ABOUT CHANGING THE ORDERING
DURING
KNUTH-BENDIX COMPLETION

Andrea Sattler-Klein
Fachbereich Informatik, Universitat Kaiserslautern

D-67653 Kaiserslautern, Germany

email: sattler@informatik.uni-kl.de

Abstract. We will answer a question posed in [DJK91], and will show that Huet’s completion
algorithm [Hu81] becomes incomplete, i.e. it may generate a term rewriting system that is not
confluent, if it is modified in a way that the reduction ordering used for completion can be
changed during completion provided that the new ordering is compatible with the actual rules.
In particular, we will show that this problem may not only arise if the modified completion
algorithm does not terminate: Even if the algorithm terminates without failure, the generated
finite noetherian term rewriting system may be non-confluent. Most existing implementations
of the Knuth-Bendix algorithm provide the user with help in choosing a reduction ordering: If
an unorientable equation is encountered, then the user has many options, especially, the one
to orient the equation manually. The integration of this feature is based on the widespread
assumption that, if equations are oriented by hand during completion and the completion
process terminates with success, then the generated finite system is a maybe nonterminating
but locally confluent system (see e.g. [KZ89]). Our examples will show that this assumption
is not true.

1 Introduction

The Knuth-Bendix completion procedure is an important deduction tool for term rewriting
systems. Given a (finite) set of equations £ and a reduction ordering > as input, the Knuth-
Bendix completion procedure tries to generate a complete (confluent and terminating) term
rewriting system R that presents the same equational theory as £. The basic steps of the com-
pletion procedure are the computation of certain equational consequences and the generation
of rewrite rules by orienting equations according to the given reduction ordering. The com-
pletion procedure may either terminate with success, i.e. it generates a finite complete term
rewriting system R equivalent to £, or with failure, or it may not terminate. In the latter case
it computes successive approximations Ro, R1, R2, ... of an infinite complete system R which
is equivalent to £. If the completion procedure terminates with success, then the generated
finite complete system R can be used to decide the word problem of £, since then two terms
are equivalent if and only if their normal forms w.r.t. R are the same.

Correctness of a specific version of the Knuth-Bendix completion procedure was first proved
by Huet [Hu81]. In [BDH86] Bachmair et al. introduced a more abstract approach: They
formalized the notion of completion within the framework of an equational inference system
and introduced the notion of proof orderings for proving correctness of a completion proce-
dure. Moreover, they proved the correctness of a large class of completion procedures. The
proof of Huet as well as the one of Bachmair et al. is based essentially on the fact that all
rules generated during a completion process are oriented according to the same reduction or-
dering >: Huet’s proof is based mainly on noetherian induction using the reduction ordering
>. Bachmair et al. used a proof ordering that is an extension of > for their proof.

The requirement to use a fixed reduction ordering during completion guarantees that the
successively generated systems Rg, R1, Ra, ... are noetherian. One may wonder if a completion
procedure remains correct if it is only required that the systems Rg, R1, Rg, ... are noetherian,
instead of requiring that the termination of these systems can be proved using the same
reduction ordering. From a practical point of view this would be a desirable property, since it
would allow to change the reduction ordering during completion. In general, it is not easy to
choose an appropriate reduction ordering for a set £ of equations. A completion procedure will
fail if it tries to orient an equation and the corresponding terms are incomparable w.r.t. the
given reduction ordering. Sometimes failure cannot be avoided, e.g. if £ cannot be presented by
a complete term rewriting system. But even if failure can be avoided, completion may fail. If
an equation cannot be oriented w.r.t. the given ordering, then in many cases this problem could
be circumvented by choosing another ordering. But instead restarting the completion process
for £ with a new reduction ordering, one would prefer to carry out the completion process in an
incremental fashion, i.e. to continue completion with the new ordering without recomputing
critical pairs between rules that have been previously considered. Which requirements are
needed to ensure that completion remains correct under these modifications? Obviously, the
new ordering should be compatible with the actual term rewriting system in order to guarantee
that the system is terminating. Is this requirement strong enough to guarantee correctness of
this procedure?

In practice, the Knuth-Bendix algorithm is usually used interactively. One reason for human
interaction is to specify incrementally the reduction ordering during completion, i.e. to step-
wise refine the reduction ordering given as input if needed. In current implementations of
completion based methods, like for example in the system RRL [KZ89], the user cannot only

refine the actual reduction ordering during completion, but also orient equations that are not
comparable w.r.t. the actual ordering by hand. This feature allows to delay testing for ter-
mination until all critical pairs have been considered as proposed e.g. in [De89]. In that case
it is no longer guaranteed that the resulting system as well as the intermediately generated
systems are terminating, and hence, a completion process may not terminate due to the com-
putation of an infinite reduction sequence. Methods that can be used to detect certain kinds
of non-termination in rewriting have been proposed by Plaisted [P186] and Purdom [Pu87].
However, what about a successful computation in case that the termination test is delayed? Is
the resulting term rewriting system confluent if it is noetherian, i.e. is it locally confluent, as
often implicitly used in the literature (see e.g. [De89], [Pu87]) and explicitly stated for example
in [KZ89]? Of course, this is true if interreduction is not used during completion, since then a
critical pair that is joinable in an intermediate system will be joinable in the resulting system
as well. In practice, interreduction is essential for reasons of efficiency. But, if interreduction
is used, then a rule that is used to resolve a critical pair during completion may not exist in
the final system. Will the final system yet be confluent?

In this paper we will consider these questions and analyse which problems may arise if a com-
pletion algorithm is modified in the ways described. Doing this we will focus our attention
on string rewriting systems. String rewriting systems can be viewed as special term rewriting
systems, namely such term rewriting systems where only unary function symbols occur. Usu-
ally, in order to complete a string rewriting system, a total reduction ordering is used. Hence,
in this case failure cannot arise, and a completion procedure will generate a (maybe infinite)
complete string rewriting system. But also if a string rewriting system is completed, it would
be desirable to have the possibility to change the ordering during completion in an incremental
fashion, since in this way divergence of completion, i.e. non-termination of completion, may
sometimes be avoided too [He88].

It will turn out that a lot of problems may arise, if it is allowed to change the ordering
during completion, as mentioned above, even if the input is restricted to string rewriting
systems. Even if interreduction is not being used, this modified completion algorithm is
not correct: If the algorithm does not terminate, i.e. if it enumerates an infinite system,
then this infinite system can be non-confluent. This is due to the fact that the generated
system can be non-noetherian, and hence, local confluence and confluence may not coincide.
Concerning interreduction we will prove the following result: If interreduction is used and a
corresponding modified completion process does not terminate, then the generated system may
not even be equivalent to the initial set of equations. Moreover, the corresponding modified
completion algorithm is not even partially correct in the sense that the generated system will
be complete whenever the algorithm terminates with success. Obviously, the generated system
is noetherian in that case. But, as we will show, it does not need to be locally confluent, since
rules that have been used to resolve critical pairs during completion may have been deleted by
interreduction. The example that we will construct to illustrate this phenomenon is not only
interesting from a theoretical point of view, because neither artificial reduction orderings nor
an artificial completion strategy are used within: The example is based on only two recursive
path orderings [De82] and Huet’s completion algorithm [Hu81].

These results give an answer to one of the 'open problems’ listed in [DJK91] (which is still open
(see [DJK93])), asking for an example showing that Huet’s completion algorithm [Hu81] be-
comes incomplete, if one allows to change the reduction ordering during completion, provided
the new ordering is compatible with the actual rules. Moreover, one of our examples disproves

the widespread assumption which says that even if termination is not guaranteed during com-
pletion, local confluence will be assured as soon as all critical pairs have been considered (see
e.g. [KZ89]). Hence our results may affect the correctness of existing implementations of
completion that provide the option to orient equations by hand.

2 Basic Definitions and Notations

Here we recall the basic definitions and notation that we will use in the following in brief. For
further reading concerning string rewriting systems we refer to [Bo87] , [BO93] and [Ja88].

Let X be a finite alphabet. Then %* denotes the set of all strings over Y including the empty
string €. A string rewriting system (SRS in short) R over ¥ is a subset of ¥* x ¥*. Its elements
are called (rewrite) rules and are also written as [— r instead of (I,7). A SRS R induces a
one-step reduction relation —x on X* which is defined in the following way: For z,y € X%,
x —x y if and only if there exist two strings u, v € ¥* and a rule [— r € R such that 2 = ulv
and y = urv. The reflexive and transitive closure of —g is denoted by —x. If z>xy, then
we say that z reduces to y and that y is a descendant of z. A string x is called irreducible
(modulo R) if # —x y does not hold for any string y. If z reduces to y and y is irreducible
then y is called a normal form of z.

Analogously to =g, <x denotes the reflexive, symmetric and transitive closure of —x. This
relation is called the Thue-congruence induced by R. Two SRSs are called equivalent if they
induce the same Thue-congruence.

Given a SRS R an important problem is its word problem, that is to decide whether or not
two arbitrary strings z,y are congruent (modulo R), i.e. 2&zy. The word problem for a
SRS R can be undecidable even if R is finite. But it is decidable if R is finite, noetherian
and confluent: Here a string rewriting system R is called noetherian if no infinite chain of the
form zg—prz1—RETy—R... exists, and it is called confluent if, for all z,y,z € X*, the following
holds: if y and z are descendants of & then they are joinable (i.e., y and z have a common
descendant). String rewriting systems that are both, noetherian and confluent, are called
complete or convergent. If a SRS R is complete, then each string has a unique normal form,
and it holds that two arbitrary strings # and y are congruent (modulo R) if and only if their
normal forms (modulo R) are the same. Thus, if a SRS R is complete and in addition finite,
the word problem for R can simply be solved by reduction.

In [KB70] Knuth and Bendix have shown that a noetherian SRS R is confluent if and only if
the so called critical pairs of R are joinable. Thereby a pair of strings (¢, ¢2) is called a critical
pair of R, if there exist two rules Iy — ry and l; — 75 in R such that one of the following
conditions is satisfied: 1. [y = ulyv for some u, v € ¥*, and ¢; = ry and ¢g = urgw, 2. lhu = vl
for some u, v € ¥* with | u |<| {3 |, and ¢; = v and ¢; = vry. Thus, it is decidable whether
or not a finite and noetherian SRS R is confluent.

There remains the problem to decide if a finite SRS R is noetherian. While in general this
problem is undecidable, it is possible to transform R into an equivalent finite and noetherian
SRS R’ according to the following idea: A SRS R is noetherian if and only if there exists an
ordering > on X¥* that is admissible (i.e., v > v implies zuy > zvy for all u,v,z,y € ¥*),

wellfounded (i.e., there is no infinite descending chain ug > w1 > uz > ...) and compatible with
R (i.e., [> r holds for all rules | — r of R). Thus, given a total, wellfounded and admissible
ordering > on X*, a finite SRS R can be transformed to an equivalent, finite and noetherian
SRS R’ by orienting the rules of R according to >.

If R’ is not confluent, then there exists a critical pair (cy, ¢3) such that corresponding normal
forms ny,ny are not identical. Thus, by adding the rule ny — ng (ng — ny), if ny > ng
(ng > n1) to R’, we obtain an equivalent system R that is noetherian too. By repeating this
process for the system R” if R” is not confluent, R’ can be transformed to a (maybe infinite)
equivalent complete system. The algorithm sketched here is due to Knuth and Bendix [KB70]
and known as the Knuth-Bendiz completion algorithm (for SRSs).

One class of admissible and wellfounded orderings is the class of syllable orderings: Let > be
a total ordering on ¥ called precedence and let for u € ¥*, max(u) denote the largest letter
with respect to the precedence > that occurs in u. Then the induced syllable ordering >, is
defined as follows:

U >yl U
iff
| u |mam(uv) > | v maz(uv) or
(maz(uv) =a, |u|a=|v[a= ", ¥ =10 ... UpQUpt1, V= V14 ... VyQVp41,
and Fe e {l,...,n+1}: u; >gy v;and u; = v forall je{i+1,...,n+1}).

This syllable ordering corresponds to the well-known recursive path ordering for monadic terms
[St89].

Already in their seminal paper [KB70], Knuth and Bendix have suggested to keep all the
rules as small as possible by interreduction during the execution of their algorithm. A SRS
R is called interreduced if, for each rule [— r, r is irreducible w.r.t. R and [is irreducible
w.r.t. R—{l — r}. If > is an admissible well-ordering, then there exists a unique (possibly in-
finite) interreduced complete system that is compatible with this ordering and equivalent to R.

The original Knuth-Bendix completion algorithm given in [KB70] is defined for general term
rewriting systems. (String rewriting systems may be viewed as special term rewriting systems,
namely such term rewriting systems where only monadic terms, but no constants, occur.)
Given a set of equations and a reduction ordering > as input, the algorithm generates (provided
that it does not stop with failure) a (maybe infinite) sequence (Ro, &), (R1,&1), (Ra2, E2)...,
where Rg, R1, Ra,... are term rewriting systems and &, &1, &, ... are sets of equations, sat-
isfying: 1. R; is compatible with >, 2. i’RiU&‘ = ;’RH-JU&‘-H? 3. the set &, of persisting
equations is empty and 4. the set R, of persisting rules (a rule is called persistent if for some
j € IN it belongs to any Ry with k& > j) is complete. In the following we will call R, the limit
system or the system generated (by the Knuth-Bendix completion algorithm).

For more information about completion of term rewriting systems we refer to the literature
(see e.g. [De89]).

3 Modified Completion

In order to complete a term rewriting system a fixed reduction ordering is used. This ensures
that any of the successively generated term rewriting systems Rg, R1, Ro, ... is terminating.
As already pointed out above, an important question is whether or not a Knuth-Bendix com-
pletion procedure remains correct, if it is modified by requiring only that the generated systems
‘R; are noetherian. In the following we will call a corresponding algorithm modified completion
algorithm and a corresponding process modified completion in short.

In the present paper we will consider this problem by studying Huet’s completion algorithm,
and analyse whether or not it remains correct, if it is allowed to change the reduction ordering
during a completion process provided that the new ordering is compatible with the actual term
rewriting system. More precisely, we will analyse the correctness of the following algorithm.

MODIFIED COMPLETION ALGORITHM CA MOD1 :
Initial data: a (finite) set of equations £, and
a family of (recursive) reduction orderings (>;);cN-
o= :Rop=0;1:=0;p:=0;
loop
while &; # () do
Reduce equation : Select equation M = N in &;.
Let M| (resp. N|) be an R;-normal form of M (resp. N) obtained
by applying rules of R; in any order, until none applies.
if M| = N| then ;41 :=6; —{M =N} ; Rip1:=Ri;i:=1i+1;
else if >; is compatible with R; then
if (M| >; N|)or (N|>; M]) then
begin
if M| >; N| then A:= M| ;p:=N|
else A:=N| ;p:=M]|
Add new rule: Let K be the set of labels k& of rules of R; whose left-
hand side Ay is reducible by A — p, say to A}.
52'_|_1 =& - {ﬂ/[= JV}U {/\/ = Pk | k:Ap— pr € R; with k € ff};
pi=p+1l;
Ripii=4j i A — |51 A — py € Rowith j € KYU {pi A — p} ,
where p;- is a normal form of p; , using rules from R; U {A — p} .
The rules coming from R; are marked or unmarked as they were in
R, the new rule A — p is unmarked.
=14+ 1
end
else exitloop (failure) endif
else exitloop (failure) endif
endwhile ;
Compute critical pairs: If all rules in R; are marked, exitloop (R; complete).
Otherwise, select an unmarked rule in R;, say with label k. Let ;11 be the set of
all critical pairs computed between rule k£ and any rule of R; of label not greater
than k. Let R;41 be the same as R;, except that rule k£ is now marked.
=1+ 1
endloop

The starting point of this work was the following problem which is stated in the list of 'open
problems’ collected by Dershowitz et al. in [DJK91]:

Problem 35. Huel’s proof [Hu81] of the “completeness” of completion is predicated on the as-
sumption that the ordering supplied to completion does not change during the process. Assume
that at step © of completion, the ordering used is able to order the current rewriting relation
—R;, bul not necessarily —g, for k < i (since old rules may have been deleted by completion).
Is there an example showing that completion is then incomplete (the persisting rules are not
confluent)?

Analysing the correctness of the algorithm CA_MOD1 we will particularly direct our attention
to this problem.
The formulation of problem 35 points out that the use of interreduction might play an essential
role in that context. Hence, the question arises whether or not the algorithm CA_MODI1 is
correct, if interreduction is not used, i.e. if we replace the lines marked with () by the following
ones:

Eip1:=&—{M =N}

pi=p+1;

Riv1 ::RZ‘U{p:/\—>p}

In the present paper we also will analyse the correctness of this algorithm which we will denote
CA_MOD2.

For both algorithms we will adopt the fairness of selection hypothesis given in [Hu81]. This
hypothesis states that for every rule label k, there is an iteration ¢ such that either the rule of
label k is deleted from R;, or the rule of label k is selected at “compute critical pairs”.

In the following we will assume, until otherwise stated, that a modified completion algorithm
always is fair in that sense. Moreover, we will assume that the algorithms CA_MOD1 and
CA_MOD2 use the following simple strategies:

In order to compute critical pairs, the unmarked rule with the least label is selected. Further-
more, the sets & are implemented as queues. If a rule is overlapped with a set of rules, this
also will be done according to the labels of the rules, i.e. in the set of rules to be considered
the rule with least label has highest priority.

In case that the algorithm CA_MOD1 (CA_MOD2) terminates with success, say with the pair
(R, En), we define for any j > n, R; := R, and &; := &,.

3.1 Modified Completion without Interreduction

If interreduction is not used during completion, then the generated term rewriting systems
Ro, R1, R, ... form an increasing chain, i.e. Rg C R1 C Ry C ... holds, and we have R, =
U;eNRs. Moreover, since only equational consequences are added during completion, R is
equivalent to the input system £.

Obviously, these properties are independent of the fact that a fixed reduction ordering is used
during completion. Thus, they also hold for modified completion. In modified completion
it only is allowed to change the reduction ordering if the new ordering is compatible with
the actual rewrite system. Hence, it is guaranteed that any of the intermediately generated

systems R; is noetherian if modified completion is used. Moreover, since the successive term
rewriting systems Rg, R1, Rg, ... generated by modified completion form an increasing chain,
a critical pair that is joinable w.r.t. R; for some ¢ is also joinable w.r.t. any R; with j > 7.
Hence, since it is assumed that a fair strategy is used, R, is locally confluent. Now consider
the case that modified completion stops with success. In that case we have that the generated
finite system R, is noetherian in addition. Thus, modified completion is partially correct in
that it generates a complete system equivalent to the input system £ whenever it terminates
with success. But, what about those cases when modified completion does not terminate? Is
the generated infinite system R, complete in those cases too? We will consider this case in
the following.

The union of a family of noetherian term rewriting systems that form an increasing chain need
not be noetherian, and in fact, the systems R., generated by modified completion without
interreduction can be non-noetherian.

Example 1. Let R = {wa — ab,ac — abc}.

Obviously, R is noetherian and there is an overlap between the first rule and the second
one. The corresponding critical pair is: (abc, wabe). While abe is irreducible, wabe can be
reduced to the irreducible string abbe. Hence, R is not confluent and a Knuth-Bendix com-
pletion procedure will generate either the rule abc — abbc or the rule abbc — abe, depend-
ing on the ordering used for completion. Consider the first case: If the rule abec — abbc is
added, then the resulting system Ry = {wa — ab,ac — abe,abc — abbe} will be noethe-
rian, too. But, there will be a new overlap between this new rule and the first one: We
have wabec — abbc and wabe — wabbc — abbbe. Thus, a further rule has to be added. If
we add the rule abbc — abbbe, then the situation will be similar to the one before: The re-
sulting system Ry = {wa — ab,ac — abc,abe — abbe,abbe — abbbc} will be noetherian,
but there will be a new overlap between the rule added and the first one. Going on in
the way described, we will generate an infinite sequence of noetherian string rewriting sys-
tems Rg, Ri, Rq, ... satisfying R; = {wa — ab} U {ab"c — ab"tlc | 0 < n < i+ 1}
(i € IN). Since interreduction has not been used during the described process, we have
Reo = UienRi = {wa — ab} U {ab"c — ab™c¢ | n € IN}. Hence, Ry is not noethe-
rian.

Thus, in general modified completion is not correct, since it may generate a non-noetherian
system. As mentioned above, the generated systems R, are always locally confluent. Are
they confluent too? Note that the system R, of example 1 is confluent since it is strongly
confluent [Hu80]. For non-noetherian SRSs local confluence and confluence do not coincide.
Hence, modified completion might generate also non-confluent systems.

We know that the reduction induced by R is acyclic, since all the intermediate systems R; are
noetherian. Nevertheless, as the following example will show, R, can indeed be non-confluent.

Example 2. Tet R = {1 :uv — 2A,2 : vbc — W,3 : uW — 0,4 : Abc — abbc,b : wa —
Ab,6: wA — ab,7:2a — 0,8:0b — 0,9:0¢c— 0,10: 2A — O0,11: 0b— 0,12: 0Oc — O}.

R is noetherian. There are 3 overlaps: Rule 1 overlaps with rule 2, and rule 4 overlaps with
rule 6 and 10. Overlapping rule 1 with rule 2 yields the critical pair (zAbc,uW'), which is
joinable in the following way: xAbec — zabbe — obbc — obc — oc — o — uW. Overlapping
rule 4 with rule 6 yields the critical pair (abbc, wabbc). While abbe is irreducible, wabbe will
be reduced to the irreducible string Abbbc using rule 5. Adding the rule abbe — Abbbc will

result in the noetherian system Ry = R U {abbc — Abbbc}. Overlapping rule 4 with rule
10 results in the critical pair (Obc, zabbc), which is joinable, since Obe — Obbc — Obbbe —
x Abbbe — zabbc. The rule added overlaps with rule 5 and with rule 7. The corresponding
critical pairs are (Abbbe, wAbbbe) and (obbe, x Abbbc). Abbbe is irreducible and wAbbbe can be
reduced to abbbbe, which is irreducible too. Adding the rule Abbbec — abbbbe will result in the
system Ry = RU{abbc — Abbbe, Abbbe — abbbbc}, which is noetherian. In R the critical pair
(obbc, x Abbbc) is joinable: obbe — obbbe — obbbbe — xabbbbe — x Abbbe. Thus in the next step
the new rule Abbbc — abbbbc will be overlapped with the other rules. In this way the infinite, lo-
cally confluent system Ro, = RU{ab"c — Ab"tlc|n > 2, neven JU{Ab"c — ab™tlc|n >3, n
odd} will be generated. Since 0 — uW — uvbe — xAbc — Obc — Oc — O, and o and O are
R o-irreducible, R, is not confluent.

In the examples 1 and 2 we have used a very simple modified completion algorithm. It can be
easily checked that the algorithm CA_MOD?2 will generate the same infinite systems in these
cases if appropriate reduction orderings are chosen. Thus, the algorithm CA_MOD?2 is not
correct in general.

Usually, the reduction orderings used for completion belong to the class of simplification or-
derings [De82]. Termination of the systems R; that have been constructed in the previous
examples cannot be proved using simplification orderings: In example 1 the initial system
R, and hence, any of the successively generated systems R;, is self-embedding and thus not
compatible with a simplification ordering. In example 2 any of the systems R; contains the
set {Abc — abbe, abbc — Abbbc}. Since any simplification ordering contains the homeomorphic
embedding relation, we have that the string Abbbe is greater than the string Abc w.r.t. any
simplification ordering. Hence any SRS containing the rules Abc — abbe, abbc — Abbbe is not
compatible w.r.t. a simplification ordering.

As mentioned before, one class of orderings often used to complete SRSs is the class of syllable
orderings. Since syllable orderings are simplification orderings, they cannot be used to prove
termination in the previous examples. Thus, the question arises whether or not similar phe-
nomena may occur, if we restrict the reduction orderings that may be used during modified
completion to the class of syllable orderings.

If R is a finite SRS and X the underlying alphabet, then there are only finitely many, namely
| X |!, different syllable orderings on ¥*. But, if the family (>;);cy of reduction orderings
used during a modified completion process is restricted to a finite set and if in addition in-
terreduction is not used, then one of these orderings is compatible with any of the successively
generated systems R; and thus with the set R.,. Hence, modified completion without interre-
duction is correct if the reduction orderings >; (7 € IN) given as input belong to a finite set.

We conclude this section with the following theorem that summarizes the main results obtained
so far.

Theorem 3.1 For the algorithm CA_MOD2 holds:

1. The algorithm CA_MOD2 is not correct in general: If it terminates on input (£,(>;);cIN),
then the generaled finile system R, is complete and equivalent to &, bul otherwise il
may generale an equivalent infinite system R, thal is neither noetherian nor confluent.

2. The algorithm CA_MOD?Z2 is correct for string rewriting systems and the class of syllable
orderings: If it is started on input (€,(>;);cN) where £ is a string rewriting system and
(>i)ieIN s a family of syllable orderings, then the generaled system R, is noetherian,
confluent and equivalent to £.

3.2 Modified Completion with Interreduction

As shown in the previous section Huet’s completion algorithm remains correct if it is allowed to
change the reduction ordering during completion (provided that the new ordering is compati-
ble with the actual set of rules) if interreduction is not used and in addition, the orderings used
belong to the class of syllable orderings. Example 2 has illustrated that the second condition,
i.e. the restriction of the reduction orderings to the class of syllable orderings, is essential for
the correctness of this modified completion algorithm. What about the first condition not to
use interreduction during completion? Is this requirement essential for the correctness of the
algorithm, too?

In this section we will consider this question and analyse the correctness of the algorithm
CA_MOD1. But before investigating this special algorithm, let us first consider example 1
again and analyse what will happen if interreduction is incorporated in the simple algorithm
used there.

Example 3. Let R = {wa — ab, ac — abc}.

As mentioned in example 1 a Knuth-Bendix algorithm may generate the rule abe — abbe by
overlapping. Now, this new rule could be used to reduce the right hand side of the second rule.
In this way we obtain the noetherian system Rg = {wa — ab, ac — abbe, abc — abbe}. Again,
there is an overlap between the new rule, and the first one and the rule abbc — abbbc may be
generated. If interreduction is used, then this rule will be used to reduce the right hand sides
of the second and the third rule. This yields Ry = {wa — ab, ac — abbbc, abc — abbbc, abbe —
abbbe}. The new rule overlaps with the first rule too, and this overlap may result in the rule
abbbc — abbbbc, which could be used for interreduction. Using the strategy described, we may
generate an infinite sequence of noetherian string rewriting systems Rg, R1, Ra, ... satisfying
R: = {wa — ab} U {ab"c — ab*?c | 0 < n < i+ 1} (i € N). Since the right hand side of
any rule different from wa — ab will be modified infinitely many times by interreduction, we
have Ro, = {wa — ab}. Hence, in this case R, is noetherian and confluent, but it is not
equivalent to R.

Thus, if interreduction is used during modified completion, then the system &£ that has been
given as input and the limit system R., that will be generated can be non-equivalent. This
phenomenon is due to the facts that the set U;.y’R; may be non-noetherian and that the
interreduction process in some sense simulates the computation of certain reduction sequences
with respect to U;cyRi. Of course, any of the intermediate systems R; (¢ € IN) is noetherian,
and hence, any reduction process that will be performed will terminate. But, if U;cyR; is not
noetherian, then the computation of a certain infinite reduction sequence w.r.t. U;cNR; may
be simulated stepwise by interreduction in the following way: A rule I — r may be simplified
to another rule which will be simplified to another one later on, and so on. Hence, neither
the original rule [— r nor one of its simplified forms will belong to the limit system R ...
Therefore, R, may be non-equivalent to R.

Example 3 differs from our intended one in the way that no syllable ordering is compatible with
R. But, the next example, which is based on a simple modified completion strategy different
from CA_MOD1, shows that even if syllable orderings are used during modified completion,
it is no longer guaranteed that the initial system and the generated limit system are equivalent.

10

Example 4. Let R = {a — b,b — ¢}.

Moreover, let 1, »5 and >3 be the syllable orderings induced by the precedence a > b > ¢,
b > c¢> aandc > a> b, respectively. R is compatible with >;. Interreduction of R may result
in Rp = {b — ¢} and & = {a = ¢}. Since Ry is compatible with >, we may use >, for the
next step, and thus, the rule ¢ — a will be added. In this way we obtain Ry = {b — ¢,¢ — a}
and & = 0 . Interreduction of Ry may result in Ry = {¢ — a} and & = {b = a} . Since R,
is compatible with >3, we may use >3 for further computations. Hence, the rule ¢ — b will
be added, and we have R3 = {¢ — a,a — b} , &3 = (). Again, the new rule can be used to
reduce the right hand side of the other rule. Interreduction of Rg results in R4y = {a — b} and
&4 = {c = b}. Now we may again change the ordering and use >1 instead of >3. In this way we
obtain Rs = R and & = (. Thus, using the strategy described, an infinite sequence (R, &),
(R1,&1), (R2,&3), ... will be generated. Since there are no persisting rules, the corresponding
limit system R, is empty. Hence, R, is not equivalent to R.

The main difference between the algorithm CA_MOD1 and the one used in example 4 is the way
how right hand sides of rules are simplified: Huet’s completion procedure [Hu81] is a standard
completion procedure in the sense of Bachmair et al. [BDHS86]. In a standard completion
procedure, and hence in the algorithm CA_MOD1, the simplification of a right hand side of a
rule results in a new rule. In contrast to this, the above used algorithm has generated a new
equation each time when a right hand side of a rule could be simplified.

If the algorithm CA_MODI1 is applied on the input system given in the last example and a
family (>;);emn of reduction orderings satisfying >q = >; and >; = >1, the following steps
will be performed: First the sets Ry = {a — b}, & = {b = ¢} will be generated. Then the
equation b = ¢ will be oriented according to the ordering >;. Thus, the rule b — ¢ will be
added. In addition, the right hand side of the rule ¢ — b will be simplified. In this way we
obtain Ry = {a — ¢,b — ¢}, & = (. Since there are no overlaps between rules of R, the
algorithm CA_MOD1 will stop with the sets R4 = R, and & = (). Hence, the generated
system T4 is complete and interreduced and it is equivalent to R.

An important fact illustrated by example 4 is that a modified completion algorithm may not be
fair, although the corresponding original completion algorithm is. If a fixed reduction ordering
is used, then the interreduction process will always terminate. Example 4 illustrates that this
is no longer true if we allow to change the reduction ordering during the interreduction process.
Hence, it is possible in that case that certain overlaps between persisting rules are not consid-
ered. For example, consider what happens if we slightly modify the input of example 4. If we
add the rules de — g and ef — ¢ and extend the orderings appropriately, then the algorithm
used may generate the sequence ({de — g,ef — g} UR;);cN instead of (R;);en. Hence the
overlap between the rules de — g¢g,ef — ¢ will never be considered. This problem can be
circumvented by requiring that the ordering only may be changed during modified completion
if the actual set of equations is empty. In that case it is guaranteed that any interreduction
process will terminate.

Another striking point in example 4 is the fact that the process described does not terminate,
although the set U;cyR; is finite. Such a phenomenon cannot arise if Huet’s completion algo-
rithm or one of its modified versions CA_MOD1 or CA_MOD?2 is used, since then a string that
is reducible at some step ¢ of the process is reducible with respect to any of the systems R;
with j > ¢. Since in addition new rules are built only from normal forms, it cannot happen that

11

a rule is generated twice if Huet’s completion algorithm or the modified versions CA_MOD1

or CA_MOD2 are used.

But even if the algorithm CA_MODI1 is used and in addition, the changes of the ordering are
restricted to those cases where the corresponding sets of equations are empty, a system that
is not equivalent to the input system can be generated.

Example 5. Let R = {1: X — egabe,2: QH — ga,3: QA — Fega,4: Qh — ga,5: qH —
a,6:qgA — ¢q,7:q9d — ¢,8:qgc — 0,9 :gh — a,10 : gb — ¢,11 : WH — Hbb,12: WA —
Add,13 : wh — hdd,14 : wA — Abb,15 : el — ¢,16 : Fego — go,17 : Hbc — Addc, 18 :
hdde — Abbbce}.
Moreover, let >1 be the syllable ordering induced by the precedence X > W > w > ¢ > ¢ >
H>h>b>d>a>c>g>e>A>F > o0and >, the syllable ordering induced by the
precedence X >W >w>@Q >q¢q>H>h>d>b>a>c>g>e>A>F > o, and let
(>i);en be defined by: >; = >1 for 0 < 4 < 39, >4041454% = >2 for 7 € N and 0 < k < 6,
and >40414j4%k = >1 for j €N and 7 < k < 13.
Claim: Given R and (>;);cN as input, the algorithm CA_MOD1 will generate an infinite
sequence (R, &), (R1,&1), (R2,&2), ... such that for all j € IN the following holds:

1) Eio4145 =

2) R40+14]‘ = 7 where
;= (R—- {1:X — egabc})
{1: X — egad®*2%c}
{Hb"c — Ad"*'c|noddand 1 <n <25+ 1}
{ab"c — o|n odd and 1 < n < 2j}
{hd"c — Ab"*lc | n even and 2 < n < 25}
{ad™c — o | n even and 2 < n < 2j}
{l;1 : hd¥*2c — ABYI+3¢}
{l;9: ab¥tle — o}
{lj5: Hb¥+3c — Ad?+4c}

U {l;4: Fegad**%c — go}

where [;1,1;2,0;3,1;4 € IN with [;1 <l;2 < l;3 <;4 and all rules except the rules
l;1, 12, ;3 and [; 4 are marked.

&=

CcCCcCcccccc

Proof. The proof can be found in the appendix. a
Analysis of the proof shows that whenever the ordering is changed the corresponding set of
equations is empty (i.e. if for some ¢ € IN, >; and >;4; are different, then &4 is empty).
As mentioned before a rule may not be generated twice during the execution of the algorithm
CA_MOD1. Hence the above claim implies that for the set R, of persisting rules the following
holds:
Reo = (R— {1:X — egabc})

U {Hb'¢c — Ad""'c|nodd and 1 < n}

U {ab"c — o|nodd and 1 < n}

U {hd"c — Ab"*'c| n even and 2 < n}

U {ad"c — o|neven and 2 < n}
Since the orderings »; and >, are both used infinitely many times during the described pro-
cess, R is compatible with both of them. Thus, R, is noetherian. But, R, is not equivalent
to the initial system R: X — egabc is an initial rule, but X and egabc are obviously not con-
gruent modulo R,.

12

It can easily be checked that the limit system R, generated in the last example is confluent.
Hence, the algorithm CA_MOD1 has generated a noetherian and confluent system in that
case. But, as mentioned before R, is not equivalent to R. This is due to the following facts:
The right hand side of rule 1 is simplified infinitely many times during the process described
(egabc % egad?c = egabc = egadic = egab®e = ...). Hence neither the original form of
rule 1 nor one of its simplified forms belong to Ro,. On the other hand, none of these rules is
redundant w.r.t. R.

Obviously, if a non-redundant rule is simplified infinitely many times, then the generated limit
system may also be non-confluent, since the crucial non-redundant rule may have been used to
resolve critical pairs. For instance, consider the following modification of example 5. Extend
the precedences used by U >V >Y > Z > F > X, and let >; and >, be the syllable
orderings induced. Moreover, add the rules UV — Y, VZ — Fgabc,YZ — X, UF — e
in a way that the overlap between the rules UV — Y and VZ — Fgabe is the first to be
considered. If the algorithm CA_MODI1 is started on this input, then the following will hap-
pen: At the moment the rules UV — Y and VZ — Fgabc are overlapped the corresponding
critical pair (Y Z,U Fgabc) is joinable in the following way: YZ — X — egabc — U Fgabe.
Since the symbols of the left hand sides of the rules added are 'new’ ones, the new rules
will not have any further influence on the execution of the algorithm CA_MODI1, i.e. the
limit system that will be generated is the union of the limit system of example 5 and the set
{UV =Y, VZ — Fgabe,YZ — X,UF — e}. Thus, the critical pair (Y Z,U Fgabc) will not
be joinable w.r.t. the limit system, i.e. the limit system is not confluent in that case.

This example already gives an answer to the problem 35 of [DJK91], but we can even give an
example where the algorithm generates an equivalent, noetherian system that is not confluent.
For this purpose let us consider example 5 again, and see what will happen if we remove the
crucial rule X — egabe. Since this rule has neither been used for overlapping nor for reduction,
the algorithm CA_MOD1 will generate the same limit system as before. Hence, in that case
the generated limit system is complete and equivalent to the input system. But nevertheless,
there is still a rule in the set U;cpyR; that is simplified infinitely many times during this mod-
ified completion process: The rule gabc — Fegad?c generated by overlapping is simplified to
the equation go = Fegad?c, which will be oriented to the rule Fegad?c — go, which will be
simplified to the equation FeFegab’c = go, which will yield the rule Fegab®c — go, which
will be simplified to the equation go = FeFegad*c, which will yield the rule Fegad*c — go,
and so on. But, in this case this infinite simplification does not affect the equational the-
ory presented by the limit system, since the rules and equations generated during this sim-
plification process are redundant: In R, the following reduction steps can be performed:
FeFegab™c — Fegab™c — Fego — go if n is odd, and FeFegad™c — Fegad"c — Fego — go
if n is even and greater than 1.

The proof of the above claim shows that the rule Fego — go will never be used for reductions
during the execution of the algorithm CA_MOD1. Moreover, it shows that this rule will be
overlapped only once and the corresponding critical pair is trivial in that case. Hence, if we
remove the rule Fego — go as well as the rule X — egabc from the input system of exam-
ple 5, the algorithm CA_MOD1 will generate the limit system R = R, — {Fego — go}
where R, is the limit system generated in example 5. Again the rule gabec — Fegadde will
be generated by overlapping and it will be simplified infinitely many times as in example
5. But the limit system R/ that will be generated is a superset of the input system and

13

hence, both systems are equivalent. In R/ the following reduction steps can be performed:
go — gabc — QHbe — QQAdde — Fegadde — Fego. Hence we have goénéo FEego. Thus, R,
is noetherian and equivalent to the input system, but it is not confluent.

In order to examine this phenomenon more closely, let us consider how the relationship between
the components of the critical pair (gabe, Q Addc) changes during the execution of the algorithm
CA_MOD1.

At the moment when the critical pair (gabe, Q Addc) is considered, the string gabc is irreducible
and the string Addc can be reduced to the irreducible string Fegaddec. Since the ordering
>1 is used in that step, the rule gabc — FEegad?c is generated, and we have the situation
illustrated in figure 5.1. Later on, the rules abc — o and Eegad®*c — go are generated. Hence
then the critical pair (gabe, Q Addc) is joinable as illustrated in figure 5.2. Note that the strings
gabc and Eegad?c are not comparable w.r.t. the reduction ordering that is induced by the
current set of rules at that moment. Hence, the ordering > can be used for further steps.
Doing this the rule gad?c — Eegab3c will be added. Then, this new rule is used to simplify
the rule Fegad®*c — go. In this way the equation FeFegab®c = go is obtained (s. figure 5.3).

QHbe QHbe QHbe
gabe QAdde gabe QAddce gabe QAddc
~ | | | |
Eegad®c go Eegad®c go Fegad®c
§§§\§¢
EeFegab3c
fig. 5.1 fig. 5.2 fig. 5.3

Next, the rule ad?c — o is added and hence, the rule gad’c — FEegab3c is being simplified
to the equation Fegab®c = go (s. figure 5.4). The equation EeFegab’c = go yields the rule
Eegab®c — go. Hence, the string EeFEegab’c can be reduced to Fego as well as to go. Now,
the critical pair (gabe, Q@ Addc) is not joinable, but it is connected below the string Q Hbc (s.
figure 5.5).

QHbe QHbe
gabe QAddce gabe QAdde
! ! | }
go E% go Eegad®c
\EeEegab3c —— Fego EeEegab?’c —— Fego
}
Eegab3c

fig. 5.4 fig. 5.5

For the next steps >; is used again. By overlapping the rule gab®>c — Eegad®c is generated.
This new rule is used for simplification and the situation illustrated in figure 5.6 arises. Then,
the rule ab®>c — o is generated by overlapping and thus, the strings gabc and Q Addc are related

14

as illustrated in figure 5.7.

b
A AR
gabc QAddc gabc QAddc

E\Legad‘? Eegad2
\
EeFEegab3c Fego Eego
\Legab?’\EeEeEegad‘lc Eegab3

E\LeEegad‘lc EeEegad*c

fig. 5.6 fig. 5.7

The equation FeFegad*c = go is simplified to the rule Eegad*c — go. Hence, the situation is
similar to the one illustrated in figure 5.5: The critical pair (gabc, Q Addc) is connected below
the string Q Hbe, but now, via the 'peak’ go & EeFEegadic — Eego (s. figure 5.8). And in
fact, at one of the subsequent steps the situation given by figure 5.9 will arise.

QHbe QHbe
gabe QAdde gabe QAdde
| J ! !
go Eegad®c go Eegad®c
Fego Fego
Eegab3c Eegab3c
EeFegadtc
J
Eegadic Eegad*c
EeFegab’c
/
Eegab®e
fig. 5.8 fig. 5.9

Hence in small steps the critical pair (gabe, Q Addc) will be being connected (w.r.t. > as well
as w.r.t. >3) below Q Hbc via the 'peaks’ go £ EeEegab™c — Eego where n € IN is an odd
number greater than 2, as well as via the 'peaks’ go & EeFegad"c — FEego where n € IN is
an even number greater than 3. Thus the original rewrite proof for gabe & Q Adde, illustrated
in figure 5.1, will be transformed infinitely many times during the execution of the algorithm
CA_MODI1, and in the generated limit system gabc and @) Addc will not be joinable.

15

The last example has shown that even if the algorithm CA_MOD1 generates an infinite, noethe-
rian system presenting the same equational theory as the input system, this limit system may
be non-confluent. There remains to check whether the algorithm CA_MOD1 at least is par-
tially correct, i.e. if it always generates correct results whenever it terminates with success.
If the algorithm CA_MODI1 terminates with success, then the finite system is noetherian and
equivalent to the input system. But even in this case, the generated system may be non-
confluent.

Example 6. Let R = {1 : zwef — zweg,2 : egc — dge,3 : zwd — zwi, 4 : ube — 0,5 :
zwige — 0,6 : zwa — u,7:abc — efc,8:z2f —€,9:hz — we,10: yb — g,11: iy — a}.

Moreover, let »; be the syllable ordering induced by the precedence z > z >y > a > [>
g>b>w>e>d>c>1>0>h>uand >3 be the syllable ordering induced by the
precedence z >z >y>¢g>a> f>b>w>e>d>c>1i>0>h>u,and let (>;),cN be
a family of syllable orderings satisfying: >; = »=1 for 0 <2 < 24 and >; = >, for 25 < ¢ < 30.
Since R is compatible with >; and R is interreduced, the algorithm CA_MOD1 will generate
the sets Ri1 = R, &1 = 0, where all rules in Rq; are unmarked. Since there are no overlaps
between rules of R — {7 : abe — efc,8 : z2f — ¢,9 : hz — we, 10 : yb — ¢g,11 : iy — a},
we have Ri7 = R, &7 = (), where all rules of Rq7 except the rules 7, 8, 9, 10 and 11 are
marked. Hence, in the next step the rule 7 will be marked and all critical pairs between
the rule 7 and the rules 1-7 will be computed. Rule 7 only overlaps with rule 6. The cor-
responding critical pair is (ubc,zwefc). Thus we obtain Riz = R, where all rules except
the rules 8-11 are marked, and &5 = {ubc = zwefc}. Since the critical pair (ubc, zwefc) is
joinable (ubc — o — zwige — zwdgc — zwege — zwefc) the following holds: Rqi9 = R and
E19 = 0. In the next step rule 8 will be marked and the corresponding critical pairs will be
computed. Since there are no overlaps between rule 8 and the rules 1-8, we obtain Ryg = R,
&0 = 0, where all rules except the rules 9-11 are marked. Rule 9 overlaps only with rule 8.
The corresponding critical pair is (wef, h). Thus, we have Ryy = R and & = {wef = h}.
Since wef and h are irreducible w.r.t. Ryy and wef =1 h, the rule 12 : wef — h will be
added. Now this new rule will be used to reduce the left hand side of the first rule. This
gives Roz = (R — {1 : awef — zweg}) U {12 : wef — h} and &y = {zweg = xh}. Since
zweg and zh are irreducible w.r.t. Ry and zweg =1 xh, the rule 13 : zweg — zh will be
added. This yields: Ra3 = (R — {1 : zwef — zweg})U {12 : wef — h,13 : zweg — zh}
and &3 = (), where all rules except the rules 10-13 are marked. Since there are no over-
laps between rule 10 and the rules 1-10, the sets Ryq4 = Ro3 and Ey = @ will be gener-
ated. In the next step rule 11 will be overlapped with rule 10. This gives Ro5 = Rz and
Eys = {ab = ig}. Rgs is compatible with >5. Hence, > can be used for the next step.
Since ab and ig are Ros-irreducible and ig >9 ab, the rule 14 : ig — ab will be generated.
This new rule will be used to reduce the left hand side of rule 5. In this way we obtain
Raos = {2 : egc — dge,3 : zwd — zwi, 4 : ube — 0,6 : zwa — u,7 : abc — efc,8: zf — ¢,
9:hz — we, 10 : yb — ¢g,11 : iy — a,12 : wef — h,13 : zweg — zh,14 : ig — ab} and
&6 = {zwabe = o}. Since zwabe — ubc — o, the sets Ror = Rag and 37 =) will be gener-
ated. Rule 12 does not overlap with any of the rules 1-12. Therefore we obtain Rqog = Rog and
Er8 = 0, where all rules except the rules 13 and 14 are marked. Next, rule 13 will be marked.
Rule 13 only overlaps with rule 2. The corresponding critical pair (zhe, zwdge) is joinable in
the following way: zwdge — zwige — zwabe — xwefc — xhe. Hence, we have Rag = Rog and
E39 = 0. Since rule 14 does not overlap with any of the other rules, the algorithm CA_MOD1
will stop with the sets R3g = Rag and E3g =). Hence, R, = Rag. But Rag is not confluent:
0 & zhe (since 0 «— ubc — zwabe — zwefc — zhe), and o and zhe are Rog-irreducible.

16

Thus, even if the algorithm CA_MOD1 terminates with success, the generated noetherian
system can be non-confluent.

In order to illustrate this phenomenon, let us consider how the relationship between the strings
ubc and zwefe (which form a critical pair) changes during the described process: At the
moment of the process when this critical pair is considered it is joinable (see figure 6.1). Later
on, the rule 1 : zwef — zweg that has been used to solve the critical pair (ubc,zwefc) is
simplified. Therefore, the critical pair is no longer joinable, but it is connected below zwabc
with respect to >1 as illustrated in figure 6.2.

zwabe zwabe
ubc zwefe ubc zwefe
!
rwege rwege
T2
zwdge rwdgc xhe
. I
rwige rwige
0 0
fig. 6.1 fig. 6.2

In one of the further steps the ordering used is changed such that ¢g is greater than ab with
respect to the new ordering. In order toillustrate this fact, we have rewritten the graph of figure
6.2 to the one of figure 6.3. During the following steps the rule ¢g — ab will be generated by
overlapping. Thus, the rule 5 : zwige — o will be deleted, and the situation illustrated in
figure 6.4 arises. In the graph of figure 6.4 there are two 'peaks’. For the corresponding critical
pairs the following holds: The critical pair (ubc, zwe fc) has already been considered and the
critical pair (zwdge, zhe) is joinable. But, nevertheless the critical pair (ubc,zwefc) is not
joinable any more.

rwege rwege
rwdgc rwdgc
| |
zwige rwige
T
zwabe zwabe
ubc rwefc ubc rwefc
zhe zhe
0 0
fig. 6.3 fig. 6.4

17

Concluding our analysis of the correctness of the algorithm CA_MOD1 we summarize the
results obtained.

Theorem 3.2 The algorithm CA_MODI1 is not correct:

1. If it does not terminate on inpul (£,(>;);cN), then the generated infinite system R,
may be non-equivalent to £. In addition, R, may or may not be confluent.

2. If it terminates on input (€,(>;);cIN), then the generated finite system R, is noetherian
and equivalent to £, bul it may be non-confluent.

4 Concluding Remarks

We have analysed whether or not Huet’s algorithm remains correct if it is modified in the
following way:

Instead of one (recursive) reduction ordering, a family (>;);c of (recursive) reduction order-
ings is required as input. If the equation that is considered at step i of the algorithm is not
trivial, the algorithm will proceed as follows. It will stop with failure if the ordering >; is not
compatible with the actual set of rules R;. Otherwise, the equation under consideration will
be oriented w.r.t. >; if possible.

We have shown that this variant of Huet’s completion algorithm is not correct regardless of
the fact whether or not interreduction is used within. In particular, we have proved that in
case interreduction is used the algorithm is not even partially correct: Even if the algorithm
terminates with success, the generated finite, noetherian system may be non-confluent.

Since a finite term rewriting system R is noetherian if and only if there exists a (recursive)
reduction ordering that is compatible with R, the same systems can be generated if we modify
Huet’s algorithm as follows:

Instead of using a reduction ordering to ensure termination of the successively generated term
rewriting systems, we allow to choose an arbitrary orientation of the equations. If the resulting
system can be proved to be noetherian (using a certain method), the algorithm will continue
in the usual way. Otherwise, the algorithm will terminate with failure.

This variant of the Knuth-Bendix completion algorithm (apart from slight modifications) has
been considered several times in the literature (see e.g. [BL82], [HO80], [P186], [KKW89]).
In these versions usually interreduction is not used and the authors restrict their attention
to those cases where the algorithm considered terminates with success. Of course, a system
generated in that way is finite, complete and equivalent to the corresponding input.

Our examples show that one must be careful if these restrictions are not included. Even
if interreduction is not used, an infinite, non-noetherian and non-confluent term rewriting
system may be generated in that way. Hence, in contrast to the usual completion algorithm,
the modified algorithm cannot be used as a semidecision procedure for the word problem of the
input system. Moreover, if interreduction is incorporated, a lot of problems may arise. The
generated limit system may be non-equivalent to the corresponding input, or even noetherian
and equivalent to the input system, but not confluent. Example 6 has shown that the latter
case even may arise if the algorithm terminates with success.

18

While Huet and Oppen state in [HO80] that in case that the algorithm terminates with success
the generated system is locally confluent, in [Hu81] Huet makes the following brief remark:
?The proof turned out to be more difficult than we had expected, and revealed critical condi-
tions for the justification of rewrite rules simplifications, which may not be met by existing
implementations. In particular, it is not enough to require that all the successive term rewrit-
ing systems R1, Ra, ... constructed by the algorithm be noetherian. They must be terminaling
for the same reason; i.e. there must exist some uniform reduction ordering > showing the
termination of all these sets.”. But unfortunately, Huet does not explain why this restriction
is needed.

Apart from this remark we are not aware of any other hints in the literature that Huet’s algo-
rithm becomes incorrect if it is modified in the way described. On the contrary, usually it is
assumed that the modified completion algorithm is at least partially correct in that it gener-
ates a complete system equivalent to the corresponding input system whenever it terminates
with success. Example 6 disproves this widespread assumption.

These results also are important from a practical point of view, since most existing imple-
mentations of the Knuth-Bendix algorithm provide the option to orient equations by hand.
Example 6 shows that in case this option is used during a completion process and the corre-
sponding process terminates with success, the only thing we can conclude for the generated
system is that it is equivalent to the input system, nothing more.

This observation may affect the correctness of existing implementations of the completion al-
gorithm. For example, we have run example 6 with the system RRL (version 4.1) [KZ89] using
the option to orient equations manually. By choosing the parameters ’option critical pick f’,
‘option norm m’ (which determine the strategy used for computing critical pairs as well as
the normalization strategy) we obtained the same result as in example 6 but with the remark:
”Your system is locally-confluent”.

Acknowledgement: I would like to thank Klaus Madlener and Birgit Reinert for their
valuable comments on a previous version of this paper.

References

[BL82] B. Buchberger, R. Loos. Algebraic simplification. In: Computer Algebra (Springer,
Berlin, 1982), 11-43.

[BDHR6] L. Bachmair, N. Dershowitz, J. Hsiang. Orderings for equational proofs. In: Proc.
IEEE Symposium on Logic in Computer Science, Cambridge, MA, 1986, 346-357.

[Bo87] R.V. Book. Thue systems as rewriting systems. Journal Symbolic Computation 3
(1987), 39-68.

[BO93] R.V. Book, F. Otto. String-Rewriting Systems. Texts and Monographs in Computer
Science (Springer, New York, 1993).

[De82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science
17(3) (1982), 279-301.

19

[De89] N. Dershowitz. Completion and its applications. In: H. Ait-Kaci and M. Nivat (eds.):
Resolution of Equations in Algebraic Structures, Vol. II: Rewriting Techniques (Academic
Press, New York, 1989), 31-86.

[DJKI91] N. Dershowitz, J.-P. Jouannaud, J.W. Klop. Open Problems in Rewriting. In: Proc.
Fourth International Conference on Rewrilting Techniques and Applications, Como, Italy,
Lecture Notes in Computer Science 488 (Springer, Berlin, 1991), 445-456.

[DJK93] N. Dershowitz, J.-P. Jouannaud, J.W. Klop. More Problems in Rewriting. In:
Proc. Fifth International Conference on Rewriting Techniques and Applications, Montreal,
Canada, Lecture Notes in Computer Science 690 (Springer, Berlin, 1993), 468-487.

[He88] M. Hermann. Vademecum of divergent term rewriting systems. CRIN Report 88-R-082
(Centre de Recherche en Informatique de Nancy, 1988).

[HO80] G. Huet, D.C. Oppen: Equations and rewrite rules: A survey. In: R. Book (ed.):
Formal Language Theory: Perspectives and Open Problems (Academic Press, New York,
1980), 349-405.

[Hu80] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM 27(4) (1980), 797-821.

[Hu81] G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm.
Journal Computer and System Science 23(1) (1981), 11-21.

[Ja88] M. Jantzen. Confluent String Rewriting. EATCS Monographs on Theoretical Computer
Science Vol. 14 (Springer, Berlin - Heidelberg, 1988).

[KB70] D.E. Knuth, P. Bendix. Simple word problems in universal algebras. In: J. Leech (ed.):
Computational Problems in Abstract Algebra (Pergamon, New York, 1970), 263-297.

[KKW89] A. Kandri-Rody, D. Kapur, F. Winkler. Knuth-Bendix procedure and Buchberger
algorithm - A Synthesis. In: Proc. International Symposium on Symbolic and Algebraic
Computation, Portland, Oregon, 1989, 55-67.

[KZ89] D. Kapur, H. Zhang. RRL: Rewrite Rule Laboratory - User’s Manual, GE Corporate
Research and Development Report, Schenectady, New York, 1987 (revised version: May
1989).

[P186] D.A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In: Proc.
Eighth International Conference on Automated Deduction, Oxford, England, Lecture Notes
in Computer Science 230 (Springer, Berlin, 1986), 79-88.

[Pu87] P. Purdom. Detecting loop simplifications. In: Proc. Second International Conference
on Rewriting Techniques and Applications, Bordeaux, France, Lecture Notes in Computer
Science 256 (Springer, Berlin, 1987), 54-61.

[St89] J. Steinbach. Comparing on Strings: Iterated Syllable Ordering and Recursive Path
Orderings. SEKI Report SR-89-15 (Universitat Kaiserslautern, 1989).

20

Appendix

Example 5. Let R = {1: X — egabe,2: QH — ga,3: QA — Fega,4: Qh — ga,5: qH —
a,6:qA — q,7:¢d — ¢,8:qgc — 0,9 :gh — a,10 : gb — ¢, 11 : WH — Hbb,12: WA —
Add,13 : wh — hdd,14 : wA — Abb,15 : eF — ¢,16 : Fego — go,17 : Hbc — Addc, 18 :
hdde — Abbbc}.

Moreover, let 1 be the syllable ordering induced by the precedence X > W > w > @ > ¢ >
H>h>b>d>a>c¢c>¢g>e>A>F > o0 and >, the syllable ordering induced by the
precedence X >W >w>@Q >¢g>H>h>d>b>a>c>g>e>A>F > o,and let
(>i);eN be defined by: >; =1 for 0 <4 < 39, >40414j4% = >2 for j € N and 0 < k < 6,
and >40414j4% = >1 for j€ N and 7 < k < 13.

Claim: Given R and (>;);cN as input, the algorithm CA_MODI1 will generate an infinite
sequence (R, &), (R1,&1), (Ra,E2), ... such that for all j € IN the following holds:

1) Eso4145 = 0
2) Raoy14; = R; where
Ri= (R— {1:X — egabc})
{1: X — egad®*%c}
{Hb"¢c — Ad"*lc|nodd and 1 <n <25+ 1}
{ab"c¢ — o|n odd and 1 < n < 2j}
{hd"c — Ab"*1c | n even and 2 < n < 25}
{ad™c — o | n even and 2 < n < 2j}
{l;1 : hd¥*2c — ABY*3c)
{l;2: ab¥tlc — o}
{l;5: Hb¥ 3¢ — Ad¥H4c}
U {lj4: Eegad**%c — go}
where [;1,1;9,0;3,1;4 € IN with [;1 < l;2 < l;3 < ;4 and all rules except the rules
L1, 12, ;3 and [; 4 are marked.

&

CcC CccCcccccc

Proof. The proof is done by induction on j.

Let (Ro, &), (R1,&1), (R2,&32), ... be the sets that are generated by the algorithm CA_MOD1
if it is started on input R and (>;);cN-

(Note that for any j € IN, ﬁj is compatible with >, as well as with >5. Therefore, we will
check the orientation of a rule generated by the algorithm CA_MOD1 only if the rule does not
belong to any of these sets.)

Induction basis: Since R is interreduced and compatible with 1, it holds that

Ris = R 3
518 :® 9

where all rules in Ry are unmarked. There are no overlaps between rules of R — {16 : Fego —
go,17: Hbe — Adde, 18 : hdde — Abbbc}. Hence, we have

7333:737
E3z3 = 0

bl

where all rules of R33 except the rules 16, 17 and 18 are marked. In the next step rule 16 will
be marked and all critical pairs between rule 16 and the rules 1-16 will be computed. Rule 16
only overlaps with rule 15. This overlap yields the trivial critical pair (ego,ego). Hence, the
algorithm CA_MOD1 generates the sets

21

Rss = R,
&5 = 0

bl

where all rules of R35 except the rules 17 and 18 are marked. In the next step the rule 17 will be
considered. Rule 17 only overlaps with the rules 2, 5 and 11. The corresponding set of critical
pairs is 3 = {gabc = QAddc,abc = qAdde, Hbbbc = W Adde}. Consider the critical pair
gabe = Q) Adde. While gabe is irreducible, the string) Adde can be reduced to the irreducible
string Fegadde. Since >3 = »1 and gabe >1 Fegadde, the rule 19 : gabe — Fegadde will be
generated. This new rule will be used to simplify rule 1. In this way we obtain

Rsr = (R—{1:X — egabc})
U {19:gabc — Fegadde, 1 : X — egadde}
&7 = {abc = qAddc, Hbbbc = W Addc} .

In the next step the critical pair abe = gAdde will be considered. Since gAdde — qdde = qe¢ —
o, the rule 20 : abc — o will be added. This new rule will be used to simplify rule 19. In this
way we obtain

Ras = (R—{1:X — egabc})
U {1:X — egadde, 20 : abec — o}
Ess = {Hbbbe = W Adde, go = Fegaddc} .

Normalizing the critical pair Hbbbe = W Addc will result in the pair Hbbbc = Addddc and the
rule 21 : Hbbbc — Addddc will be added. Thus it holds:

Rsz9 = (R—{1:X — egabc})
U {1:X — egadde, 20 : abc — o, 21 : Hbbbe — Addddc}
E39 = {go= Fegaddc} .
The strings go and Fegaddc are irreducible. Thus, we obtain
Rio = (R-{1:X — egabc})
U {1:X — egadde, 20 : abec — o, 21 : Hbbbe — Addddc, 22 : Fegaddc — go}

‘(:40 :®7

where all rules except the rules 18, 20, 21 and 22 are marked. Hence our claim holds for j = 0.
Induction step: Assume the claim holds for some j € IN. Suppose that the algorithm
CA_MOD1 has just generated the sets Ryo414; and 404145, and consider the steps the algo-
rithm will perform next. First the rule /;; is marked. Rule /;; only overlaps with the rules 4, 9
and 13. The corresponding set of critical pairs is E41414; = {gad®t2c = Q Ab*+3¢c, ad*+2¢c =
qAbP T3¢ pd?luth)+2e = wAb* T3¢}, While gad®*2¢ is irreducible, the string QAb% 3¢ will
be reduced to Eegab?*3c using rule 3. Since >41414; = =2 and gad**2¢c =5 Eegab®*3c, the
rule [; 4 +1: gad®*t?¢ — Eegab®*3¢ will be added. This new rule will be used to simplify the
rules 1 and /; 4. The resulting sets will be

Razsraj = (Rj—{1:X — egad®*2c, I, : Eegad?*2c — go})
U {le +1 :gad2j+20 — Eegab2j+3c7 1:X — egaij-l—SC}

Eaag1a; = {ad¥t?c = qAb¥H3e, hd?UtD+2e = wADVIt3e, EeEegab®*3c = go} .

22

Normalizing the critical pair ad®%%¢ = qAb% 3¢ will result in the pair ad¥*?c = o.
Thus the rule [;4 + 2 : ad?*%2¢ — o will be added. Rule ;4 + 2 will be used to simplify
the rule /; 4 + 1. In this way the sets

Razy1a; = (Rj—{1:X — egad®*2¢, ;4 : Eegad**%c — go})
U {1:X — egab¥+3¢c,l; 4+ 2: ad**2c — o}
Eazpra; = {hd?0tDF2c = wABT3e, EeEegab®t3c = go, go = Eegab?*3c}

are obtained. While hd?UtD+2¢ is irreducible, the string wAb**+3¢ will be reduced to
A2 UHD+3¢ and we get

Rast14j = Razyigj
{lj4 +3: hd2U+1)+2, Ab2(j+1)_|_3c}

C

Esar1a; = {FeFegab?*3c = go, go = Eegab?*3c} .
Using rule 15 the string EeEegab?+3¢ can be reduced to Eegab?i+3c. This gives

Ras+1a; = Raayiaj
U {lj4+4: Eegab®*3c — go} ,

Ea5414; = {QOIEegabQHSC} .

Since go and Eegab®*3¢ are joinable w.r.t. Ras414;, we have

Rasi1a; = (Rj—{1:X — egad®*2¢, ;4 : Eegad**%c — go})

U {1:X — egab¥+3¢, l;4+ 2 : ad¥*2c — o}

U {l4+3:hd?UtD+2e - Ap20+HD+3c [4 41 Eegab?t3¢ — go}
Espy1a; = 0 .

Hence in the next step rule /;, : ab**t1¢ — o will be marked. Since there are no overlaps
between rule /; ; and any of the rules of R4g414; that has a label smaller than /; 3, we obtain

Rars14; = Ruaet14;
Eary1a;, =0

where now all rules with a number smaller than /;3 are marked. Rule /;3 only overlaps
with the rules 2, 5 and 11. The corresponding critical pairs are Esg414; = {gab?*3¢ =
QA%+ ¢, ab? T3¢ = qAd* e, Hp2UH)+3e = W Ad**4c}. Normalizing the critical pair
gab* 3¢ = QAd¥*ic yields the pair gab**3c = FEegad®**c. Since >4g114; = =1 and
gab?*3¢ =, Eegad®*c, the rule [;4 + 5 : gab*+3¢ — Eegad®**c will be generated. This
new rule will be used to simplify the rules 1 and /; 4 4+ 4. In this way the sets
Ragy1a; = (Rj—{1:X — egad® 3¢, Lia: Eegad**%c — go})
U {la+2: ad?t%c — o, ;4 +3: hd2t+1)+2, _, AbQ(j+1)+SC}
U {lja+5:gab¥*3c — Eegad®*e, 1: X — egad?UtD+2c}

Esopra; = {ab¥T3¢ = qAd¥ e, HY U3 = WAd%+e, EeEegad?tic = go}

23

are obtained. Since gAd*t%c — ¢d**%¢ = ge¢ — o, the rule l;a+6: ab?Ut+1e s 6 will be
generated next. Thus, the rule [; 4+ 5 : gab?* T3¢ — Fegad®*4c will be simplified and we have

Rsor1a; = (R;—{1:X — egad**%c, I;4: Eegad®+?c — go})
U {lja+2:ad¥ 2c = o0, 144 3: hd?UtD+2c o Ap2+1D)+3)
U {1:X — egad?0t 042 1, 1 4+ 6: ab?0t)+1e - 0} |
Esoy1a; = {HBAADc = WAdY e, EeEegad?tic = go, go = Eegad®tic} .
Normalizing the equation Hb2U+D+3¢ = W Ad2+4e yields Hp2U+tD+3¢ = Aq2U+1+4¢, This
gives
Rs14145 = Rso414j
U {lja+7: H2+D+H3e o Aq2l+)+4e)
Es1414; = {EeFEegad***c = go,go= Eegad®*4c} .

By applying rule 15 the string EeFEegad**t*c can be reduced to Eegad®**c. Thus, the rule
lja+8: Eegad?UtD+2¢ . go will be generated, and we have

Rsor1a; = (R;—{1:X — egad®*%c, I;4: Eegad®*c — go})

U {lja+2:ad¥ 2c = o0, 144 3: hd?UtD+2c o Ap2+1D)+3)

U {1:X — egad?UtD*2¢ 1; 4 + 6 : ab?UtD41e — o}

U {lia+7: H2UHDT3e o AU [0 48 Begad?UtD+2¢ — go} |
Eso414; = {g0= Eegad2j+4c} .

The critical pair go = Eegad?*T4c resolves trivially. Thus it holds:

Rs3+14; = Rsaq14;
Esayra; = 0 .

Hence in the next step rule /; 4+ 2 : ad**2¢ — o will be marked. Since there are no overlaps
between rule /; 4 + 2 and any of the rules of Rs3414; that has a label smaller than /;4 4+ 3, we
obtain

Rsa414; = Rszt1a; = Rjp1
Esavra; = 0

where now all rules except the rules ;44 3,1;446,/;44 7 and ;4 + 8 are marked. Thus our
claim also holds for 7 + 1. O

24

