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1

Introduction

1.1 Motivation

Compared to traditional software design, the design of embedded software is even more challen-
ging: In addition to the correct implementation of the systems, one has to consider non-functional
constraints such as real-time behavior, reliability, and energy consumption. Moreover, many
embedded systems are used in safety-critical applications where errors can lead to enormous
damages and even to the loss of human live. For this reason, formal verification is applied in many
design flows using different kinds of formal verification methods.

The synchronous model of computation [74] has shown to be well-suited in this context. Its
core is the paradigm of perfect synchrony which assumes that the overall system behavior is
divided into a sequence of reactions, and all computations within a reaction are completed in zero
time. This temporal abstraction simplifies reactive programming in that developers do not have to
bother about many low-level details related to timing, synchronization and scheduling.

The introduction of a logical time scale is not only a very convenient programming model, it
is also the key to generate deterministic single-threaded code from multi-threaded synchronous
programs. Thus, synchronous programs can be directly executed on simple micro-controllers
without using complex operating systems. Another advantage is the straightforward translation
of synchronous programs to hardware circuits [76, 219, 229]. Furthermore, the concise formal
semantics of synchronous languages makes them particularly attractive for reasoning about
program properties and equivalences [37, 78, 225, 226, 228]. Finally, they allow developers to
determine tight bounds on the reaction time by a simplified worst-case execution time analysis
(since loops do not appear in reaction steps) [189, 190, 231, 232]

Although several success stories have already been reported [74] from safety-critical applica-
tions like avionic and automotive industries, there is still a need for further research on efficient
compilation of synchronous languages. This is mainly due to the fact that embedded system
architectures are getting highly parallel systems.

First, multicore processors have already replaced single-core processors in desktop computers,
and they are more and more frequently used in embedded systems. Hence, the software code
generators used in model-based design for the development of embedded systems have to be
modified accordingly so that the increased performance offered by multicore processors can be
effectively utilized.

Second, many embedded applications in the automotive or avionic industry are implemented
on a heterogeneous set of distributed processing elements. Using these architectures, it is in general
not reasonable to maintain a single abstraction of time, since the resulting performance would be
unacceptably low. Instead, the use of several time scales (or clocks) is often considered: the higher
the abstraction level, the slower is the corresponding clock. A somehow extreme case are GALS



2 1 Introduction

synchronous
model

synchronous
model

..
.

IR
module

IR
module

compilation

compilation

IR
system

composition

optimization

target code

target code

target code

verification

simulation

synthesis

Fig. 1. Design flow

(globally asynchronous, locally synchronous) systems [99, 136], which perfectly match real-world
systems. In a GALS system, a number of synchronous components are asynchronously connected,
e. g. by sending messages over asynchronous FIFO channels. Since there is no global clock in
an asynchronous system, each component runs independently of the other components. Their
composition is done by only unifying their input and output channels. Thus, their behavior can no
longer be split into a sequence of steps or reactions. Moreover, to avoid expensive synchronizations
between the components, these parallel systems run asynchronously to each other, and they are
therefore distributed systems (even though they may still be contained in a small system).

Nevertheless, it is natural to develop a model-based design flow for embedded systems where
one starts with a synchronous model. Figure 1 shows the design flow, which is considered in this
thesis.

1.2 Contributions

This thesis is dedicated to this design flow, and it presents my contributions to it.

• System design starts with developers writing synchronous models, which are translated by
a compiler to modules of an intermediate representation (IR). The compilation procedure
proposed in this thesis makes it possible to compile modules separately, which enables the
generation of libraries and IP-based design. Due to the orthogonal design of synchronous
languages, which allows to nest preemption with all other statements, this is a very diffi-
cult problem. Furthermore, this thesis contributes a formal verification (inside an interactive
theorem prover) of critical parts of the compiler.

• The compiler modules are subsequently composed with other modules to a complete system.
While the synchronous composition of models is straightforward, non-trivial problems must
be solved after the composition: as the synchronous abstraction of time implicitly schedules
all computation in the system according to the data dependencies, the composition of sev-
eral modules might introduce cyclic dependencies, which represent incorrect system. In the
domain of synchronous languages, the static analysis to detect (and possibly remove) cyclic
dependencies is known as causality analysis. This thesis contributes the first causality analysis
for a imperative synchronous languages with non-Boolean data-flow. Furthermore, it explores
its theoretical foundations, which show the effect of different variants of compilation to it.

• The next step in the design flow is the optimization of system models. This thesis presents the
first data-flow analysis which is custom tailored for synchronous models. It allows to identify
redundant computations (so-called passive code), which can be suppressed to improve run-
time performance of the system.
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• The intermediate representation is still a synchronous model so that we benefit from its
advantages. In particular, the simulation of the model is deterministic and precise. Only the
final synthesis step maps the synchronous model to a target architecture which does not directly
support this model of computation. This thesis contributes some approaches to decompose
and desynchronize a synchronous system so that it can be implemented by loosely coupled
multi-threaded implementations or on a distributed set of processors.

• The synchronous abstraction of time simplifies verification. However, as the final implementa-
tion may be mapped to a distributed architecture, a natural question is which kind of properties
are preserved and which verification results are still valid after desynchronization. This thesis
answers this fundamental question and characterizes the set of preserved properties.

• This thesis also considers the problem how the modeling of asynchronous parts in synchronous
systems can be supported in order to simplify the desynchronization and architecture mapping
task. In particular, it proposes the introduction of a clock tree into an imperative synchronous
language, which avoids the common problem of over-synchronization. In addition to the
extension itself, it shows which effects to the design flow are caused by the extension.

• Finally, this thesis addresses the integration of models following a different model of computa-
tion in the design flow. As real systems are rather an amalgam of different descriptions than a
clean set of synchronous models, a well-defined composition of heterogeneous models is a
very important aspect. This thesis shows how synchronous, polychronous and asynchronous
models can be integrated. To this end, it defines a common intermediate representation, which
is targeted by newly developed compilation procedures. Furthermore, the relationship to
discrete-event models, which are frequently used for system simulation, is discussed.

1.3 Structure

Each of the following chapters considers another activity in the design flow. Chapter 2 starts with
the compilation of synchronous models to the target-independent intermediate representation,
which is the starting point for the analyses, optimizations, verification and synthesis procedures of
the following chapters. Chapter 3 addresses the important question of causality analysis, which is
an important static analysis checking the schedulability of a synchronous system. Chapter 4 deals
with custom optimizations in the domain of synchronous systems, and Chapter 5 shows how
synchronous systems can be mapped to parallel target architectures. Chapter 6 summarizes recent
efforts to the verification in the context of desynchronized systems. Chapter 7 shows how the
modeling capabilities of synchronous programs can be extended to better target today’s embedded
systems. Chapter 8 explains how components following a different model of computation can be
integrated with synchronous ones. Finally, Chapter 9 contains a structured and annotated list of
all my publications, which describes my own contribution to all the publications contained in my
habilitation.





2

Compilation

2.1 Context

The synchronous abstraction of time simplifies reactive programming in that developers do not
have to bother about many low-level details related to timing, synchronization and scheduling.
However, this abstraction is not for free: the compilation of synchronous languages is more
difficult than the compilation of traditional sequential languages. The concurrency available
in synchronous programs has to be translated such that the resulting code can be executed on
ordinary sequential machines. To this end, special problems must be solved by compilers as this
chapter and the following one will show. Furthermore, several aspects which are self-evident
for other programming languages are very difficult – or even impossible to implement: modular
compilation is such an example.

In this section, we first introduce the imperative synchronous language Quartz, which will
the primary modeling language of this thesis. Then, we discuss the general issue of modular
compilation in the context of synchronous languages before we briefly review other approaches of
compiling imperative synchronous languages.

2.1.1 The Synchronous Language Quartz

In the following, we consider the synchronous language Quartz [229], which has been derived
from Esterel [79, 81]. In the following, we give a brief overview of the language core, which is
sufficient to define most other statements as simple syntactic sugar. For each statement, we will
subsequently describe its behavior. For the sake of simplicity, we do not give a formal definition;
the interested reader is referred to [229], which also provides a complete structural operational
semantics. The Quartz core consists of the following statements, provided that S, S1, and S2 are
also core statements, ` is a location variable, x and τ are a variable and an expression of the same
type, σ is a Boolean expression, and α is a type:
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nothing (empty statement)
` : pause (start/end of macro step)
x = τ and next(x) = τ (assignments)
if(σ) S1 else S2 (conditional)
S1;S2 (sequence)
do S while(σ) (iteration)
S1 ‖ S2 (synchronous concurrency)
[weak] [immediate] abort S when(σ) (preemption: abortion)
[weak] [immediate] suspend S when(σ) (preemption: suspension)
{α x; S} (local variable x of type α)
inst : name(τ1, . . . , τn) (call of module name)

In imperative synchronous languages, the synchronous MoC is represented as follows: All state-
ments are assumed to be executed in zero-time. The only exception is a special statement pause,
which implements the end of the current macro step. A simplified view on the programs is
therefore as follows: In each macro step, a synchronous program resumes its execution at the
pause statements where the control flow has been stopped at the end of the previous macro step,
then it reads new inputs and executes the following statements until the next pause statements
are reached. A pause statement also defines a control flow location implemented by a unique
Boolean valued label `, which is assumed to be true iff the control flow is currently at the statement
` : pause. Since all other statements are executed in zero time, the control flow can only rest at
these positions in the program.

a = 1; b = a; a = 1;

b = a; a = 1; if(b = 1) b = a;

pause; pause; pause;

a = b; a = b; if(a 6= 2) a = b;

(a) (b) (c)

Fig. 2. Three Quartz programs illustrating the synchronous MoC

Variables (or often called signals in the context of synchronous languages) of the synchronous
program can be modified by assignments. They immediately evaluate the right-hand side expres-
sion τ in the currently environment/macro step. Immediate assignments x = τ instantaneously
transfer the obtained value of τ to the left-hand side x, whereas delayed ones next(x) = τ transfer
this value in the following macro step. If a variable is not set by an action in the current macro
step, its value is determined by the so-called reaction to absence, which depends on the storage type
of the variable. Quartz knows two of them: memorized variables keep the value of the previous step,
while event variables are reset to a default value if no action sets their values.

The assumption that all Quartz statements are executed in zero-time has some consequences
which might be confusing at a first glance: if a statement does not take time for its execution, it is
evaluated in the same variable environment as another statement following it in a sequence. In
principle, both statements may therefore be interchanged without changing the behavior of the
program. So, the program in Figure 2 (b) has the same behavior as the program in Figure 2 (a).
Thus, each statement knows and depends on the results of all operations in the current macro step.
Obviously, this generally leads to the causally cycles described in the previous section, which are
not present in traditional sequential programming languages. Hence, a Quartz statement may
influence its own activation condition (see the program in Figure 2 (c)).
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{ {
b = true; a = false, b = true, c = false

`1 : pause; `3 : pause;

if(a) b = false; if(¬b) c = true;

a = true; a = true, b = false, c = true

`2 : pause; `4 : pause;

b = true; a = true, b = true, c = true

} }

Fig. 3. Synchronous concurrency in Quartz

abort {
a = 1;

`1 : pause;

b = 2;

`2 : pause;

} when(true);
c = 3;

weak abort {
a = 1;

`1 : pause;

b = 2;

`2 : pause;

} when(true);
c = 3;

immediate abort {
a = 1;

`1 : pause;

b = 2;

`2 : pause;

} when(true);
c = 3;

weak immediate abort {
a = 1;

`1 : pause;

b = 2;

`2 : pause;

} when(true);
c = 3;

Fig. 4. Abort variants: strong, weak, immediate strong and immediate weak

In addition to the usual control flow statements known from typical imperative languages
(conditionals, sequences and iterations), Quartz offers synchronous concurrency. The parallel
statement S1 ‖ S2 immediately starts the statements S1 and S2. Then, both S1 and S2 run in
lockstep, i. e. they automatically synchronize when they reach their next pause statements. The
parallel statement runs as long as one of the sub-statements is active.

Figure 3 shows a simple example consisting of two parallel threads. In the first step, the
program, and thus both threads, are started. The first thread executes the assignment to b and
stops at location `1, while the second thread directly moves to location `3. In the second macro
step, the program resumes are the labels `1 and `3. Since the second thread contains an immediate
assignment to a, the action resetting b in the first threads is activated, which in turn activates the
actions setting c in the second thread. The last step then resumes from `2 and `4, where the second
thread performs the final assignment to variable b.

Preemption can be conveniently implemented by the abort and suspend statements.
Their meaning is as follows: A statement S which is enclosed by an abort block is immediately
terminated when the given condition σ holds. Similarly, the suspend statement freezes the control
flow in a statement S when σ holds. Thereby, two kinds of preemption must be distinguished:
strong (default) and weak (indicated by keyword weak) preemption. While strong preemption
deactivates both the control and data flow of the current step, weak preemption only deactivates
the control flow, but retains the current data flow of this macro step. The immediate variants check
for preemption already at starting time, while the default is to check preemption only after starting
time.

Figure 4 shows examples of all four abort variants. The execution of the first two statements
requires two macro steps: in the first macro step, the abort block is entered without checking
the condition, and a is set. In the second macro step, the condition is checked. While the strong
variant immediately aborts and continues with the assignment to c, the weak one first completes
the macro step by setting b and then moves to the assignment of c. The last two fragments feature
immediate version of the abort statement. Since the abortion condition is checked when the control
flow enters, both examples only need one step for their execution: in the strong immediate variant
only c is set, while the weak immediate one additionally assigns a.
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Finally, modular design is supported in imperative synchronous languages by the declaration
of modules in the source code and by calling these modules in statements. Any statement can be
encapsulated in a module, which further declares a set of input and output signals for interaction
with its context statement. There are no restrictions for module calls, so that modules can be
instantiated in every statement. In contrast to many other languages, a module instantiation can
also be part of sequences or conditionals (and is therefore not restricted to be called as additional
thread). Furthermore, it can be located in any abortion or suspension context, which possibly
preempts its execution.

2.1.2 Modular Compilation

It is natural to split the overall compilation process into several phases, such that the first steps are
independent of the final target code. For obvious reasons, it is desirable to store the intermediate
results so that they can be reused for further compilation: First, expensive optimizations may
have already been performed on the intermediate results. In particular, complex statements
like the interaction of concurrent threads with abortion and suspension statements as well as
instantaneous broadcast communication can already be reduced to simpler statements in a first
compilation phase. Second, the intermediate code can be distributed in libraries without revealing
its proprietary source (which leads to the ideas of IP-blocks used in hardware design).

The term module is also a very fuzzy term which we have to make more precise. In our case,
modules are provided by module definitions of the source language, which are compiled to
corresponding modules of the intermediate language. Modules can be used by ‘calling’ (or better
instantiating) them at an arbitrary place in the program.

• The first view, which is used by most hardware description languages, considers modules as
independent components that communicate over their interfaces. Most of these languages
explicitly distinguish between behavior and structure. Modules are defined by the behavioral
part of the language, and they are subsequently assembled by the structural part. Although
there might be a structural hierarchy (which does not change over runtime), modules of
systems created by this approach all run in parallel and thus, in the same context. As there
are no context statements that could preempt or restart the behavior, this kind of symmetric
linking is very simple. VHDL, SDL or even threads in all classical imperative programming
languages follow this simple, but limited, approach.

• The second approach, which is followed by imperative synchronous languages, assumes that
module instantiations are orthogonal to all other statements of the language. Thus, module
instantiations can be used everywhere in the synchronous program. This gives the developer a
higher level of abstraction, since sophisticated control flow as sequential/parallel execution or
preemption is directly modeled in the program. A basic precondition for this approach is that
linking is asymmetric since if one module instantiates another module, then the calling module
defines the context of the called one. This is the view classic software languages usually have:
A module is ‘called’ from another one.1

For the latter case, two degrees of modularity can be distinguished, which we call incremental and
separate compilation:

• Incremental compilation requires that the compiled code for the inner module is available when
the outer one is compiled. Then, the compiler is able to simply include the already compiled code to
the remaining part of the system. All compilation procedures like [37, 41, 78] that are defined

1 Obviously, the second approach comprises the first one: If two modules are run in parallel, the description
of their connection can be seen as a separate module consisting of parallel module calls.
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by a single recursive traversal over the syntax tree of the program can be easily generalized
to implement incremental compilation by (1) simply storing all the compilation results of a
compiled module in a file and (2) importing these results whenever a module instantiation of
this module is compiled.

• In contrast, separate compilation is much more complex: It allows one to compile a module
without having any knowledge about the called modules except for their interfaces, since
inclusion of called modules is deferred to a later linking step. Hence, even modules can be compiled
that call modules that are not yet implemented. This allows developers to compile all modules
of the system in an arbitrary order and to link them at the end of the development process.
Furthermore, separate compilation allows one to change a called module without the need to
recompile the modules calling it (only new linking is required). Clearly, this is a very important
feature to efficiently create and maintain systems consisting of many modules.

Separate compilation is a very difficult problem in the context of synchronous languages. If
the compilation target is sequential code, it is even the case that modularity always has some
price. Previous work has addressed this problem in detail. As shown in [191, 192, 211], there is
a tradeoff between efficiency and reusability. The more the resulting code is sequentialized, the
more constraints it imposes on its usage (by special interfaces). Alternatively, one may perform
a partial causality analysis on single modules [254, 256]. However, it still has to be reworked
and completed at the end, since the solution of causality problems requires information about all
actions reading and writing to a variable that is only available at the end. In the context of Esterel
or Quartz, separate compilation has to consider potential preemption contexts of a module and
potential surrounding loops that may lead to further schizophrenia problems that did not exist
when compiling a module on its own. For example, assume that some (inner) module has been
compiled to intermediate code, and it is later on used in another (outer) module. A first problem
that might appear is that it can be called within a preemption statement so that its behavior must
be adapted to the potential preemptions. Another problem might be that its outputs are bound to
local variables in the outer module. This may lead to schizophrenia problems, which did not exist
when the inner module was compiled. Similarly, additional problems arise when compiling the
outer module without any information about termination or instantaneity of the inner one (which
is desirable so that changes on inner modules do not imply recompilation of outer modules). None
of the publications mentioned above has addressed this problem.

2.1.3 Compilers for Imperative Synchronous Languages

As observed in [116, 121, 209] there are several fundamentally different techniques which have
been developed to compile synchronous programs during the last two decades.

The first generation of compilers [81] used the Structural Operational Semantics (SOS) rules
of Esterelto translate the program to an extended finite state machine whose transitions are
endowed with corresponding code fragments. As it is well-known, this automaton may have
exponentially many states in terms of the size of the given program, which makes this compilation
technique applicable only to small programs. Nevertheless, this method generates the fastest code
for software on a uniprocessor system, as the compiler generated exactly the code that has to be
executed for each particular control state of the program.

Polynomial compilation was first achieved by a direct translation to equation systems [37, 75,
205, 225]. The idea behind this approach is to consider only control flow locations instead of entire
control states2. The compiler determines (1) the value for every output, and (2) the value of all
2 We distinguish between control flow states and control flow locations: A state is a vector of control flow

locations, and a control flow location is a place in the program that can hold the control flow for an instant
of time. In case of Esterel, control flow locations are essentially pause statements.
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control flow locations at the next instant of time, both in terms of the current inputs and currently
active control flow locations. The approach is particularly efficient for hardware synthesis, since
hardware is able to execute all equations in parallel, and the obtained circuits’ sizes are only
quadratic in terms of the given program. Hence, this approach is successfully used for hardware
synthesis and is still the core of commercial compilers. A software approach on a uniprocessor
system, however, has to check all equations one after the other, even those that correspond with
control flow locations that are currently not active, which leads to significant performance penalties
for programs that contain only a limited degree of concurrency.

A third approach has been followed by the Saxo-RT compiler [103, 104] of France Telecom,
which translates the program into an event graph. Hence, an event driven simulation scheme can
be used to generate code, which is compiled into efficient C code. In contrast to our approach,
this approach does not retain the original program structure and therefore is not able to exploit
structural properties of the program like mutual exclusion of substatements in sequences or
conditionals.

A fourth approach is based on the translation of programs into concurrent control data flow
graphs [116, 117, 121, 209], whose sizes depend linearly on the given program. At each instant, the
control flow graph is traversed until nodes are reached that correspond with active control flow
locations. Then, the corresponding subtrees are executed which changes the values of the control
flow locations (that are maintained in Boolean variables).

All these compilers use different intermediate formats [40, 116, 122, 142, 201, 209] in their
design flow. The most important ones are:

• Imperative/Intermediate Code (IC): The IC format is used by imperative languages like Esterel,
Argos and Statecharts. It is the compilation result obtained after parsing, expanding macro
statements, and type-checking. Hence, no essential code generation is performed, so that the
format still offers concurrency, exceptions, local variables and calls to other modules. Compared
to AIF, the format is close to the kernel Esterel language, and thus, it still contains much of the
complexity of the source language.

• Object Code (OC): Object code, also called automaton code, is a low-level format that describes
a finite state automaton by explicitly listing its states and transitions (and the code that is to be
executed along the transitions). Hence, concurrency and complex interaction of threads has
already been eliminated by the compiler. Object Code can be also created from guarded actions
by re-encoding the control states such that a single label (one-hot) represents each possible
control flow position.

• (Sorted) Sequential Circuit Code (SC and SSC): These formats describe a hardware circuit that is
obtained by compilation of Esterel programs. The unsorted version SC may contain combinat-
orial cycles, and the used gates are written in no particular order. In contrast, the SSC format
makes use of a topological order and describes an acyclic circuit that may be obtained from a
cyclic one by solving the corresponding causality problems. This intermediate format can be
directly derived from guarded actions by grouping them according to their targets.

• Declarative Code (DC): The DC format is the privileged interchange format for hardware circuit
synthesis, symbolic verification and optimization as well as distributed code generation. The
format reflects declarative or data flow synchronous programs like Lustre, as well as the
equational representations of imperative synchronous programs. The underlying idea is the
definition of flows by equations governed by clock hierarchies. It is the successor of the
previously used GC format [62] and is closely related to the sequential circuit code formats.

• Event-Triggered Graphs: Event-based simulation is a characteristic of hardware description lan-
guages like VHDL or Verilog. A compilation technique implemented in the Saxo-RT compiler
of France Telecom [103, 104] also employed an event-triggered approach, and therefore relies
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Fig. 5. Modular compilation and modular synthesis of Quartz programs

on an internal data structure called an event graph that keeps track of dependencies of events.
Hence, an event driven simulation scheme can be used to generate sequential code.

• Concurrent Control Flow Graphs (CCFG): The compiler of the University of Columbia translates
Esterel programs to concurrent control data flow graphs [116, 117, 119, 122, 209]. At each instant,
the control flow graph is traversed until nodes are reached that correspond with active control
flow locations. Then, the corresponding subtrees are executed which changes the values of the
control flow locations (that are maintained in Boolean variables). Hence, concurrency is still
available, but sequential execution is also supported. Moreover, the format lends itself well for
interpretation and software code generation for different architectures.

We decided against the usage of all these intermediate formats in work, since none of them
contains the information needed for a separate compilation as described in the previous section.

2.2 Contribution

2.2.1 Separate Compilation [23, 27]

Several publications [20, 23, 27] address the problem of separate compilation of Quartz programs.
The first contribution contained in these publications is the definition of a design flow.

As we target the design of embedded systems, where hardware-software partitioning and
target platforms are design decisions that are frequently changed, persistent intermediate results
in a well-defined and robust format are welcome. Therefore, we split up the design flow into
two steps, which are bridged by the Averest Intermediate Format (AIF). This intermediate format
models the system behavior in terms of synchronous guarded actions. Hence, complex control-flow
statements need no longer be considered. We refer to compilation (considered in the following) as the
translation of source code into AIF, while synthesis (considered in Chapter 5) means the translation
from AIF to the final target code, which may be based on a different model of computation.

Figure 5 shows two approaches of generating target code from a set of Quartz modules.
Modular compilation, which is shown on the left-hand side, translates each Quartz module to a
corresponding AIF module. Then, these modules are linked on the intermediate level before
the whole system is synthesized to target code. Modular synthesis, which is shown on the right-
hand side, translates each Quartz module to a corresponding AIF module, which is subsequently
synthesized to a target code module. Linking is then deferred to the target level. While modular
synthesis simplifies the compilation (since all translation processes have to consider only a module
of the system), it puts the burden on the runtime platform or the linker which have to organize the
interaction of the target modules correctly.

Our contribution focuses on separate translation from Quartz modules to corresponding AIF
modules, which results to a compilation procedure that supports the full modularity provided
by the source language with unrestricted use of local variables, preemption statements, and
delayed assignments – without any tradeoffs. In our approach, additional information is added



12 2 Compilation

to the intermediate format (about the context of a module and a new handling of incarnations)
to achieve a modular compilation of imperative synchronous programs. This information is
essential for binding. Otherwise, it is impossible to determine when the guarded actions of a called
module should be activated, aborted and suspended, or how many times a called module must be
replicated due to reincarnations.

As our separate translation does not generate sequential code, it does not have to deal with the
scheduling and causality problems previous publications [191, 192, 211] considered. Instead, they
can be solved later. Since the source and intermediate code are both based on the synchronous
model of computation, they can model the same causality problems. For these reasons, we do not
consider causality analysis in our approach, although we also believe that a modular approach to
causality analysis is desirable. However, we postpone it to a later compilation phases.

The compilation procedure presented in [20, 23] is the first algorithm that supports fully
separate compilation for a typical imperative synchronous language such as Esterel or Quartz.
Modules of the source language are translated to individual modules in an intermediate format,
which does not require any information about the called modules except for their names and the
types of their inputs and outputs. Our contribution is based on two new developments: First,
we define a new intermediate code format called AIF (Averest Intermediate Format), which is a
target-independent representation of the system in terms of simple guarded actions. Second, we
develop a compilation procedure to generate this AIF code.

A particular advantage of our separate compilation is that it also handles the instantaneous
reincarnation of local variable declarations (often known as schizophrenia problems [37, 78, 205, 230, 243])
in a modular way: This means that even though module calls inside loops may generate additional
reincarnations of local variables, the compiler does not have to take care about these reincarnations
in an explicit way. Instead, the required reincarnations are implicitly made by generating copies of
module calls in the different surfaces of the nested loops. This solution requires a sophisticated
generation of names and related data structures in the intermediate code.

As a side effect, our separate compilation enables new possibilities for intellectual property (IP)
design in synchronous languages. In general, using these IP cores gives rise to some problems, of
which the most challenging one is the support of an adequate infrastructure for their integration.
In general, there are several alternatives: First, it might be the case that the module is available
as a soft core in a specific description language, and the user must use this language in order to
use the module. Second, the IP provider may distribute a hard core and makes use of a high-level
integration mechanism, which allows the integration of several modules written in different
languages but using the same integration mechanism. This is based on the principle that there
are two levels of a description language: the language in which the module is developed and a
language that is merely used for the integration, i.e., a meta-language [141].

The approach presented in [27] provides a high-level integration of IP cores for synchronous
languages. Developers can use the synchronous programming language both for the creation of
new native modules and their integration with proprietary IP cores. This provides the developer
with a high-level interface, since all modules can be used without any restrictions in the program
(in particular, also in preemption statements).

2.2.2 Synchronous Guarded Actions [20]

As already mentioned in Section 2.2.1 another contribution of [20, 23] is the Averest Intermediate
Format (AIF), an intermediate representation for the compilation of synchronous languages. The
behavior of a system is described in AIF with the help of synchronous guarded actions. As
the name suggests, they are designed in the spirit of classical guarded commands [98, 113, 168],
which are a well-established formalism for the description of concurrent systems. However, note
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that in contrast to many other applications where guarded commands are used, the guarded
actions considered here follow the synchronous abstraction of time as described above. The system is
represented by a set of synchronous guarded actions of the form 〈γ ⇒ A〉 defined over a set of
variables V . The Boolean condition γ is called the guard and A is called the action of the guarded
action. In our case, guarded actions are either

• γ ⇒ x = τ (immediate assignment),
• γ ⇒ next(x) = τ (delayed assignment),
• γ ⇒ assume(σ) (assumption), or
• γ ⇒ assert(σ) (assertion).

module Example(
nat ?i1 , ?i2,
nat !o1 , event nat !o2)

{
nat x = 0;

i1 > 5 => o1 = i1 + x + 1;
i1 < 5 => o1 = i1 + o2;
o1 > 10 => next(x) = i1;
o1 < 10 => next(x) = i2;
i1 > 5 => o2 = i2 + o1;
i1 < 5 => o2 = i2 + x + 1;

true => assume(i1 >0);
true => assume(i2 >0);

}

Fig. 6. Synchronous guarded actions

Both kinds of assignments evaluate the right-hand side expression τ in the current macro step.
Immediate assignments x = τ write the obtained value of τ immediately to the variable x, whereas
delayed ones next(x) = τ write the value in the following step. If there is not any action which
determines the current value of a variable x (i. e. immediate ones of the current step and delayed
ones of the previous step), the variable x will be set by the default reaction. The default reaction
generally depends on the storage type of a variable: event variables (indicated by the modifier
event) are reset to false/zero, while (ordinary) memorized variables keep the value from the
previous step (and get the default value in the initial step).

Immediate assignments define a causal dependency within the instant from all the read
variables (i. e. variables in the guard γ and on the right-hand side τ ) to the written variable x.
The former ones must be known before the value of x becomes known. In contrast, delayed
assignments do not have causal dependencies within the instant since x is written in a different
instant. Assumptions assume(σ) provide a condition σ the developer guarantees, i. e. they restrict
the set of states the user cares about. In contrast, an assertion assert(σ) defines a verification
goal σ, which has to be discharged. Both of them do not impose any causal dependencies since
they do not change values.

An example for a synchronous system which is described by guarded actions is given in
Figure 6. The system has the inputs i1, i2, the outputs o1, o2, and uses the local variable x. The
guarded actions are synchronously evaluated based on the given inputs. An example execution
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1 2 3 4 5 . . .

i1 6 5 1 5 9 . . .
i2 2 4 6 8 10 . . .

x 0 2 4 1 5 . . .

o1 7 7 12 12 15 . . .
o2 9 0 11 0 25 . . .

Fig. 7. Trace of example in Figure 6

trace is given in Figure 7. The evaluation order of the guarded actions is based on the data
dependencies. In the first instant, the input i1 has the value 6. Due to the guards of the actions, o1
is written by the first guarded action and the value of o2 is needed for that. In the third instant,
the input i1 is 1 and, due to the guards, the value of o1 is needed to determine the value of o2.
Thus, the variables are computed in a different order for those instants. The delayed assignments
to x transfer the assigned value to the following instant. Notice the different behavior of o1 and o2
if there is not any action writing them as in the second and forth instants. Since o1 is a memorized
variable, it keeps its previous value, while o2 is reset to zero.

2.2.3 Translation to Jobs [40, 41]

Another compilation approach is proposed in [40, 41], which is rather related to the concurrent
control data flow graphs approach (see Section 2.1.3). However, we do not translate the program
into control data flow graphs, and neither do we store the control flow in Boolean variables. Instead,
we generate for each program location a corresponding job that consists of an instantaneous
statement (one that does not contain macro steps). Hence, if we know the currently active control
flow locations, we simply have to execute the corresponding jobs. In addition to generating
outputs, the execution of these code fragments will also generate a set of control flow locations
that are active at the next instant of time.

In contrast to control flow graph based approaches, we therefore have no need for a selection
tree, i.e. to find in the control flow graph the subtrees that have to be executed next. Instead, we
directly execute the jobs that have been computed by the compiler. Moreover, our compilation
technique follows closely the given program structure, so that a formal verification as already
done for hardware synthesis [37, 225, 226, 228] can be achieved to show the correctness of this
approach. This can also be used to obtain a validating compiler that not only delivers compiled
code, but additionally a formal proof of the correctness of the compilation.

2.2.4 Verification of Compilation [36, 37]

As it turned out that the compilation of synchronous languages is very challenging involving
subtle problems, we believe that the research in this area greatly benefits from a verified compila-
tion procedure. To this end, we embedded [226] Quartz in the HOL theorem prover [138]. This
embedding allows us to reason not only about particular Quartz programs, but also about the
semantics of Quartz. Previous work already addressed the correctness of the synthesis of equation
systems [225] and the equivalence to SOS rules [228]. In [36, 37] we verified the compilation of
Quartz to intermediate code.
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Causality Analysis

3.1 Context

3.1.1 Causality Problems

Synchronous languages [68, 74, 142, 180, 180] follow the paradigm of perfect synchrony: the execution
of a program is divided into macrosteps [146] that consist of finitely many microsteps. From a
programmer’s view, the execution of a microstep requires no time, and reactions (outputs) of the
system respond immediately to actions (inputs) of the environment. In contrast, macrosteps all
require the same logical amount of time.

Since synchronous languages allow programs to read their own outputs, mutual dependencies
between actions and their trigger conditions may lead to so-called causality cycles [78]. Such cycles
may lead to inconsistencies so that no code can be generated. In many cases, however, causality
cycles can be resolved and deterministic code can be generated. In any case, the synchronous
programming paradigm challenges the compilers [118]. Before code generation can be performed,
the compilers have to solve causality problems [78, 85, 234, 237].

To analyze causality cycles, one has to check whether the considered program has a consistent
and unambiguous behavior for all inputs and all reachable states. To this end, typically a formula
of type ∀x.∃1y.Φ(x,y) has to be proved, which expresses that for all inputs and current states,
there must be uniquely determined values for the next states and the current outputs. In the worst
case, this requires to consider the program for all inputs, outputs, and all reachable states, which
makes this problem highly complex1.

Note, however, that the above problems do not solve the more general problem to check
the validity of a (propositional) formula of type ∀x.∃1y.Φ(x,y). Instead, causality analysis may
be viewed as a heuristic to solve this problem in the following sense: if causality analysis can
prove that there are unique outputs for all inputs, the validity problem has been solved. However,
if causality analysis fails, it may still be the case that ∀x.∃1y.Φ(x,y) is valid. For this reason,
programs with successful causality analysis, which are called constructive programs, form a strict
subset of programs that have a unique behavior (these are called logically correct programs in [78]).

Malik [195] was the first who presented algorithms for eliminating cycles in Boolean equation
systems y = f(x,y). He used a ternary extension of Boolean algebra as introduced by Yoeli
and Rinon [252] and Eichelberger [126], and further refined by Brzozowski, Bryant, and Seger
[87, 88, 89, 90, 91] to analyze the propagation of signal values in these circuits. The computation
of a solution y depending on the inputs x is then reduced to the computation of a fixpoint of
the function fx(y) := f(x,y), where the inputs x are fixed. The existence of such fixpoints in the

1 Actually, the precise complexity class is not known. However, the problem is at least in co-NP and at most
in PSPACE.
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ternary domain is guaranteed by the Tarski-Knaster theorem [179, 246] (see also the next section),
and the number of iterations is limited by the number of equations |y|. Having computed the
fixpoint y = fx(y) in a symbolical form, i.e., depending on the inputs x, one has an equivalent
acyclic equation system y = f ′(x). As this is done in a three-valued setting, it finally remains to
check if all equations evaluate to Boolean values. It can be shown that computing the ternary
fixpoint and checking whether it is a Boolean one is co-NP-complete [194, 236].

Although the acyclic version may require more operations than the original cyclic one [160, 170,
216, 217, 218], the elimination of cycles is a popular way for generating single-threaded sequential
code from multi-threaded synchronous programs in that a causal order (i.e. a schedule [120]) to
evaluate the right hand sides of the equation system is determined2.

Malik’s approach has been generalized by Shiple et al. to sequential circuits with cyclic output
functions [235, 236, 237]. Their analysis consists of two phases: In the first phase, Malik’s procedure
is used to transform the data flow y = Φ(x, `,y) into an equivalent acyclic version y = Ψ(x, `).
Note that this is always possible in the ternary domain, but not always in the Boolean domain.
Hence, it may be the case that the right hand side evaluates to a non-Boolean value. For this reason,
the second phase of Shiple’s analysis consists of checking whether a non-Boolean value can appear
for one of the reachable states.

Besides a complete fixpoint computation, heuristics can be applied in a first instance to solve
simple cases more efficiently [234]. Alternatives to the fixpoint computation were also considered:
[102, 200] replaced the causality problem by the theoretically more difficult satisfiability problem
and proposed new SAT solving techniques and temporal induction for its solution. However,
causality analysis based on fixpoint computation is not only a heuristic for satisfiability checking,
it moreover establishes a direct relationship between the causality of a program and its dynamic
execution (stabilization of signals in circuits or existence of dynamic schedules in software). Hence,
causality analysis may be viewed as a symbolic compile-time simulation of the program in order
to guarantee its conflict-free execution.

3.1.2 Related Problems

Besides ternary simulation, there are many other problems that are equivalent to causality analysis
and can be reduced to each other in polynomial time [78]:

• Causality Analysis of Synchronous Programs [78] Given a synchronous program, check without
speculative reasoning whether there are unique outputs for all inputs.

• Stabilization of Hardware Circuits with Combinational Feedback Loops [91, 236] Given a combin-
ational hardware circuit, check whether all outputs stabilize for all inputs after some finite
time, independently of the delays of theused gates. Shiple [236] proved the equivalence to
Brzozowski and Seger’s timing analysis in the up-bounded inertial delay model [91]: Circuits
derived from cyclic equation systems will stabilize for arbitrary gate delays iff the equation
systems are causally correct. The algorithms used to analyze hardware circuits are basedon a
ternary interpretation of Boolean logic.

• Evaluation of Formulas in Intuitionistic Logic [78, 196, 197, 237] Given a propositional formula,
check whether incomplete truth assignments can be consistently completed by proof rules
of intuitionistic logic. Berry [78] pointed out that causality analysis is equivalent to theorem
proving in intuitionistic (constructive) propositional logic, since intuitionistic logic may be
viewed in a ternary setting (1:provable, 0:disprovable, ⊥: neither provable nor disprovable).
Hence, he introduced the notion of constructive circuits [79, 196, 197, 237].

2 In the meantime, alternative compilation techniques [104, 118, 193] were proposed. However, these
approaches still need causality analysis to guarantee the existence of a dynamic schedule for mutually
dependent actions.
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• Type Checking [159] Check for a given functional program with certain data types whether it is
correctly typed. By Berry’s observation, the problem is equivalent to type-checking of certain
functional programs due to the Curry-Howard isomorphism [159].

• Existence of Dynamic Schedules [78, 120] Given a set of mutually dependent guarded actions,
check whether there is a dynamic schedule to execute these actions without deadlocks in all
possible cases. Edwards reformulates the problem in that the existence of dynamic schedules
must be guaranteed for the execution of mutually dependent actions [120].

Hence, causality analysis is a fundamental algorithm that has already found many applications in
computer science.

3.2 Contribution

3.2.1 Causality Analysis for Quartz [34, 35]

In [35] we give the first causality analysis for Quartz programs. The added value of the publication
is the extension of Malik’s and Shiple’s approaches to a causality analysis of systems with sequen-
tial data flow. This is necessary to compile synchronous programs with delayed actions. We show
that similar to Shiple’s extension, we can still rely on the fixpoint iteration used in [195]. However,
we have to employ two fixpoint computations: one for the initialization part, and another one for
the transition part. Similar to previous work, the fixpoints are computed in a lattice that extends
the Boolean values by further elements ⊥ and >, so that their existence is guaranteed. For this
reason, we have to check afterwards whether the fixpoints contain non-Boolean values. If they
only contain Boolean values, we have transformed the equation system into an equivalent acyclic
one and are therefore able to generate single-threaded code. Otherwise, it may be possible to
generate single-threaded code, but an exact analysis is NP-complete, so we conservatively decide
to reject the program (this is typical for compilers of synchronous languages).

In contrast to Shiple’s equation systems, the data flow is split into initialization and transition
parts that may both contain cyclic dependencies. Therefore, we say that the above equation system
has a sequential data flow. In the sequel, we focus on such equation systems and describe an
algorithm to check causality of such equation systems. In case the causality is given, the equation
system is transformed into an equivalent acyclic one that can finally be used forcode generation.

However, [35] (and all other previous publications on causality analysis) still has some draw-
backs, which are addressed by [34]. First, previous work only considers events in the data flow and
not memorized values in the data flow. Broadcasting of events is the underlying communication
mechanism in Esterel, however events are rather untypical for non-reactive systems. For this
reason, Esterel additionally provides valued signals, where the value of a signal is memorized
(in contrast to its status). However, ternary simulation of hardware circuits [78, 237] only con-
siders stateful control flow. Some subtle issues, e. g. reincarnation of local variables [35], prevent a
straightforward generalization of existing approaches to memorized variables. In particular, one
has to additionally deal with write conflicts.

Second, higher data structures such as bitvectors and numbers are only supported by a
decomposition to Booleans. While this approach is theoretically elegant, it has two significant
drawbacks: The static analysis of these systems is commonly based on BDDs, which often suffer
from the state explosion when examining programs with arithmetic computations. What is more
problematic is that the analyzed model at the Boolean level may not correspond with the original
program with higher data types: For instance, it may the case that the analysis at the Boolean
level may be able to identify single bits of an integer variable so that the causality may be proved.
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However, it may be the case that this analysis cannot be lifted to the used higher data types, since
that abstraction level is coarser.

In [34], we therefore propose a different approach to analyze the causality of a synchronous
program. In contrast to traditional compilation schemes, we do not compile to a macro step model
of the system, but to a refined one that reflects the reactive behavior at the micro step level of
execution. The information flow and causal dependencies are explicitly modeled so that they can
be analyzed by general-purpose model checkers. Our method also deals both with events and
memorized variables so that it does not suffer from the first of the above mentioned problems.
Moreover, we treat atomic data types as unique values, so that we also avoid the second problem.
Moreover, we show that the causality analysis can be even reduced to a satisfiability problem,
since we can easily determine upper bounds for the fixpoint iterations of a given program at
compile time.

3.2.2 Verification of Causality Analysis [19]

While previous work gave paper-and-pencil proofs for the equivalence of the causality analysis
based on can-must analysis and the symbolic ternary simulation, there is no previous publication
on a symbolic analysis for non-Boolean or non-event variables. In [19], we present such a symbolic
analysis as a generalization of ternary simulation. To this end, we have to take into account the
problem of write conflicts which does not appear for Boolean events (since disjunction is used
as an implicit conflict resolution function). In addition, we prove the equivalence between the
can-must causality analysis and our symbolic formulation based on extending each data type by
the constants ⊥ and >.

In [19], we present the formalisation of the traditional causality analysis for synchronous
systems as well as the definition of a fully symbolic version of a general causality analysis. We
use the HOL4 theorem prover to prove the equivalence of these two variants of the causality
analysis, so that we can guarantee that what is checked by means of model checking in a compiler
with the symbolic analysis exactly matches the definition of causality analysis as given by the
can-must analysis. Moreover, we extend the classical analysis by considering run-time errors like
write conflicts, division by zero, or access to array elements outside the declared range. This is
accomplished by generalizing the traditional three-valued analysis to a four-valued setting using
a constant > for run-time error in addition to ⊥ yet unknown.

3.2.3 Maximal Causality Analysis [38, 39]

All known procedures for causality analysis that are based on fixpoint computation require an
extension of Boolean functions to a ternary domain. For such an extension, there are several
possibilities. Depending on the chosen embedding, the resulting fixpoint may be different.

In previous work, the effect of different extensions is not considered. Instead, only basic
Boolean operations like negation, conjunction, and disjunction are directly extended, and ternary
extensions of other Boolean functions are obtained by composition of the ternary extensions of the
basic functions. In [35], however, it has already been remarked that this is not optimal, and that
different ternary extensions yield different results in causality analysis.

Thus, causality seems to be a structural property: Whether a program is causally correct or
not depends on its syntax, and not only on its semantics. In the same way, there are logically
equivalent hardware circuits where one has stable signal wires, while the other one may oscillate
for some inputs and gate delays. Since causality depends on the syntax of a program, one may ask
whether there are reasonable program transformations that turn non-constructive programs to
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equivalent constructive ones. Another way to achieve this is to directly integrate the mentioned
transformations in the code generation.

In [38], we reconsider Boussinot proposals [85] to improve causality analysis. The problem with
these proposals is that they are only given at the level of causality analysis and therefore might
destroy the constructivity, which is obviously not desired. The main contribution of that paper
is to show how Boussinot’s improvements can be integrated in the code generation so that constructivity
is maintained. This means that we can modify the intermediate code generation in such a way,
that the usual causality analysis of this modified code becomes exactly the causality analysis that
Boussinot proposed. The advantage of our approach is clear: we maintain the constructivity but
are nevertheless able to analyze and to compile a broader class of programs. This suggests to have
several degrees of causality, instead of only declaring a program to be constructive or not.

This also raises the question whether there is an optimal way to construct ternary extensions
so that causality analysis can resolve as many causality cycles as possible. In [39], we answer
this question to the positive: for every Boolean equation system, there is a (uniquely determined)
maximal ternary extension that allows the transformation to an acyclic system, if this can be done
by fixpoint computation at all. We show that this maximal ternary extension corresponds to the
disjunction of all prime implicants, which gives a relationship to hazard elimination [126]. By this
relationship, we derive a first algorithm for computing the maximal ternary extension, which,
however, requires to compute all prime implicants of a Boolean function. We then present more
efficient algorithms for computing the maximal ternary extension. In particular, we present an
algorithm that can be easily implemented by means of binary ordered decision diagrams (BDDs).
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Optimization

4.1 Context

Research over the last two decades has tackled various problems about the compilation of
synchronous languages. As discussed in Chapter 2, various compilers have been developed
[23, 37, 81, 103, 104, 116, 116, 121, 209] based on different code generation schemes like automaton-
based code, (Boolean) equation systems and concurrent control/data-flow graphs. While the
first articles on compilation of synchronous programs focused on the correctness of the compilers
considering mainly semantic issues like schizophrenia and causality problems, this chapter now
considers the efficiency of the generated code.

4.1.1 Data-Flow Analysis

Data-flow analysis has been a static analysis tool for code optimization in classical compiler design
for decades. Early work has been presented in [60, 152, 153, 221] and considers different kinds of
data-flow analyses like the computation of live variables, busy variables, available expressions (to
detect shared expressions), use-def chains and many more. However, these analyses cannot be
directly applied to synchronous programs due to the different underlying model of computation
and its different definition of equivalent computations. In particular, changes of the variable’s
values are synchronously done at the level of macro steps.

Hence, even though static data-flow analysis is a well-established tool for classic compiler
optimization, it has not yet been used for the compilers of synchronous languages. The static
analysis described in [242] is used to compute conditions for instantaneous execution of a syn-
chronous program that is done similarly by the control flow predicates in [227]. In this thesis, we
instead develop the first static data-flow analysis based on fixpoint computations similar to the
classic data-flow analyses. However, our data-flow analysis takes care of the synchronous model
of computation and aims at the identification of passive code as explained above. The results of
this work can be used to optimize the code that is finally generated, e.g., to reduce the reaction
time of programs, or to reduce the energy consumption since less computations are performed in
the macro steps.

Hence, even though static data-flow analysis is a well-established tool for classic code op-
timization, it has not yet been widely used for the compilers of synchronous languages. The
static analysis described in [242] is used to compute conditions for instantaneous execution of
a synchronous program that is done similarly by the control flow predicates in [227]. In [21],
we developed a static data-flow analysis based on fixpoint computations similar to the classic
data-flow analyses, which will be the basis for one stage of the optimization technique presented
in this thesis.
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4.1.2 Satisfiability Modulo Theories

The dependency analysis and corresponding optimization techniques described in this thesis are
based on Satisfiability Modulo Theories (SMT). The concept of SMT is to check the satisfiability of
logical formulas over one or more theories. While a SAT solver computes an answer to the question
“Is there an assignment to the variables of a propositional formula such that the formula evaluates to true?”,
an SMT solver is more powerful. It can answer for a formula over first-order predicates of a
particular decidable theory (or a combination of such theories) whether there exists an assignment
to the variables such that the whole formula evaluates to true. Such decidable theories (commonly
called background theories in the context of SMT) are for example integer linear arithmetic, real
linear arithmetic, theories of bit-vectors or arrays [174].

As a result, an SMT solver is capable of more powerful logics than a SAT solver. For example,
deciding the satisfiability of the formula (x > 3)∧ (x < 0) where x is an integer, a SAT solver has to
abstract each of the inequations by a Boolean variable and derives the formula (a∧b). This formula
is obviously satisfiable, as assigning a and b both to true makes the whole formula evaluate to true.
However, for an SMT solver, it can capture the semantics of the relations > and < and interpret
3, 0 and x in the domain of integers. A decision procedure for the corresponding background
theory will then deliver the appropriate answer that both clauses of the formula above cannot be
fulfilled at the same time. Hence the SMT solver returns the result invalid, which means that there
is no assignment to the free variables of a formula that makes it satisfiable. Other answers an SMT
solver usually gives are valid, which means that the formula is always true, whatever values are
chosen for the free variables, while satisfiable indicates that the truth of the formula depends on
the assignment of the free variables. If the background theory is undecidable and if the (thereby
incomplete) decision procedure of the background theory fails, it can also return unknown.

4.2 Contribution

The execution of the guarded actions obeys the synchronous model of computation: As already
explained in the introduction, each variable has a unique value in each macro step. The set of
possible values of a variable is determined by its type, and its current value in a macro step is
determined either by the immediate assignments executed in the current macro step, the delayed
assignments executed in the previous macro step, or the default reaction as explained in the next
subsection. In each macro step i, the system reads inputs and computes outputs, in principle, by
evaluating all guarded actions. In general, a system will also have internal variables whose values
are also determined by guarded actions in the same way as done for output variables, i.e., either
by immediate assignments enabled in the current macro step, by delayed actions enabled in the
previous macro step, or by the default reaction if no action determines the value. Internal variables
may stem from locally declared variables or from control flow locations. Furthermore, internal
variables are generated by the compiler in order to abbreviate common sub-expressions to avoid
their re-computations.

As already outlined in previous chapters, a synchronous program cannot be executed like a
usual sequential program due to the paradigm of perfect synchrony: all enabled actions must
be concurrently executed according to their data dependencies. Clearly, only a subset of the
guarded actions of the program are enabled within a macro step. Efficiently identifying this
part of the program can significantly improve the run-time performance, which was one of the
main motivations for code generations schemes based on the discrete event model [103, 104] or
concurrent control/data-flow graphs [209, 255].

Obviously, guarded actions which are not enabled in the current macro step (their guards
evaluate to false) do not contribute to the final result. In addition to disabled guarded actions,
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there is still more room for optimization: the paradigm of perfect synchrony demands that unique
values have to be determined for all variables (in particular also for all local variables) in each step.
However, some local values may not be needed to compute the final outputs. The key to a simple
code optimization is therefore to determine actions that do not contribute to the final result, which
will be called passive code in the following.

The notion of passive code is also known for sequential programs, e.g. for code whose execution
is not required to compute the return value of a function. Note that dead code is different to passive
code, since dead code is not reachable, i.e., not executed in any run of the program. Hence, dead
code can be safely removed without modifying the semantics of the program. In contrast, passive
code is reachable, and may be required in certain macro steps, but may not contribute to the
output values in other macro steps. Hence, passive code must not be removed, but its execution
may sometimes be suppressed without modifying the overall behavior of the program. Clearly,
we can suppress its execution by an appropriate modification of the guards.

The optimizations that we consider in the following have a specific realization (hardware or
software) or target architecture in mind, nor do they consider a particular source language. Instead,
we aim at optimizing an intermediate code that is based on synchronous guarded actions, the
target-independent intermediate format used in the compilation procedure of Chapter 2. This
also gives us the possibility to apply our analysis to several source languages and makes it also
independent of the target architecture. We implemented all procedures within our Averest system.

4.2.1 Definition of Passive Code [21]

The code optimization we consider in this chapter is based on the identification of passive code,
which is the key to various optimizations in the course of the further code generation. The
contribution of [21] consists of the definition and implementation of a static data-flow analysis that
determines the passive code in synchronous systems. To this end, we introduce for each variable x
a new variable reqx, which should hold iff the value of x is required for the computations of the
current or future macro steps. These expressions are called required conditions in the following.

The required conditions obviously depend on the externally visible behavior of the system.
Usually, all outputs of the system should be computed in all steps. Hence, we set reqx = true for
all output variables x ∈ VO1. In contrast, all other variables of the system x ∈ V \ VO are generally
not interesting as long as they do not carry information that is later used to compute the outputs.
Hence, ideally their required conditions should be as strong as possible to gain as much as possible
space for optimization.

Thus, the main task of our data-flow analysis is to compute program expressions for the
required conditions reqx for local variables x, which preserve the behavior of the original system.
Thereby, our main idea is to follow the dependencies in reverse direction and to construct the
conditions for reqx. Unfortunately, this naive computation is not possible, since the conditions
reqx mutually depend on each other, and since pseudo-cycles have to be excluded:

First, there are data dependencies across macro steps, which result from delayed actions
〈γ ⇒ next(x) = τ〉. Hence, if such a variable x is required in step i, all variables in γ are required
in the preceding step, as well as all variables in τ if γ holds in the preceding step. As an example,
consider the variable wa in Figure 8: it is set by a delayed action (dashed edge), which is always
the case for control-flow variables of synchronous programs.

Second, additional data dependencies across macro steps which result from the default reaction
of memorized variables impose further problems: The required value of a local memorized variable
might be computed several steps before it is actually used in the computation of an output. Since
1 These definitions of the required variables of the outputs can be weakened if the system is accompanied by

a specification that implies that not all outputs are needed in all steps.
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module ABRO
(event bool ?a,?b,?r,!o) {

loop
abort {

wa: await(a);
||

wb: await(b);
emit(o);
wr: await(r);

} when(r);
}



true ⇒ t1 = wa ∧ wb ∧ a ∧ b

true ⇒ t2 = ¬wa ∧ wb ∧ b

true ⇒ t3 = ¬wb ∧ wa ∧ a

(t1 ∨ t2 ∨ t3) ∧ ¬r ⇒ o = true

start ∨ r ∨ (wa ∧ ¬a) ⇒ next(wa) = true

start ∨ r ∨ (wb ∧ ¬b) ⇒ next(wb) = true

t1 ∨ t2 ∨ t3 ∨ (wr ∧ ¬r) ⇒ next(wr) = true

Fig. 8. Quartz program and its synchronous guarded actions

these dependencies are not encoded in the ADG, the data-flow analysis must explicitly handle
these storage properties.

Third, the dependency graph is generally cyclic, even for programs which are commonly
referred to as acyclic in the synchronous languages community. For example, variable wa in
Figure 8 occurs on the left-hand side and on the right-hand side of the same action, which leads
to a pseudo-cycle in the dependency graph. For the execution of the synchronous program, this
cycle does not cause any problems, since the new value is fed back only in the following macro
step, but the definition of its required condition becomes recursive.

In order to determine reqx in the general case, we therefore need the vector µ-calculus. If the
dependency is across a macro step, we use the diamond operator of the µ-calculus: ♦reqx states
that there is a successor state in which x is required. To cope with the cyclic dependencies, we
use the fixpoint operator µx.f(x), which returns the least fixpoint of the given function f . This is
exactly the operation that we need in our computation, since we want to minimize the number of
states where reqx for some variable x holds.

The required conditions and their approximations can then be used in the subsequent code
generation step, which transforms the intermediate code to the target code. Our definitions are the
basis for the removal of passive code, which improves the run-time of the software code or the
energy efficiency of the hardware circuit. Depending on the realization, the information gained by
the data-flow analysis can be used as follows:

• The most obvious optimization is to eliminate passive code by using the required conditions to
strengthen the guarded actions. Any immediate action that writes x can be strengthened by
reqx, and any delayed action that writes next(x) can be strengthened by ♦reqx (which has to
be replaced by a program expression by solving the fixpoint equation system). This may speed
up the execution time of the system, but a potential drawback is the additional complexity of
the guards due to the additional effort for evaluation of the required conditions at runtime: One
has to carefully balance the additional effort against the savings.

• This directly leads to the second optimization: If the evaluation of guards is very complex, one
can weaken them by allowing the action to fire even if a variable is not needed. Any guard γ′

that is implied by γ ∧ reqx and still implies γ leads to a correct behavior.
• The elimination of passive code can be used to optimize the resource requirements of a given

system. Generally, a synchronous system needs dedicated resources for all actions that can
execute within the same macro step, e.g. if three guarded actions can be potentially run in
parallel, and each one of them needs a multiplier, three multipliers must be statically allocated
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module Interleaved
(bool ?i1 ,?i2 ,!y) {

event x1 , x2;
loop {

y = x2;
w1: pause;
y = x1;
w2: pause;

}
||
loop {

next(x1) = i1 & i2;
x2 = i1 | i2;
w3 : pause;

}
}



req
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µ
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x1
∨ req
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)

w1⇒
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start ∨ w2⇒
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start ∨ w2⇒
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start ∨ w3⇒
next(x1) =

i1 ∧ i2

start ∨ w3⇒
x2 = i1 ∨ i2

w3

start ∨ w3⇒
next(w3) =

true

i1 i2

Fig. 9. Source program, data dependency graph and equation system for requirement conditions

for the hardware realization in principle. If the strengthened guards exclude potential conflicts,
the common resource can be safely shared.

• Just as in traditional liveness analysis, the condition reqx can be exploited to determine an
optimal register allocation for the variables. Two variables x1 and x2 can be mapped to the
same register, if they are never required at the same time, which can be simply checked
by ¬(reqx1

∧ reqx2
). Apparently, the formula covers the special case to map two variables

of distinct scopes to the same register. This optimization is feasible for both hardware and
software realizations.

The example in Figure 9 illustrates the computation of the required conditions. The compiler
extracts from the source program given in the upper left corner the guarded actions which are
shown in the dependency graph on the right-hand side. Then, the guarded actions are used to
determine an equation system that defines the fixpoint to compute for the solution of the required
variables as shown of the left-hand side.

4.2.2 Semi-Symbolic Analysis [1]

The approach of the previous section is a general approach to find redundant computations in
a synchronous system. However, it turned our that it has two significant drawbacks: first, the
runtime of the analysis as presented in [21] (Section 4.2.1) may exceed an acceptable amount for
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realistic examples, while the conservative approximations given in [21] may be too coarse. Second,
even after a successful computation of the required conditions, an aggressive strategy which adds
these conditions to all guards can worsen the performance of the system significantly, and the
tradeoff between savings and additional effort of strengthened guards is generally very difficult
to analyze.

Therefore, [1] introduces an alternative approach, which is a conservative approximation of the
data-flow analysis of [21]. It exploits structural information of the synchronous systems by first
generating an extended finite state machine (EFSM) from the guarded actions of the synchronous
program, which are also the best starting point for the generation of fast sequential code from
synchronous programs.

EFSMs explicitly represent the state space of the control-flow: each state s represents a subset
Labels(s) ⊆ L of the control-flow labels, and edges between states are labelled with conditions that
must be fulfilled to move from the source state to the target state. Thus, EFSMs are a representation
where the control-flow of a program state is explicitly represented, while the data flow is still
represented symbolically (while synchronous guarded actions represent control flow and data flow
symbolically). Note that, in order to obtain efficient code, compilers also determine a control-flow
state for data-flow languages (i. e. Lustre or Opal) by converting a subset of the Boolean variables
[145].

4.2.3 SMT-Based Optimization [2]

This builds upon two pillars: (1) For modeling and verification of the embedded system, we use
synchronous programs that have many advantages, in particular, a formally defined semantics
with a deterministic concurrency, which is a necessary requirement for verification and static
analysis. Moreover, the absence of dynamic data structures allows a much better static analysis
of the runtime requirements. Thus, synchronous programs provide a good basis for our de-
sired combination of verification and optimization. (2) For the verification part, we use a SMT
(satisfiability-modulo-theory) prover [64, 109] as a backend. SMT solvers can efficiently check the
satisfiability of first-order formulas over so-called background theories.

The contribution of [2] consists in an optimization technique that employs verification for the
optimization of synchronous languages. This is not only done for verification of a performed
optimization step. In addition, we also generate verification goals during the compilation and
optimization process, and hand them over to a tightly coupled SMT-solver. The compilation
and optimization process continues according to the decisions made by the SMT solver. We will
demonstrate that we can this way achieve a significant improvement of the run-time performance
of the generated code. Our code optimization is not based on a particular source language. Instead,
it is based on a general intermediate code (synchronous guarded actions) so that our optimization
techniques can be applied to several source languages and are also independent of the later on
chosen target architecture.

4.2.4 Integration of Contributions [24]

This publications integrates all the publications of this section. Additionally, it gives a formalization
of passive code and the analysis so that the correctness of the presented optimizations can be
verified. Furthermore, it presents an optimized semi-symbolic analysis, which integrates the
computation of passive code with previous code generation scheme and thereby significantly
improves the practicability of our approach. The proposed approach is evaluated with the help of
several practical examples. Our F# implementation is based on our Averest framework, and we
use the SMT solver Z3 [198], which was directly connected via its .NET managed API.
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Synthesis

5.1 Context

In the area of synchronous languages, research over the last two decades has put its focus on
creating sequential code from the synchronous languages. Various compilers have been developed
(see Section 2.1.3): except for a translation to hardware circuits, they all target deterministic single-
threaded code in order to directly execute synchronous programs on simple micro-controllers
without using complex operating systems. Hence, generation of multi-threaded code is still an
open problem, which has not yet been considered in this area with only a few exceptions.

The mismatch between the synchronous model used for the development of a system and most
real-world implementation environments is apparent: embedded applications in the automotive
or avionic industry are based on a heterogeneous set of distributed processing elements. Similarly,
state-of-the-art microprocessors are no longer implemented on monolithic synchronous chips, and
are instead implemented as multi-core processors as a system-on-a-chip. Using these architectures,
it is in general not reasonable to maintain a global clock, since the speed of the individual
components significantly varies. As the slowest component defines the global speed, the resulting
performance would be unacceptable.

Thus, in addition to usual code generation, the synthesis of synchronous programs involves
the following aspects:

• First, the temporal desynchronization: The synchronous paradigm postulates that all micro-
steps of a system are executed simultaneously. In many cases, however, this restriction is too
strong: For example, if there is no dependency between two threads, then there is no reason
why both should be forced to run in synchronous locksteps. Instead, one could allow each
component to react as soon as possible to increase the overall performance of the system. As
different parts of the system will then execute parts of different macro-steps, their output values
must be resynchronized at the system boundary. This aspect is related to latency-insensitive
design (coping with different latencies).

• Second, desynchronization by lazy evaluation: In synchronous systems, all variables have a
unique value for each macro-step. This value is immediately available for all other parts of
the system. Obviously, not all values are always interesting for all other components. Instead,
depending on the current state, only some inputs are required to compute only some outputs
(that will be read by the other components). Hence, developers are interested in eliminating
unnecessary computation and communication between desynchronized components.

The following sections review some related work in this context.
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5.1.1 GALS Systems

As the name suggests, globally asynchronous locally synchronous (GALS) [99, 136] systems consist
of components, which follow internally the synchronous model of computation [74, 142], but
that work together in an asynchronous manner. The execution of a synchronous system consists
of a sequence of reactions R = 〈R0, R1, . . .〉 where all inputs are read and and all outputs are
immediately written by the synchronous system. Thus, it basically implements a function mapping
input tuples to output values depending on some local state. In contrast, communication between
components is asynchronous: there is no shared memory, and information is only exchanged with
the help of FIFO buffers. Thereby, the reactions of the individual components are decoupled, each
one triggering its own computation according to the availability of suitable input values.

GALS systems can be seen as a special case of dataflow process networks (DPN), which we
will use to describe our examples. The behavior of a DPN is usually described with the help of
firing rules, which are a simple operational description of a single local component. In each step,
the component basically matches the current content of the input buffers to the patterns given
in the left half of the table. Among the rows with matching input patterns, an arbitrary one is
selected, the matched input values are removed from the input buffers, and output values are
written to the output buffers according to the right half of this row.

In the case of GALS systems, the patterns on the left-hand side and the output list always
contain at most one token, since fully synchronous components are only allowed to read and
write at most one value for each signal in each reaction. For technical reasons, we add to the set of
data values D a special symbol �, which is used if no value is read or written in a particular step.
This will simplify the presentation in the following since we achieve this way that always exactly
one value is consumed and produced for each input and output signal even though the realized
system may not read or write the values denoted as �. Obviously, this special value � will never
be never transmitted in the implementation of the GALS system: matching � on the left-hand side
means to read nothing from the corresponding input channel, and a � in the output list means
that no value is produced for the corresponding output channel.

5.1.2 Endochrony and Isochrony

Encoding and transmitting empty messages (�) is not desired since it involves a large overhead
for implementations. Instead, as already mentioned above, these tokens representing the absence
of values are mapped to absence of transmission, i. e. we do not want to send and receive the �
tokens. However, in the following formalizations, we keep them to study the effect of delays on
the asynchronous communication channels. Obviously, as these � values align the streams in a
particular way, it is an interesting question, which systems still show the same behavior if we
introduce additional � values or remove them completely.

This fundamental problem of desynchronization has been addressed in previous work [67,
71, 72, 73, 206, 207, 208], and the notions of endochrony and isochrony are intended to solve this
problem. Before we continue with a discussion of these concepts, we first make some auxiliary
definition over streams, which we need to define these concepts.

Stretch and Flow Equivalence

In a GALS systems, local components generally run at different speeds, and some components
might have to wait for inputs to perform a reaction step. With the help of the � tokens, this can
be modeled by so-called silent reactions, i. e. reaction steps produced by firing rules where each
pattern has the form (� :: L) and each output is �. Thus, when a silent firing rule is fired, neither
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inputs are consumed nor outputs are produced. As these silent reactions do not contribute to the
real behavior, we often want to omit them.

Let x = Bhv(P ) be a behavior of process P , i. e. x is a tuple of streams x ∈ Streamm for all
variables in P . Then, the behavior stfree(x) is the one where all silent reactions of s have been
removed. Furthermore, we say that x and y (both in Streamm) are stretch-equivalent (x =st y) if and
only if stfree(x) = stfree(y). For example, (x1, x2, x3) =st (y1, y2, y3):

x1 0 2 � 6 � 10 . . .

x2 1 � � 3 � 2 . . .

x3 0 2 � 8 � 7 . . .

y1 0 � 2 6 � 10 . . .

y2 1 � � 3 � 2 . . .

y3 0 � 2 8 � 7 . . .

As already stated above, we want that components of the GALS system only consume and produce
real values (of domain D), and that � is never transmitted. To this end, we define for a stream
x ∈ Streamm another stream flows(x) where all � have been removed from x (i. e. the stream that is
visible in the actual implementation). Furthermore, we say that x and y are flow-equivalent (x =fl
y) if and only if flows(x) = flows(y). For example, flows(x1, x2, x3) = flows(y1, y2, y3) = (z1, z2, z3)

is:

z1 0 2 6 10 . . .

z2 1 3 2 . . .

z3 0 2 8 7 . . .

Obviously, stretch equivalence implies flow equivalence, i. e. x =st y → x =fl y, whereas the other
direction does not hold in general.

Endochrony

Now assume that the components work synchronously (i. e. still use the � tokens) and that the
communication is asynchronous (i. e. the � values are not transmitted). In order to perform a
synchronous reaction step correctly, each component must be able to reconstruct the inputs of
that step from the asynchronous communication, i. e. it must be able to reinsert the deleted �
values. Endochronous components have this property: they reconstruct reaction steps (up to
stretch-equivalence) in a unique way from the asynchronous input streams.

Following the formal definition of [241], we say that a synchronous component P is endochron-
ous if and only if for any behaviors ρ1, ρ2 ∈ Bhv(P )

ρ1=fl
inρ2 ⇒ ρ1 =st ρ2

where ρ1=flinρ2 is an abbreviation of ρ1|Vin =fl ρ2|Vin and ρ|Vin is the projection of ρ to the input
streams Vin of P . In words, the component P is endochronous if two flow-equivalent inputs lead
to stretch-equivalent behaviors of P .

In order to understand this definition, consider a variant of Berry’s Gustave function as given
in Figure 10. This component is endochronous, i. e. flow-equivalence of inputs implies the stretch-
equivalence of process behaviors. It reconstructs the alignment of streams by looking at all present
values at the inputs (without removing them), and then chooses the appropriate firing rule. For
example, if we have the input streams ((1 :: A), (0 :: B), (0 :: C)), the process glimpses all the
three inputs streams to finally see that the first firing rule will be chosen. For the next synchronous
reaction, the component takes the 1 for x1, the 0 for x0, and introduces a � for x3.
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x1 x2 x3 y

(1 :: A) (0 :: B) (� :: C) [1]

(� :: A) (1 :: B) (0 :: C) [1]

(0 :: A) (� :: B) (1 :: C) [1]

(0 :: A) (0 :: B) (0 :: C) [�]

(1 :: A) (1 :: B) (1 :: C) [�]

Fig. 10. Example: Gustave

If the component is represented by firing rules, as in our case, it is simple to check its endo-
chrony. For any pair of rules, we must check whether they do not overlap, i. e. if v1 and v2 are the
first values in the patterns of the rules, v1 6= �, v2 6= � and v1 6= v2. Intuitively, this input can then
be used to distinguish the situation where either rule is fired. The requirement that v1 and v2 are
not � ensures that we do not fire different rules depending on the delays in the streams: two flow
equivalent input behaviors should lead to the same result.

Endochrony is not compositional, i. e. if we merge two endochronous components, the resulting
component may not be endochronous. To see this, consider the trivial example cpy1, which only
forwards data values.

x y

(a :: A) a 6= � [a]

Obviously, cpy1 is endochronous. Now, we merge two of these components to a single component
cpy2: {

y1 = cpy1(x1)

y2 = cpy1(x2)

This composition destroys endochrony. We see that for cpy2 it is now the case that ρ1=inflρ2 holds,
but we do not have ρ1 =st ρ2.

ρ1
x1 1 2 3 � 5 . . .

y1 1 2 3 � 5 . . .

x2 8 4 2 � 3 . . .

y2 8 4 2 � 3 . . .

ρ2
x1 1 2 3 � 5 . . .

y1 1 2 3 � 5 . . .

x2 8 � 4 2 3 . . .

y2 8 � 4 2 3 . . .

As a consequence, we are not able to establish a unique synchronous execution for several
endochronous components.

Isochrony

As we are generally not able to reconstruct a synchronous reaction for several endochronous
components, we need another useful criterion in the context of desynchronization. Essentially,
a desynchronized system only needs to ensure that the reconstructed synchronization for a
component complies to one of the other components in the network. If several components agree
on their reconstructions, they are said to be isochronous. Formally, several components P1, . . . , Pn
are isochronous [241] iff

flows(Bhv(P1 ‖ . . . ‖ Pn)) = flows(Bhv(P1)) ‖ . . . ‖ flows(Bhv(Pn))

Note that the composition of flows on the right-hand side is an asynchronous composition, but
semantically it is the same as the synchronous composition (as the only difference is that the
streams that are composed are already free from � values). Isochronous compositions guarantee
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that the asynchronous composition generates a behavior that is flow-equivalent to the one of the
synchronous composition. Note that isochrony is not composable, i. e. composing two sets of
isochronous components is not necessarily isochronous. This is obvious since a single component
is always isochronous by definition so that compositionality would make all systems isochronous.

In example cpy2 (see Section 5.1.2), the composition of both cpy1 components is apparently
isochronous. Checking the property in general can be done by model checking [72, 241]. For all
reactions of the endochronous components P1, . . . , Pn, we must check that, whenever they agree
on the present shared variables (shared variables that are different to � in the current reaction),
then they also agree on all the shared variables. This guarantees that the receiver inserts � tokens
at exactly the same points of the stream where the sender at the other end of the asynchronous
communication channels has discarded them.
OpenMP is an API based on compiler directives for shared-memory parallel programming in
C/C++ and Fortran on multiple platforms. In our translation, we make use of some of its directives.
First, to create parallel code, we use the parallel sections directive, which marks a fork
in the current thread and thereby creates a new team. To describe each of its members, we use
the section directive. Second, to control race conditions between a team of threads, we use
the OpenMP directives shared and reduction. The shared directive declares variables to be
shared among all threads. In contrast, the reduction directive takes two parameters, a variable
and an operation, and attributes each thread its own local copy of the variable. Thus, accesses do
not require synchronization during the execution of the thread. Only when a thread terminates, it
requests exclusive write access to the global variable. Then, it performs the reduction operation on
the current value of the global variable and its local copy.

With these directives, generating OpenMP-based code from the task graph can be achieved
fully structurally: Task actions are translated into blocks in the C-code. If the task action is a simple
guarded action, a conditional statement is generated. If the task action is a team, we first generate
code for it and insert it at this point. For task teams, we first generate code for all its members and
then put each of them into a section directive of OpenMP, marking it as a separate thread. These
parts are concatenated and finally enclosed by a sections directive. For all variables, which are
shared among two or more members of the team, we need to add a reduction clause. Tasks, which
consist of a list a task actions, are simply translated to a sequence of C statements. The final task
structure just wraps the master task.

5.1.3 Pipelining

Pipelining is a simple principle for parallel computation that dates back to the late 1950s [172, 213].
It can be applied to all kinds of processes that repeatedly apply a sequence of actions α1; . . . ; αp
to an incoming stream of objects. Instead of processing single actions for each object one after
the other, a pipelined system processes p objects ot+p,. . . , ot+1 at every point of time t in parallel
and applies thereby the actions α1; . . . ; αp to these objects in parallel (i.e., action αi+1 is applied to
object ot+p−i at time t). Pipelining is generally used to increase the throughput of the system: Using
p pipeline stages, a theoretical speed-up by a factor p can be obtained [176] without increasing
the number of actors that perform the actions αi. Essentially all microprocessors are nowadays
implemented with pipelines to speed-up the processing of their instruction streams. However,
pipelining is a much more general parallel processing technique and can therefore also be used
to create pipelines of software threads. A very good survey on the architecture and analysis of
pipelines (which is absolutely worth reading for its historical viewpoint) can be found in [213].

To apply pipelining to a system description, we assume that the considered description consists
of a single loop whose loop body α1; . . . ; αp can be pipelined as outlined above [213]. Clearly,
this is a strong requirement that can, however, be always achieved by appropriate program
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transformations. As we will explain in the next section, our compiler for synchronous languages
is already able to perform this required program transformation which is one of our motivations
for choosing a synchronous language as starting point of our model-based design flow. A further
argument for using synchronous languages is that we typically find more concurrency in the
programs that allows us to generate more powerful pipelines compared to sequential programs.
Finally, the precise notion of time given by synchronous languages allows a formal analysis of the
correctness of the generated pipelines.

The generation of software pipelines as presented in this thesis should not be confused with
software pipelining [177]. The latter is a well-known technique to increase the degree of instruction-
level parallelism of loops in sequential programs by unrolling the loops and overlapping a couple
of loop bodies (if the data dependencies allow this). This approach is frequently applied by com-
pilers targeting VLIW or superscalar processor architectures [177] — especially for VLIW/EPIC
processors [131, 132, 133]. The difference between this software pipelining and our approach
is that our approach is applied to a level of abstraction much higher than the instruction level
considered typically in software pipelining: our pipeline stages are entire threads extracted from a
system description. Furthermore, we do not unroll loops to increase the level of concurrency, and
instead only partition the given set of synchronous actions into pipeline stages.

5.1.4 OpenMP

OpenMP is an API based on compiler directives for shared-memory parallel programming in
C/C++ and Fortran on multiple platforms. In our translation, we make use of some of its directives.
First, to create parallel code, we use the parallel sections directive, which marks a fork
in the current thread and thereby creates a new team. To describe each of its members, we use
the section directive. Second, to control race conditions between a team of threads, we use
the OpenMP directives shared and reduction. The shared directive declares variables to be
shared among all threads. In contrast, the reduction directive takes two parameters, a variable
and an operation, and attributes each thread its own local copy of the variable. Thus, accesses do
not require synchronization during the execution of the thread. Only when a thread terminates, it
requests exclusive write access to the global variable. Then, it performs the reduction operation on
the current value of the global variable and its local copy.

With these directives, generating OpenMP-based code from the task graph can be achieved
fully structurally: Task actions are translated into blocks in the C-code. If the task action is a simple
guarded action, a conditional statement is generated. If the task action is a team, we first generate
code for it and insert it at this point. For task teams, we first generate code for all its members and
then put each of them into a section directive of OpenMP, marking it as a separate thread. These
parts are concatenated and finally enclosed by a sections directive. For all variables, which are
shared among two or more members of the team, we need to add a reduction clause. Tasks, which
consist of a list a task actions, are simply translated to a sequence of C statements. The final task
structure just wraps the master task.

5.2 Contribution

5.2.1 Desynchronizing Synchronous Programs [11]

Several researchers have already considered the desynchronization of synchronous programs, as in
particular, the pioneering work of Potop et al. [72, 206, 207, 208]. Their definitions of endochrony
and isochrony, which are introduced in [72, 207], are intended to answer the question which
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systems can be desynchronized safely without additional effort while preserving the original
behavior with respect to trace-equivalence. As the original definitions lead to complex analyses
(in particular the analysis is not modular), a weak version has been defined [206], which is simpler
to check, but still sufficient in practice. Finally, [208] presents another variant, which is based on
the finer-grained model. While previous publications have used synchronous transition systems
at the macro-step level, the more intuitive level of micro-steps is used in [208]. This also transfers
the whole theory in a causal context, and sending and receiving of messages is explicitly visible.

In [11], we present a new method for the construction of desynchronized systems from a given
synchronous program. In contrast to the frameworks based on endochrony and isochrony, we
have a slightly different starting point and demand a stronger property preservation: we aim at
implementing a desynchronized system, which has exactly the same observable behavior at its
interface as the original synchronous system (in terms of bisimulation equivalence). However,
while the behavior observed at the interface is still the same, the internal implementation does
no longer follow the synchronous paradigm by computing for all variables values at every point
of time. Instead, values of internal variables are only computed if necessary, i.e. if required to
determine the outputs. Our main contribution in this context is the introduction of computation
modes which are responsible for the actual decoupling of the individual components. They are
the key to the elimination of unnecessary synchronization and computation, which are due to
the synchronous paradigm. In contrast to the previous approach, we do not try to eliminate
any designated value, but we aim at eliminating communication and computation that does not
contribute to the result. This approach is quite different to the omission of absence values: we
do not want the sender to decide which information is important, but the omission of values is
determined by the receiver.

5.2.2 Generation of Multi-Threaded Code [5, 6, 7]

In [6] we consider the problem of generating multi-threaded C-code from synchronous guarded
actions. Our contribution is a translation procedure from purely synchronous guarded actions to
multi-threaded OpenMP-based C-code. This is the first approach to translate imperative synchron-
ous programs to multi-threaded code for general-purpose multi-core processors. Thereby, our
implementation is still deterministic – for the same inputs we get the same outputs – independent
of the scheduling of the individual OpenMP threads. As the synchronization of threads usually
requires a significant amount of time, which can easily exceed the time for actual computation,
we try to keep the synchronization effort as low as possible in order to get a significant speed-up
from multi-threaded code. To this end, our code generation algorithm uses the data dependencies
as a starting point for a task structure, which represents a possible thread structure of the final
OpenMP-based C-code.

In [7], we consider the partitioning of system descriptions into threads, which are not necessar-
ily given by the original description. Instead, we show how threads can be automatically generated
from such a description to form a pipeline (see Section 5.1.3) whose stages are implemented by
the identified software threads. In this approach, we construct a data dependency graph of the
guarded actions and split it horizontally to form independent threads, whereas [6] split it vertically
into threads. Another important difference to [6] is that the threads generated by the horizontal
partitioning of the data-dependency graph communicate via FIFO buffers instead of a shared
memory which allows us to run them asynchronously in contrast to the threads in [6] (which
implement parts of one reaction step). The approach presented is therefore closer to Sutherland’s
micro-pipelines [240]. As the generated threads run asynchronously to each other, we moreover
change the model of computation: we generate delay insensitive [248] threads from a synchronous
program.
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In [5], we integrate and extends our the approaches presented in [6] and [7]: [6] extracts inde-
pendent parts of a synchronous program to extract concurrent threads, whereas [7] slices chains of
dependencies to create a pipelined system. We integrate both partitioning approaches so that an
arbitrary combination of concurrent and pipelined execution becomes possible. Furthermore, we
do not rely on a specific synthesis target: the partitioning and the communication infrastructure
are constructed in a target-independent intermediate format so that each component can be later
mapped to hardware or software, as well as the communication between them can be mapped to
appropriate protocols.

The contribution of [5] is twofold: First, it presents a partitioning of synchronous programs
into concurrent, desynchronized parts. Second, it provides an automatic synthesis of a generic
communication infrastructure between these components, which ensures that the implementation
still complies with the synchronous semantics of the original source program.

There is some previous work which has already considered the automatic distribution of
synchronous programs to an asynchronous network of processing elements: In [95, 137], a clock-
driven distribution of Lustre programs is presented which partitions and distributes the system
according to the clock that triggers each part. While this approach has shown to produce quite
efficient implementations, it may suffer from a significant drawback: Mutual data dependencies
between components may require that some component must be further decomposed into smaller
components, which may require in turn additional communication and synchronization effort. In
our approach, this is avoided by construction.

Related work appeared also in the implementation of digital circuits where the number of
cycles required to transmit a signal from one component to another can only be done when the
final layout has been derived. To this end, latency-insensitive [92, 93, 94] and synchronous elastic
systems [105, 106, 175] have been proposed to make the communication between the synchronous
modules independent of a global clock. We also make use of these ideas for distributing a given
synchronous system description into desynchronized components.

5.2.3 Translation to Data-Flow Process Networks [8, 9, 10]

In the publications above we showed how independent computations [6] and pipelining [7] can be
used to generate multi-threaded programs from synchronous systems. However, our translation
immediately created C code based on OpenMP, which imposes tight restrictions on the source code
structure. More closer is the approach presented in [5], which partitions a synchronous program
into concurrent components. Although the structure of the partitioned program resembles a
DPN, its semantics is different so that the nodes – in particular the designated merge nodes –
cannot be translated to DPN nodes without a heavy encoding. Moreover, we do not only translate
synchronous systems to DPNs, but we do also translate the resulting DPNs to a data-flow language,
showing the applicability of our approach.

The main contribution of [8] is a translation from synchronous systems to data-flow process
networks, thereby bridging the gap between two fundamentally different models of computations.
This makes it simpler to map synchronous systems onto distributed target architectures. Further-
more, we propose to use DPNs as an abstract intermediate representation before final synthesis to
concrete data-flow languages or multithreaded software. On the one hand, this separates concerns,
since the conceptual part, the switch of the model of computation, is clearly separated from the
technical part, which deals with the concrete APIs or differences on the target platforms. On the
other hand, this also gives us the possibility to reuse this translation as a common step for various
architectures.

We show the feasibility of our approach by a translation from DPNs to CAL [128], which is a
programming language of the OpenDF package. It provides many useful features, which will be
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also accessible to our synchronous systems: including the ability to create efficient multithreaded
software and VHDL code from CAL programs [83, 166]. Furthermore, the OpenDF package also
contains a simulator to investigate the behavior of single nodes and the complete system. A
highlight of OpenDF is an approach for HW/SW co-design [220]. In particular, [220] describes
how one can create code for heterogenous systems by translating nodes of a system separately to
different platforms.

In [10], we study how out-of-order execution, which is a well known technique from computer
architecture, can be used in the context of DPNs. As their nodes are executed many times, it
might be the case that the next execution must wait due to unresolved dependencies or lack of
resources, where the following one has no such problems and could be immediately executed.
This out-of-order execution avoids idle time and can speed up the program execution. As data is
now reordered, the approach involves additional effort to reorder the correct flow of output data.

Finally, [9] considers the problem to reduce the communication costs in DPNs that deal with
arrays. The main idea is thereby that we define for each array of the given program one process
node (called the writer of the array) in the DPN that is responsible for all write updates of the
array. Each node reading the array will maintain a local copy of the array and will receive from the
writer of the array the corresponding updates. While the array may be large, the updates typically
contain only a few assignments to array elements instead of the entire array. Depending on the
application, the presented approach automatically reduces the amount of data that has to be sent
through a DPN’s communication channels. It is not difficult to see that our proposed algorithm
is correct, so that we are able to automatically translate synchronous programs to deterministic
DPNs having this optimized use of arrays.

Typical examples of applications that benefit from the mentioned optimizations are all kinds
of embedded systems that deal with arrays. In particular, this covers multimedia applications or
more general applications that deal with digital signal processing. It is also not hard to see that the
approach can be applied to other non-scalar data types as well, but our experimental results are
currently limited to arrays, since these are the most important compound data types in embedded
applications.
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Verification

6.1 Context

As already discussed in Chapter 5, the desynchronization of synchronous systems has gained
attention [72, 94, 107, 207, 210]. Its basic idea is to use existing methods and tools for synchronous
systems throughout the whole development process, in particular, for modeling and verifica-
tion. A subsequent desynchronization step decomposes the system into several components to
implement a GALS system. Thereby, some synchronization logic is added so that the behavior
of the synthesized system corresponds to the original model. Previous publications have con-
sidered the desynchronization of synchronous programs, as in particular, the pioneering work
in [72, 206, 207, 208] (see Section 5.1.2). Their definitions of (weak) endochrony and isochrony
are intended to answer the question of which systems can be safely desynchronized without
additional effort while preserving the original behavior with respect to flow-equivalence of each signal,
i. e. each asynchronous channel will still transport the same sequence of tokens. Their main result
is that systems composed of endochronous components which are isochronous to each other can
be safely desynchronized without additional effort.

In Chapter 5, the effect of desynchronization to synthesis is addressed. In contrast, this chapter
shows the effects to verification.

6.1.1 Runtime Verification

Runtime verification [63, 148, 149, 151, 171, 187] is often a good compromise between formal
verification and testing. In runtime verification, one adds special components called monitors to a
system whose task is to check whether required properties are satisfied during the execution of
the system. For most standard temporal logics (at least for safety properties), a property ϕ can be
automatically translated to an equivalent monitor [130, 149, 151, 204]. The resulting component
can then either check the system online, i. e. the monitor and the system run in parallel (the typical
case), or offline, where the monitor checks a finite set of previously recorded executions.

A particular problem for runtime verification is that the decisions of monitors can only be
made on the finite history of the executions seen so far, while the semantics of temporal logic
formulas requires to consider the unknown infinite future as well. For this reason, many special
temporal logics have been developed [65, 66, 199, 204]. These logics extend the Boolean values true
and false by further logic values that denote some further information about the unknown future.
All of these logics still assume a synchronous composition with the monitors.

By definition of the semantics of temporal logics, the monitors run synchronously in parallel
to the monitored system. For this reason, one is forced to synchronize the monitor and the
monitored system so that both subsystems influence each other. Since the monitor often checks
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Fig. 11. Variants of monitors: centralized (left), decentralized (middle), and separate (right) monitors

the consistency with a less efficient but more readable specification, this typically slows down the
overall performance and therefore worsens non-functional properties of the system. The approach
presented later in this chapter removes this interaction even though the considered temporal logics
are still based on a synchronous semantics.

The mentioned problem has already been recognized by others who proposed less efficient
solutions. In particular, centralized and decentralized implementations of monitors (see Figure 11)
have been distinguished. A centralized monitor [110, 149, 150] runs as a separate component of the
monitored system, as shown on the left-hand side of Figure 11. If a synchronous composition is
used, the system inputs and outputs are synchronously transferred to the monitor and form a syn-
chronous state of the entire system. As already mentioned, a synchronous composition may slow
down the monitored system as the system might have to wait for the monitor for synchronization.
If asynchronous communication is used, then the monitored system has to send besides the values
of inputs and outputs additional information (like the presence and absence of values or altern-
atively their tags) to the monitor to allow it to reconstruct the synchronous computations. Thus,
an asynchronous implementation doubles the communication of the data transferred between
the monitor and the system. Furthermore, the monolithic view of the monitored system makes it
impossible to inspect the system components inside the system.

For monitoring distributed systems, a methodology generating decentralized monitors[101, 233]
has been proposed. The idea of decentralized monitors is to decouple a global property over the
system into local properties that are monitored in single components. As the system components
are running asynchronously, tagged messages are used for keeping the communicating processes
synchronized on system events. Some dedicated local data structures are used for keeping the
executions of components that are relevant to the monitored local properties. Although this kind of
monitoring is called decentralized, the monitor is tightly coupled to the monitored system so that
there is a potential interference that can again influence non-functional properties: For example,
the additional resources required by the monitor might violate the real-time requirements, thereby
possibly changing the functional behavior of the system. Moreover, in industrial systems, e. g. in
the automotive domain, many parts are supplied by third parties, IP designs, which cannot be
modified in general. Hence, neither centralized nor decentralized monitoring can be applied in
this context.
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Fig. 12. Simple desynchronization example

6.2 Contribution

6.2.1 Verification vs. Desychronization [10]

In [10], we addressed the problem that sometimes the guarantee that all signal flows are preserved
may not be sufficient – in particular, if the original synchronous systems has been proved correct
with respect to specifications given in temporal logics. As these properties rely on an alignment of
the signal flows, previously verification results are generally not valid any more. To illustrate the
problem, consider a very simple example (see Figure 12). Assume that we have a system which
consists of three parts: the first one only forwards its inputs to its outputs, whereas the other two
parts implement the same function f . Obviously, in this synchronous system the LTL property
G(z1 = z2) holds. However, after a desynchronization of the three parts, this is no longer the case
since z1 and z2 are generally delayed differently. However, there are other global properties, which
can be still guaranteed after the desynchronization. Assume that all signals in our example are
Boolean, and the function f is a simple negation. Then, the LTL property [z1 U x] will still hold in
the desynchronized system.

Hence, in contrast to previous work [72, 206, 207, 208], where desynchronization under flow-
preservation was explored, we consider a different problem in [10]: we aim at identifying which
LTL properties formally verified for a synchronous system are still preserved by desynchronized implement-
ations. Obviously, this is a very important question for model-based design which clarifies the
compatibility of verification and desynchronization.

Note that our approach is also different to other previous ones [114, 214], where the verification
is carried out on the GALS model (desynchronized model in our context). Our approach avoids
the analysis on the desynchronized model, which is generally more complex. In contrast, we
want to benefit from the synchronous abstraction of time by using the verification results from
the synchronous level, and our theory will guarantee that the gained results also hold in the
desynchronized implementation.

The main contribution of [10] is a method to check the preservation of LTL properties in
desynchronized implementations of a synchronous system. The core consists of a theorem which
gives us sufficient conditions to guarantee the preservation of already verified LTL properties. In
particular, this enables us to answer two questions: (1) Given a synchronous system S, an already
verified LTL property ϕ and a desynchronization of S, will ϕ hold in the desynchronization? (2)
Given a synchronous system S and an already verified LTL property, will ϕ be preserved in any
desynchronized implementation of S?

6.2.2 Runtime Verification vs. Desychronization [3]

Section 6.1.1 already showed the deficiencies of runtime verification in the context of desynchron-
ized systems. In [3], we therefore propose a different approach, which we call separate monitoring,
to the runtime verification of reactive systems that were originally based on a synchronous com-
position, but are then implemented as asynchronous/distributed reactive systems. We create
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separate components for the monitors (see Figure 11, right hand side) that run asynchronously to
the remaining components (that might also run asynchronously to each other). The components
of the system are not modified at all so that the real-time behavior of the system and most other
non-functional properties are preserved. In real systems, e. g. in an automotive application, the
monitor can be implemented on an additional control unit, snooping the vehicle bus for runtime-
verification. Obviously, to cope with asynchronous communication, we need to ensure additional
system properties so that the monitor always has a consistent view of the system state.

The main contribution of [3] is a methodology for separate monitoring of distributed reactive
systems that were obtained by desynchronization of an original synchronous composition of
modules that now run asynchronously to each other. Based on the theory of endo/isochronous
systems, we define the subclass of synchronous systems that can be separately monitored, and we
show how to construct an asynchronous monitor component for a given property. Surprisingly, it
turns out that even systems can be separately monitored that are not endo/isochronous.
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Modeling

7.1 Context

The synchronous model of computation imposes tight restrictions that lead to an unfortunate in-
flexibly of already created systems: An apparent drawback is the single abstraction layer provided
by micro and macro steps, which may lead to a possible over-synchronization in a synchronous
program. For example, compilers (at the back-end of the language) are challenged when generating
efficient code for programs consisting of sporadically communicating threads, since all parts of
the program implicitly synchronize after each step, even if there are no data dependencies. While
a static clock and data-flow analysis may be able to detect this effect and to desynchronize such
programs [11, 21], adding an explicit notion of independence makes it possible for compilers to
create desynchronized code without expensive analyses. Additionally, spurious synchronization
can be prevented by construction. Similarly, developers (at the front-end of the language) are
limited by the single temporal abstraction layer of the synchronous model of computation. It
abstracts from the causality and scheduling of the operations within a single macro-step but there
is no support for a more coarse-grained structure of logical time. For example, this immediately
causes problems if several existing modules of different abstraction levels should be combined.

Using a hierarchy of clocks in the system description is an apparent approach to tackle these
problems, while still preserving all advantages of the synchronous model of computation. A
crucial point in the design of a derived multi-clock model of computation is the construction of the
clock hierarchy. In general, one can distinguish three different alternatives for this: (1) new clocks
are created independently from each other and subsequently related by explicit clock constraints to
form a clock hierarchy, (2) new clocks are created by downsampling already existing clocks (bottom-
up hierarchy), and (3) new clocks are created by upsampling already existing clocks (top-down
hierarchy). While all alternatives seem to be equivalent at first sight, a closer look reveals that there
are significant differences. In particular, the last alternative bears an enormous potential, which
has not been used so far due to the lack of full support by state-of-the-art synchronous languages.

In this chapter, we present an extension of the imperative synchronous programming language
Quartz which gives developers the possibility to declare so-called subclocks. These subclocks are
the first full support of a top-down hierarchy of clocks. They are an appropriate means to refine
the temporal behavior of synchronous systems to avoid over-synchronization and to allow one
to exchange components with others having a different internal temporal behavior. Hence, clock
refinements provide additional degrees of freedom for synthesis and design space exploration. At
the same time, we preserve all desired advantages of the synchronous languages: fundamental
properties such as the input-output determinism are maintained as well as the fully orthogonal
structure of the programming language, which allows developers to arbitrarily nest all kinds of
statements.
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7.1.1 Multiple Clocks in Synchronous Models

The multi-clock extension of Esterel presented in [82] assumes a set of independent clock domains
communicating via signals. The semantics are given by a transformation to single-clocked Esterel,
where all clocks occur as additional inputs to the whole system. In this way, the determinism
of the system is achieved by relocating the clock triggers to the environment. For synthesizing
distributed systems, problems of clock synchronization still occur for the environment. Such
multi-clock systems are clock driven for each clock. In contrast, our subclocked systems are still
driven by a single clock and provide a logical refinement of clocks and steps. Furthermore, the
multi-clock extension is not orthogonal to all other statement, but bound to modules.

Multi-clocked systems can be also described by the synchronous language Lustre[143]. Each
Lustre program basically consists of a set of equations over data streams. In addition to functional
symbols and delays, there are two operators to change the rate of a stream. The downsampling
operator when takes a stream of arbitrary type and a Boolean stream and only keeps the events
of the first one at those instants in which the second one is true. Upsampling is done by the
current operator. This undoes a previous sampling operation and inserts in the missing locations
the last actual value. Thus, all clocks in a Lustre program are subsets of the so-called base clock.
Since upsampling only undoes the last downsampling, there is no mean to refine this base
clock. It contains all instants at which any computation or communication may happen. Lustre
specifications are completely deterministic due to their bottom-up design from the base clock. At
each of the sequentially ordered instants of the base clock, the clock calculus determines which
values must be computed.

In contrast, the polychronous language Signal[180, 181] has a different underlying model of
computation: while the syntax looks almost like Lustre, its semantic foundations are very different
due to its assumption that there is no base clock. In consequence, Signal specifications are relational
and not functional like Lustre: they do not describe a single behavior but several ones, which
differ in the clocks. Hence, Signal solves all the above problems. However, the price one has to pay
for this powerful model is that input-output determinism is lost in general. It can be guaranteed if
the program is shown to be endochronous or weakly endochronous. While endochrony proves
determinism by the existence of a base clock (usually called master trigger in this context), weak
endochrony also reveal some internal nondeterminism that can be safely exploited for a more
efficient execution.

7.2 Contribution

7.2.1 Clock Refinement [28, 30, 33]

In [28], we present an extension of the imperative synchronous programming language Quartz
which gives developers the possibility to declare so-called subclocks. These subclocks are the
first full support of a top-down hierarchy of clocks. They are an appropriate means to refine the
temporal behavior of synchronous systems to avoid over-synchronization and to allow one to
exchange components with others having a different internal temporal behavior. Hence, clock
refinements provide additional degrees of freedom for synthesis and design space exploration. At
the same time, we preserve all desired advantages of the synchronous languages: fundamental
properties such as the input-output determinism are maintained as well as the fully orthogonal
structure of the programming language, which allows developers to arbitrarily nest all kinds of
statements.

To overcome these problems, we propose the introduction of so-called subclocks, which allow
developers to divide macro steps on the system level into smaller steps — thus, macro steps are
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Fig. 13. Timing of single clocked and subclocked systems

no longer atomic. However, we do not make this abstraction visible to the environment of modules.
The system interface has the same timing behavior, while its internal implementation has more
freedom due to its internal subclocks. One instant on a clock level is divided into some smaller
steps of the lower clock level as shown in Figure 13 (b). Thereby, variables of subclocks can have
multiple values during a step on a higher level, but the variables are not visible to the higher level.
Similar to the distinction of micro- and macro steps, the computation which is done in one step, is
hidden to the higher level and only the result is visible. The advantage compared to micro- and
macro steps is that the clock hierarchy provided hereby can be arbitrarily deep nested.

It is possible to refine a clock by multiple unrelated subclocks. This leads to a tree of clocks
shown in Figure 13 (c), whereas only the marked branch of the tree provides the clocks shown in the
trace in Figure 13 (b). Unrelated clock domains must not share variables, but they can communicate
over variables declared on common superclocks. Thereby, they can run independently until a
clock tick of the common superclock arises, which enforces a synchronization of its derived clock
levels.

Finally, the main contribution of [30] is a structural operational semantics of our language
extension and a theorem that states that refined clocks preserve the input/output determinism
of the single-clocked synchronous model, while providing additional degrees of freedom for the
internal implementation and execution.

7.2.2 Adapting the Design Flow [29, 31, 32]

In [29], we consider the compilation of our imperative synchronous programs with refinement by
subclocks. The contribution of that paper is thereby twofold: first, we define a new intermediate
language based on synchronous guarded actions. This intermediate language resolves the complex
interaction of different statements at the source code level, so that back-end tools can better
concentrate on efficient analysis and code generation procedures. Second, we present a preliminary
compilation algorithm that translates the extended synchronous programs to the intermediate
language. Thereby, we focus on the compilation of complex control flow statements (such as
different kinds of preemption) in the context of different clock levels and do not elaborate on
special issues such as schizophrenic local variables or modular compilation.

While [29] presents a preliminary compilation scheme, it can only translate the control-flow of
a program completely. In particular, schizophrenia and causality problems could not be handled,
so far. We close this gap in [32], where these classical problems are considered in the context of
refined clocks. Its main contribution is a compilation procedure that copes with both problems
and translates a Quartz program to synchronous guarded actions with sub-clocks. To support
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the practicability of the translation, we show how hardware synthesis can benefit from these
sub-clocks to generate a synchronous circuit.

We generalize previous work on causality analysis of synchronous languages in [31]. Whereas
previous work relies on a single clock, i. e. logical time is divided into a sequence of equal instants,
our model of computation is more general: it allows the refinement of steps into substeps so that
we have a hierarchical partition of the program execution. Obviously, this requires a more difficult
causality analysis as events on different levels must be analyzed.

Our contribution is twofold: (1) we give a formal definition of causality for systems with
refined clocks, and (2) we list conservative approximations to quickly check the causality of a
system at compile-time.

7.2.3 Syntactic Sugar [16, 17]

These papers demonstrates the expressive power of the synchronous programming model in
that we show how different aspects like the description of the modular architecture, complex
properties as given by ω-regular properties similar to PSL and assume-guarantee reasoning can
be incorporated in a synchronous language. In particular, we show that regular expressions and
temporal logics can be easily translated to even more readable synchronous programs. Besides the
better readability of the specification, the main advantage is the possibility to use existing tools
for synchronous languages to simulate, verify, and debug the specified properties as well as the
program. Moreover, all translations to hardware and software already offered by compilers for
synchronous languages can still be used for hardware-software codesign. The article [17] is an
extended version of the paper [16].
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Integration

8.1 Context

8.1.1 Models of Computation

For the design of embedded systems, a plethora of languages based on different models of
computation (MoC) [70, 135, 167, 185, 186] have been proposed over the years. For example,
languages like Verilog [161], VHDL [163], and SystemC [162] are based on an event-driven
paradigm [97], synchronous languages [74, 142] such as Esterel [77, 80, 86], Lustre [96, 144], Quartz
[229], and some statechart variants are based on clock-driven paradigms, polychronous languages
like Signal [69, 134, 180] are based on a declarative and non-deterministic paradigm using several
clocks, data flow languages like CAL [127] are based on data-driven paradigms [182, 183, 184],
and others like SHIM [123] or most multi-threaded languages are based on asynchronous threads
with a rendezvous-style communication [155, 156].

Depending on a particular application domain such as digital signal processing or reactive
controllers, depending on the design task such as modeling, simulation, analysis or synthesis, and
depending on the synthesis target such as digital hardware circuits, multithreaded software or
software for heterogeneous MPSoCs, the one or the other language might be preferable. For this
reason, many existing components are given in different languages using different MoCs. The
co-simulation of such heterogeneous systems has been widely considered [84, 202, 222, 247, 258]
and covers also languages with different MoCs [100]. Co-simulation is also used to create virtual
prototypes that are required to achieve hard time-to-market constraints.

However, co-simulation alone is not sufficient for a seamless design flow. Formal verification
and a common synthesis of the different components require an integration that has gained
a lot of interest in recent years [129, 140, 147, 154, 173, 203, 223, 224, 253]. Moreover, having a
common description for the different components at hand, one can easily combine the components,
e.g. one can create new components by using existing ones in a hierarchical way as known in
block/schematic-oriented languages such as Simulink or those used by many tools for digital
hardware circuit design. This way, one is no longer restricted in a parallel composition of the
heterogeneous components by using appropriate wrappers. Instead, one can create a hierarchy of
modules that combine modules based on different MoCs. This allows one to establish a design
flow using several steps of refinement where asynchronous descriptions can become synchronous
by adding a schedule to clocks, and synchronous ones may become asynchronous again when one
considers the actions scheduled to one clock tick. Finally, one can re-use existing backend tools
for synthesis and verification and of course, simulation would be greatly simplified: Instead of
coupling different simulators, a single one could consider the entire system in a way it will later
on be verified and synthesized.
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8.1.2 Concurrent Action-Oriented Specifications

Concurrent Action-Oriented Specifications (CAOS) describe hardware circuits at a level higher
than RTL. They abstract from concrete timing and model the data-flow and causalities in the
system. In the following, we do not introduce their full syntax and semantics, we focus on simple
asynchronous guarded actions in the form of rules and methods, which are the language core and
sufficient to define other statements as simple syntactic sugar. We first give an overview of the
syntax before we describe their semantics in the next subsection.

Each CAOS model is defined over a set of explicitly declared variables V , which represent the
state of the modeled component. The behavior is described by a set of rules, which are guarded
atomic actions of the form ri : when(γi) Si , where γi is called the guard and Si is called the body
of rule ri.

rule r1 when(γ1) S1

...
rule rn when(γn) Sn

Provided that σ is a Boolean expression, τ an expression of appropriate type over the readable
variables, and x a writeable variable, the body S is one of the following statements:

nothing; (no operation)
x = τ ; (wire assignment)
next(x) = τ ; (register assignment)
S1 S2 (parallel composition)
if(σ) S1 else S2 (alternative)

CAOS provides two kinds of assignments: while wire assignments are immediately visible, register
assignments are committed with the current state update. Other CAOS formalisms (like Bluespec)
often distinguish these two variants by variable declarations, i. e. variables are declared either
as wires or as registers. We use the more general approach in which appropriate assignment
types distinguish between a state variable and a wire type variable. Several assignments can
be combined in the body by parallel composition, which is simply written as the concatenation.
Finally, alternatives in rules can be given by the if operator.

For the interaction with the environment, CAOS uses so-called methods, which are paramet-
erized rules. In addition to the local variables, the action of a method has access to the variables
specified in its parameter list. Traditionally, CAOS distinguishes so-called action methods, value
methods and action-value methods: as the name suggests, an action method executes an action, which
only transports data given by the parameters into the system, while a value method does not
change the system state and simply returns a value — thus, they only transport data from the
system to the outside. Action-value methods are just combinations of them. Frequently, it is re-
quired that the outputs of these methods do not depend on the inputs, since this can lead to cyclic
dependencies. We do not make this assumption here, since our translation target (synchronous
guarded actions) can deal with cyclic dependencies, and well-established analysis tools will spot
problematic situations.

method m1(p11, p12, . . .) when(γ1) S1

...
method mn(pn1, pn2, . . .) when(γn) Sn



8.1 Context 47

The CAOS semantics is very simple. After the initialization of all the variables, the following two
steps are repeated forever: first, the guards of all actions are evaluated with respect to the current
state. Among the actions whose guards evaluate to true, an arbitrary one is chosen and its body is
executed. The execution generally modifies the system state so that other actions will be possibly
activated in the following iteration. If no action is activated, the loop may be also aborted, since no
state change will occur from there on.

8.1.3 Polychronous Specifications

In contrast to synchronous systems, polychronous specifications [134, 180] are based on a partially
ordered model of time. Partially ordered time model allows one to express asynchronous com-
putations which possibly need to synchronize intermittently. As the name suggests, polychrony
makes use of several clocks, which means that signals do not need to be present at all instants.
Since the used clocks may not imply each other, polychronous models are not based on a linear
model of time, so that the reactions of a polychronous system are only partially ordered. Two
instants can be only compared on the time scale if both contain events of a shared signal x.

Another aspect of polychronous specifications is that they are relational, rather than functional.
A polychronous behavior is not described in an operational way, but rather, it is constrained by
relational clauses. Obviously, due to the relational approach, polychronous specifications are gen-
erally nondeterministic, when constraints do not sufficiently specify the suited functional behavior.
Even in the presence of the same input values, various temporal alignments, which comply to the
constraints, may lead to different output values. In contrast, synchronous modules deterministic-
ally react to any possible input configuration. The primary concern of a polychronous system are
the constraints to interface the system with possibly asynchronous inputs. This problem is solved
by, first, providing the specification of (possibly non-deterministic) input/output constraints and,
second, determining a solution by the automatic synthesis of a controller enforcing the specified
input/output timing constraints. Hence, polychronous models may be seen as specifications,
which describe a set of acceptable implementations. There are three different types of clauses,
which restrict the overall behavior:

• equations define the values of signals in terms of each other,
• clock constraints define the presence and absence of signals in an instant, i. e. how signals are

temporally aligned (We denote the clock of x by x̂, which holds if and only if x is present (i.e. x
has an event) in a given instant.), and

• causal dependencies describe the order in which the values of the signals are determined within

an instant (x
φ−→ y means that there is a dependency from x to y in all instants where φ holds.)

Each signal implicitly defines the dependency x̂
x̂−→ x, i. e. the status (presence or absence) of

a signal x must be known before we can determine its value. In the same way, operators and
equations also impose clock constraints and causal dependencies.

In the following, we use Signal programs as polychronous specifications, which generally
consist of a composition of several nodes. Each node has an input interface consisting of input
signals, an output interface consisting of output signals and several possible internal signals. Its
body is given by the composition of other nodes and/or a set of basic equations, which can be
built from one of the following four primitive operators:

Function. A general function 〈y := f(x1, . . . , xn)〉 can have an arbitrary number of inputs
x1, . . . , xn and an arbitrary number of outputs y1, . . . , ym. The output values are determined by
applying the given function to the input values. This node requires that all inputs have the same
clock, and it produces the outputs also at the same instant, i. e. x̂1 = . . . = x̂n = ŷ1 = . . . = ŷm.
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Obviously, there are causal dependencies from the inputs to the output of the node (each time

there are values), i. e. x1
ŷj−→ yj , . . . , xn

ŷk−→ yk.
Delay. The delay operator 〈y := x $ init c〉 has exactly one input x and one output y. Its

behavior consists of two micro steps: Each time a new incoming value arrives, it outputs the
previously stored value and stores the new value. For the initial value, the buffer simply returns
the given value c. By definition, the input and the output have the same clock, i. e. x̂ = ŷ. Since
the output never depends on the input of the same instant, this node does not impose any causal
dependencies.

When. The downsampling operator 〈y := x1 when x2〉 has two inputs, x1 of arbitrary type
and x2 of Boolean type, and one output y. Each time a new x1 arrives, it checks whether there is an
input at x2. If there is one and if it is true, a new output event with the value of x1 is emitted for y.
In all other cases, i. e. if x1 or x2 is absent or x2 has the value false, no event will be produced. Thus,
we obtain the following clock constraint ŷ = x̂1 ∧ x̂2 ∧ x2. As the input is immediately forwarded,

there is a causal dependency from x1 to y: x1
ŷ−→ y. Note that there is no dependency from the

second input x2 to the output y since it only influences its status - not its value.
Default. The merge operator 〈y := x1 default x2〉 has two inputs x1 and x2 and a single

output y. Each time an input arrives at x1, it will be forwarded to y. If there are events present
at both inputs in a particular instant, the value of x1 will be forwarded, and the value of x2 will
be discarded. If x1 is absent, and there is only a value for x2, x2 will be forwarded. Hence, the
operator always gives priority to its first input, i. e. we have the clock constraint ŷ = x̂1 ∨ x̂2, and

the dependencies x1
x̂1−→ y and x2

x̂2∧¬x̂1−−−−−→ y.
In addition to these basic nodes, programs may contain additional clock constraints to restrict

the behavior. For example, clocks can be declared to be equal x̂ = ŷ, mutually exclusive x̂⊕ ŷ, or a
clock can be declared to be a subclock of another one x̂→ ŷ.

process Counter =
(? integer n;
! integer o;)

(| c := o $ init 0
| o := n default (c−1)
| n ^= (when (c=0))
|)

where
integer c;

end;

Fig. 14. Signal Example: Counter

The idea of Signal is illustrated with the help of an example, which is given in Figure 14.
It implements a simple counter which has one input n and one output o. The intention of the
process is that for each input value n, the output values n, n − 1, . . . , 0 are produced. To this
end, the local signal c stores the last value of the produced output, whereas o is produced by
subtraction of 1 from c. If a new value for the input n arrives, the output is updated by this value.
The clock constraint n ^= (when (c = 0)) ensures that new inputs is read when the local signal
c reaches 0. Thus, the countdown is never aborted, and the initial value for the next countdown is
guaranteed to be read in time.
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8.2 Contribution

8.2.1 Interfacing SystemC [12, 18]

As a synchronous language, the execution of an Esterel program is divided into macro steps that
correspond with single reactions that are triggered by a common clock of a hardware circuit.
Each macro step is divided into finitely many microsteps that are all executed in zero time and
within the same variable environment. Hence, the execution of Esterel programs are driven in
a cycle-based fashion. Due to the instantaneous reaction of microsteps, causality problems may
occur if actions modify variables whose values are responsible for triggering the action. In order to
analyze the causality of programs, a fixpoint iteration may be performed to compute the reaction
of a macrostep. It is well-known that this fixpoint iteration is the ternary simulation [91] of the
corresponding hardware circuits. However, it has to be remarked that Esterel compilers usually
perform this fixpoint analysis at compile time, so that (1) more efficient code is generated and (2)
it is known at compile time that the iteration finally terminates with known values.

SystemC follows the discrete-event semantics that are well-known from hardware description
languages like VHDL [164] and Verilog [165]. A SystemC program consists of a set of processes
that run in parallel. SystemC distinguishes thereby between three classes of processes, namely
‘methods’, asynchronous processes and synchronous processes. Methods are special cases of
asynchronous processes that do not have wait statements. Asynchronous processes are triggered
by events, i.e., by changes of the variables on which the process depends, and they are executed as
long as variable changes are seen. For this reason, the execution of the asynchronous processes is
also a fixpoint computation that terminates as soon as a fixpoint of the variables’ values is found.
After this, the synchronous processes are executed once to complete the simulation cycle.

In [18], we outline the differences and similarities of synchronous languages like Esterel and
SystemC. In particular, we define classes of systems that can be easily described in both languages
in a way that allows one to structurally translate these descriptions into each other. This is the
result of the similarities that we have identified between the two languages. On the other hand,
the differences we will outline in the following may be interesting for those who work on later
versions of both languages. With [18], we therefore hope to stimulate the discussion between the
communities of SystemC and synchronous languages.

We address a broader scope in [12]. It provides a complete translation of synchronous programs
to SystemC so that modules written in synchronous languages like Esterel can be smoothly
integrated with SystemC. We implemented this translation for our synchronous language Quartz
[229] and applied it successfully to some standard benchmarks [38, 39, 78, 229] to reason about
programs with difficult causality cycles and schizophrenia problems.

The benefits of our translation are manyfold. First, it gives a detailed insight in the relationship
of both models of computation so that the research done in these communities can be combined,
and research/engineering results can be shared. For example, solutions that have been developed
to solve problems for synchronous languages (like causality problems) can be transferred to solve
corresponding problems of SystemC. In addition, these problems can now also be analyzed by
means of fast simulation using the SystemC simulation. Conversely, certain runtime problems
of SystemC programs can be solved by means of a fixpoint analysis that has been originally
developed for synchronous languages.

Of course, verification results obtained for a synchronous program are still valid after its
translation to SystemC, since our translation preserves the semantics. From a practical perspective,
a major advantage of our translation is the integration of synchronous components in a SystemC
description while preserving the synchronous semantics. For example, this can be used for fast
simulation or the generation of virtual prototypes. In addition to a very efficient simulation,
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the rich library of SystemC components including many microprocessors becomes available for
synchronous programming.

8.2.2 Clocked Guarded Actions [13, 14, 15, 42]

In [14], we propose clocked guarded actions as an intermediate representation to cover various
MoCs used for the design of embedded systems. This representation is in the spirit of guarded
commands, a well-established concept for the description of concurrent systems. With a theor-
etical background in conditional term rewriting systems [111, 139, 169], guarded actions have
been not only used in many specification and verification formalisms (e. g. Dijkstra’s guarded
commands [112], Unity [98], Murphi [113]) but they have also shown their power in hardware and
software synthesis (e. g. Bluespec [61, 157] and Concurrent Action-Oriented Specifications [158]).

To demonstrate the power of our approach, we sketch a design flow based on our intermediate
representation (see Figure 15): In particular, we show how different languages based on different
MoCs can be translated to clocked guarded actions (see Section 8.2.3).

The article [14] is an extension of a previous paper [13], which introduced clocked guarded
actions as a common intermediate representation. This is extended by introducing control-flow
contexts, which allows us to nest components in an arbitrary behavioral hierarchy, i. e. we can
call components from other components. Obviously, this has not only consequences for the
intermediate representation itself but also related tasks: the translation to the intermediate format
must be revised, and the procedure to link several components must be generalized.

Clocked guarded actions (CGA), which we propose in [14], provide a basis to integrate both
variants. As the name suggests, they are defined over a set of explicitly declared clocks C, which
define logical timescales the system uses to synchronize its computations so that asynchrony and
synchrony in the system can be precisely described. The basis of the whole temporal model are
so-called instants, i. e. the points of time where some event in the system occurs.

The actions of programs are scheduled to a set of instants (also called reactions or macro
steps [146]). The actions that take place within an instant (sometimes called micro steps) are not
explicitly ordered. Instead, micro steps are assumed to happen simultaneously, i. e. in the same
variable environment. Hence, variables seem to be constant during the execution of the micro
steps and only change synchronously at macro steps. From the semantical point of view, which
postulates that a reaction is atomic, neither communication nor computation take time in this
sense. In reality, all actions within an instant are executed according to their data dependencies to
establish the illusion of zero-time computations.
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8.2.3 Translations [22, 25, 26]

The design flow sketched 15 requires several translations, which have been addressed in several
publications.

The contribution of [26] is the provision of a compilation procedure from CAOS to synchronous
guarded actions. In contrast to previous work, which always considered the translation of the
model of computation and the scheduling simultaneously, our approach separates these two tasks.
From the original CAOS model, we do not construct one particular synchronous implementation,
but we create synchronous guarded actions that cover all possible implementations. Since this
model is deterministic, we encode the choice between all the possible schedules as additional
inputs to the system which are constrained by generated assertions. Thus, linking a scheduler
to the system which complies with the assertions results in one of the possible deterministic
synchronous implementations that implement the original CAOS model.

In order to construct the scheduler constraints, we formally define the correctness preservation
criterion, i. e. we fix the properties of the system which have to be obeyed by an implementation
so that it is considered to be valid with respect to the original CAOS model. In principle, all
previous definitions of conflict-free transitions had the same goal, but they were always made
with consequences for a specific implementation in mind. Since we do not want to make any
restrictions in advance, we aim at providing very general constraints, which are only implied by
the CAOS semantics.

The separation of concerns does not only provide a better theoretical understanding of existing
CAOS languages and synthesis tools such as Bluespec, but it also has many practical advant-
ages: The representation as synchronous guarded actions allows us to carry out many analyses
and optimizations known from the synchronous domain. In particular, specification and veri-
fication based on temporal logics becomes possible. Moreover, we can reuse synthesis tools for
synchronous guarded actions, which support hardware and software as targets.

The contribution of [25] is a translation algorithm that takes a SHIM-like program and gener-
ates asynchronous guarded actions for it. By translating SHIM to guarded actions, we leverage
many existing techniques for hardware/software codesign and formal verification. The approach
presented in [25] complements existing compilation techniques for SHIM, which focus on soft-
ware generation. Furthermore, by using the conflict analysis presented by Brandt et al. [26], the
SHIM approach can harness all the implementation and verification techniques developed for the
synchronous world.

Previous work focused mainly on software generation. Edwards and Tardieu introduced initial
ideas [123, 244, 245] and later refined them. For example, Edwards and Tardieu [124] showed how
threads can be statically scheduled to minimize the synchronization overhead in generated code.
Later, Edwards, Vasudevan, and Tardieu [125] use Pthreads as a target for software synthesis.
Edwards and Tardieu [123] sketch a rudimentary hardware generation, but only cover a subset of
the language. While deadlock detection [250] and buffer sharing [251] has been considered for
SHIM, much work remains to be done on formal verification and static analysis.

In [22], we focus on synchronous and asynchronous guarded actions. As already sketched
above, synchronous systems are based on the notion of steps. In each step, they read inputs, update
their state and produce outputs. These steps are atomic in the sense that synchronous systems
do not describe any relationship between the actions that are executed in a step; they abstract
from the causality, which is implicitly given by the data dependencies (e. g. one does not need to
give an evaluation order for the gates in a synchronous circuit). In contrast, asynchronous systems
do not have a predefined notion of time: they simply describe what actions follow another one,
i. e. they precisely describe the causality. Hence, the synchronous and the asynchronous models focus on
two different aspects: timing and causality.
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The main contribution of [22] consists of the presentation of transformations between these two
MoCs, which pave the way for a better exchangeability of synchronous and asynchronous models
in a flexible model-based design flow. As the previous explanations suggest, the transformation
from the synchronous to the asynchronous domain extracts causality, while the transformation in
the opposite direction maps actions to steps according to their dependencies.
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