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Abstract

Constructing accurate earth models from seismic data is a challenging task. Tra-
ditional methods rely on ray based approximations of the wave equation and reach
their limit in geologically complex areas. Full waveform inversion (FWI) on the
other side seeks to minimize the misfit between modeled and observed data without
such approximation.
While superior in accuracy, FWI uses a gradient based iterative scheme that makes

it also very computationally expensive. To reduce the costs of our two dimensional
time domain algorithm, we apply an alternating direction implicit (ADI) scheme to
the acoustic wave equation. The ADI scheme can be seen as an intermediate between
explicit and implicit finite difference modeling schemes. Being less computationally
demanding than an implicit scheme it can handle coarser discretization compared
to an explicit scheme and can be efficiently parallelized.
With the modeling in place, we test and compare several inverse schemes. To

avoid local minima and improve speed of convergence, we use different hierarchical
approaches, for example advancing over different bands of increasing frequency con-
tent. We can then demonstrate the effectiveness of the method on the Marmousi
model and the 2004 BP model.
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1 Introduction

Finding natural resources is an exceedingly challenging task which is becoming more
and more difficult as resources are getting depleted. Oil & gas companies are drilling
deeper and in geologically more complex environments than before and costs of
drilling often exceed one million dollar per well. On the other side this means
that there are high incentives in trying to obtain accurate models of the area of
interest in order to better plan for the drilling and production and to reduce the
risk of unfortunate dry wells. The process of generating these models is still a
challenging task, that usually involves many disciplines from geology and geophysics
to mathematics. In this thesis, we study full waveform inversion (FWI), which
currently is the most advanced inversion algorithm to obtain earth properties from
seismic data as part of the whole exploration process.

1.1 The Seismic Problem

The earth propagates vibrations over long distances. We observe this naturally
during earthquakes, where surface waves are transmitted on continental scales. For
oil and gas exploration the earth is excited artificially by seismic experiments and
vibrations are measured locally. A seismic source generates vibrations (e.g., pressure
waves) and receivers record the reflected data at the surface. The principle is similar
to an ultrasound unit, although at much larger scales.
In marine exploration a seismic vessel creates acoustic waves inside the water with

an array of airguns. The vessel tows a long array of hydrophones some distance
behind the source. Hydrophones are basically special microphones in water that
measure pressure and record the reflected signal at the surface as displayed in Figure
1.1. One line of hydrophones is called a streamer. The vessel then travels forward
with this configuration and activates the source (i.e., shoots) in regular intervals
(e.g., every 25 m). That means that when we speak of a seismic experiment, seismic
acquisition, or survey, we actually mean multiple single shot experiments carried out
in sequence. With the different shot and receiver positions, we observe reflections
from the underground under multiple angles.
The source is designed to (ideally) produce a wavelet, a short, essentially compact

signal that often has a peak frequency around or below 50 Hz. The distance between
the source and the receivers is called offset. In modern acquisitions the streamer
lengths are usually around 8 km or more with receivers spaced as close as every 25
m. The data is usually recorded for more than 8 seconds. Furthermore, a seismic
vessel can tow several streamers simultaneously which then cover part of the 2D
surface. All in all a single seismic survey can thereby produce terabytes of data.
There are more complex acquisitions that include multiple seismic vessels in one
survey or ocean bottom cable acquisitions, where receivers are laid out on the ocean
floor.

7



1. Introduction

Figure 1.1: The marine seismic experiment

For the this thesis, we have to limit the scope of our investigation. We will
assume that we have a single two-dimensional section, that means data from a
single streamer on a straight line.
The principals of land acquisitions are quite similar to marine acquisitions. The

receivers (geophones) are laid out on the ground and a moving seismic truck gener-
ates vibrations. However, the geometry of the acquisition is often more complex as
source and receivers need to follow the natural terrain. In this work, we do not deal
with specifics of that. Furthermore, marine acquisitions are in some sense easier as
the properties in the waterlayer are often well known or can easily be determined.
This has some advantage in the computation as we see later. Nevertheless, apart
from some rather technical differences, the general scheme and many observations
we make with the marine experiment in this work could be transferred to the land
survey as well.
The next step after the data acquisition is to use the data to obtain an image

of the underground. For this we need to make assumptions towards the correct
physical equations to use. Most general, wave propation in media can be described
with the full elastodynamic wave equation

(

1

ρ

∂

∂i
Ciklj

∂

∂j
− δkl

∂2

∂t2

)

ul =
1

ρ
Fk (1.1)

where δ is the Kronecker delta, ρ the density, Fk are body forces, and C is the
stiffness tensor with up to 21 independent variables. Unfortunately, there are not
nearly enough data available to solve the full problem. Even if there were, the
required compute power would be completely out of range today. Thus we need
to approximate the earth with a less detailed model. Research is done with the
isotropic wave equation and even with certain kinds of anisotropy (e.g., transverse
isotropy) but for the scope of this work we reduce the complexity even more and
consider only the acoustic case with constant density

∆u− 1

c2
d2

dt2
u = f. (1.2)
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1. Introduction

Here, f is the source term, u denotes the scalar pressure in the medium, and c is the
velocity or acoustic wave speed (i.e., speed of sound). In light of the computational
complexity of full waveform inversion and because we are testing general properties
of the inversion scheme, it seems reasonable for us to use just one parameter c.
There are several introductory books available that explain the seismic acquisition

process in depth and also discuss possible effects of elasticity and anisotropy in
greater detail, for example [Yil01], [Rob10], [GV10], [Jon10]. Note, that we also
exclude the important step of data preprocessing from this work. Steps like noise
removal, data regularization, filtering, sorting, removal of direct wave and so on are
commonly performed before inversion and imaging tools are used. Please also refer
to the cited introductory books for details.

1.2 Imaging and Inversion

Seismic data imaging is traditionally separated into two parts: velocity model build-
ing and migration. If a velocity model is available, migration means that a reflec-
tivity model is generated based on the seismic data and that velocity model. Of
course, a correct velocity model would already display the reflectors, however build-
ing a velocity model is much more difficult. So the common workflow is to start
with a good, approximate velocity model and then use this model to migrate the
seismic data to the “correct” position in the ground. The reflectivity model is then
used for interpretation. The process is called imaging or migration. There are many
industry-standard codes available, many of them us a ray approximation of the wave
equation. Most accurate among the migration algorithms is reverse time migration
(RTM), which uses the full wave equation to compute the reflectivity and is closely
related to full waveform inversion, as we will see in chapter 2.2.2. An overview over
different migration algorithms can be found in [Rob10].
Velocity model building, the focus of this work, is the more challenging part and

is done iteratively. First, velocity models might be created based on geological
reasoning and stacking analysis. Then tomography techniques are often applied,
that are commonly based on ray approximations of the wave equation. Methods
using the wave equation like full waveform inversion, which we investigate here,
are most computational expensive and might only be used for complex parts of
the whole problem, or when the simpler methods do not yield sufficiently accurate
results. Please refer to [Jon10] for an overview of common velocity model building
tools.
The whole process of seismic data processing normally encompasses multiple cy-

cles of model building, imaging, quality control and interpretation and can take
several months. What methods are employed and what amount of detail is required
is ultimately a management decision. Common questions that guide the process
might be: “Given certain amount of time and computational resources, what is the
best image/ model that we can obtain?” or “What do we have to do in order to get
an image/ model that can be used to make a decision (e.g., is it safe to drill)?”

9



1. Introduction

1.2.1 Role of Full Waveform Inversion

In this whole process, the tomography based methods are very efficient for simple
geological targets, for which the ray approximation holds, but reach their limits
in complex situations, for example around salt domes, fold and thrust belts, and
foothills [VO09]. In those cases even the separated process of building a veloc-
ity model and subsequential migration might no longer be applicable as even high
quality imaging methods with an insufficient detailed velocity model might suffer
accuracy. In those cases our full waveform inversion can lead to improvements.
Full waveform inversion goes back to Lailly in 1983 [Lai83] and Tarantola in

1984 [Tar84]. The underlying mathematical principles of least square minimization
and adjoint state method are even older. Nevertheless it has not gained much
attention until very recently because of its computational requirements and it is
not in routine productive use up to now. Inversion schemes that use raybased
approaches or combine wave equation modeling with ray theory were developed (e.g.,
[CC88], [SD92], [BCSJ01]) as well as schemes based on finite difference modeling
(e.g., [KCL86], [IDT88], [CPN+90], [PDT90]) and finite element modeling [CMS08].
A second reason, why full waveform inversion was not considered successful in the
past was because of the lack of long offsets in the seismic data. To start the inversion
for a first (low frequency) background velocity model, diving waves are needed (i.e.,
waves that are not reflected, but slowly bended back upwards, when c increases
with depth). To record diving waves with considerable depth, long receiver offsets
are needed (or crosshole data measured from within boreholes). This data is now
available in modern surveys and can be exploited by full waveform inversion [Mor87],
[Mor88], [PW90], [PSWW96].

1.2.2 Probabilistic vs. Deterministic

Although modern explorations cover wider offsets and might use more shots and
longer receiver data, the amount of data is always limited and the inverse problem
of recovering the earth c does not have a unique solution. It is possible to use prob-
abilistic inverse theory, where a probability function p(c) is defined over the space of
velocity models. The probability measures both the misfit between computed and
measured data U(c) and Ud and contains a priori knowledge about possible velocity
models [Tar05]. However, this probability function p is not known for real world
problems and could only be approximated by sampling the model space and solving
the wave equation for each sample. Unfortunately the number of samples required
grows exponentially with the size of the model space [Fic11]. For the seismic prob-
lem the velocity model can contain a million parameters or more, which makes this
method infeasible.
Instead, we have to use deterministic inverse theory in our work. There, we define

a misfit function E which will depend on the computed and observed data. We will
then choose a starting model c0, being (presumably) close to the real model c̃, and
start an iterative scheme with the goal of finding a c under which E(c) becomes
minimal.

10



1. Introduction

1.2.3 Overview of FWI Algorithm in this Thesis

We will introduce full waveform inversion with the 2D acoustic constant-density
wave equation. That is we use the wave equation 1.2 in two dimensions with a
two dimensional velocity model c. We do the modeling in time domain with an
alternating direction implicit (ADI) scheme [FM65], [Lee62]. Full implicit schemes
are usually not applicable for full waveform inversion, since the linear equations
that need to be solved are too large. Instead, explicit schemes are usually employed.
These schemes however, require finer grid sizes and/ or time step sizes to achieve the
same accuracy. Our ADI scheme lies in between. It solves multiple lowerdimensional
systems that can be solved efficiently. Though it is still more compute intensive than
an explicit scheme, it promises more accuracy on the same grid space.
With this modeling in place, we tackle the inverse problem and focus on different

methods to avoid local minima. Our basic approach follows the multiscale techniques
first introduced to full waveform inversion by Banks et al. [BSZC95]. We will
investigate both the effects of different error functions and of different multiscale
schemes on the inversion result.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2 we review the
theoretical foundations. We develop a simple reference solution and show existence
of a solution for the forward and the inverse problem in 1D. We then apply Lagrange
Multiplier methods to derive the gradient, which we will need in the inversion in
Chapter 4.
Chapter 3 is then devoted to the modeling. We introduce the ADI method and

discuss boundary conditions. We then experimentally verify our modeling with the
help of analytical solutions and compare the code on a realistic test model with an
explicit finite difference code.
In Chapter 4 we discuss the gradient based inversion and different optimization

schemes that should improve convergence and/ or reduce the risk of reaching local
minima.
Finally we test the schemes from Chapter 4 in Chapter 5.
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2 Wave Equation and Inverse

Problem

In this chapter we want to define the exact problem and establish the theoretical
foundations.
Let Ω ⊂ R

n be the domain of interest (n = 1, 2, 3 in practice) and T > 0 the
maximum observation time. Let Γs ⊂ Ω be the set of seismic source locations with
source function f : Γs × [0, T ] → R. c : Ω → R shall denote the velocity model.
Then the pressure u : Ω× [0, T ] → R is the solution of the wave equation

∆u(s)− 1

c2
d2

dt2
u(s) = f(s) in Ω× (0, T )

u(s) =
d

dt
u(s) = 0 on Ω× 0

(2.1)

for every source position s ∈ Γs. For every source, there is a set of receiver positions
Γr,s that record the shot from position s in the seismic experiment. That means the
function u is measured in the receiver points Γr,s and we write U = u|Γr,s

for the
receiver data. Note that it can sometimes be assumed that sources and receivers are
at the surface, thus Γs,Γr,s ⊂ ∂Ω, however, in sea acquisitions sources and receivers
are usually a few meters below the water surface. Modeling, or solving the forward
problem, means in our context, that for given c and f we want to compute U by
solving the initial value problem (2.1).
Our final goal is to solve the inverse problem. Ideally that means that for a

given data U = Ud and source function f we want to obtain a velocity c satisfying
Equation (2.1). This might never be possible in any real experiment, instead we can
set out for minimizing the distance between Ud and our solution U(c). Measuring
in the L2 norm, this means we want to find a c that minimizes

E(c) =

∫

Γs

∫

Γr,s

(Ud − U(c))2 . (2.2)

In practice, Γs and Γr are usually finite sets, for which we can replace the integrals
in 2.2 with finite sums. To simplify notation, we will define

Γ = Γs × Γr,s (2.3)

so that we can write

E(c) =

∫

Γ

(Ud − U(c))2 . (2.4)

There are other options for defining an misfit function E as well, which we will
discuss in Chapter 4. Note that the source function f is not always known and
sometimes has to be determined as well as part of the inversion.

12



2. Wave Equation and Inverse Problem

2.1 The Forward Problem

2.1.1 2D Problem with Constant Velocity

For constant c > 0 and simple domain geometries, the Equation (2.1) can be solved
analytically. With the help of this solution, some simple problems with other velocity
profiles (e.g., one reflector) can be constructed and we can use the solution to check
numerical solutions later. We briefly state the results for 2D here.
Let us first consider the homogeneous initial-value problem for Ω = R

2

∆u− 1

c2
d2

dt2
u = 0 in Ω× (0,∞)

u = u0,
d

dt
u = u1 on Ω× {0}

(2.5)

Then we can state the following theorem.

Theorem 1 (Dzuik, [Dzu10], Ch. 6). Let u0 ∈ C2(R2), u1 ∈ C1(R2). Then there
exists a unique solution of (2.5) given by

u(x, t) =
1

2πc

∫

|y|≤ct

u1(x+ y)
√

c2t2 − |y|2
dS(y) +

d

dt

1

2πc

∫

|y|≤ct

u0(x+ y)
√

c2t2 − |y|2
dS(y). (2.6)

We use this theorem to compute the nonhomogeneous problem with zero-initial
conditions. The solution

∆u− 1

c2
d2

dt2
u = f in Ω× (0,∞)

u = 0 on Γ
d

dt
u = 0 on Γ

(2.7)

for a given source function f can be developed from the solution of the homogeneous
problem. Let u(x, t; s) be the solution of

∆u(·, s)− 1

c2
d2

dt2
u(·, s) = 0 in Ω× (0,∞)

u(·; s) = 0,
d

dt
u(·; s) = f(·, s) on Ω× {t = s}

(2.8)

Now, we obtain the solution of (2.7) in Ω by applying Duhamel’s principle (e.g.,
[Eva98])

u(x, t) =

∫ t

0

u(x, t; s)ds. (2.9)

With theorem 1 we compute

u(x, t; s) =
1

2πc

∫

|y|≤c(t−s)

f(x+ y, s)
√

c2(t− s)2 − |y|2
dS(y). (2.10)
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2. Wave Equation and Inverse Problem

Now we introduce a point source at x = (0, 0) of the form f(x, s) = δ(x)g(s) and
obtain

u(x, t; s) =
1

2πc

g(s)
√

c2(t− s)2 − |x|2
Θ(c(t− s)− |x|) (2.11)

where

Θ(x) =

{

0, x < 0
1, x ≥ 0

denotes the Heaviside function. We insert this into Equation (2.9), perform some
basic variable transformations and obtain

Theorem 2. Let f(x, t) = δ(x)g(t) be a single point source for g ∈ C1(0,∞), then
Equation (2.7) has the solution

u(x, t) =







1

2π

∫ ct

|x|

g(t− s/c)
√

s2 − |x|2
ds, |x| < ct

0, x ≥ ct.

(2.12)

For a source modeled by a Ricker wavelet

g(t) =
(

1− 2π2f 2
p t

2
)

e−π2f2
p t

2

(2.13)

with peak frequency fp we can see the solution in Figure 2.1.

x

u
(x
)

Figure 2.1: Analytical solution of Equation (2.12) for t = 0.5, c = 1500, fp = 15

Differences between 2D and 3D

From theorem 1 we see already that Huygens principle is not valid in 2D. Unlike
in 3D (or higher odd dimensional spaces) the solution at a point x at time t is
determined by integrals over the complete ball |x − ct| > 0 and not only over the
surface of the sphere |x−ct| = 0. That also means, that unlike in 3D a discontinuous
source does not excite a wave in a discontinuous way. We can see that, when we

14



2. Wave Equation and Inverse Problem

compute the wavefront of a discontinuous signal: We compute the wavefront at
|x| = ct for g(x) = Θ(|x|):

lim
|x|→ct,|x|<ct

u(x, t) = lim
|x|→ct,|x|<ct

1

2π

∫ ct

x

1
√

s2 − |x|2
ds

= lim
|x|→ct,|x|<ct

1

2π
log

(

ct+
√

c2t2 − |x|2
|x|

)

= 0.

(2.14)

The general solutions for three and more dimensions, as well as the difference be-
tween even and odd dimensional spaces are discussed in depth in [Eva98].
When using 2D algorithms on 3D data a conversion is necessary. Of course, any

such conversion must be an approximation. Crase et al. suggest a scaling U with√
t and convolute with 1√

t
. For details we refer to [CPN+90] and [Rob05].

2.1.2 Inhomogeneous Velocity in 1D

We cannot state compact formulas for arbitrary velocity models, but nevertheless it
is possible to prove the existence of a solution of the forward problem, as well as of
the inverse problem (Chapter 2.2) in 1D.
Let us consider the wave equation in one dimension

∂2u

∂z2
− 1

c2(z)

∂2u

∂t2
= 0 ∀t > 0, ∀z > 0

−∂u

∂t
(0, t) = f(t) ∀t > 0

u(z, 0) =
∂u

∂t
(z, 0) = 0 ∀z > 0

(2.15)

with a source function f(t) placed on the boundary at z = 0. This is only a slight
modification of the problem above, where the sources could be below the top bound-
ary, that is in the water. (However, for constant water velocity in 1D a lower source
could be replaced by an equivalent source on the boundary.)
We now follow the work of Bamberger et al. [BCL79] and give a variational

formulation of the problem. Let

T > 0,Ω = (0, Z) (2.16)

be the maximum recording time and corresponding spacial domain. We also assume
a maximum depth

Z > 0, (2.17)

where we can introduce final conditions. We will see in the next section (Preposition
4) that this is not a real restriction. Let further

0 < c− ≤ c+ (2.18)
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2. Wave Equation and Inverse Problem

be given. As in [BCL79], we define

ΣZ = {c ∈ L∞(0, Z)|c− ≤ c(z) ≤ c+ a.e. on (0, Z)} (2.19)

to be the set of bounded velocity profiles, defined up to depth Z and

c ∈ ΣZ (2.20)

shall be given. Let us now introduce two spaces

V =
{

v ∈ H1(Ω)|v(Z) = 0
}

(2.21)

with the scalar product

(u, v)V =

∫

Ω

du

dz

dv

dz
dz ∀u, v ∈ V (2.22)

and
H = L2(Ω) (2.23)

with the scalar product

(u, v) =

∫

Ω

uvdz. ∀u, v ∈ H (2.24)

‖ · ‖V and | · | shall denote the corresponding norms. We may identify H with its
dual, V to a part of H and therefore the dual H ′ = H to a part of V ′. Thus we
have the dense inclusions and continuous injections

V ⊂ H ⊂ V ′. (2.25)

We further associate with c the scalar product

(u, v)c =

∫

Ω

1

c2(z)
u(z)v(z)dz ∀u, v ∈ H. (2.26)

If the source f satisfies
f ∈ W 1,1(0, T ) (2.27)

we can define the linear operator Lf ∈ L2((0, T );H) with

(Lf (t), v) = f(t)v(0) a.e. on (0,T) ∀v ∈ V. (2.28)

Now, the variational formulation of system (2.15) can be stated as

u ∈ L2((0, T );V )
du

dt
∈ L2((0, T );H)

d2

dt2
(u(t), v)c + ((u(t), v)) = (Lf (t), v) ∀v ∈ V

u(0) =
du

dt
(0) = 0

(2.29)

We can state the existence of the solution of the forward problem in the following
theorem.
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2. Wave Equation and Inverse Problem

Theorem 3 (Bamberger et al., [BCL79], Th. 1). Given the definitions and hypothe-
ses of (2.16) to (2.28), the system (2.29) has a unique solution

u ∈ L∞((0, T );V )
du

dt
∈ L∞((0, T );H)

(2.30)

and the mapping

f : W 1,1(0, T ) → L∞((0, T );V )× L∞((0, T );H), f 7→
(

u,
du

dt

)

(2.31)

is linear continuous.

Proof. We only restate the basic idea behind the proof of Bamberger et al. The
injection of V into H is compact, therefore we can find an ascending sequence of
subspaces Vm generated from orthogonal eigenfunctions with respect to (·, ·)c. Over
each subspace Vm we can then construct a solution um ∈ L2((0, T );Vm) of Equation
(2.29) restricted to Vm. Next, we have to show that the energy function

Im(t) =
1

2

(

∣

∣

∣

∣

dum

dt

∣

∣

∣

∣

2

c

+ ‖um‖2
)

(2.32)

is bounded and thus um and dum

dt
are bounded in L∞((0, T ));V ) and L∞((0, T );H)

respectively. This leads finally to the conclusion, that the limit can be passed and
that both um(t) → u(t) and dum

dt
(t) → du

dt
(t) converge strongly in their spaces V and

H, respectively. We refer to [BCL79] for further details.

The requirements of Theorem 3 do not pose problems in practice. A real world
velocity profile will always be bounded by a reasonable minimum and maximum
velocity and most common source wavelets like the Ricker wavelet we use fulfill
much higher regularity than required for f in Theorem 3.

2.2 The Inverse Problem

2.2.1 Existence of a Solution in 1 D

We will now continue with the 1 D study started in the previous section. After
showing that for a given c, Equation (2.29) has a unique solution, we now want to
check that, for given surface data Ud(t), measured at the surface z = 0 we can find
a suitable velocity c. More precisely: Let

U(c, t) = u(0, t) (2.33)

be the synthetic surface signal for a velocity c, where u is the solution of (2.15).
Then we want to solve the inverse problem of minimizing the misfit of observed and
synthetic data in the L2 norm, that is find c ∈ Σ such that

E(c) =

∫ T

0

(U(c, t)− Ud(t))
2 dt → min (2.34)
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2. Wave Equation and Inverse Problem

where Σ denotes a space of admissible velocity models that satisfies

Σ ⊂ Σb =
{

c ∈ L∞(R+)|c− ≤ c(z) ≤ c+ a.e. on R
+
}

. (2.35)

As before, we constrain the choice of c with lower and upper bounds 0 < c− ≤ c+,
however, we will not require continuity or differentiability for c. In the previous
section, we already introduced one possible subspace of Σb

ΣZ = {c ∈ L∞(0, Z)|c− ≤ c(z) ≤ c+ a.e. on (0, Z)} (2.36)

that contains the velocity profiles, defined up to a certain depth Z. We introduce a
second subspace

ΣX = {c ∈ L∞(0, Z(X))|c− ≤ c(z) ≤ c+ a.e. on (0, X)} (2.37)

where Z(X) is the depth, that for the velocity c corresponds to X via
∫ Z(X)

0

dz

c(z)
= X. (2.38)

(Cf. Bamberger et al. [BCL79].) X is called the travel time. It is the time needed
for a wave in medium with wavespeed c to travel downwards to depth Z, which can
be checked with the method of characteristics (e.g.,[Eva98]). That also means that
the surface response U(c, t) for t ≤ T can only depend upon velocities in

ΣX with X ≤ T

2
. (2.39)

Furthermore it offers us an easy way to add a second boundary condition to the
state Equation (2.15) without harm:

Proposition 4. For a given c, the response U(c, t) of system (2.15) does not change
over the interval (0, T ), if we introduce a supplementary boundary condition

u(Z, t) = 0 ∀t > 0 (2.40)

as long as
∫ Z

0

dz

c(z)
≥ T

2
. (2.41)

Since, for a given traveltime X, Z(X) depends on the velocity c, there cannot be
a one to one correspondence between ΣX and ΣZ . The reasons mentioned above
motivate Bamberger et al. ([BCL79]) to prove the existence of the solution of the
inverse problem on ΣX :

Theorem 5 (Bamberger et al., [BCL79], Th. 6). Let T > 0, the length of the
recorded seismogram Ud, be given. X = T

2
shall denote the corresponding travel

time. Let the source function f satisfy

f(0) = f ′(0) = 0
f ∈ W 3,1(0, T ),

(2.42)

then the inverse problem of finding c ∈ ΣX with

E(c) =

∫ T

0

(U(c; t)− Ud(t))
2 dt → min (2.43)

has at least one solution.
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2. Wave Equation and Inverse Problem

Proof. Again, we will only state the general idea of the proof from Bamberger et al.
and refer to their work ([BCL79]) for the details. Although the final proof is done
with the space ΣX , we can naturally define a distance function on ΣZ which makes
E Lipschitz-continuous, but at the same time is weak enough to make ΣZ compact.
So, we start by defining a distance function

dZ(c1, c2) = max
s∈[0,Z]

∣

∣

∣

∣

∫ s

0

1

c1(z)2
− 1

c2(z)2
dz

∣

∣

∣

∣

. (2.44)

for all c1, c2 ∈ ΣZ . According to [BCL79], Property 6, this is a distance function
and (ΣZ , dZ) is compact. We can then show that E is Lipschitz-continuous with

‖U(c1)− U(c2)‖C0([0,T ]) ≤ C‖f‖W 3,1(0,T )d
Z(c1, c2), (2.45)

for all c1, c2 ∈ ΣZ , where C depends only on c−, Z and T ([BCL79], Th. 4).
Compactness and Lipschitz-continuity guarantees that a minimum exists in ΣZ . We
now define a “pseudo norm“ on ΣX . For c1, c2 ∈ ΣX , let Z1, Z2 be the corresponding
depths with

Xi =

∫ Zi

0

1

c(z)
dz (2.46)

for i = 1, 2. Then we define

dX(c1, c2) = max
s∈[0,min{Z1,Z2}]

∣

∣

∣

∣

∫ s

0

1

c1(z)2
− 1

c2(z)2
dz

∣

∣

∣

∣

. (2.47)

dX satisfies the two properties of a norm:

dX(c1, c2) ≥ 0, dX(c1, c2) = 0 ⇒ c1 = c2 (2.48)

and
dX(c1, c2) = dX(c2, c1). (2.49)

for every c1, c2 ∈ ΣX . It is not a norm since it does not satisfy the triangular
inequality, however we can show that any dX converging sequence has a unique
limit in ΣX ([BCL79], Property 10). Furthermore, ΣX with the ”pseudo-distance“
dX is compact in the following sense: Let (cn) be a sequence in ΣX , then there exists
a c and a subsequence cnk

so that

dX(cnk
, c) → 0 for nk → ∞. (2.50)

This is also shown in [BCL79], Property 10, where the previous results for (ΣZ , dZ)
are used in the proof. With dX we can also show Lipschitz continuity

‖U1(c1)− U2(c2)‖C0([0,T ]) ≤ C‖f‖W 3,1(0,T )d
X(c1, c2). (2.51)

for all c1, c2 ∈ ΣX , where the constant C depends only on c− and T ([BCL79], Th.
5). Finally, this estimate and the ”compactness“ of (ΣX , dX) are sufficient to show
that a minimum exists in Equation (2.43).
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2. Wave Equation and Inverse Problem

The requirements of Theorem 5 can be easily fulfilled in practice. We already
mentioned that our source functions usually fulfill higher regularity than required.
When compact source functions are used f(0) = 0 and f ′(0) = 0 can always be
achieved with a time shift. The Ricker wavelet that we use is not compact, however
it decays so fast, that within numerical accuracy we can assume compact support.
Although ΣX is more intuitive and advantageous in theory, in practice velocity
profiles are defined in depth and a constant depth is assumed before the inversion.
But we can guarantee ΣX ⊂ ΣZ with sufficiently large choice of Z. This could
introduce (additional) non-uniqueness, however the existence result persists.

Remark 1. Bamberger et al. discuss in their work actually a more general inverse
problem of finding (ρ, µ) with the wave equation

∂

∂z

(

µ(z)
∂u

∂z

)

− ρ(z)
∂2u

∂t2
= 0, (2.52)

again for z > 0, t > 0 with zero initial conditions and boundary excitation at z = 0.
However, as they discuss in their work, ρ and µ cannot be uniquely determined si-
multaneously from surface responses, therefore the authors construct different equiv-
alence relations that identify classes of parameters that produce the same surface
observation. Then they work on the quotient space instead. Although not funda-
mentally different, we were able to simplify some notation and skip that step above
by substituting µ = 1 and ρ = 1

c2
.

2.2.2 Derivation of the Gradient

After showing existence in 1 D, we will finish this chapter by showing how the gradi-
ent of the misfit function E in Equation (2.2) can be computed. The gradient is later
needed in the inversion algorithms described in Chapter 4. We will further assume,
that we have a numerical way to solve the forward problem, which is described in
Chapter 3.
We will now again use the general wave Equation (2.1) on Ω ⊂ R

n and for given
T > 0. We can obtain the gradient from the adjoint state method that can be
derived with the Lagrange multiplier method (cf. [Tar84], [Ple06]).
Let F (c) = E(U(c)), thus our goal is to minimize F (c) by using the gradient F ′(c).

We continue to write U = u|Γr,s
to remember that we measure the misfit for every

source experiment only in the corresponding receiver locations. To simplify notation
we will assume that we have only one source in the following computations. (We
only need to sum over the sources to get the general case.) We define the Lagrange
function L with the Lagrange parameters λ, λ1 and λ2 as

L(u, c, λ, λ1, λ2) = E(u) +

∫

Ω

∫ T

0

λ

(

∆u− 1

c2
∂2

∂t2
u+ f

)

dtdx

+

∫

Ω

(

λ1u+ λ2
∂u

∂t

)

dx

∣

∣

∣

∣

t=0

,

(2.53)

where u, c and (λ, λ1, λ2) are independent functions on Ω × [0, T ]. Minimization
of the Lagrange function can be understood as minimization of the original misfit
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2. Wave Equation and Inverse Problem

function with the wave equation for u and the corresponding boundary conditions
being constraints. Without further restrictions to u and c the minimum of L is
obtained at a stationary point of L with respect to all parameters. It can be easily
seen that

D(λ,λ1,λ2)L(u, c, λ, λ1, λ2) = 0 (2.54)

returns the constraints, that is wave equation and boundary conditions, whereby we
use D as a symbol for the Fréchet derivative. Calculating

DuL(u, c, λ, λ1, λ2) = 0 (2.55)

will enable us to get the Lagrange parameters in the stationary points. They will
be obtained as the solution of the adjoint wave equation.
If we insert u = u(c) (i.e., the solution of the forward wave equation) and λ = λ(c),

λ1 = λ1(c), and λ2 = λ2(c) (i.e., the solution of the adjoint wave equation) into
Equation (2.53), we obtain

L(u(c), c, λ(c), λ1(c), λ2(c)) = E(u(c)) = F (c). (2.56)

To obtain the gradient F ′(c) we can first compute

DcL(u, c, λ, λ1, λ2) (2.57)

in general from Equation (2.53) (for arbitrary u, λ, . . . ) and then insert the solution
of the wave equation and the adjoint wave equation.
Now, let us compute the Lagrange parameters from Equation (2.55). Let ∂Ω be

the boundary of Ω and ν be the outward pointing normal direction. We start by
integrating Equation (2.53) twice by parts.

L(u, c, λ, λ1, λ2) = E(u) +

∫

Ω

∫ T

0

u

(

∆λ− 1

c2
∂2

∂t2
λ

)

dtdx

+

∫

Ω

∫ T

0

λsdtdx+

∫

∂Ω

∫ T

0

(λ∂νu− u∂νλ) dtds

+

∫

Ω

1

c2

(

u
∂λ

∂t
− λ

∂u

∂t

)

dx

∣

∣

∣

∣

t=T

t=0

+

∫

Ω

λ1u+ λ2
∂u

∂t
dx

∣

∣

∣

∣

t=0

(2.58)

DuL(u, c, λ, λ1, λ2) = 0 means that for all functions h : Ω → R

DuL(u, c, λ, λ1, λ2)h = 0 (2.59)

With Equation (2.58) this becomes for sufficiently differentiable h

0 =

∫

Ω

∫ T

0

h

(

U − Ud +∆λ− 1

c2
∂2

∂t2
λ

)

dtdx+

∫

∂Ω

∫ T

0

(λ∂νh− h∂νλ) dtds

+

∫

Ω

1

c2

(

h
∂λ

∂t
− λ

∂h

∂t

)

dx

∣

∣

∣

∣

t=T

t=0

+

∫

Ω

λ1h+ λ2
∂h

∂t
dx

∣

∣

∣

∣

t=0

.

(2.60)
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In particular, this equation must hold for all h with h = ∂νh = 0 on ∂Ω× [0, T ] and
h = ∂

∂t
h = 0 on Ω × {t = 0, T}. With such an h all but the first integral in (2.60)

vanish and the variety of possible h with that property ensures that

(

∆− 1

c2
∂2

∂t2

)

λ+ u− ud = 0 (2.61)

in a weak sense. This is the adjoint wave equation in λ for the source u− ud. Note
that in case of the wave equation, the differential operator is the same as its adjoint.
With a similar approach we can obtain initial conditions. Let λ solve the wave
equation and let h = ∂νh = 0 on ∂Ω× [0, T ] and h = ∂

∂t
h = 0 on Ω×{t = 0}. With

this h only the third integral in (2.60) remains for t = T . Variation of h within the
specified boundaries provides us with

λ = 0

∂

∂t
λ = 0











, on Ω× {t = T} (2.62)

Finally we obtain DcL(u, c, λ, λ1, λ2) by direct computation from Equation (2.53).

DcL(u, c, λ, λ1, λ2) =
2

c3

∫ T

0

λ
∂2

∂t2
udt. (2.63)

Considering multiple sources again, we obtain

DcL(u, c, λ, λ1, λ2) =
2

c3

∫

Γs

∫ T

0

λ
∂2

∂t2
udt. (2.64)

Inserting λ and u from above yields the gradient.

Remark 2. Two modeling runs are required to compute the gradient. The solution of
the adjoint equation is often more vividly referred to as the backpropagated wave of
the receiver misfit. So computing the gradient means corellating the forward solution
of the wave equation with the backpropagated misfit via Equation (2.63), which is
called imaging condition. The imaging condition is closely related to the imaging
condition in reverse time migration (RTM). In RTM, λ is the backpropagation of
the receiver signal itself instead of the misfit and we use u instead of its second time
derivative. With this modification the same program computing the gradient in full
waveform inversion can compute an RTM image. Physically speaking, RTM shows
us the reflectivity in the model that is revealed by the real data. The gradient in
FWI on the other side shows us where the model needs to be updated to better fit
the real data.
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3 Modeling

In this section we introduce the modeling algorithm and thus the core of our FWI
program. Modeling is by far the most time consuming component, so an efficient
implementation is imperative. When u is defined on a rectangular grid with Nx by
Nz grid points, full implicit schemes require the solution of a Nx · Nz dimensional
linear system in every time step. Although the matrix is sparse, computation is
still extremely memory demanding and time consuming. Explicit schemes on the
other hand require smaller timesteps for stability. We use an Alternating Direction
Implicit (ADI) method [FM65] which could be seen as a tradeoff between an implicit
and an explicit scheme.
Let Ω be a rectangular domain and Ωh = {(ih, jh)|i = 0, ...Nx, j = 0, .., Nz} its

uniform discretization. For now, we consider the wave equation with zero boundary
conditions and zero initial conditions

Lu = ∆u− 1

c2
d2

dt2
u = f in Ω× (0, T )

u = 0,
d

dt
u = 0 on ∂Ω× (0, T )

u = 0,
d

dt
u = 0 on Ω× 0

. (3.1)

We discretize the problem in time on [0, T ]k = 0, . . . , kNt and want to compute
the update in step m: um+1 = u((m+ 1)k) by solving a system of the form

Dxu
∗
m+1 = f1(um, um−1)

Dzum+1 = f2(u
∗
m+1, um, um−1)

(3.2)

on Ωh with matrices Dx and Dz originating only from x- and z-derivatives respec-
tively. This means that the matrices can be decoupled in one space dimension. So
instead of solving one system of dimension Nx · Nz we can first solve Nz equations
of dimension Nx to obtain an intermediate solution u∗

m+1 and then Nx equations of
dimension Nz to obtain um+1. Each set of lower dimensional systems is decoupled
and can thus be computed in parallel (e.g., using vectorization and multithreading
on modern CPUs).

3.1 Alternating Direction Method

In this work we use the ADI scheme from Fairweather and Mitchell [FM65], which
we briefly restate here for our purpose. We try to approximate the wave operator L
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with a general discrete operator

Lhu = um+1 − 2um + um−1 + (δ2x + δ2y) (a1um+1 + a2um + a3um−1)

+δ2xδ
2
y (a4um+1 + a5um + a6um−1)

(3.3)

for parameters a1, . . . , a6 yet to be determined. δ2x and δ2y denote the central differ-
ence operator in x and in y direction, for example

δ2xu(x, y, t) = u(x+ h, y, t)− 2u(x, y, t) + u(x− h, y, t), (3.4)

where the scaling with h2 takes place in the parameters ai. While um+1−2um+um−1

and δ2x+δ2y are the (scaled) central difference approximations of d2

dt2
u and the Laplace

operator respectively, the mixed term with δ2xδ
2
y is artificially introduced and allows

us to decouple the equation Lhu = f into

u∗
m+1 − 2um + um−1 +δ2x(a1u

∗
m+1 + a2um + a3um−1

+δ2y

[(

a2 −
a5
a1

)

um +

(

a3 −
a6
a1

)

um−1

]

= f

u∗
m+1 = um+1 + δ2y

[

a1um+1 +
a5
a1

um +
a6
a1

um−1

]

,

(3.5)

when we choose a4 = a21 6= 0. The other parameters are determined so that Lh

approximates L best. For this purpose the terms in (3.3) are expanded in Taylor
series in u up to 6th order in space and even time derivatives are replaced with
(3.1). Eliminating all terms of lower order yields the coefficients a1, . . . , a6. With
the coefficients determined the final operator is

Lhu = um+1 − 2um + um−1

+(δ2x + δ2y)

[

1

12

(

1− r2
)

(um+1 + um−1)−
1

6

(

1 + 5r2
)

um

]

+δ2xδ
2
y

[

1

144
(1− r2)2(um+1 + um−1)−

1

72
(1 + 10r2 + r4)um

]

= f

(3.6)

with r = ck
h

(cf. [FM65] for details on the computation). For r = 1 this equation
reduces to the explicit formula

um+1 − 2um + um−1 − (δ2x + δ2y)um − 1

6
δ2xδ

2
yum = f (3.7)

For r 6= 1 we can again obtain a decoupled formula

u∗
m+1 − 2um + um−1 +

1

12
(1− r2)δ2x

[

u∗
m+1 −

2 + 10r2

1− r2
um + um−1

]

+r2
1 + r2

1− r2
δ2yum = f

u∗
m+1 = um+1 +

1
12
(1− r2)δ2y

[

um+1 − 2+20r2+r4

(1−r2)2
um + um+1

]

. (3.8)
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In that case the calculation of the coefficients already proofs that the operator Lh

is consistent with
|Lu− Lhu| = O(h2 + k2). (3.9)

Lemma 6 ([FM65]). For
r ≤

√
3− 1, (3.10)

Lh as given above is stable.

Remark 3. With different coefficients ai above it is possible to create an ADI scheme
that is unconditionally stable. Lees [Lee62] created such a scheme. Although it is
also second order accurate in time and space it does not approximate the wave
equation operator as well as this scheme and it is more prone to causing dispersion.

3.1.1 Dispersion

Additional to fulfilling the stability requirements above, the discretization should
be chosen small enough to avoid dispersion. For this ADI scheme Daudt et al.
[DBNC89] showed that dispersion can be neglected when using about four to five
grid points per wavelength. So we should choose

h <
λmin

4
=

cmin

4fmax

. (3.11)

This is an advantage towards second order explicit finite-difference schemes, which
require a grid density of at least ten points per wavelength [AKB74].

3.2 Boundary Conditions

The real seismic experiment only has one boundary, the water-air boundary. Ig-
noring water waves at the surface, we model this boundary as a hard wall, that
is, we use zero boundary conditions at z = 0. To obtain a finite modeling domain
we introduce artificial boundaries at x = xl, x = xr and z = zb with xl < xr and
zb > 0. When the boundaries are placed sufficiently far away from the source, the
seismic waves do not reach the boundary during observation time and the bound-
ary conditions are irrelevant. While this is achievable in small test problems, it is
impractical for larger problems. So in general, we need boundary conditions that
reduce reflections from the boundaries as much as possible.

3.2.1 Boundary Conditions in 1D

Let us first consider the one dimensional wave equation where perfectly nonreflecting
boundaries are possible. The well known general solution of

∂2

∂x2
u− 1

c2
∂2

∂t2
u = 0, (3.12)

as derived by d’Alembert is

u(x, t) = F (x− ct) +G(x+ ct). (3.13)
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F and G are right and left traveling functions, i.e., the shape of F and G stays
constant while being shifted to the right or left with time t at velocity c. They are
solutions to the equations

∂

∂x
u− 1

c

∂

∂t
u = 0 (3.14)

and
∂

∂x
u+

1

c

∂

∂t
u = 0, (3.15)

respectively. An intuitive way, to arrive at above equations is the formal “factoriza-
tion” of the wave operator:

(

1

c

∂

∂t
− ∂

∂x

)(

1

c

∂

∂t
+

∂

∂x

)

u = 0. (3.16)

Having no reflections at the boundaries, implies having only right traveling waves
at the right boundary (G(xr + ct) = 0) and only left traveling waves at the left
boundary (F (xl − ct) = 0). Thus (3.14) and (3.15) give us the desired boundary
conditions

∂

∂x
u(xl, t)−

1

c

∂

∂t
u(xl, t) = 0 (3.17)

and
∂

∂x
u(xr, t) +

1

c

∂

∂t
u(xr, t) = 0. (3.18)

3.2.2 Boundary Conditions in 2D

Nonreflecting boundaries are only possible for certain idealized conditions. For our
purposes we use the one dimensional boundary conditions for the side and bottom
boundaries of the two dimensional problem as well. This will completely remove the
components of plane waves, traveling perpendicular to the boundary in question.
Parallel components however are not muted and the reflection at the boundary
increases as the incident angle departs from the orthogonal. Now, the complete
initial and boundary conditions are:

u(x, 0) = 0,
d

dt
u(x, 0) = 0

(

∂

∂x
− 1

c

∂

∂t

)

u(xl, z, t) = 0

(

∂

∂x
+

1

c

∂

∂t

)

u(xr, z, t) = 0

(

∂

∂z
+

1

c

∂

∂t

)

u(x, zb, t) = 0

(3.19)

As those boundary conditions are only dependent on one space dimension, they
can be easily integrated into the discrete ADI formulation above. Figure 3.1 shows a
radial symmetric wave, transmitted from a single source in a homogeneous medium
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Figure 3.1: Boundary reflection at the left boundary.

that reached the left boundary of the model. There is no reflection exactly perpen-
dicular to the boundary and only a small hardly visible reflection otherwise. The
maximum amplitude at 45◦ is less than 5% of the original nonreflected amplitude.

Remark 4. More advanced boundary conditions trying to also reduce reflections
from non orthogonal incident angles have been proposed in [CE77] and [Rey78].
However, some of them can not be immediately translated into the ADI context.
Either an ADI formulation has to be found or separate treatment of the boundary
is required. In the latter case computational efficiency can decrease and different
discretization requirements for the non-ADI part can cause further complications.
Many current codes use perfectly matched layers (PML), which are considered to be
superior to other absorbing boundary conditions and can further reduce reflections.
So far we could find little literature on combining PMLs with wave equation ADI
methods. [WT03] and [LG00] describe PMLs for ADI methods to solve Maxwell’s
equations.

3.3 Validation of the Code

To validate the modeling, we consider a simple two layered model as shown in Figure
3.2 a. We assume that the model is infinitely extended in all space direction, so no
boundary effects are considered. We can see a snapshot of the wave propagation
in Figure 3.2 b after 0.5 s. We see a radially symmetric wave initiated from the
source propagating through the upper medium. The transmitted wave, which is
slightly weaker in amplitude, has travelled faster in the lower medium with the
higher velocity and a weak reflection is visible coming back from the reflector.
To verify the solution quantitatively, we use the software Gar6more2D [DE11]. It

uses the Cagniard de Hoop method [dH60] to compute the Green function of the
wave equation for the desired configuration for a pulse source (delta distribution).
The Green function is then convolved with the desired source function by means of
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Figure 3.2: (a) Simple configuration with one reflector. Velocity is 1500 m/s above
and 2000 m/s below the reflector. (b) Propagated signal in space after
0.5 s.

numerical integration. Given a sufficiently small step size during that integration
we can regard this solution as a correct reference solution.
As source function we use the commonly used Ricker wavelet[Rya94]

f(t) =
(

1− 2π2f 2
p (t− τ)2

)

e−π2f2
p (t−τ)2 (3.20)

as plotted in Figure 3.3 (a) with a peak frequency of fp = 8 Hz and time shift
τ = 0.1 s. The frequency spectrum in Figure 3.3 contains contributions that are
essentially below 25 Hz. That means to avoid aliasing we have to choose spatial
discretization h < 15 m and time discretization k < 0.005 s. In Figure 3.4 we
see that our numerical solution matches the reference solution very well. A 30 m
spatial discretization causes slight aliasing whereas the 20 m solution already yields
an almost perfect fit to the analytical solution.
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Figure 3.3: (a) Source wavelet. (b) Frequency spectrum of the source wavelet.
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Figure 3.4: Numerical and analytical solution for k = 0.4 ms, (a) h = 30 m and (b)
h = 20 m.

3.4 Comparison with Explicit Finite Difference Code

3.4.1 The Marmousi Model

In multiple tests in this thesis we use the Marmousi model [Ver94] shown in Figure
3.5. The model was created for a 1990 EAGE workshop [LRV90] in order to provide
a common test to compare different methods of velocity estimation. It is still one
of the most popular test cases today. It is a 2D synthetically created geologically
plausible model, based on a profile through the North Quenguela Trough in the
Cuanza Basin in Angola. Based on a model with many different layers of deposited
material (marls, carbonates, sandstone etc.) a synthetical model with 160 layers
was created. Velocity and density models were then derived from this model. In our
thesis we set the density to one and make use only of the velocity model. Due to
the many reflectors, the steep dips and the strong horizontal and vertical velocity
gradients, the model is very complex. We add an additional water layer to the model,
which is quite common in literature and convenient for technical reasons (easier to
handle source imprint in FWI). The model is 3.5 km deep and 9.2 km wide. By
modern standards this is rather small since some surveys extend over 100 km in
width and beyond 10 km in depth, however it is quite suitable for testing purposes.
We have the original model on a 5 m by 5 m grid available (∼ 1.3 M grid points).
For all other resolutions we use, we interpolate or extrapolate from this grid.
To test our modeling algorithm we now consider a simple setup with a single

source at a horizontal position of 5.5 km and a depth of 30 m. Figure 3.6 illustrates
with snapshots of the modeling how the pressure wave travels through the model.
The waves are then recorded at a receiver line with receiver spacing of 20 m across
the whole model. The receiver line is also placed at 30 m depth. Source and receiver
positions are chosen so, that they coincide with grid points in all experiments and
thus we can avoid spatial interpolation when we compare the results (cf. below, only
for the 15 m computation grid some receiver signals are horizontally interpolated.)
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Figure 3.5: The Marmousi velocity model.

3.4.2 Comparison of the Results

For a runtime comparison, we compare our ADI scheme with the code Proteus, a
parallel explicit finite difference code for 2D FWI that has been developed at the
Geophysical Institute (GPI) at the Karlsruhe Institute of Technology (KIT)1. We
run the single source modeling experiment described above with both codes on a
single node with four cores (dual Intel Xeon 5148LV). We first compute the receiver
seismogram with our ADI scheme and a 2.5 m grid space. We can consider this
solution as very accurate (both codes converge towards this solution) and compare
all other solutions with this reference solution r. Then we calculate the relative error

e =
‖u− r‖
‖r‖ , (3.21)

where ‖ · ‖ denotes the L2 norm over time and source/ receiver configuration

‖u‖ =

∫

Γ

∫ T

0

u2dt. (3.22)

At the time of this writing, the amplitudes of the Proteus code require scaling to
produce the correct amplitudes. Therefore we do an amplitude fit of the Proteus
results ũP to match our amplitudes

uP =

∫

Γ

∫ T

0
uP rdt

‖r‖2 ũP . (3.23)

Figure 3.7 visualizes how both codes converge with decreasing step size. Table 3.1
shows the errors and runtimes for different spatial grid sizes. Our code produces
slightly better results at a 10 m grid spacing than the Proteus code at 5 m while only
needing a two thirds of the runtime. Depending on the required accuracy even the
results at 15 m gridspace might still be valuable from our code, although dispersion
effects start to show. However they are considerably better than the results of the
Proteus code at 10 m. And the Proteus results at 15 m with an error of 1 are no
longer usable.

1For further details on this code, contact the Department of Applied Geophysics at Karlsruhe
Institute of Technology, details at http://www.gpi.kit.edu
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Figure 3.6: Superposition of velocity model and propagated wave in the medium.
From top to bottom propagation is shown at 0.5 s, 0.7 s, 1 s, 1.2 s and
2.2 s.
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We should note that the Proteus code uses mpi, even for parallelization on a single
compute node. On the one hand this allows the code to distribute the computation
of one source onto multiple nodes on the other hand it might be slightly disad-
vantageous on one node as the different mpi processes do not have shared memory
and have to exchange data. Our ADI scheme on the other side is implemented with
pthreads. Pthreads might be advantageous on one node, as they share memory, how-
ever we cannot simply extend the code to multiple machines. Whether this is useful
depends on the problem. Often the number of sources (and thus single modeling
experiments) are of the order of 100 or larger and commonly exceeds the number of
available compute nodes. In that case it is usually the better strategy to parallelize
over the different sources and keep the computation of every single source on one
machine. An exception might be when the amount of memory needed for the FWI
computation exceeds the available main memory of one compute node. In that case
it might be sensible to spread one modeling step across multiple nodes for memory
reasons. However that usually does not occur: Even though modern acquisitions
are overall much bigger than the Marmousi model, the offset used for a single source
does usually not exceed 8-12 km. So even, with bigger depth and longer recording
time the total amount of memory needed per source is not much more than about
2-10 times the amount of memory needed in the Marmousi example and would still
fit into main memory of modern compute nodes. Unfortunately this reasoning does
not hold for 3D computations. If the model extends in the third direction for 10
km, the model size already increases by a factor of 2000 when using a 5 m grid. In
3D cases the velocity model itself usually no longer fits into main memory and the
computation must be distributed to several machines.
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Figure 3.7: Relative error e for Proteus and ADI code for different grid sizes h. ADI
Scheme at 2.5 m is used as reference solution.
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h [m] kP [s] kA [s] eP eA tP [s] tA [s]
2.5 4.4e-4 4.5e-4 (0.047) - 225 1739
5 8.8e-4 9.1e-4 0.143 0.080 29.2 162
10 1.8e-3 1.8e-3 0.394 0.136 4.31 19.9
15 2.6e-3 2.7e-3 0.994 0.282 2.71 5.8

Table 3.1: Comparison of code Proteus P and our ADI scheme A. For the given
spatial distance h, the time step k for both codes are chosen according to
requirements of each code (based on CFL condition). The computation
time is denoted by t.

3.5 Checkpointing

We mentioned in the last section, that 2D models usually fit into main memory. For
the Marmousi model with 5 m grid, we only need to handle a 5 MB array to store
u. Industrial sized 2D models could reach sizes of the order of 100 MB. However, to
compute the gradient (Chapter 2.2.2), we need to correlate u with the adjoint λ via

∇cE =
2

c3

∫

Γs

∫ T

0

λ
∂2

∂t2
u. (3.24)

We need to compute u before we can compute the adjoint, since the computation
of λ needs U , that is u in the receiver positions, as input data. Also u is modeled
forward from 0 to T while the adjoint wave equation has final conditions, so λ is
modeled from T to 0. Therefore we need to store u in time to evaluate the time
integral in Equation (3.24). Instead of using every timestep from the modeling
algorithm, we can approximate the time integral by using a coarser time step size
(e.g., the Nyquist sampling rate) but we still have to store more than 1000 snapshots
of u (e.g., T = 4s, sampling 4ms) and the total amount of data can easily exceed
available main memory. When that is the case, we can either use the slower hard
drive or employ a checkpointing scheme.
Let us assume we want to use u in a sequence of n time steps (tk) = {t1, . . . , tn}

to compute (3.24). Then we select a subset of nC checkpoints (tkl) ⊂ (tk) and nb

buffers (tkb) = {tn−nb
, . . . , tn}. In the first modeling run, we store u and ∂u

∂t
in every

checkpoint and only u itself in the buffer positions. Then we start the modeling of
the adjoint (backward) equation and use the buffers for the correlation. Once the

last buffer tn−nb
is reached, we us u(tC) and

∂u(tc)
∂t

as initial data to recompute u up
to tn−nb

and fill a new buffer with the snapshots of u up to that point. The procedure
then repeats with the new buffer and the remaining earlier checkpoints. The scheme
is illustrated in Figure 3.8. For our tests, we only need very few checkpoints, which
we select evenly spaced. For an optimal procedure of selecting checkpoints we refer
to [GW00].

33



3. Modeling

Checkpoints

Modeling u

Buffer

Modeling λ

Figure 3.8: checkpointing scheme. u is only stored in checkpoints and buffers in
order to save memory through recomputation.
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4 Nonlinear Minimization

In this chapter we will finish the formulation of the complete inversion scheme. From
previous chapters we have seen how the modeling algorithm provides a solution in
the receiver positions for a given velocity profile c. We proved the existence of
a minimum in one dimension and we obtained the gradient of the misfit function
with respect to c with the adjoint state method. Now, we can use the method of
steepest decent or other gradient based methods to find a (local) minimum. As
stated before the inverse problem is non-linear in c and we must assume that the
problem has many local minima. An easy way to see that is illustrated with Figure
4.1. If the model velocity c is too high compared to the real-earth velocity the
synthetic wavelet arrives much earlier than the observed wavelet. When we shift the
calculated wavelet towards the observed wavelet (i.e., slowly correct the kinematic
error) the misfit between the two wavelets travels through a local minimum.

t
 

 
synthetic
observed

Figure 4.1: Here the time difference between synthetic and observed wavelet is so
large that the misfit function would show a local minimum when the
time difference is reduced.

This simple illustration also gives us a few immediate ideas on how to avoid local
minima. We could

• obtain a good initial velocity profile by other (geophysical / geological) means,
which produces modeling results close to the real data,

• modify the misfit function so that the computational solution is within the
range of the global minimum,
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• or modify the observed data and/or input data directly so that the compu-
tational solution is within the range of the global minimum for the resulting
misfit function.

The best procedure will probably be a combination of the three. Ultimately there
is no practical way to prove for a real world problem that a global minimum has
been reached and the solution of the inverse problem is correct. We can only outline
different strategies here and test them on realistic synthetic test cases where we
know the exact solution.
Let us first start by formulating the general descent methods.

4.1 Descent Methods

Let c0 be our initial velocity model. Our goal is to iteratively construct new models
c1, . . . , cn with E(ck+1) < E(ck) so that E(ck) converges towards a minimum for
k → ∞. In step k we achieve this by constructing a descent direction gk and a step
length αk and performing the update

ck+1 = ck + αkgk (4.1)

so that
E(ck + αkgk)− E(ck) < 0. (4.2)

For a positive and sufficiently small step length αk, this can be guaranteed if

gk · ∇cE(ck) = lim
αk→0

1

αk

(E(ck + αkgk)− E(ck)) < 0. (4.3)

There are different possibilities of defining gk so that the condition gk · ∇cE(ck)
holds. For example for a positive definite matrix Ak,

gk = −Ak · ∇cE(ck) (4.4)

satisfies Equation (4.3). So the complete algorithm can be stated as:

1. Choose starting model c0.

2. In every step k compute update direction gk, for example with

gk = −Ak · ∇cE(ck). (4.5)

3. Compute update with
ck+1 = ck + αkgk, (4.6)

where the stepsize αk is chosen to ensure E(ck+1) < E(ck).

4. Iterate over k until a termination criterion is reached, which promises that the
data is explained by the model sufficiently well.

Let us look at each step more closely.
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4.1.1 Starting Model

The starting model must already produce reflections or at least diving waves, so
that waves reach the receiver positions during the computation, therefore it is not
possible to start with a constant velocity model. A velocity model linearly increasing
with depth, that is with constant gradient in depth, could already work in princi-
pal. However, as we have already noticed above much care must be taken to avoid
converging towards local minima in such a case. Better starting models could be
obtained from other geophysical methods, based on ray theory and on geological
reasoning.

4.1.2 Descent Direction

Steepest Descent

The most obvious way to construct a descent direction is to use the identity matrix
for Ak in Equation (4.4). That means in every update step we locally compute the
gradient and perform an update step towards that direction. This method is usually
referred to as the method of steepest descent or just gradient method. It is tempting
for its simplicity of formulation and implementation. However, the local approach
often generates directions, which can only be used with small steplengths so that
the overall rate of convergence tends to suffer.

Newton’s Method

Instead of following the gradient only locally, we can take a more global view. Find-
ing an extremum is equivalent of finding a zero of the gradient of the misfit function
∇cE. Let c̃ be such a solution, then we can make a linear approximation in a step k

∇cE(c̃) ≈ ∇cE(ck) +HE(ck) · (c̃− ck), (4.7)

where HE is the Hessian of E with respect to c̃. With ∇cE(c̃) = 0, solving for c̃
formally gives

c̃ ≈ ck −H−1
E (ck)∇cE(ck) (4.8)

now using this approximation for ck+1 in the iterative method gives us Newton’s
method. In the general framework above, we obtain Newton’s method by choosing

Ak = H−1
E (ck) (4.9)

in the descent direction, provided that the inverse of the Hessian is positive defi-
nite. This method is of higher order, it converges quadratically while the steepest
descent method only converges linearly. However, the Hessian could have negative
eigenvalues and be ill-conditioned or even singular. Therefore damping and/ or reg-
ularization is usually introduced. The damped Newton’s Method makes again use
of a step length αk , exactly like in the steepest descent method that has to be
determined in each step (e.g., with a line search, cf. below). So the update for the
damped method is

ck+1 = ck − αkH
−1
E (ck) · ∇cE(ck). (4.10)
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As regularization we can add a scaled unit matrix to the Hessian, so that the update
reads

ck+1 = ck − (HE(ck) + βkI)
−1 · ∇cE(ck) (4.11)

where βk can be either fixed or can be determined analogous to αk in each step. The
regularized version of the Gauss-Newton method is called the Levenberg method.
For large values of βk the method approaches the steepest descent direction and will
loose the advantage in convergence. An overview of the methods and regularizations
can also be found in [Fic11]
Even with those improvements, Newton’s method might still be infeasible in prac-

tice. First of all, we have to compute the Hessian in the first place and then solve
a (generally dense) linear system in every iteration. Santosa and Symes [SS88]
demonstrated the use of this method in one dimension. One way to avoid the need
of computing second derivatives is an approximation of the Hessian, that is done in
the Gauss-Newton method.

Gauss-Newton Method

E = E(c) depends on c via the synthetic wave field U(c). Let us now build the
Hessian by differentiating E twice with respect to c while using the chain rule

HE = (∇2
UE)(∇cU∇cU) + (∇UE)(∇2

cU). (4.12)

We have split the Hessian HE into one part with first derivatives of U with respect
to c and one part with second derivatives. When U behaves near linear with respect
to c, we can argue that the second term with ∇2

cU is small compared to the first
term and use the first term only to approximate

HE ≈ Ha = ∇U∇UE(∇cU∇cU). (4.13)

This method is called the Gauss-Newton method. A regularization term can be
added in the same manner as in the full Newton method. In seismics, Pratt et al.
[PSH98] demonstrated benefits of the Gauss-Newton method over the method of
steepest descent. The full Newton method is usually not considered due to the high
costs of computing the second derivatives of u. The first derivative can be obtained
easily. U satisfies the wave equation. Taking the derivative of the wave equation for
U with respect to c yields

∆∇cU − 1

c2(x)

∂2

∂t2
∇cU = − 2

c3
∇cc(x)

∂2

∂t2
U. (4.14)

where ∇cc is just the identity. The right hand term can be considered a source
term for the wave equation for ∇cU . The term is sometimes referred to as a virtual
source. It means that for every cj = c(xj) we can obtain the derivative ∂

∂cj
U by

solving the wave equation for a source

fvirt = − 2

c3
∂2

∂t2
U (4.15)

in position xj. In case the set of source positions coincides with the set of receiver
positions, then this computation does not even require a new modeling step. The
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computation of the derivatives can be done simultaneously with the solution of the
adjoint equation. However, usually the receiver positions are denser than the source
positions. In that case additional effort is needed to compute the derivatives. In our
test cases later, we will commonly use 10 times more receivers than sources. Thus for
those tests computing even the Hessian would mean significant extra computation,
which we will avoid.
After computing the first derivatives of U , we still need to compute the inverse of

Ha (or solve the corresponding linear systems). When discussing the modeling algo-
rithm in Chapter 3 we already argued that solving systems of that size is undesired
and avoided them. If we want to avoid them here as well, we can further simplify
the approximation of the Hessian, and use only the diagonal of the Hessian as done
in [VS08]. Including regularization, we then obtain

Ak = (diag(Ha + βkI))
−1. (4.16)

Let us finally look at one further way to improve the general descent method by
introducing conjugate descent directions.

Conjugate-Gradient Method

The conjugate-gradient method [HS52] constructs the descent directions gk, so that
they are orthogonal to each other. If the model space is n-dimensional, than after n
iterations, all search directions g0, . . . , gn−1 would form a basis of that model space.
If furthermore the stepsize in every iteration is chosen optimal and if we neglect
numerical errors, than the algorithm would have searched the whole model space
and for quadratic problems convergence towards a minimum would be guaranteed.
However, in practice we do not have a quadratic problem, the stepsize is not cho-
sen that carefully and the model space is so large, that we could not afford that
many iterations anyways. Nontheless, in general the conjugate gradient method is
known to converge faster than the simpler steepest descent method and it can be
implemented at almost no extra cost.
Let

g̃k = −Ak · ∇cE(ck) (4.17)

be a descent direction in step k like discussed before. For k = 0 we define g0 = g̃0.
For k > 0 we now obtain the conjugate direction gk with

gk = g̃k + γkgk−1 (4.18)

with

γk =
g̃k · (g̃k − gk−1)

‖gk−1‖2
. (4.19)

And then the velocity update is computed as before

ck+1 = ck + αkgk (4.20)

To avoid problems due to inaccurate stepsize, the method can be restarted after
a few iterations, so that only a limited number of orthogonal descent directions are
used before the whole space is searched again.
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4.1.3 Computing the Step Size

We still need to discuss how to calculate the step size αk in the algorithm above and
its variations. In general we want to have a stepsize αk that minimizes E(ck+1) =
E(ck + αkgk) with respect to the search direction gk. Different one dimensional
search strategies are possible. One of the most common ways is to solve for αk from

d

dαk

E(ck + αkgk) = 0. (4.21)

For a linear expansion of E in ck we obtain

gk · ∇cE(ck) + αkgk ·HE(ck)gk = 0 (4.22)

from where we can solve for αk with

αk = − gk · ∇cE(ck)

gk ·HE(ck)gk
. (4.23)

However, thereby we once again introduce the Hessian, which we might want to
avoid for computational costs. A popular alternative is a line search. We calculate
the misfit for several trial step lengths and compute a new step size that minimizes
the polynomial function that interpolates through the misfits with those step sizes.
In numerical experiments we can see that E(ck+αkgk) is often close to quadratic in
αk so a quadratic polynomial should suffice. E(ck) is already known, so we know the
misfit for αk,0 = 0. We select two more points αk,1 and αk,2, compute E(ck +αk,1gk)
and E(ck + αk,2gk), and compute αk as the minimum of the quadratic function
through those three points.
With this line search, we need to solve four forward modeling problems in to-

tal. Two, to compute the gradient and two more for the line search. Tape et al.
([TLMT10]) suggest, that some computation could be saved by not solving the whole
forward problem during the line search, but instead limit the computation to certain
events that influence the line search most. However, we do not discuss this approach
here.

4.1.4 Stopping Criteria

Assuming our algorithm reaches a global minimum and produces an output that
can explain the whole data well, then we can stop our algorithm after

E < ǫd (4.24)

where ǫd is threshold depending on the uncertainty of the data. Trying to descent
even further would only mean that our algorithm would explain measurement errors
with model features. In practice lack of a very good starting model and/ or lack
of computational power to use very sophisticated multiscale algorithms (cf. below)
can prevent us from reaching the global minimum. Therefore it might be better to
add a stopping criteria that activates when the update from last to current iteration
is no longer significant, for example with

E(ck−1)− E(ck) < θE(ck−1) (4.25)
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for some threshold θ. Furthermore, we might want to stop the iteration after a
certain number of steps, based on available compute power and reasonable time, or
stop the iteration when the user is satisfied with the obtained update (e.g., based
on visual criterion).

4.2 Improving Convergence

As indicated before, there are several further ways to improve convergence and lower
the risk of converging towards a local minimum. Some of the methods use geophysi-
cal reasoning to justify certain modifications to the gradient, the error function, or to
the data. Modifications to data or gradient are often described as pre-conditioning,
although the terminology is not correct in the strict mathematical sense, where pre-
conditioning usually means replacing the problem by an equivalent problem with
the same solution but faster convergence.

4.2.1 Gradient in Water

In our work we will assume that the wave speed in the water layer as well as the
ocean bottom line is known. This assumption is not trivial since the wave speed
varies with pressure and salt content, however, different other inversion techniques
can obtain this information reliably. So for our purposes, we track the ocean bottom
line from the initial model and set the gradient ∇cE = 0 in the water layer.
Without this assumption, we usually see very strong contributions of the gradient

below the water surface, where sources and receivers coincide. These contributions,
called source imprint, are correct due to geometrical reasons of the model but signif-
icantly supersede the actually wanted contributions of the gradient in deeper levels.
Fixing the water velocity during the inversion solves this problem. However this
technique might not be possible for very shallow water layers or land acquisitions.

4.2.2 Alternative Error Functions

There are different ways to measure the residual between observed and synthetic
data. So far we considered only the least squares (L2) norm

E =
1

2
‖U − Ud‖22 =

1

2

∫

Γ

∫ T

0

(U − Ud)
2dt (4.26)

with the corresponding gradient

∇cE =
2h

c3

∫

Γ

∫ T

0

λ(2) ∂
2

∂t2
udt. (4.27)

where λ(2) denotes the adjoint with for the L2 norm E. Alternatively we can also
use the least absolute value (L1) norm

E1 = ‖U − Ud‖1 =
∫

Γ

∫ T

0

|U − Ud|dt. (4.28)
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The derivation of the gradient can be done analogously to the derivation of the
gradient for the L2 error. A faster way to see, how the gradient can be calculated is
to execute and compare the derivatives with respect to c directly. We already know
that

∇cE2 =
d

dc

(

1

2

∫

Γ

∫ T

0

(U − Ud)
2dt

)

=

∫

Γ

∫ T

0

(U − Ud)
d

dc
Udt

=
2h

c3

∫

Γ

∫ T

0

λ(2) ∂
2

∂t2
udt,

(4.29)

where λ2 is the solution of the adjoint equation with source U −Ud. Now, similarly,
we can see that

∇cE1 =
d

dc

(
∫

Γ

∫ T

0

|(U − Ud)|dt
)

=

∫

Γ

∫ T

0

(U − Ud)

|U − Ud|
d

dc
Udt

=
2h

c3

∫

Γ

∫ T

0

λ(1) ∂
2

∂t2
udt,

(4.30)

where λ(1) is the solution of the adjoint equation with source term U−Ud

|U−Ud| .

The least absolute value norm has been used by Brossier et al. ([BOV10]) in
frequency domain full waveform inversion. They found advantages over the L2

norm in the presence of noise, especially for decimated datasets (which they have,
when inverting for single frequencies only, cf. section 4.3.1). Another property of
the L1 residual is, that it reproduces sharper discontinuous features in the gradient,
compared to smoother gradients of the L1 norm, as we will see in the numerical
experiments. This might be beneficial for some applications, when those discrete
features are used (e.g., for interpretation) in early stages of the inversion.
Mathematically we have to keep in mind that the absolute value is not differ-

entiable in 0, which means that in case an optimal model can explain the data
completely, the gradient becomes singular in the minimum. Although this might
not happen in real world applications, the L1 norm could be problematic near the
global minimum. It is possible to start with the L1 norm and proceed with the L2 af-
ter some iterations. More elaborate ways include the use of hybrid error functionals
like the Huber criterion ([Hub73]) or the use of a hybrid L1/L2 criterion as proposed
by Bube and Langan ([BL97]). Applications for frequency domain full waveform
inversion can be found in [BOV10]. Another approach is to use regularization by
using a source term

U − Ud

|U − Ud|+ ǫ
(4.31)

for the computation of the adjoint.
A third residual function we want to discuss briefly is the correlation error mea-

sure. Instead of computing the difference between synthetic data and observed data,
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we correlate both data. This can be advantageous when amplitudes in the observed
or synthetic data are not considered reliable, since the correlation ignores ampli-
tude differences and focuses on phase difference of the measured functions. The
correlation error is

Ecorr = −
∫

Γ

∫ T

0
UUddt

(

∫ T

0
U2dt

)
1

2

(

∫ T

0
U2
ddt
)

1

2

= −
∫

Γ

< U,Ud >2

‖U‖2‖Ud‖2
.

(4.32)

This function is obviously not a norm, but we can still minimize it and compute the
gradient as we did before.

∇cEcorr = − d

dc

∫

Γ

< U,Ud >2

‖U‖2‖Ud‖2
.

= −
∫

Γ

∫ T

0

[

1

‖U‖2‖Ud‖2

(

< U,Ud >

‖U‖22
U − Ud

)]

d

dc
Udt

=
2h

c3

∫

Γ

∫ T

0

λcorr

∂2

∂t2
Udt,

(4.33)

where λcorr is the solution to the adjoint equation with the source term

1

‖U‖2‖Ud‖2

(

< U,Ud >

‖U‖22
U − Ud

)

. (4.34)

This source term is actually the same as the source term of the least squares mini-
mization with some additional scaling that can be understood as follows: The term

1

‖U‖2‖Ud‖2
(4.35)

normalizes each receiver line. Thus far offset receivers, which receive a weaker
signal due to spreading and damping are considered equal to near offset receivers.
Advantages of this are also discussed below in section 4.3.3. The term

< U,Ud >

‖U‖22
(4.36)

is actually the solution α of the amplitude fit

min
α

‖αU − Ud‖. (4.37)

So minimizing Ecorr is equivalent to minimizing E2 after an amplitude fit has been
performed for the synthetic data towards the measured data and the difference has
been scaled by weights from both the synthetic and the real data traces. This
correlation measure has been specifically used together with an encoding function
to do simultaneous inversion of multiple sources, details are discussed in [KAH+09].
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4.3 Multiscale Approaches

When we look at the inverse problem with the full data, the problem usually has
many local minima and even a good starting model might not be in the range
of attraction for the global minimum. Now we want to look at several methods of
solving the problem on different levels or scales, where the complexity of the problem
in some sense is reduced and the misfit function has less local minima. We want to
reduce the complexity so that the initial model is already in the basin of attraction
of the minimum of the first (reduced) problem. That solution then should be in the
range of attraction for the next finer problem. We proceed iteratively to the original
problem. This multiscale approach is closely related to multigrid methods that are
well known in mathematics (e.g., [Bra77], [BHM00], [McC88]). Those methods aim
at the solution of large scale linear or nonlinear problems. They project or restrict
the problem to a coarser grid (i.e., coarser scale), then perform a relaxation operator
on that scale and inject the solution back onto a finer grid.

4.3.1 Multiscale Approach over Frequencies

As introduced by Bunks et al. ([BSZC95]) we can increase the range of attraction of
the global minimum by looking at the problem at a larger scale, based on frequency
content. Therefore we apply a lowpass filter to both the measurement data and
the synthetic data. This filtered data contains only long wavelength and has much
wider maxima, that is the time difference between maximum and minimum of the
recorded or computed wavelet is much longer. Accordingly the misfit function has
fewer extrema that are further apart. Our strategy is now to solve the problem at
that low frequency and then incrementally increase the frequency content to include
higher and higher frequencies and solve the problem again after each increase. We
illustrate the strategy in Figure 4.2 with two scales.
The required computational grid size depends on the frequency content (cf. Chap-

ter 3). That means, that we can start the minimization for the lower frequencies with
coarser discretization of u and decrease the grid space as we increase the frequency
band.
Instead of iterating over increasing bands of overlapping frequencies, it is possible

to use a staggered approach, where we only iterate over single frequencies. This
approach developed by Pratt et al. ([Pra99], [PS99]) uses a Fourier transformation
of the problem. The Fourier transformed wave equation is

∆ũ+
ω2

c2
ũ = f̃ , (4.38)

for frequencies ω, where the ˜ denotes of the Fourier transform of the functions in
time. This equation is also called Helmholtz equation. Solving this system for
all frequencies ω is equivalent to solving the wave equation in the time domain.
However, as the system here decouples over ω it is also possible to solve the system
for selected frequencies only. This possibility is the major advantage of doing full
waveform inversion in the frequency domain instead of the time domain (as we do).
However, solving the Helmholtz equation for large systems is not easy and is usually
done with parallel direct solvers ([SOV+09a], [SOV+09b]). Scalability concerns for
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c1

c2

c0

c0

c1

Fine Scale

Coarse Scale

Figure 4.2: Heuristic illustration of the multiscale method on two scales. While c0
does not lie in the range of attraction of c2 on the fine scale , c1 – reached
on the coarse scale – does.

large data often motivates to work in the time domain instead. Notice that the
differences between time domain and frequency domain are purely technical and
important for implementation and performance. Mathematically the two approaches
of full waveform inversion are equivalent.
One restriction of this multiscale approach over frequencies is the availability of

low frequency content in the seismic acquisitions. In older surveys reliable data is
often only available above 5 Hz. Obtaining lower frequency data requires higher
energy seismic sources or more sensitive receivers, which rises environmental and
technical problems respectively. Development into technology for obtaining lower
frequencies is actively persued and more recent studies were able to use frequency
content from as low as 3 Hz [SBD+10]. Even lower frequencies can be obtained from
passive seismologic measurements. However these surveys usually focus on surface
waves and are less significant for exploration seismic.

4.3.2 Multiscale Approach over Time Damping

In general, early data in the receivers is only influenced by diving waves and first
reflections from shallow reflectors. The data that arrives later at the receivers comes
from wavepaths with longer traveltime, that is from waves that are reflected in
deeper parts of the model or from multiples (waves that have been reflected several
times before reaching the surface). Of course this description can only be a rough
approximation, since the traveltimes depend on the heterogeneous velocity model.
Nevertheless this heuristic suggests that the early synthetic data is more reliable
than the later, since errors in shallow part of the velocity model accumulate for
deeper reflections and multiple reflections. Therefore it is reasonable to focus on the
early arrivals first to update the lower parts of the velocity model and then later in
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the inversion include later receiver data to improve the model accuracy in depth.
An elegant way of doing this is by introducing an exponential time damping in the
gradient with

∇cE =
2h

c3

∫

Γ

∫ T

0

λ
∂2

∂t2
u exp(−kt)dt, (4.39)

where k is a damping parameter. We can start by solving the inverse problem with
a strong damping and then repeat for descending coefficients k until we solve the
original problem for k = 0.
It is possible to improve the speed of computation by combining this technique

with a time window. Depending on k we can approximate the gradient with an inte-
gration up to a time Tk ≤ T after which contributions of the solution are considered
negligible due to the damping. In this case we only have to do the modeling until
time Tk and use the adjoint λ(k) with final conditions at Tk to compute

∇cE =
2h

c3

∫

Γ

∫ Tk

0

λ(k) ∂
2

∂t2
u exp(−kt)dt. (4.40)

This method of introducing time damping is usually referred to “Laplace damping”
or “Laplace inversion” since

ũ(k) =

∫ T

0

u(t) exp(−kt)dt (4.41)

is the Laplace transformation of u. In the frequency domain we have already seen,
that it is possible to invert for specific frequencies instead of overlapping bands by
transferring the problem into the frequency domain with a Fourier transformation.
The same is possible here, where we can transform the whole problem into the
Laplace domain and then invert for single Laplace components ([SC08], [LS09],
[HPYS09]). The Fourier transform is equal to the Laplace transform for the complex
k = iω. So after doing the complex Laplace transform, both frequency content and
damping are described by a single complex Laplace coefficient k. That means a
combined staggered algorithm can be set up that iterates over single frequencies
and damping coefficients simultaneously ([SC09], [KSCP09]). However, like with
the frequency inversion above, we have to solve the Helmholtz equation for the
(complex) Laplace inversion as well. Thus the efficiency and scalability concerns
raised before remain unchanged.

4.3.3 Multiscale Approach over Offsets

A last multiscale approach to refine the model iteratively makes use of different
source - receiver offsets (i.e., distance between source and receiver). Usually, com-
pared to the shorter offsets, larger offsets contain more data, that are influenced
by the shallow parts of the model and data that come from shallow diving waves.
Shorter offsets can contain fewer diving waves for geometrical reason. In the be-
ginning of the inversion, a coarser background velocity (or smoothed model) might
already be determined adequately, whereas individual (local) reflectors might not
be accurate yet. In this case the diving waves are more reliable than the reflected
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waves. To make use of this observation, we can start the inversion by using only far
offset data and then proceed to include shorter offsets in the process.
Unfortunately this approach already requires the solution of the whole problem

in the early iterations, so we cannot gain computational efficiency by reducing grid
size or time interval like before. However the shallow depth points are covered more
by long offsets compared to short offsets, meaning for every model point (excluding
near the boundaries), there are more single source-receiver experiments with long
offsets that are influenced by that point than with short offsets. That suggests that
it could be possible to save computational time by using only fewer sources in the
beginning, where we consider only far offsets and then add more sources, when we
add the nearer offsets. Unfortunately, as we will see in the test cases in Chapter 5,
we will see more spherical artifacts when we limit the offsets (discussed in Ch. 5)
which stands against this reasoning.
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5.1 Marmousi

We already introduced the Marmousi model in Chapter 3. We will now use this
model to test the inversion strategies outlined in the previous chapter. The model
is 9200 m wide and 3500 m deep, including a 500 m water layer. We distribute 8
sources 1000 m apart from each other between 1000 m to 8000 m on top of the model.
Receivers cover the whole surface with a 25 m spacing. In light of the discussion in
chapter 4.3.1 we start with low frequencies only and apply a Butterworth bandpass
filter with an upper limit of 5 Hz. The low frequencies allow us to use a rather coarse
gridspacing. We use h = 15 m to stay consistent with later tests, but could choose
even larger h. We keep in mind that in practice both higher frequencies and more
sources are available. However, as we will see the configuration here is sufficient
for first tests of our inversion schemes. Figure 5.1 (a) shows the original Marmousi
model. We use this model to generate a synthetic response to our sources. Figure
5.1 (c) shows the response in a so called common source gather. It means that all
the receiver traces are ordered by the sources. The first 280 traces belong to the first
source at 1000 m, the next traces belong to the next source placed at 2000 m and
so on. We now use this data instead of real measurement data as our input data in
the inversion. As starting model we use a smoothed version of the real model that
is displayed in Figure 5.1 (b). As we assume that the water velocity is known, the
model is only smoothed underneath the ocean bottom and correct inside the water
layer.

5.1.1 First Gradient

Figure 5.3 (a) shows us the simple gradient, scaled only with the step length of the
first update step. We can immediately see that this gradient is not very good for a
fast update. We see strong contributions in the water layer that are up to 10 times
larger in amplitude than the contributions in the rock, despite the fact, that our
model is correct in the water layer. The spherical artifacts happen due to limitations
in the source-receiver geometry: A reflected wave that travels upwards from its point
of reflection behaves almost like a plane wave after some time, when it reaches the
receivers. However, due to the limited length of the receiver chain (or even due
to sparse receiver locations, when using only few receivers) the adjoint (backward)
wave equation does not reintroduce a plane wave solution, but rather a solution
enveloped by a curved/ spherical wave front, as illustrated in Figure 5.2. Those
radial contributions are then correlated with the near plane wave solutions in the
gradient and produce the unwanted spherical artifacts. Those artifacts are especially
strong near the source positions, where the wavefield u is strong. They dominate
the velocity update there in an unrealistic way. One intuitive way to mitigate the
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(a)

(b)

(c)

Figure 5.1: (a) Original Marmousi model. (b) Smoothed starting model. (c) Com-
mon source receiver gather.
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ReceiversSource

Reflector

Figure 5.2: Illustration of the receiver imprint. The waves, reflected from one point
are shown. The backpropagated waves (solutions of the adjoint equation)
are shown in blue. Their envelope (red) has curved sections (indicated
by arrows) on the sides due to the limited length of the receiver array.

problem is by scaling the gradient with the so called source illumination or receiver
illumination. That means, we divide the gradient by a field

S(x) =

∫ T

0

u(x, t)2dt (5.1)

or

R(x) =

∫ T

0

λ(x, t)2dt (5.2)

or a combination of the two. This method is also known from reverse time migration
[KG06]. As we can see in figure 5.3 (b), it also emphasizes parts of the gradient
that are not “well illuminated”, meaning points in the underground that do not
receive strong contributions from u or λ, for example due to depth or geometry of
the acquisition.
An even more efficient way to improve the gradient, is just to ignore the gradient

in the upper part, underneath the sources, which is easily possible as long as there
is a sufficiently thick water layer in the model (cf. Figure 5.3 (c)).

5.1.2 General Descent Scheme

First, let us check the line search. In figure 5.4 we show the true misfit function

E(α) = E(c+ α∇cE(c)) (5.3)

evaluated for 50 α together with a parabolic fit through three (estimated / guessed)
evaluations of the first iteration. We see that the parabola fits the real misfit function
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(a)

(b)

(c)

Figure 5.3: (a)First gradient, scaled by the steplength in first iteration. In (b) the
gradient is additionally scaled with the source illumination. In (c) the
gradient is set to zero in the water layer, but not scaled with the source
illumination.
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Figure 5.4: True misfit function E and parabolic fit in first iteration of the gradient
descent scheme.
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quite adequate near the global minimum and the minimum of the fit is close to the
accurate minimum.
As stopping criterion we use

E(ck−1)− E(ck) < θE(ck−1) (5.4)

for θ = 0.01. Using the simple gradient, only muted in water, and the plain steepest
descent method, we see the first 30 iterations of the method in Figure 5.5, where we
plotted the relative error

Er(ck) =
E(ck)

E(c0)
. (5.5)

With the stopping criterion above, we would have stopped the inversion after 12
iterations. Given the small updates at that point, this seems to be a reasonable
choice. We might even consider stopping earlier, when less accuracy is defensible,
or if we intend to do further minimization in a multiscale scheme. For example, we
could use θ = 0.05 which in this instance results in stopping after the 9th iteration
or even θ = 0.1 which would have triggered the stop after the 5th iteration.

0 5 10 15 20 25 30
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0.4

0.6

0.8

1

Iteration

E
r

 

 

Steepest Descent

Figure 5.5: Convergence of steepest descent.

We already discussed reasons for muting the gradient in water. We can further
strengthen our argument by looking at the rate of convergence. In Figure 5.6 we
see the convergence in Er for four different schemes: The unmodified gradient, the
gradient scaled with the source illumination S, the gradient muted inside the water
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layer, and the gradient both scaled with S and muted. All four schemes seem to
converge quite similarly. The schemes with the muted gradient converge slightly
faster in the beginning, but seem inferior after about 5 iterations. However, the
difference can be seen in the velocity update. We compare the velocity updates
directly by using the scaled Euclidean norm

Ec(ck) =
‖ck − c0‖

‖c0‖
(5.6)

in Figure 5.7. In this comparison we see much larger differences in the schemes. The
unmodified gradient performs worst. Scaling with the source illumination improves
the result slightly, but muting the gradient in the water layer has the biggest effect.
Tests with the receiver illumination produced comparable results to the tests shown.
Combining the mute and the scaling does not give superior results. This confirms,
that without the mute, the algorithm tries to explain data with erroneous updates
near the sources in the water layer. A scaling with the source illumination that mit-
igates the problem slightly does unfortunately not improve the overall convergence
for the deeper parts of the model. That means that whenever a sufficiently deep
waterlayer is known in the model, we can mute the gradient, in other cases using
source (or receiver) illumination could lead to improvement.

Remark 5. Although it is easy and intuitive to check the velocity update with the
error function Ec above, we should only use it with caution. First of all, we do
not and cannot minimize this function directly, so we cannot expect this function
to converge to zero. Furthermore, it weighs the velocity difference equally over the
whole model, which can include parts of the model, that gain little or no update at
all, for example near the model boundaries or in deep parts of the model. In Figure
5.7 we see that we only gain a 5% improvement in Ec. This is because differences in
the lower parts of the model and on the lower sides are very strong and dominate
the whole error, even though we make considerable improvement in the top part
of the model. Finally, we have to keep in mind, that the real velocity model is
only available in our synthetic tests, so this function cannot be used in real world
applications.

Finally, let us compare the steepest descent method with the conjugate gradient
method. In figure 5.8 we see that the conjugate-gradient scheme converges slightly
faster in the first iterations and then follows the steepest descent algorithm after the
6th iteration. Restarting the conjugate gradient algorithm in between did not lead
to improvement. Obeying the stopping criteria stated before, the gradient algorithm
would have stopped already after the 12th iteration, which for the conjugate gradient
would be achieved with a stopping criterion of θ = 0.2. In Figure 5.9 we also compare
the length of the gradients, computed with both methods in the error function

EGrad(ck) =
‖∇cE(ck)‖
‖∇cE(c0)‖

. (5.7)

As expected the gradients get smaller during the iterations when the update steps
get smaller. The gradients in the conjugate gradient algorithm decrease more mono-
tone than the gradients of steepest descent, which makes a robust line search and
reliable stopping criterion easier. Keeping in mind that the conjugate gradient can
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Figure 5.6: Comparison of the relative misfit Er for different modifications of the
gradient.
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Figure 5.7: Comparison of the velocity error Ec for different modifications of the
gradient.
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be computed at practically no extra cost, this and the faster convergence in the
beginning convinces us to give preference to the conjugate gradient method over
steepest descent.
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Figure 5.8: Comparison of conjugate gradient and steepest descent.

Before continuing with more advanced schemes, let us briefly examine, how much
progress we made in solving the inverse problem with the method tested up to this
point. We solved the inverse problem on bandpassed data and in 12 iterations we
were able to explain 72% of that filtered data (Er = 0.28). If necessary, more
iterations can, although very slowly, still improve on that (e.g., 30 iterations: Er =
0.23). We see the resulting velocity model now in Figure 5.10 (a). The first layers
are now clearly visible and the mountain like top structures in the middle are now
recognizable with sharp edges. We can better see the improvements by comparing
the difference plots in Figure 5.10 (b) and (c). The errors in the velocity model
are now very small in the top structures above 1500 m, some improvement can be
seen in the middle area around 2000 m and de facto no update is performed below
2800 m. To further improve the results, we can both try to improve the methods
on the current data and we can include the higher frequency data.
Without bandpass filter, the current model explains only 35% (Er = 0.65) when

using a Ricker signal with 15 Hz peak frequency. The effect can also be seen,
when comparing a single trace from the original model and the solution in Figure
5.11. We can see that the bandlimited traces in Figure 5.11 (b) already match
quite well, even for later times, which mostly correspond to deeper levels. Another
observation we can make from the traces is that the phases already fit quite well,
whereas the amplitudes of the solution are too small. In general, errors in the
(smooth/ average) background velocity would produce phase shifts, whereas the
strength of the reflectors (e.g., velocity contrast between two reflectors) produces
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Figure 5.9: Comparison of gradients of conjugate gradient and steepest descent
method.

errors in the amplitude. By implication, we need to improve local contrasts to
improve convergence.

5.1.3 L1 Norm

After the preceeding analysis, we expect benefits from the least absolute value norm,
since it is known to allow for sharper contrasts in the gradient. Indeed, in 5.12 we
see that the first gradient from the misfit function

E1 = ‖U − Ud‖1 =
∫

Γ

∫ T

0

|U − Ud|dt (5.8)

shows stronger contrasts than the gradient from the least square norm. We also
notice that the contributions in lower parts of the model are clearer and stronger.
We see that the method converges in the L1 norm

E1,r(ck) =
E1(ck)

E1(c0)
(5.9)

in 15 iterations for (θ = 0.005). With a relative error of over 50%, we are prob-
ably converging towards a local minimum of that norm here. However, when we
compare the error with the least squares method in Figure 5.14 (a), we see that
the least absolute norm converges even slightly faster and more uniformly than the
least square norm measured in Er. The biggest advantage can be seen when com-
paring the velocity update in Figure 5.14 (b). When minimizing the L1 norm we
achieve in seven iterations roughly the same quantitative velocity update, that the
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(a)

(b)

(c)

Figure 5.10: (a) Velocity model c12, i.e. velocity model after 12 iterations. (b)
Absolute value of difference between starting model and original model
|c0 − creal|. (c) Difference between c12 and real model |c12 − creal|.
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(a) (b)

Figure 5.11: Single trace from receiver at 5500 m, source at 3000 m. Traces modeled
with the real model and the inversion result from c12. (a) Full frequency
range, (b) bandpass filtered below 5 Hz.

L2 method produces in 15 iterations. Furthermore the update is also more regular.
The stronger gradient contributions in lower parts improve the result. When com-
paring the differences in Figure 5.15 we now see that some updates are performed
in the lower regions of the model, around 3000 m.

Figure 5.12: First gradient based on L1 misfit E1 scaled with steplength in first
iteration.

5.1.4 Noise

Up to this point, we always committed the “inverse crime” by inverting with receiver
data that we previously computed with the same algorithm. This method is quite
common and has been instructive so far. To make our experiments more realistic
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Figure 5.13: Relative L1 error of conjugate gradient method based on L1 norm.
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Figure 5.14: Comparison of L1 and L2 based conjugate gradient method.(a) Misfit
measured in L2 norm. (b) Error in the velocity field.
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Figure 5.15: Difference between the solution of the L1 based inversion with the real
velocity model.

and to test the stability of the algorithms, we will now add random Gaussian noise
to the input data. We apply noise levels of sn = 20, sn = 10, sn = 5, where

sn =
‖U‖
‖Un‖

(5.10)

is the signal to noise ratio for Gaussian noise Un. (We removed the direct wave in
U here, as it would completely dominate the nominator in sn.) Figure 5.16 shows
the effect of this noise on the seismograms.

sn = 5sn = 10sn = 20No Noise

Figure 5.16: Receiver data for source at 4000 m with different noise levels.

We compare the effects of that noise with the L1 and the L2 norm over the first
15 iterations in Figure 5.17. We can see, that both algorithms converge for every
noise level and the L2 errors are similar for both minimization schemes for each noise
level. However, there is a significant difference in the velocity error in Figure 5.18.
While the velocity errors during the L2 minimization stay close to each other for all
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noise levels (Only sn = 5 and no noise plotted), the velocity error for large sn gets
notably worse for the L1 norm. However, even for sn = 5 the velocity error with
the L1 norm stays below the error of the noise free L2 scheme, therefore we can still
recommend the L1 norm over the L2 norm in the presence of noise.
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Figure 5.17: L1 and L2 minimization with noise. Er is normalized with the misfit
E(c0) of the noise free experiment.

5.1.5 Multiscale Schemes

Now, we want to make use of the complete available data and use the multiscale
algorithms described in section 4.3 to avoid local minima.

Increasing Frequencies

We will now use the inversion schemes as we tested them before on increasing bands
of frequencies. For each frequency band we run our algorithm until the stopping
criterion is reached. Choosing good frequency bands for the inversion is not easy.
Sirgue and Pratt developed in [SP04] a strategy to select single frequencies for their
staggered frequency domain inversion based on 1D linearized assumptions. For a
near offset survey with receiver offsets up to 3 km, they use 8 frequencies between
2 and 8 Hz, for a far offset survey with offsets up to 10 km, they manage with just
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Figure 5.18: Velocity error in L1 and L2 minimization with noise.
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three frequencies (2, 5, 8 Hz). They argue, that there is some redundancy in the
data for which they can skip frequencies in their inversion algorithm.
Those results do not translate directly to our time domain approach, however it

gives us an estimation for a reasonable upper limit to the number of bands needed.
High and Starr ([VSK09]) argue that the redundancy in data during time domain
inversion is an advantage in real data applications as it improves the signal to noise
ratio. They use only three frequency bands to avoid local minima.
We have seen that the inversion with the 5 Hz frequency limit already explains the

data at that range quite well, so we use our previous results as a starting model. We
can determine the next higher filter frequency in a heuristic fashion. We compare
several traces of the current synthetic seismogram with the real data as we did in
Figure 5.11. We can then filter those seismograms to higher frequencies and visually
check whether the filtered synthetic data lies within the range of attraction of the
filtered real data, that is whether minima and maxima are within half a wave length
next to each other. We can also do a Fourier transform and compare the frequency
spectrum of the two datasets. In Figure 5.19 we can see how the inversion result
departs from the input data with increasing frequency.
We now use an imput signal with 15 Hz peak frequency, bandlimit it to 5, 7,

9, 12, and 15 Hz and perform the inversion successively for each frequency band.
To guarantee comparability, we use the same grid spacing, adjusted to the highest
frequency band for all frequencies. Table 5.1 lists the number of iterations done in
each frequency band. After the 15 Hz band we perform the last iteration on the
full dataset. (The 5 Hz solution and its stopping criterion varies slightly from the
previous results, due to higher numerical accuracy in this test). To validate the
whole scheme, we look again at a single trace and the frequency spectrum of the
velocity model cend after the last iteration with the L1 norm. In Figure 5.20 we
see the error in a single trace. It fits much better than before in Figure 5.11 and
even the later part of the signal after 3 seconds is mostly matched well. Looking at
the frequency spectrum in Figure 5.21, we also see considerable improvement. The
section after 20 Hz is poorly matched, but this is not surprising since we stopped
the systematic bandlimiting after 15 Hz.
The algorithm based on the absolute value norm reaches its stopping criterion

faster than the least squares inversion on most frequency bands and finishes after
56 iterations, while we take 78 iterations for the least squares method. The L1

method saves iterations in the early iterations on the lower frequency bands, where
coarser grid space could be used. On the computationally more expensive higher
frequency bands both methods needed the same amount of iterations, therefore the
overall computation time of L1 is only slightly faster than of the L2 scheme. The
relative error in the seismograms decreases over all multiscale steps as can be seen
in Figure 5.22. In Figure 5.23 we see the velocity improvement over all iterations
of the schemes. We immediately see that the L1 norm produces better updates in
fewer iterations. In some cases we see a small increase of the velocity error from one
frequency band to the next. This might be a hint, that the previous velocity model
was already too much refined for the first update steps in the next iteration. The
problem could be reduced by either using more closer frequency bands or stopping
the previous inversion earlier.
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Figure 5.19: Full frequency spectrum of the traces from Figure 5.11. We see a very
good match up to about 5 Hz.

Frequency 5 Hz 7 Hz 9 Hz 12 Hz 15 Hz Full Range Total
L1 5 12 10 12 8 9 56
L2 16 19 15 12 8 8 78

Table 5.1: Number of iterations at each frequency band for L1 and L2 based
minimization.
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Figure 5.20: Single trace from receiver at 5500 m, source at 3000 m. Traces modeled
with the real model and the inversion result from cend after all iterations
of the frequency multiscale L1 scheme.

Decreasing time damping

Next, we will test the method of time damping described in 4.3.2. We do not apply
a bandpass filter, instead we scale the gradient with an exponential damping term

∇cE =
2

c3

∫

Γ

∫ T

0

λ
∂2

∂t2
u exp(−kt)dt, (5.11)

and reduce the damping parameter k in the course of the inversion. Like in the pre-
vious section, we do not have an optimal algorithm to determine a set of damping
parameters. Similar to the frequency approach, we could compare the input seis-
mogram and the inversion results after applying time damping or after a Laplace
transform. However, this could only indirectly give clues to the possible effects of
that damping in the gradient.
In [SC08] Shin and Cha use 19 different Laplace coefficients between 20 and 2

in their staggered Laplace waveform inversion, when starting from a 1D velocity
model which increases linearly with depth. With a better starting model and an
overlapping approach, we decide to use fewer steps and iterate over 5 equally spaced
Laplace coefficients between 10 and 0. Unlike in the previous section, where the
misfit function changed with the frequency content the misfit function itself is not
modified by the damping. We observed, that this makes it more difficult for us to
adjust a stopping criterion that is effective for every given k. Instead, we just use
a fixed set of 10 iterations that we perform per damping constant. We can see the
effect of the damping on the gradient directly in Figure 5.24. As we expect, the
gradient is mostly present in the upper parts of the model for strong damping and
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Figure 5.21: Full frequency spectrum of the traces from Figure 5.11.
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Figure 5.22: Relative L2 error after each frequency band of the multiscale inversion
computed with full frequency data. Frequency bands are 1) 5 Hz, 2) 7
Hz, 3) 9 Hz, 4) 12 Hz, 5) 15 Hz, 6) full range.
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Figure 5.23: Difference between real velocity model and velocity model in each step
of the multiscale inversion over frequency bands for L1 and L2 based
inversion.
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gets stronger in the lower parts of the model when we reduce k. We also note, that
for the unfiltered data, there are some unusually strong contributions in the gradient
that lead to velocity updates of up to 5000 m/s, which remain almost unaffected by
the damping. We see in the decreasing misfit over the 50 iterations (Figure 5.25)
that the method works, however the slow convergence in the beginning compared to
the end suggests that a better choice of k might be possible. The total improvement
in the misfit is also inferior to the update in the frequency scheme and the total
velocity update we gain over the 50 iterations (measured in Ec) is only around 7%,
while we had an update of almost 20% with the bandlimiting. While we can conclude
that the strategy does work, we might at least want to combine it with a different
strategy, like the bandlimiting to get better results.

(a)

(b)

(c)

Figure 5.24: First gradient of L1 misfit without bandlimit. With Laplace damping
of (a) k = 10, (b) k = 5 and (c) k = 0 (no damping).
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Figure 5.25: Relative L1 error for the Laplace minimization with damping k =
−10,−7.5,−5,−2.5, 0, decreasing every 10 iterations.

Offset Classes

As the last multiscale method we want to test, we iterate over offset classes, that is
we start by using only long offsets and then add shorter offsets subsequently. Figure
5.26 shows the first gradient computed from only the offsets that are further apart
than 4000 m. Unfortunately we see a lot of radial contributions in the gradient, that
have nothing to do with the model. This can again be explained in light of Figure 5.2
and the discussion in the beginning of this chapter. By using only the the far offsets,
we effectively reduce the streamer length. Instead of backpropagating the correct
wavefield with the adjoint equation, the adjoint contains spherical approximations.
Using this gradient would effectively generate updates, that worsen the velocity field,
even though simultaneously decreasing the L2 norm and thus stirring the algorithm
towards a wrong minimum. Unlike in the beginning, we can see the effects deep in
the model, so that any kind of mute or taper would be difficult.
Instead we can increase the number of sources. Instead of 8 sources, we now use 48

sources, distributed evenly like before. Although each new source produces similar
artifacts, the overall gradient gets better, since correct contributions add up, while
the artifacts are mostly uncorrelated.
We perform 15 iterations with offsets greater than 4000 m, then 15 iterations

with offsets greater than 2000 m and finally 15 iterations with all offsets (L1 error
in Figure 5.27). Due to the different number of sources and data range, direct
comparison with the previous tests would be unfair. However, we can see that
we improve the misfit in E1 with every offset cycle. The overall velocity update,
measured in Ec is only around 6% and thus similar to our tests with the Laplace
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Figure 5.26: First gradient computed from 8 sources and offsets greater 4000 m.
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Figure 5.27: Relative L1 error for the offset based minimization. The points are for
cycles of 15 iterations with 1) > 4000m, 2) > 2000m, 3) all offsets.

71



5. Test Cases

Figure 5.28: Final velocity model from combined multiscale scheme.

norm. We must assume that the artifacts, that are still visible with 48 sources,
although reduced, still interfere with faster convergence.

Combined Multiscale Scheme

Finally we want to combine the three multiscale schemes described and tested above.
There are many possibilities on how to combine them and it is not obvious how to
proceed. We could use them in sequence, or nested, or both, we could use different
convergence criteria or just use a fixed number of iterations with a certain method
and save computational cost by proceeding earlier to the next step.
We noticed, that the offset based scheme produced artifacts and neither the

Laplace nor the offset based scheme performed very good with high frequency con-
tent. Therefore, we use those schemes only for low frequencies. We start with 5 Hz
and for each class of offsets with more than 3000 m, more than 1500 m, and all
offsets, we perform a Laplace based inversion. Each Laplace inversion is done with
five iterations with damping of k = 10, k = 5 and k = 0. After that we apply the
frequency based inversion scheme with limits of 6, 7, 8, 10, and 15 Hz with stopping
criterion of θ = 0.01 (without additional offset reduction or time damping). For the
whole process we use 48 sources, like in the offset based scheme.
Despite the additional effort, the results are not considerably better than in the

frequency based scheme before. This again validates the heuristical methodology
we applied in selecting the frequencies. Closer frequency bands, additional damping
and more sources did not create a vastly superior model. We see the result in
Figure 5.28, which simultaneously shows the best Marmousi result, we are able to
create in this chapter. It resembles the original model very closely. Especially the
top structures above 2000 m are clearly visible, but we also see some structure in
the low areas below 3000 m. The salt flanks on the sides (the high velocity area
below 3000 m at the left boundary) are not imaged very well. However, due to the
boundary, this part of the model is not covered as well under the source/ receiver
geometry as the rest of the model.
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5.2 2004 BP Model

After we tested the different methods from Chapter 4 on the Marmousi model, we
will now do a final test on a part of the 2004 BP model, shown in Figure 5.29 (a). The
model and corresponding synthetic data was originally created by BP and provided
as part of a blind test for different velocity building techniques, results of which were
presented on the 2004 EAGE conference in Paris. We see a waterlayer with varying
depth, a layer-based sediment background with a velocity that increases with depth
and two (high velocity) salt structures. Good delineation of the salt bodies is the
main challenge. Geologically this part of the model is motivated by the geology of
deep water Gulf of Mexico. Further details on the whole model and the original test
can be found in [BBD05].
We use a 37 km by 6 km section of the original model and create our own synthetic

data. Figure 5.29 (b) shows a smoothed version of the model that we use as a
starting model. We do the modeling with 64 sources evenly spread over the surface
and corresponding receivers with offsets up to 8 km. Both the model and our
synthetic data is larger than in case of the Marmousi test case, furthermore the
velocity contrasts, that we seek to recover are stronger and in deeper area, which
makes the inversion more difficult.
We apply the multiscale scheme in frequency with the L1 misfit function E1.

Unlike in case of Marmousi, we start already at a lower frequency of 3 Hz. We
iterate until the stopping criterion θ = 0.005 is reached and proceed with frequency
bands up to 4, 5, and 7 Hz. The stopping criterion is reached after 14, 15, 11, and
21 iterations respectively. So after a total of 61 iterations we obtain the result in
Figure 5.29 (c). The salt structure in the middle is now very well visible. The top
structure is delineated very well with clear edges. The velocity variations within
the salt structure are less than before and even the bottom of the salt at a depth
of around 5000 m was improved. Additionally there are slight improvements to the
salt dome on the right, at 34 km and the small inclusion seen at 25-29 km and a
depth of 2 km is now clearly visible. This inclusion has only low contrast to the
background and is not visible in the smoothed initial model at all.
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(a)

(b)

(c)

Figure 5.29: (a) 2004 BP velocity model. (b) Smoothed model from (a), that we
use as starting model. (c) Final result after a total of 61 iterations with
the multiscale scheme over 3, 4, 5, and 7 Hz.
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6 Summary and Conclusion

Velocity model building from seismic data remains a challenging task. In this thesis,
we discussed full waveform inversion, which is both the most accurate and simul-
taneously the most compute expensive technology under development today. We
presented an efficient modeling algorithm for the two dimensional acoustic wave
equation in time domain and tested different strategies for the inversion.
Modeling is by far the most time consuming part of full waveform inversion,

therefore an efficient modeling algorithm is crucial. We introduced an alternating
direction implicit (ADI) method to the seismic problem. ADI schemes can be seen
as an intermediate between full implicit and explicit schemes. While we gain more
accuracy than with explicit schemes (for given discretization) we do not have to
solve as large systems of equations as implicit schemes require. Furthermore, we can
easily parallelize the scheme on one compute node using threading and vectorization
techniques. The stability conditions for the ADI scheme we introduced, demand
similar time step sizes than the CFL condition does for explicit schemes, however,
the method is less prone to dispersion so that we can use larger spatial step sizes.
In tests, where an explicit scheme uses a 5 m spatial grid, we are able to obtain
comparable results with a 10 m grid and a direct comparison of the two codes
showed a runtime advantage on the side of our code.
In the second part of this work, we studied and compared different inversion

techniques. The inverse problem is highly ill-conditioned and special care must be
taken to avoid convergence towards a local minimum. In several tests we see superior
results for the minimization of a missfit function based on the L1 norm compared to
the L2 norm. We test three multiscale schemes which reduce the problem in early
iterations by focussing on low frequency content, early time, or far offset. While
we can demonstrate that all three techniques work, we obtained best results with
the first technique, where we also have a heuristic way of choosing the steps in the
multiscale scheme. Future work could focus more on how to determine parameters
of those algorithms automatically and how to combine the different methods for
optimal results.
We applied the discussed methods to the Marmousi model and to an extract of

the 2004 BP model. Starting from a smoothed version of the original model, we were
able to recover significant parts of both models. The final result of the Marmousi
model shows clear structures down to a depth of below 2000 m and even some
improvement near the bottom of the model. In the 2004 BP model we were able
to recover both the high contrast top salt structures and a lower contrast inclusion
accurately.
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Notations

We use the following notations frequently in this dissertation. Additional variables
are introduced, where they are used. We demonstrate the notation in two space
dimensions here, which we use most often throughout this thesis. However, in some
instances we explicitly restrict ourselves to one dimension or allow for the general
case as noted where applicable.

Variables

t ≥ 0 is the time.

T ≥ 0 is the maximum recording time or maximum time for which the wave propa-
gation is considered.

z ≥ 0 is the depth. z = 0 is usually at the surface.

Z ≥ 0 is the maximum depth considered, Z(c, T ) is the maximum depth a wave
travels to in material c during time interval [0, T ].

h is the spatial discretization.

k is the discretization in time.

Ω is the domain of interest.

Ωh is the discretization of Ω.

Γs ⊂ Ω is the set of source positions.

Γr,s ⊂ Ω is the set of receiver positions for a source s.

Γ = Γs × Γr,s is the set of all source-receiver pairs in the survey.

x is the horizontal distance when using components (x,z), or in general a vector
x ∈ Ω.

c(x, z) is the wavespeed in the medium.

u(x, z, t) is the analytical solution to the wave equation. The physical meaning de-
pends on the wave equation. In our case it can be seen as the pressure or excitation.

U = u|Γr,s
is the response in the receiver positions.

Ud is the measured response at the surface (at receiver positions Γr,s).

f(x, t) is the source function, usually at z = 0.

λ(x, z, t) is the solution to the adjoint equation.
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6. Summary and Conclusion

Error functions

E is the misfit between the analytical solution and the observed data in the receiver
spaces. Unless otherwise noted, we use E =

∫

Γ

∫ T

0
(Ud − U(c))2dt.

Er(ck) =
E(ck)
E(c0)

is the relative error with regard to the initial velocity model in the
iterative scheme.

E1 =
∫

Γ

∫ T

0
|Ud − U(c)|dt.

E1,r(ck) =
E1(ck)
E1(c0)

the relative error for the L1 norm.

EGrad(ck) =
‖∇cE(ck)‖
‖∇cE(c0)‖ .

Further Mathematical Symbols

∆u = ∂2

∂x2u+ ∂2

∂z2
u is the Laplace operator.

∇cu is the gradient/ first derivative of u with respect to function c.

∇2
cu = ∇c(∇cu) is the second derivative with respect to c.

L denotes a linear differential operator.

Lh is the discretization of L

(a, b) = {x ∈ R|a < x < b} is the open interval for a, b ∈ R.

[a, b] = {x ∈ R|a ≤ x ≤ b} is the closed interval for a, b ∈ R.

‖u‖Lp(Ω) =
〈∫

Ω
|u|p
〉

1

p .

Lp(Ω) =
{

u : Ω → R|u is Lebesgue measurable, ‖u‖Lp(Ω) < ∞
}

.
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