A(1 3 are robust in the sense
that cropping of singular values typically does not influence thelr property of mapping Y back to

C. In Theorem 3.16, we derive a limit representation for Ag,’ . which can be used for a Tikhonov

regularization. Finally, we discuss on how to obtain the solutions Ag,{ bg)b and Ag,{ ’,g)b to the least
squares problem efficiently.

Representation in terms of the SVD

As above, let A = UXV* have rankr, and write the singular value decomposition of A as

¥y 0] |V *
A=UXV = [Ul UQ] |: 0 0:| |:V';*:| = Ulzlvl ) (3'11)
where ¥, = diag(o1,...,0,) > 0 is nonsingular and U; and V; have r columns. Then the

Moore-Penrose inverse Af is equal to ViX'U;. Thus the matrix Ag,l, ’,g) can be written as
AVY = AT BV Y (YY) Tty At

1,3
Before we continue we introduce another representation for A( ).

Lemma 3.13 Let Y € C™*¢ satisfy rank AY =/ and set AY = C. Then

ALY = at(1-ccreyter) +y(cre) e
Proof. This follows if we replace (AY)! by (C*C)~1C* and AY by C in equation (3.5). O
Remark 3.14 Hence, A?Ml = Ag/l,’os) and Aljw = Ag/l,g), cf. Proposition 3.12.

We show now that if we crop singular values of Ag/{ ’03) and Agfl’ ’,g) condition b) of Problem 3.1
stays valid.

Proposition 3.15 [DS12] Let Y € C"*¢ and AY = C' as above with rank AY = ¢ and consider
the matrix R o

A= UlEl Vl* ,
where il := diag (o1, ...,0k) for a k < r. The matrices 01 and \71 consist of the first k-columns
of Uy and Vi, respectively. Furthermore, let

ALY = Al(1-c(crey o) +y(cre) et

and

APY = Aty MY (YY) Ty AT
Then it still holds that
(a) ALY C =Y.

(b) AYPC =Y, if rank AY = (.
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Proof. (a) Simple calculation implies
~(1,3) At o * —1 v * —1 vk _
AyyC=AlI-C(C*C)Ccr)c+Y(CrC)CrC =Y .
(b) By construction, we have U;U; = [I;,0], so that

ATA=WST UL,V = WV .

Hence
AVPAY = VY + VY (YY) Y MY = MWV + BIG)Y =Y,
if Y*ViV;Y € €% is non-singular, which is the case if rank AY = /. O

Thus, if the matrix A is ill-conditioned we can crop the smallest singular values without losing the
desired property that C' is still mapped to Y by Ag,{ ’03). For Ag/{ ’,g) we just need that rank AY =/
to preserve this property.

Efficient solution of Problem 3.1 with Ag}’;)g) and A%)g)

The computational effort to obtain a solution Ag,{ ’;?b to the least squares problem (2.1) is quite
high if one uses the singular value decomposition. Especially when A is sparse an iterative
approach is more appropriate. Since

AT = lim (A*A+721) 7" A
T—0

and A% ’03) can be written as in Lemma 3.13, we can obtain an approximation to the solution
ALY by AY Vb, with

AUY = (A A+ )T AT (I - o(CcrO)TICY) v Y(CPO)TICT fora T>0. (312
The solution flg})’(?)b can efficiently be determined by first applying the CGLS-algorithm (cf.
Section 2.2) to the least squares problem
2

min
xT

0 fora 7>0. (3.13)

{;ﬂ . {(1 - C(C*C)—lc*)b]

2

Secondly, AS’O?’)b is obtained by adding Y (C*C)~1C*b to the minimal norm solution of (3.13).
Note that Ag})bS)(AY) =Y and hence condition (b) of Problem 3.1 is still preserved.
In the following theorem we derive a limit representation for Ag/{ ’,3), which then also can be

used for an iterative ansatz to obtain the solution Ag,l’ ’,g)b.

Theorem 3.16 [DS12] Let A € C™*™ and Y € C"** with rank AY = {. Then if Y*Y =1 it

holds that
1

Ay = lim (ATA+ (1 -YY")) T A"
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Proof. We know that the matrix A*A + 72(I — YY*) is non-singular if
NA*A)NN(T2(I-YY™)) = {0} .

This is obviously satisfied because of the hypothesis rank AY = rankY = /.
By the Sherman-Morrison-Woodbury-formula (cf. Lemma 3.19), it holds

(A*A+ 721 —72YY*) ' A" = (A" A+ 721) 7 A
+ (A2 Y (1= (At A+ 27 ) vyt aras T A
where
(A*A+720) 7 A" = W(S24+720) 715,07 20 At and
(A A+72D) 7 2 = VS 2D Ve Ve S Wy
Exploiting the identity I = Y*Y = Y*(V1V}* + VLV5")Y, we obtain
(A A+ 2yy") T ar T AT Y (- YRYY) Ty Al = AR
which we wanted to show. O

Note that we can assume without loss of generality that Y*Y = I. According to Corollary 3.3
A;’B) = Ag/lsz’,zc for an arbitrary but regular S € C*¢. Since Y has full rank, Y*Y is symmetric
positive definite. Hence there exists a unitary matrix V € C**¢ such that V*(Y*Y)V = D,
where D is a diagonal matrix containing the eigenvalues. Now, let ' also be a diagonal matrix,

with E(i,i) = 1//D(i,i). Then S := VE yields (Y.S)*(YV'S) = I.

Corollary 3.17 Consider the Tikhonov regularization from Section 2.2 with T = (I —YY™)

and w.l.o.g. Y*Y = 1. Then
(1,3)p _ 1
AYJC b= }_li% T -
So an approximation to the solution A% }g)b, of the least squares problem (2.1), can efficiently

be obtained by applying the CGLS-algorithm to the least squares problem

R

Remark 3.18 By Proposition 4.2 below, it holds that (A*A+ 7%(I — YY*))_1 A*(AY) =Y
for all 7 > 0. Thus condition (b) of Problem 3.1 is also preserved in this approximative case.

2
min
T

with 7>0. (3.14)
2

Special case: Rank Y small

Assume that A is sparse, and that Y € R"*¢ with ¢ < n has few zero entries. Then in view of
equation (3.14) the matrix [A,7(I — YYT)]? is not sparse anymore, because of the nearly fully
occupied matrix rank ¢ matrix YY 7. In this paragraph we show that we can solve £ + 1 sparse
systems instead. To achieve this we make use of the Sherman—Morrison—-Woodbury-formula:

Lemma 3.19 [GVLY96, page 50] Let A € R"*" be non-singular and U,V € R"*¢ with
rank UV? = ¢. Furthermore, let (I + VT A~'U) be non-singular. Then it holds that

(A-vvhH=t=at A 'Uu1 -via~tu)~tvTa—t. (3.15)
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Furthermore, we exploit that a solution to the least squares problem (3.14) is equal to
=A

—_——~
x=(ATA+ 721 —72YYT)~1ATh , (3.16)

where we assume, as in Theorem 3.16, that without loss of generality Y7Y = I. Thus, by the
Sherman—Morrison-Woodbury-formula (3.15) equation (3.16) is equivalent to

v = (A—l +r2ATY (1 - T2YTA—1Y)—1YTA—1)ATb :

where I — 72YTA-Y is as explained in the proof of Theorem 3.16 non-singular. So we can
obtain the solution z by solving the ¢ + 1 systems:
Azg = ATb and Az =Y (i) for i=1:0.

Again, this can efficiently be done by applying the CGLS-algorithm to the ¢ + 1 sparse least

squares problems
A b Al Y (549)
11707 o 1| 0

Finally, let X :=[z1,...,z¢], then the solution = to the least squares problem (3.14) is equal to

2

and min
T4

2

for i=1:4 anda 7>0.
2

min
o

2

r=x0+ 7 XTI - YTX) "'V, .

Rank YV =1

If Y € R™™! the above procedure to obtain the solution = reduces to the solution of the two
systems
Azg = ATh and Az, =Y,
and finally
72Y T

=20+ ——— -
1—72YTg,

4 Tikhonov regularizations and Problem 3.1

In Section 3 we searched for generalized inverses A% that satisfy Problem 3.1, i.e., that solve
the least squares problem (2.1) by A% and additionally fulfill A%(AY) =Y. We can formulate
something similar for the Tikhonov regularization

min || Az — b||3 + 72| T|3
which we presented in Section 2.2.
Problem 4.1 Find a matrix T with N'(A) N N(T) = {0} such that
(A*A+2T*T) " A*(AY) =Y for 7>0. (4.1)

It is quite easy to see that all matrices T' that satisfy this problem need the property that
R(Y) C N(T), as we show in the following proposition.
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4 TIKHONOV REGULARIZATIONS AND PROBLEM 3.1

Proposition 4.2 Consider A € C™*" and Y € C"** with rank AY = £. Furthermore, let T # 0
and T € CF*™ for 1 < k < n with N'(A) "N(T) = {0}. Then

(A*A+7°T*T) " A*(AY) =Y = R(Y) CN(T).
Proof. Let R(Y) C N(T) then A*AY = (A*A + 72T*T)Y which is equivalent to
(A"A+72T*T) " A"AY =V
Vice versa, let (A*A + TQT*T)_I A*(AY) =Y. This is again equivalent to
(A*A+ T*T*T)Y = A*AY
which in turn is equivalent to 7*TY = 0. Hence R(Y) C N (T). O

Moreover, we can show that, in the limit, all solutions to the Tikhonov regularization can
also be obtained by a {1, 2, 3}-inverse of A.

Theorem 4.3 Let A € C™*" and T € C**" for 1 < k < n with N(A) N N(T) = {0}, then
there exists an X € A{1,2,3} such that

X = lim (A"A+7°T°T) ' A%,
which implies that Xb = TI% TT .
Proof. Recall that by the Sherman—Morrison—Woodbury-formula it holds that
(A-UvHl=A"rr Al uaq-vA~tUu)"tvraTt,
see Lemma 3.19. Adding 0 to A*A + 72T*T yields

(A*A+ 720 - (I -T*T)- (I)

— A =U =:V*

{.

Hence by the Sherman—Morrison—Woodbury-formula
(A A+ 72T T) P A = A7 A"+ AP0 (1 - A7) AT A
In the proof of Theorem 3.16 we already showed that

lim A~'72 =7 — ATA .

T—0

Furthermore, it holds that R
lim A71A* = AT,

T—0
So altogether we have
lim (A"A+72T°T) " A" = AT+ (1 - ATA)ZAT = X ,
T—
for Z = U(I— (I — ATA)U)~!. Hence, X indeed is a {1,2, 3}-inverse of A, see equation (3.9). [

But not for every {1, 2, 3}-inverse there exists a Tikhonov regularization.
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I GENERALIZED INVERSES

Corollary 4.4 Let A € C™*" and T € CF*" for 1 < k < n with N(A) N N(T) = {0}, then
there exist X € A{1,2,3} such that

X # lim (A*A+72T°T) " A"

T—0
Proof. As above let A := A* A+ 72T and choose Z = U(I — V*(I — AT A)U)~'V* with arbitrary
but feasible U and V, then

AT+ (I - ATA) ZAT = lim A7YA + AP0 (T - VAT P2U) Tl AT A
T—
= lim (A — 72UV*)"14*

T7—0

. % sy —1
lim (A*A+7%(1 - UV™))

A*

Obviously, one can choose U and V' such that T*T # I — UV™* for all feasible T O

So Theorem 4.3 and Proposition 4.2 imply that if R(Y) C N(T) all {1, 2, 3}-inverses which
result from a Tikhonov regularization, i.e., A" = lim,_,o(A*A + 72T*T) "' A*, satisfy Problem
3.1 in the limit 7 — 0.

5 Special case AE,, = E,,

Later, in Section IV.2, we present a method to approximate scattered data. There we have to
solve an ordinary least squares problem, where the matrix A has the property AE,, = F,,, with
E, :=[1,...,1]7 € R™. In our method to approximate scattered data we figured out that the
minimal norm solution to the least squares problem is not the right choice. But solutions to
Problem 3.1 or 4.1, with Y = F,,, delivered much better results. This will be more enlightened

in Section IV.2.3. In this section here we interpret the solutions A%B())b and Ag:},)cb to Problem
3.1 and for Problem 4.1 we present choices for T

Interpretation of Ag, (b
From Lemma 3.13 we know that
AL — At (I - Em(E,EEm)*lEZL)b + B (ETE,) " ETb
_ AT(b— Em%’ﬂb) +En%3’;b .
Since ELb/m is the mean of b, the solution Agf())b to the least squares problem (2.1) is obtained

by first subtracting the mean of b from b, i.e., bi=1b— E,,ELb/m. Then the minimal norm
solution to b is computed and finally the mean of b is added again.

Furthermore, the solution Ag/{ ’OS)b to the least squares problem is as close as possible to the
mean of b.

Proposition 5.1 [DS12] Let AY = C withY = E,,, C = E,,,. Then x = A%b3)b is the solution
of the least squares problem (2.1) which minimizes

E.ETb

1,3
-2
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5 SPECIAL CASE AFE,, = E,,

Proof. First notice that Ag,l 63)Em = E,, then a short calculation yields

E,ETbH f E, ET E ETb
2] - - ) - - 52
2 ’ 2 m

1,3
-2

m

2

Interpretation of Ag, xb

To interpret the solution Ag, kb we take a look on the regularization derived at Theorem 3.16
E.ET\\ ™
AT p = lim (ATA + 72 (I - ””)) ATh .
s 70 n

As stated in Corollary 3.17 this is the same as the solution to the Tikhonov regularization

min || Az — b3 + 73| Tz||5 for 7 =0,

with

(-1 _1 _1 _1

| T 7

£ ET “n T n T n n

R I (51)

1 1.1 _1

1 1 " 1" "1

W Th ' a 1=

Since 1 ||T'z|3 equals the variance of the components of z, this regularization balances the solution

in a way that the variance of its components is kept small.

Choices for Problem 4.1

Considering Proposition 4.2 the regularization matrix 7" of the Tikhonov regularization has
to be chosen such that E,, € N(T) and N(A) N N(T) = {0}. Clearly, one choice is T' =
I — (E,ET)/n from the paragraph above. Also the discrete Laplace operator with homogenous
Neumann boundary conditions, which is applied in Chapter IV, meets this property, see (IV.2.11).
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Chapter 11

Multivariate Polynomial
Interpolation

This chapter deals with multivariate polynomial interpolation, where the main focus
lies on correct sets, i.e., sets of interpolation sites that can be interpolated by a unique
polynomial. In Section 2 we start by presenting several classes of sets known to be correct,
like generalized principal lattices, whereas in Section 2.4 we characterize a class of correct
sets, which is shown to be more general than existing classes of correct sets. Moreover,
we present a new and concrete recipe, which yields elements in that newly characterized
class.

1 Introduction

Univariate polynomial interpolation has a rather long history and its theory is already well
settled. Compared to that, the multivariate counterpart, i.e., polynomial interpolation in several
variables, is more complex, as we will learn in Section 2. Moreover, the multivariate counterpart
is fairly new, according to [CG10] it systematically started developing in the second half of the
20th century and is still an active research area. Though there are no books which solely treat
multivariate polynomial interpolation, there are several survey articles which do. We emphasize
in particular [GS00a], [GS00b], [Sau06] and [CG10].

Before we continue and start putting our focus on correct sets we present some standard
notation, which is mostly borrowed from the mentioned surveys. In this chapter let F be either
R or C. Denote by

Tyai={a=(a,...,aq) €Z% : |a| < n}

a set of multi-indices, where
d
|| := g a; .
j=1

Let £ := (&1,...,&q) be a set of indeterminates, then £* := &7 --- 7. The polynomial ring in d
variables is denoted by

.= { Z ao€" 1 aq €F with a, =0 for almost all « € Z’i} )

d
Q€LY
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2 SETS CORRECT FOR MULTIVARIATE POLYNOMIAL INTERPOLATION

The degree of a polynomial p € II¢ is defined by
degp := max{|a| : aq # 0},
if p# 0 and degp := —1 for p = 0. Furthermore, we denote by
I, = {p € I : degp < n}

the subspace of all d-variate polynomials with degree at most n. The basic problem in multi-
variate polynomial interpolation is:

Problem 1.1 Let S C Zi be finite and consider a set of #S distinct points {z, € F?: a € S},
some constants {y, € F: a € S} and a subspace V C I1¢. Then find a polynomial p € V such
that

P(Ta) =Yo forall a€S. (1.1)

This problem is also referred to as Lagrange interpolation problem, see, e.g., [GS00b] where also
the formulation of Problem 1.1 is partially borrowed from. The points z, are also called nodes
or sites.

The research area in the context of Lagrange interpolation mainly consists of two parts. One
is to find an interpolation space V C II¢ for a given set of interpolation nodes X = {z, : a € S}
such that for any choice of constants {y, : @ € S} there exists a unique polynomial p € V that
fulfills equation (1.1), see, e.g., [BR90] where it is also shown that such a polynomial subspace V'
always exists. The other part, which is considered the mainstream, is to find a set of interpolation
sites X = {z4: o € S =T, 4} such that for any constants {y, : @ € I';, 4} there exists a unique
p € V =II¢ satisfying equation (1.1). Note that necessarily

dimTI% = #X = #T, 4 = (” Z d) .

Sets of interpolation nodes X are called correct if the Lagrange interpolation problem 1.1
always has a unique solution. Some authors also use the terms poised, unisolvent or regular. The
task of finding correct sets is for instance crucial in constructing filters for the lifting scheme, as
we will learn in Chapter III. According to [GS00a] correct sets are also needed in finite element
analysis, see [CR72] for one of the most important papers.

In this thesis we follow the mainstream and look for distributions of points that are correct
in 1. We get more concrete about correct sets in the next section, where we start by presenting
known classes of correct sets. Furthermore, in Section 2.4 we introduce a new characterization
of a class of correct sets, which will be shown to be more general.

2 Sets correct for multivariate polynomial interpolation

From now on we call a set of distinct nodes X := {z, € F?: a € T, 4} n-correct, or (n, d)-correct,
for the interpolation space I1¢ if the Lagrange interpolation problem 1.1 on X has always a unique
solution in I1¢, i.e., for every f : F? — F there exists a unique p € I1¢ such that p(z) = f(z) for

na

all z € X. A more formal definition of an n-correct set is for instance given in [Boo09]:

Definition 2.1 A set X of dimII¢ distinct nodes x € F? is n-correct if the restriction map
M —FX : peplx = (plx) :z € X) (2.1)

is invertible.
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II MULTIVARIATE POLYNOMIAL INTERPOLATION

In the univariate case (d = 1) finding nodes that form an n-correct set is an easy task. One
just needs n + 1 pairwise distinct nodes. For d > 1 this is more complex, since here the nodes
need some geometric structure. Consider for instance the linear case for d = 2 and F = R. Hence
X={z,eR?:a¢ I'y 2} consists of three nodes. Assume that these three points lie on a single
straight line. Then there are either infinitely many or no solutions to the Lagrange interpolation
problem 1.1, dependent on the values y, € R with a € I'y 5.

In fact a set X of #I',, 4 distinct points in F¢ is (n, d)-correct if and only if X is not a subset
of any hypersurface of degree n, see, e.g., [Coa66]. But usually it is very hard to state whether a
given set of points lies on such a hypersurface or not, especially for high dimension d or degree
n. Therefore, in the classical paper [CY77], Chang and Yao give a simpler sufficient geometric
condition for nodes to form an n-correct set, which we present in the next section.

Most of the sets, correct for interpolation, that we present in the following are obtained by
the intersection of several hyperplanes, where a hyperplane H is defined as

H:={z cF%: h(z):=(a,z) + c =0, a € FI\{0}, c € F}.

2.1 The geometric characterization of Chung and Yao

Definition 2.2 [CY77] As above let X := {z, : a € T, 4} be a set of #I'), 4 distinct points.
Then the set X is said to fulfill the geometric characterization, short GC, if for every node x,
there exist n distinct hyperplanes whose union contain X\z, but not x, itself. Such a set X is
also referred to as a GC,,-set.

Theorem 2.3 [CYT77] Every GC,-set is n-correct.
Proof. Let X be a GC,-set and let
H(JX for 7=1,....n
be the n hyperplanes that contain X\z,. Since any hyperplane is the zero set of a polynomial
of degree 1, there exists a unique polynomial, up to a constant multiple, k7, € 11 defining HZ

by {x € F¢: bl (z) =0} for j=1,...,n .
Let

Then due to the geometric characterization p,(x4) # 0 and po(zg) = 0 for all 8 € T, 4\a. Thus

the polynomial
Pa
b= Z f(za)

satisfies p(x) = f(z) for all z € X and any f : F¢ — F. Hence the restriction map (2.1) is onto,
which implies that dim 1% > #X. Then because of the hypothesis that #X = dimI1¢ it holds
that the map (2.1) is invertible and hence X is n-correct. O

In general, the problem with the geometric characterization of Chang and Yao is that it still
does not provide a general recipe to construct GC,-sets. In the following Sections 2.2 and 2.3
we present important classes of GC,,-sets which give suggestions on how to construct GC,,-sets,
whereas in Section 2.4 we characterize a correct class. Moreover, we present a new and concrete
recipe that produces elements in that class.
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2 SETS CORRECT FOR MULTIVARIATE POLYNOMIAL INTERPOLATION

2.2 Natural lattices

Chung and Yao provided, also in [CY77], the first specific method to construct correct sets that
fulfill their geometric characterization, namely the approach of natural lattices:

Definition 2.4 [CYT77] Let m = n+d, then X is called a natural lattice of degree n if there exists
a collection of m hyperplanes H such that any choice of d distinct hyperplanes of ‘H intersects
in exactly one x € X. Moreover, different choices yield different x.

Theorem 2.5 [CY77] Every natural lattice X of degree n is a GC,,-set.

Proof. Let X be a natural lattice of degree n and denote by H = {Hy,..., H,,} the collection
of its m = n + d constructing hyperplanes. Let x € X be arbitrary. By definition of the natural
lattice and since #X = (":d) there exist d hyperplanes, without loss of generality Hy,..., Hy,
which intersect in x € X. Hence, by definition,  cannot belong to one of the n hyperplanes
Hgiv,..., Hpy.

Let y € X be arbitrary with y # x. Then it is left to show that there exists a hyperplane
in {Hgy1,...,Hp} which contains y. This is again clear by definition, because there exists a
collection of d hyperplanes, different from {Hq, ..., Hy}, which intersect in y. Hence there must
obviously be a hyperplane in {Hg41,..., Hy} containing y. O

In Figure 2.1 we present an example of a natural lattice of degree 2 for d = 2. On the left the
natural lattice with its m = 4 constructing hyperplanes H is depicted, whereas the six figures on
the right show all possible choices of 2 hyperplanes out of H having exactly one point in common.

A L

Figure 2.1: Natural lattice for d =n =2

2.3 (Fully) generalized principal lattices

Generalized principal lattices were introduced in [CGSO06], whereas in [Boo09] a different but
equivalent definition is given. In what follows let

Tpa:={(n—lal,a):acl,} c Z4H!
denote the set of homogenized multi-indices from I';, 4.

Definition 2.6 [Boo09] A set X is called generalized principal lattice of degree n (GPL,,) if it
can be indexed as ~
X ={zq:aelyq}

so that there exists a collection of hyperplanes
H o= (Hf i€ 0:(n—1),j€ O:d)
such that it holds that for all applicable o € f‘md, r and 1

() Hi, ={za} C H,_, (2.2)
J#r



II MULTIVARIATE POLYNOMIAL INTERPOLATION

while _
zo €EH = a;=1. (2.3)

Corollary 2.7 [Boo09] Let X be a generalized principal lattice of degree n and H the collection
of hyperplanes constructing it. Then #H = n(d+ 1), which means that all hyperplanes H} € H
are pairwise distinct.

Proof. Assume that H! = H” for some i, s < n. Then by (2.2)
Ty € Hf =H] forall ac f‘n,d with o; =1 .

But (2.3) implies that
ap=s forall aecl,y with o;j=1,

which can only hold if j =7 and i = s. O
Theorem 2.8 [CGS06] Every GPL,,-set is a GC,,-set.

Proof. [Boo09] Let X be a GPLy,-set and let H := (H? : i € 0:(n — 1), € 0:d) be the collection

of its n(d+ 1) constructing hyperplanes. To show that X is a GC,,-set we have to prove that for

every o € X the set X\, is contained in the union of n hyperplanes that does not contain x,,.
So let z, € X be fixed and define

H:={H cH:i<a,}.

Then H consists of n hyperplanes. Obviously for every § € f‘md\a there exists a j with §8; < «;.
Hence by (2.2) H contains all g with 8 € T', 4\, i.e., H contains X\z,, but not z, itself
because of condition (2.3). O

In [Boo09] it was noticed that in this proof only
ar <n = 1x,€H

and
zo €EH = a;<i,

is used. Thus, not the full power of (2.2) and (2.3) is needed. This results in the definition of
fully generalized principal lattices.

Definition 2.9 [Boo09] A fully generalized principal lattice of degree n (or, FGPL,-set for
short) is a set X in F? that can be so indexed as X = {xo : @ € L'y, 4} that

a, <n = w4 € Hy, (2.4)

and ,
To € H = ao; <i (2.5)

hold for some collection H := (Hf 11 € 0:(n—1),j € 0:d) of hyperplanes and all applicable a, r,
and 1.

Theorem 2.10 [Boo09] Any FGPL,,-set is a GC,,-set.

Proof. See the proof of Theorem 2.8 and the subsequent lines. O
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2 SETS CORRECT FOR MULTIVARIATE POLYNOMIAL INTERPOLATION

By a result of [CGS09] we know that each natural lattice of degree 2 is an FGPLy-set, see
[Boo09]. Hence the class of FGPL,,-sets is strictly larger than the class of GPL,-sets. This can
also be seen in the following figure, where we depict a FGPLy-set and its perturbation into a
GPLs-set. Note that the FGPLs-set evidently is also a natural lattice of degree 2. The main
idea of this figure is borrowed from [Boo09, Figure 1].

HY = i} - B}

Z(0,0,2)

Z(0,0,2)
HE Hg/ \H
(a) Example of an FGPL2-set (b) Example of a GPLg2-set

Figure 2.2: FGPLs-set and its perturbation into a GPLsy-set for d = 2

2.4 On Radon’s recipe

In [Rad48] Radon proposed a recipe to construct n-correct sets for the bivariate (d = 2) case.
More precisely, given an (n — 1, 2)-correct set Y and a set Z of n+ 1 distinct points on a straight
line H in R2. Then if Y N H = () the set X = Y U Z is (n,2)-correct. By an observation from
[GR70] this recipe works also for d > 2. Given an (n — 1,d)-correct set Y and a (n,d — 1)-
correct set Z which has no intersection with the hyperplane spanned by the affine hull of Y, then
X =YNZis (n,d)-correct. If we speak in the following of sets constructible by Radon’s recipe we
mean sets that can be constructed as mentioned above, also for d > 2. Radon’s recipe even works
for n = 1 and arbitrary d as long as we interpret (0, d)-correctness to mean (0, 0)-correctness as
we will do from now on.

In the following we introduce a characterization of a class of (n, d)-correct sets, see Definition
2.11. Furthermore, we show that this class coincides with the collection of all sets that are
constructible by the recursive application of Radon’s recipe. Moreover, we show that this class is
a superset, of the class of FGPL,,-sets. We (Carl de Boor and I) published most of the following
together in [SB11].

Before we continue we present the definition of the affine hull »(X) of X C F? for some natural

number s:
h(X) = { Z zw(x) : Z w(z) =1, #suppw < oo}

zeX reX

The affine hull of X is also called flat spanned by X and its dimension,
dx = dimb(X) ,

is the affine dimension of X and equals the dimension of the subspace b(X) —z for any = € b(X).
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II MULTIVARIATE POLYNOMIAL INTERPOLATION

Definition 2.11 [SB11] Denote by
Rn,d

the collection of all X C F® whose affine dimension is bounded by d and for which there is a map
g —X: a—z,

such that, for each j € 1:d and each v € I';,_1 ;, X = {2z : a € T, q} satisfies the following
condition.

Condition(v, j): The affine hull of
Yi={ra € X ;= for 0<i<j} (2.6)
has only ij in common with
X%::{man:ai:% for 0<i<yj; o >} (2.7)

Note that Condition(v, ) is satisfied in case there is a hyperplane containing Y7 whose
intersection with X§ is ij. Note also that there is no assumption that the map o — z, be
1-1. Though, this readily follows directly from the Condition(v, 7). Indeed, if o, 8 € T',, ¢ with
o # 3, then there is a smallest j for which «; # 8;. Let, without loss of generality, a; < 5; then
v:=(au,...,qa;) satisfies |y| < n. Hence, by Condition(y, j), £, must lie in some flat that does
not contain xg. Therefore z, # x3.

Note finally that in Definition 2.11 we have chosen X C F?® for some natural number s with
dimb(X) < d and not X C F¢. Yet it will follow from the definition that, for n > 0, necessarily
dx = d. In fact, the definition of R, 4 is tailor-made for an inductive proof of the following
claim.

Theorem 2.12 [SB11] For n,d > 0, X C F* is in R, 4 if and only if X is constructible by
recursive application of the Radon recipe. In particular, X € Ry, 4 is (n,d)-correct for n,d > 0
and dx = d for n > 0.

Proof. The proof is by induction on n and d. For n = 0 or d = 0, any X € R, 4 consists of
exactly one point, hence is evidently (n, d)-correct.
Now assume n,d > 0 and let X € R,, 4. Then X is the disjoint union of the two sets

Yi={z4:a1=0,a€l, 4} (2.8)

and
Z :={zq:01>0,ael, 4}

with
bY)NX =Y,

hence dy < dx —1 < d— 1, while dz < dx < d. Thus we know that X is obtainable by the
recursive application of the Radon recipe once we know that each of Y and Z is so obtainable
(or, else, contains just one point), and this we know by induction hypothesis once we show that
Y € Rn,d—l and Z € Rn—l,d~
For this, we observe that Y satisfies the other requirements of being an R,, 4—;-set with the
assignment
Yo < Z(0,0), @E€Lnd-1,
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while Z satisfies the other requirements for being in R,,_; 4 with the assignment
2o Tate 5 a € Fn—l,d )

with € := (1,0,0,...) of the appropriate length. Hence, by induction hypothesis, Y is (n,d — 1)-
correct, and dy = d — 1. Thus dx = d and hence dimII,(h(X)) = #T'p 4 = dimFX, where
IT,(b(X)) denotes the space of all polynomials on b(X) with degree at most n. Therefore, we
know that X is n-correct as soon as we have shown that the linear map

M,G(X) — FX: pesplx (2.9)

is 1-1 on II,(b(X)), i.e., p € II,(b(X)) and p|x = 0 implies p = 0. For this, let p € IL,(b(X))
vanish on X. Hence p also vanishes on Y. Therefore, by induction hypothesis, p must vanish on
all of b(Y'). Now, let h be any polynomial of degree 1 on b(X) which vanishes on b(Y). Then h
must be a factor of p, i.e., p = hq for some g € I, (b(X)), cf. Lemma I11.4.3. But, by assump-
tion, h fails to vanish anywhere on Z. Hence ¢ must vanish on Z and by induction hypothesis
must be identically 0. Thus, p = 0 and therefore the linear map (2.9) is 1-1, and because of
dimIT,,(h(X)) = dimF¥ it is also invertible. Hence, X is indeed (n,d)-correct, and obtainable
by the recursive application of Radon’s recipe, thus advancing the induction hypothesis.

Now, let X be an (n, d)-correct set which is obtainable by the recursive application of Radon’s
recipe. Then dx = d and X = Y UZ must be the disjoint union of two sets, with Y an (n,d —1)-
correct set and Z an (n — 1,d)-correct set. Both Y and Z are obtainable by the recursive
application of Radon’s recipe or else a 1-point set, and b(Y) N Z = . By induction hypothesis
Y €R,q-1and Z € R,,_1 4. Thus we can index the elements of X as

xa::{yazzdey7 O‘1:0’ a€lha.
Zae €7, a1 >0 ’

Then X, so indexed, satisfies
(a) Condition(0,1) by the Radon recipe;

(b) Condition((0,7),s) for 1 < j < dand v € I',_1 ;_1 since that corresponds to the
Condition(%j — 1) satisfied by Y;
(

(c) Condition(y +¢€,j) for 1 < j < d and v € I',_2 ; since that corresponds to the
Condition(v, j) satisfied by Z.

In short, then X € R, 4, thus advancing the induction hypothesis. O

Since any affine map carries flats to flats, the set R, 4 is closed under invertible affine maps
of F*. The index set I',, 4 as a subset of F? is evidently in R, 4. Because for any j € 1:d and
v €T, ; the set

{a €l q:a; =v,1€ 1y}

lies in the hyperplane {z € F : x; = ;} which does not contain any 8 € I'y, 4 with 5; > ;.
Incidentally, the sets I'y, 4 are the most natural approach for an n-correct set. For d = 2 this was
already discussed in [Bie03].
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II MULTIVARIATE POLYNOMIAL INTERPOLATION

Furthermore, any fully generalized principal lattice, see again Definition 2.9, is in R,, 4.
Theorem 2.13 [SB11] Any FGPL,,-set is an R, 4-set.

Proof. Let X be an FGPLy,-set and let o 1= Z(y_|a|,a) for a € I';, 4. Then, as a subset of Fe,
its affine dimension is bounded by d. Further, for any j € 1:d and v € I';,_1 ;, the hyperplane
H%'j from Definition 2.9 contains, according to condition (2.4), the set Y/ defined in (2.6). Since

H%J contains every xg with 3; = ~;, hence also contains b(YWj), but, according to (2.5), fails to
contain any xzg with 3; > 7;. Therefore, Condition(v, j) holds and thus X € R,, 4. O

But not every R,, 4 satisfies the geometric characterization.
Proposition 2.14 [SB11] There exist X € R,, 4 with X ¢ GC,,.

Proof. Here is a simple Ry >-set X that fails to be a GCs-set:

o o
Z(0,2) Z(2,0)
a a; < 2
To = {(2,2) a=2" €lp 0.1 %)
° °
L0,0) *(1,0)
Indeed, X\{z(9,0)} fails to be contained in the union of two straight lines. O

Moreover, not every GC,-set is a R,, 4-set. This is because for every R, 4-set X there exists
a hyperplane b(Y'), with Y equal to (2.8), that contains dim IT¢~1 = (”jﬁ;l) points from X. But
in [Apol11], an example of a GCs-set in RS is given which has no hyperplane containing dim IT¢~!
points. Hence cannot be a Ry ¢-set. This GCq-set was constructed to disprove the multivariate
extension [Boo07] of the Gasca-Maeztu conjecture from [GMS82], which states that every GC,,-
set possesses a hyperplane containing dimI1¢~! points. Hence the conjecture could have been
proven by showing that every GC,,-set is a R,, 4-set, but due to the mentioned counter-example
of [Apol1] this has become obsolete now. Nevertheless, the conjecture for d = 2 is so far proven
for n < 4, see [Bus90].

In the next paragraph we present a concrete recipe for (n, d)-correct sets, which are contained
in R, 4. Moreover, in Figure 2.3 an example of an Ry 3-set is depicted.

Concrete recipe for sets contained in R, 4

Definition 2.15 [SB11] Denote by
Sn,d

the collection of all subsets X of F? that can be so indexed by T, 4 that, for every j € 1:d and
every a, B € I'y, g, if oy = B; for i < j, then (z4); = (xg); if and only if a; = j;.

Corollary 2.16 [SB11] S, 4 C R, q. In particular, any S, 4-set is (n,d)-correct.
Proof. Let X € S,, 4. Since X C F?, dx < d. Also, for j € 1:d and v € I'y—1,5, the hyperplane

{r € F4: z; = (x(,,5));} with 8 :=0 € F~7 contains z, € X with a; =; for i < j and a; > ;
if and only if o; = ;. Hence Condition(v, j) holds and thus X is an R,, 4-set. O
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Example for an S5 3-set and an R, 3-set

In Figure 2.3a we give an example for an S» 3-set by depicting I's 3, which we label as an R 3-set.
In Figure 2.3b we present an Rj 3-set, which can be seen as a perturbation of the S 3-set from
Figure 2.3a. For a better clarity Figure 2.3b is not labeled, though the labels from Figure 2.3a
are still valid here. Next to these two figures we present the conditions for all X € R 3.

1
b(Y1) io1
Condition (0, 1): b(Yg) N x3 = v
Yy = {2(0,0,0): #(0,0,1) ©(0,0,2)"
(0,1,0)> (0,1,1)7 *(0,2,0) }
X§ = {ea :a €Ty 3}
2
b(Y(o,l)) Condition(1, 1): by N xi = v
f'?.(uo) Yit = {2(1,0,0) #(1,0,1)° ©(1,1,0)}
o X1 = {2(1,0,0)+ (1,0,1) ©(1,1,0)* ©(2,0,0)}
é():ndzition((o 0),2): b(Y2 )N X2 =v2
b(y2 ) s (0,0) (0,0) = 7(0,0)
(Y0) .~ (10 Y(0.0) = {200,000 20,01):20,0,2)}
’ & ' X{0,0) = {2(0,0,00> #(0,0,1): (0,0,2)
AB00) T(200) ©(0,1,0) ©(0,1,1)> ¥(0,2,0) }
Condition((0,1), 2): b(y(%’l)) n X(20,1) = y(20’1)
(a) Example of an S> 3-set Y0,1) = {%0,1,0):(0,1,1)}
X{0,1) = {£(0,1,0): *(0,1,1)» ¥(0,2,0) }
Condition((1,0), 2): b(Y(21’0)) n X(21,0) = y(2110)

® Y&,0) = (1,0,00 #(1,0,1)}
Xt 0y = €2(1,0,0)#(1,0,1)> #(1,1,0)}

JConjition((O,O,O),fi): ”Y(%,o,o)) n X?OYOYO) = Y(%,o,o)
Y(0,0,00 = 1%(0,0,0)}
X{0,0,0) = {£(0,0,0) *(0,0,1)" *(0,0,2) }
Condition((0,0,1), 3): b(Y(%YOJ)) n x?op’l) = Y(%y()’l)

Y(0,0,1) = {#(0,0,1)}
X{0,0,1) = {£(0,0,1): %(0,0,2)}
Condition((0,1,0), 3): b(Y(%’l,o)) n X?O,I,O) =
Y3 = {= }
(:?’1’0) (0,1,0)
X{0,1,0) = {2(0,1,0):#(0,1,1)
Condition((1,0,0), 3): b(Y(?i,o,o)) n X?LO’O) = Y(SI,O,O)
Y(1,0,0) = t¥(1,0,00}
X(1,0,00 = {#(1,0,0)> (1,0,1)}

3
Y(0,1,0)

(b) Example of an Rg 3-set

Figure 2.3: 53 3-set and its perturbation into a Rj 3-set

In the next paragraph we present a different proof showing that S, q is n-correct.

Alternative proof for S,, ; being n-correct

We give here an alternative proof, showing that S, 4 is n-correct. In this paragraph we assume
for arbitrary n and d that the index sets I'y, 4 are lexicographically ordered, where ca; denotes
the i-th element of the so ordered set I',, 4. Hence, we can express any polynomial p € ¢ as

#Fn,d

pP= Y a&* with aq, €F. (2.10)
i=1

36



II MULTIVARIATE POLYNOMIAL INTERPOLATION

Recall that the set X = {xq, : i € L:i#L, 4} is n-correct if for every f : F? — F there exists a
unique polynomial p € TI¢ such that

P(Ta;) = f(2a;) (2.11)

for all i € 1:#I',, 4. Thus, by (2.10) and (2.11) we can set up a system of #I',, 4 equations and
know that X € 5, 4 is n-correct if the matrix Mf; 4 Tesulting from this system of equations is
non-singular, in particular

Tt Tl

a1 a1 - S
a2 a2 e a2
32 32 T,
Mn,d = . . ] . . (2.12)
QH#Ty, a QH#T, d QHT, d
T, Ty . xa#r‘n'd

Theorem 2.17 The matrix M, 4 is non-singular if the set X = {zq, : ¢ € 1:#I',, q} is indexed
as in Definition 2.15. In particular X € S,, q is n-correct.

Proof. The proof is by induction on d. For d = 1 the assumption obviously is true since we get
a Vandermonde matrix with disjoint nodes, which is non-singular. Let n > 0 be arbitrary and
d > 1. Assume that the assumption holds for d.

For d + 1 the matrix M, 4+1 can be written as block matrix

oM s Mgl
| | .
Mn,d+1 - | | )
,,,,,,, S A
my411 1 : ! mn+1,n+1
with
(i—1,001) (i—1,001)
(1-1.84) G=1Byur, _i11.4) -
. Q. € i1
m;; = : : where F = mmithd
- - Breln_ji14a
x(i— QAT iy g) . x(l— QAT ity g)
(J—1.81) G=1Bur, _11.a)

By the recipe of Definition 2.15 (z4)1 = (zg)1 if aa = f1, with a, 8 € Ty g+1. Thus the
submatrices m; ; can be written as

. al DRI . a]‘
(*(j-1.8,)) 241 (x(Jflﬁ#ranl,d))2:d+1
i—1 . . i1~
ng:C . . =:C. m’L]
) J . . J El
OH#L_it1,d CH#T_it1,d
(*(j-1.8,))2:a41 R CIO R DO ) P

with ¢; € C pairwise different. Thus the block matrix M, 441 reads

0.5 0 =
coamia et b CppiMindl
. | | .
Mn7d+1 = : I I :
AR T T i
CrMp41,1 ) ' Cnp1Mn4 1,041

Since for fixed j the blocks m; ; are linearly dependent on m,.; for all 7 < i and the diagonal
blocks m;; are equal to M,,_;;1 4, we can transform M, 4,1 by Gaussian elimination to the
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2 SETS CORRECT FOR MULTIVARIATE POLYNOMIAL INTERPOLATION

block upper triangular matrix

Mgy e e e
0 ‘b2Mn—1,d‘ * *
Mygpn= | """ T T T
S Lo K
0 10 1 b1 Mo

The matrix consisting only of the leading coefficients c;-_l of the block matrices mj; forms a
non-singular Vandermonde matrix

C? P C??r‘rl

O
Therefore, the coefficients b; for ¢ = 1,...,n + 1 are unequal to zero. This and the fact that
due to our assumption M, 4 is non-singular for arbitrary n, yields that the matrix M, 441 is
non-singular, thus advancing the induction hypothesis. O
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Chapter III

The Lifting Scheme

This chapter presents the lifting scheme and shows how to construct appropriate filters
for it. We start with a brief introduction on wavelets, and explain the connection between
the fast wavelet transform and the standard two-channel filter banks. Then we show that
the usual two-channel filter bank can be transformed into a more efficient structure —
the lifting scheme, see Section 3.3. Own contributions are found in Section 4 where we
construct new and shorter filters for the lifting scheme in the two-dimensional case. We
also provide a result which yields an extension of the one-dimensional Deslauriers—Dubuc
filters to the two-dimensional case.

1 Introduction

In this section we present the wavelet transform. This introduction is just thought as a brief
motivation for the rest of this chapter, therefore we refer the interested reader for more details
to the books [Dau92], [LMR94], [VK95] and [SN96], where also the main inspiration of what
follows is taken from.

The term wavelet as it is known today goes back to Goupilland, Morlet and Grossmann and
has its origin in the analysis of seismic signals, see, e.g., the classical paper [GGM84]. The need
for wavelets was due to the missing time localization property of the standard Fourier transform,
which for f € L%(R) is defined as

(F)w) = ¢<127> [ et

The standard Fourier transform suffers from the infinite extent of its basis functions, so spreading
the information of f over the whole frequency axis. One ansatz to circumvent this is the windowed
Fourier transform

(Fuinf)(w,7) = / Fyw(t - r)e=“tdt |

which uses a window function w that is usually compactly supported or has a fast decay for [¢t| —
oo and is of a certain smoothness, for instance a Gaussian. Thus, the windowed Fourier transform
has a better time localization than the standard Fourier transform but has the drawback that
the size of the window function is constant, so providing only one resolution. This is resolved by
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2 MULTIRESOLUTION ANALYSIS

the wavelet transform, defined as

_ t—>b
ov)a.t) = a7 [ 10w (57 ar.
with @ € Ry, b € Rand [ = 0. As can be seen from the formula it is based on the translates

and dilates
_ t—>b
o (120 (1)

of one function v, which is called the mother wavelet. Assume for a moment that b is fixed, then
for a large a the dilates (1.1) correspond to a very wide window which in turn corresponds to
low frequencies, vice versa for small a. Thus when a changes, the dilates (1.1) cover different
frequency ranges, whereas changing b yields a different center of localization in time.
Because the wavelet transform is highly redundant for continuous a and b, it is usually only
evaluated at the discrete grid
(27, k27) for j ke,

so yielding the discrete wavelet transform
W@ k) =297 [ fOue Tt - Ryt = (. 03)

with ;1 (t) := 279/2¢)(277t — k). The final breakthrough of the discrete wavelet transform was
then provided by the work of Mallat and Meyer, see [Mal89] and [Mey90], by introducing the
multiresolution analysis (see Section 2) which makes a fast computation of the wavelet coefficients
(f, ;1) possible (see Section 2.1). Moreover, it connected the discrete wavelet transform to filter
banks, which developed separately from wavelets (see Section 3). In [Swe96] Sweldens presented
the lifting scheme filter bank, which on the one hand allows a more efficient implementation of
the discrete wavelet transform and additionally gives an idea on how to construct new wavelets
(see Section 3.3). We exploit this idea in Section 4 where we construct and verify new filters for
the lifting scheme.

2 Multiresolution analysis

Multiresolution analysis goes back to Mallat and Meyer, see [Mal89] and [Mey90]. It provided
the key to fast implementations for the discrete wavelet transform and thereby also connected
wavelets to filter banks, as we see below. So far we only considered the one-dimensional case.
From now on the dimension d is arbitrary. Therefore we need to present the dilation matrix.

Definition 2.1 A matrix D € Z%*? is called dilation matrix if all its eigenvalues have absolute
value greater than 1.

Thus a dilation matrix D is expanding and the subgroup DZ? possesses |det(D)| distinct
cosets DZ® +t; for i € {0,...,|det(D)| — 1} with ¢; € Z% and t, = 0, see [GM92]. Since in this
thesis we only deal with two-channel filter banks it is sufficient to consider |det(D)| = 2, which
we will do from now on. For example, the most considered dilation matrices for d = 2 with
|det(D)| = 2 are

1 1 . 1 1 -1 . 0
Dy = [1 _1] with ¢ = [0] and Dy = L 1} with t; = [1} . (2.1)
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III THE LIFTING SCHEME

Their corresponding cosets or so called sublattices are referred to as Quincunx lattices, see for
instance [VBU05].

We continue with the definition of the multivariate multiresolution analysis, where we mainly
follow [LMR94].

Definition 2.2 A multiresolution analysis of L?(R%) is an ascending sequence of closed subspaces
(Vi)jez of L*(R?)

{0}c...cVhcVicVyCcV. i CVycC...CL*RY)
with the following properties:
() Ujer Vi = LA(RY),
(b) Njez Vs = {0},
(c) f() e Vi e f(DI) €V,

(d) there exists a function ¢ € L?(R?), called scaling function, whose translates form a Riesz
basis of Vy, i.e.,

Vo = span{¢o () := ¢(- — k) : k € Z7} .

AV <Y as-n<BY &

kezd kezd kezd

and

for all (ci,)peze € 12(Z%) and with A, B being positive real constants.

By the definition of the multiresolution analysis, more explicitly by condition (c¢) and (d), it
holds that

V; = span{¢; x(-) :=279/2¢(D~7 - —k) : k € Z4} .

This is why the function ¢ is called scaling function, because its scaled versions are needed to
generate the space V;. Moreover, the inclusion V5 C V_; implies the existence of a real valued
sequence (hg)pezae such that

¢(x) =vV2 Y hxd(Dx — k) . (2.2)

kezd

This equation, also referred to as refinement equation, is the most important equation in the
multiresolution analysis. Firstly, it is the key to the fast wavelet transform and secondly it
connects wavelets to filter banks as we see in Section 3. Moreover, we want to point out that
the function ¢ is later not explicitly available, but is implicitly given by the sequence (hg)pcza-
Conditions for the coefficient sequence (hy)ecze which are necessary to induce via the refinement
equation (2.2) a ¢ whose translates generate a Riesz basis are discussed in Section 2.2.
Because the ascending sequence (V}) ez is nested we can define corresponding complements
W; such that
V,e W, =V, (2.3)

where ® denotes the direct sum. Note that W; is not necessarily the orthogonal complement of
V;. The space W; is also generated by translates and dilates of a function 1 € L?(R%), called
wavelet:

W; = span{y; x(-) := 279/2¢p(D~7 - —k) : k € Z4} .
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Also for the wavelet there exists an analog to the refinement equation (2.2). Because of the
relation Wy C V_; there also exists a real valued sequence (gi)yecze such that

o) =v2 Y gd(Dx— k). (2.4)

kezd

Now, we have the ingredients to present the fast wavelet transform.

2.1 Fast wavelet transform

Let (V}), ez be a multiresolution analysis. Moreover, let (V});ez be a second multiresolution anal-
ysis with scaling function ¢, such that the two multiresolution analyses and their corresponding
wavelet spaces W; and W; are linked by the biorthogonality condition

(B bjk) = O (i1, i) = Ouk s (2.5)
(b0, 050) =0, (i1, djx) =0, (2.6)

for all j € Z and k,l € Z%. In this setting the scaling function ¢ is called primal and q~$ dual,
same applies for the wavelets. It is also possible to choose the primal scaling function ¢ such
that its translates generate an orthogonal basis, so implying ¢ = gz~5 But the orthogonal case has
some limitations in the design of new sequences (hy)yeze, which we enlight in Section 3. For the
one-dimensional case the biorthogonal setup (2.5)-(2.6) goes back to [CDF92]. A generalization
to the multidimensional case is done, e.g., in [KV99], where we also refer to for more details.

We present now the fast wavelet transform, where we will see that one multiresolution analysis
is used to decompose a function and the other to reconstruct it. We start with a function f in
Vo. Thus, f can be expressed by the linear combination

F=" (f:b0x) bok -

d
kezd

Because of equation (2.3) we can decompose f further into

J
f= (fsban) dan + (f2 k) Yk - (2.7)

Exploiting the dual of equation (2.2) we obtain

éj,k(l“) = Z Bléj—l,ch-&-l

lezd

and therefore it holds that

Cjk = Z ]lekaijl,k ) (2.8)
lezd

for j € 1:J and k € Z%. Similarly, by the dual of equation (2.4) we obtain
J’Jk(x) = Z §l<l~5j—1,Dk+z

A

and hence

djr = Z Gi—DkCj—1,k (2.9)
lezd
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for j € 1:J and k € Z%. So we can recursively decompose f starting with (co, : k € Z¢) without
explicitly determining the inner products (f, z/?j,k>. This recursive procedure is referred to as
the fast wavelet transform. Choosing an interpolating scaling function, i.e., a scaling function
satisfying

b(k) =gy forall kezt,

yields
cor = fk)

for all k € Z<.
To reconstruct the function f from the data {cjx,d;r:j € 1:J, k € 7%} we need the primal
scaling functions and primal wavelets and recursively obtain (co k)geze by

Gk = Z hy—picj+1,1 + Z Jk—D1dj 1,k (2.10)
lezd lezd

for j=J—1,J —2,...,0 and k € Z?. This can be seen by equating the coefficients of

Z cok = Z C1LED1k + Z dy k1K

kezd kezd kezd
= E 1k E hico,i+pk + g dy E 91C0,1+Dk »
kezd lezd kezd lezd

where we again exploited the equations (2.2) and (2.4).

In Section 3 we learn that the decomposition or analysis step from j — 1 to j is nothing else
than applying (cj_1,x)reze to filters and subsample the result afterwards. Similarly, but the
other way round, for the synthesis step from j to j — 1.

Vanishing moments

In applications, like data compression, it is important that the spaces V; of the multiresolution
analysis contain polynomials of a certain degree N. This means that the coefficients (f,; x)
from the decomposition (2.7) have to be zero for all f € H;lv, j € 1:J and k € Z%. One says a

dual wavelet ¢ has N dual vanishing moments if
/xo‘vfz(aﬁ)dx =0 for all a with |a| < N .

This implies that the primal scaling function ¢ is able to reproduce polynomials up to degree
N — 1. In that case ¢ is said to be of order N. Similarly choosing a primal wavelet ¢ with N
primal vanishing moments, the dual scaling function ¢~> can reproduce polynomials up to degree
N — 1. Moreover, the number of primal vanishing moments is connected to the smoothness of
the dual wavelet and vice versa, see, e.g., [JS94, page 20]. In Section 4 we show how to construct
primal and dual wavelets with a certain number of vanishing moments.

2.2 Stability and regularity of multivariate scaling functions

In Section 2.1 we saw that in the fast wavelet transform the scaling functions and wavelets were
not explicitly used. Instead, it was sufficient to know the corresponding coefficient sequences
of the refinement equations, which implicitly defined these functions. But not every sequence
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(hi)reza results in a scaling function ¢ that generates a multiresolution analysis, or in other
words its translates do not generate a Riesz basis. If they do then ¢ is called stable. Recall the
refinement equation

2) =2 hp¢(Dz—k), (2.11)

kezd

where in this section we choose for convenience, without loss of generality, a different factor as
in equation (2.2). In Section 4 we are going to construct new sequences (hy)peze. Therefore we
provide in this section conditions for a sequence (hg)jecze to define via the refinement equation
(2.11) a stable scaling function ¢.

From now on we assume that the sequence (hy)gecze has only finitely many non-zero coeffi-
cients hy, and that ), hj, = 1. To check stability and other properties like regularity of a scaling
function ¢ one has to investigate eigenvalues of a linear operator. We are going to motivate this
operator by the cascade algorithm, where we mainly follow [LLS98].

The cascade algorithm

The cascade algorithm can be used to iteratively compute the scaling function ¢ by the coefficient
sequence (hy)peza via the following iteration over j € Z:

¢j(x) ==Y 2hwe; 1 (Dx — k), (2.12)

kezd

where one starts with a compactly supported function ¢q. To show the L?-convergence of the
cascade algorithm one uses the autocorrelation of the scaling function ¢, which for any ¢ € L?(R%)
is defined as

W (k) / e k)dz for keZ?. (2.13)
Then equation (2.12) together with equation (2.13) yields
o (k) = 3" 2nG) el (1) (2.14)
lezd

with
h(au th th_;  for k‘EZd
lezd

being the autocorrelation of the sequence (hg)geza. Moreover, if ¢ satisfies equation (2.11) then
@) satisfies the refinement equation

¢(au) Z h(au)(b(au (Dm N k)

Defining the linear transformation T}, : [2(Z%) — 12(Z%) as

(Theob)i = D 2050 by for bel*(Z%) and k ez,
lezd

we can write equation (2.14) as
¢\ = Ty ™) . (2.15)

It can be shown that the iteration (2.15) and so the cascade algorithm converges if A = 1 is a
simple eigenvalue of Ty and |A| < 1 for all the other eigenvalues, see [LLS98, Theorem 2.2].
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Hence convergence of the cascade algorithm becomes the convergence of the power method in
(2.15), see also [SN96, page 234]. To actually compute the eigenvalues, one restricts the operator
T}, 2wy to an invariant support set €

Definition 2.3 [LLS97] Let D € Z%*¢ be a dilation matrix. Then Q C Z% is called an invariant
support set for the transition operator Ty if

(a) Q is finite,
(b) for all sequences b with support in Q, the support of Ty b is also in {2,

(c) the support of every finitely supported eigenvector of Ty corresponding to a nonzero
eigenvalue is contained in ).

For Tj,w such an invariant support set Q always exists, see [LLS97]. In this paper it is also
explained how to construct such an invariant support set 2. The restriction of T}, aw) to €2 is then
represented by the matrix

Ty = (th}j)_l)klm , (2.16)

where we use the same symbol.

But the convergence of the cascade algorithm is not sufficient for ¢ being stable, however the
matrix T} also holds the key to check stability of ¢.
Stability

Theorem 2.4 [LLS97] Suppose (hy)gezq is a finitely supported sequence satisfying Y, hy = 1,
and ¢ € L*(R?) is given by (2.11). Then ¢ is stable if and only if

(a) 1 is a simple eigenvalue of the matrix Ty defined by (2.16)

(b) the Fourier transform of the eigenvector v corresponding to the eigenvalue 1 does not vanish,
where the Fourier transform of v is defined by

Uy 1= Zvle_ikl for all kez®.
leQ

Regularity

The smoothness order or so called Sobolev regularity of a function f € L?(R?) is defined by
v(f) = sup{v: f € Wy (R},

where W¥ (R%) is the Sobolev space of all functions f € L?(R?) that satisfy
J17@P+ ey e < oo,

with f being the Fourier transform of f. The smoothness order v(f) of a function f states how
often f can be weakly differentiated. We can determine the smoothness order v(¢) of a scaling
function ¢ also by investigating its constructing sequence (hy)pecze and the eigenvalues of the
corresponding matrix 7T},aw) defined in equation (2.16).

Assume that the dilation matrix D € Z?*? is similar to a diagonal matrix and possesses
the eigenvalues 7, ...,7n74 which are equal in modulus, i.e., [g1| = -+ = |n4|. Moreover, let the
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scaling function ¢ be stable and able to reproduce polynomials up to degree N — 1. Under these
assumptions it was shown in [Jia99] and [JZ99] that

dlog, p
v(§) = — 5,
with
pn :=max {|z|: ¥ € o(Thw) N {n~*: |a| <2N}},

where 7 denotes here the tuple (11, ...,74) and o(T},w ) the spectrum of the matrix T}, cau .

The dilation matrices D7 and Ds from equation (2.1) match the assumptions mentioned
above with 7 = (v/2, —v/2) and n = (1 +1,1 — 1), respectively. Since we only treat these cases in
this thesis, these restrictive assumptions on the dilation matrix D are acceptable. Nevertheless
in [CGV99] the smoothness order v(¢) is derived for arbitrary dilation matrices D. Moreover,
an efficient algorithm computing v(¢) for sequences (hg)rezae that are symmetric, i.e., hy = h_y,
for all k € Z4, is discussed in [Han03].

3 Two-channel filter banks

Before we discuss the two-channel filter banks and link them to the fast wavelet transform, we
present some preliminaries.

3.1 Preliminaries

We start with signals:

Signals

In this thesis we deal with discrete signals only, where a discrete signal x is just a real valued
sequence
x:= (v ER: k€ K CZ% = (2p)pex -

The set K can be finite. For instance an image obtained from a digital camera is a two-
dimensional signal with finite K.
The z-transform of a signal x € R¥ is defined by

x(z) = Z zpz

keK

Below we are going to consider sequences which stem from multivariate polynomials ¢ € T1¢,
where we use for any function f : Z% — R? the notation

a(£(Z%)) = (a(£(k))) xepa - (3.1)

Up- and down-sampling

A basic operation in filter banks is up- and down-sampling of a signal, where up- and down-
sampling is always connected to a dilation matrix D. Therefore the symbol for downsampling is
chosen as (D) and similarly for upsampling as (1D). Up- and down-sampling on a signal x is
defined as
e =1 d
(1D)x),, = {xDl’f HDTREZT g pend
0 else
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III THE LIFTING SCHEME

and
(ID)x), :=ap, for keZ®.

So in the one-dimensional case downsampling with respect to D = 2 means nothing else than
omitting every second element of the signal and upsampling just stretches the signal by pasting
a zero between every element of the signal. In Figure 3.1 we demonstrate what downsampling
looks like in the two-dimensional case when using the two dilation matrices D; and Do from
equation (2.1). In Figure 3.1a the signal which is subject to downsampling is depicted. In Figure
3.1b the dilation matrix D; is used and 3.1a is downsampled twice, whereas in Figure 3.1c the
dilation matrix Ds is used and we sampled 3.1a down 8 times. Note that from Figure 3.1 it also
can be seen that D? = 2] and D§ = 161.

f—

(a) Signal subject to downsam- (b) Sampled down by D = D; (c) Sampled down by D = Ds
pling

Figure 3.1: Downsampling in the Quincunx-case using the dilation matrices Dy and Dy

In the z-domain upsampling is defined by
(1D)x(2) = x(=")
and downsampling by
o= 3 e (o) ex (7))

with 2P := [2% ... 29]T where d; denotes here the i-th column of D. For more details, see,
e.g., [VA91] or [Vai93).

Shifting

Below we also need to shift a signal by ¢ € Z%. The action of such a shift on a signal x is defined
as

((?)x)k = x,_¢ and ((?)x)k =y for keZd.

t

In the z-domain the shift is realized by just multiplying z =% or 2! to the z-transform of the signal,

(t)x(z) :=x(z)z"" and (<t_)x(z) =x(2)2" .
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3 TWO-CHANNEL FILTER BANKS

Filters

A filter H is an operator which maps signals to signals and is defined by a real valued sequence
(hy ER: k€ 7). This sequence is also referred to as impulse response sequence. In this thesis
we only consider finite impulse response filters, called FIR-filters. This means that only finitely
many coeflicients hy are non-zero. So whenever we speak about filters we mean FIR-filters. The
coefficients hy are also referred to as filter coefficients or filter taps. The adjoint H* of a filter
H is given by (h_p € R: k € Z9).

The action of a filter H on a signal x € RX is defined by the convolution of the impulse
response sequence of the filter and the signal itself

(Hx)k = Z hk_ll‘g .

leK

If K is finite one has to extend the signal x outside K. One choice is to continue the signal with
0. This is referred to as zero-padding.

The filter H in the z-domain is defined by the z-transform of its impulse response sequence
H(z) =%, h;z"". The adjoint then equals H*(z) = H(z™!)

A filter H is called interpolating if its impulse response sequence satisfies hpy = do . In the
one-dimensional case, this means that the impulse response sequence of the filter is 0 in all even
locations except for the origin. Therefore such filters are also called half band filters. Applying
a half band filter on a signal x that was upsampled results in a signal that stays unchanged at
the positions Dk while at the positions Dk + t; it is a linear combination of the values at Dk.
In the z-domain we can express a half band filter H by

H(z) =1+ 2"H,(z"), (3.2)

for some filter H,.

An important class of filters in the area of image processing are the linear phase filters with
real frequency response because they produce less visual artifacts than non-linear phase filters,
we refer for more details to [Lim90, page 196]. A linear phase filter H is called a zero phase filter
if and only if

hi =h_y forall keZ?,

see, e.g., [Vai93, page 553]. Thus, the impulse response sequence of such a zero phase filter is sym-
metric with respect to the origin. Therefore such filters are also called symmetric. Another good
property of symmetric filters is that in numerical implementation the number of computational
operations can be halved, see, e.g., [VK95, page 361].

3.2 Standard two-channel filter bank

So with the above presented operations it can easily be seen that the equations (2.8) and (2.9)
used for decomposing the signal (¢ : k € Z%) mean nothing else than applying the signal to
the adjoint of the filters H and G, respectively and downsample the result afterwards with (D),
yielding the two signals

Cjt1 1= (Cj+1’k ke Zd) and dj+1 = (dj+1,k ke Zd) . (33)

The reconstruction equation (2.10) states that the signals (3.3) are first upsampled by (1D)
and then are applied to the filters H and G, respectively. Afterwards, the results are added,
yielding again c;. All this is depicted in Figure 3.2, where the standard two-channel filter
bank is presented. The left side is called analysis part and the right side synthesis part. Since
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III THE LIFTING SCHEME

the output on the right side equals the input on the left this is also referred to as a perfect
reconstruction filter bank. Similar to Section 2.1 this filter bank is said to have N primal and N
dual vanishing moments if

(ID)Gq(Z?) =0 forall ¢qel%_, and

(ID)Gq(Z¥) =0 forall gell% .

The structure depicted in Figure 3.2 was already introduced in the 1980s, cf. [Min85] and
[SB86]. In these papers the filters where chosen such that H = H and G = G. Choosing the
same filters in the synthesis part as in the analysis part yields orthogonal wavelets and scaling
functions. But this choice has some drawbacks, the most severe is that except of the trivial choice
of the Haar-wavelet there exist no orthogonal two-channel filter bank that has linear phase FIR
filters with real coefficients, cf. [VK95, Proposition 3.12]. Biorthogonal filter banks with linear
phase filters were then investigated in [VLG89] and [NV89]. For more details on filter banks and
a more signal theoretic perspective to them we refer to [Vai93], [VK95] and [SN96].

¢ — D— ©

Figure 3.2: Analysis and synthesis part of the standard two-channel filter bank

Downsampling a signal x with a dilation matrix D that has determinant 2, means that half
of the signal that is subject to downsampling is discarded afterwards and only the components
xpy are kept. Following the one-dimensional case with D = 2 we call these components even
and the components x pgy+, that are discarded odd. Hence, the standard two-channel filter bank
is not very efficient, because the whole signal is applied to the filter and then half of the result
is thrown away. A more efficient way is to make use of the polyphase representation, which we
are going to present in the following.

Polyphase representation

We start by explaining the word polyphase, where we follow the descriptive explanation of [SN96,
page 114]. As stated above downsampling splits the signal in an even and an odd phase, where
only the even phase is kept. So it is natural to follow the even phase (xpy)reze and the odd
phase (X pr+t, )reze of the signal x as they go through the filter bank. As it turns out below they
are acted on by the two phases H. and H, of the filter H. The word phase is applied because
the filter coefficients hps of the even filter H, are phase shifted to the filter coefficients hpg¢,
from the odd filter H,. What follows in this paragraph is partially borrowed from [Sto09].

For the polyphase representation we need to present the so-called noble identities, which
allow interchanging the action of sampling and filtering. Let H be a filter. Then the first noble
identity is given by

H(=)(4D) = (1D)H(:")

and the second by
(tD)H(z) = H(z")(1D) ,
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3 TWO-CHANNEL FILTER BANKS

where H(z) and H(z”) are considered to be operators here. For more details on the noble

identities see [Vai93, page 604].

Consider a filter H. Then we can write its z-transform as
H(z) = Z hyz "
k

k k
= E thszk 4270 E th_s_tl,ZiD]C
k k

=:He(ZD) =:HO(ZD)

Hence by (3.6) and the noble identities, the following applies

(ID)H(z) =({D)H, (") + (L D)H,(z") (%)

—H,(2)(1D) + H,(2)(JD)(17)

and

H(2)(1D) =H,(z")(1D) 4+ 2" Ho(z")(1D)
=(ID)H.(2) + z " (1D)H,(2) .

(3.7)

(3.8)

So by equation (3.7) we can transform the analysis part of the standard two-channel filter bank

which is depicted in Figure 3.2 to:

——()—{m

—, G
i @— G

This can evidently be simplified to:

-
|1

50



III THE LIFTING SCHEME

e l '

® e
G :
G |

Similarly, by equation (3.8) the synthesis part of the filter bank from Figure 3.2 can be
transformed to

1, (D)

Cjt1 —e

dj1—

and also be simplified to:

i E
e l :
Cjt1 —;— @ : @
m
O—

G. g

] E

Go .

If one considers the gray dashed boxes, from the figures above, as one object with two inputs
and two outputs, as it is depicted below in Figure 3.3 and furthermore considers the z-transforms
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3 TWO-CHANNEL FILTER BANKS

of the inputs to be written in a vector, e.g., [a(z),b(2)]7, the action of the gray dashed boxes
can be expressed by the so called polyphase matrices

pa- (5 0] w0 o[ 8]

Figure 3.3: Polyphase blocks

In the~n*ext section we present the lifting scheme. There we show — by using the polyphase
matrices P (z) and P(z) — how the filters of the lifting scheme have to be chosen such that the
lifting scheme acts as the standard two-channel filter bank.

3.3 Lifting scheme

In Figure 3.4 the lifting scheme is depicted. As already mentioned in the introduction of this
chapter the lifting scheme goes back to [Swe96]. In [KS00] a generalization of the lifting scheme
to arbitrary dimensions and grids is introduced and an idea is presented on how to design new
filters for the lifting scheme. We explain this in detail below.

We start by revealing that the lifting scheme can be transformed into the standard two-
channel filter bank.

************************************

OO0

_>?1_>@ djn @_'t_fJ

Figure 3.4: The lifting scheme

From Figure 3.4, which depicts the lifting scheme, it can be seen that the polyphase matrix
representing the polyphase block of the analysis part equals

ol VL 0RO ) e
Similarly, the polyphase matrix for the synthesis part of the lifting scheme reads
1 0ot “UR| _|1 -U(z)
P(2) = [P(z) 1} [0 1 ] = {P(z) —P(2)U(2) + 1} ' (8.10)
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Hence, if we choose P and U such that

e -

and

{58 ggiﬂ - [P(lz) —P(;)[(]]((i))+1] (3.12)

hold, the action of the analysis and synthesis part of the lifting scheme is equivalent to the
corresponding parts of the two-channel filter bank discussed in Section 3.2.

Moreover, for any given filter pair P and U we can define new filters H, G, H and G for the
standard two channel filter bank by using the latter equations (3.11), (3.12) and equation (3.6),
via

G(z) = -U(P)+ 2711 - P(zP)U(ZP)) .

Thus, by the latter equations (3.13)-(3.16) the lifting scheme can be transformed into the standard
two-channel filter bank. Note that the filter H* so constructed is directly a half band filter,
cf. equation (3.2).

Now, we explain the basics of the d-dimensional lifting scheme, which was introduced in
[KS00]. Like the two-channel filter bank from the previous section, the lifting scheme also
consists of two parts, the analysis part on the left side and the synthesis part on the right side.
As can be seen from Figure 3.4 the analysis part consists of three actions: split, predict and
update. First, by downsampling and shifting, the signal is split into an even and an odd phase.
Then the filter P tries to predict the odd phase from the even phase, where the predict filter
P is chosen such that it yields exact prediction for polynomial sequences. This is explained in
more detail below. Then the prediction is substracted from the odd phase, yielding the lower
output. The lower output is then applied to the update filter U and then added to the even
phase yielding the upper output. The update step is applied to achieve that the signal at the
upper output has the same average as the signal at the input. How to exactly choose the filters
P and U is explained below and in Section 4.

Since in the synthesis part of the lifting scheme all operations appear in reversed order to
the analysis part, this filter bank is evidently a perfect reconstruction filter bank. This can also
be seen by multiplying the two polyphase matrices from equation (3.9) and (3.10), so obtaining
PP = I. This perfect reconstruction property directly implies biorthogonality, see [VK95,
page 119] or [KSO00].

Neville filters

In this section we explain how to choose the filters P and U such that the corresponding standard
two channel filter bank has N dual and N primal vanishing moments, respectively. The lifting
scheme allows to construct these properties separately, where Neville filters play a central role
as we learn below.

Definition 3.1 [KS00] A filter P is called Neville filter of order N with shift T € R? if

Py(2%) = q(Z¢ 4+ 1) forall qeTl% ;. (3.17)
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4 TWO-CHANNEL FILTER BANKS

Thus a polynomial sequence applied to a Neville filter of order NV and shift 7 just results in a
sequence evaluated from the same polynomial but on the lattice shifted by 7, see again equation
(3.1).

We start by determining filters that yield N dual vanishing moments. Therefore we have to
determine the filter P such that

(1D)Gq(z") =0 forall qel%

with G defined as in equation (3.14). This can either be resolved using equation (3.7) together
with equation (3.11) or by determining the filter P so that the lower output of the analysis part
is zero for all polynomial sequences of order < N that are applied to it. This is equivalent to
finding a predict filter P that yields exact prediction for polynomial sequences ¢(Z?) of order
< N, ie., for all ¢ € H%_ .- Thus, applying an arbitrary polynomial sequence q(Z%) of order N
to the analysis part of the lifting scheme results in

q¢(DZ® + t,) — Pq(DZ%) (3.18)
at the lower output. Let P be a Neville filter of order N and shift 7, then by Definition 3.1
Pq(DZ%) = ¢(DZ* + D7) .

Hence equation (3.18) — and thus the lower output of the analysis part of the lifting scheme
— is zero for all polynomial sequences of order N if P is a Neville filter of order N and shift
T = Diltl.

Now we explain how the filter U has to be chosen such that we get N primal vanishing
moments with N < N. In order to do this we need the following proposition:

Proposition 3.2 [KS00] Let P be a Neville filter of order N and shift 7. Then the adjoint filter
P* is a Neville filter of the same order N but shift —r.

To obtain N primal vanishing moments it must hold for all ¢ € IT%,_; that
(1D)Ga(z%) =0, (3.19)
with G defined as in equation (3.16). By equation (3.7) this is equivalent to
(G.(D) + G,UD)(E)) a(z") =0,
which in turn by equation (3.12) is equal to
(-0 (D) + (U P* + HUD)(E) ) a(2?) = 0.
Hence we get

~U*q(DZ%) 4 (~U*P* +1)q(DZ 4+ t,) = 0.

Let P be a Neville filter of order N > N, then because of Proposition 3.2, equation (3.19) is
equivalent to
2U*q(DZ) = q(DZ +t,) .

This yields the following theorem:

Theorem 3.3 [KS00] Let N < N and let P be a Neville filter of order N and shift 7 = D~ 't;.
Furthermore, let V' be a Neville filter of order N and shift T and choose U = %V*. Then with

theses filters P and U the lifting scheme possesses N primal and N dual vanishing moments.
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4 Construction and verification of new Neville filters

In this section we explicitly explain how to construct Neville filters of certain order N and shift
7 for the lifting scheme. Furthermore, we provide new Neville filters for d = 2, which need
considerably fewer filter coefficients than the filters derived in [KS00]. Moreover, some filters
from [KS00] do not yield stable scaling functions, in contrast all our filters do. Furthermore, we
present in Section 4.2 configurations of points that yield Neville filters with a minimal number
of filter coeflicients.

We start with the proposition from [KS00] which holds the key to construct appropriate
Neville filters.

Proposition 4.1 [KS00] A filter P is a Neville filter of order N and shift T if and only if

Z p_pk® =71 for Ja]<N. (4.1)
kezd

Proof. [KS00] Let P be a Neville filter of order NV and shift 7. Substituting monomials z* with
|a] < N in equation (3.17) yields

Z p_p(l+ k) =(1+7)% forall |af<N.
kezd

Given that polynomial spaces are shift invariant it suffices to consider I = 0. Hence

Z p_pk® =71 forall |a|<N.
kezd

O

Hence, to construct a Neville filter of order N and shift 7 one has to determine a set of points
in Z? that gives rise to a unique solution to the system of equations (4.1). Choosing dim T4, ;
distinct points results in a system of equations, where the matrix representing this system is just
the matrix M, 4 from equation (I1.2.12). Hence, a set of dimII4,_, distinct points has to be
(N — 1, d)-correct in order to obtain a unique solution to (4.1).

Thus, our approach to construct new Neville filters of order N and shift 7 is to choose
dimI1%_, distinct points around the shift 7 that form an (N — 1,d)-correct set. In [KS00] a
different ansatz is used. First a number of points around the shift 7 is fixed and then it is checked
in which polynomial space this set of points yields a unique solution to the system of equations
(4.1) by using the Boor-Ron algorithm [BR90]. If the degree of the space is too low the number
of points is increased until the desired degree is obtained. Therefore the approach in [KS00]
usually results in more than dim Hﬁl\_l filter coefficients, whereas our approach ends in at most
dim 14, _, filter coefficients. As we see below we even need less than dimI14, | filter coefficients
since some filter coeflicients turn out to be zero. For d = 2 we can even choose configurations of
points that lead to a minimal number of non-zero filter coefficients, as we prove in Section 4.2.

Computation of the filter coefficients

Though the filter coefficients of a Neville filter can be obtained by just solving the system of
equations (4.1), there is a more elegant way. Let K be an (N — 1, d)-correct set, then for any
f:R% — R the unique polynomial ¢ € 114, , that interpolates the points (f(k) : k € K) can be

written as
g(z) = li(z)f(k), (4.2)

keEK
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where the polynomials ¢, are called Lagrange fundamental polynomials and have the properties
that €5 (l) = 0y, for k,1 € K and that the ¢; only depend on the set K and not on f, see, e.g.,
[Coa66]. Now let &, : f + f(7) for any f: R? — R and consider the following evaluation rule

67— ~ Z Ek(T)(Sk s

keK

with £ from equation (4.2). Then this evaluation rule is evidently exact for all f € 1%, and
thus also for all monomials z® with |a| < N, so yielding the equations (4.1). Hence the filter
coefficients py of a Neville filter of order N and shift 7 are equal to

p_ =Li(1t) for keK.

So to obtain the filter taps p_; we only have to compute the Lagrange fundamental polynomials
Ll which correspond to the correct set K and evaluate them at 7. The polynomials £ can
efficiently be determined by [SX94, Algorithm 4.1].

Remark 4.2 Let P be a Neville filter of order N and shift T, then its filter coefficients sum up
to one. This can be seen either by the system of equations (4.1) looking at the equation with
a =0, or by choosing f € Tl with f =1 then yielding

Fr) =" bi(r) f (k)
k

which equals

1= Zﬁk(T) = Zp,k .
k

k

4.1 New family of Neville filters for the Quincunx case

We now introduce new Neville filters P of order N € {2,4,6,8} with shift 7 = Dy t; for d = 2.

Recall from Section 2 that
1 1 1
D1 = |:1 _1:| and tl = |:O:| .

We only consider even orders N here, since we are only interested in symmetric filters because
they have zero phase, see again Section 3.1.

We use our recipe on S, 4-sets, presented in Definition I1.2.15, to choose (N — 1, 2)-correct
sets, which in turn determine the filter coefficients for the Neville filters of order N and shift
T = [0.5,0.5]T. To be clear, it is not essential to use Sx_107sets, we use them because the
configuration of the corresponding points is quickly and easily changed.

The figures 4.1 to 4.4 on the next four pages are organized as follows: Every figure is devoted
to one Neville filter of order N € {2,4,6,8}. On the top left of each figure the subfigure (a)
displays the S & —1,2-set which is used to determine the filter taps of the Neville filter P of order

N. Subfigure (b) depicts the resulting non-zero filter taps, where filter taps with the same value
get the same symbol. The value of each symbol is given on the right side of this plot. In both
plots the shift 7 is marked by a black solid dot e.

In the second row (c)-(e) we present the primal scaling function ¢ induced by the filter P via
the equations (3.15) and (2.2). We also check that this scaling function is stable by numerically
verifying the assumptions of Theorem 2.4. Hence, we check if 1 is a simple eigenvalue of the
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matrix T, and that the Fourier transform of the corresponding eigenvector does not vanish.
Therefore we plot the eigenvalues of T} .w where the green colored crosses depict eigenvalues
with multiplicity 1 and the red ones those with multiplicity > 1. Next to this plot the mentioned
Fourier transform of the eigenvector is plotted.

In the third row (f)-(h) we depict the dual scaling function which is induced by the filters
P and U = 0.5P* and the equations (3.13) and (2.2). As for the primal scaling function we
numerically verify the stability and plot the eigenvalues of T} .., and the Fourier transform of
the eigenvector which corresponds to the single eigenvalue 1.
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Figure 4.1: New Neville filter of order 2
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Figure 4.2: New Neville filter of order 4
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Figure 4.3: New Neville filter of order 6
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(¢) Primal scaling function ¢

(f) Dual scaling function ¢

61

3]
=
+ O x

O 4+ O A x
+ x v
o =
*
T T
2 -1 0 1 2

-3

(d) Eigenvalues of T, (aw)

(g) Eigenvalues of T} (an)

(b) Filter taps

1

0.5

-0.5i

/2

3n/2

2n

-0.32

-0.52

(e) Fourier transform of eigenvec-
tor corresponding to eigenvalue 1

(h)

tor
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We summarize the new family of Neville filters of order N € {2,4,6,8} by displaying them
together in one Figure 4.5. The values of the corresponding filter taps for the different Neville
filters are given in the table on top of it.

N #taps | O & + x o v K x @i divided by
2 2 1 2
4 8| 8 2 -1 2t
6 18] 108 66 -18 -9 3 2 28
8 28 || 800 650 —150 —120 40 25 10 -5 —112!
< 4 *
® B RO
N~ \v4 X -+
= XK X A O + O %

K2

T + X v

D O R ]

e - *
[ T T T T T T 1
-3 -2 -1 0 1 2 3 4

k,l
Figure 4.5: New Neville filters of order N

The Neville filters provided in [KS00] are depicted in Figure 4.6.

N #oftaps | O A+ X o v K divided by
2 4 1 27
4 12 10 -1 ' 2°
6 24 174 —27 2 3 0 2°
8 44 || 23300 —4470 625 850 —75 9 —80 2%
< (SR
© K v + + v R
o~ o v X AN A X v
-4 + A 0 O A+ O
= o4O 4+ A o o A O+ O
T v X A A X v
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Figure 4.6: Neville filters of order N from [KS00]
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III THE LIFTING SCHEME

What one can conclude immediately from figures 4.5 and 4.6 is that our filters need much
fewer filter taps than the filters from [KS00].

So far we just discussed filter pairs (P,U) for the lifting scheme that yield N = N primal
and dual vanishing moments. Evidently we can also provide filter pairs (P, U) that yield N dual
vanishing moments and N < N primal vanishing moments by choosing P as Neville filter with
order N and U = 0.5V*, where V is also one of the new constructed Neville filters with order
N < N. The stability of all this filter pairs is numerically verified, but for a better overview we
refrain from a detailed presentation as we did for the case P = U on the previous pages. Instead,
we present the smoothness order of the induced scaling functions of all our Neville filters in the
following tables 4.1 and 4.2, where the positive smoothness orders also indicate stability. We
also present the smoothness order of the induced scaling functions from [KS00] in the tables 4.3
and 4.4.

N|l2 4 6 8
—logy(py) | 2 244 320 3.76

Table 4.1: Smoothness order of primal scaling functions corresponding to our new filters depicted
in Figure 4.5

N\N| 2 4 6 8

N
2044 059 039 0.32
4
6
8

0.97 0.88 0.88
1.06 1.17
1.49

Table 4.2: Smoothness order of dual scaling functions corresponding to our new filters depicted
in Figure 4.5

N| 2 4 6 8
—logy(py) | 158 245 315 3.78

Table 4.3: Smoothness order of primal scaling functions from [KS00], see Figure 4.6

N\N| 2 4 6 38
2| ns. ns. ns. ns.
4 0.34 049 0.59
6 0.94 1.09
8 1.50

Table 4.4: Smoothness order of dual scaling functions from [KS00], see Figure 4.6

In Table 4.4 the term n.s. means that the dual scaling function is not stable. Here the major
advantage of our filters compared to the filters from [KS00] can be seen, namely that all our filter
pairs (P,U) with 2 primal vanishing moments yield stable dual scaling functions, which is not
the case for the filters from [KS00]. Additionally the smoothness order of our scaling functions
is either higher or approximately the same as the ones from [KS00]. In the next section we
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4 CONSTRUCTION AND VERIFICATION OF NEW NEVILLE FILTERS

present filters of minimal length which are even more regular and also provide stable dual scaling
functions in all cases.

4.2 Configuration of points yielding many zero filter coefficients

In Section 4.1 it could be seen that several filter taps of the Neville filters which we constructed
vanished to zero. Therefore we looked for a result allowing to choose (N — 1,d)-correct sets
that yield Neville filters of order N and shift 7 with many zero filter coefficients. We actually
succeeded and came up with configurations that yield at most dim Hﬁl\,—fl non-zero filter taps. For
d = 2 this means that we can construct Neville filters of order N with only N filter taps. Note
that this is much less than the Neville filters presented above and in [KS00]. I first proved the
result by exploiting the structure of the transpose of the multidimensional Vandermonde matrix
resulting from the system of equations (4.1). But Carl de Boor gave me the hint for a much
shorter proof, for which we need the following lemma.

Lemma 4.3 [Boo07, Fact 3(b)] Let K be (n,d)-correct. Furthermore define for all q € T1%
Z(q):={x eR: q(x) =0} and Zk(q):=KnNZ(q).

Let h € II{ with
#(K\ Z(h)) = dim 1L, _;

then h divides any q € 11¢ for which
ZK(q) D ZK(h) .
Now we can prove the main result.

Theorem 4.4 Let K be an (N — 1,d)-correct set such that there exists a hyperplane H that
contains exactly dim H'fvill points from K. Moreover, let P be a Neville-filter of order N and
shift T with filter taps p_ = lx(7) for allk € K. Let 7 € H, then

p_r=0 forall ke K\ H.
Proof. By assumption K is (N —1, d)-correct and there exists an h € II¢ such that the hyperplane

H=Zh)

contains dim 1%, points from K. Hence # (K \ Z(h)) = dimT1%,_,. For k € K let £} be the cor-
responding Lagrange fundamental polynomials. Then by definition of the Lagrange fundamental
polynomials it holds for all k € K \ Zk (h) that

L(l)=0 forall le Zg(h).

Hence Zi(¢r) D Zk(h) for all k € K\ Zk(h). Then we know by Lemma 4.3 that for any
k € K\ Zk(h) the polynomial h divides £;. Thus

l(t) =0 forall ke K\ Zk(h),
because 7 € H implies h(7) = 0 and h is a factor of any ¢, with k € K \ H. O
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III THE LIFTING SCHEME

Hence for d = 2 we just need an (N — 1,2)-correct set K such that a line contains N points
from K as well as 7. With this choice we obtain a Neville filter of order N and shift 7 with
at most N filter coefficients that are non-zero. In the following we present as above Neville
filters of order N € {2,4,6,8} and shift 7 = [0.5,0.5]7. In the next Figure 4.7 we present a
Se,2-set yielding only 6 non-zero filter taps and as above in Section 4.1 we numerically check the
stability of the corresponding primal and dual scaling functions of order N = N. The Neville
filters of order N € {2,4,6,8} with a minimal number of filter taps are depicted in Figure 4.8.
The corresponding scaling functions are also stable but are not presented in detail. Though the
stability is also indicated by the smoothness order in the tables 4.5 and 4.6.
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4 CONSTRUCTION AND VERIFICATION OF NEW NEVILLE FILTERS

(c) Primal scaling function ¢

(f) Dual scaling function ¢

1+
4 N
— a
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(b) Filter taps
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(h) Fourier transform of eigenvec-
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Figure 4.7: Minimal Neville filter of order 6
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N # taps H O A+ X w divided by
2 2 1 ! 2
4 4 9 -1 ; 24
6 6 150 —25 3 : 28
8 8 1225 —245 49 —5. 2"
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— m]

X o D
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§ +

ks
Figure 4.8: Minimal length Neville filters of order N

For the one-dimensional case it is already mentioned in [KS00] that the shortest Neville
filters with shift 7 = 0.5 are the Deslauriers—Dubuc filters. They correspond to the Deslauriers—
Dubuc subdivision, which can predict ¢(Z/2) from ¢(Z) for polynomials ¢ € IIy of a certain
degree N, see [DD8&7] and [DD89]. Not very surprisingly the filter taps of the Neville filters
which we presented in Figure 4.8 have the same values as the Deslauriers-Dubuc filters in the
one-dimensional case. So our filters can be seen as the two-dimensional extension or Quincunx
extension of the one-dimensional Deslauriers—Dubuc filters.

In the two tables 4.5 and 4.6 we present the smoothness order of the scaling functions that
correspond to the filters shown in Figure 4.8. From these tables it can be seen that the primal
scaling functions have approximately the same smoothness order as those presented above. But
the dual scaling functions are significantly smoother than the previous ones, compare Table 4.6
to tables 4.2 and 4.4.

Nl2 4 6 8
—logy(py) | 2 244 318 3.79

Table 4.5: Smoothness order of corresponding primal scaling functions of order N

N\N| 2 4 6 8

N
2044 059 065 0.68
4
6
8

1.18 1.32 141
177 191
2.31

Table 4.6: Smoothness order of corresponding dual scaling functions of order N < N
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Chapter 1V

Approximation of Scattered Data

This last chapter deals with approximation of scattered data, where we present a new
idea using the lifting scheme. A major task in that method is to solve a least squares
problem min, || Az —b||3, where we prove in Section 2.3 that the matrix A4 in our approach
has a special structure, which is shown to be worth to be exploited in order to obtain
better approximations. Therefore we take advantage of the results of Chapter I.

This chapter starts with a short introduction on scattered data approximation, which
also contains the link to our method. Then in Section 2 our method is discussed in detail.
In Section 2.4 we present some numerical experiments and compare our method to existing
ones and in Section 2.5 we further discuss on the method, where we also present an idea
to significantly reduce the computational effort.

1 Introduction

In many fields there is a need of reconstructing a surface out of a set of scattered data points.
For instance in terrain modeling, where irregularly sampled measurements of a terrain have to
be fitted by a surface to obtain a relief map. Another important field where scattered data
reconstruction is needed is image processing, for example superresolution or inpainting, where
we present an according example in Section 2.4.

We denote the set of the scattered data sites by = := {x1,...,2,} C R% Furthermore let
s :R? — R, then we define the values at the scattered data sites to be s(x) for all x € Z. The
task of scattered data reconstruction is now to find a function f : R? — R that fits the given
data s|z := {s(z) : # € E}. Clearly, one choice is interpolation, i.e., determine an f such that
f(z) = s(x) for all x € Z. One popular ansatz to interpolate scattered data is to use radial basis
functions, where a function ¢ : R? — R is called radial if there exists a function ¢ : [0,00) — R
with the property ¢(x) = ¢(||z||2) for all # € R?, cf. [Wen05, Definition 6.15]. Thus, the values of
¢ depend only on the Euclidean distance to its origin, which explains the term radial. Standard
choices for a radial basis function are for instance the Gaussian ¢(r) = e~ for some positive
parameter ¢, the multiquadratic radial basis function ¢(r) = v/r? + ¢? with ¢ also being some
positive parameter, or the so-called thin-plate spline radial basis function which is defined by
é(z) = ||z||31og(||z||2). The radial property with respect to the Euclidean norm is very useful
in theoretical considerations, since in most cases it reduces the problem to a one-dimensional
one. For more details on radial basis functions we refer to [Buh03]. Now, to every scattered data
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site # € = one translate of the radial basis function ¢(- — z) is assigned and the interpolant is
determined by

f= wd(—a), (L1)

TEE

and by the condition f(z) = s(x) for all x € =. The uniqueness of the coefficients w, is dependent
on the radial basis function itself, where a radial basis function which ensures uniqueness is called
positive definite. For instance the Gaussian radial basis function is positive definite. However,
the multiquadratic and the thin-plate spline basis function are just conditionally positive definite,
which means that an extra polynomial term has to be added to the right hand side of (1.1) to
retain uniqueness, see, e.g., [Buh00], [Buh03] or [Wen05]. Moreover, in the 2-dimensional case the
unique interpolant f, which is obtained by thin-plate spline radial basis functions additionally
minimizes the so-called bending energy

2\ AN CIAY
w)= [f <<8m2) . <away> * (ay2> dody.
see [Duc76] or [Duc77].

In case that the given data s|z is for instance corrupted by noise or just a coarse approximation
to the data is needed, approximation in contrast to interpolation of the data is more appropriate,
i.e., determine a function f such that f(z) ~ s(z) in some sense for all z € Z. As in the
interpolation case also approximation by radial basis functions is usually considered, where for
d = 2 a popular choice is the so-called thin-plate smoothing spline (see, e.g., [Wah90, Section
2.4]) which is the solution to

min 37 (F(a) — s(2))2 + TE(f) , (1.2)
fEHQwEE
with H? being the Beppo-Levi space of functions whose partial derivatives of total order 2
are in L?(R?); for more details on H? see [Mei79]. The regularization parameter 7 in (1.2)
balances between the exact fitting and the roughness of the approximant, i.e., small 7 leads to
an approximant that fits the data s|z accurately but is probably not very smooth and vice versa.
The major drawback of approximating or interpolating scattered data by radial basis functions
is that the square matrix to be operated with is, due to the globally supported basis functions,
fully occupied and additionally badly conditioned, cf. [JSX09] and the references therein. Addi-
tionally, the size of this square matrix is also directly connected to the number of scattered data
sites #=. Thus, the approach gets computationally expensive for large sets of scattered data
sites, especially for d > 2. Hence we also follow the argumentation in [JSX09], which states that
it is worth to pursue alternative approaches. As the approach in [JSX09], which we are going
to present below in Section 2.4, also our approach on scattered data approximation, which we
introduce in Section 2.2, is based on shift invariant subspaces.

Approximation from shift invariant subspaces of L?(R9)

Another ansatz to scattered data approximation is to consider shift invariant subspaces of L2(R%).
These subspaces are determined by the closure of the integer translates of one continuous com-
pactly supported function ¢ : R* — R

S(¢) = {Z ckP(- — k) : ¢, € R with almost all ¢ =0},
kezd
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IV APPROXIMATION OF SCATTERED DATA

see, e.g., [BDR94]. Approximation from shift invariant subspaces S(¢) of L2(R¢) has two ben-
eficial properties. Firstly all is set up by just one function ¢ and secondly if ¢ is capable to
reproduce polynomials up to degree N — 1 it provides approximation order N to sufficiently
smooth functions g € L2(R?), i.e., there exists a constant C' > 0 such that
inf — <Cn¥
sant If = gllr2(a) <

for all h > 0 and S"(¢) := {f(-/h) : f € S(#)}, see [Jia98]. Special choices of h lead to spaces
S"(¢) which fit into the scheme of multiresolution analysis, see Definition I11.2.2. Thus, a natural
approach is to find an f € V; that fits the scattered data in the least square sense, i.e.,

min Z(f(m) —s(2))*> = min Z ( Z crkbir(z) — s(x))2 . (1.3)

(CJ,k)kede = i

re= [SS

Usually the domain © C R? on which the scattered data is located and on which the approxi-
mation is determined is bounded. Therefore we denote by

Q= {k €Z:supp ¢ 5 NQ # 0}

the set of indices k for which ¢ has influence on 2. Furthermore, we denote the space which
is spanned by these functions by

VJ(Q) = { Z CL],]C¢J’]C(' — k) 1CIk € R} .

ke

Hence, for bounded domains € equation (1.3) then becomes

min Y (@) - s@)P= min (X e @) (1)

fev;(Q) (crk)keny haper

TEE keQ s
which can be written in matrix vector form, if we define Q; =: {k1,..., kgq,}, as
min ||Ajc; —s|2 =
CJ
2
Gk (T1) o Pakga, (@) [ cur, s(z1) (1.5)
(o, 0D : : 2 Bl
CJIk)keQ,
’ ¢J,k1 (mn) T d)J,k#QJ (xn) Clkga, S(mn) 9
Thus an approximant f to the scattered data s|g on £ can be obtained by
flz) = Z chrpar(x) foral xe, (1.6)
keEQ
with ¢% := argming, ||[Ajc; — s|2. In the following, bold symbols can denote sequences or

vectors, the case gets clear from the context.

For the one-dimensional case this is basically done in [FE98], where J is chosen to be the
smallest J for which the matrix A; is overdetermined and has a good condition number. The
approach from [FE98] is extended to the two-dimensional case in [NM99] by using tensor wavelets.
However, the approach in [NM99] is limited to scattered data that is located on sublattices, i.e.,
the data cannot be scattered arbitrarily on @ C Z2?. In [BLCO04] the approach of [NM99] is
explained in terms of the lifting scheme but suffers like the approach [NM99] from the fact that
the data cannot be scattered arbitrarily.
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

Remark 1.1 Note that all approaches which are based on generators ¢ that are implicitly
defined by the refinement equation (II1.2.2) are limited to scaled subsets of Z, i.e., on ) C 7Z%
for some T > 0. This is because the evaluation of ¢ is just possible at dyadic points. However
fast evaluation is possible by applying the cascade algorithm.

A method on scattered data approximation which is also based on shift invariant spaces can
be found in [JSX09]. This approach also minimizes the regularized least squares problem (1.2),
but with a shift invariant subspace S"(¢) instead of the Beppo-Levi space H2. We discuss the
method from [JSX09] in more detail in Section 2.4, where we also sketch the ansatz from [CKO05]
which is also basically based on shift invariant spaces.

In the next section we introduce a method to approximate scattered data which is based
on the lifting scheme and therefore also implicitly on shift invariant subspaces. Moreover, we
reveal that we can exploit properties of the matrix A; from equation (1.5) to obtain better
approximants to the data s|z. For this we take advantage of the results from Chapter I.

2 Approximation of scattered data using the lifting scheme

In this section we introduce a method to approximate scattered data points by the lifting scheme.
Using the lifting scheme makes it necessary to consider 2 as a bounded subset of Z¢ (cf. Remark
1.1) in which case it holds that Qy = . Clearly in later applications {2y can be treated as a
scaled subset of Z?, i.e., Q C 7Z¢ for some 7 > 0, which implies Q¢ = 7.

So from now on let Qg C Z? be bounded. Then equation (1.6) can be expressed in terms of
the lifting scheme as it is depicted in Figure 2.1. Note that the filter U is not needed here, this
also gets clear when considering again equation (II1.3.15).

¢]

<

N
®

({7 7] © () ‘
(i0) 7] D— 1
o

Figure 2.1: J connected synthesis parts of the lifting scheme without filter U

With Figure 2.1 in mind, it can quite intuitively be seen that approximating scattered data using
the lifting scheme basically consists of four steps, namely:

1. Determine €y from €y and the filter P.

2. Determine the relationship between (cjj)req, and the scattered data s|z, i.e., set up
the matrix Aj.

3. Solve the least squares problem c¢* = argmine, ||Ajcs — s]|o.
4. Apply ¢’ to J connected synthesis parts of the lifting scheme and obtain the approx-

imation f, see Figure 2.1.
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IV APPROXIMATION OF SCATTERED DATA

In Section 2.1 we present a didactive and concrete example, explaining what the four steps
look like in the 1-dimensional case. In Section 2.2 we explicitly explain the steps 1, 2 and 4 for
arbitrary dimension d, whereas in Section 2.3 we discuss in detail step 3, i.e., how to solve the
least squares problem ming, ||Ascs — s||3 properly, by exploiting properties of the matrix A ;.

2.1 Example of the approach for d =1

This section is thought as a didactic, less mathematical, presentation of the approach to approx-
imate scattered data by using the lifting scheme in the case d = 1. It is not necessarily required
to read this section, but it might serve for a better understanding.

The filter P we use in this example is of the form

P(z) = po1zt +po2’ +piz !,

with p_1,po,p1 € R. Recall from Section III1.3.1 that upsampling of a sequence x = (zk)kez in

1d is defined as
T2 if k}/2 S/
2 = .
((12)0), {0 L

In this example we assume J =1 and Qg := {1,2,3,4,5,6}.

Step 1 — Determine (2; from 0y and the filter P

We use Figure 2.2 to explain how to determine €y from Qg and the filter P. We start at the
right side (2), with the grid Qo = {1,2,3,4,5,6} of an arbitrary signal (zy)req,. Then, we
investigate which elements on the left side (d) have an influence on elements located at g (2),
i.e., on (zk)keq,. Therefore we first consider the upper path of the synthesis part, where we
can say that due to upsampling only elements on the positions 1, 2 and 3 have an influence
(). Secondly, on the lower path, due to shifting and downsampling, elements on 0, 1 and 2 (c)
are influencing elements located at €)y. Since we know the structure of the filter P we see that
the elements positioned at —1,0,1,2,3 have an influence on the elements located at 0,1,2 (c).
Summing up, signals (cx)req, at @ with Qq := {-1,0,1,2,3} have an influence on (2g)req, @-.

®
1 2 3
o o o

(=)

@
-1 01 2 3
o o o o o

()
N,

(2| ¢

o O O
01 2
©

Figure 2.2: Sketch of how to obtain ; from Qg
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

Step 2 — Determine the matrix A;

Let ¢1 := (ck)keq, be an arbitrary signal. In this paragraph we determine the relationship
between c; and the result after applying it to the synthesis part of the lifting scheme. To explain
this in an easy manner we use Figure 2.3.

©
-1 0 1 2 3
C_1 Cy C1 Cy C3

©

1 2 3 4 5 6

P <+>—' by ¢t b1 ¢ by 3

___________________________________________

Figure 2.3: Influence of (¢x)keq, on (fi)reqo

At (e) the signal c; is depicted and at () the action of the filter P to c; is presented. The
stars * there have to be defined by boundary conditions, for instance zero-padding. But we do
not need them at all. This is because on (c) we saw that only elements positioned at 0,1,2 are
influencing the elements on )y, and as one can see in (f) at 0,1,2 no boundary conditions are
needed. Hence, the result restricted to 2y obtained by applying (ck)keq, to the synthesis part
of the lifting scheme is (g)

(fr)reqo := (bo,c1,b1,c2,b2,c3) .

So, we can completely describe (fx)req, by the filter coefficients (p_1,po,p1) and the signal
(ck)ren,

p1 po p-1 O 0 . bo
0 0 1 0 0 6*1 e
0O pr po p-1 O o1 |k
00 0 1 0 Zl el (21)
0 0 pi po pa CQ by
0 0 0 0 1 3 3

Let s(z) with z € 2 := {1,4,5} be the scattered data located at €, then the idea is to choose
c; such that the scattered data is approximated in a least square sense by (fx)xez, i.e., we need
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to solve the least squares problem

C_1
pr po p-1 0 0 co s(1)
c¢j:=argmin| [0 0 0 1 0 a | —|s(4) , (2.2)
! 0 0 p1 po p-1] | ce s(5)
cs

where the matrix just consists of the rows 1,4, 5 of the matrix from equation (2.1).

Step 3 — Solve the least squares problem (2.2), i.e., determine c}
Step 4 — Compute the approximant to the scattered data

The approximation on whole €2 is then obtained either by multiplying ci to the matrix from
equation (2.1), or by just applying ¢} to the synthesis part of the lifting scheme and taking
into account only the signal coefficients that are located at 9. How to solve the least squares
problem properly is discussed below in Section 2.3.

Remark 2.1 In this particular example the signal at (d) is only 1 element shorter than the
desired signal. This is due to the short length of Q. If one takes a larger grid this changes and
the signal at (d) is about half the size of )y. Furthermore, we considered only one synthesis part,
later we use J connected synthesis parts, as it is indicated in Figure 2.1.

2.2 The approach for arbitrary d

As stated above, the approach of approximating scattered data consists of four steps. In this
section we explicitly explain Steps 1, 2 and 4, whereas the discussion of Step 3 is postponed for
a better clarity to Section 2.3.

Step 1 — Determine (2; from )y and filter P

The first step in our approach is to determine € from g and the filter P. Therefore we first
explain how to obtain €; from Q;_; and P for an arbitrary j € Z,. If this is clear one just
iterates through 7 € 1:J and so obtains subsequently 1 starting from £2g. We use Figure 2.4
to sketch how §2; is obtained from ©;_; and P. Similarly to Section II1.3.2 we denote elements
using the upper path even and the ones using the lower path odd. Hence, the sets Q5] and

Q?i‘i depicted in Figure 2.4 are equal to
QY ={D 'k:keQ;_1,D ke

and
QY ={DNk—t1):keQ_1,D 'k ¢ 2} .

Let P be an arbitrary Neville filter of a certain order N and shift D~ 1¢;:

P(z) = Zpiz_i

il
with I C Z% finite. Then, we can describe the set Q; by

Q; ={k—i:kecQ,ic Uy

7—1 7—1

(6]
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and thus starting from y we can determine 2 ; iteratively.

even

Q; Zh

N\
P G—)—’ Qj—l

ONE

dd
Qodd
Figure 2.4: Sketch of how to obtain §2; from €;_;

Step 2 — Setting up the least squares problem

Let ¢y := (cjk)keq, be an arbitrary signal and let (fx)geze denote the result of ¢ applied to J
connected synthesis parts of the lifting scheme, where we are just interested in f := (fx)req, —
the restriction of the result to Q4. There are different ways to determine the relationship between
cy and f. One is to consider the signal (J;)reza, defined as

5k:{1 ifk=0 |

0 else

and to apply its translates (;_x);czqe for all £ € Q; to J connected synthesis parts of the lifting
scheme. Let (®;x(1));cze denote the result for each k € Q. Then for each | € Qg

D rr(l)

describes the relationship of ¢ to a single element f;. Thus it holds that

fi=Y con®ynr(l) forall l1eQq.
keQy

As above let = =: {z1,...,z,} denote the location of the scattered data sites, with E C Q. The
values of the scattered data are given by s|z. To determine an approximant to the scattered data
we solve a least squares problem, which, if we define Q; =: {k1,...,kxq,}, can be written as

min [|Ajc; — s||g ,
cs

with Ay(I,m) := @k, (Tm), cs(l) :== cyr, and s(m) := s(x,,) for I € 1:#0Q,; and m € L:n.

Remark 2.2 Note that it is sufficient to apply just the sequence (0y)peze to J connected syn-
thesis parts of the lifting scheme to determine the matrix A ;. This is because

®yp(l) =®;0(l—D'k) forall keQy and 1€ Qy,
which holds because of the following lemma.

Lemma 2.3 Let x = (2f)geze be an arbitrary sequence. Denote by (yr)neze the result of
applying x to the upper input of a synthesis part of the lifting scheme. Then it holds that applying
the shifted sequence (Tj4¢)peze with t € Z¢ yields the same but shifted result (Y4 pt)peze-
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IV APPROXIMATION OF SCATTERED DATA

Proof. Applying x to the upper input of the synthesis part of the lifting scheme reads

Wlkezs = ((1D) + (E)(1D)P) (@x)pezs

— (1D)(wr)kezs + (1) (1D) Pwr)pezs

%
= (1D)(@rneze + (EAD) (D prcamn) -
lezd
Hence
- if D'k e 74
yk = :I:D lk ! . (2.3)
Y 1czd PD1(k—t1)—1T1  else
Applying (2g4t)reze to the upper input of the synthesis part of the lifting scheme yields
%
(zi)kezs = (TD)(Th+t)reza + (1) (1D)P(ktt)keza
where (P(zi4+);ez4)k 18 equal to
Z Pr—1Z1+t = Z Pk+t—121
lezd lezd
by index shift. Thus
mD*1k+t lf D_lk S Zd
ZE = .
ZleZdPDfl(k—tl)H—lxl else
Hence Zk = Yk+Dt- O

Remark 2.4 Remember that applying (0)reza to the upper input of the synthesis part of the
lifting scheme is the same as applying (0 )reza to the upper input of the standard two-channel
filter bank when we exploit equation (II1.3.15). Hence our procedure of applying (0y)ieze to J
connected synthesis parts of the lifting scheme is the same as applying the cascade algorithm
(see again equation (II1.2.12)) J times for some initial ¢, satisfying

Y ¢o(x—k)=1 with zecR?
kezd

and ¢o(k) = 6 for all k € Z2. If the filter coefficients of the filter P induce over (II1.3.15) and
(II1.2.11) a Riesz basis, then the cascade algorithm converges, see again Section II1.2.2. Denote
the limit by ¢, then due to the interpolating property of the lifting scheme (2.3) ® ;¢ is the exact
evaluation of $(D~7-) on Z4, i.e.,

®yo(k)=o¢(Dk) VkeZ®.
Step 3 — Solving the corresponding least squares problem

How to obtain an appropriate solution

¢y :=argmin||Aycs; — s||2
CcJ
to the least squares problem is subject of Section 2.3 below.
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

Step 4 — Compute the approximant to the scattered data

With the solution ¢ to the least squares problem the approximant f = (f)req, to the scattered
data can be obtained in two different ways. Either by applying ¢’ to the J connected synthesis
parts, where after each synthesis part j = J —1,J —2,...,0 we restrict the result to the set £2;,
or by

fi="Y" cox®ynr(l) forall 1e€Qq.
keQy

2.3 Solving the corresponding least squares problem

In this section we discuss the solution of the least squares problem

min [|Ascy —s|3 . (2.4)
cJ

Before we continue we want to highlight two important things. Firstly that the matrix A; has
a special property, namely

AjBE, =E, with E,=[1,---,1]T ¢R" (2.5)

and secondly that the result of a sequence (zy)peze, which is applied to the upper input of J
connected synthesis parts of the lifting scheme, is constantly 1 if and only if the sequence (x)peza
is constantly equal to 1 itself. We start by verifying the property (2.5) by proofing the following
proposition. In the subsequent Proposition 2.8 we prove the second statement.

Proposition 2.5 Consider the synthesis part of the lifting scheme with P being an arbitrary
Neville filter of some order N > 1 and shift 7. Let (g x(1));ez¢ := (81— )icze and apply for all
k € Z¢ these sequences to the upper input of J connected synthesis parts of the lifting scheme.
Thus the result (®5(1));eza for all k € Z? is obtained by the recursion over j € 0:(J — 1)

(@160 eze = (D) + (E)ADIP) (@541 ez (2.6)
cf. Figure 2.1. Then

> @uu(l)=1 forall 1€z andall J>0.
kezd

Proof. The proof is by induction on J, where the case J = 0 directly holds because of the
assumption (Po x(1))icze = (di—k)icza-
By equation (2.6) it holds that

(@410 g0 =(1D) (1)) s + () (TD)P (@14(1)); ez
%

=(1D) (®1(1));cza + (tl)(TD)( > pzfmfIn,k(m))leZd '

mezZd
Thus it holds that

a®y(D7H if D-'1ez?
Z Pyi1k(l) = {Zkezi 7 ) :

kezd ZkeZd ZmEZd pD*I(l—h)—mq)J,k(m) else
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IV APPROXIMATION OF SCATTERED DATA

For the first case it holds that ), ;. ® (D7) = 1, by induction hypothesis. For the second
case the following applies

Z Z PD-1(1—t)—-mPrr(m) = Z PD-1(1—t,)—m Z @y x(m) ,

kEZI meZa mezZ kezd

which by induction hypothesis is equal to

Z PD-1(i—ty)—m >

mezd
which in turn by Remark I11.4.2 is equal to 1. O
Remark 2.6 By Lemma 2.3 it holds that

(@1(1)1eza = (®s0(l — Dk))

and thus
Y @50(0-D'k)=1 forall lez'.
kezd

Remark 2.7 Note that in Proposition 2.5 it is sufficient to consider P to be a FIR-Filter whose
coefficients sum up to 1.

Proposition 2.8 Let (zy)rpeze be a sequence and denote the result of this sequence applied
to the upper input of J connected synthesis parts of the lifting scheme by (yi)ieze. Denote a
sequence which is constantly equal to 1 by (ex)eze. Then

(T )keze = (ex)keze = (Uk)rezs = (€x)pezd -

Proof. Let (zx)peze = (ex)pezd, then for arbitrary [ € Z4

Y = Z Ik(I)J,k(l) = Z (I)J,k(l) =1

kezd keZa

by Proposition 2.5.
Now, let y, = 1 for all k € Z?. Because of the interpolating property of the lifting scheme
(cf. equation (2.3)) it holds that
Ypig = Tk -

Hence zj, = 1 for all k € Z¢. O

Thus by Proposition 2.5 it follows that A;E, = E,,. Now, assume that the scattered data
has constant value, i.e., s(z) = ¢ for some ¢ € R and all € Z. Then the corresponding least
squares problem is of the form

rr&i}n lAscs — cEnl3 . (2.7)

Evidently, it would be natural that the approximation to this constant data is also constantly
equal to ¢. By Proposition 2.5 and 2.8 this is the case if and only if the solution to the least
squares problem (2.7) equals ¢; = cE,,. Now the results of Chapter I come into play, because
the solution c; = cE, is obtainable either by all {1, 3}-inverses A" that satisfy Problem 1.3.1
with B, € R(Y), i.e., all A% with

Als = argmin | Ajc; — sz and A%E,, = A%(A;E,) = E, ,
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

or by all Tikhonov regularizations

ngin |Ascs —s|3+ 72| Tc,|3 .

with 7 > 0 and a regularization matrix T that satisfies £, € M (T) and N(A) N N(T) = {0},
cf. Problem I.4.1 and Proposition 1.4.2.

As we point out in the following two examples, the Moore—Penrose inverse does not necessarily
satisfy Problem 1.3.1. Additionally we learn that the use of the corresponding minimal norm
solution can yield bad effects on the obtained approximation near the boundary of €.
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IV APPROXIMATION OF SCATTERED DATA

Example 1: Approximation of constant data using the minimal norm solution

In the following example we choose Qy = {1:121 x 1:121} and J = 6. The filter P is chosen
to be the Neville filter of order 4 derived in Chapter III, see Figure II1.4.2. The purpose is to
approximate scattered data that has constant value 1. We begin with two different distributions
of points. In the first case we choose

Ei={r=(z1,72) €Q:21=1mod 6 and z3 =1 mod 6},

i.e., the points = € )y that are equidistantly distributed with distance 6 in each direction. Hence
m = #=1 = 441. In the second case we sample randomly 441 points from a uniform distribution
on {2y and denote this set of points by Z5. Let s : 29 — R with s = 1. To each set of the scattered
data points we apply now the algorithm presented in Section 2.2, where we use the minimal norm
solution to the corresponding least squares problem (2.7), with ¢ = 1. In Figure 2.5 we present
the result, where in Figure 2.5a the relative error between s|q, and the approximation f; to the
data s|z, is plotted. Similarly, in Figure 2.5b we depict the relative error between s|q, and the
approximation f5 to the data s|=,. In both plots the location of the scattered data sites, i.e., Z;
and =, respectively, is depicted by white dots. What can be seen in both cases is that in the
middle of the domain 2y the relative error is very small, but near the boundary it gets larger.
The maximal relative error when approximating the equidistantly distributed data is around
2% and for the randomly distributed points around 10%. Since the matrix Ay differs for each
different set of scattered data sites =, we write in this paragraph A ;= for a better distinction.

= =
N N
o

97

73

49

25

(a) Relative error between s|q, and f; (b) Relative error between s|o, and f>

Figure 2.5: Approximation of scattered data s|z, and s|z, using the minimal norm solution

Naturally, the question arises why the minimal norm solution is not a good choice and why
the effects are dominant at the boundary of the approximation. We answer the question by
Figure 2.6. There in 2.6a the minimal norm solution c% = A3,515|El to the least squares prob-
lem ming, ||Asz,¢5 — En|3 is plotted, where the coefficients of ¢* have been rearranged in an
ascending order. The first thing we notice is that c% is not constantly equal to 1. Thus by
Proposition 2.8 the approximation cannot be constantly equal to ¢ = 1. Recall that for each
k € Qj the coefficient C},k describes the influence of one single basis function ®;; to the ap-
proximation, cf. Section 2.2 Step 2. In Figure 2.6b we mark the center of each basis function
® i, ie., the point D{k, by a '+’ sign where the color equals the color of its corresponding
weight ¢ from 2.6a. Thus in Figure 2.6b all basis functions that have an influence on values
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

located at )y are represented. Moreover, in 2.6b the domain )y is indicated by a gray box.
This makes clear which basis functions have its center inside or outside of 2y. The problem with
the Moore—Penrose inverse within this approach is that it determines the solution to the least
squares problem which has minimal norm. Because of the fast decay of the basis functions (see
again Figure I11.4.2) it is natural that the weights of the functions that have barely influence on
values at 2y get small values or are set to 0. This is compensated by weighting up other, but
much fewer, functions. That circumstance can be well observed in Figure 2.6, where blue points
outnumber red points by far. This explains why using the minimal norm solution results in the
bad effects near the boundary of the approximations depicted in Figure 2.5. In Figure 2.7 we
also provide the solution of the least squares problem ming, ||ATLEQC 7 — En |3 with respect to 2o
and the presentation of the weights of the corresponding basis functions.

o 3 B A
. B e e i i e R e
2 o B R T T T A e e T S A S S S S
8 § 4 + + + + -+ + + +
2 p - P T I T S A A
P R o T I T S A
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R i e T S S
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o R R I e e S S A A
§ B I T A S e
2 4 — A R A T T o T T T e SR R
+ 4+ 4+ + SRR, - - - 4
£ B I T T T e T e i e S S e e e o T e
I R T e T i A A i
§ ++ B I i
0 + 4+ B S S A A e i it At SR R SR
e 4 B T I I S S T T
T T T T T T T T T T T T T T
0 100 200 300 400 500 -32 -8 16 40 64 88 112 136
0]
(a) cy = AB,EI E,, in ascending order (b) Center of basis functions {D{z : = € Qs}
Figure 2.6: Solution to the least squares problem mine, ||Asz,¢; — En||3
w0 | . 3 R
- P
o B T T T T
; R++++++++++++++++++++++++
¢ P o T I S A A
é P R o T I T S A
S+ g4+ +++ P R - -+
B T T T T e S S
R T T I T e T T e o T S S
uF ki N+ ++++++++++++++++++++++
= B T T T i e e e S e e e S
= | 2 Py w4y §F N e
< ° H L R T i T e i S S S S
. R R T e e e A e A A AR
§ R I T e A A
g e Tt T S S S S S S S oS S S
H B A
24 f—j T i e e T S S A
H LI R
B B i e e S
° B T T e It T 2 A S a ot S S
° 4 R i i e S
T T T T T T T T T T T T T T
0 100 200 300 400 500 -32 -8 16 40 64 88 112 136
20
(a) cy = ATJ,E2 E,, in ascending order (b) Center of basis functions {D{z : x € Qs}

Figure 2.7: Solution to the least squares problem mine, ||Az,¢s — En||3
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IV APPROXIMATION OF SCATTERED DATA

The effects at the boundary of the approximation become even worse when there is fewer
data to approximate near the boundary as we depict in the following Figure 2.8 and 2.9, where
=3 is a set of 300 random points sampled uniformly from €. Consider for instance the upper
right corner of Figure 2.8. There no data to approximate are present and the relative error of
the approximation is up to 150%. The reason for this can also be seen in Figure 2.9, where again
the influence of each basis function is depicted.

Figure 2.8: Relative error between s|q, and the approximation based on s|z,
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Figure 2.9: Solution to the least squares problem mine, [|Ajz ¢/ — 8|z, |3

Clearly, by construction, all solutions A?E,, with A? satisfying Problem 1.3.1 with Y = E,,
yield an exact solution to all sets of constant valued scattered data sites. Of course also all
Tikhonov regularizations with F,, € N(T") and N (T) NN (A) = {0} do, see Section I.4.
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

Example 2: Approximation of random samples from Franke’s function using different
solutions to the least squares problem

In the last preceding paragraph we saw that the use of the minimal norm solution within our
approach does not guarantee exact approximation of constant valued scattered data. Moreover,
we noticed that the effects or errors get dominant at the boundary of the approximant. In this
paragraph we consider as scattered data random samples from a test function, which is choosen
to be Franke’s function [Fra79]. It is defined as a weighted sum of 4 exponentials

franke(z,y) = Se—(Or=2+Ou=2%)/a 4 3 ~((92+1))/49-(9y+1)/10

1
L o—ta-n2roy-3%)/a _ L —02-02—(0y-7y?
2

and it is a standard choice for benchmarks on scattered data approximation. In this example the
set = of scattered data sites consists of 400 uniformly sampled random points from € := {1:201 x
1:201}. The location of these sites is indicated within Figure 2.10 as white dots. In the subsequent
paragraphs we compare approximations obtained from different solutions or regularizations to
the least squares problem

min|4se; —sl=[3 (2.8)

where we consider:

a) the minimal norm solution, b) (A J)((fgjs, c) (A J)%:gls, d)+e) two different regular-
izations using a discrete Laplacian as regularization matrix. We compute all solutions iteratively,
where we use in all cases the GCV-method to compute the regularization parameter 7, see again
Section 1.2.2 and 1.3.2. To better point out the differences between the different solutions we
emphasize the effects near the boundary by adding a value of 30 to Franke’s function, see Figure
2.10. The impact of the shift becomes clear in the example.

31.2—| 312

Figure 2.10: Franke’s function on [0,1]? shifted by 30 in z-direction and the corresponding
evaluation at Q¢ with z = (k; — 1)/200 and y = (ke — 1)/200. White dots indicate Z.

Below we discuss the different solutions to the cases a)-e). This is followed by Table 2.1,
where the plots which correspond to the different results are depicted. For a better comparison
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IV APPROXIMATION OF SCATTERED DATA

of the different solutions we place all plots together in just one table, where each row of Table
2.1 is devoted to one case. Furthermore, the table consists of three columns, where in the first
column the solutions or regularizations to the least squares problem (2.8) are presented. The
white crosses x inside these figures mark the components of the solution whose corresponding
basis functions have its center inside €.

In the second column of Table 2.1 the approximations which correspond to the solutions of
the first column are depicted.

All figures in column one and two use the same coloring. Note that the values at the legend
of the plots in the first column are linear between two labels but not overall.

The last column of the table contains the relative error plots, i.e., the relative error between
Franke’s function shifted by 30 and the approximation. Also, all error plots have the same scale,
where for clarity we set all values that are smaller than 1075 to 1072.

a) The minimal norm solution: As in the previous example, where we approximated constant
valued scattered data, the minimal norm solution to (2.8) does not yield a good approximation.
The argumentation for that reason stays also the same: The weights of the basis function whose
center lie inside Qg have acceptable values (marked by white x). But the weights of the basis
functions which have small influence to values located at g can be found to be small or even 0,
due to the fact that the 2-norm of the solution tends to be minimized. This in turn is compen-
sated by a few components of the solution with higher values, which then results in the effects
near the boundary. These effects can be well observed in the figures which are presented in the
first row of Table 2.1.

b) Choosing [(A )( ; )s} as solution to (2.8): In Section 1.5 we stated that (A )(1§)s is the

same as firstly computing the minimal norm solution to

min ||Ayz — (s — ELs/m)||3 (2.9)

and adding F,Els/m to the solution afterwards, where m = #Z and n = #Q;. In words,
we substract the mean of s from s, then compute the corresponding minimal norm solution
and finally add the mean of s to the result again. This already explains why in this case the
approximation has much less effects near the boundary: After subtracting the mean of s the
minimal norm solution to (2.9) is indeed still zero at the boundary of §;, but zero is now the
mean of s — ELs/m. Hence the minimal norm solution to (2.9) does not possess such huge
compensations as the minimal norm solution in the standard case (2.8) does. This can also be
well seen in the corresponding figures in Table 2.1. Note, because of adding again the mean of s
to the minimal norm solution of (2.9), the overall solution (AJ)( 3)5 near the boundary of Q is
equal to the mean of s. This is because of the following:

Remark 2.9 The lifting scheme is invariant under constant manipulation, i.e.,
Z crr®rr(l) = fi
ke
implies
Z (cor+B)Psk(l) = fi+ B,
keQy
for all | € Qg and an arbitrary € R. Evidently, this holds because of Proposition 2.5:

S (ear+B)Pukl) = Y ean@anl)+8 Y Cui(l) = fi+8.

ke ke keQy
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c) Choosing [(Aj)gég)ns} as solution to (2.8): In Section 1.5 we already mentioned that

(A J)%,’]?ns can be seen as the limit 7 — 0 of the following regularization

. 2, 2 2 En By
min ||Ajcy —s||3 + 7°||Tcs|l5 with T'=1— , (2.10)
CcJ n

see also Corollary 1.3.17. Since 1|Tc;||3 is equal to the variance of the components of c;, the
regularization (2.10) balances the solution by keeping the variance of its components small. This
can be seen in row c¢) of Table 2.1 where the solution to (2.10) has the same value at the boundary
of Q; as the mean of the complete solution. This also explains why there are on the one hand
almost no differences to the case b) above and on the other hand that there are few effects near

the boundary of the approximation.

d) Regularization with T as discrete Laplace operator and FE, € N (T) : In this case
we use a Tikhonov regularization to the least squares problem (2.8), with the discrete Laplace
operator as regularization matrix 7". Choosing a Laplacian within a Tikhonov regularization is a
common choice in two-dimensional smoothing and image restoration, see [Jen06, Chapter 5] and
the references therein. Here, we choose the discrete Laplace operator with homogenous Neumann
boundary conditions. Thus T = (T} 1)k,ieq, with

-1 it lelU(k)
Ty = #UKk) if 1=k where U(k):={leQy:|l—kl2=1}. (2.11)

0 else

Homogeneous Neumann boundary conditions mean that we have a free boundary, which can
be observed very well at the corresponding figure in Table 2.1. A further advantage of the
discrete Laplacian with homogenous boundary conditions is, besides its simplicity, the prop-
erty N(T) = R(E,). On the one hand this property ensures that constant valued scattered
data is approximated exactly, see Proposition 2.8 and [.4.2. On the other hand because of
N(T)NN(A) = {0} it ensures the uniqueness of the solution, see equation (2.5) and Section
[.2.2.

e) Regularization with T as discrete Laplace operator and F,, ¢ N(T) : This last case
is to demonstrate that it is crucial to have E,, € N(T). We choose T = (T} 1)k, icq, here slightly
different than in d), namely as discrete Laplace operator with homogenous Dirichlet boundary
condition

-1 if [eU(k)
Tk,l =44 if =k with Z/{(k) = {l ey ||l — k”g = 1} . (212)
0 else

Hence E,, ¢ N(T) = {0} and the so regularized solution to (2.8) smoothly tends to 0 as it
approaches the boundary of €y, see the corresponding figure in Table 2.1. Forcing the solution
to be 0 outside the boundary of ; also explains the effects at the boundary of ¢ of the
corresponding approximation.
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Solution to Ls.p. (2.8) Corresp. approximation Relative error

15

a) Minimal norm

1,3)

b) (A

S

)

1,3
En

) (AnN¢

Disc. Lapl. op. T'
with E,, € N(T)

15

d)

10

Disc. Lapl. op. T
with E, ¢ N(T)

)

e

200

Table 2.1: Different solutions to the least squares problem and its corresponding approximations
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Summarizing the different results from Table 2.1, we can easily state that in this particular
example the use of the regularization with T" chosen as discrete version of the Laplacian with free
boundary delivered the best approximation to the scattered data among the different cases a)-e).
The difference between the two approximations which are obtained by using A((fgis and A,(Cl}? is
marginal. Moreover, in the interior of )y the relative error between Franke’s function and these
approximations is approximately the same as the relative error between Franke’s function and
the approximation obtained with the Laplacian d). Only at the boundary there are some small
effects, where the location of these effects corresponds to the places where few or none scattered
data is available.

Below in Section 2.5 we put focus on the choice of J and the regularization to the least
squares problem. Furthermore, we give a short note on the computational complexity, where we
also introduce an approach to significantly reduce the numerical effort. Before that, we present

the results of some more numerical experiments and compare our method to other, existing ones.

2.4 Numerical experiments

In this section we present some numerical experiments. We start by comparing our method
to the approaches from [JSX09] and [CK05]. Then we present an inpainting example, where
we restore an image from randomly sampled scattered data. In all experiments we use the
regularization to the least squares problem with the discrete Laplace operator with homogenous
Neumann boundary conditions as regularization matrix and the GCV-method to determine the
regularization parameter 7.

Comparison of our method to [JSX09]

The approach to approximate scattered data in [JSX09] is, like our approach, also based on shift
invariant spaces. In [JSX09] the method is designed for arbitrary dimension d and numerical
experiments in the 1- and 2-dimensional case are presented on = [0,1] or Q = [0, 1]?, respec-
tively. In this paragraph we briefly explain the method from [JSX09] in the 2-dimensional case
and compare benchmark results from [JSX09] to the results obtained by our method which we
introduced in Section 2.2.

In [JSX09] the generator ¢ for the shift invariant space S(¢) is chosen as the tensor product
of a cubic uniform B-spline, for more details on splines see, e.g., the classical book [Boo78]. Let

S"(¢,Q) = {Z ckd(-/h—k) : ¢, =0 whenever supp¢(-/h—k)NQ =0},
kezd

which is the analog to the set V() defined in Section 1. Then, the scattered data s|z is
approximated by the solution of

min > (f(x) — s(x))® + TE(f) - (2.13)

fest(.2) £

Thus, a regularized least squares problem is solved that also restricts the roughness of the solu-
tion. In [JSX09] the parameter 7 is also determined by the GCV-method. The coefficients ¢, of
the approximant

f=> cxd(-/h—k)
k
are determined by solving a linear system of the form

(ATA+7G)c = ATs | (2.14)
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which stems from (2.13), using a conjugate gradient method. In [JSX09] it is suggested that
for a faster convergence of the conjugate gradient method the solution should be determined
in the wavelet domain. For this reason the method is called WAVE, for more details we refer
to [JSX09]. In Section 2.5 we present a different approach to yield faster convergence of the
conjugate gradient method.

In the 2-dimensional numerical experiments in [JSX09] three test functions

g1(z,y) = (—20.25(x — 0.5)% + (y — 0.5)%)/3
_ 1.25 4 cos(5.4y)

92(z,y) = 61+ (32— 1)?)

g3(x,y) = franke(z, y)

and

are considered, where for each test function the following procedure is applied 50 times: First
a set of scattered data sites = is generated by uniformly sampling 400 random points from
Q) = [0,1]2. Then the corresponding values of the scattered data sites are disturbed by adding

Gaussian noise, i.e.,
s(z) = gi(x) +np for z €2 and 7, ~ N(0,0?) with i € {1,2,3} .

The data (E, s|z) is then subjected to approximation, where the quality of the approximation is
measured by the signal-to-noise ratio (SNR), which is defined as

o Zkex gi(k)Q
1010810 S (k) — gaR))2

where “higher” means “better”. In [JSX09] X is chosen as {55(0:200) x 555(0:200)} and the
standard deviation o; is chosen such that the SNR of the noisy samples is about 20, which implies
that o1 = 0.01, o2 = 0.015 and o3 = 0.05.

In [JSX09] the mean and the standard deviation of the SNR of the 50 different approximations
obtained by the method WAVE is presented for each test function. The results are compared
to the SNR obtained approximating the same data by thin-plate smoothing splines (TPSS,
cf. Section 1). These results are presented in Table 2.2. In the numerical experiments in [JSX09]
the scale parameter h is chosen such that the dimension of the linear system (2.14) is equal to
361 and thus close to the dimension of the system resulting from TPSS which is 400.

To make things also comparable to our method, we choose the scale parameter J in our
method as J = 8 and J = 9, which results in #Qg = 420 and #€g = 280 as system dimensions.
Furthermore, we also choose a basis function of order 4 (see again Figure 111.4.2), and Qp = X.
The results obtained by our method with these parameters can also be found in Table 2.2, where
we abbreviate our method by LIFT.

Test function || LIFT (J =8) | LIFT (J =9) | WAVE | TPSS

o Mean Std | Mean Std | Mean  Std | Mean  Std
g1 0.01 39.24 1.17 | 40.79 1.00 | 26.59 0.72 | 27.15 0.79
go 0.015 29.59 0.81 | 29.67 0.82 | 29.34 0.83 | 29.14 0.88
g3 0.05 28.34 0.79 | 28.41 0.82 | 27.70 0.79 | 28.29 0.76

Table 2.2: Mean and std. of SNRs of our method (LIFT) and the one from [JSX09] (WAVE)

What we can conclude from Table 2.2 is that for go and g3 the results obtained by all three
methods (LIFT, WAVE and TPSS) are similar. However, for g; our method yields significantly
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

better results. The reason for this could be that the design of the filters from lifting scheme is
based on polynomials and g; is itself a polynomial. Other numerical experiments (not presented
here) with scattered data sampled from polynomials also yield comparable high SNR values.
This observation is worth further research.

In [JSXO09] it is not exactly stated how the boundary is treated, but in [JSX09] it is reported
that WAVE behaves differently than TPSS near the boundary of Q. In [JSX09] it is supposed that
the reason therefore is that the smoothness penalty in TPSS is over R? while WAVE restricts the
smoothness penalty on . It could be worth to consider in [JSX09] also the smoothness penalty
on {2y as we have done it in our approach. This could also be content of further research as well
as a thorough error analysis, which is also a main contribution in [JSX09].

Comparison of our method to [CKO05]

In this paragraph we compare our method to the one from [CKO05], which also is based on
wavelets. We sketch the main idea of [CK05]: There one starts by approximating the scattered
data by a function in V; =V;_1 & W;_q, i.e., by

f= Z Ci—1,kbs-1k + Z dj—1x¥i-1k - (2.15)

keZa kezZa

Then also a regularized least squares fit to the scattered data is determined, where the corre-
sponding system which is solved by a conjugate gradient method is of the form

(ATA4+7R)d = ATs | (2.16)

with d containing the coefficients c¢y_1; and dj_1 from (2.15). The matrix R in equation
(2.16) is a differently weighted identity matrix. Thus E, is not contained in the kernel of the
space spanned by those rows of R which correspond to the scaling coefficients, which means
that for 7 > 0 the approximation is not exact for constant data on the level J. Then the
components of the solution d to (2.16) which correspond to the wavelet coefficients are tested. If
they are above a certain threshold then in the neighborhood of these coefficients the resolution
is increased, i.e., wavelets from lower levels are additionally considered, which then results in
a wavelet tree structure. The main contribution in [CKO05] is a multilevel version of the GCV-
method to determine the regularization parameters 7 efficiently for all steps inside the wavelet
tree.

In the following experiment we choose a very similar setup as in [CK05, Figure 3], i.e., the test
function from which the scattered data is generated is chosen to be three Gaussians (cf. Figure
2.11a where no explicit description of the test function is given). The scattered data sites are
not distributed uniformly over € in this example. As in [CKO05] we consider #=Z = 650 scattered
data sites. We distribute 3/4 of it uniformly on the left half of Q and 1/4 of it uniformly at the
right half of Q, see Figure 2.11b. We use the Neville filter of order 4 from Figure I11.4.2 and
J =6.
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(c) Approximation obtained by our method (d) Relative error between 2.11a and 2.11c

Figure 2.11: Approximation to non-uniformly distributed scattered data sites using our method

As we can conclude from Figure 2.11 our method is also capable to approximate scattered
data that has a non-uniform distribution. The approximation 2.11c obtained by our method
does not possess any visible effects, moreover it is hard to state a visual difference to the test
function, whereas the approximations in [CK05] do all possess clearly visible effects, especially
near the boundary (cf. [CKO05, Figure 4, 8 and 9]). In [CKO05] the quality of the approximation
is measured by

Q) = |3 () - s@))?,

TEE

with f being the approximation. In [CKO05] Q(f) is around 0.7, whereas the result of our
experiment from Figure 2.11 is Q(f) = 0.011. Even though the experiment is not exactly the
same, the difference of a factor of more than 60 and the fact that in contrast to [CKO05] there
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2 APPROXIMATION OF SCATTERED DATA USING THE LIFTING SCHEME

are no visible effects at the approximation 2.11c indicates the advantage of our method in this
particular experiment.

Remark 2.10 Note that the measure SNR used in [JSX09] is more appropriate than Q(f) since

the approximation
s(x) ifxeZ
fla) = { :

0 else

yields Q(f) = 0 but is most likely not the result one is interested in.

Small example: Application of our method to an inpainting problem

Inpainting is a standard problem in image processing, where the purpose is to reconstruct missing
or corrupted parts of an image, see, e.g., [BSCB00]. A popular class of methods to tackle
inpainting problems is total variation inpainting — short TV-inpainting. These methods usually
apply convex optimization or PDE-based diffusion algorithms, see [BHS09] for a recent approach.

In this last numerical experiment we apply our method (LIFT) to 8% uniformly sampled
pixels (3200) from a 200 x 200 part of the Lena-image. The original image and the sampled
pixels which are subjected to inpainting are shown in Figure 2.12a and 2.12b, respectively. The
result of our approach to this data is presented in Figure 2.12c, where we used the filter from
Figure 111.4.3 and J = 3. We also applied the recent PDE-based approach [BHS09] which is
available as MATLAB-code [Sch12]. The result is depicted in Figure 2.12d. For both results we
also computed the peak signal-to-noise ratio (PSNR), a standard measure in image processing,
which is defined for monochrome images as

2552
> (Z(k) = (k)2

kex

101log;

with Z being the original image with values in [0,255] on the grid X C Z? and with f being its
reconstruction. The approach [BHS09]/[Sch12] and our approach yield very similar PSNR-values
where the result obtained by [Sch12] has sharper contours while our approach is more detailed,
for instance in the proximity of the eyes and nose. This brief example demonstrates that our
method also delivers respectable results when applying it to an inpainting problem with scattered
pixels.

(a) Part of Lena-image  (b) 8% sampled pixels  (c¢) LIFT PSNR=25.01 (d) [Sch12] PSNR=25.08

Figure 2.12: Inpainting applying LIFT and [Sch12]
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2.5 More on the method

In this section we discuss more on our method, which we introduced in Section 2.2 and also
suggest at some points what can be further done in future work. Moreover, we present below an
idea to reduce the numerical effort.

On the scaling parameter J and the solution/regularization to (2.4)

Evidently, the support of the basis functions ¢ is dependent on J: when J increases then also
the support increases and vice versa. This property restricts the application of the solutions
A(()1 E‘S )s and A(1 Z) s. Consider for instance the solution A(()lE)s which is up to a shift a minimal
norm bOluthD as we have been 1n Section I.5 and 2.3. Hence, if the support of the scaling functions
is too small, the solution A07 Ens only weights those basis functions whose support intersects with
an x € = in order to keep the norm small. We demonstrate this effect in Figure 2.13a where we

approximated 100 scattered data points sampled from Franke’s function using Aélg’) s as solution

to the least squares problem. To obtain solutions AO E )s and A(1 %) s where all its components
have an influence on the approximant, one has to choose J such that the support of each basis
function has an intersection with an x € =Z. This implies that the solutions Ag;”zs and A;Cl;)
should only be applied if the scattered data is scattered uniformly, or in case that one is just
interested in a very coarse approximation. However also these solutions can yield respectable
results, as we saw in Section 2.3 and as we demonstrate in Table 2.3 below. There we present the
results of approximating the same data within the same setup as in the comparison to [JSX09]
in Section 2.4 with J = 10.

Test function H Aél};fjs Agcl g)ns
Mean Std | Mean  Std

g1 O 01 37.58 2.03 | 37.82 2.09
g2 0.015 2791 091 | 2791 0.87
g3 0.05 26.38 0.80 | 26.43 0.81

Table 2.3: Mean and std. of SNRs of our method (LIFT) using A((fg)Ls and Al(cl,%)ns

Using a regularization with the discrete Laplace operator to the least squares problem restricts
the roughness of the solution. Therefore it can also be applied in case that not every basis function
intersects with an z € =. This is indicated in Figure 2.13b, where the same data as in Figure
2.13ais approximated, but with the discrete Laplace operator as regularization matrix. Moreover,
using the discrete Laplacian as regularization matrix has the advantage that the solution is always
unique, as we stated above in Section 2.3. This is not necessarily the case when one restricts
the roughness of the approximant to Q as it is done for instance in [JSX09] and [CKO05]. There
mild conditions on the distribution of the scattered data sites and the basis functions have to be
posed to guarantee uniqueness of the solution, see [JSX09]. Applying the regularization directly
to the coefficients (cjr)req, as it is done within our approach also restricts the roughness of
the approximant because ¢, is the evaluation of the approximant at the positions | = D7k
(if I € Qp), see Remark 2.4 and equation (2.3). Hence the discrete regularization works with a
larger step-size than the step-size on )y, but I conjecture that the smoothness of the coefficients
(csk)ken, is due to the interpolating property of the lifting scheme directly connected to the
smoothness of the corresponding approximant, this has to be investigated in future research.
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31.2

ki
kq

ko kz
(a) Using (AJ)((JT}SBLS (b) Using Laplacian regularization

Figure 2.13: Two different approximations to 100 scattered data points sampled from Franke’s
function in case J =4

What about the lower input?

In our method we only consider the upper input of the J connected synthesis parts of the lifting
scheme, see Figure 2.1. Clearly, it is also possible to use some of the lower inputs. This would
then correspond to additionally determine wavelet coefficients d; ;, whose use can result in a more
detailed approximation of the scattered data. Additional consideration of the wavelet coefficients
is done in the above mentioned papers [FE98], [NM99] and [BLCO04]. Since in all these papers the
minimal norm solution to the least squares problem is used, the scale parameter J is restricted
in these methods and has to be chosen such that the scaling functions ¢ ;5 have large enough
support, see again the explanation from the last preceding paragraph. Hence the only way to
get a more detailed approximation with these methods is to use also the lower input at step J.
What actually is done in these methods, is that first an approximant f to the scattered data is
determined by the coefficients (cjx)req,. Then the difference between the approximant at the
scattered data sites with the scattered data is taken, i.e., e(x) := f(z) — s(z) for z € = and
then (dj)geq, is determined such that ||B;d; — e|z||3 gets minimized, where B describes the
influence of d; to values located at the sites Z, and Q 7 is the set of indices k such that the
support of the corresponding wavelet 1) intersects with Q.

In our case when using the regularization with T as the discrete Laplace operator (2.11)
to the least squares problem we are not limited to some J. Hence, to obtain a more detailed
approximant we can just reduce J and thus do not explicitly need to compute the wavelet
coefficients. This is because of the decomposition V;_y = V; @& W, which means that f € V;_4
can be expressed as

F=>cratsan= Y coxbsr+ > dixtrn,

kezd kezd kezd

see again Section I11.2.1 and the rest of Chapter III.
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IV APPROXIMATION OF SCATTERED DATA

In the approach of [JSX09] the complete wavelet decomposition is exploited for a faster
convergence of the conjugate gradient method. Below in this section we introduce a different
ansatz to obtain a faster convergence of the conjugate gradient method. However, additional
consideration of lower inputs within our approach could be investigated in the future.

How to handle scattered data and how to evaluate the approximant on conv(Qg) \ Qo
for d =2

Using our method to approximate scattered data requires 2 = 2y to be a bounded subset of
72, see again Remark 1.1. In most image processing applications this restriction is acceptable
since the grid 2 of some digital image is evidently a bounded subset of Z2. However in some
applications, like image superresolution, it might be useful to handle scattered data sites that
are between two points and thus not directly located at €.

Assume that g C Z? and the scale parameter J are fixed and let z € = with = C conv(£).
To set up the least squares problem we need evaluations of ®;; at « € Z for all k € ;. If
x € conv(g)\ Qo this is not possible straight away. But one can exploit Remark 2.4 and the fact
that D? = 21 (see again Figure I11.3.1) stretches by a factor of 2 in each direction. Let n € Z
then evaluation at | € conv(§2g) N27"Z? is possible via ® 2, 1 (271).

On the other hand this idea is also applicable in the case that the coefficients (cjx)req, are
already determined and one is interested to evaluate the corresponding approximant at some
x € conv(£g) \ Q.

Short note on the numerical effort

So far little energy has been spent on investigating the numerical effort of our method. Surely, the
main effort is to solve the regularized least squares problem from step 3 and the determination of
the corresponding regularization parameter 7. The detailed consideration of the computational
complexity is subject of future work. Nevertheless, we present some numbers to orientate on and
a suggestion on how to reduce the numerical effort. Therefore we consider again the setup from
Example 2 case d) in Section 2.3. We apply the routine cgs from MATLAB [MAT10] without
preconditioner and relative residual tolerance 107° to the normal equation (1.2.14) which results
from the regularized least squares problem. The cgs-routine takes 243 iterations to converge
to the solution depicted in Figure 2.14b, where white x indicate again the components of the
solution whose corresponding basis functions have its center inside €.

We introduce now an ansatz to significantly reduce the amount of iterations. We therefore
exploit — once more — the interpolating property of the lifting scheme (2.3) and thereby provide a
good initial guess to the iterative solver. The initial guess is built in the following way: For each
k € Q; the initial cjy is set to the value s(z), with € = being the scattered data site which
is closest to the point D7k within the Euclidean distance. This can be cheaply accomplished by
a nearest neighbor search. Applying this recipe results in the initial guess presented in Figure
2.14a. Evidently, this initial guess has already significant similarity to the solution displayed in
Figure 2.14b and thus it is hardly surprising that with this initial guess the cgs-routine takes only
12 iterations to converge compared to the 243 iterations in the original setting without initial
guess.
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|

10

15

(a) Initial guess cg (b) Solution cg

Figure 2.14: Determination of an initial guess exploiting the interpolating property of the lifting
scheme using nearest neighbor search — applied to the data from Example 2 d) in Section 2.3

In the following Table 2.4 we present results obtained on a 2GHz machine with 2GB of
RAM applying the cgs-routine to the same data as in Example 2 case d) in Section 2.3 for
J € {4,6,8,10}.

Scale parameter J 10 8 6 4
System dimension 208 424 1072 3232
Sparsity of sys. in % 47.8 71.2 90.0 98.3
Number of iterations

without initial guess 246 243 222 252
with initial guess 14 12 12 21

Computing time in seconds

without initial guess 0.32 0.48 3.98 30.45
with initial guess 0.04 0.04 0.26 2.73
for the initial guess <0.01 <001 =0.01 =0.03

Table 2.4: Experiment on the numerical effort applying the cgs-routine with relative residual
tolerance 106

What we can conclude from Table 2.4 is firstly that the computation of the initial guess is very
cheap, secondly the cgs-routine converges more than 10 times faster with this initial guess and
thirdly the number of iterations remains pretty much constant with increasing system dimension.

Remark 2.11 We chose here a standard MATLAB routine on the normal equations to give
numbers one can compare with. The reason why we considered the cgs-routine was because
it was the fastest within MATLAB’s standard routines in our particular examples. In Section
1.2.2 we mentioned the CGLS algorithm, which also seems preferable here, since one saves the
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IV APPROXIMATION OF SCATTERED DATA

computational effort of determining the normal equations. Finding the routine which fits best
to our method can also be seen as future research.

To determine the regularization parameter 7 with the GCV-method one has to minimize a
functional, whose evaluation costs 2 solutions to a Tikhonov regularization, see again Section
[.2.2. Finding the minium of this functional can for instance be done by a Newton-type algorithm
or the Nelder-Mead method [NM65], which is used in MATLAB’s fminsearch-routine. In most
numerical experiments that we performed a starting value of 1072 was a good initial value
from which MATLAB’s fminsearch-routine needed between 1 and 5 iterations to converge within
standard tolerances.
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Summary and Future Research

In the following list the main results of this thesis are summarized:

99

In Section 1.3, more precisely in Theorem 1.3.2, we characterize all matrices A® that satisfy
Problem 1.3.1, i.e., a special subset of {1,3}-inverses A® with partially prescribed image
spaces, i.e., all A% that satisfy A%(AY) = Y in case that A € C™*", Y € C"* and
rank AY = (.

In Theorem 1.3.5 we show that one can obtain particular generalized inverses A?, satisfying
Problem 1.3.1, that coincide with the Moore—Penrose inverse on certain subspaces of C™.
This result yields the two natural choices A%blg) and Ag}’}g% cf. (I.3.5) and (1.3.6).

In Section 1.3.2 we prove that the two choices Ag/l b3) and Ag,l ’,g) are robust in the sense of
cropping of singular values, cf. Proposition 1.3.15. Moreover we reveal how the solutions
Ag,{ bg)b and Ag, ’,g)b to the least squares problem can be efficiently computed.

In Section 1.4 we reformulate Problem 1.3.1 to the case when using Tikhonov regularizations,
see Problem 1.4.1. Moreover we prove that in the limit 7 — 0 all solutions to a Tikhonov
regularization can also be obtained by a {1, 2, 3}-inverse.

In Section I1.2.4 we introduce a new characterization of a class of correct sets, see Definition
I1.2.11 and Theorem II.2.12. Moreover, we prove that this class is more general than the
class of fully generalized principal lattices, see Theorem 11.2.13.

In Section 11.2.4 we also introduce a new and concrete recipe that yields correct sets, see
Definition I1.2.15, where we also present an alternative proof, see Theorem I1.2.17.

In Section II1.4.1 we construct a new family of Neville Filters in the two-dimensional
Quincunx case which have fewer filter coefficients than existing ones see Figure I11.4.5.
Moreover we numerically verify that all filters induce stable scaling functions.

In Theorem III.4.4 we introduce a result on a geometrical configuration, which yields many
zero filter coefficients. Exploiting this result yields a two-dimensional extension of the
one-dimensional Deslauriers—Dubuc filters, see Figure I11.4.8.

In Section IV.2.2 we introduce a method to approximate scattered data, which is based
on the lifting scheme. By Propositions IV.2.5 and IV.2.8 we prove that constant valued
scattered data is approximated exactly if and only if one uses solutions or regularizations
to the least squares problem which are based on {1, 3}-inverses or Tikhonov regularizations
satisfying Problem 1.3.1 or Problem 1.4.1 with Y = FE,,, respectively.

In Section IV.2.4 we compare our method to similar, existing, ones by performing several
numerical experiments and show that our method delivers similar or even better results.



SUMMARY AND FUTURE RESEARCH

e In Section IV.2.5 we present an idea that is based on the interpolating property of the
lifting scheme and a nearest neighbor search which significantly reduces the number of
iterations of a conjugate gradient method applied to the normal equations of the least
squares problem that has to be minimized in our approach.

We see the main potential for further research in our method to approximate scattered data,
where problems to be considered in future work could be:

e A thorough error analysis, as it is done in [JSX09], for our method. Most likely the concepts
used in [JSX09] can be applied one-to-one to our case since the theoretical background of
both methods is the same.

o Investigating if the “smoothness” of the coefficients (cjx)req, is directly connected to
the smoothness of the corresponding approximation (3_,cq, csk®sk(l))ieq,, due to the
interpolating property of the lifting scheme.

e Additional consideration of lower inputs could be investigated and whether their use results,
as in the approach of [JSX09], in a faster convergence of the conjugate gradient method.

e A detailed study on the computational complexity.
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Glossary of Notation

I:N - {1,...,N}, 23

A" — Moore-Penrose inverse of A, 6

A" — generalized inverse of A, satisfying Prob-
lem I.3.1, 13

AWdok) —an {i,4,... k}-inverse of A, 6

A{i,g,..., k} —setof all {3, j, ..., k}-inverses of
A, 6

AV 13

AT — transposed of A, 17

A* — conjugate transposed of matrix A, 6

Aly — restriction of A to U, 7

C — field of complex numbers, 6

C™*™ — gpace of m x n complex matrices, 6
cm - (mel 7

convX — convex hull of X, 95

degp — degree of a polynomial p, 28

0, — Kronecker delta, 42

O — 00k, 76

det(A) — determinant of square matrix A, 40

F — either R or C, 27
b(X) — affine hull of X, 32

I'y.q — set of multi-indices, 27

I'y,.q — set of homogenized multi-indices, 30
H* — adjoint of a filter H, 48
L(U, V) —linear transformation from U to V, 7

L?(R9) — space of square integrable functions,
39
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12(Z%) — space of square summable sequences,
41

N(0,0?) — normal distribution with standard
deviation ¢ and mean 0, 89
N (A) — kernel of A, 7

Py — orthogonal projector on U, 8
I1¢ — polynomial ring in d variables, 27

I1¢ - space of d-variate polynomials with
degp < n, 28
q(f(Z%)) - vpolynomial ¢ evaluated at

Fk)V k €74, 46

R — field of real numbers, 27

R™*™ — gpace of m X n real matrices, 12
R™ - R™*1, 25

R(A) — range of A, 7

suppf — support of function f, 32
#X — cardinality of the set X, 28

(7) — shift of a signal by ¢, 47
7T — Moore Penrose inverse of scalar 7, 6

U+ — orthogonal complement of U, 7
(1D), ({D) — up- and down-sampling with di-
lation matrix D, 46

xly — x perpendicular to y, 7
(z,y) — inner product of z and y, 7

Z — set of integers, 30
Z+ — set of nonnegative integers, 27
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