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Abstract

 

This paper presents a completely systematic design procedure for asynchronous controllers.
The initial step is the construction of a signal transition graph (STG, an interpreted Petri net) of
the dialog between data path and controller: a formal representation without reference to time
or internal states. To implement concurrently operating control structures, and also to reduce
design effort and circuit cost, this STG can be decomposed into overlapping subnets. A univer-
sal initial solution is then obtained by algorithmically constructing a primitive flow table from
each component net. This step links the procedure to classical asynchronous design, in particu-
lar to its proven optimization methods, without restricting the set of solutions. In contrast to
other approaches, there is no need to extend the original STG intuitively.
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1. INTRODUCTION

 

Asynchronous sequential circuits (ASCs) used as controllers perceive changes of decision
variables without delay, can react immediately if so required, and remain at rest between con-
trolling actions. Hence, asynchronous controllers often are faster and more power-saving than
their clocked counterparts, and usually more natural because they do not force concurrent pro-
cesses into a rigid timing scheme.

The present paper presents the summary of an entirely systematic procedure for designing
ASCs from the Petri net representation of the required interaction across the interface to their
immediate environment (see Fig.1). This design approach covers elementary sequential circuits
such as flip-flops as well as communicating ASCs for controlling concurrent processes. For
more details see [1].

  

Figure 1. Interface modelled by an STG
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2. FORMAL SPECIFICATION OF THE REQUIRED BEHAVIOR BY STGs

 

We follow  [2], [3], [4], [5], [6], [7], and [8] in considering a special type of Petri net, the
signal transition graph or STG ( [3], [7] ), to be the adequate formal representation of behavior
from which asynchronous circuits should be designed. The STG represents the causal depen-
dencies of the circuit´s output changes (observable at Y in Fig.1) upon the input changes (ob-
servable at X), and also the constraints imposed on the X- by the Y-changes. It should not
contain references to time or changes of internal states, these being matters of design, and not
of specification. The style of drawing chosen is that of Wendt [3], where transitions are labelled
with the associated binary signal and a symbol

 

 

 

for leading or 

 

for trailing edges. Output
transitions are drawn as hollow rectangles, while full rectangles stand for input transitions. The
firing of a transition represents the occurrence of the signal edge with which it is labelled.

Figure 2. STG_1 (n, m 

 

 N)  Figure 3. STG_2

Figs. 2 and 3 each show the STG of a typical elementary ASC. ASC_1 is an asynchronous coun-
ter: y
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 occurs after n leading edges of x
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 after m further occurrences of  x
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. ASC_2
gates clock pulses: y
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 follows x
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 is 1 when x
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 occurs, and remains 0 otherwise.
STG_1 and STG_2 represent this verbally described interface behavior formally, precisely, and
adequately.

n-1

1y
n m

m n

1y

1x1x

3x

3x

2x

2x

2x

2x

2y

2y

  ASC_11 1x y
  ASC_2

2x

3x
2y

 environment



 

3

 

3. DESIGN FOR NON-FUNDAMENTAL MODE OPERATION

 

Certain design procedures, e.g. self-timed design ( [9] and others), restrict themselves to
ASCs where the completion of 

 

every

 

  change of internal state is signalized by the transition of
either an original output signal or of one especially introduced for this purpose. 

 

If

 

  the eviron-
ment is susceptible to such signals, fundamental mode (FM) operation can easily be assured. 

But among the ASC designer´s everyday problems there is the design of ASCs that do not
signalize every internal state transition at the output. In this case,

(A) either measures to ensure safe non-fundamental mode (NFM) 
operation must be taken, or 

(B) FM operation must be ensured by imposing timing conventions.
The procedure to be presented here is especially suitable for handling STGs of asynchronous
circuits such as these.

Two relevant input changes in too rapid succession are at the core of all difficulties encoun-
tered in NFM operation: the state transition triggered by the first input change is “struck” by the
second while still in progress, resulting in the well-known failures. Table 1 presents a classifi-
cation of successive input changes and appropriate countermeasures.

 

Table 1:

 

 Design for NFM operation - detection of critical situations in the STG and appropriate
countermeasures.
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To introduce additional output signals for this purpose would be of no avail, because in general
the signal generators for x

 

1

 

, x

 

2

 

, and x

 

3 

 

 could not be slowed down by them. Correct operation
can only be guaranteed if timing conventions (B) are adhered to: either the environment must
keep the pulse rate below a value that takes into account worst-case delays in the ASC, or the
ASC designer must adapt circuit speed to a given maximum pulse rate. In cases such as the lat-
ter, which are quite common, the environment generates the input without regard for the ASC´s
reactions. Then, the dotted arcs in STG_1 and 2 represent 

 

timing  

 

conventions instead of real
influence: the STGs specify the 

 

required

 

 behavior.
In STG_2, the trailing edges of

 

 

 

x

 

2

 

 can be allowed to occur at any time relative to changes of
x

 

3

 

 (type 3), provided a suitable state assignment has been chosen for the ASC; the usual state
assignments are insufficient and must be modified.

For reasons of space, types 2 and 4 will not be discussed. For measures to handle type-4 suc-
cessive input changes, see [10], [4], [9]. NFM state assignment will only be shown by an ex-
ample (Fig. 5g).

The presented shortened version of the design algorithm operates under the assumption that
successive input changes of types 1 and 2 conform to FM operation by obeying timing conven-
tions (easily done in the case of elementary ASCs operating in a clocked environment), and that
no type-4 changes appear. Section 4 will describe the basic design step, the construction of a
state machine with a particular type of next-state behavior - the primitive flow table (PFT) -
from an STG. Section 5 will then discuss STG decomposition, a step that generally precedes
PFT construction.

 

4. CONSTRUCTION OF THE PRIMITIVE FLOW TABLE FROM AN STG

 

A universal initial solution would be a state machine that is capable of generating the set of
interface processes specified by the STG, 

 

and only this set,

 

 in the form of linearly quasi-ordered
sets of events, accompanied by evolutions of the internal state. The primitive flow table (PFT)
describes such a machine: one in which every input change triggers a state transition. Every
state machine that solves the problem, when converted to standard form, will cover the PFT.
Hence the set of solutions is not prematurely restricted by arbitrary state mergers or state assi-
gnments. Instead, finding the best solution is left to the classical design procedures, such as state
reduction and secondary state assignment.

The first step in the construction of the PFT is the generation of the step graph SG_FM - the
reachability graph extended by edges that represent the simultaneous firing of concurrently en-
abled transitions - from the STG (Fig. 4). Concurrent interface processes are now represented
as linearly quasi-ordered events in time. SG_FM is generated assuming fundamental mode ope-
ration. I.e. if both input and output transitions are enabled in the STG, then the output transitions
always have priority (FM firing rule). SG_FM is covered by the usual step graph, which is used
only when measures to protect type 2 successive input changes are to be implemented.
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Figure 4. Construction of  the primitive flow table (PFT) from an STG.

In principle, the PFT can now be constructed by putting the SG_FM through its evolutions:
after each input step in the SG_FM, a change of internal state is specified in the PFT. When
different input steps lead to the same marking, then the PFT returns to the same next state;
otherwise, a new internal state is introduced. Steps containing more than one input transition
correspond to multiple input changes. Output steps in the SG_FM are mapped into the PFT as
output changes that have no further effect.

This principle can be systematically converted into an extension of the SG_FM by state tran-
sition steps and additional markings (as illustrated in Design Example 1). The result is the ex-
tended step graph SG_FM+, characterized by a 1:1 correspondence between its markings and
the total states of the PFT.

The PFT then undergoes state reduction. Although the PFT was constructed assuming FM
conditions, choosing a suitable state assignment leads to an ASC that operates safely even if
completely concurrent type-3 input changes occur. Classical state assignment schemes have to
be modified to achieve this goal (see Example 1, Fig. 5g).

Design Example 1 (Fig. 5)
STG_3 specifies the signal transition dialog between an ASC used as a controller and a data

path (Figs. 5a, b). Figs. 5c, d, and e, respectively, show the SG_FM, the SG_FM+, and the PFT.
The 1:1 correspondence between the markings of SG_FM and the total states of the PFT is in-
dicated by lower-case letters. Steps labeled “z”, “z.y

 

”, or “z.y

 

” in the SG_FM+ correspond
to state transitions without or with accompanying output changes.
Fig. 5f shows the reduced automaton, Fig. 5g a state assignment that prevents too rapid succes-
sive input changes of type 3 (indicated by flashes) from doing any harm. The idea behind the
state assignment is to have independent changes of state variables follow independent input
changes. Therefore, timing conventions to guarantee safe operation of the ASC are necessary
only for the sequence x

 

5

 

, x

 

5

 

 (type 1), provided a Moore-ASC with equal delays on all signal
paths is implemented. In this case the ASC indicates completion, i.e. all internal changes are
completed when the output changes - the environment may change dependent input signals di-
rectly after “seeing” the output change 

 

The design procedure presented here proceeds systematically and optimizes by classical me-
thods. In contrast, other approaches lack systematical means of introducing and optimizing
states and their transitions: The procedures proposed in [2], [4], and [5] require the STG to be
made state-machine decomposable and to be extended intuitively by state transitions.The ap-
proaches of Chu [7] and Yakovlev et al. [8] leave the introduction of “internal signals” and “au-
xiliary variables” - state variables in the state-machine model - to the skill of the designer.
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Since the procedure proposed here generates the PFT from the STG

 

 indirectly

 

  by way of the
step graph SG_FM, it does not depend on using Petri nets of specific types or with specific pro-
perties. For instance, the STG has to be neither state-machine decomposable nor safe. P/T sy-
stems and colored nets are equally admissible. However, timed nets of any kind are
inadmissible.

 

5. DECOMPOSITION OF THE STG

 

The basic idea behind STG decomposition is to extract that part of the global signal transi-
tion dialog - in the form of a component STG - that is needed to generate correctly a subset of
the output signals. In this way, the overall STG can be decomposed into overlapping component
STGs. This supports the implementation of distributed, concurrently operating control struc-
tures. It also serves to cope with complexity by reducing synthesis effort and hardware cost as
compared to the construction - which is always possible - of a global PFT from the overall STG.

The decomposition technique is similar to what is called net contraction in [7] and projection
in [8]. Improvements and extensions are possible and even necessary in order to deal with tran-
sitions that have the same label. Decomposition is applied directly to the 

 

original

 

  STG, i.e. to
the specification of the interface processes only. By this feature, the method differs from [4],
[5], [7], and [8], where the overall STG is first enhanced intuitively by transitions of internal
state variables. Just to determine whether the state transitions were correctly introduced requi-
res a large amount of computation.

An STG is decomposed in three steps.

 

1

 

. The set of output variables is suitably partitioned. No block of the partition should contain
a signal of which the changes are at least locally concurrent to those of another signal in the
same block. Total decomposition, where every block contains only a single variable, always
fulfils this condition. Each block Bi contains the output variables of a future ASCi, and a com-
ponent net, STGi, will be extracted for Bi from the overall STG.

 

2

 

. For each block Bi, one must determine those global input and output signals that are ne-
cessary for correctly generating the output variables contained in Bi. This
set K_Bi is the set of input variables of PFTi and ASCi. Primarily, K_Bi contains the signals
that have transitions which can enable or disable at least one transition belonging to a signal in
Bi. Therefore the transitions to be inspected are the pre and post transitions of the pre places of
all transitions labeled with variables from Bi.

There are two cases in which the determination of K_Bi is not yet complete.
a) Some signals may have been selected only because of a redundant place. They are redundant
and can easily be found and eliminated in the component step graph. Not removing them will
not falsify the decomposition.
b) Decomposition may transform (legal) conflicts in the STG into illegal conflicts between tran-
sitions labeled with the same variable in a component STGi. In this case, signals that resolve
the conflict must be added to K_Bi. They, too, can be found by local inspection.

 

3

 

. Each STGi is now extracted from the overall STG by removing every transition of every
signal not contained in K_Bi in such a way that the causal relationship between the remaining
transitions is preserved. The validity of these transformations have been proved by means of the
step graph [1]. Only examples can be given here. Fig. 6a shows the usual way of removing a
transition t

 

x

 

 which has no side places and the pre and post arcs of which are all weighted with
one. 
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Figure 6. Removal of transitions t

 

x

 

Only its immediate environment must be considered: The pre places  pi_1, ..., pi_n of t

 

x 

 

its
post places po_1, ..., po_m are replaced by new places p_11, ..., p_n1, ..., p_rs, ..., p_nm, where
p_rs replaces a pair consisting of a pre place pi_r and a post place po_s;  furthermore, 

 

∑

 

p_rs =

 

∑

 

pi_r and p_rs

 

∑

 

 = po_s

 

∑

 

.Special consideration must be given to cases such as the one shown
in Fig. 6b. In order to preserve the causal structure when removing t

 

x

 

, transition d

 

 must be dou-
bled

 

 

 

Thus, in its essential features, decomposition is guided by net topology only. The laborious ge-
neration of the overall reachability or step graph, for instance, is quite unnecessary.

 

6. SUMMARY OF THE DESIGN PROCEDURE

 

Once the system has been partitioned into data path and controller, we have an informal spe-
cification of the control task on the data processing level (Fig. 7).

 

Step A. 

 

Development of a formal specification  by means of an STG.

 

Step B.

 

Analysis of the STG and testing for formal properties (e.g. liveness).

 

Step C.

 

Decomposition of the STG into component  nets STGi. 

 

Step D.

 

Construction of a primitive flow table PFTi for each STGi.

 

Step E.

 

Synthesis of an ASCi from each PFTi by classical methods and NFM state assign-
ment procedures; output transitions have to indicate completion 

 

 

 

The resulting controller is an assemblage of communicating ASCs that operate concurrently
and synchronize with one another by their global output signals only - as prescribed by the over-
all STG.
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Figure 7. Design procedure

 

7.  DESIGN EXAMPLE 2: FIFO CONTROLLER

 

The controller of a first-in-first-out memory (FIFO) according to Fig. 8a is to be designed.
Incoming data are to be distributed alternately to the two D register pipelines VD1, VD2, VD3
and RD1, RD2, RD3 under control of the signals Ri (i=1, 2, 3), and to be transported to the out-
put as quickly as possible. The multiplexer MUX serves to reestablish the original order of the
data sequence. The VDi are triggered by the leading edges of the Ri, the RDi by the trailing ed-
ges.

Fig. 8b shows an overall STG capable of generating the signal transition dialog (between the
controller and its environment) as necessary for correct control. The meanings associated with
the signals are summarized in the following table.

Request signals:                   
RIN 

 

 , 

 

data input request
ROUT  

 

 , 

 

 data output request
Ri 

 

( 

 

 ) load VDi (RDi)
RY 

 

 ( 

 

 ) select MUX input 1 (0).
Completion signals:
AIN  

 

 , 

 

 input data stored
AOUT  

 

 , 

 

 output data received
Ai 

 

 ( 

 

) VDi (RDi) loaded
AY 

 

( 

 

 ) MUX input switchover completed.

To simplify the drawing (but not in actual implementation), the completion signals A1, A2,
A3, and AY are shown to be generated by delay elements (delay t ).

The component STG for R1 (Fig. 8c) is obtained by decomposition of the overall STG (Fig.
8b). Fig. 8d shows the R1 circuit embedded in its environment. Only RIN and A2 are needed
for generating R1: every R1 transition obtains concession to fire exclusively from RIN and A2
transitions.

If the overall STG is decomposed totally, then the assemblage of controllers shown in Fig.
8f is the result.
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Fig. 8e shows the Moore-type primitive flow table of the R1 circuit, algorithmically genera-
ted from the R1-STG (by our own design tool).  The minimal-row flow table has four states.
Only type-3 successive input changes occur, and can be handled by a modified state assignment
procedure.

By varying the number of pipelines and their length, the capacity and performance of the
FIFO can be adapted to actual requirements. The behavior of such a configurable FIFO can be
described clearly and compactly by a colored Petri net. This net can also serve as the basis for
the above design procedure.

 

8. CONCLUSION

 

We have briefly discussed a systematic procedure for designing an assemblage of commu-
nicating asynchronous circuits (ACSs). Such assemblages offer themselves for controlling
complex, fast concurrent processes. Synthesis proceeds from a signal transition graph (STG)
that solely specifies the required dialog between data path and controller, i.e. their communica-
tion across the interface, from a causal point of view, and without reference to time and internal
states. 

The two decisive steps from a state-free behavioral specification to an assemblage of finite-
state machines are the decomposition of the STG and the introduction of internal states and their
transitions. Our procedure solves the latter problem by constructing primitive flow tables di-
rectly from the component STGs. It thereby obtains access to the full range of classical design
procedures that make it possible to optimize next-state behavior. Other approaches lack syste-
matical means of introducing and optimizing states and their transitions.
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