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Zusammenfassung

Aufgrund enormer technischer Fortschritte von hochperformanten Computersyste-

men und numerische Weiterentwicklungen ist computergestützte Simulation heute

eines der wichtigsten Werkzeuge moderner Ingenieure. Mittlerweile werden exper-

imentelle Methoden zur Untersuchung komplexer physikalischer Phänomene mehr

und mehr durch Simulationen ersetzt. Während die Rechenpower moderner Com-

putersysteme die Simulation immer komplexerer Systeme und Gleichungen ermög-

licht, stellt die Verwaltung der ständig wachsenden Datengrößen durch höhere zeit-

liche und räumliche Auflösungen jedoch neue Herausforderungen dar. Um nu-

merische Simulationen auch in Zukunft effizient durchführen zu können müssen die

verursachten Hardware- und Energiekosten minimal gehalten werden. Jedoch wer-

den komplexe Simulationen oft mehrfach ausgeführt, weil verschiedene Fehlverhalten

zum Neustart der kompletten Simulation führen können. Computational Steering,

die Interaktion mit laufenden Simulationen, versucht hier steuernd einzugreifen und

Neustarts zu verhindern. Die Menge an produzierten Daten lässt aber verschiedene

Lücken klaffen zwischen der Menge der Daten, die berechnet werden können und

die Menge der Daten, die verarbeitet werden können. So ist zum Beispiel die reine

Speicherung aller erzeugten Daten unmöglich geworden. Der Schwerpunkt dieser

Dissertation liegt auf der Entwicklung neuer Methoden die die Steuerung, Explo-

ration, Visualisierung und Analyse laufender numerischer Simulationen erlauben.

Im ersten Teil dieser Arbeit wird ein Software-Framework vorgestellt, welches die

Steuerung existierender Simulationen vereinfachen soll. Es erlaubt Simulationen

mit verschiedenen Visualisierungsalgorithmen, Rendering-Systemen und Interak-

tionsmethoden zu erweitern. Das vorgestellte System wird anhand einiger Beispiele

demonstriert, darunter eine Methode um die Netzgüte hochauflösender Rechengitter

während der Laufzeit zu analysieren um evtl. Netzadaptionen zu initiieren.

Der zweite Teil behandelt das interaktive Online-Monitoring großer Simulationen.

Mit zunehmender Größe kann das reine Kopieren von Rohdaten zwischen Simula-

tionen und Visualisierungsclustern sehr zeitaufwändig werden. Daher präsentiere

ich hier eine in-situ Schnittflächen-Methode, die unnötige Datentransfers vermeidet,



jedoch weiterhin interaktive Update-Raten ermöglicht. Somit wird es ermöglicht, in-

teraktive Schnittflächenvisualisierungen in einer virtuellen Umgebung auszuführen.

Werden komplexer Visualisierungen benötigt, wie zum Beispiel eine Skalarfeld-Vi-

sualisierung mittels Iso-Flächen, wird das Rendern mit interaktiven Bildwieder-

hohlraten problematisch. Im dritten Teil meiner Dissertation behandle ich ein

hybrides Rendering-Verfahren, welches auch für große Daten eine interaktive Ex-

ploration in einer virtuellen Umgebung sicherstellen soll. Während Renderaktivi-

täten mit hoher Renderlast auf einem entfernten parallelen Renderer ausgeführt wer-

den, wird die Visualisierung mit einer einfachen lokalen Kontextgeometrie gemischt.

Dieses Kapitel diskutiert die Adaption der entfernt gerenderten Bilder auf die ak-

tuelle lokale Ansicht, behandelt Image-Streaming für die Darstellung auf großen Dis-

playwänden und verbesserte Interaktivität sowie paralleles Rendern von zeitabhängi-

gen Daten.

Schließlich behandelt der vierte Teil die Feature-Extraktion in großen Strömungssim-

ulationsdaten. Feature-Extraktion abstrahiert komplexe Feldeigenschaften und zeigt

ihre signifikanten, strukturellen Komponenten auf. Während existierende Metho-

den typischerweise auf komplexen, mathematischen und topologischen Strukturen

oder anwendungsspezifischen Definitionen basieren, werden in diesem Kapitel die

Konzepte der harmonischen Analyse zur Detektion, Extraktion und Klassifizierung

verwendet.



Abstract

Due to tremendous improvements of high-performance computing resources as well

as numerical advances computational simulations became a common tool for modern

engineers. Nowadays, simulation of complex physics is more and more substituting a

large amount of physical experiments. While the vast compute power of large-scale

high-performance systems enabled for simulating more complex numerical equations,

handling the ever increasing amount of data with spatial and temporal resolution

burdens new challenges to scientists. Huge hardware and energy costs desire for

efficient utilization of high-performance systems. However, increasing complexity of

simulations raises the risk of failing simulations resulting in a single simulation to be

restarted multiple times. Computational Steering is a promising approach to interact

with running simulations which could prevent simulation crashes. The large amount

of data expands gaps in the amount of data that can be calculated and the amount of

data that can be processed. Extreme-scale simulations produce more data that can

even be stored. In this thesis, I propose several methods that enhance the process

of steering, exploring, visualizing, and analyzing ongoing numerical simulations.

In the first part of this thesis, a software framework is introduced flexible steering

capabilities to existing numerical simulations. This framework covers system-design

aspects of computational steering solutions in order to couple simulation codes with

visualization algorithms, rendering systems, and user interaction methods. Its useful

application is demonstrated by some examples, including an approach to interac-

tively analyze the quality of high-resolution meshes in order to steer mesh adaptation

online.

The second part focuses on interactive online monitoring of large-scale simulations.

With increasing data set sizes, copying raw simulation data between simulation

and visualization clusters can be very expensive and time-consuming. An in-situ

cut-plane approach is introduced which avoids unnecessary data transfers and still

provides interactive update rates required to be useful in highly immersive virtual

environments.

In visualization scenarios involving more complex features, such as iso-surfaces, ren-

dering high-resolution simulation data at interactive frame rates becomes challeng-



ing. The third part of my dissertation introduces a hybrid rendering approach which

enables the usage of virtual environments for interactive exploration. While heavy

rendering workload is performed on a remote parallel rendering solution, the vi-

sualization is enriched with locally rendered context information at high update

rates. In this chapter, I discuss the adaption of remote images to local images, im-

age streaming for display walls with high screen resolutions, and introduce further

improvements on interactivity and parallel rendering for time-dependent data sets.

Finally, the fourth part focuses on feature extraction methods to enable the visual-

ization of large computational fluid dynamics data sets. Feature extraction abstracts

highly complex fields by depicting significant structural components. While exist-

ing methods are typically based on mathematical complex topological structures or

application specific feature definitions, I apply the concepts of harmonic analysis

towards the extraction, detection and classification of features.
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Chapter 1

Introduction

1.1 Motivation

Traditionally, numerical simulation and analysis in computational fluid dynamics

(CFD) is a sequential process. To prepare a simulation run, the flow domain is

discretized by generating a simulation mesh. In order to perform a simulation on a

cluster system, this mesh is divided into partitions, transferred to a cluster or su-

percomputer and the result is transferred back. Then, a variety of post-processing

tasks, such as scalar- or vector-field visualization techniques, should give insight

to the physical problem. In this traditional approach, parameters chosen wrongly

cannot be identified until the post-processing step. Thus, in error cases the sim-

ulation has to be re-run with tweaked parameters. This is an iterative process

that can be time consuming, especially if one iteration lasts more than a few days.

Computational steering is aiming at reducing the simulation times by shortening

the time used to identify wrong parameters results in high productivity enhance-

ments. In computational steering many open problems need to be solved, e.g. how

to monitor a running simulation effectively, what are sufficient interaction meth-

ods, and how should a software architecture look like to support a flexible steering

process [MvWL98].

In a system-design aspect, computational steering solutions inherently combine cou-

pling of simulation codes with visualization algorithms, rendering systems, and user
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interaction methods. Therefore, a suitable software framework is needed. In the

past, computational steering systems were developed to interact with ongoing simu-

lations by enhancing existing visualization tools [EFG+05,PWJ97] or by developing

specific computational steering frameworks [JB10]. These solutions mainly concen-

trate on data management and data interfaces [CDE03]. However, the main draw-

back of both approaches is that all steerable parameters as well as callable methods

have to be known at compile time [WFM+10].

In the Computational Steering process, Online Monitoring is a key component. To

be able to steer a running simulation, a user needs to explore its current state

[MvWL98]. Existing online monitoring solutions mainly focus on adapting parallel

rendering approaches and seldomly on providing interactive explorative solutions

as well as dealing with different hardware setups [JB10]. According to [Tom06],

visual exploration is the process of giving an overview of data and by allowing users

to interactively browse through different regions. Here, the term interactivity is

defined by two requirements, the rendered frame rate and the system response time.

The frame rate is the update rate of the image presented to a user and should not

be lower than 10 Hz [Bry96], or 30 Hz in virtual environments [KBLH03], to prevent

flickering images. Both state that the system response time should not exceed 100

milliseconds, otherwise users cannot match input and systems response anymore.

In order to detect characteristics of the data as quick as possible, this explorative

analysis is running directly on raw simulation data [SM99]. However, in the case

of monitoring large-scale numerical simulations data is distributed over different

computer resources and different existing techniques have to be combined in order

to meet the required interactivity conditions. Therefore, in-situ co-processing is

used processing data already in the memory of the simulation compute nodes in

order to shrink the data to be send. Even pre-processed data can be too large

to be transferred and multi-resolution data formats can help to provide interactive

renderings and stream visualization data to the visualization system. Even, if the

visualization is preliminary and details are increased with time, the user remains

interactive in using the visualization.
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1.2 Overview and Contribution

My work covers a range of research topics associated with computational steering

of computational fluid dynamics simulations and can be grouped into the following

categories: (1) system design, (2) interactive online monitoring, (3) interactive hy-

brid rendering, and (4) feature extraction. I will cover each of these topics in one of

the following chapters.

Chapter 2 addresses system-design aspects of steering computational fluid dynamics

simulations. I introduce FSSteering [WFM+10], a flexible and domain-specific ap-

proach. Two examples demonstrate the usability of this framework. Furthermore,

a more elaborate example is presented [CWF+12], supporting online mesh quality

evaluations. My research contributions in this chapter are:

• Section 2.2

– Description of FSSteering, a light-weight computational steering frame-

work to enhance existing numerical simulations.

– Successful steering of two example applications with FSSteering. Existing

simulations can be improved by interactively adapt their mesh, if neces-

sary, or can be enhanced by any user command to implement run-time

steering of the simulation behavior.

• Section 2.3

– Description of an approach to interactively analyze mesh quality online.

– High-resolution mesh quality information is reduced in-situ into a presen-

tation that can be handled interactively by the visualization frontend.

– Successful interactive exploration in order to find critical simulation mesh

regions.

Chapter 3 focus on interactive online monitoring of large-scale numerical simulations

useful to inspect early simulation phases. My approach presented here [WGHH12]

is aiming on large-scale simulation scenarios in which copying raw simulation data
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between simulation and visualization clusters can be very expensive. Therefore, I

present an in-situ cut-plane approach which avoids any unnecessary data transfer.

The exploration of scalar fields with the help of cut-planes requires the interactive

movement of the plane along the data set. However, in the examined distributed

environment, the required update rates can not be achieved with classical cell-based

extraction methods.

• This chapters contributions are:

– Implementation of in-situ cut-plane extractions based on point sampling.

I present three different variations providing a progressively refined vi-

sualization. Thus, the result scales from preview to high quality images

depending on parameter values and available computing power.

– The presented cut-plane extraction methods provide built-in time thresh-

olds. Therefore, they are capable to fulfill weak real-time requirements

of highly interactive systems like virtual reality environments.

– The implementation into the FSSteering framework enables to reuse sim-

ulation data. Therefore, only small amounts of extra memory is required

which allows the application to a wide range of simulations.

Chapter 4 deals with interactive rendering aspects of high-resolution simulation

data. I introduce a hybrid rendering approach [WFC+12] that enables the interac-

tive exploration of large-scale simulation results in an interactive fashion in virtual

environments. While intermediate simulation results can easily exceed the capabil-

ities of virtual environment hardware, heavy rendering workload is outsourced to a

remote parallel rendering solution. This chapter discusses this approach in detail

as well as extension to large-display walls and time-dependent simulation data. My

scientific contributions are:

• Section 4.2

– Implementation of a hybrid rendering technique to overcome insufficient

local rendering capabilities of virtual environment. The performance and



1.2 Overview and Contribution 5

scalability of parallel rendering solutions is exploited to enhance a local

rendered context geometry with highly detailed visualizations.

– Reducing the drawbacks of remote rendering solutions, namely high la-

tency and low frame rates, by adjusting available remote images to current

local renderings.

– Introduction of an image-based adjustment method based on adaptive

point-sizes, which successfully fills in surface holes and does not fill in

suspicious background pixels.

– Successful implementation on a three-pipe powerwall system.

– Detailed performance and image quality benchmarks of the presented

approach.

• Section 4.3

– Implementation of a hybrid rendering technique in order to overcome in-

sufficient local rendering capabilities of display wall visualization clusters.

The techniques allows for interactive navigation through a large-scale

dataset or online monitored simulation data.

– Multi-resolution, based on z-order curves, supports quick overviews.

– Introduction of a progressive image streaming approach which adds only

low latency to the remote rendering process.

– Using progressives streaming instead of usual sub-sampling requires no

additional render passes for different resolutions and adapts automatically

to network capabilities.

– Successful presentation on a display wall with twelf display tiles.

– Detailed performance benchmarks of the presented approach.

• Section 4.4

– Presentation of a modified hybrid rendering pipeline that enables for han-

dling large time-dependent data sets.
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– Interactive animation of local geometry which enables for grasping com-

plex motion patterns.

– Combination with complex features supporting valuable context informa-

tion.

– Introducing additional post-processing steps to the remote rendering pro-

cess without loosing interactivity.

– Enabling for rendering multiple time-steps in parallel resulting in en-

hanced remote update rates.

– Demonstration with a simulation data set of the SHEFEX I re-entry flight

experiment. My approach enables to animate the flight body’s motion

at interactive frame rates in combination with shock wave rendering.

Therefore, iso-values can be selected interactively and iso-surfaces are

extracted and rendered on the fly.

– Detailed performance analysis of the modified pipeline.

In chapter 5, I focus on feature extraction methods to enable the visualization of

large computational fluid dynamics data sets. Especially for highly complex fields

arising from modern computer simulations, visualization efforts can be reduced or

made feasible by depicting significant structural components and their interactions,

allowing for an abstracted view.

Existing methods are typically based on topological structures or application spe-

cific feature definitions. While the former leverage a deep mathematical framework

to generate a topological skeleton of a field and are uniformly applicable to general

fields, the latter requires intimate knowledge of the application domain. Here, I

apply concepts of harmonic analysis towards the extraction, detection and classifi-

cation of features [WGH12].

• This chapter contributes with:

– Illustration of the typical global approach to harmonic analysis and iden-

tification of the problems for global approaches.
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– Definition of a local approach more feasible computationally in contrast

to global approaches.

– Definition of a low dimensional feature vector based on a feature space

over small neighborhoods.

– Definition of a local feature strength measurement, based on properties

described in Laplacian eigenbases.

– Numerical comparison of two direct possibilities for the choice of the

required Laplacian’s discretization.

– Discussion of numerical aspects of the computation of large eigenvalue

sets.

Chapter 6 concludes my dissertation by summarizing the presented work and dis-

cussing possible topics for future work.



Chapter 2

Manipulation for Computational

Steering and Online Monitoring

Numerical simulation is a common tool for modern engineers used in order to gain

insights into complex flow situations. Therefore, computational fluid dynamics simu-

lations are set up which requires the specification of specific parameters. After these

simulations have been performed by a cluster or supercomputer, post-processing al-

gorithms extract physical features and generate visualizations for visual feedback.

Many parameters chosen wrong can only be identified at that point, and eventually

the simulation has to be done again with modified parameters. With iteration times

of days or even weeks, methods with higher productivity are desirable for providing

quick research insights. Therefore, the ability to check whether a simulation is still

on track is important. If possible, critical simulations should be guided towards a

reasonable state by applying changes during run-time.

To tackle this situation, computational steering systems were developed to interact

with ongoing simulation runs. Most of the available computational steering envi-

ronments are enhanced visualization tools and concentrate on providing meaningful

visualizations. A complicated instrumentation of simulation codes is needed to make

data available to those systems. In opposition, native computational steering frame-

works concentrate on easy simulation coupling with minimalist interfaces. However,

they often support limited visualization and analysis techniques which have to be
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implemented by the user. In general, main drawback of both approaches is that all

steerable parameters as well as callable methods have to be known at compile time.

As a part of this thesis, I developed a domain-specific approach called FSSteering to

tackle the kind of problems mentioned above. All details of how to enhance existing

CFD simulations by computational steering capabilities are described in section 2.2.

FSSteering has been developed as an extension to the German Aerospace Center’s

computational fluid dynamics system called FlowSimulator. Based on my results

simulation scripts can be made steerable by users. The easy-to-use interface re-

quires nearly no instrumentation. Furthermore, simulation data is available to post-

processing algorithms without data conversion. My FSSteering extension interprets

steering commands to be executed and only reports unknown commands to the sim-

ulation. This enables the execution of tasks or changing parameters provided by the

FlowSimulator environment without either being known to the simulation script or

having to be implemented by CFD engineers. For example, one can change or adapt

the underlying mesh of any CFD simulation during run-time which results in better

simulation convergence without changes to the simulation setup or script.

In section 2.3, application examples are presented utilizing my FSSteering frame-

work. These examples clearly demonstrate the success of my results. The first

presented example is focusing on the simulation grid as a key element of numerical

accuracy. In the second example, the angle of an airplane model is changed during

run-time as an example of model specific steering actions.

Section 2.4 deals with online monitoring aspects of large-scale numerical simulations.

There, I present an interactive mesh exploration tool which enables the inspection of

the quality of high resolution meshes. Further online monitoring aspects and details

are discussed in depth in chapter 3.

2.1 State-of-the-Art and Related Work

Since steering simulations have been met with interest for many years now, a lot

of work has been done. An overview of earlier systems can be found in [MvWL98].

Online monitoring is essential to identify in what way a simulation has to be steered.
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Therefore, most steering systems concentrate on visualization or are enhanced vi-

sualization tools, like [PWJ97] and [EFG+05]. Native frameworks like [JB10] are

available to enable for computational steering, but have a high adaptation overhead

to specific problems. [CDE03] uses XML descriptions of simulation scripts to handle

data and concurrency at instrumentation points. Only few existing systems try to

tackle domain-specific requirements; one CFD-specific adapting the simulation grid

resolution is presented in [KTH+02].

The FlowSimulator [ME10] is an open and efficient framework to unify massively

parallel and multidisciplinary CFD simulations, providing a unified interface for

incorporated tools. This is achieved by a layered approach. The FlowSimulator

DataManager (FSDM) forms the common backbone and provides a common inter-

face to store and exchange data in memory. Written in C++ it provides a number

of classes providing functions typical for CFD-related numerical simulations. Using

the automatic interface generator SWIG [Bea96] all of FSDM’s interfaces are also

provided in Python.

Explorative and interactive visualization is supported using the VRFlowVis applica-

tion, a visualization frontend for steady and unsteady CFD data sets based on ViSTA

and ViSTA FlowLib [SGvR+03]. ViSTA allows the frontend to scale from simple

desktop systems to high-end immersive VR environments. ViSTA FlowLib is a spe-

cialized library that provides particular interaction methods [WBK07] [WHS+06]

and efficient rendering techniques for working with time-dependent CFD data.

Simulation features are extracted from the raw data and mapped to visualiza-

tion components by a post-processing application based on Viracocha [GHW+04]

[WSK+07]. It is decoupled from the visualization front end and distributed to High

Performance Computing (HPC) resources. Visualization features are extracted in

parallel, and as soon as first results are available, the extracted geometry data is

sent back to VRFlowVis to be rendered.
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2.2 FSSteering – A Computational Steering Ar-

chitecture

My computational steering architecture presented in this chapter aims on enabling

already existing computational fluid dynamics simulations to be steered. They

should be steerable without much impact on the existing simulation scripts. There-

fore, I developed FSSteering as an extension to the FlowSimulator system. By this,

my framework is able to provide easy access to existing functionality, and simulation

scripts can be coupled with parallel post-processing back-ends as well as front-end

systems.

In my target workflow different computing systems should be connected on-the-fly,

cf. figure 2.1. A supercomputer or cluster system is performing a set of simulation

tasks in batch processing. To steer one of the running simulations on-demand,

different front end and back end systems need to be attached on-the-fly. Therefore,

my framework supports a flexible connection topology dealing with heterogeneous

networks, which is a clear advantage over previously existing solutions.

Figure 2.1: CFD simulations can be connected by multiple post-processing and
front-end visualization systems on-demand. TCP/IP- as well as MPI-connections
can be used for data communication.
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2.2.1 System Architecture

The overall architecture of my FSSteering-framework can be seen in figure 2.2. Al-

though I make use of the scripting interface offered by FlowSimulator, performance-

critical tasks need to be implemented efficiently. For this reason, I implemented a

core module in C++ which provides connection handling and data transfer meth-

ods. Access to these functions is provided by lightweight APIs, likewise available in

Python and C++. In addition, the Python-API is bound to the FlowSimulator-API

which allows to inherit its functionality and provide it to the connected applications

via command requesting. In the run-time examples in section 2.3, I use both APIs,

Python and C++.

Figure 2.2: FSSteering ’s main functionality is implemented in the core module and
made accessible by lightweight APIs. The Python-API can also use functions offered
by FlowSimulator.

2.2.2 Run-Time Execution

At run-time, my FSSteering framework makes every steerable simulation act as a

server waiting for the client to connect. Clients act as servers for further connections

as well. This allows my framework to support arbitrary topology between different

distributed systems. The examples I present in chapter 4 clearly demonstrate this
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advantage. There, a remote rendering system can be connected on-demand in order

to support interactive exploration in a virtual environment.

A connected client sends commands to the simulation server and waits for re-

sponse. A set of predefined system commands exists for registration and updating

variables and sending geometry or field data over connections. Calling domain-

dependent FlowSimulator functionality, such as mesh adaptation, offers the possi-

bility to change simulation behavior without being implemented in the application

scripts in the first place. All commands unknown to FSSteering are assumed to

be user commands and are returned to the caller, e.g. the simulation script. In

order to ensure simple handling, commands are represented as Python dictionaries

including necessary parameters, and are mapped to dictionaries of strings in the

C++-API. Commands are sent through the system in a serialized representation.

Their interpretation occurs when triggered by the simulation.

The execution of commands is based on message queues. For command execution

centralized request management [EDC04] is used, a simple, yet efficient synchro-

nization scheme. All commands are gathered at a client’s master node and are sent

to the server’s master node. When a simulation triggers the processing of upcoming

commands, the server broadcasts all new commands to the server’s slaves. This

choice perfectly fits to the SPMD (single program, multiple data) programming

model used in FlowSimulator scripts.

Special care was taken in managing different connections in order to provide a flexible

connection topology. Although command communication is always gathered and

distributed through the master nodes, this does not hold for data communication.

As depicted in figure 2.3, in addition to 1-to-1 connections via master-to-master

connection, it is possible to establish n-to-m connections, where each server node is

connected to an arbitrary client node. This setting is used in the steering examples

of section 2.3. For general purposes, geometry and field data can be sent as raw

binary data, the VTK file format is also supported.
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(a) 1-to-1-connection: Data and commands
are gathered at master nodes and redis-
tributed to slave nodes.

(b) n:m-connection: While commands are
gathered and redistributed, data is dis-
tributed in parallel.

Figure 2.3: Commands are always gathered and redistributed in master nodes. For
data transmission, each data node can be connected to arbitrary client nodes.

2.3 Computational Steering Results

This section demonstrates the effective usage of my FSSteering framework. In

the examples, I made a FlowSimulator simulation steerable using the FSSteering-

Pyhton-API, running on four computational nodes. The parallel post-processor

Viracocha connects to the computational nodes via a n-to-m connection, one pro-

cessing node to each simulation node. Simulation and post-processor are controlled

using a ViSTA front-end. In this setup two frequent steering applications are demon-

strated.

2.3.1 Numerical Steering

Since the underlying simulation mesh is essential for numerical convergence to phys-

ical meaningful results, the additional possibility to influence the mesh during run-

time can prevent restarting simulation runs. Figure 2.4 shows the effect of addi-

tional adaptation runs initiated by my FSSteering framework in the FlowSimulator

environment. Note that no additional code adjustment was required since mesh

adaptation is one of the algorithms provided in FlowSimulator and FSSteering.
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(a) Initial mesh. (b) Adapted mesh.

Figure 2.4: For an initial computational mesh (a), background adaptation is trig-
gered improving numerical accuracy (b).

2.3.2 Simulation Steering

Contrary to the first example, this example shows how a simulation script is en-

riched with a user-defined code, see figure 2.5. The used simulation script has the

ability to change aileron, rudder, and elevator angles in a synthetic aircraft model.

FSSteering ’s abilities to schedule user-defined steering commands during run-time

is used to successfully deform the mesh. Mesh deformation is controlled and viewed

by the front-end application. Two wire-frame visualizations and a virtual reality

view of the front end is shown in figure 2.5.

2.4 Interactive Online Mesh Exploration

Current Computational Fluid Dynamics simulations such as the design of airplanes

are dealing with complex scenes that consist of large-scaled meshes. With the in-

creasing computation power supported by new hardware, these simulations are also

growing towards extreme and even exa scale. Due to their complexity and over-

whelming sizes, these simulations can last for weeks even on large-scale cluster com-

puters. However, simulation processes often crash or fail to converge due to poorly

defined meshes, resulting in a complete restart of the whole simulation.
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(a) Initial configuration. (b) Changed angle. (c) Explorative view with
changed angle in VR front-
end.

Figure 2.5: In this simulation steering example a command to change the elevator
angle was triggered, (a) and (b). The influence on the flow field is analyzed in the
explorative visualization environment, (c).

Mesh quality is one of the key factors in the success and accuracy of computational

fluid dynamics simulations. Since current simulations are paving the way towards

extreme scale computations, mesh quality exploration in an interactive manner be-

comes challenging. Due to the fact that large-scale simulations are extremely time-

consuming and likely to fail within a certain time frame, an immediate on-the-fly

mesh analyzing tool is strongly desired. Such tools should not only provide a vi-

sualization of mesh quality at an interactive frame rate, but also allow the user to

detect and locate regions of the meshes that lead to computational error, in order

to apply further mesh refinement while the simulation is still running.

In this context, I present an interactive mesh exploration tool in a virtual environ-

ment. My combination of interactive exploration and mesh quality evaluation in

a user-defined region of interest results in an enhanced analysis tool. The exam-

ple presented in this section clearly demonstrated the advantages of my approach.

Online monitoring of running numerical simulations is discussed in more detail in

section 3, where I examine in-situ cut-plane extractions.
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2.4.1 Interactive Mesh Quality Analysis

Mesh visualization in a virtual environment enables a detailed and immersive ex-

ploration of the mesh quality. The immersion of the display system enhances the

perception of depth, thus allowing a rapid localization of certain mesh regions.

Providing interactive frame rates is critical in virtual environments. Not only the

amount of the data to be visualized poses a challenge to interactive frame rates, but

also the requirements of providing on-the-fly visualization to an ongoing simulation.

The potential and usage of immersive virtual reality for scientific visualization have

been studied in a general way by [vDFL+00, vDLS02]. Applications of combining

these two research areas are for example VIRPI [GSRB01], and a point-based mesh

visualizer presented by [GSJ+06]. However, little literature has addressed the prob-

lem of visualizing extreme-scale data sets in VR. [Ma07, ARS11] have pointed out

the upcoming problems and implications in visualizing ever increasing data set sizes.

My interactive mesh exploration tool tackles the issues mentioned above. To address

the problem of data size and obtain an interactive frame, I propose a processing

pipeline in order analyze a mesh error function, facilitating extreme scale visual-

ization techniques with user-defined regions of interest, as well as error threshold

functionality. As a result, simulation experts are able to monitor the simulation

process on the fly and apply mesh refinement without restarting the simulation or

redefine the meshes.

2.4.2 System Design

In this section, my framework and mesh analysis approach is presented, which is

based on my FSSteering framework.

Figure 2.6 shows the architecture. A large-scaled CFD simulation is running parallel

on a cluster of simulation machines. The major goal of my approach is to provide

the user a possibility to analyze the mesh quality at the current simulation time.

This will allow the user to identify regions of bad quality determined by an error-

threshold value. This value can then be sent to the simulation, thus allowing for mesh

refinements, and carry on the simulation process further on the modified mesh. The
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Figure 2.6: Architecture: A VR visualization front-end is connected to the ongoing
CFD simulation running on the back end simulation cluster. The user can interac-
tively define the region of interest. This region of the mesh will be extracted from
simulation and sent to the front-end to be rendered.

major challenge for my proposed framework is to provide an interactive visualization

of the mesh quality, allowing users to quickly track down regions of bad mesh.

The benefit of doing immersive visualization for extreme scaled meshes is merely

to provide details of the large data. The size of the simulation mesh makes it

impossible to perceive and explore mesh features on a conventional desktop display.

Not only detail and occlusion are an issue, a 2D desktop display will also not meet

the need to interactively explore the mesh data. As [vDFL+00] point out, people can

more readily explore and understand complex structures by peering around them

or handling them. By applying mesh quality visualization in a virtual environment,

the user will be able to explore the mesh data in a more natural way and allocate

errors in an interactive and rapid manner.
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2.4.3 Simulation Mesh Quality

In CFD simulations, mesh quality is a key factor in determining the convergence and

success of the solver. Locating poorly defined meshes at an early stage can save the

simulation experts weeks of time by preventing a simulation to crash. Due to the

nature of numerical solvers, computations are performed on a group of neighboring

cells. Therefore, if one mesh cell is poorly defined, not only the mesh cell itself but

also its neighboring cells need to be refined.

A large body of research on defining mesh qualities and metrics, such as [Knu01,

Ber99], can be found. Many mesh quality metrics are per-element-based, such as

[Dur99]. It allows the user to identify a single mesh element which has a low quality.

The approach I present here makes use of a per-edge measurement of mesh quality:

Erroredge = (v(P1)− v(P0))||P1 − P0||2

with v(Pi) being the pressure coefficient of the field at point pi. Per cell, the error

is taken as the maximum of the edge errors, which is

Errorcell = max{Erroredge}.

This is a common metric for scalar valued fields. However, it can be substituted by

any other metric more suitable, depending on the current application scenario. The

visualization techniques I present in the following are independent from that.

2.4.4 Visualization Techniques

This section elaborates on my choices of visualization techniques as well as the

reasons for using them.

Mesh quality metrics allow the user to identify a single mesh element which has

a low quality. However, this type of approach will not be applicable in case of

extreme-scale mesh data sets. The overwhelming number of the mesh cells poses a

severe occlusion problem and a single mesh cell can not be distinguished anymore.
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Furthermore, cell volumes can vary by some orders of magnitude within a single

data set and the size of critical cells can be much smaller than the display pixel

sizes. Therefore, critical information might be lost during rendering.

To avoid the front-end from being overloaded with data and minimize the amount of

rendering time for the visualization, I facilitated the following visualization paradigms

in order to provide a meaningful and intuitive representation of the mesh quality.

Figure 2.7 shows my resulting prototype.

2.4.4.1 In-Situ Mapping of Error Values

Previous visualization of mesh qualities focused on visualizing a single element.

However, when the mesh size is huge, one will not be able to pick out a single mesh

cell from the entire data, not even with the help of large displays. Moreover, it

is desired from the simulation experts that entire regions including poorly defined

mesh should be modified. Another important fact while visualizing extreme-scale

data sets is that the size of a single mesh cell might be even smaller than a pixel

size on the screen.

To address these issues, I re-mapped cell quality metrics onto a uniform-grid. In

order not to miss any important information, each voxel of the uniform grid con-

tains the maximum error value of all underlying cells. In my presented FSSteering

framework, this mapping is done in-situ. Each processing node maps its local cells

assigned by domain decomposition. The final uniform-grid representation is gath-

ered on the simulation side. This presentation is very small compared to the original

data set size and prevents the front-end from processing any raw data.

2.4.4.2 Region of Interest

To further limit the amount of mesh data to be visualized, I incorporate the region

of interest method [PNP05] into our approach. Instead of re-mapping mesh quality

information to a uniform grid spanning the whole spatial domain, a box of interest is

implemented, with which the user can extract quality information in smaller areas.
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The knowledge and experience of the user will speed up the allocation of poorly

defined regions by constraining the search around a more-likely area.

2.4.4.3 Interactive Error Thresholding and Brushing

Finally, the exploration of mesh errors is performed in the virtual reality front end

with standard volume visualization techniques [DCH88]. Initially, the full range of

present error values is mapped to the range of rendered colors. However, the user is

only interested in the range of high error values, defined by the selection of a cer-

tain error threshold. Brushing, as a common information visualization techniques,

allows the user to interactively select a subset of the data in order to identify out-

layers [RW06]. In this case, a brushing function is implemented allowing the user to

define and limit the error range. As a result, only a minimal amount of the volume

is mapped to opaque colors. Irrelevant information is filtered out and the region of

the poorly defined mesh can be identified easily.

Figure 2.7: User interacts with the mesh data set in an virtual environment.
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2.4.5 Results

To illustrate the usefulness of my approach, a test data set simulating the airflow

around an airplane wing is used. The data set consists of 310, 156 tetrahedrons and

approximately 60, 000 points. The mesh is partitioned into 4 blocks. The simulation

is running on 4 compute nodes utilizing a workstation with an Intel Xeon E5520

@2.27GHz. Our in-situ approach is performed on the same workstation in order to

extract the quality of the mesh. The workstation is connected via MPI to the virtual

reality system on which the volume rendering is performed on a NVIDIA Quadro

FX 5800 graphics cards.

One region of interest selected by a user covered approximately 50, 000 cells, thus

1/10 of the original mesh. This region is then mapped into a 256x256x256 voxel

volume. Therefore, the size of a voxel exceeds the size of a mesh element, which

further explains why one is interested in mesh regions rather than single elements.

The total computation time required to extract the mesh quality inside the region

of interest took about 0.75 seconds.

Figure 2.7 shows a user exploring the mesh quality of the airplane dataset in front

of a large display wall. With my tool the user is able to smoothly navigate through

the whole mesh and quickly identify and locate critical regions inside the mesh, here

color-coded in red, which require improved mesh quality.

I demonstrate the advantages of error brushing in figure 2.8. In the left image,

mesh errors in the range of [0.05, 0.32] are mapped to different opaque colors. In

fact, only the regions colored in red are of users’ interest which contain cells with

high error metric values. However, these regions are hidden behind and are hard

to perceive. By limiting the opaque colors to a smaller range (Fig. 2.8, right),

insignificant information is removed, leaving only the mesh region unveiled which is

of bad quality.

This method can be used to interactively chose an error threshold which defines

critical cells inside a running simulation. By triggering an adaptation inside the

simulation, the mesh quality can be improved for further numerical iterations.
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Figure 2.8: Left: volume rendering of the error function with chosen mesh cells.
Right: User can iteractively select the error range to be mapped to volume. Error
brushing allows the user to identier error outlayers and located regions of poor-
defined meshes in a fast way.

2.4.6 Discussion

This section presented my interactive mesh exploration tool which utilizes virtual

environments in order to monitor large-scaled simulations. The application provides

a potential solution and framework to perform extreme-scaled mesh exploration. It

was clearly shown that virtual environments can serve as a powerful tool to include

a human into the loop of iterative simulation and visualization.

For future work, I plan to apply this approach to more complex data sets at a

higher scale. Using my presented approach would improve the online monitoring

and interaction even of extreme-scale simulations. The in-situ processing part of

the presented approach is scaling with the domain decomposition of the simulation

itself. However, varying sizes of the region of interest as well as the size of the

uniform sampling grid might introduce new demands to the front end.

2.5 Conclusions

In this chapter, I focused on the manipulation for computational steering and online

monitoring of numerical simulations. When running large-scale simulations, their
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successful execution depends on many factors. Furthermore, long simulation times

of weeks or months prevents simulation setups on an extensive trial-and-error ba-

sis. Here, computational steering methods are more promising, avoiding repetitive

restarts of simulations. However, major challenges are: (1) providing a software

architecture capable to monitor and steer a simulation, that is easy to use and has

low overhead, (2) adequate visualization of simulation quantities and qualities, es-

pecially in unexpected simulation states, (3) the size of data sets, which requires

sophisticated data handling in order to provide interactive exploration possibilities.

This section presented my FSSteering framework, a flexible computational steer-

ing environment to tackle those challenges. As an extension to the FlowSimula-

tor framework domain-specific needs of CFD engineers are addressed, targeting on

simple usage. I implemented a flexible connection and data management between

simulations on the one hand and front end as well as post-processing back end

modules on the other hand and demonstrated its usage. Therefore, I presented

a collection of different application examples. In two steering examples I showed

the steering capabilities, namely the simulation mesh and its adaptation, as well

as interactive steering of model parameters, such as wing angles of an airplane

simulation. Furthermore, I clearly demonstrated the advantages of my presented

interactive computational steering framework for large-scale numerical simulations

with a more enhanced online monitoring example. My tool enabled to explore for

spatial regions in a computational fluid dynamics simulation in which mesh qual-

ity needs improvements. In order to reduce rendering requirements for the front

end, high-resolution mesh quality information was re-sampled to a uniform grid at

the simulation side. With this, my approach enabled for interactive exploration to

identify critical regions.



Chapter 3

Interactive Online Monitoring in

Virtual Environments

In large high performance computing simulations, it is often the case that the state of

running simulation needs to be interpreted or validated. This task is known as online

monitoring and can be used, for instance, to inspect preliminary simulation results

in early simulation phases in order to test e.g. correct simulation setups. Effective

online monitoring methods are also fundamental for computational steering, which

incorporates both the state inspection of an ongoing simulation and the modification

of simulation parameters during run-time.

Typically, large-scale numerical simulations are carried out on distributed mem-

ory cluster systems. A common way to inspect these simulations is to copy the

current simulation data to a separate parallel visualization cluster which performs

classical post-processing tasks. However, copying simulation data to a separate post-

processor can be very time consuming. Therefore, in-situ processing is a promising

alternative. This approach does not move raw data from the compute nodes to stor-

age or to other nodes via network connections. Instead, key algorithms are executed

on the same compute nodes, ideally on the same data structures, and only processed

results are moved.

In this chapter, I focus on the advantages and challenges of using virtual reality tech-

niques in order to support in-situ online monitoring tasks for large-scale numerical
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simulations. In order to inspect simulation data I focus on the interactive explo-

ration of scalar data utilizing a cutting plane approach. Cutting planes are one of

the established analysis tools in many application disciplines and engineers learned

how to apply them to their simulations. However, cutting planes only support in-

formation in a local region. In order to understand a complex physical phenomena,

cutting planes are required to be placed at multiple positions inside the spatial sim-

ulation domain. Therefore, interactive movements of a cutting plane along the data

set domain, as visible in figure 3.1, is an efficient way to explore the data set and to

identify the regions of interest.

Figure 3.1: Interactive exploration of a running parallel CFD simulation with cutting
planes using a virtual environment.

High update rates are required to achieve an interactive movement of the cutting

plane. These update rates are easy to accomplish if the data set fits into the mem-

ory of a local graphics card and if the simulation grid is rectilinear. However, in

my in-situ setup, cutting plane calculations have to take place at the simulation

nodes, where raw data is partitioned and distributed, and extracted data needs to

be transferred to the front end.

In most simulations, cell sizes vary over the computational domain and, therefore,

the number of intersected cells change with the current cutting plane position. As-
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sociated with the number of intersected cells extraction time as well as result size

are influenced.

In this section, I will clearly demonstrate the benefits of virtual reality techniques

for online monitoring of running large-scale numerical simulations. My approach

uses cutting planes in order to explore and understand scalar fields of complex sim-

ulations. Even though cutting planes are useful in classical desktop environments,

the intuitive interaction methods provided in virtual environments enhance their

usefulness. An intuitive interaction with cutting planes allows exploring the sim-

ulation domain and makes it easy to find interesting regions. In order to remain

interactive, high update rates of the information on the cutting plane are required.

Since cell-based cutting plane extraction has limited extraction rates, I use a pro-

gressive sampling scheme. This sampling scheme guarantees certain update rates

on the cost of image quality. In addition, I present two more local point sampling

methods being able to evaluate even more sampling positions. Such methods allow

interactive cutting plane extraction and update rates making them suitable to be

used in highly interactive visualizations such as virtual reality environments. This

support of interactivity was not provided in in-situ processing and online monitoring

methods before.

3.1 State-of-the-Art and Related Work

Understanding the science behind large-scale simulations requires the extraction of

meaning from datasets of hundreds of terabytes and more [MRH+07]. However, the

cost of moving the simulation output to a visualization machine is increasing with

larger simulations. According to [MWYT07], it is preferable to not move the data

at all, or to keep the moved data to a minimum. This can be achieved by applying

simulation and visualization calculations on the same parallel supercomputer in-situ,

so that data can be shared.
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3.1.1 In-Situ Approaches

A classification of in-situ implementations is presented in [RCMS]. In general, three

different techniques can be used to couple a visualization or data-processing to a

running simulation. These are:

Tight coupling: Simulation and data processing run on the same compute nodes.

Therefore, they have direct access to the same data and no data movement is required

at all. However, severe performance issues can occur. Data processing is required to

scale at least as well as the simulation and sharing the same resources might lead to

memory bottlenecks. Furthermore, simultaneous post-processing might slow down

the simulation, because simulation computations have to wait for the post-processing

to be finished. The solutions provided by ParaView [FMT+11] and Visit [EFG+05]

are tight coupling approaches.

Loose coupling: In contrast to tight coupling, simulation and data processing do not

share any resources. Raw data has to be copied from the simulation host to the pro-

cessing resources over network. This transfer can be triggered either by simulation

(push) or by data processing (pull). The advantage of this implementation class

is that scalability and memory requirements of simulation and processing hosts do

not have to match. However, data transfer can be a limiting factor. The ParaView

plugin ICARUS [BSO+12] is coupling simulations loosely by memory mapping the

HDF5 file format.

Hybrid coupling: Hybrid implementations combine tight and loose coupling ap-

proaches. Here, data is reduced in a tightly coupled processor and sent to a concur-

rent post-processor for further processing. The FSSteering framework, presented in

this dissertation, allows for this type of coupling, as presented in chapter 4.

3.1.2 In-Situ Processing

In-situ data processing can be manifold. [MWYT07] categorizes the following pro-

cessing steps that can be performed in-situ.

Data Reduction: Common data reduction techniques are sub-sampling, quantiza-

tion and transform-based compression. Sub-sampling is the simplest way to reduce
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simulation data. A common practice is to skip time steps and select, e.g. every

hundredth time step. This creates a major challenge to temporal-space visualiza-

tion and animation and further extraction methods like tracing of path-lines are

becoming more inaccurate.

Simulation data is mostly computed in single or double precision floating point

numbers with high accuracy. However, it is not always necessary to preserve this

level of accuracy, for example, if relative values are in the focus of research and

absolute values are not important. Also, hardware accelerated rendering makes use

of texturing hardware with 8 or 16 bit of resolution. In those cases, quantization

makes sense in order to reduce the amount of data to store.

Data quantization can be performed in many ways. Simple quantization methods

are direct scalar quantization methods, which use only local data and are fast to

compute. Data quantization also contains more elaborate methods making use of

data statistics, such as the global Lloyd-Max method [GW06] or the local Jayant

quantizer [Jay73].

Another class of quantization methods is vector quantization, that groups data

values into blocks of data and encodes these blocks. Since these methods, such

as the Linde-Buzo-Gray algorithm [LBG80], requires the training of a codebook,

vector quantization methods are often too computationally expensive to be used as

in-situ processing methods [FMA05].

Finally, transform-based compression is a very effective way to reduce data to store

on disk. This compression transforms the data from spatial domain to frequency do-

main resulting in energy coefficients for each frequency. Since this representation is

often more meaningful for the physical situation, a compression in this domain intro-

duces less errors by only quantizing the less important lower energy coefficients more

coarsely. Most popular transform-based encodings are the discrete cosine transform

and the wavelet transform, later allowing an additional multiresolution data repre-

sentation and a level of detail to be selected according to the visualization require-

ments. In terms of cost and performance, transform-based compression is a better

choice for in-situ data reduction [MWYT07].
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Feature Extraction: A feature is a particular physical structure isolated with domain

knowledge. Some examples are vortices, shocks, eddies, critical points, etc. These

features can be used to categorize the overall physical phenomenon. The saving in

storage space with feature extraction can be very significant, however, scientists do

not always know exactly what to extract and track in their data. [MM07] demon-

strates a method for feature tracking using a low cost and incremental prediction

and morphing approach to track a turbulent vortex flow. Feature extraction and

tracking remains to be an active area of research, because the high-level data re-

duction explicitly takes into account domain knowledge. Although many feature

extraction and tracking methods have evolved in the last decades, less work was

done to apply them to in-situ processing.

Quality Assessment: Most of the presented in-situ processing methods focus on

reducing data size during simulation run-time. Therefore, the information loss com-

pared to the original data should be conveyed to the user to identify and quantify

the loss of data quality. Most data quality metrics, such as the mean square error,

require access to the original data and are therefore not applicable to large-scale

simulations where the original data are too large. A solution applicable in in-situ

processing is shown by [WWS+06], who only used statistical information extracted

from the original data in the simulation. In the visualization the distance of the re-

duced data can be compared with the extracted statistical information and in order

to indicate quality loss. An improved version [WM08] extracts statistical informa-

tion in the wavelet domain also enables a cross-comparison of different reduction

types.

Rendering: For monitoring and steering purposes a direct rendering of images in-

situ can be beneficial to give insight into the simulation without requiring an addi-

tional visualization system. In [TYRg+06] in-situ rendering is conducted during a

tera-scale earthquake simulation. For the presented ray casting visualization each

processor renders its local data. The same data partitioning created by the simula-

tion can be reused, and thus no data movement is needed among processors. Only

an API provided by the simulation is required, because all access operations are

read-only. No further changes are needed to adapt the simulation. In the image
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compositing stage, a new algorithm is designed to build a communication schedule

in parallel on the fly.

3.2 Distributed Cutting Plane Extraction

In order to perform interactive exploration of running simulations with cutting

planes a crucial step is the calculation of cutting plane information in the first

place. For interactivity purposes certain characteristics are required by the in-situ

extraction algorithms. These are in particular:

• bounded runtime: To provide interaction, a minimal update rate is required.

Therefore, the time between changing plane positions and rendering extracted

results need to be bounded.

• preview images: In order to explore a dataset for each cutting plane position

a representative image is required. If an exact result can not be determined

in the requested time, a preview image need to be provided instead.

In the rest of this chapter, I will present a benchmark setup that I will use to analyze

cell-based analytic methods and, furthermore, demonstrate the clear advantages of

my presented approach.

3.2.1 Benchmark Setup

I use a real-world CFD simulation to evaluate my method. A typical airflow simu-

lation around an airplane is used consisting of 13.6 million points and 35.2 million

cells (12.7 million tetrahedrons, 22.5 million prisms). Cell sizes in this model are

strongly decreased near the airplane wing. In a pre-processing step, points and

cells are decomposed and distributed into 64 domains. The domain partitions are

indicated by surface colors in figure 3.2.

The simulation is running on 8 nodes of a cluster system, each node equipped with

an Intel Xeon 2.53 GHz quad-core processor and 48 GB RAM. The cluster’s inter-

connect is a DDR InfiniBand network. The available virtual reality environment is
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Figure 3.2: Airplane model used for benchmarking with 13.6M points and 35.2M
cells. The model is decomposed into 64 domains for distributed simulation.

based on a three-pipe powerwall system and a Flystick interaction device. The visu-

alization cluster driving the powerwall projectors consists of four nodes, each with a

dual Intel Xeon 2.8 GHz quad-core processor, 24 GB of RAM and NVIDIA Quadro

FX 5800 graphics card. The powerwall system is connected to the simulation via 1

GBit/s ethernet.

In order to ensure reproducible benchmark results, I defined a synthetic user sce-

nario. In this scenario, depicted in figure 3.3, a cutting plane is moved along the

airplane from its front tip to a position shortly behind the wings. During this move-

ment a cutting plane needs to be extracted on 500 positions covering regions with

low resolution as well as highly refined cells along the wing.

3.2.2 Cell-based Cutting Plane Extraction

First, I examine the behavior of cell-based cutting plane extraction algorithms, such

as used by VTK and ParaView. Unstructured data sets are described as a set of

basic cells, e.g. tetrahedrons and prisms, with values assigned to each vertex. The

process of extracting cutting plane information is to determine all cells intersected

by the plane and calculate the geometry information of the cut region. While the

search for a set of possible candidate cells can be done very efficiently with spatial
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Figure 3.3: Benchmark scenario: cutting planes are extracted at 500 positions mov-
ing between the airplane tip and a position behind the wings.

search trees like octrees or binary space partition trees, the intersection has to be

calculated for all candidate cells. The result is often represented as a triangulation.

This process is more or less the same in a distributed calculation, in which cells

are partitioned in a pre-processing step and are distributed to a set of processing

nodes. Cell searching and intersection can be done independently and in parallel on

each involved processing node. In addition, the resulting two-dimensional cells are

gathered to determine a complete cutting plane representation. The total run time

is depending on the number of cells cut by the plane, since all intersected cells need

processing. For unstructured grids the spatial distribution as well as the spatial

resolution of cells can be a huge problem for efficient cutting plane extraction.

Since the number of extracted triangles can differ much for different cutting plane

positions, extraction run time as well as output size are unpredictable, which is a

problem for interactive rendering. This problem is demonstrated in figure 3.4, which

shows the maximum run time of all compute nodes and the according number of

intersected cells for each cutting plane position. Most important, the extraction

time when intersecting highly refined regions can increase dramatically. In this

benchmark, the maximum measured extraction time exceeded 20 seconds. These
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high extraction times do not allow for the interactive exploration I am achieving in

this chapter.
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Figure 3.4: Maximum extraction time and corresponding number of intersected cells
for cell-based cutting. This benchmark, performed by ParaView, shows a visible
relationship between extraction time and number of intersected cells. The absolute
time required at certain cutting plane positions do not allow interactive exploration.

3.2.3 Point-based Cutting Plane Extraction

I clearly demonstrated in the last section, that cell-based cutting plane extraction

algorithms can lead to very long as well as position-dependent extraction times.

Therefore, the requirements for interactivity that I stated earlier can not be achieved

by cell-based cutting plane extraction algorithms. In order to provide methods which

fulfill those requirements, namely bounded run time and generation of preview visu-

alizations, I will present point-based methods suitable for in-situ online monitoring.

I implemented my methods into my FSSteering framework, which was presented in

chapter 2. This allows my approach to directly access data of ongoing simulations.

Therefore, my method is able to extract cutting plane information in-situ without

the need to copy any raw data.
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3.2.3.1 Progressive Sampling

The last section demonstrated the strong correlation between cutting plane position

and run-time of cell-based cutting plane extraction algorithms. To overcome this

limitation, I use a progressive sampling strategy based on z-order space filling curves,

here.

A z-order space filling curve, see figure 3.14, is a space filling recursive curve in

which the first level is defined as a single point. By recursively substituting each

vertex with a z-pattern, the z-curve is refined from one level to the next finer level.

Therefore, each iteration adds three-times as many vertices as the prior iteration

and after the ith iteration the total number of vertices is 4i.

(a) first level z-curve (b) second level z-curve (c) third level z-curve

Figure 3.5: A z-curve is a recursive pattern, in which finer levels are defined by
replacing each point by four points in z-ordered shape: (a) first level, (b) second
level, (c) third level.

I use this pattern to generate sampling points on the cutting plane in a regular pat-

tern. Therefore, each compute node extracts point information for points covering

their own partition domain and the results for each recursive level are gathered on

the simulation master node. Figure 3.6 shows the result of sampling the domain at

levels with different resolutions. Even in a low resolution, regions of interest around

the wing can be identified.

Figure 3.7 shows timing results for my progressive sampling approach. Herein, the

accumulated time is presented until point information for each progressive level

extracted. This method has two important improvements over cell-based extraction
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Figure 3.6: Four textures generated with progressive sampling (16x16, 64x64,
128x128 and 256x256 samples). Lower resolutions are sufficient to identify regions
of interest.

algorithms. First, the impact of the cutting plane position and the number of

the intersected cells is negligible. In contrast, extraction times in the cell-based

approach benchmark differed by a factor of one hundred. And second, I achieved a

representation possible to stream to the front end in a progressive fashion. Therefore,

it is possible to stop streaming when a certain time threshold has elapsed. This

results in a preliminary image possible to present to a user. Therefore, the extraction

can be stopped at any time in order to request a cutting plane visualization for a

new plane position, which is important for preserving interactivity.

3.2.3.2 Random Sampling

The disadvantage of progressive textures is their discrete resolution. One has to wait

for all sampling points of a level to be calculated, before they can be streamed to

the visualization front end. Furthermore, Each process needs a different time to find



3.2 Distributed Cutting Plane Extraction 37

0,0001

0,001

0,01

0,1

1

10

1 250 499

ti
m

e
 (

se
c)

 

cut-plane position (id) 

Accumulated time per level 

1024x1024

512x512

256x256

128x128

64x64

32x32

16x16

Figure 3.7: Total time to extract progressive texture levels. Even with increasing
runtime in refined regions, strong variations as present in cell-based extraction are
not noticeable.

and evaluate its part of a level. This results in unbalanced computations, because

the whole progressive texture extraction is bounded by the slowest compute node.

To overcome this issue, my following two methods remove dependencies between

distinct samples by applying pure point sampling. Here, sample locations as well as

their sampled values are transmitted to the front-end. Since the calculation can be

stopped after every point sampling, simple time thresholds can be used. To extract

point information on each of the computing nodes, I apply following algorithm:

1. Determine the possible parameter space by restricting u,v-cutting plane space

to bounding box of cells located on each processor. If parameter space is

empty, stop.

2. While time threshold for computation is not passed and less than nbound points

have been extracted, sample at random position inside parameter space and

extract the point values.

3. Gather extracted points at master node.
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4. Select subset of points and transmit them to front-end.

The upper bound nbound prevents the master node from processing too many points.

It is a combination of the relative area according to the processing node and the

maximal number of points transferable with the actual bandwidth to the front-end

visualization system. It is defined as

nbound = f ∗ areaproc/areatotal ∗ pointsmax,

where the factor f is a conservative factor, normally chosen between 1 and 2. During

gathering, the actual subset of points to transfer needs to be selected. We do this

by selecting pointsmax points with a distribution according to the relative area.

To calculate point values, I use the CellTree [GJ10], a bounded interval hierarchy,

to locate the cell containing the point. This search tree is optimized for uniform

sampling and enables for fast cell location.

In figure 3.8, four images are shown demonstrating random point sampling. The

bandwidth parameter pointsmax is chosen with the values 1000, 2000, 3000 and 5000.

Figure 3.9 shows timing results for my random sampling approach. Herein, the

number of sampling points per time is presented. This method improves over the

progressive sampling approach. For example, after 100 ms, random point sampling

is able to extract about 200,000 points, while the progressive level extracted in the

same time has only 65,536 sampling points.

3.2.3.3 Adaptive Sampling

While random point sampling covers the cutting plane regions uniformly, no atten-

tion is given to the scalar field values. Regions with high variance in the scalar field

are normally more important than regions with low variance. Therefore, I intro-

duce an adaptive point sampling method with a probability distribution according

to the variance of the scalar field along the cutting plane. We achieve this by adding

variance information to the search tree used for cell location.
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Figure 3.8: Random sampling with 1000, 2000, 3000 and 5000 points.

Figure 3.9: Number of sampling calculations performed within given time thresholds.
While random sampling is was able to perform about 200,000 point samplings per
100 ms, progressive sampling achieved only a level with 65,536 points in the same
time.
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To determine the variance information, we apply a recursive calculation at initial-

ization time. For each inner node nodei in the cell tree, the variance vi is determined

as the sum of the child’s variances

vi = vn.left + vn.right.

The variance vj of a leave node j is the volume-weighted sum of the variances vc in

each cell c

vj =
∑
c

vc =
∑
c

volc ·
∑
p

(valp − ĉ)2

where valp is the point value at point p and ĉ is the mean of the point values of

the cell c. The extra amount of memory is small, since only one extra float value is

stored for each inner search tree node.

Sampling positions and values are determined with following heuristic algorithm:

1. Set actual node n to the root node.

2. If node n is inner node

(a) test if left and right child nodes nl and nr intersect with the cutting plane.

(b) If none of nl and nr intersect, goto 4.

(c) If only one of them intersects, set this one as node n. Goto 2.

(d) If both intersect choose one randomly according to their variance and set

this as node n. Goto 2.

3. If node n is leaf node

(a) Test each cell inside leaf node in random order.

(b) If cutting plane intersects with a cell, determine a position and value

inside the cell. Set point radius to minimal extent of leaf node bounding

box.

4. If less than nbound points sampled, goto 1.
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During gathering at the master node pointsmax points have to be selected to be

transferred to the front-end visualization. Therefore, following heuristic h is applied.

For each compute node a the sum of area covered by sample points is known, areap,

as well as the area of the intersection between the cutting plane and the compute

node bounding box, areaBB. With nump points we achieve constant average density

with

ha = min(areap/nump ∗ areaBB, nump)

sampling points inside this region. The total number of pointsmax points is then

selected by using na points per compute node a with

na = ha/
∑

ha · pointsmax.

Figure 3.10 shows four images demonstrating my adaptive point sampling scheme.

The bandwidth parameter pointsmax is chosen to be 1000, 2000, 3000 and 5000

sampling points.

Timing results for my adaptive sampling approach are shown in figure 3.11. This

method is capable to perform even more sampling calculations per time compared

to the random sampling approach. After 100 ms, my adaptive point sampling ap-

proach could extract up to 1.7 million points for some cutting plane positions. This

performance boost is caused by the fact, that cutting plane intersection tests are

used to find actual point positions (cf. step 2(a) and 3(b) in the algorithm). Even,

if this method can determine more point information, this approach is more unbal-

anced than random point sampling. The highest performance is achieved for cutting

plane positions intersecting many domain decomposition regions. In other regions,

the performance is comparable to the one of the random point sampling strategy.
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Figure 3.10: Adaptive sampling with 1000, 2000, 3000 and 5000 points, point size
according to sampling region. Regions along the body are sampled more frequently,
because of higher scalar field variance.

Figure 3.11: Number of sampling calculations performed within given time thresh-
olds. In some regions, up to 1.7 million sampling points can be determined per 100
ms.
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3.2.4 Rendering

In this section, I describe the interactive rendering process of extracted cutting

planes on the virtual environment front end, which differs for the progressive sam-

pling approach on the one hand, and random as well as adaptive sampling approaches

on the other hand. Both rendering methods allow for interactive navigation in a

virtual environment, see figure 3.12.

(a) Rendering a progressive texture (blended). (b) Rendering a point set (opaque).

Figure 3.12: Interactive rendering of in-situ extracted cutting planes: (a) progressive
textures are reordered in the fragment shader, (b) random and adaptive point sets
are rendered with approximated Voronoi regions.

For progressive textures I use an on-the-fly decompression. A natural method to

visualize points sampled on a regular grid is the rendering of a textured quad.

However, the ordering of the progressively sampled points is differs from the ordering

that is assumed by the texture mapping units of graphics processing hardware.

Therefore, the sampled points need to be reordered.

The final level, which will be extracted in the progressive sampling, is not known

until the time threshold elapses. As a consequence, the reordering process needs to

be performed for every progressive level arriving at the front end. Since a CPU-

based solution is too computationally intense for the highly interactive scenario,

a modified GPU fragment-shader is used to decode the z-curve on-the-fly during

rendering.

In order to render progressive sampled cutting planes, I implemented a look-up table

approach, in which a current texture coordinate (x, y) is mapped to the level l and
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coordinate (x̂, ŷ) of a z-order curve. During initialization, these look-up tables are

pre-generated and stored in textures for each possible z-curve pattern. For a texture

coordinate (x, y) ∈ [0 . . . 2n − 1, 0 . . . 2n − 1] the level l and local coordinates (x̂, ŷ)

can be determined with the minimum number of trailing zero bits z of x and y by:

l = n− z,

(x̂, ŷ) = (x >> z, y >> z).

In order to render the point sets generated by the random or adaptive point sampling

approaches, a visual pleasing representation is desirable. Since a finite set of points

in a plane is given, an obvious solution is to fill the plane with nearest neighbor

information. Therefore, a tessellation of the cutting plane is required, in which each

cell consists of every point whose distance is less or equal to any other point in the

point set. This, by definition, is the Voronoi diagram of the point set.

A real-time generation of Voronoi diagrams is still a challenging task. Therefore, an

approximation to the Voronoi diagram based on jump flooding is used capable to

be performed in a constant time on graphics processing units [RT06]. With a fixed

texture resolution of 1024 by 1024 texels, result shown in figure 3.13, I was able to

provide a local frame rate of about 180 frames per second.

(a) Point set. (b) Approximated Voronoi regions.

Figure 3.13: Real-time rendering of point sets with approximated Voronoi regions:
(a) original point set, (b) rendered as Voronoi texture.
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3.3 Results

In this section, I will discuss my achieved results. I will demonstrate the great ben-

efits of my in-situ sampling approaches which enable for using virtual environments

for online monitoring purposes of running large scale simulations. This enhances the

online monitoring process to benefit from high interactivity and immersion provided

by virtual reality techniques.

In order to interactively explore the state of an online simulation, certain constraints

are required on the extraction algorithms and update rates. Therefore, I presume

that extraction run time can be bounded in order to stay interactive. By using the

presented progressive sampling, the extraction algorithm can easily be stopped after

each refinement step. On the other hand, even when stopped early, intermediate

results should support an overview inside the current cutting plane domain to enable

the movement of the cutting plane in an explorative way. Both requirements can not

be achieved by cell-based extraction algorithms. However, the progressive sampling

approach met both requirements.

Figure 3.14(a) demonstrates the effect of introducing time constraints on the pro-

gressive sampling approach. When using different time thresholds, a varying number

of progressive levels could be transferred to the front end in the given time. This

allows requesting results for new cutting plane positions while moving the cutting

plane and render preliminary results. In figure 3.14(b), the number of points, which

could be transferred within a time threshold of 100 ms is shown. In this benchmark,

a 100-MBit/s-Ethernet connection was used. Even if more point samples could be

achieved during this period, bandwidth limitations prevented to render a more de-

tailed visualization. Here, a different point encoding and compression could result

in better results.

Using virtual reality techniques for online monitoring leads to beneficial results. I

demonstrate these benefits by coupling a parallel CFD simulation to a powerwall

system equipped with a FlyStick interaction device. This clearly enhanced the online

monitoring in many ways. Stereoscopic rendering improved grasping the geometric

relationships between context geometry and the information presented on the cutting

plane. Furthermore, virtual environments provide better interaction techniques. I
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(a) Progressive texture levels. (b) Transferred points.

Figure 3.14: Visual quality of interactive cutting plane approaches. Time constraints
result in limited details: (a) number of progressive texture levels, (b) number of
transferred points per 100 ms.

rendered a cutting plane widget representing the cutting plane edges. This widget

can be picked intuitively in order to change the cutting plane position as well as its

extends (see figure 1).

3.4 Conclusion and Future Work

In this chapter, I showed that virtual environments can be successfully used in or-

der to interactively explore the state of a running simulation. Therefore, I combined

intuitive manipulation of cutting plane positions with in-situ cutting plane extrac-

tion. Since cell-based algorithms can not fulfill the requirements of the interactive

frontend, I used different point sampling approaches.

Future work would incorporate even more intuitive interaction metaphors. Fig-

ure 3.15 shows a possible solution using a pad device allowing for cutting plane in-

teraction as a tangible interaction device. Furthermore, two-hand interaction used

for cutting plane interactions would also be an interesting research topic.
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Figure 3.15: To further improve intuitive interactions, different interaction
metaphors could be introduced, such as using pad devices as cutting plane sur-
rogates.



Chapter 4

Interactive Hybrid Rendering in

Virtual Environments

In this chapter, I deal with the interactive visualization of large-scale scalar fields

incorporating remote rendering techniques.

Increasing capabilities of modern high-performance computing resources lead to the

simulation of complex physics substituting a large amount of physical experiments.

While the compute power provided by supercomputers and large-scale cluster sys-

tems enabled for simulating more complex numerical equations, simultaneously, spa-

tial and temporal resolution is growing. For a comprehensive understanding of the

numerical simulation data, confirmative analysis is often not sufficient and scientists

need to study their results in an explorative way.

In virtual environments, explorative analysis benefits from high immersion giving

better insights into the simulation data. Furthermore, hypothesis can be justified

and altered with more natural interaction techniques. Nevertheless, interactivity is

crucial for this kind of explorative analysis. Therefore, high update rates and low

latency are required. However, large-scale simulation data is growing and the ex-

tracted post-processing data is overwhelming the available graphics hardware driving

the virtual environment systems. A solution to deal with this massive data sets is the

usage of parallel remote rendering. However, major limitation of remote rendering

approaches is high latency.
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In this chapter, I examined the application of hybrid rendering techniques in order

to interactively navigate through large-scale simulation data, a process that can be

applied for online monitoring purposes or to analyze final post-processed simulations.

First, I give an overview of state-of-the-art techniques for hybrid rendering and work

related to this chapter in section 4.1.

Section 4.2 describes my hybrid rendering technique which combines the benefits of

local and remote resources. The rendering workload of the visualization is divided

into parts for local and remote rendering. While geometric components are rendered

locally and provide interactive navigation, complex flow features such as iso-surfaces

are rendered in parallel remotely. Due to tracked viewers and network latency,

locally and remotely rendered images tend to diverge in time and space and need to

be re-adjusted. I present an extensive evaluation of my presented approach utilizing

a multi-pipe system which demonstrates the benefits of my enhanced rendering

approach.

In section 4.3, I focus on the usage of display walls predestined for visualizing high-

resolution data. An important application scenario is on-line monitoring of large-

scale simulations, in which copying raw data becomes a severe bottleneck. Instead,

in-situ rendering is reducing this overhead by copying visualization results. Here,

I present a progressive image streaming which can handle high latency caused by

large pixel counts and network bandwidth limitations.

Finally, I discuss time-dependent data sets in section 4.4. Here, a standalone in-

teractive exploration workstation suffers from exceeding local memory capacities or

insufficient disc I/O performance easily. This data-handling task is burdened to a

dedicated GPU cluster system. I exploit remote GPU hardware for rendering in

addition to interactive iso-surface extraction in order to provide interactivity.
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4.1 State-of-the-Art and Related Work

4.1.1 Remote and Hybrid Rendering

Remote or distributed rendering techniques for interactive high quality scientific vi-

sualization of three-dimensional data sets are of high importance in modern times

characterized by mobile devices and constant hardware change. Most of these ap-

proaches are based on client/server architectures [SHA+09] over network to bypass

scenarios where the data to be rendered is distributed across different resources,

possibly located at remote locations. Remote rendering systems can be classified

through the decision which steps of the visualization pipeline run on the client side

or the server side [SHA+09] [SG96] (see figure 4.1).

Filtering Mapping Rendering Display

Raw
Data

Derived
Data

Abstract 
Visual

Objects

Image
Data

Remote Local

Remote Local

Remote Local

Remote Local

Remote Local

Visualization
 Pipeline

Image-based

Hybrid

Model-Based / 
Immediate

Figure 4.1: Classification of remote rendering techniques by their distribution of the
pipeline. While image based methods render remote, model based techniques use
local resources for rendering. Hybrid methods share the rendering effort.

A common approach is image based rendering (IBR) where the rendering is per-

formed on the server side and only pixel data is transferred back to the client [Pro08].

This pixel stream can also include further information like depth or accumulation

buffers. The main problem using image based rendering methods is the interaction

delay. This delay is described by the waiting time from requesting new images to
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their arrival. This delay is especially unacceptable when using VR environments

where the user’s head position is continually changing.

Model-based rendering (MBR) approaches are more friendly to latency because the

rendering is performed locally and therefore geometry or raw data from the server

is transferred to the client. However, this approach results in high bandwidth re-

quirements for the geometry transfer. This method also requires that the visu-

alization frontend is powerful enough to handle the incoming geometry data for

rendering. Common turnkey applications in the field of scientific visualization like

ParaView [LHA01] or Visit [VIS05] are supporting model- and image-based render-

ing.

Another more generic approach called immediate-mode, intercepts low-level drawing

commands on the client and sends them over network to the remote server for ren-

dering. Many frameworks, such as ClusterGL [NHM11], Chromium [HHN+02] and

WireGL [HEB+01], use this mode for a generic solution to enable default OpenGL

applications for remote rendering. Most of these frameworks are also suitable for

tiled display configurations. Nevertheless, these frameworks also have to tackle with

delays and reduced interactivity due to high network overhead.

Hybrid rendering approaches therefore try to combine image- and model-based

rendering to exploit the advantages and reduce the disadvantages of these tech-

niques [EHT+00] [NSOJA11] [SLRF08]. This improve interactivity and reduce band-

width by using remote and local resources for rendering. In most cases parts of the

geometry are rendered with low-resolution and high frame rates by the client itself.

The server only transmits images and corresponding depth values per pixel from

highly complex scenes to the local client, which then composite these two images to

a final result [ADD+07].

An example using combined local and remote visualization techniques for interactive

volume rendering in medical applications is described in [EEH+00]. The direct

rendering of the volume is done with 3D texture mapping methods on specialized

remote hardware while the client is responsible for rendering 2D orthogonal slices

of the volume. Noguera et al. used hybrid rendering techniques to navigate in large

terrains using mobile devices. The terrain area close to the viewer is rendered in
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real-time by the mobile client and the terrain area located far from the viewer is

rendered as a panorama image on the remote host [NSOJA10].

The presented hybrid rendering approach, different from the above applications, also

makes use of 3D image warping [CW93] [MB95] [MMB97] [HM99], aiming to hide

the delay through re-positioning of the previous remote image to the actual position

when the correct image is not available.

4.1.2 Parallel Rendering

When the number of polygons or fill rate exceeds the compute or memory capacity

of single graphics cards, parallel rendering techniques have proven to be a useful

solution. A first classification of these parallel rendering techniques is described

in [MCEF08]. The common parallel rendering framework IceT [MWP01], also used

in this section, is based on sort-last image compositing, which seems to be a scalable

approach for parallel rendering. Another framework for the development of parallel

rendering applications is Equalizer [EMP09]. This framework also supports sort-first

parallel rendering but is a little bit overloaded to our needs.

4.2 Hybrid Rendering System for Interactive Nav-

igation

Large-Scale numerical simulations produce complex data sets desirable to be ex-

plored interactively in virtual environments. However, interactivity is asking for en-

hanced methods in order to process and render large-scale simulation results at high

frame rates. On the one hand, such data sets can easily exceed tera- or petabytes,

moreover exa-scale simulations are expected in the near future. On the other hand,

typical virtual reality hardware has limited resources. In order to achieve high

frame rates, rendering has to utilize the acceleration provided by modern GPUs

which have limited amount of video RAM and render performance. For instance,

NVIDIA’s stereo-capable Quadro FX5800 graphics card has a maximum specified

triangle throughput of 300 million triangles per second. This implies a maximum
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amount of 5 million triangles render-able at a recommended frame rate of 30 frames

per second in full-stereo.

In this section, I introduce a software architecture that offers a hybrid rendering ap-

proach in order to overcome the gap between available render performance and the

size of large-scale data sets. My presented strategy divides the rendering workload of

the visualization into parts assigned to local and remote rendering resources which

enables for supporting interactive navigation through a data set in virtual environ-

ments. While geometric components are animated in a local virtual environment,

rendering of complex flow features such as iso-surfaces is performed in parallel on a

remote GPU cluster. The images and depth values of the remote images are then

streamed back to the local virtual environment. Here, local context geometry is ren-

dered with high frame rates and local and remote images are composed again. Due

to viewer tracking and network latency, locally and remotely rendered images tend

to diverge. Therefore, both images are re-adjusted utilizing a point-based rendering

solution. I implemented and tested the presented system on a three-pipe powerwall

system visible in figure 4.2.

Figure 4.2: Interactive hybrid rendering at powerwall of German Aerospace Center:
Context geometry (rotor blades, gray) is rendered locally, iso-surface is rendered
remotely on a GPU cluster and combined into the scene.
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Figure 4.3: Hybrid rendering approach: Remote rendered images are composed on
a GPU cluster and transferred to the frontend. Here, they are combined with the
local context geometry according to the pixels depth values.

4.2.1 Hybrid Rendering Framework

This section presents the details of my hybrid rendering architecture used for inter-

actively navigate through large-scale data sets.

4.2.1.1 System Design

My parallel rendering framework, as depicted in figure 4.3, is based on a client/server

architecture and consists of a local frontend application and a parallel remote render-

ing application, both based on the ViSTA [AK08] and ViSTA FlowLib frameworks.

The frontend application is running on the visualization cluster driving, for instance,

a powerwall and the backend application is running on a GPU-Cluster used for the

generation of remote images.

To be scalable with increasing data sizes, my approach is based on a sort-last image

compositing, utilizing the IceT image compositing framework. This is expected

to be the only scalable approach for rendering large-scale data sets, balancing the

rendering workload and memory requirements over the GPUs. Therefore, rendering
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primitives from the extracted features are fairly distributed across all rendering

processes to guarantee high or constant frame rates.

My developed frontend application is also running in parallel, mirroring the appli-

cation state to each of its processes. One instance of this distributed application

runs as master and all other processes as slaves. In this configuration, the master is

responsible for frame synchronization and for user interaction. All interaction events

are distributed from the master to the slave nodes for correct rendering of the local

context geometry. This context geometry is rendered by every frontend instance.

The master node also establishes a TCP/IP connection to the parallel renderer for

requesting and receiving images generated by the remote application.

4.2.1.2 Hybrid Rendering

In order to enable for interactive navigation, I make use of hybrid rendering. There-

fore, a remote image is requested from the parallel renderer and combined with the

local rendering.

When the current camera position or orientation is changed by user movements,

a render request is send to the remote application. This request is including the

current model view matrix and further meta data, e.g. compression parameters.

A new image is then generated in parallel. When the IceT rendering process is

finished, each remote tile compresses its color and depth buffer in parallel using

OpenMP and sends them to the master node of the backend application. The color

and depth buffers can be compressed with different compression methods. These

are standard ZLIB, LZO and JPEG compression. JPEG compression is optimized

by using libjpeg-turbo, which is a faster derivative of libjpeg. When all buffers are

collected by the backend master, a message including all buffers from each tile is

send to the frontend application master.

On the frontend side, the master node is then distributing the remote image infor-

mation across all slave nodes. After each slave has received the message, all buffers

are decompressed in parallel using OpenMP. Finally the remote image buffers are

composed with the locally rendered image by depth value comparison of each pixel.

This step is done on the GPU using the OpenGL Shading Language (GLSL).
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4.2.1.3 Image Adjustments

Combining local and remote rendered images without adaptation leads to image

artifacts. Since locally rendered context geometry is moving continuously and re-

motely rendered images are delayed, the features displayed on both images usually

do not fit. Figure 4.4(a) and figure 4.4(b) demonstrate this effect. Figure 4.4(a)

depicts a situation where both images do match and the camera is rotating around

the scene in figure 4.4(b) so that the images are diverged. Obviously, a simple com-

bination of both images according to depth values is not sufficient. Instead, I use

depth-image-based rendering as described in section 4.1.1. For this reason, I first

treat the remote image pixels as points in space according to the depth textures.

To transform the pixels to their new positions fitting to the current camera my frame-

work applies the following transformations. An object-space point p in the remote

image was transformed with the remote model view projection matrix MV Premote

followed by perspective division div(p) and the viewport transformation V Premote:

p′ = Tremote(p) = V Premote · div(MV Premote · p).

This transformation can be inversed with the inverse mapping:

p = p′′ = T−1
remote(p) = div(MV P−1

remote · (V P−1
remote · p′))

The point’s new position in the current rendered image can then be calculated by

p′′′ = Tlocal(p
′′) = V Plocal · div(MV Plocal · p′′).

In summary, the transformation of points p′ determined from the remote images to

vertices p′′′ in the current view can be stated as

p′′′ = T (p′) = Tlocal(T
−1
remote(p

′)).

All involved matrices are uniform while rendering the current local image. The

transformation T (p′) from remote image pixels to the new vertex positions is applied
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efficiently inside the vertex shader of a local GPU. In order to draw a vertex for

each screen pixel, static vertex buffer objects (VBO) are used. For each vertex, its

depth- and color-value is read from textures. Figure 4.8(a) shows an example of this

transformation rendered with a point for each transformed vertex.

Since my presented framework distributes remote images to each frontend client,

every rendering process has all buffers from each tile available. Therefore, the adap-

tation is also possible over tile transitions which fills gaps in the rendering of distinct

viewports, which are present in tiled-display or multi-pipe powerwall configurations.

In addition, this technique generates the required image pairs for rendering in stereo

scenarios. This has the advantage that there is no need to generate and transfer

images for the left and the right eye, reducing the remote render overhead by half.

(a) matching images (b) rotated local image

(c) fixed point-size adjustment (d) adaptive point-size adjust-
ment

(e) correct remote image

Figure 4.4: Exaggerated hybrid rendering example. The upper left image is showing
a correct compositing of a matching remote and local image. In the upper right
image the user is rotating the scene so that the local and remote image do not fit
anymore. The lower left image shows the re-adjusted image with simple point based
rendering and in the lower middle with adaptive point-sizes to fill holes. On the
lower right image correct rendering is shown.
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However, this approach generates visual artifacts, compared to the correct rendered

image presented in figure 4.8(c), because the transformed images do not provide

information for all visible pixels. While advanced hole and occlusion filling ap-

proaches exist, nevertheless, they all have problems dealing with background pixels.

Pixel-based methods suffer from rubber band and blending effects, geometry-based

methods require for the definition of depth thresholds in order to distinguish between

foreground and background pixels. This definition is very sensitive and can either

result in wrong connected regions or in not filling all holes in surfaces. In addition,

they are computational intense and do often not fulfill the rendering requirements

of virtual environments. A third class of methods is the combination of multiple

viewports. For these methods the number of required viewports is often unclear and

they have high rendering requirements as well.

Due to these limitations of occlusion filling strategies, my presented image adapta-

tion deals with the artifacts by only filling the appearing holes in rendered surfaces

without aiming on filling formerly occluded image parts. Therefore, adaptive point

size adjustments is applied and the result is shown in figure 4.8(b). The required

point size is determined during point transformations in the vertex shader and is

depending on the derivation in x- and y-axis. Therefore, the screen-space distance

to the transformed neighbor pixels with same z-values is calculated and used as

point size in the following OpenGL pipeline. This point-based rendering approach

successfully fills the holes inside a surface in the remote image.

4.2.2 Results

The clear benefits of the presented hybrid rendering approach were evaluated in a

powerwall scenario which I present in this section.

4.2.2.1 Data Set

To benchmark my approach a computational fluid dynamics simulation of the RIG250

compressor turbo-machinery is used, provided by the Institute of Propulsion Tech-

nology at the German Aerospace Center in Cologne.
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The simulation utilizes a multi-block structured grid which consists of 123 million

mesh points. From the simulations’ fluid motion field an iso-surface is pre-computed.

This is rendered on the backend running on the remote GPU-cluster. The isofurface

consists of 83.4 million triangles and can not be rendered in real time in the virtual

environment.

The local frontend renders a static geometry of the RIG250 compressors’ surface

in order to visualize an interactive navigation context. This surface consists of two

rotors and two stators with 4.5 million triangles and can be rendered in real time

on the frontend.

4.2.2.2 Hardware Configuration

The hardware infrastructure involved in the presented benchmarks is a parallel GPU

cluster connected to a powerwall via 1 Gbit Ethernet.

The frontend application is running on an available powerwall VR-environment with

three pipes. Each of the three screens has a resolution of 1050 by 1400 pixels, since

the projectors are rotated by 90 degrees to have a high vertical and horizontal

resolution. One screen is connected to one machine for rendering. These machines

are equipped with two Intel Xeon X5560 quad-core processors with 24GB DDR3

main memory and one NVIDIA Quadro FX 5800 graphics card with 4GB DDR5

graphics memory.

The GPU-Cluster running the parallel rendering application consists of four high-

end visualization workstations. Each of these workstations has two Intel Xeon X5670

hexa-core processors, 48GB of DDR3 main memory and three NVIDIA Quadro 6000

graphics cards with 6GB DDR5 graphics memory. The local interconnect for these

machines is a 40Gbit QDR Infiniband network. For the benchmarks we used three

nodes with only one GPU per node to generate the remote image.
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4.2.2.3 Benchmarks

In order to define a repeatable benchmark suite, I execute all the following bench-

marks in the same scenario, in which the complete scene to render is rotated by a

constant angle per rendered remote frame.

First of all, it is important to note that the local frame rate was always about

45 frames per second in a full-stereo rendering. This means that interactivity was

always provided on the frontend.

When working with interactive visualization, latency is the most important property.

Therefore the time from requesting a remote image until it has been distributed

and decompressed and is therefore available for rendering on all tiles was measured.

This benchmark has been executed with all combinations of compression algorithms.

Figure 4.5(a) shows the achieved remote frame rates with all combinations of the

compression algorithms.
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Figure 4.5: Performance and latencies of the remote rendering benchmark. (a)
Remote frame rates with different combinations of image and depth buffer compres-
sions. The used compression is titled as ’Image Compression’ / ’Depth Compression’.
(b) Composition of the produced latency when using JPEG for color compression
and ZLIB for depth compression.

When using the LZO compression for depth and color values, a remote frame rate

of about 8.0 frames per second was achieved. This means roughly four frames on

the frontend are the same and need re-adjustments when rendering at 30 frames

per second until a new remote image is available. With this remote update rate the

user can merely see artifacts because the error produced by the local re-adjustment

is small. However, when using LZO for depth and color buffer compression, the

required bandwdith is high. Therefore, for lower bandwidth network connections

color compression via JPEG and depth compression via LZO is a more suitable
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approach which achieved in average 7.5 frames per second, here. Using ZLIB as

compression for both or only of the buffers only 6 frames could be archieved. This

is due to slow ZLIB compression and decompression. With uncompressed buffers

only 2 frames could be achieved due to larger image sizes which leads to more visual

artifacts.

Figure 4.5(b) shows a composition of the latency when using JPEG for color en-

coding and LZO for depth compression. The most time-consuming part is the IceT

parallel rendering with 47ms in average. Compression and decompression could be

parallelized efficiently. All six buffers (3x depth buffers and 3x RGBA buffers) can

be compressed in 25ms and decompressed in another 25ms. Since my visualization

frontend is working with rotated projectors the remote images have to be rotated

as well which takes 17ms in average. Finally, the image transfer itself needs about

13ms. In total, a delay of 127ms is achieved for an update of the powerwall.

Another important fact when using remote rendering is the required bandwidth.

Therefore, I measuered the size of all frame buffers. Figure 4.6 shows the compressed

sizes for different combinations of compression codecs. An uncompressed frame

buffer for the entire powerwall takes 34.4 MB per frame. The highest compression

rate is achieved using JPEG for color compression and ZLIB for depth compression.

However, using this codec combination is more time consuming due to the slow

ZLIB compression. Using LZO the fastest compression method produces an average

framebuffer size of 1.8 MB which is small enough for fast image streaming over 1

GBit network connections.
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Figure 4.6: Size of the transferred framebuffers (color + depth) using different com-
binations of compression codecs.
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4.2.2.4 Image Quality

Point-based rendering with adaptive point sizes, as used in my presented framework,

successfully fills the holes inside a surface in adapted remote image. Nevertheless,

boundaries tend to be a bit unsharp (compare the renderings in figure 4.7(b) and

figure 4.7(c)).

(a) fixed point-size adjustment (b) adaptive point-size adjust-
ment

(c) correct remote image

Figure 4.7: Image quality in the hybrid rendering framework: depth based rendering
without (a) and with (b) adaptive point sizes as well as a reference image (c).

Background filling of previously occluded image regions is not applied in my frame-

work, therefore, previously occluded parts of surfaces are also missing in the adapted

image. This is demonstrated in the image sequence depicted in figure 4.8, showing

missing surface regions in blue.

Background filling methods try to fill these missing informations based on the sur-

rounding available image pixels. For instance, [BSF10] uses lines to fill background

information at detected edges. The problem with these methods is that threshold

needs to be defined to detect edges by different z-values. Therefore, components

might be wrongly connected or foreground surfaces are extended into the back-

ground. More important, complex hidden surfaces in the background can not be

extended correctly.

In conclusion, my presented framework is not filling the background, because missing

information caused by occluded regions is often a better solution than rendering

probably suspicious information. For a user it should be easier to deal with missing
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information that will be filled in the next frames rather than to decide when surfaces

turn from being extended to being correctly rendered. Furthermore, as shown in

the benchmark section 4.2.2.3, the remote image was updated every 4 local frames

in average, minimizing the area in which background filling is required. Besides, in

the compressor benchmark scenario most of these background areas are occluded by

context geometry anyways.

(a) Updated position (b) rotation by 2.5 degrees (c) rotation by 5 degrees

Figure 4.8: Missing information without background filling from different viewpoint
angles: (a) updated remote image, rotation by 2.5 (b) and 5 (c) degrees. Occluded
surface regions that would be missing in adapted images are shown in blue.

4.2.3 Discussion

My hybrid rendering framework presented in this section provides a technique to

interactively explore simulation data sets with high spatial resolution. This is impor-

tant for interactive navigation in large-scale data sets, as it prevents virtual reality

hardware and network connections from being performance bottlenecks.

My approach divides the rendering workload into rendering of geometric context

components and rendering complex flow features, such as iso-surface visualizations.

While geometric context components can be rendered locally with high frame rates,

complex features are decoupled and rendered remotely. Remote rendered images

have lower update rates and arrive with latency, which leads to mismatching visual

information in reference to the current local rendering. Even, when using lower-
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resolution remote images, latency is inherently present due to rendering, compres-

sion, and network transfer times.

My presented system handles these divergences by re-adjusting remote rendered

images with depth image based rendering and adaptive point sizes. It was demon-

strated, that hybrid rendering is capable to support interactive navigation through

a data set and still provides high frame rates even if remote images can only be

rendered at lower frame rates.

Future work should focus on better support for transparent images as well as image

quality. Due to the division into images rendered remotely and locally, transparent

pixels are rendered correct only if the z-order of remote and local triangles do fit.

Incorporating multi-pass rendering could be a strong improvement, nevertheless,

introducing additional rendering workload and requiring for the transfer of multiple

frame buffers. Since my framework adapts only pixel positions without re-shading

them, their color differs slightly from the correctly rendered image. The usage of

deferred shading, which involved transmission of normal buffers, could be a solution,

here.
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4.3 Streaming Large Images

for Tiled Display Walls

In section 4.2 I described my method to provide interactive navigation of large-

scale data sets in virtual environments, even if their size exceeds the rendering

capabilities of the available hardware resources. My presented hybrid rendering

technique divides rendering primitives in portions rendered locally or remotely. In

this section, I discuss the challenges and give a possible solution burdened by the

network bottleneck are discussed which arise with increasing display resolutions.

Complex simulations often require online monitoring, the visualization of the run-

ning simulation, to understand the simulation behavior. Here, explorative visualiza-

tion supports a quick overview to identify interesting regions. A common solution

is to copy raw simulation data from the supercomputer to a dedicated visualization

cluster system. This visualization cluster performs post-processing algorithms and

extracts features to be visualized. In the end, rendered images of these features are

finally shown on a frontend system.

While future high performance computing (HPC) resources will dramatically im-

prove compute power, I/O and network bandwidth are expected to grow to a lesser

extent. Thus, copying raw data becomes a severe bottleneck due to long transmis-

sion times. In-Situ processing is addressing this problem by shifting post-processing

extraction algorithms to the compute resources already used for simulation tasks.

Instead of raw data, intermediate visualization results can be copied, which are

normally decreased by orders of magnitude.

Simultaneously, with enhanced HPC capabilities simulation details and spatial reso-

lution will grow. This also requires high resolution displays for the visual perception

of fine details. While classical display systems or virtual reality environments do

not provide sufficient resolutions in all application cases, display wall systems have

proven to support very high resolutions up to tens or hundreds of megapixels.

Nowadays, these display wall systems are driven by a set of local computers which

render the complete information or display images that are rendered on remote

rendering clusters. On the one hand, local rendering solutions support low latencies
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of the rendered information. But, with increasing intermediate visualization results

insufficient render performance or memory is locally available. On the other hand,

parallel remote render solutions benefit from huge distributed memory amounts and

render performance. However, they have higher latencies and with limited network

bandwidth traditional renderings require high subsampling rates in order to achieve

acceptable update rates.

Figure 4.9 describes our target hardware infrastructure. Features extracted by the

post processing step, which is running on the same resource (supercomputer) as the

simulation, are streamed to a remote rendering application via a high speed network.

The data size transferred to the remote GPU cluster is much smaller as the raw data

produced by the simulation but can also be to large for the visualization cluster

driving the display wall. To balance the rendering workload over the GPUs of the

GPU cluster, the extracted features must be fairly distributed across all rendering

processes to guarantee high or constant frame rates. Furthermore, spatial domain

decomposition of the rendered data becomes an important task. Because data needs

to be rendered at least once for every tile it is visible on, data covering all tiles lead

to unbalanced or multiple render passes.

My solution to enable for interactive exploration of online monitored simulations

using tiled display walls is presented here. Here, I simulate the online monitoring

process by loading already extracted isosurfaces at the remote rendering side instead

of performing in-situ processing. This is a viable solution, since I am focusing on

the interaction between parallel remote rendering and tiled display wall frontends

in this section. In doing so, render solutions for future architectures, which are not

available right now, can be defined and evaluated.

My presented hybrid rendering framework presented before, combining local render-

ing resources used for context geometry and remote rendering techniques rendering

complex geometry, is extended here. Therefore, I introduce progressive and multi-

resolution image streaming based on z-order curves into the system. Moreover, in

order to concurrently stream rendered images independent of the remote render

process, I extend my hybrid rendering framework with pipelined processing steps.

In summary, my approach achieves the following benefits:
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Figure 4.9: Hardware Infrastructure: A visualization frontend running on a local vi-
sualization cluster, which is driving a display wall, is connected via gigabit Ethernet
to a remote GPU cluster equipped with multiple GPUs. Extracted features of the
post-processing / simulation are transferred via a high speed Infiniband network to
the GPU cluster for rendering.

• The hybrid rendering using local and remote resources allows interactive nav-

igation through the dataset.

• Multi-resolution, based on z-order curves, supports quick overviews.

• The progressive image streaming introduces only low latencies to the remote

rendering process.

• Using progressives streaming instead of subsampling requires no additional

render passes for different resolutions and adapts automatically to network

capabilities.

4.3.1 Modified Framework Architecture

The basic design of my system presented here is the same as I described in the last

section (see section 4.2.1.1, section 4.2.1.2, and section 4.2.1.3). However, if the

rendering process finishes a remote image, it is passed to a concurrent thread for

transmission, which creates the progressive data structure, compresses each data
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packages via standard zlib compression and transmits the results back to the fron-

tend. The progressive streaming itself is described in detail in section 4.3.2.

The fact that I handle the output connection by an additional thread, allows for a

pipelined execution (see figure 4.10) of rendering and transmission. This exploits to-

day’s and future multi-core hardware architectures via multi-threading. This thread

is also streaming the previous image to the frontend until a newer image is available

for transmission. This means that the previous frontend image is getting finer until

a new image was rendered.

Figure 4.10: Pipelined execution: Rendering is performed concurrently to creating
data structures, compression and transmission on the parallel renderer.

4.3.2 Progressive Image Streaming

In order to reduce the delay for a user waiting for a full resolution image, image

streaming functionality are implemented for image and depth data to the framework.

This feature is enabled by generating a data structure suitable to stream image data.

Additionally the data structure should be able to give a quick preview of the whole

image to locate interesting details for a deeper observation.

The progressive image streaming method is based on reordering remote images ac-

cording to z-order curves. A z-order curve is a space-filling curve covering the whole

domain of an image. The construction of a z-order curve is recursive, starting with

the first level defined by one point. To fill-up space, each point of the already

constructed curve is recursively substituted with four points aligned in a z-shape.

Therefore, each recursion multiplies the number of points in the z-order curve by a

factor of four.
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Due to this construction of z-ordered curves, the defined point pattern always spans

a quadratic region with a power-of-two edge length. Therefore, they can not directly

be applied to non-power-of-two images, which are common for usual display reso-

lutions. A common technique is to add padding points to fill up space to the next

power-of-two resolution, adding a huge overhead in many cases. Furthermore, using

one z-curve to cover an image requires increasing numbers of points to be transferred

to update an image from one level to the next level.

To overcome these drawbacks, the image and depth buffers are divided into blocks

of 8-by-8 pixels as depicted in figure 4.11. With this division, only few padding

points need to be added to an image, especially, images of usual screen resolutions

do not require padding at all.

Figure 4.11: Progressive image data scheme. Remote images are divided into 8-by-8
blocks, each with a z-curve. According pixels are then combined with respect to
their z-curve index.

In order to prepare for the progressive image streaming, according pixels of the z-

order curves are combined in a packet, such that each of the first values are combined,

each of the second ones and so forth. In this manner, we achieve a subdivision of

the image space into packets of equal size.

Finally, progressive streaming of the remote image and depth buffers is achieved by

transmitting each of the combined packets in the order of their z-order occurrence.
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In order to save network bandwidth, each of the packets is compressed via standard

zlib compression before transmitted to the front-ends. This streaming approach

is demonstrated in figure 4.12. On the frontend side, remote rendered images are

rendered by combining local and remote images by comparing the depth values

for each pixel in an OpenGL fragment shader. Therefore, the depth and color

textures containing the remote image are updated as soon as a packet is received

and decompressed from the remote renderer.

To maintain interactive update rates of the remote rendered images for visual explo-

ration, a new image with the current modelview transformation is requested from

the remote renderer as soon as the first level of the progressive image was received.

Figure 4.12: Progressive streaming pipeline. Each rendered image is subdivided into
blocks according to their z-index, compressed and transmitted to the frontend as
long as the next image is being rendered.

4.3.3 Results

The benchmarks that I will present in the following are similar to the benchmarks

utilizing the powerwall system. They will demonstrate the benefits and enhance-

ments of my streaming approach that connects tiled display wall systems with remote

render solutions. Details about the RIG 250 data set can be found in section 4.2.2.1.

The GPU cluster system is described in section 4.2.2.2.

4.3.3.1 Display-Wall Configuration

The available tiled display wall system consists of 4 by 3 displays, each of these

screens having a resolution of 1920 by 1200 pixels. Every two screens of the entire

display are connected to one computer for rendering. These machines are equipped
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with one Intel Xeon E3-1245 quad-core processor with 16GB DDR3 main memory

and one midrange NVIDIA Quadro 2000 graphics card with 1GB DDR5 graphics

memory. The network connection to this cluster is 1Gbit Ethernet which is shared

by all six machines.

Two different display setups were configured to run benchmarks with different num-

bers of render instances and tile resolutions. In the first configuration twelve frontend

clients are launched on these six hosts, where each viewport has a resolution of 1920

by 1200 pixels. In the second configuration only six frontend instances are launched

and the viewport resolution is doubled to 3840 by 1200 pixels. The total resolution

of the display wall is 7680 by 3600 pixels.

4.3.3.2 Benchmarks

Figure 4.13 shows our visualization results on the tiled display wall at German

Aerospace Center in Brunswick. The remotely rendered isosurface, colored by par-

allel process id, is composed with the gray context geometry on the frontend. In

order to define a repeatable benchmark suite, likewise used for the benchmarks in

section 4.2.2.3, this isosurface is rotated by 3.6 degrees per frame, whereas 50 frames

are rendered in total. All benchmarks are repeated five times and the median of

these five is kept.

When working with interactive visualizations, latency is a very important property.

Therefore we measured the timings when first and last results are available after an

user requested images for new positions. These timings are compared with the time

required for rendering and compositing within IceT. This allows to determine the

overhead of our implementation. The overhead is caused by the following tasks:

• Serialization and de-serialization of the image buffers and their meta data

• Re-ordering the original data structure to our progressive data structure

• Compression and decompression by the zlib library

Figure 4.14 shows the measured timings for the configuration when using six frontend

instances connected to two GPU cluster nodes. The rendering is done with six GPUs
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Figure 4.13: Display wall at German Aerospace Center in Brunswick running the
used benchmark suite. Context geometry (gray) is rendered locally, isosurface is
colored according to parallel process id.

on the remote renderer and a resolution of each 3840 by 1200 for each viewport. In

average 520ms are required for the first image data being available at the frontend.

Thereafter, first preview images can be rendered. Compared to the time required by

IceT for compositing and rendering, an overhead of only 60ms in average is added

by our implementation. Remote images are completely transferred after 1450ms in

average.

Figure 4.14: Measured timings when using 6 frontend instances connected to two
GPU cluster nodes using 6 GPUs for rendering
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In the second configuration, twelve frontend instances are connected to four GPU

cluster nodes. The isosurface is now rendered with 12 GPUs and half of the viewport

size compared to the first configuration. Figure 4.15 shows that the time the user is

waiting for first results can be reduced to an average of 340ms. A complete update

for the entire display wall now takes only 720ms which is half the time achieved with

two GPU cluster nodes and six graphics cards.

Figure 4.15: Measured timings when using 12 frontend instances connected to four
GPU cluster nodes using 12 GPUs for rendering

The next figure 4.16 depicts the time required for the transmission of a complete

remote image. When using six viewports with larger resolution and only 6 remote

processes this time is about 930ms in average. Using the second configuration with

twelve viewports the transmission time reduces to 380ms. This is caused by doubling

the number of parallel instances. Therefore, each thread re-ordering the image to

z-curve representations has to deal with half the amount of 8-by-8 blocks. Further-

more, the time required to compress network packets is growing more than linear.

Another important factor when comparing these timings is how many levels have

been transferred until a new rendered image is available on the remote renderer for

transmission. This means previous image frames are continuously updated while

the camera is still moving. Figure 4.17 shows this scenario for the two different

configurations. While in the 6 GPU configuration only a few images are updated to

the full resolution in the 12 GPU configuration more images are reaching this last

level due to better network utilization and lower overhead.
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Figure 4.16: Time required to transfer the complete framebuffer.

Figure 4.17: Number of transmitted levels of a frame until a new image has finished
rendering on the remote renderer.

Because of the limited bandwidth between the GPU cluster and the display wall

system, efficient compression algorithms are required. Here, a standard zlib com-

pression was is applied for each data package. In Figure 4.18 the compressed frame

buffer sizes for the entire display wall are proposed. In frames in which the isosurface

is covering only some display tiles the compression rate is high and a compressed

image takes about 18 MB. When the geometry is visible on all tiles the compression

rate is decreasing resulting in image sizes about 23 MB. Without compression an

update for one frame would require for the transmission of 210 megabytes.
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Figure 4.18: Size of compressed framebuffer in megabyte for the whole diplays wall
at different frames

4.3.4 View-frustum culling

During the rendering pass, three-dimensional image adaptations, as described in

section 4.2.1.3, lead to the fact, that possibly all remote viewports are visible on a

single client’s viewport. This means, that for each viewport all possible remote tiles

have to be adjusted and rendered. In the case of large display wall systems, this

leads to two important drawbacks. First, this would result in a strong rendering

overhead, adjusting many pixels of the remote images which are possible not visible

at all. Especially with high resolution displays, strong rendering load is burdened to

the graphics processing units, and interactive frame rates are hard to achieve. And

second, scalability to setups involving higher number of displays is lost.

To reduce requirements on the available rendering performance, I implemented a

view-frustum culling optimization. Therefore, each of the remote depth images is

divided into smaller parts, each part 128 by 128 pixels. Thus, the complete remote

image covering all viewports consists of 1800 image parts. For each of the image

parts, minimum and maximum z-depth values are determined, and a bounding box

of all depth pixels inside a remote image tile can be defined. On the front end, a

remote image tile only needs to be rendered if the adapted bounding box is visible

on the current display viewport.

Figure 4.19 shows the number of rendered tiles per front end client in a session with

a head-tracked user, revealing a significant reduction in rendering overhead.
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Figure 4.19: View-frustum-culling of adapted remote rendered image. The remote
image is divided into smaller parts (1800 in total), each with its bounding box.
These smaller tiles are rendered on a client, only if the adapted bounding box is
covering its display viewport.

4.3.5 Discussion

In this section, I presented my hybrid rendering solution to enable for interactive

exploration of online monitored simulations using tiled display walls was presented.

Therefore, a context geometry is rendered locally, while complex feature are rendered

remotely. In order to transfer the remote image, a multi-resolution, progressive

image streaming approach based on z-order curves is used.

We showed that our approach is capable to support interactive navigation through

the dataset at high frame rates all the time and remote rendered images were avail-

able on the display wall with low latencies. Our z-curve multi-resolution scheme

enabled for an explorative overview. During our benchmarks, the remote render

performance changed according to the current image. Our solution was capable

to automatically adapt to these variations and during longer rendering times more

details are transferred to and displayed on our tiled display wall frontend.

Our findings show that hybrid rendering and multi-resolution progressive image

streaming is a viable solution for using high-resolution tiled display walls. This

approach is promising to be useful for online monitoring of future HPC simulations,

if intermediate post-processing data is available to a parallel remote renderer.
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4.4 Hybrid Rendering of Time-Dependent Simu-

lation Data

Simulations of dynamic systems lead to data sets with high spatial and, especially,

high temporal resolution. Standalone interactive exploration workstations often

cannot handle the amount of information that is generated in those simulations.

They either suffer from exceeding local memory capacities which are insufficient to

keep all necessary data set parts or have insufficient disc I/O performance to reload

data quickly.

My main contribution which I introduce in this section is the presentation of a

hybrid rendering approach that enables for handling large time-dependent data sets.

In this section I include loading and interactive feature extraction to the remote

rendering process, while I still guarantee interactive frame rates and interactive

navigation. The will successfully demonstrate the results with simulation data sets of

the SHEFEX I flight experiment by the German Aerospace Center which investigates

the behavior of new shapes of space crafts during the re-entry phase into earth’s

atmosphere.

In order to meet the requirements of analyzing high spatial resolution data sets,

I extended my remote post-processing and rendering system already presented in

section 4.2.1. As context geometry, I render the motion dynamics of the flight

body on the local visualization workstation equipped with virtual reality techniques

enabling interactive explorations. A pixel image of the remotely rendered isosurfaces

is composed with the locally rendered flight body geometry, as soon as available.

Because of network latency and the ongoing time-dependent visualization, the time

stamp of both current images is diverse resulting in mismatched geometries depicted

in the exaggerated view in Figure 4.20. Furthermore, splitting rendering workload

into parts for local and remote resources enables my framework for introducing

additional post-processing steps without loosing interactivity. Here, I compute iso-

surfaces used to render shock waves on the fly which allows for interactive iso-value

selection. The fact that my approach reduces the temporal dependencies of remote

and local rendering can be exploited to parallelize the rendering of different time-

steps. This means, that my approach is capable of rendering images for multiple
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Figure 4.20: When combining locally and remotely rendered images with different
update rates, the time stamp of both is not guaranteed to be equal. Instead of the
correct composed images (left), locally and remotely rendered images can diverge
(right).

time-steps on the GPU cluster nodes in parallel which directly results in higher

remote update rates.

In the following, I will present the SHEFEX I application example followed by the

description of necessary pipeline modifications to my former described framework.

Thereafter, I will present and discuss results that demonstrate the successful inter-

active navigation and visualization using my hybrid rendering approach.

4.4.1 Application Example – SHEFEX I

Investigating the behavior of spacecraft vehicles during the re-entry phase into the

atmosphere of planets is one of the examples where simulations with a very high

dynamic in time and space are performed. Currently, the German Aerospace Center

(DLR) is working on the development of new shapes for re-entry spacecrafts. In the

program SHEFEX (Sharp Edge Flight Experiment), the first experiment was already

launched in 2005 [THJ+06] (cf. Figure 4.21). In order to get a better understanding

of the influence of the shape on its parabolic flight path and during the re-entry

into the earth’s atmosphere, not only windtunnel experiments but also numerical

simulations (computational fluid dynamics, CFD) [BL10] were carried out. It turned

out that the flight body showed a complex twisting motion during the re-entry phase
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which could only be adequately reproduced with a CFD simulation coupled to a flight

dynamics solver at high temporal resolution [BCE11]. For the interactive analysis

of the simulation results in a virtual environment, the flight body motion has to be

visualized with a high frame rate.

Figure 4.21: Re-Entry of SHEFEX I (illustrated by DLR)

One of the important flow features is the shock cone appearing around space vehicles

flying with hyper-sonic speed. Isosurfaces defined by iso-values with respect to the

simulation time are used to depict the shock wave. However, compared to the rigid

body motion the shock provides less changing information over time and therefore

does not require the same high update rates for a fluent perception as the spacecraft

motion does.

4.4.2 Modified Framework Architecture

This section presents the modification to my prior presented hybrid rendering frame-

work, as described in section 4.2.1, in order to provide rendering of the dynamic

motions of the SHEFEX I flight.

The rendering system itself (cf. figure 4.22) is a distributed system that consists

of a front-end workstation or virtual reality system and a remote render back-end

equipped with high performance GPUs. The front-end requests and stores images

from the back-end. The back-end responses to these requests with remote rendered

color images including attached depth buffers.

In order to meet the interactivity requirements, my hybrid rendering approach that

splits the visualization workload and combines local and remote images. Therefore,
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context geometry is rendered on the front-end and the expensive extraction and

rendering of the iso-surfaces is done on the back-end.

The front-end updates the context geometry in each frame. Rendering the context

geometry is done in two passes. The first pass renders the flight path in order to

provided spatial path context information. This path is illustrated with a surface

spanned by the flight bodies main y-axis. The second pass renders the moving SHE-

FEX I surface mesh. Local rendering performance is almost constant and supports

high frame rates.

The back-end receives rendering requests from the front-end, loads the required

data, extracts and renders an iso-surface, and sends a compressed result image back

to the front-end. The update rates I could achieve with one remote rendering back-

end is slower than the local frame rate. Using multiple remote render instances,

the update rate can be increased, however, with the four available GPU nodes the

remote frame rate is still below the local frame rate. Since network transmission is

inherent in rendering remote images, they are available at the front-end with delay.

Therefore, in order to have remote images available for the current local time-step,

the front-end requests them for future time steps.

Finally, local and remote images are combined. Therefore, the local rendering

chooses the stored remote image with the nearest time stamp compared to the

current visualization time. While remote images update less frequently and camera

position continuously change in virtual environments, visual information in local

and remote images usually does not fit. Therefore, remote images are adjusted to

the current view.

In summary, the main tasks for my remote renderer are

• loading of time-dependent data,

• extraction and rendering of iso-surfaces,

• compression and transmission of remote images to the local rendering work-

station,

while the local renderer needs to deal with



4.4 Hybrid Rendering of Time-Dependent Simulation Data 81

Figure 4.22: The hybrid rendering approach updates remote rendered images for
future time steps and combines one of them with the local image at high frame
rates.

• organizing and requesting remote images,

• rendering local geometry and

• re-adjusting remote images according to the current view.

4.4.2.1 Pipeline

In order to generate requested images for the local virtual environment, my parallel

remote renderer, which is based on the IceT framework, is extended by pipelining.

This pipeline, as depicted in figure 4.23, is paralleled by multi-threading.

Disc I/O is a main bottleneck for this kind of time-dependent visualizations. Using

a dedicated pipeline stage to load data results in pre-fetching capabilities. If new

data is available it is passed to the algorithm/rendering stage. This stage executes

a user algorithm, here iso-surface extraction and rendering. The rendered output

is composited by IceT, storing it on the master node. The last stage, image com-
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Figure 4.23: The pipelined execution in our remote renderer supports overlapping
execution of data pre-loading, rendering, and image compression.

pression, compresses image and depth buffers using the zlib library. The lossless

compressed data is finally sent to the local front-end.

4.4.2.2 Isosurface Extraction

An isosurface is the three-dimensional surface representing points of constant value.

Isosurface visualizations are utilized in order to represent individual shock waves

during the SHEFEX I supersonic flight. Isosurface extraction is a topic deeply

investigated in the past. Well-known algorithms to extract isosurface representa-

tions from scalar fields are the Marching Cubes algorithm [LC87] as well as the

Marching Tetrahedron algorithm [Bou97]. Different hardware-accelerated versions

utilizing GPUs have been developed, including versions using nVidia’s Compute

Unified Device Architecture (CUDA). While many evolved versions exist to han-

dle large tetrahedral meshes [KSE04,Pas04] or arbitrary meshes [JC06], the CUDA

toolkit also comes with a trivial marching cubes implementation. As presented in

the benchmark section 4.4.3.1, isosurface extraction required only a small fraction

of time for the SHEFEX I data set. Therefore, it is sufficient that we make use of a

trivial adaption of nVidia’s version.

In general, time-dependent iso-surface extractions for unstructured grids involve

loading scalar data as well as point and cell information for each time step. In the
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SHEFEX I simulation the vertex positions are moving, however, the mesh does not

deform during simulation time. Thus, we can exploit this by loading the mesh only

once, saving a lot of I/O time. The vertex positions for different time steps are

determined by applying an additional model matrix Mrigid that describes the rigid

body motion. This matrix Mrigid is passed to the back-end in the render command

in combination with time-step and iso-value information. By applying Mrigid, the

model view projection matrix MV P changes to

MV P ′remote = MV Premote ·Mrigid.

After uploading scalar data for a particular time step to CUDA memory, rendering

the isosurface becomes a five pass algorithms. In the first pass, a CUDA kernel

determines the active cells, containing the current iso-value, and the possible triangle

counts for each cell.

In a second pass, the number of active cells and triangles are determined as well as

the active cell indices are collected in a consecutive array. This is achieved by using

a standard prefix-sum-algorithm supporting by the thrust-library, which is part of

CUDA.

The following third pass calculates and stores the triangle and normal information

into vertex buffer objects using another CUDA kernel.

While the vertex buffer objects are then bind to OpenGL and rendered in the fourth

pass, the resulting frame buffer gets finally grabbed and composited by the remote

rendering framework.

4.4.2.3 Image Adjustment

Similar to the last sections, the camera positions between locally rendered images

might change and the image features displayed on both images do not match any-

more. Furthermore, the geometry of the flight body is moving due to time-dependent

animations. Therefore, in contrast to the previous application examples, remote and

local renderings diverge even if the viewer position is fixed. In order to re-adjust

local and remote images, we apply the image adjustment techniques described in
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section 4.2.1.3. In summary, pixels p of remote images are transformed to pixel

positions p′ according to the current viewing position by

p′ = Tlocal(T
−1
remote(p)).

The application of the image adjustments to the SHEFEX I simulation is presented

in figure 4.24. Figure 4.24 (a) depicts a situation where both images do match and

the camera is rotating around the scene in figure 4.24 (b).

Figure 4.24: Exaggerated example of locally rendered geometry and a remote ren-
dered isosurface. While matching in the original time step (above), the view is
rotated in the lower images. By using simple texture combining (lower left), the
remote image is not adapted at all. Point based rendering (lower middle) and mesh
based rendering (lower right) adapts the remote image. While point based render-
ing suffers from wholes in the result, mesh based rendering connects possibly not
connected surface components.

Figure 4.24 (c) and (d) show the examples of two image adjustment strategies. First,

figure 4.24 (c) depicts an example of in which point rendering is used. Second,

figure 4.24 (d) shows a rendering in which neighboring pixels are used to render a

quad mesh instead of isolated points.
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Both approaches are capable to re-adjust the remote rendered images to the current

camera position. However, both approaches have visual artifacts. On the one hand,

the point rendered iso-surface suffers from missing pixels in the result, especially at

zoomed views, these wholes are filled with the quad rendered approach. On the other

hand, the quad rendering might connect iso-surface pixels, that were not connected

in the original image.

4.4.2.4 Requesting future Time-Steps

Remote images requested from the back-end return to the front-end with latency.

Therefore, in order to have remote images available at time, the front-end requests

them for future time steps. In the following, I present the heuristic that I imple-

mented to determine the time-step of which the remote renderer should generate an

image.

Let tlocal be the time at which a remote request is finished and a next request will

be prepared. The front-end is determining the averaged delay ∆t of the last finished

remote requests. In the case of using one remote renderer, the time tremote in the

generated new request will have an offset of twice this delay,

tremote = tlocal + 2∆t.

The update rates measured in the benchmark, cf. section 4.4.3.2, reveal a per-

formance of about 5 frames per second in average. Multiple render instances, if

available, are used in order to increase the update rate, each of them rendering

different time steps.

For the implementation, the front-end is connecting to each of the n master nodes

of each remote renderer. Furthermore, the generation of image requests to the back-

ends is changed slightly. To the time offset for each request an fraction according to

the renderer id, id = 0, . . . , n− 1, is added,

tremote = tlocal + 2∆t+
id

n
∆t.
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4.4.3 Results

To evaluate the performance of the time-dependent hybrid rendering approach, we

employed the following benchmark utilizing a front-end workstation and a four-node

GPU cluster.

The local rendering was performed on a workstation with an Intel Xeon E5520

2.27 GHz quad-core processor, equipped with 24GB of RAM. The remote GPU

cluster, the same as used in section 4.2.2.3, consisted of four nodes, each with a

dual Intel Xeon X5670 2.93 GHz hexa-core processor, 48GB of RAM and three

NVIDIA Quadro 6000 6GB graphics cards. A 1GBit ethernet network is connecting

all involved compute nodes. The requested RGBA images had an image size of

1024x768 with an attached 32-bit depth buffer.

The SHEFEX I simulation data used to perform this benchmark consists of 2614

time steps with non-uniform sampling time. These time steps represent the complex

twisted motion during the re-entry phase taking place from second 419 to second

439 after launch. The spatial domain around the flight body was approximated with

a mesh consisting of 660 666 vertices and 3 343 026 cells. While the mesh can be

re-used for each time step, the storage system has to update 15.8 MB per rendered

time-step. In total 41.3 GByte have to be loaded and processed.

4.4.3.1 Scheduling and Latency

Figure 4.25 presents in detail the workflow of a single pipelined remote rendering

solution for some consecutive render commands during the visualization. The over-

lap of consecutive tasks are clearly visible. In this benchmark, disc I/O is the most

dominant bottleneck. This is visible by the fact, that loading data from disc is per-

formed continuously. The execution of isosurface extraction and rendering (green

bars), image compositing (yellow bars), and image compression(light blue bars) is

done completely in parallel to the disc-I/O. Therefore, a rendering as fast as data

could be read from disc is achieved.

Nevertheless, for each remote image, the latency between requesting remote images

and their availability to the local front-end is determined by the total amount of



4.4 Hybrid Rendering of Time-Dependent Simulation Data 87

Figure 4.25: Scheduling of overlapping render jobs for a subset of remote request.
Overlap is visible between time of request (blue dot), disc I/O (red), isosurface
extraction and rendering (green), image composition (yellow), compression on back-
end (light blue), and decompression on front-end (dark blue).

Figure 4.26: Delay between remote requests and availability during interesting ani-
mation times. A nearly constant delay of about 400ms was measured.

the disc I/O operations, rendering, image compositing, and compression as well as

the decompression on the local system. Figure 4.26 shows the delay of the remote

rendering system during an animation. A relatively constant delay of about 400ms

was measured.

4.4.3.2 Render Performance

In this section, I make use of hybrid rendering in order to decouple the rendering

of smaller-sized context geometry at high frame rates from heavy post-processing

workload of time-dependent simulation data sets. Despite the fact that this division
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supports local render performance at interactive frame rates, post-processing and

rendering can be paralleled over different time steps. The behavior of the presented

approach utilizing a varying number of GPU cluster nodes is depicted in figure 4.27.

Figure 4.27: Update rates of local and remote renderings. While a local update rate
of about 60 fps supports interactive animation of dynamic motions, remote rendered
images are updated less frequently.

The local frame rate is 55 fps at minimum, sufficient to recognize all details of the

flight body motion. Due to the fact that the isosurface is extracted and rendered

concurrently, their update rate is independent of the local rendering. An average

of 5.6 fps was achieved utilizing one GPU cluster node and 11.3 fps with two GPU

cluster nodes. When all four GPU cluster nodes were used the remote update rate

had an average of 16.2 fps.

4.4.4 Discussion

In this section, I presented the application of my hybrid rendering approach in

order to interactively explore simulation data sets with high spatial and temporal

resolution. My approach divides the rendering workload into rendering of geometric

context components and rendering complex flow features such as time-dependent

iso-surface visualizations. While geometric context components can be rendered

and animated locally with high frame rates complex features are decoupled and

rendered remotely. My presented system handles these divergences by re-adjusting

remote rendered images with image-based rendering adaptations.



4.5 Conclusions 89

The application to dynamic motions, such as the presented re-entry flight body mo-

tion, emphasizes the importance and success of my technique. Due to the resulting

interactive frame rates, I am able to provide clearly perceivable dynamic motion

patterns. My hybrid rendering approach combines this animation at high frame

rates with valuable context information such as complex shock cone iso-surfaces.

However, even if rendering remote images is decoupled and is not affecting local

rendering, remote extraction and rendering can only support limited frame rates

depending on the available hardware as well as the data set to inspect. Here, my

hybrid rendering approach introduces a huge advantage which is clearly presented

in the result section. Due to the division of the rendering workload it is possible to

introduce an additional level of parallelism in the time domain. Therefore, multiple

render instances, if available, can concurrently generate images for different time-

steps resulting in much higher remote frame rates.

Future work in the field of hybrid rendering time-dependent simulation data will

focus on the extension with geometry streaming. When the visualization time is

stopped by the viewer, instead of continuously streaming new remote images, pro-

gressive streaming of the current iso-surface would enable a rendering without arti-

facts and at higher update rates of the formerly remotely rendered images.

4.5 Conclusions

Chapter 4 focused on the interactive navigation through large-scale data sets in

virtual environments. When exploring large-scale simulations in virtual environ-

ments, the vast amount of data produced by nowadays and future high-performance

computing resources, the requirements for interactivity burdens major challenges:

(1) the size of data sets or extracted features exceeds the resources of local render

hardware, (2) the increasing number of pixels enables to inspect finer simulation de-

tails on the one hand, on the other hand bandwidth can be a strong limiting factor

for distributed systems, (3) time-dependent simulations amplify these requirements

and add further emphases on data handling and interactive rendering. This chapter

inspected hybrid rendering as a solution to all these issues.
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Section 4.2 introduced my hybrid rendering approach for navigating through large-

scale simulation data sets in virtual environments. In such environments, interac-

tivity puts strong requirements on frame rates and therefore limits the amount of

rendering primitives. My presented approach deals with this limitation, which is

easily exceeded by large-scale simulation data sets. I enable the utilization of par-

allel remote render resources for heavy rendering workload. In addition, I provide a

context geometry rendered at high frame rates on the front end, which supports in-

teractivity. The downside of this approach is the high latency introduced by remote

render solutions which is addressed by re-adjusting remote images to the current lo-

cal view. I could clearly point out that this approach leads to successful navigation

through large-scale data sets. The technique was tested on a three-pipe powerwall

system and could achieve high local frame rates sufficient for interactive navigation.

Section 4.3 focused on the problem arising with increasing display resolutions. While

finer details can be presented on high-resolution displays high network bandwidth

is required in order to transmit remote rendered images. I showed that using pro-

gressive image streaming techniques are able to increase interactivity in this circum-

stance. My system implemented a progressive image streaming based on z-order

curves and is tested on a twelve monitor tiled-display wall. This image streaming

method is especially beneficial if remote render times differ a lot, since it auto-

matically adapts to different rendering latency. Here, I could achieve higher update

rates on tiled display wall systems which improve the ability to interactively navigate

through the data set and find interesting regions.

Finally, in section 4.4 I tackled the requirements of time-dependent data sets. Which

multiple time steps to consider, data set sizes often multiply by a large factor.

Therefore, not only video memory but also random access memory of local rendering

hardware is easily exceeded. The solution I presented here not only removed these

hardware limitations from the front-end machines, moreover, the combination of

local and remote images enabled for rendering multiple remote images in parallel.

The main drawback of this approach might be its limited applicability to certain

simulations. While local rendered parts can be animated with high frame rates, the

update rates of remote rendered features depend very much on data set sizes and

available remote rendering hardware. Even if remote rendered images are adapted
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to the local viewer, it must be considered if remote update rates are sufficient to

grasp their time-dependent information.



Chapter 5

Harmonic Analysis in

Computational Fluid Dynamics

Among a multitude of techniques for the visualization of scalar, vector, and tensor

fields, feature analysis methods play a crucial role in enabling the visualization of

large datasets. Here, application-oriented feature definitions are matched against a

dataset to highlight interesting regions. Especially for highly complex fields arising

from modern computer simulations, visualization efforts can be reduced or made

feasible by depicting significant structural components and their interactions, al-

lowing for an abstracted view. Existing methods are typically based on topological

structures or application specific feature definitions. While the former leverage a

deep mathematical framework to generate a topological skeleton of a field and are

uniformly applicable to general fields, the latter requires intimate knowledge of the

application domain. Here, I apply concepts of harmonic analysis towards this goal.

In general, applications of harmonic analysis (often also called signal processing)

can be manifold. Range from simple and generic processing such as smoothing over

a variety of computer vision algorithms, it can also be applied to the extraction,

detection and classification of features.

In this chapter, I provide an introduction to harmonic analysis of vector fields and

describe an application to feature-based visualization. As is required for a basic

understanding of the concepts I discuss, I attempt to summarize harmonic analysis
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techniques for discrete field representation. Harmonic analysis as a general concept

is neither specific to application domains, nor is it restricted to specific field types

(scalar, vector, tensor) or domain geometry. I illustrate a global analysis approach

for generic fields and discuss its computational implications, which leads to define

local approaches that are much more feasible computationally.

To achieve the goal of feature-based visualization, I define a feature space over

small neighborhoods of a given discretized field’s domain that transforms it – using

harmonic analysis – into a low dimensional feature vector. This transformation is

achieved by formulating a discrete Laplacian over the discretization of the neighbor-

hood and computing eigenvalue decomposition. This yields a basis of eigenfunctions

over the neighborhood. The coefficients of the field representation in this basis form

the feature vector. The latter then provides a means to define, locate and compare

features in an empirical fashion. My method is closely related to Fourier analysis

that is used extensively e.g. in image processing and computer vision applications.

5.1 Related Work

Harmonic analysis is a concept with a rich and well-developed mathematical back-

ground, and has many applications. For example, in disciplines related to visualiza-

tion, applications to geometry processing and mesh filtering have been discussed in

depth, such as surface quadrangulation [DtBG06,TACSD06] or the design of tangent

vector fields over surfaces [FS07]. Vallet and Lévy [VL08a] provide an overview of

recent results. In the following, I concentrate on previous work that is immediately

relevant to the practical presentation in this paper.

Eigenanalysis techniques are often applied in the context of Fourier transformations,

convolution or pattern matching. Since classical Fourier techniques are not appli-

cable to vector or tensor fields in a direct and meaningful manner, [SHM+07,ES03,

ES05a] employ complex invariant moments or Clifford algebra in order to define

a suitable setting. A different approach is based on a discrete formulation of the

Laplacian operator, which is the central concept behind harmonic analysis, such

that its eigenfunctions can be directly formulated for vector fields.
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However, discrete Laplacian formulations, such as the Discrete Exterior Calculus

(DEC) approach introduced by Hirani [Hir03], are not yet well understood regard-

ing their application to vector-valued eigenvalue problems. Therefore, I compare

numerical results with a classical Finite Element formulation of the Laplacian, for

which many good textbooks are available like [HDSB08] as well as for eigenvalue

problems itself [Hea02] and the underlying functional calculus [Kre78].

The implementations underlying my experiments (cf. Section 5.4) are based on the

use of the ARPACK [LSY98,Sor96] and SUPERLU [DGL97] packages that facilitate

eigenanalysis and decomposition of large matrices.

5.2 Harmonic Analysis

To provide a base understanding of my methods, I will briefly touch on and illustrate

a number of fundamental concepts. Beginning with the Fourier decomposition as a

direct example, I will discuss the spectral theorem known from functional calculus.

Then, a short discussion about arbitrary domains and field types is followed by

describing low pass filtering as a global approach. I will limit myself to a high-level,

phenomenological overview and refer the interested reader to [Kat04, DP11] for an

in-depth treatment of the topic.

5.2.1 Fourier Decomposition

The well-known technique of Fourier analysis is an example of harmonic analysis

techniques, and I will discuss it here briefly to motivate the use of harmonic analysis

on generic field types and geometries as a tool with manifold capabilities.

A periodic signal can be decomposed into a combination of sinusoidal functions with

varying frequency and amplitude. Mathematically, sine and cosine functions are used

as basis for the space of periodic functions, and the original signal is transformed
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to this basis. Specifically, a periodic function f with periodic length T > 0 can be

described as a sum of sine and cosine functions

f(t) =
a0

2
+
∞∑
k=1

(ak · cos(kωt) + bk · sin(kωt)),

where the coefficients ak and bk are given by the projection of the function f onto

the Fourier basis functions as

ak =
2

T

∫ c+T

c

f(t) · cos(kωt) dt

and

bk =
2

T

∫ c+T

c

f(t) · sin(kωt) dt.

Furthermore, these sinusoidal functions can also be interpreted as the real and imag-

inary parts of the complex valued functions e−ikt. These are specifically the eigen-

functions to the second derivative operator, i.e.

−∂
2e−ikt

∂2t
= −i2k2e−ikt = λe−ikt.

In this simple case, the second derivative operator is the specific form of the Lapla-

cian operator on the one-dimensional periodic domain [0, T ].

In summary, the Fourier decomposition is a Laplacian eigenvalue decomposition,

where a periodic function is represented as a linear combination in a basis of eigen-

functions of the Laplacian operator.

5.2.2 Spectral Theorem

The mathematical background I am using has its origins in the spectral theorem of

functional calculus. The theorem provides a strong and useful relationship between

an operator T : V → V , e.g. V = Rn, and its eigenfunctions with

V = ker T ⊕ lin{e1, e2, . . .}.
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In a nutshell, for a compact operator T on a function space (such as the Laplacian),

the spectral theorem states that the function space can be decomposed into a direct

sum of the operator’s kernel (which maps functions to zero) and the linear space

spanned by its eigenfunctions. The non-zero functions ei and non-zero values λi

which fulfill

T ei = λiei,

are called the eigenfunctions ei to the corresponding eigenvalues λi of the operator

T . The set of λi is called the spectrum σ(T ) of the operator.

In the following, the Laplacian ∆ will be the central operator I am concerned with.

Since the Laplacian is a symmetric operator, its eigenfunctions are orthogonal, and

the projection of a function onto the Laplacian’s eigenfunctions is the simple inner

product (typically in a L2-sense) of two continuous functions f and g,

< f, g >:=

∫
f(x) · g(x) dx.

Consequently, the projection of the function f on the eigenfunctions ei results in

the basis coefficient ai and has the continuous version

ai =< f, ei >:=

∫
f(x) · ei(x) dx.

5.2.3 Discrete Setting

In practical applications, one has to consider a discrete setting, where a field under

consideration is described over a computational grid. Here, the Laplacian ∆ is

represented by a matrix A that describes its action on a discrete representation of a

given field. Its eigenfunctions are the eigenvectors e of A and the spectrum is given

by

σ(A) = {λ ∈ C | ∃e 6= 0 : Ae = λe}.

The projection in the discrete case simplifies to the sum

ai = xT · w · ei =
n∑
j=1

xj wj (ei)j,
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where xT is the function vector to be projected, ei the i-th eigenvector of A and w

is an area weighting function given by the size of the area around each vertex j.

5.2.4 Arbitrary Domain and Field Type

As motivated in Section 5.2.1, one aspect of harmonic analysis is the study of Lapla-

cian eigenfunctions and eigenvalues. For the classical Fourier decomposition the

functions are scalar-valued and periodic. Thus, they can be interpreted as scalar

functions on a simple manifold: the unit circle S1. However, the definition of the

Laplacian is more general and can be stated in other circumstances. Especially,

it can be defined for scalar, vector or tensor fields, and over different domain ge-

ometries including arbitrarily-shaped manifolds. Figure 5.1 shows an example of

formulating the Laplacian for vector fields on an irregular shaped region, and the

corresponding first eigenfunctions (in this case a vector field) are shown.

5.2.5 Global Analysis

In similarity to the Fourier decomposition, harmonic analysis can be applied to an

input field’s global domain. I term this a global approach in the following.

As an application example, I consider a turbulent vector field dataset arising from a

CFD simulation and described on an unstructured mesh with about 50,000 vertices.

The resolution of the mesh is slightly adaptive with vertex distance decreasing in

the middle of the domain. As in this example, vector fields arising from e.g. com-

putational fluid dynamics solvers, are often given on arbitrary shaped geometries

discretized on unstructured grids. As outlined above, this yields the necessity of

discretizing the Laplacian on the underlying discrete function space and solving

for eigenvalues and eigenfunctions of the resulting matrix representation explicitly.

I discuss details of the discretization process in Sections 5.4.1 and 5.4.2, and the

eigenvalue computation is discussed in Section 5.4.4.

After the eigenvalues of the matrix resulting from the discretization of the Laplacian

over the domain of consideration are computed, any spectral method operating on

the eigenfunctions can be applied and typically modifies the representation of the
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Figure 5.1: Example of vector-valued Laplacian eigenfunctions, which are vector
fields themselves, illustrated by Line Integral Convolution. Eigenfunctions of the
vector-valued Laplacian are shown on an irregular-shaped region with cells on an
unstructured grid. The eigenvalue multiplicity for the shown eigenvalues is two,
therefore two corresponding eigenvector fields (top row vs. bottom row) are orthog-
onal.

field in this basis. The resulting linear combination of eigenfunctions can then be

evaluated on the original basis (e.g. per vertex) to allow interpretation of the result

in the original context. Using this approach, Figure 5.2 illustrates the effect of

applying a low pass filter to the vector field that dampens the high frequency vector

field oscillations by reducing the coefficients of eigenfunctions proportional to the

corresponding eigenvalue magnitude.

Similarly, high-pass or band-bass filters can be applied to enhance different compo-

nents of the vector fields. For example, increasing higher frequencies can amplify

the vorticity to allow easier exploration of small scale structures.
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Figure 5.2: The spectrum of the left vector field is dampened by removing high
eigenvalue terms resulting in the right vector field. Some streamlines are drawn in
the vector field to illustrate small turbulent structures.

5.3 Local Harmonic Analysis

The dominating problem of global approaches is the large and significant computa-

tional cost arising from the computation of the Laplacian eigenvector basis. Since

the storage space and calculation complexity grows quadratically in the number of

vertices, global approaches are quickly limited in the feasible field size to be treated.

In addition, many interesting features are local in nature and can be distributed

spatially unequally, and are well represented only using a very large number of

Laplacian eigenfunctions. For this reason, I introduce a local approach by defining

small regions around each point in the domain and describe how to define, visualize,

and analyze features in such a local neighborhood.
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5.3.1 Locality and Local Feature Definition

I introduce a region ε(vi) around each vertex vi in the domain of interest. I then

determine a local eigenbasis for this region and project only the local field inside

the region on this local basis. From this, I obtain a local feature vector for every

point in space consisting of the basis coefficients of the local field around each point,

namely each vertex for a discretized field.

By using the same local region discretization for every point in space, only a single

(small) eigenbasis must be computed and can be reused for every region. As long as

the region’s spatial resolution is high enough, scaling the region around each vertex

can be done without recomputing the eigenvalue system.

Figure 5.3 illustrates these relationships. For a region of interest in a vector field, a

local vector field basis is determined by the Laplacian eigenbasis fields corresponding

to the region. Successively, the vector field is projected onto the elements of the

eigenbasis, resulting in basis coefficients. These are then interpreted as a local

feature descriptor or feature vector to define features and corresponding features

strengths in the vector field as follows.

Figure 5.3: Local Feature Definition using local eigenvector basis. For the region
ε(vi) around vi the Laplacian eigenfunctions are determined. By projecting the
original field onto these eigenfunctions the vector of basis coefficients is composed.



5.3 Local Harmonic Analysis 101

A feature f is defined by a feature strength function ρf , which is a mapping from

the Laplacian eigenbasis coefficients ai to the interval [0, 1]:

ρf : Rn → R (5.1)

(a1, a2, . . . , an) 7→ [0, 1] (5.2)

Here, resulting feature strength of 0 implies a vanishing response to the feature type

f in the selected region while a resulting value of 1 implies the definition matches

exactly.

Consider the following example. The first eigenfield in the local eigenbasis for the

example vector field introduced above is shown in Figure 5.3. Together with an

orthogonal eigenfield of the same eigenvalue, they form the first eigenspace. As

depicted in the figure, the first eigenspace field contains exactly the linear component

of the vector field. Therefore, I define the local vector field linearity ρL as a feature

strength function by the ratio of the first two basis coefficients to the remainder of

the basis coefficients on the spectrum as

ρL(a1, . . . , an) :=

∑2
i=1 |ai|∑n
i=1 |ai|

.

The purpose of this definition of ρL is to capture the relative importance of the

basis functions that encode linear flow – as given by their coefficients a1 and a2 –

normalized by the overall size of the coefficients (
∑n

i=1 |ai|). As ρL approaches 1, the

contribution of non-linear eigenbasis elements represented by a3, . . . , an necessarily

tends to zero, signifying diminishing non-linear behavior.

In this case depicted in Figure 5.3, only the first two basis coefficients of the local

field basis are non-zero, and the other coefficients vanish, thus the field is perfectly

linear in the considered neighborhood.

In other words, the feature strength functions measures the similarity of the fea-

ture vector to a desired feature type, where both are expressed in the Laplacian

eigenbasis.

Naturally, local feature strength criteria can be applied globally for each point in the

domain of the considered field. For example, Figure 5.4 (left) illustrates the local
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linearity feature strength for the inflow dataset. High local linearity is colored in

green while low local linearity is shown in red. The turbulent regions, where linear

flow is not prevalent, are clearly distinguishable from the remainder of the field. In

the right image, a simple threshold on ρL is used to perform a binary segmentation

and separate mostly local linear regions from the turbulent parts of the vector field.

Figure 5.4: Application of local feature definitions with local vector field linearity
on the left and its segmentation on the right.

5.4 Discretizations and Computational Issues

The harmonic analysis technique can be used on arbitrary field and domain types.

However, the choice of Laplacian discretization is crucial to guarantee good results.

In the following, I summarize the most important smooth Laplacian versions, fol-

lowed by a brief introduction to a finite element and a discrete exterior calculus

discretization and their comparison. Finally, I will discuss computational costs.

5.4.1 Finite Element discretization

To translate the concepts described above into practice, a discretization of the Lapla-

cian operator acting over an unstructured mesh must be chosen. The simplest choice

for this problem is finite element (FEM) formulation to discretize the Laplacian on

the global domain or the local region. In this setting, the action of the Laplacian
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on a vector field is approximated by its action on interpolatory basis functions that

form a basis of the vector field function space over the discrete domain. For exam-

ple, for linear finite elements over triangles covering a two-dimensional domain, the

interpolation functions are simple hat functions defined over the one-ring neighbor-

hood of a vertex. For vector fields, there is one basis function per vertex and per

vector component.

For a given domain Ω and the Laplace eigenvalue problem

∆u− λu = 0 in Ω (5.3)

u = 0 on ∂Ω (5.4)

an approximation ũ for the function u is sought according to Galerkin’s method

(cf. [Gal15, Fle84] by linearly independent functions N1, . . . , Nm satisfying the ho-

mogeneous boundary condition

ũ =
m∑
k=1

ukNk. (5.5)

In this formulation, the residual ||u− ũ||, weighted with certain weight functions, is

required to vanish. In Galerkin’s method the basis functions N1, . . . , Nm are reused

as weight functions, and one obtains∫
Ω

(∆ũ+ λũ)NjdΩ = 0 ∀j = 1, . . . ,m. (5.6)

Applying Green’s formula and inserting (5.5) the Laplace eigenvalue problem is

stated as the eigenvalue problem

m∑
i=1

ui

∫
Ω

∇Ni · ∇NjdΩ = λ
m∑
i=1

ui

∫
Ω

NiNjdΩ ∀j = 1, . . . ,m, (5.7)

that is equivalent to the matrix eigenvalue problem

Au = λMu (5.8)
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with the matrix coefficients

aij =

∫
Ω

∇Ni · ∇NjdΩ and mij =

∫
Ω

NiNjdΩ.

5.4.2 Discrete Exterior Calculus (DEC) discretization

A general framework for exterior calculus on discrete manifolds is the Discrete Ex-

terior Calculus (DEC) framework introduced in [Hir03]. It has been used for a

variety of tasks in a variety of settings such as mesh processing [VL08b], fluid sim-

ulation [ETK+07], and others, and is conceptually straightfoward. Since it is less

well known than the FEM approach, I provide a brief overview of the fundamental

concepts in the following.

In the DEC framework, the geometry of discrete manifolds is described using simpli-

cial complexes which are constructed from simplices. k-simplices have k+1 vertices,

that is 0-simplices are vertices, 1-simplicles represent edges, 2-simplices are trian-

gles, and 3-simplices are tetrahedra of a mesh. I make use of this framework to

investigate a discrete version of the smooth Laplace-de Rham operator ∆ = dδ+δd.

A central concept in exterior calculus is the concept of differentiable k-forms, dif-

ferentiable forms that capture the notion of integrability over (sub-) manifolds of

corresponding dimension (cf. [FH89,BG68]). For example, a 1-form – which can be

used to describe a vector field – can be integrated over a 1-dimensional submanifold

or curve, thus describing a line integral.

The DEC framework is intimately tied to this notion and directly represents the

integrals of k-forms for each k-simplex of the discrete manifold, i.e. one scalar value

is assigned to each vertex, edge, triangle, and tetrahedron of a discretized manifold

in 3-space. Therefore, scalar functions can be mapped to scalar values on vertices,

vector valued functions as 1-forms are mapped to scalar values on edges and so on.

The implementation of the exterior derivative d uses Stokes’ theorem, giving a unique

relationship between the exterior derivative d and the boundary ∂ of a k-form ω on

a region σ with ∫
σ

dω =

∫
∂σ

ω.
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In other words, the evaluation of the exterior derivative d can be interpreted as the

evaluation on the boundary of the same simplex.

Thus, the exterior derivative d on k-forms can be computed as a Kk+1×Kk-matrix

Dk, where Ki is the number of i-simplices in the simplicial complex. This matrix

Dk is the transposed incidence matrix of k + 1-simplices and k-simplices.

The implementation of the DEC framework requires a second entity from exterior

calculus, the Hodge star ?. In a simplicial complex, each cell has a dual cell. For

example, in a tetrahedral mesh contained in a 3-dimensional embedding, each tetra-

hedron has a dual vertex. The Hodge star maps a k-form to the complementary

(n−k)-form on the corresponding dual cell. Since it is natural to require an integral

to be proportional to the volume of its domain of integration, the Hodge star can

be defined with the relation of dual and primal volumes,

? =
vol(dual)

vol(primal)
.

In matrix representation, this gives a diagonal Kk×Kk-matrix Hk with the fractions

of dual and primal volumes as matrix entries.

The application of all possible exterior derivatives and Hodge stars to each k-form

results in a discrete version of the de Rham complex:

0 −→ Ω0M
d−→ Ω1M

d−→ Ω2M
d−→ . . .

d−→ ΩnM −→ 0

↓ ? ↓ ? ↓ ? ↓ ?
0←− ΩnM

d←− Ωn−1M
d←− Ωn−2M

d←− . . .
d←− Ω0M ←− 0.

This finally allows the definition of the co-derivative δ for every (k + 1)-form as the

inverse mapping to the exterior derivative d with

δ = (−1)n·k+1 ? d ? .

Finally, the discrete Laplace-de Rham operator L, approximating the smooth Laplace-

de Rham operator ∆ = dδ+ δd, can be implemented by a concatenation of matrices

D and H on the primal and dual simplicial complex. Extended descriptions about

DEC and its implementations can be found in [DKT06,ES05b].
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5.4.3 Comparison of FEM and DEC discretizations

It is not a priori obvious which discretization – FEM or DEC – approach gives the

best results for harmonic analysis of vector fields as described above. Furthermore,

it can be shown that there is no discretized version of the Laplacian operator that

captures all the properties of the corresponding continuous one [WMKG08]. Hence,

I evaluate different discretization with respect to their suitability towards harmonic

analysis in a discrete setting.

To obtain a qualitative understanding of the approximation qualities of FEM and

DEC that can inform the choice of discretization method used in local feature anal-

ysis, I define a simple test problem. I consider a rectangular region in the plane

Ω = [0, a]× [0, b] with edge lengths a, b > 0 and the scalar eigenvalue problem

∆u− λu = 0 in Ω (5.9)

u = 0 on ∂Ω (5.10)

as a test case for which an analytic solution is known. This problem can be under-

stood as a tensor product of the Fourier decomposition described in Section 5.2.1.

Here, the eigenfunctions eij are products of sinusoidal functions and the eigenvalues

λij are sums of the corresponding one-dimensional eigenvalues, namely

eij(x, y) = sin

(
iπx

a

)
sin

(
jπy

b

)
,

λi,j = π2

[(
i

a

)2

+

(
j

b

)2
]
,

i, j = 1, 2, . . . .

In the following, I compare the numerically approximated eigenvalues and eigen-

functions obtained by the FEM and DEC approaches to these analytical solutions.

Table 5.1 gives the eigenvalues of Eq. 5.9, as numerically determined from the FEM

and DEC discretizations of a square region (a, b = π), with increasing grid resolu-

tion. It is observable, that the convergence to the correct eigenvalue known from

the analytic solution is better for the finite element method. Furthermore, even for
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relatively higher grid resolution the DEC approach seems to diverge to a slightly dif-

ferent value. This is an important observation for the situation in which eigenvalues

are used for harmonic analysis (cf. Section 5.3.1).

Figure 5.5 illustrates the eigenfunctions of Eq. 5.9. The first eigenfunction as well

as one of the two fourth eigenfunctions are shown using a color map on the left.

The middle and right columns illustrate the pointwise error of the FEM and DEC

approximations, respectively, using a greyscale mapping.

The error distribution over the squares is very similar for both approximation meth-

ods, and they appear qualitatively equivalent for the given test case. In general, not

much difference between the FEM and DEC solution is observed. However, for the

first eigenfunction, the FEM solution is consistently better due to the property that

FEM minimizes the integral error over the domain.

In summary, eigenfunctions computed by each of the two discretizations are quite

similar. Therefore, the FEM approach as well as the DEC approach can be used in

cases focusing on the usage of eigenfunctions. As an example, this is true for the

local vector field linearity feature strength function rhoL I define in Section 5.3.1.

However, my comparison shows a clear advantage of the FEM discretization in

approximating eigenvalues. For this reason, in cases relying on accurate eigenvalues

the FEM approach should be preferred.

In a general setting, there are also other factors to consider when choosing a dis-

cretization for the Laplacian. While applying different boundary conditions is often

possible in a finite element approach, the adaptation to arbitrary embeddings is not

analytic FEM DEC
11x11 25x25 51x51 101x101 11x11 25x25 51x51 101x101

2 2,0441 2,0076 2,0017 2,0004 2,1234 2,1514 2,1560 2,1570
5 5,2408 5,0412 5,0095 5,0023 5,1808 5,3559 5,3847 5,3912
8 8,7147 8,1223 8,0281 8,0070 8,1002 8,5349 8,6076 8,6240
10 10,8610 10,1456 10,0334 10,0083 9,9416 10,6356 10,7518 10,7781

Table 5.1: The eigenvalues of the finite element and the discrete exterior calculus
discretizations on increasing grid resolutions are compared to the ones known from
calculus. The finite element method is found to deliver more accurate results.
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Figure 5.5: The point-wise error of the finite element field solutions (middle) and
the exterior calculus field solutions (right) compared to the analytic solution (left)
on a 11× 11-grid.

trivial. Conversely, this embedding is trivial in the discrete exterior calculus setup,

since its formulation only depends on simplex incidences and automatically handles

cases like a two-dimensional surface in an arbitrary three-dimensional embedding.

5.4.4 Computation of Large Eigenvalue Sets

Solving a matrix eigenvalue system for its eigenvalues and eigenvectors is typically

a time-consuming task. In addition, the amount of memory required to represent

the corresponding matrices grows quadratic with the number of grid points or vari-

ables. This makes harmonic field analysis computationally expensive and must be

considered a bottleneck – especially for global approaches where many eigenvectors

must be computed.

[VL08a] combines the shift-and-invert method with band-by-band computation for

manifold harmonics. This method can also be used for harmonic field analysis since

it is a general method applicable to any matrix.

In a nutshell, the shift-and-invert method is a common spectral transformation.

Instead of computing the eigenvalues and eigenvectors around an eigenvalue σ, the
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spectrum can be shifted such that only computing the eigenvalues around zero is

needed by the examination of A − σIx instead of the initial matrix A. Since most

algorithms for eigenvalue computation perform best for large eigenvalues modulus,

the spectrum can additionally be inverted by inverting the matrix. Finally, not the

eigenvalue λ is computed but the modified eigenvalue Θ with

A−1
σ x = (A− σI)−1x = Θx, Θ =

1

λ− σ
.

To solve this system, the shift-and-invert method, e.g. as implemented in ARPACK,

is used. This interface is accelerated using SUPERLU for matrix vector operations

and LU matrix decomposition. There is no actual need to compute and store the

inverted matrix, because the computation only requires the evaluation of x = A−1
σ z

for an arbitrary vector z. This can be computed very efficiently with the LU de-

composition of Aσ by performing a back-substitution.

The entire spectrum corresponding to the Laplacian discretization matrix can then

be computed in multiple parts. A small band of eigenvalues is computed at once;

successively, this band is shifted with a small overlap until the entire spectrum is

completed. With this technique, the sub-linear behavior of eigenvalue solvers can

also be compensated.

In my experiments, the global eigenvalue problem for the inflow dataset with 36000

edge values was solved in about 2 hours on a commodity PC (Intel Q6600 quad-core

machine at 2.4 GHz). Also applying classical eigenvalue solvers, I was only able

to determine the first 3000 eigenvectors in about 3 days of computation time. In

comparison, for the two-dimensional local field analyses examples in Section 5.3.1

all the six to ten vector field basis functions were determined in less than 100 ms on

the same hardware.

5.5 Conclusion

Harmonic analysis techniques are a fundamental tool in scalar field processing and

analysis. Well-known applications are techniques based on the Fourier decomposi-

tion. In this chapter, I provide a number of ideas on applying harmonic analysis on
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scalar, vector and tensor fields over general domains, with a focus on visualization

and analysis applications.

The typical global approach to harmonic analysis was illustrated on a small vector

field example given an unstructured grid, and the problems for global approaches

were identified and discussed. These issues led us to the introduction of a local

approach using local regions for every point in space. I used this local approach to

define a local feature strength measure, based on properties described in Laplacian

eigenbases.

Since two direct possibilities for the choice of the discretization are apparent, I gave

an overview of both methods and compared their behavior numerically. In addition,

I discussed numerical aspects of the eigenvalue computation that has proven difficult

to master in my experiments.

For the future, there are still many open avenues of investigation. Besides improv-

ing the computational system in accuracy, convergence and computational costs,

for special cases there might be explicit algorithms not depending on a numerical

eigensolver. Furthermore, other possibilities for feature measures going beyond the

local vector field linearity criterion should be explored, and it is conceivable to apply

the described technique to achieve pattern matching of empirically defined features.

Finally, the adaptation of existing signal and image processing algorithms should

also be considered.



Chapter 6

Conclusion

The overall topic of this thesis was the preparation of massive parallel CFD sim-

ulations for computational steering and the development of new interactive online

monitoring techniques. Since the computational steering loop turned out to be a

complex task involving system design, user interaction and algorithmic components

contributions have been made in all of these areas.

I introduced FSSteering, a flexible computational steering framework enabling to

easily steer existing and new simulations based on the FlowSimulator framework. I

was able to show its usage throughout this thesis and showed in two steering exam-

ples the capability to steer running simulations. Being highly adaptive, sophisticated

online monitoring examples could be presented throughout my thesis.

In order to enable for interactive exploration of running simulations, I presented an

interactive cut-plane online monitoring approach. By implementing this approach

into the FSSteering framework, the approach could extract information to visualize

in-situ without the need to duplicate any data, which can be expensive for large-scale

simulations. Since update rates and latency is crucial for interactive exploration

methods, I demonstrated the flaws of traditional cell-based cut-plane extraction

algorithms. By using point-based sampling, I could provide a method which achieved

these requirements and enabled to explore scalar fields of ongoing simulations in a

coupled virtual environment.
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With more complex visualization features and ever increasing simulation scales, lo-

cal visualization front-ends can easily be overwhelmed by their sizes and can not

provide rendering at interactive frame rates anymore. In this work, I presented a

hybrid rendering approach combining local and parallel remote rendering hardware

which removes the heavy duty rendering workload from local resources such as vir-

tual environment hardware. Therefore, my approach uses a local context geometry

for navigation purposes which can be easily rendered locally. The heavy rendering

workload is carried out on distant remote rendering hardware. This approach decou-

ples both rendering processes and results in different update rates as well as latency

for local and remote images. With the presented re-adjustment step I could clearly

show that this approach leads to successful navigation through large-scale data sets.

Two challenges for this approach are limited bandwidth and providing sufficient

update rates for time-dependent features. For these challenges solutions were pre-

sented. Progressive image streaming is able to provide adaptive image resolutions

for high pixel-count display such as tiled display walls. Furthermore, I demonstrated

that utilizing the parallelism features of modern CPUs with pipelining and extend-

ing my approach to use multiple render instances, I was able to provide high update

rates sufficient for time-dependent simulation results with high temporal resolution.

Finally, feature extraction itself becomes more important as well as more complex

for large-scale simulation results. Existing methods are typically based on deep

mathematical frameworks or require intimate knowledge of the application domain.

Here, I presented the application of harmonic analysis to vector fields as an adapt-

able, mathematical framework for feature-based visualization. The definition of a

feature space over small neighborhoods enabled to define, locate and compare local

features in an empirical fashion.
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