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Abstract

Cancer cell migration is an essential feature in the process of tumor spread and es-
tablishing of metastasis. It characterizes the invasion observed on the level of the cell
population, but it is also tightly connected to the events taking place on the subcel-
lular level. These are conditioning the motile and proliferative behavior of the cells,
but are also influenced by it. In this work we propose a multiscale model linking these
two levels and aiming to assess their interdependence. On the subcellular, microscopic
scale it accounts for integrin binding to soluble and insoluble components present in
the peritumoral environment, which is seen as the onset of biochemical events leading
to changes in the cell’s ability to contract and modify its shape. On the macroscale
of the cell population this leads to modifications in the diffusion and haptotaxis per-
formed by the tumor cells and implicitly to changes in the tumor environment. We
prove the (local) well posedness of our model and perform numerical simulations in
order to illustrate the model predictions.
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1 Introduction

Tumor cells are able to migrate through the surrounding tissue and degrade it on their way
toward blood vessels and distal organs where they initiate and develop further tumors, a
process known as metastasis [14]. According to the structure of the peritumoral environ-
ment, the movement of cancer cells is diffusion- or transport-dominated and also influenced
by two mechanisms: chemotaxis and haptotaxis. The former defines the cell motion in
response to a chemoattractant (or chemorepellent) concentration. As such gradients may
lack in the solution, the differences in the concentration of an adhesive molecule e.g., along
an extracellular matrix (ECM) can be relevant instead. The cells need to adhere to the
ECM fibers in order to be able to move [1], hence they will migrate from a region of low
concentration of relevant adhesive molecules to an area with a higher concentration, a
process called haptotaxis [7]. Thereby, the contact with the surrounding tissue stimulates
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the production of proteolytic enzymes (matrix degrading enzymes (MDEs) like matrix
metalloproteinases), which degrade the tissue fibers [15], thus creating interstices to be
occupied during the migration process toward neighboring blood vessels.

When characterizing tumor migration, the spatial scales of interest range from the sub-
cellular level to the macroscopic one (tissue and cell populations), while the time scales
stretch from seconds (or even shorter) at the intracellular level up to months for the dou-
bling times of tumors.

Most of the existing models for cancer invasion can be assigned to three categories:
Microscopic models are concerned with the events at the subcellular level initiating and
controling (tumor) cell migration. These processes are usually characterized with systems
of ordinary differential equations (ODEs) for the concentrations of the involved biochem-
ical substances. For instance, some of these models focus on the expression of MDEs
and proteolysis [6], whereas others emphasize cell polarization and onset of lamellipod
protrusion [24], a crucial step in integrin-mediated haptotactic motility.

In the mesoscopic framework, cell migration is characterized by Boltzmann-like kinetic
transport equations for the cell density function, in which the integral operators char-
acterize innovations of the cell velocities instead of modeling particle collisions as in gas
theory. This approach has been introduced by Othmer, Dunbar & Alt [28] in order to
provide a description of cell dispersal via velocity jump processes. It was extended e.g.,
by Hillen [17] to model the mesenchymal motion of cancer cells and the subsequent tissue
modification. Bellomo et al. [5] proposed a general framework for such kinetic models on
the mesoscopic level (also allowing for the inclusion of the “cell state” to reflect dynamics
on the microlevel) that they called the kinetic theory of active particles (KTAP).

Macroscopic descriptions can be derived from mesoscopic models by means of averaging
processes leading to evolution equations for the moments of the cell distribution function.
This was done, at least formally, in, e.g., [17] in the context of mesenchymal motion of
tumor cells, whereas rigorous results on hyperbolic and parabolic limits of kinetic equa-
tions for chemotaxis were obtained, e.g., in [8] and [29] respectively. Further models for
cell population migration that rely only on mass balance equations were proposed by An-
derson et al. [2] and Chaplain & Lolas [9], for example.

Combining two or all three of these modeling levels leads to a multiscale setting, which
has received increasing interest over the last decade. Many – in particular those involving
couplings between micro and mesoscales – align to the general KTAP by Bellomo et al. In
[32, 20, 21] multiscale models for bacterial dispersal and respectively for cancer cell migra-
tion through tissue networks have been deduced and analyzed. On the subcellular level
the latter account for integrin binding to ECM fibers or to proteolytic rests resulting from
the degradation of such fibers, whereas the behavior of individual cells on the mesoscopic
scale is described via a Boltzmann-type transport equation for the cell density function.
This in turn is further coupled with an integro-differential ODE for the ECM fiber den-
sity and a reaction-diffusion equation (RD-PDE) for the chemoattractant concentration.
Bridging the gap between the scales, the macroscopic fiber density influences the vector
field of subcellular states. A related model for glioma invasion focusing on haptotaxis and
the interaction between tumor cells and brain tissue via integrin binding on the microlevel
was studied in [12]. Due to its high dimensionality and the large differences between the
scales, the numerical handling of such a micro-meso-macro model is a challenging issue.
A way out is to use adequate scalings to obtain macroscopic limits, as in [12, 34]. An-
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other way uses a nonparametric density estimation technique from statistics to assess the
density of cells directly on the macrolevel, without needing to deduce the corresponding
reaction-diffusion (transport) equations (RD(T)-PDEs), but only relying on simulations
of the involved basic stochastic processes [30, 31, 32].

Yet another way to avoid the difficulties with the numerics of a full micro-meso-macro
model is to directly connect the microscopic and the macroscopic levels, leading to a much
simplified (but still multiscale) approach, which concentrates on the population evolution
at the macroscopic level and uses systems of RD(T)-PDEs. These are coupled with ODEs
modeling processes inside or on the surface of a cell. The coefficients in the macroscopic
formulation (for, e.g., diffusion, chemotaxis, haptotaxis) can depend in a nonlinear way
on the solutions and even on the microscale dynamics. In this work we use such an ap-
proach: motivated by the more complex micro-meso-macro setting in [20, 21] we propose
a micro-macro model for the influence of integrin binding dynamics on tumor invasion by
way of a contractivity function. The latter captures the effects of subcellular dynamics
on the ability of a cell to polarize and modify its shape by restructuring its cytoskeleton.
The integrins on the cell surface bind (reversibly) to insoluble (ECM fibers) and soluble
(proteolytic rests of ECM fibers) ligands which are present in the peritumoral environ-
ment, hence initiating a whole network of intracellular signaling cascades (see e.g., [23]
and the references therein), the outcome of which are – as already mentioned – changes
in the cell’s flexibility. These, however, are expected to need some time to happen, which
is modeled by a time lag in the equation characterizing the evolution of the contractivity
function. Further, these events on the subcellular level have consequences for the cell’s
migratory behavior, influencing both its diffusive spread and the haptotaxis, which we
model by letting the respective coefficients depend on the cell contractivity function, see
equation (2.5) below.

The paper has the following structure: In Section 2 we introduce our multiscale model
characterizing the evolution of cancer cell density, concentration of proteolytic rests, den-
sity of tissue fibers, contractivity function, and concentrations of integrins bound to ECM
fibers and to fiber residuals degraded during the interaction with tumor cells. The proof of
the existence and uniqueness of a solution to this system is done in Section 3, followed in
Section 4 by a nondimensionalization preliminary to the numerical simulations performed
in Section 5. Finally, a discussion of the results is provided in Section 6.

2 The Model

2.1 The subcellular level

We provide a simplified description of the events on the subcellular level by considering
as in [20, 21, 25] merely the integrin binding dynamics on the cell surface. For the sake
of completeness we recall here the corresponding kinetic model for the binding of ECM-
proteins v and proteolytic products l to free integrins denoted by R. The reversible binding
of integrins to ECM-proteins leads to a complex Rv according to the equation

v +R
k1−−⇀↽−−
k−1

Rv.
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The corresponding equation for the formation and dissociation of complexes Rl of integrin
and proteolytic product reads

l +R
k2−−⇀↽−−
k−2

Rl.

We denote the concentrations of integrins of an individual cell bound to ECM-molecules
by y1 and the concentration of integrins of the same cell bound to the proteolytic product
l by y2. The total concentration of integrins (bound or unbound) of each cell is assumed
to be conserved and given by R0 ∈ R+. Thus, R0−y1−y2 is the concentration of unbound
integrins on the cell’s surface. Hence, one has y = (y1, y2) ∈ Y with

Y := {(y1, y2) ∈ (0, R0)2 | y1 + y2 < R0}. (2.1)

The state equations for the cell surface dynamics then read

∂y

∂t
= G(y, v(t,x), l(t,x)) (2.2)

with the mapping G : Y × [0,∞)× [0,∞)→ R2 defined by

G(y, v, l) :=

(
k1(R0 − y1 − y2)v − k−1y1

k2(R0 − y1 − y2)l − k−2y2

)
. (2.3)

On the other hand, since contractivity is the outcome of a sequence of biochemical pro-
cesses initiated by binding of integrins, activation of multiple signaling proteins and in-
volving e.g., actin polimerization, restructuring of the cell’s cytoskeleton, formation of
protrusions, polarization etc. (see e.g., [19] and the references therein), it is reasonable to
assume that it depends on some delay corresponding to the time passed between integrin
binding and the effects on the cell’s ability to reorganize its shape by contraction. This
leads to an equation of the form

κt = −qκ+H(y(t− τ)) in (0, T )× Ω (2.4)

with τ denoting the fixed delay in taking influence on the contractivity. Another choice
for the time lag is to use a distributed one, as in the next section.

2.2 The macroscopic level

The evolution of cancer cell density c(t,x) is influenced by the random motility Jrandom

and the directional flow Jdirectional. The former characterizes cell diffusion into the tissue
and is given by

Jrandom = −ϕ(κ, c, v)∇c

with the random motility function ϕ(κ, c, v) depending on the contractivity function κ, on
the cell density itself, and on the density v(t,x) of tissue fibers, as the spread of cancer
cells is conditioned by their neighbors and surroundings.

On the other hand, Jdirectional corresponds to the cancer cell flux due to spatial gradients
of stimulating chemotactic and haptotactic responses:

Jdirectional = Jchemotaxis + Jhaptotaxis = f(c, l)c∇l + ψ(κ, v)c∇v
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where f(c, l) and ψ(κ, v) are the chemotactic and haptotactic functions, respectively. As
in [20, 21, 25], in our present model the role of the chemoattractant is played by the pro-
teolytic residuals following the degradation of tissue by the cells performing mesenchymal
motion [13, 18]. We denote with l(t,x) their concentration.
Then, due to the equilibrium of fluxes we obtain the first equation in system (2.5) below.
Thereby, the last term on the right-hand side models cell proliferation with crowding
effects and the proliferation rate and the carrying capacity are denoted by µc and Kc,
respectively.
The ECM fibers are supposed to be degraded through interaction with the cancer cells
with the rate δv. They also reestablish and remodel themselves while competing with the
diffusive cancer cells for space. This is described by a term similar to the proliferation
in the equation for cancer cells with the corresponding production rate µv and carrying
capacity Kv. Crowding effects are accounted for as well. Further, the ECM does not
diffuse, but can be only degraded by the cells producing matrix degrading enzymes. These
considerations lead to the second equation in system (2.5).
The chemoattractant concentration satisfies a reaction-diffusion equation with a source
term reflecting the degradation of tissue fibers under the influence of the migrating tumor
cells, along with a simple decay term. The diffusion constant, production and decay rates
are denoted with α, δl and β, respectively.
Finally combining the equations on micro and macro levels, we obtain the following system
of equations:

ct = ∇ · (ϕ(κ, c, v)∇c)−∇ · (ψ(κ, v)c∇v)−∇ · (f(c, l)c∇l)
+µcc

(
1− c

Kc
− η1

v
Kv

)
,

vt = −δvcv + µvv
(

1− η2
c
Kc
− v

Kv

)
,

lt = α∆l + δlcv − βl,

yt = G(v, l,y),

κt = −qκ+H(y(t− τ))

(2.5)

in (0, T ) × Ω, where Ω ⊂ Rn is a bounded domain with a smooth enough boundary and
with n ∈ {1, 2, 3}. Here η1, η2 ∈ (0, 1) are parameters characterizing growth reduction due
to the competition between the cancer cells and the tissue fibers (see e.g., [16]).
We further assume the boundary conditions

∂c

∂ν
=
∂v

∂ν
=

∂l

∂ν
= 0 on (0, T )× ∂Ω, (2.6)

where ν denotes the outward unit normal vector on ∂Ω, and the initial conditions

c(0,x) = c0(x), v(0,x) = v0(x), l(0,x) = l0(x),
κ(0,x) = κ0(x), y(t,x) = y0(x),

t ∈ (−∞, 0], x ∈ Ω. (2.7)

In our model we consider

ϕ(κ, c, v) =
Dcκ

1 + cv
KcKv

, ψ(κ, v) =
DHκv

Kv + v
, f(c, l) =

Dk

1 + cl
Kcl0

, H(y) =
My1

R0 + y2
(2.8)

for the random motility, haptotaxis and chemotaxis functions and for the function mod-
eling the influence of the integrin binding on the contractivity, respectively. Here Kc and
Kv are the carrying capacities for the cancer cells and ECM, respectively, and l0 is an
appropriate reference variable for the proteolytic rests.
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3 Local Existence

3.1 The case with distributed delay

In this case we start by considering a distributed delay

κ(t,x) =

∫ ∞
0

qe−quH̃(y(t− u,x)) du, (t,x) ∈ (0, T )× Ω, (3.1)

for the characterization of the cell contractivity. Using the transformation s = t−u, (3.1)
is equivalent to

κ(t,x) =

∫ t

−∞
qe−q(t−s)H̃(y(s,x)) ds, (t,x) ∈ (0, T )× Ω.

In view of (2.7) this means that κ fulfills (2.4) with τ = 0, H(y) := qH̃(y) and the initial
condition

κ(0,x) =

∫ 0

−∞
qeqsH̃(y0(x)) ds = H̃(y0(x)) =: κ0(x), x ∈ Ω.

Hence, the distributed delay corresponds to the case τ = 0 for the problem (2.5)-(2.7).

Thus, we fix τ = 0, p ∈ (n+2
2 ,∞) and define the spaces

X :=
{
u ∈ Lp(0, T ;W 2,p(Ω)) : ut ∈ Lp(0, T ;Lp(Ω))

}
,

Z := L2p(0, T ;W 1,2p(Ω)), V := C1(0, T ;C0(Ω̄)).

Then we have the following local existence result for the case with distributed delay.

Theorem 3.1 Assume τ = 0, p ∈ (n+2
2 ,∞),

c0, v0, l0 ∈W 2,p(Ω), κ0 ∈W 1,2p(Ω), y0 ∈ (W 1,2p(Ω))2, ∂c0∂ν = ∂v0
∂ν = ∂l0

∂ν = 0

on ∂Ω, 0 < c0 < Kc, 0 < v0 < Kv, l0 > 0, κ0 > 0 and y0 ∈ Y for all x ∈ Ω̄
(3.2)

together with (2.3) and let

H ∈ C1(Ȳ ), f ∈ C1([0,∞)2), ϕ ∈ C1([0,∞)3), ψ ∈ C1([0,∞)2) be nonnegative
such that for any 0 < a < b <∞ there exists δa,b > 0 with

ϕ(κ, c, v) ≥ δa,b for all (κ, c, v) ∈ [a, b]× [0,∞)2.
(3.3)

Then there is T > 0 such that there exists a unique solution to (2.5)-(2.7) satisfying

c, l ∈ X, v ∈ X ∩ V, κ ∈ Z ∩ V, y ∈ Z2 ∩ V 2 such that

0 ≤ c ≤ Kc, 0 < v ≤ Kv, l ≥ 0, κ > 0 and y ∈ Y for all (t,x) ∈ [0, T )× Ω̄.
(3.4)

Proof. We define

X0 :=

{
c ∈ X : c ≥ 0, ‖c‖X ≤ γ := ‖c0‖W 2,p(Ω) + 1,

∂c

∂ν
= 0 on (0, T )× ∂Ω

}
,
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fix T0 ∈ (0,∞) such that c0 ∈ X0 for all T ∈ (0, T0] and define the map F : X0 → X0 with
F(c̃) = c, where c is defined in the following way: Given c̃ ∈ X0, we let v, l, κ, y and c
denote the solutions of the problems{

vt = −δv c̃v + µvv
(

1− η2
c̃
Kc
− v

Kv

)
in (0, T )× Ω,

v(0,x) = v0(x) in Ω,
(3.5)


lt = α∆l + δlc̃v − βl in (0, T )× Ω,

∂l
∂ν = 0 on (0, T )× ∂Ω,

l(0,x) = l0(x) in Ω,

(3.6)

{
yt = G(v, l,y) in (0, T )× Ω,

y(0,x) = y0(x) in Ω,
(3.7)

{
κt = −qκ+H(y(t)) in (0, T )× Ω,

κ(0,x) = κ0(x) in Ω,
(3.8)



ct = ∇ · (ϕ(κ, c̃, v)∇c)−∇ · (ψ(κ, v)c∇v)−∇ · (f(c̃, l)c∇l)

+µcc
(

1− c̃
Kc
− η1

v
Kv

)
in (0, T )× Ω,

∂c
∂ν = 0 on (0, T )× ∂Ω,

c(0,x) = c0(x) in Ω.

(3.9)

In order to obtain a unique solution of (2.5)-(2.7) for T ∈ (0, T0] small enough, we proceed
in several steps.

Step 1: Estimates

For given c̃ ∈ X0, (3.5) is an ODE of Bernoulli type which is explicitly solvable. Using
(3.2) along with the nonnegativity of c̃, an ODE comparison principle implies that

0 ≤ v ≤ Kv in [0, T ]× Ω̄ (3.10)

is fulfilled, since 0 and Kv are constant sub- and supersolutions to (3.5), respectively. As
X is continuously embedded into C0([0, T ]× Ω̄) (see [22, Lemma II.3.3]) and ‖c̃‖X ≤ γ, we
obtain from (3.10) that vt ≥ −C1v with some C1 > 0 depending on γ. In view of T ≤ T0

and (3.2) this implies

v(t,x) ≥ e−C1T0

(
min
x∈Ω̄

v0(x)

)
=: C2 > 0, (t,x) ∈ (0, T )× Ω. (3.11)

Hence, z := 1
v is uniformly bounded in (0, T )× Ω and satisfies the linear ODE

zt =

(
−µv + c̃

(
δv + η2

µv
Kc

))
z +

µv
Kv

in (0, T )× Ω. (3.12)

In view of (3.2), (3.10), (3.11) and c̃ ∈ X0, we therefore conclude that v fulfills

C2 ≤ v ≤ Kv in [0, T ]× Ω̄, ‖v‖X + ‖v‖V ≤ C3,
∂v

∂ν
= 0 on (0, T )× ∂Ω (3.13)
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with some C3 depending on γ and T0, where v ∈ V as c̃, c0 are continuous due to p > n+2
2

and vt is continuous and uniformly bounded by (3.5).

In view of c̃ ∈ X0 and (3.13), we have that c̃v is uniformly bounded in (0, T )×Ω. Hence, by
[22, Theorem IV.9.1] (and the remark at the end of Section IV.9 concerning the Neumann
problem) there is a unique solution l of (3.6) which satisfies

l ≥ 0 in (0, T )× Ω and ‖l‖X ≤ C4 (3.14)

with some C4 depending on γ and T0, where the nonnegativity of l follows from the com-
parison principle and the nonnegativity of c̃, v and l0.

Now (3.7) is a linear ODE for y. As furthermore G satisfies the subtangential condition
with respect to Y for all nonnegative v and l, we obtain that Y is a positive invariant
set for (3.7). Thus, in view of (3.2), (3.13) and (3.14) we deduce that there is a unique
solution y of (3.7) such that

y(t,x) ∈ Y for (t,x) ∈ [0, T ]× Ω̄ and ‖y‖Z2 + ‖y‖V 2 ≤ C5 (3.15)

hold with some constant C5 depending on γ and T0, since X is continuously embedded
into Z and C0([0, T ] × Ω̄) due to p > n+2

2 (see [22, Lemma II.3.3]) and as the continuity
of v and l along with (3.7) imply y ∈ V 2.

As (3.8) is a linear ODE for κ and H is nonnegative, we deduce from (3.2), (3.13)-(3.15)
and the comparison principle that (3.8) has a unique solution which fulfills

0 < C6 := e−qT0
(

min
x∈Ω̄

κ0(x)

)
≤ κ(t,x) ≤ C7 for (t,x) ∈ (0, T )× Ω,

‖κ‖Z + ‖κ‖V ≤ C8

(3.16)

with some constants depending on γ and T0, as (3.8) is a linear ODE and H(y) ∈
C0([0, T ]× Ω̄) and κ0 ∈ C0(Ω̄) hold in view of the continuity of H, (3.15) and the contin-
uous embedding of W 1,2p(Ω) into C0(Ω̄) for p > n+2

2 .

Finally, (3.9) is a linear parabolic equation for c, of the form

ct = aiicxixi + aicxi + ac,

where

aii := ϕ(κ, c̃, v),

ai :=
∂ϕ

∂κ
(κ, c̃, v)κxi +

∂ϕ

∂c
(κ, c̃, v)c̃xi +

∂ϕ

∂v
(κ, c̃, v)vxi − ψ(κ, v)vxi − f(c̃, l)lxi ,

a := −ψ(κ, v)vxixi −
∂ψ

∂κ
(κ, v)κxivxi −

∂ψ

∂v
(κ, v)(vxi)

2 − f(c̃, l)lxixi −
∂f

∂c
(c̃, l)c̃xi lxi

−∂f
∂l

(c̃, l)(lxi)
2 + µc

(
1− c̃

Kc
− η1

v

Kv

)
.

In view of (3.3) and (3.13)-(3.16) and due to the continuous embedding of X into Z, aii is
continuous in [0, T ]× Ω̄ and there are positive constants C9 and C10 depending on γ and
T0 such that

C9 ≤ aii ≤ C10 for (t,x) ∈ [0, T ]×Ω̄, ‖ai‖L2p((0,T )×Ω)+‖a‖Lp((0,T )×Ω) ≤ C10. (3.17)
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Hence, by Theorem IV.9.1, its proof and the remark at the end of Section IV.9 in [22],
there is some T1 ≤ T0 such that for any T ∈ (0, T1] there is a unique solution c of (3.9)
fulfilling

‖c‖X ≤ ‖c0‖W 2,p(Ω) + ε(T ), (3.18)

where ε(T ) → 0 as T ↘ 0. Hence, there exists T2 ∈ (0, T1] such that ‖c‖X ≤ γ for
all T ∈ (0, T2]. As c satisfies the boundary condition (2.6) and the comparison principle
implies c ≥ 0 in (0, T )×Ω, we conclude that F is a well-defined self-mapping for T ∈ (0, T2].

Step 2: Existence
For m ≥ 1 let vm, lm, ym, κm and cm denote the solutions to (3.5)-(3.9) with c̃ := cm−1.
In particular, we have cm = F(cm−1). Due to Step 1, we have ‖cm‖X ≤ γ for all m ∈ N.
As X = Lp(0, T ;W 2,p(Ω)) ∩W 1,p(0, T ;Lp(Ω)) is reflexive, X is continuously embedded
into Cα([0, T ] × Ω̄) for 0 < α < 1 − n+2

2p (see [22, Lemma II.3.3]) and X is compactly

embedded into Lp(0, T ;W 1,2p(Ω)) due to p > n+2
2 and the Aubin-Lions lemma (see [33,

Theorem III.2.1]). Hence, there exists a subsequence of (cm)m∈N (not relabeled) and c ∈ X
such that

cm ⇀ c weakly in X,
cm → c strongly in Lp(0, T ;W 1,2p(Ω)) and in C0([0, T ]× Ω̄)

(3.19)

for m→∞. In particular, as X is continuously embedded into Z, we have

∇cm → ∇c a.e. in (0, T )× Ω and ∇cm ⇀ ∇c weakly in L2p((0, T )× Ω) (3.20)

for m→∞ up to a further choice of a subsequence.

In a similar way, since vm fulfills (3.13) for all m ∈ N, there is a subsequence such that

vm ⇀ v weakly in X,
vm → v strongly in Lp(0, T ;W 1,2p(Ω)) and in C0([0, T ]× Ω̄),

∇vm → ∇v a.e. in (0, T )× Ω and ∇vm ⇀ ∇v weakly in L2p((0, T )× Ω)
(3.21)

for m→∞. Hence, in view of (3.19) and (3.21) and as vm solves (3.5) with c̃ = cm−1 for
m ∈ N, v is a solution to∫ T

0

∫
Ω
−vΦt dxdt =

∫ T

0

∫
Ω

[
−δvcv + µvv

(
1− η2

c

Kc
− v

Kv

)]
Φ dxdt

for all Φ ∈ C∞0 ((0, T ) × Ω) so that v solves the second equation of (2.5) in the weak
sense. As its right-hand side is continuous in [0, T ]× Ω̄, we deduce that v ∈ V is a classical
solution of this equation. Due to (3.21) and (3.13), v further satisfies (2.6), (2.7) and (3.4).

Using (3.14), we obtain a further subsequence such that

lm ⇀ l weakly in X,
lm → l strongly in Lp(0, T ;W 1,2p(Ω)) and in C0([0, T ]× Ω̄),

∇lm → ∇l a.e. in (0, T )× Ω and ∇lm ⇀ ∇l weakly in L2p((0, T )× Ω)
(3.22)

for m → ∞. In view of (3.14) and (3.21) and since lm satisfies (3.6) with c̃ = cm−1 for
m ∈ N, this implies that l is a weak solution to the third equation of (2.5) such that (2.6),
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(2.7) and (3.4) are fulfilled.

Moreover, (3.15) also implies that (ym)m is uniformly bounded in (W 1,2p((0, T ) × Ω))2

and this space is compactly embedded into (C0([0, T ] × Ω̄))2, due to p > n+2
2 . Thus, we

can choose another subsequence such that

ym ⇀ y weakly in Z2 and in (W 1,2p((0, T )× Ω))2,
ym → y strongly in (C0([0, T ]× Ω̄))2 (3.23)

for m → ∞. Combined with (3.21), (3.22) and (3.7) for m ∈ N, this implies that y
is a weak solution to the last equation of (2.5). As its right-hand side is continuous in
[0, T ] × Ω̄, we deduce that y ∈ V 2 is a classical solution of this equation. Furthermore,
(2.7) and (3.4) are satisfied due to (3.15).

In a similar way, by (3.16) we obtain a subsequence such that

κm ⇀ κ weakly in Z and in W 1,2p((0, T )× Ω),
κm → κ strongly in C0([0, T ]× Ω̄)

(3.24)

for m → ∞. Together with (3.23) and (3.8) for m ∈ N, this implies that κ is a weak
solution to (2.4). Due to the continuity in [0, T ] × Ω̄ of the right hand side in (2.4), we
deduce that κ ∈ V is a classical solution of this equation. Furthermore, (2.7) and (3.4)
hold, due to (3.16).

Now cm is a weak solution to
∂tcm = ∇ · (ϕ(κm, cm−1, vm)∇cm)−∇ · (ψ(κm, vm)cm∇vm)

−∇ · (f(cm−1, lm)cm∇lm) + µccm

(
1− cm−1

Kc
− η1

vm
Kv

)
in (0, T )× Ω,

∂cm
∂ν = 0 on (0, T )× ∂Ω,

(3.25)

which satisfies the initial condition cm(0,x) = c0(x) for x ∈ Ω and m ∈ N. Hence, by
letting m → ∞ in each of the integral terms involved in the weak formulation of (3.25)
and by using (3.19)-(3.24), we conclude that c is a weak solution to the first equation of
(2.5) such that (2.6) and (2.7) are fulfilled. In view of (3.19) and cm ≥ 0 we further have
c ∈ X ∩C0([0, T ]× Ω̄) and c ≥ 0. As c0 < KC in Ω̄, by choosing T ∈ (0, T2] small enough
we have 0 ≤ c ≤ KC in [0, T ]× Ω̄. Altogether, S := (c, v, l,y, κ) is a solution to (2.5)-(2.7)
which satisfies (3.4).

Step 3: Uniqueness
We now fix T as chosen in Step 2 and let S(j) := (c(j), v(j), l(j),y(j), κ(j)), j ∈ {1, 2},
denote two solutions to (2.5)-(2.7) satisfying (3.4). As X is continuously embedded into
Z and L∞((0, T )×Ω) due to [22, Lemma II.3.3] and p > n+2

2 , by (3.13)-(3.16) and (3.18),
there exists C11 > 0 such that

‖c(j)‖L∞((0,T )×Ω) + ‖∇c(j)‖L2p((0,T )×Ω) + ‖v(j)‖L∞((0,T )×Ω)

+‖∇v(j)‖L2p((0,T )×Ω) + ‖l(j)‖L∞((0,T )×Ω) + ‖∇l(j)‖L2p((0,T )×Ω)

+‖y(j)‖(L∞((0,T )×Ω))2 + ‖κ(j)‖L∞((0,T )×Ω) + ‖∇κ(j)‖L2p((0,T )×Ω) ≤ C11

(3.26)

is fulfilled for j ∈ {1, 2}.
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Since z(j) := 1
v(j)

satisfies (3.12) with c̃ = c(j), we have

(
z(1) − z(2)

)
t

=

(
−µv + c(1)

(
δv + η2

µv
Kc

))(
z(1) − z(2)

)
+

(
δv + η2

µv
Kc

)(
c(1) − c(2)

)
z(2)

which implies

(
z(1) − z(2)

)
(t,x) =

(
δv + η2

µv
Kc

)∫ t

0
exp

(∫ t

s

(
−µv + c(1)(σ,x)

(
δv + η2

µv
Kc

))
dσ

)
·
[(
c(1) − c(2)

)
z(2)
]

(s,x) ds (3.27)

for (t,x) ∈ (0, T )× Ω.

Hence, we deduce from (3.12), (3.13) and (3.26) that 1
Kv
≤ z(j) ≤ 1

C2
,

∣∣∣∇z(j)
∣∣∣ (t,x) ≤ C12

(∫ t

0

∣∣∣∇c(j)
∣∣∣ (σ,x) dσ + |∇v0|(x)

)
,∣∣∣∇z(1) −∇z(2)

∣∣∣ (t,x) ≤ C12

∫ t

0

(∣∣∣∇z(2)
∣∣∣ (s,x) +

∫ t

0

∣∣∣∇c(1)
∣∣∣ (σ,x) dσ

)
·
∣∣∣c(1) − c(2)

∣∣∣ (s,x) ds

+C12

∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) ds (3.28)

are satisfied for (t,x) ∈ (0, T )× Ω and j ∈ {1, 2}.
Therefore, we have

∣∣∣v(1) − v(2)
∣∣∣ (t,x) =

∣∣∣∣∣z(2) − z(1)

z(1)z(2)

∣∣∣∣∣ (t,x) ≤ C13

∫ t

0

∣∣∣c(1) − c(2)
∣∣∣ (s,x) ds,

∣∣∣∇v(1) −∇v(2)
∣∣∣ (t,x) =

∣∣∣∣∣− ∇z(1)

(z(1))2
+
∇z(2)

(z(2))2

∣∣∣∣∣ (t,x)

=

∣∣∣∣∣∇(z(2) − z(1))

(z(2))2
+

((z(1))2 − (z(2))2)∇z(1)

(z(1))2(z(2))2

∣∣∣∣∣ (t,x)

≤ C13

[
|∇v0|(x) +

∫ t

0

(∣∣∣∇c(1)
∣∣∣+
∣∣∣∇c(2)

∣∣∣) (σ,x) dσ

]
·
∫ t

0

∣∣∣c(1) − c(2)
∣∣∣ (s,x) ds+ C13

∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) ds (3.29)

for (t,x) ∈ (0, T )× Ω.

In particular, by Hölder’s inequality this implies∫
Ω

∣∣∣v(1) − v(2)
∣∣∣2 (t,x) dx ≤ C2

13

∫
Ω
t

∫ t

0

∣∣∣c(1) − c(2)
∣∣∣2 (s,x) dsdx

≤ C2
13t

2 sup
s∈(0,t)

∫
Ω

∣∣∣c(1) − c(2)
∣∣∣2 (s,x)dx

11



≤ C2
13T

2
∥∥∥c(1) − c(2)

∥∥∥2

L∞(0,t;L2(Ω))
(3.30)

and ∫ t

0

∫
Ω

∣∣∣v(1) − v(2)
∣∣∣2 (s,x) dxds ≤ C2

13T
2

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds (3.31)

for t ∈ (0, T ).

In view of (2.5)-(2.7), L := l(1) − l(2) satisfies

Lt = α∆L− βL+ δl

(
c(1)v(1) − c(2)v(2)

)
in (0, T )× Ω (3.32)

together with the homogeneous Neumann boundary condition and L(0,x) = 0 for x ∈ Ω.
Hence, by [22, Theorem IV.9.1] (and the remark at the end of Section IV.9 concerning the
Neumann problem) we obtain

‖L‖L2(0,t;W 2,2(Ω)) ≤ C14

∥∥∥c(1)v(1) − c(2)v(2)
∥∥∥
L2((0,t)×Ω)

for all t ∈ (0, T ) and deduce from (3.26) and (3.31) that∥∥∥l(1) − l(2)
∥∥∥2

L2((0,t)×Ω)
+
∥∥∥∇l(1) −∇l(2)

∥∥∥2

L2((0,t)×Ω)

≤ C15

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds (3.33)

is fulfilled for all t ∈ (0, T ).

Moreover, by using (3.32), L(0,x) = 0 for x ∈ Ω, (3.26), (3.30) and Young’s inequality,
we obtain∫

Ω

∣∣∣l(1) − l(2)
∣∣∣2 (t,x) dx = 2

∫ t

0

∫
Ω
LLt(s,x) dxds

= −2α

∫ t

0

∫
Ω
|∇L|2(s,x) dxds− 2β

∫ t

0

∫
Ω
L2(s,x) dxds

+2δl

∫ t

0

∫
Ω
L
(
c(1)v(1) − c(2)v(2)

)
(s,x) dxds

≤
δ2
l

2β

∫ t

0

∫
Ω

(
c(1)v(1) − c(2)v(2)

)2
(s,x) dxds

≤ C16

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))
(3.34)

for t ∈ (0, T ).

Since y(j) is a solution to a linear ODE, we obtain (similarly as done above for z(j)) from
(3.26), (3.29), and the regularity of G that∣∣∣y(1)

i − y
(2)
i

∣∣∣ (t,x) ≤ C17

∫ t

0

(∣∣∣c(1) − c(2)
∣∣∣+
∣∣∣l(1) − l(2)

∣∣∣) (s,x) ds (3.35)
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holds for t ∈ (0, T ) and i ∈ {1, 2}. Thus, in a similar manner we have∣∣∣κ(1) − κ(2)
∣∣∣ (t,x) ≤ C18

∫ t

0

(∣∣∣c(1) − c(2)
∣∣∣+
∣∣∣l(1) − l(2)

∣∣∣) (s,x) ds (3.36)

for t ∈ (0, T ) due to (3.26), (3.35) and the regularity of H.

Next in order to abbreviate notation we define ϕj := ϕ(κ(j), c(j), v(j)), ψj := ψ(κ(j), v(j))
and fj := f(c(j), l(j)) for j ∈ {1, 2}. As 2p ≥ 2 and c(j) is a weak solution to the first
equation of (2.5) fulfilling (2.6), (2.7) and (3.26), we deduce that

1

2

∫
Ω

(
c(1) − c(2)

)2
(t,x)dx

=
1

2

∫ t

0

∫
Ω

d

dt

(
c(1) − c(2)

)2
(s,x) dxds

=

∫ t

0

∫
Ω
∇
(
c(1) − c(2)

) [
− ϕ1∇c(1) + ϕ2∇c(2) + ψ1c

(1)∇v(1) − ψ2c
(2)∇v(2)

+f1c
(1)∇l(1) − f2c

(2)∇l(2)
]
(s,x) dxds

+

∫ t

0

∫
Ω
µc

(
c(1) − c(2)

) [
c(1)

(
1− c(1)

Kc
− η1

v(1)

Kv

)

−c(2)

(
1− c(2)

Kc
− η1

v(2)

Kv

)]
(s,x) dxds

= −
∫ t

0

∫
Ω
ϕ1

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

+

∫ t

0

∫
Ω
ψ1c

(1)∇
(
v(1) − v(2)

)
∇
(
c(1) − c(2)

)
(s,x) dxds

+

∫ t

0

∫
Ω
∇
(
c(1) − c(2)

) [
(ϕ2 − ϕ1)∇c(2) +

(
ψ1c

(1) − ψ2c
(2)
)
∇v(2)

+
(
f1c

(1) − f2c
(2)
)
∇l(2)

]
(s,x) dxds

+

∫ t

0

∫
Ω
f1c

(1)∇
(
l(1) − l(2)

)
∇
(
c(1) − c(2)

)
(s,x) dxds

+

∫ t

0

∫
Ω
µc

(
c(1) − c(2)

) [
c(1)

(
1− c(1)

Kc
− η1

v(1)

Kv

)

−c(2)

(
1− c(2)

Kc
− η1

v(2)

Kv

)]
(s,x) dxds

=: −I1 + I2 + I3 + I4 + I5 (3.37)

holds for t ∈ (0, T ).

We further define

g(t,x) :=
(∣∣c(1) − c(2)

∣∣+
∣∣l(1) − l(2)

∣∣) (t,x),

h(t,x) :=
(∣∣∇c(2)

∣∣+
∣∣∇v(2)

∣∣+
∣∣∇l(2)

∣∣) (t,x)
(3.38)

for (t,x) ∈ (0, T )× Ω.
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In view of (3.26)-(3.36), (3.16) and (3.3) there are positive constants ε and C19 such that

ϕ1 ≥ ε in (0, T )× Ω (3.39)

and(
|ϕ1 − ϕ2|+

∣∣ψ1c
(1) − ψ2c

(2)
∣∣+
∣∣f1c

(1) − f2c
(2)
∣∣) (t,x) ≤ C19

(
g(t,x) +

∫ t
0 g(s,x) ds

)
,

‖h‖L2p((0,t)×Ω) ≤ C19

(3.40)
are fulfilled for t ∈ (0, T ).

Next we fix

r :=
2p

p− 1
and a :=

1
2 −

1
r

1
n

=
n

2p
(3.41)

and remark that p > n+2
2 yields a ∈ (0, 1). Therefore, by the inequalities of Gagliardo-

Nirenberg and Young, there exist constants CGN > 0 and Cε > 0 such that

‖u‖Lr(Ω) ≤ CGN
(
‖∇u‖aL2(Ω)‖u‖

1−a
L2(Ω)

+ ‖u‖L2(Ω)

)
≤ ε‖∇u‖L2(Ω) + Cε‖u‖L2(Ω) (3.42)

is satisfied for all u ∈W 1,2(Ω).

Furthermore, by (3.2) and (3.26) there is C20 > 0 such that w(t,x) := h(t,x)+ |∇v0|(x)+∫ t
0 (|∇c(1)|+ |∇c(2)|)(σ,x) dσ satisfies

‖w‖L2p((0,t)×Ω) ≤ C20 (3.43)

for all t ∈ (0, T ).

Thus, (3.29), (3.33), (3.34) and (3.40)-(3.43) along with a ∈ (0, 1) and p(1−a) = 2p−n
2 > 1

and the inequalities of Hölder and Young yield

I2 + I3 ≤
∫ t

0

∫
Ω
ψ1c

(1)∇
(
v(1) − v(2)

)
∇
(
c(1) − c(2)

)
(s,x)dxds

+C19

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) · h(s,x)

(
g(s,x) +

∫ s

0
g(σ,x) dσ

)
dxds

≤ C21

∫
Ω

∫ t

0

∫ s

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (σ,x)dσ

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x)dsdx

+C21

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) · w(s,x)

∫ s

0
g(σ,x) dσdxds

+C19

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) · h(s,x) · g(s,x) dxds

≤ C21

∫
Ω

∫ t

0

1

2

d

ds

(∫ s

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (σ,x)dσ

)2

dsdx

+C21

∫ t

0

∫ s

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·
(∫

Ω
|g|

2p
p−1 (σ,x) dx

) p−1
2p

dσds+ C19

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2
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·
(∫

Ω
|h|2p(s,x) dx

) 1
2p

·
(∫

Ω
|g|

2p
p−1 (s,x) dx

) p−1
2p

ds

≤ C21

∫
Ω

1

2

(∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x)ds

)2

dx

+C21

∫ t

0

∫ s

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·

[
ε

(∫
Ω
|∇g|2(σ,x) dx

) 1
2

+ Cε

(∫
Ω
g2(σ,x) dx

) 1
2

]
dσds

+C19CGN

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|h|2p(s,x) dx

) 1
2p

·

[(∫
Ω
|∇g|2(s,x) dx

)a
2

·
(∫

Ω
g2(s,x) dx

) 1−a
2

+

(∫
Ω
g2(s,x) dx

) 1
2

]
ds

≤ C21
t

2

∫
Ω

∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dsdx

+εC21t
1
2

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·
(∫ s

0

∫
Ω
|∇g|2(σ,x) dxdσ

) 1
2

ds

+CεC21T
1
2

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·
(∫ s

0

∫
Ω
g2(σ,x) dxdσ

) 1
2

ds

+
ε

36

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds+

ε

72

∫ t

0

∫
Ω
|∇g|2(s,x) dxds

+C22

∫ t

0

(∫
Ω
|h|2p(s,x) dx

) 1
p(1−a)

∫
Ω
g2(s,x) dxds

+C22

∫ t

0

(∫
Ω
|h|2p(s,x) dx

) 1
p
∫

Ω
g2(s,x) dxds

≤ C21
t

2

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+εC21t
1
2

[(∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (σ,x) dxdσ

) 1
2

+

(∫ t

0

∫
Ω

∣∣∣∇l(1) −∇l(2)
∣∣∣2 (σ,x) dxdσ

) 1
2
]

·
(∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

) 1
2

·

(∫ t

0

(∫
Ω
|w|2p(s,x) dx

) 1
p

ds

) 1
2

+CεC21T
1
2

(∫ t

0

∫
Ω
g2(σ,x) dxdσ

) 1
2

·
(∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

) 1
2
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·

(∫ t

0

(∫
Ω
|w|2p(s,x) dx

) 1
p

ds

) 1
2

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

+
ε

36

∫ t

0

∫
Ω

∣∣∣∇l(1) −∇l(2)
∣∣∣2 (s,x) dxds

+C22

(
sup
s∈(0,t)

∫
Ω
g2(s,x) dx

)
·
(
C

2
1−a

19 t
p(1−a)−1
p(1−a) + C2

19t
p−1
p

)
≤

(
C21

t

2
+ εC21t

1
2 · C20t

p−1
2p

)∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+
9εC2

21T

2
· C2

20T
p−1
p · C15

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+C2
εC

2
21T ·

9

2ε
· C2

20T
p−1
p · (2C15 + 2)

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+
ε

36
· C15

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+C22

(
C

4p
2p−n

19 t
2p−n−2
2p−n + C2

19t
p−1
p

)
· (2C16 + 2)

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))

≤
(
C21

t

2
+ εC21C20t

2p−1
2p +

ε

6

)∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+C23

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+C24

(
t
2p−n−2
2p−n + t

p−1
p

)∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))
(3.44)

for t ∈ (0, T ).

Thus, fixing t0 := min{ ε
3C21

, (6C20C21)
− 2p

2p−1 , (8C24)
− 2p−n

2p−n−2 , (8C24)
− p

p−1 , T}, inserting (3.39)
and (3.44) into (3.37) and using Young’s inequality along with (3.26), (3.29) and (3.33),
we conclude that

1

2

∫
Ω

(
c(1) − c(2)

)2
(t,x)dx

≤ −ε
∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds+

ε

2

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+C23

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds+

1

4

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))

+
ε

2

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds+

C25

ε

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds
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+C26

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

≤ C27

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds+

1

4

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))

holds for all t ∈ (0, t0). As the right-hand side of the last inequality is nondecreasing for
t ∈ (0, t0), we obtain

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))
= sup

s∈(0,t)

∫
Ω

(
c(1) − c(2)

)2
(s,x)dx

≤ 4C27

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

for t ∈ (0, t0). In view of c(1)(0,x) = c(2)(0,x) = c0(x), Gronwall’s lemma implies that
c(1) = c(2) in [0, t0]× Ω.

As all the constants depend on T but not on t0, by repeating this argument we have
c(1) = c(2) in [mt0,min{(m + 1)t0, T}] × Ω for all m ∈ N such that mt0 ≤ T . Hence,
c(1) = c(2) in [0, T ] × Ω. In view of (3.29)-(3.36), we further deduce that the solutions
(c(j), v(j), l(j),y(j), κ(j)), j ∈ {1, 2}, to (2.5)-(2.7) coincide. Thus, the proof of the theorem
is completed. �

3.2 The case with constant delay

Now we consider the case with a constant delay τ > 0 in equation (2.4) for the cell
contractivity. We prove the local existence by using the method of steps which is well-
known in the context of delay differential equations (see e.g., [3, 4] and the references
therein).

Theorem 3.2 Suppose that τ > 0 and p ∈ (n+2
2 ,∞) and let (3.2), (3.3) and (2.3) be

fulfilled. Then there exists T > 0 such that (2.5)-(2.7) has a unique solution satisfying
(3.4).

Proof. We take T > 0 as defined in Theorem 3.1 and set tm := min{mτ, T} for m ∈ N0

and m0 := max{m ∈ N0 : tm < T}. Then, in view of (2.7), ỹ(t,x) := y(t− τ,x) satisfies
ỹ(t,x) = y0(x) for (t,x) ∈ [0, t1] × Ω̄ and therefore fulfills ỹ ∈ Z2 ∩ V 2 and ỹ ∈ Y in
[0, t1]× Ω̄ due to (3.2).

Hence, (2.4) is a linear ODE in (0, t1] × Ω so that the existence of a unique solution
S(1) := (c(1), v(1), l(1),y(1), κ(1)) to (2.5)-(2.7) in [0, t1] × Ω satisfying (3.4) is proved in
exactly the same way as in Theorem 3.1 (in fact, even statements (3.16), (3.24) and (3.36)
concerning κ remain unchanged).

Now assume that we have a solution S(m) to (2.5)-(2.7) in [0, tm]× Ω satisfying (3.4) for
some m ≤ m0. Then ỹ ∈ Z2 ∩V 2 and ỹ ∈ Y in [0, tm+1]× Ω̄ hold due to (3.4). Hence, by
Theorem 3.1 there exists a unique solution S(m+1) to (2.5)-(2.7) in [0, tm+1]×Ω satisfying
(3.4). In view of the uniqueness, we have S(m+1) = S(m) in [0, tm]×Ω. By mathematical
induction we obtain a unique solution to (2.5)-(2.7) in [0, T )× Ω which fulfills (3.4). �
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4 Nondimensionalization

Before performing our numerical simulations, we write system (2.5) in terms of dimen-
sionless variables. To this end we rescale

c̃ :=
c

Kc
, ṽ :=

v

Kv
, l̃ :=

l

l0
, x̃ = x

L ,

t̃ :=
t

T
, ỹ1 =

y1

R0
, ỹ2 =

y2

R0
, θ̃ =

t

χT
,

(4.1)

where L is the reference length scale, T is the reference time unit, l0 is the reference
concentration of proteolytic rests. Since the processes on the subcellular level are much
faster than the ones on the macrolevel we set t̃ = χθ̃ where χ ∈ (0, 1).

After using (2.8) and the transformations (4.1), we obtain the nondimensionalized system
for (2.5) as



c̃t̃ = ∇ ·
(
D̃c

κ

1 + c̃ṽ
∇c̃
)
−∇ ·

(
D̃Hκṽ

1 + ṽ
c̃∇ṽ

)
−∇ ·

(
D̃k

1 + c̃l̃
c̃∇l̃

)
+µ̃cc̃ (1− c̃− η1ṽ) ,

ṽt̃ = −δ̃v c̃ṽ + µ̃vṽ (1− η2c̃− ṽ) ,

l̃t̃ = α̃∆l̃ + δ̃lc̃ṽ − β̃l̃,
˙̃y1 = k̃1(1− ỹ1 − ỹ2)ṽ − k̃−1ỹ1,

˙̃y2 = k̃2(1− ỹ1 − ỹ2)l̃ − k̃−2ỹ2

κ̇ = −q̃κ+
M̃ỹ1(θ̃ − τ̃)

1 + ỹ2(θ̃ − τ̃)

(4.2)

with ‘upper dot’ denoting the time derivative with respect to θ̃ and the dimensionless
parameters

D̃c =
DcT

L2
, D̃H =

DHTKv

L2
, D̃k =

DkT l0
L2

, µ̃c = µcT,

δ̃v = δvKcT, µ̃v = µvT,

α̃ =
αT

L2
, δ̃l =

KcKvTδl
l0

, β̃ = βT,

k̃1 = Kvk1χT, k̃−1 = k−1χT, k̃2 = l0k2χT, k̃−2 = k−2χT,

q̃ = qχT, M̃ = MχT, τ̃ =
τ

χT
.

For the ease of notation we omit the tildes and continue with system (4.2).
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5 Numerical Results

In this section we investigate the qualitative behavior of the model via numerical simula-
tions in 1-D. To this end we consider (4.2) with the initial conditions

c(0, x) = exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0,

v(0, x) = 1− exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0,

l(0, x) = ζc(x, 0), x ∈ [0, 1] and ζ ∈ [0, 1),

(5.1)

for the cancer cell density, ECM density, and concentration of proteolytic residuals, re-
spectively. We assume that initially the space is mainly occupied by the ECM, while there
is a cluster of cancer cells which have already penetrated a short distance into the tissue.
The initial density of proteolytic rests is proportional to the initial cancer cell density.
Throughout our numerical simulations we take ε = 0.01, ζ = 0.3, and impose homoge-
neous Neumann boundary conditions as in equation (2.6), hence we assume that there is
no flux of tumor cells, ECM fibers and proteolytic residuals across the boundary of the
domain Ω = (0, 1).
On the subcellular level we expect the concentration y1 of the integrins binding to ECM
fibers to increase on the left side of the domain (due to the high concentration of fibers) and
to decrease on the rest of the domain (as cancer cells have not reached that portion yet).
On the other hand, the initial concentration y2 of integrins binding to the soluble ligand
originating from proteolysis depends on the initial densities of c and l and thus should
decrease throughout the spatial domain. Hence, we choose a gamma probability density
function for y1, whereas for the initial y2 we take a function with a decaying exponential
profile (see Figure 1). Moreover, since contractivity is mainly the outcome of biochemical
processes initiated by the binding of integrins to the ECM fibers, we consider κ0 to be
proportional to y1(0).
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Figure 1: Initial condition for the vector y of bound integrins

For the discretization of the model we use the finite difference method (FDM). We divide
the space interval [0, 1] into k parts with k + 1 nodes, with the space step ∆x (in our
computations ∆x = 0.01). We start solving system (4.2) with the equation for the ECM
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density v. We use forward differences for the time derivatives in our system which after
the discretization of the ECM equation leads to

vn+1
i =

1

1 + δvcni ∆t
[vni + ∆tµvv

n
i (1− η2c

n
i − vni )], i = 0, 1, 2, ..., k, (5.2)

with n denoting the time level. We choose the time increment for the macrolevel as
∆t = χ∆t, where ∆t = 0.01 is the time step for the events on the microscale. In our
computations we use χ = 0.01.

In order to discretize the diffusion term on the right-hand side of the equation for prote-
olytic residuals, we use the central difference and obtain

ln+1
i − lni

∆t
= α ·

ln+1
i−1 − 2ln+1

i + ln+1
i+1

(∆x)2
+ δlc

n
i v

n+1
i − βln+1

i , i = 0, 1, ..., k. (5.3)

leading to the (k + 1)× (k + 1) linear system of equations

All
n+1 = ln + ϑ̃

ñ
l , (5.4)

where ln+1 is the vector containing the values of l for the k + 1 space nodes at (n+1)-th

time level, Al is the tridiagonal matrix coming from the FDM discretization and ϑ̃
ñ
l is the

vector with the entries ∆tδlc
n
i v

n+1
i for i = 0, 1, 2, ..., k where we make use of the updated

values vn+1
i found by solving (5.2).

Before solving the equation for the evolution of cancer cell density, we solve the ODEs
on the microlevel in order to update the values for the contractivity κ. The correspond-
ing system of delay differential equations is discretized by using the semi-implicit Euler
method:

(yn+1
1 )i =

1

1 + k−1∆t+ k1v
n+1
i ∆t

[(yn1 )i + k1∆t(1− (yn2 )i)v
n+1
i ],

(yn+1
2 )i =

1

1 + k−2∆t+ k2l
n+1
i ∆t

[(yn2 )i + k2∆t(1− (yn+1
1 )i)l

n+1
i ],

κn+1
i =

1

1 + q∆t

[
κni +

∆tM(ŷ1)i
1 + (ŷ2)i

]
,

(5.5)

where (ŷm)i, is the vector containing the values of ym (m = 1, 2) at the space node i
(i = 0, 1, 2, ...k) and at time (n+ 1)∆t− τ , with τ denoting the delay.

For the discretization of the PDE for cancer cells we use a nonstandard finite difference
scheme [27, 10, 26] which handles the diffusion part explicitly and the reaction terms
implicitly. While adapting the method into the first three terms on the right-hand side of
the first equation in (4.2) we handle the diffusion, haptotaxis, and chemotaxis coefficients
explicitly (w.r.t c) and the rest implicitly:

∇(ϕ(κ, c, v)∇c)|xi =
1

2(∆x)2

∑
k∈Ni

(ϕ(κn+1
k , cnk , v

n+1
k ) + ϕ(κn+1

i , cni , v
n+1
i ))(cn+1

k − cn+1
i ),

∇(ψ(κ, v)c∇v)|xi =
1

2(∆x)2

∑
k∈Ni

(ψ(κn+1
k , vn+1

k )cn+1
k + ψ(κn+1

i , vn+1
i )cn+1

i )

·(vn+1
k − vn+1

i ),
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∇(f(c, l)c∇l)|xi =
1

2(∆x)2

∑
k∈Ni

(f(cnk , l
n+1
k )cn+1

k + f(cni , l
n+1
i )cn+1

i )(ln+1
k − ln+1

i ),(5.6)

where Ni = {i− 1, i+ 1} is the index set pointing at the direct neighbors of the node xi.
After employing (5.6) for the discretization of the equation for cancer cells we get

Acc
n+1 = cn + ϑ̃

ñ
c , (5.7)

with the (k + 1)× (k + 1) tridiagonal matrix Ac and the vector ϑ̃
ñ
c of length k + 1 which

has entries ∆tµc(1− cni − η1v
n+1
i ) for i = 0, 1, 2, ..., k.

In our simulations we fixed the following parameters:

Dc = 10−3, DH = 1, Dk = 0.5, µc = 1, η1 = 0.05,

δv = 10, µv = 0.3, η2 = 0.9, α = 1, δl = 0.05, β = 0.15,

k1 = 2, k−1 = 0.06, k2 = 0.31, k−2 = 0.048, q = 3, M = 1,

which are chosen from the parameter ranges given in Table 1.

Parameters Range Source

Dc (Diffusion coefficient for c) 10−5 − 10−3 [9]
DH (Haptotaxis coefficient) 10−3 − 1 consistent with [9]
Dk (Chemotaxis coefficient) 10−3 − 1 consistent with [9]
µc (Proliferation of cancer cells) 0.05− 2 [9]
δv (Rate of degradation of ECM) 1-20 [9]
µv (Proliferation of ECM) 0.15-2.5 [9]
α (Diffusion coefficient for l) 0.001− 1 [9]
β (Decay of l) 0.13− 0.95 [9]
δl (Production rate of l) 0.05− 1 [9]
k2 (association rate constant for y2) 3× 10−1 − 1 consistent with [11]
k−2 (dissociation rate constant for y2) 4× 10−2 − 10−1 consistent with [11]

Table 1: Parameter ranges in the model

We illustrate the variations of the cancer cell density, ECM density, concentration of
proteolytic rests, and contractivity function in space. As mentioned in Section 2, the cell
contractivity is the outcome of a sequence of biochemical processes and thus we introduce
a delay (τ) in our system characterizing the time elapsed between integrin binding and the
reorganization of the cell’s shape by contractivity. In order to see the effect of the delay
we draw the set of plots in Figure 2. We show the evolution of cancer cells, ECM fibers,
protelytic rests, and contractivity function at different times with a time lag τ = 4 and
respectively without delay. As expected, the invasion of cancer cells is faster in the case
without delay.
Still in the case with a time lag of τ = 4, we are now interested in the effects of including
subcellular dynamics. To this aim we compare the pure macroscopic setting (hence κ = 1)
with our multiscale model (4.2). The simulations are shown for a sequence of time steps in
Figure 3. Observe that accounting for the subcellular dynamics slows down the invasion
of tumor cells into the tissue, but leads at later times to higher peaks of the aggregates at
the invasion front. This is what one would expect from a qualitative point of view, too.

21



The genuinely macroscopic setting also seems to exacerbate the tissue degradation, while
the two settings do not appear to make any difference to the concentration of proteolytic
enzymes. Furthermore, notice that ignoring the microscale predicts a decrease in the orig-
inal tumor, which is actually not expected in practice.
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Figure 2: Evolution of tumor cell density (blue), ECM fiber density (red), concentration
of proteolytic rests (green), and contractivity function (purple) in the cases with τ = 0
(dash-dot line) and with τ = 4 (solid line).
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Figure 3: Evolution of tumor cell density (blue), ECM fiber density (red), concentration
of proteolytic rests (green), and contractivity function (purple) in the pure macroscopic
setting (dash-dot line) and with κ (solid line) satisfying the last equation in (4.2).
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6 Discussion

In this work we proposed and analyzed a mathematical model for tumor cell migration
through tissue networks, influenced both by haptotaxis and chemotaxis. Our multiscale
setting is connecting the macroscopic level of cell population, fiber density, and chemoat-
tractant concentration with the microscopic one of integrin binding dynamics. The cou-
pling is realized with the aid of a contractivity function involved in the diffusion and
haptotaxis coefficients of the cancer cell equation written on the macroscale. The time
lag between integrin binding and translation of the initiated signal into motile behavior
of the cell population is accounted for via a delay term in the equation for the contrac-
tivity function. The multiscality and the coupling between different types of equations
increase the complexity of the resulting system, for which we proved the (local) existence
of a unique solution. Due to the lack of a priori bounds for the cancer cell density, the
global existence result is still out of reach unless generous assumptions are made on the
problem’s data, which, however, are usually not satisfied in the framework of a concrete
biological problem inferring a large variety of fluctuations.

But including microscale dynamics is not only interesting from a mathematical point of
view; it can help gaining a deeper insight into the processes involved in and influenced by
tumor cell migration. Hence, the cell-ECM interaction modeled by integrin dynamics as in
(2.4) has been found to play a crucial role in explaining fingering patterns for glioma [12] in
a micro-meso setting, while in the context of bacterial motion the intracellular excitation-
adaptation mechanism was shown to influence the motile, aggregation or tactic behavior
of the corresponding cell population, see, e.g., [34, 32]. The model proposed in [26] in
order to assess the effects of heat shock proteins (HSP) on tumor invasion also aligns to
the micro-macro approach proposed in this work, however, it provides a much simplified,
rather phenomenological description of the events on the subcellular level connected to
HSP dynamics.

The numerical simulations and the comparisons performed in Section 5 illustrate the effects
of introducing the microscopic dynamics: the ’classical’, purely macroscopic diffusion-
haptotaxis-chemotaxis model overestimates the effective distance invaded in the tissue
by the cancer cells and underestimates the peaks of their aggregates at the front of the
invasion for later times. Furthermore, that setting predicts a decrease in the original
tumor, which seems unrealistic from a biological point of view.

Finally, we would like to stress out that the model presented here is merely a paradigm
for further multiscale settings, in which enhanced attention can be paid to a more detailed
description of subcellular events and hence to their effects on the population spread. The
validation of the model predictions would be desirable, which calls for the availability of
adequate medical data.
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