
18.10.2013

White Paper - Investigate the high-level HDL Chisel

Florian Heilmann, Christian Brugger, Norbert Wehn

Microelectronics Research Group, University Kaiserslautern

Kaiserslautern, Germany

fheilman@rhrk.uni-kl.de, brugger@eit.uni-kl.de, wehn@eit.uni-kl.de

Abstract— Chisel (Constructing Hardware in a Scala

embedded language) is a new programming language, which

embedded in Scala, used for hardware synthesis. It aims to

increase productivity when creating hardware by enabling

designers to use features present in higher level programming

languages to build complex hardware blocks. In this paper, the

most advertised features of Chisel are investigated and compared

to their VHDL counterparts, if present. Afterwards, the authors’

opinion if a switch to Chisel is worth considering is presented.

Additionally, results from a related case study on Chisel are

briefly summarized. The author concludes that, while Chisel has

promising features, it is not yet ready for use in the industry.

Keywords—Hardware design; Chisel; VHDL; HDL

I. INTRODUCTION

Traditional HDLs were originally conceived to be hardware
simulation languages, not hardware synthesis languages.
Although more recent revisions and standards exist, the
versions supported by the most vendors are quite old (VHDL:
1993, Verilog: 2001). While they are still almost ubiquitously
used in the industry, their age and original intention puts them
behind current high level languages in terms of productivity
and flexibility. Chisel aims to provide a language embedded in
the Scala programming language to provide these new features
to hardware designers while, at the same time, speeding up
development by being able to generate fast simulations of the
design. This paper evaluates some of the advertised features of
Chisel, comparing their advantages in productivity and code
size to their VHDL counterparts, if present. Additionally, this
paper briefly discusses some difficulties with Chisel in its
current state based on a related case study on Chisel [7].

II. RELATED WORK

There exist many approaches to bring features from other
high level programming languages into hardware design to
increase productivity. One approach is to employ a higher level
language to serve as a macro processing language to generate
predefined blocks written in the underlying HDL language.
This simplifies hardware design by providing either
parameterization for commonly used hardware, or a simpler,
easier syntax. Examples for this approach are Genesis2, which
uses Perl to generate SystemVerilog blocks [1], JHDL which is
based on Java[2] or HML[3] which uses ML functions. The
disadvantages of these methods lie in the lack of connection
between the higher level language and the underlying HDL. If
no macro for a specific piece of hardware is present, the

designer can simply not use it. Another approach involves
using a language suited for the domain of the target application.
Examples include Esterel [4], which has been modeled for
reactive programs and DIL[5], which is an intermediate
programming language used to target pipelined reconfigurable
architectures like PipeRench. Moreover, there are languages
like BlueSpec[6] which is essentially a subset of
SystemVerilog putting emphasis on avoiding race conditions
by automatically generating scheduling and arbitration logic
from a set of “rules” which express synthesizable behavior.
These languages are usually designed to support a specific
design domain. This, however, leads to these approaches
performing poorly when used outside the domain they were
intended for.

III. ANALYSIS

This paragraph lists some of the most advertised advantages
of Chisel and explores their added benefit over VHDL.

A. Datatypes, Bundles, Interfaces

Chisel allows basic datatypes to be aggregated into bundles
to ease usage of bundled signals or create new datatypes.
Existing bundles can be subclassed to create a hierarchical
structure of datatypes, allowing code reuse and easy
revisioning. Bundles can be used in interfaces as well, either by
specifying direction at instantiation time (.asInput/
.asOutput) or in their definition. Bundles in interfaces can be
bulk connected, which makes wiring whole interfaces and
busses easy. Moreover the direction can be reversed easily by
using the built-in “.flip” keyword. VHDL provides similar
functionality, called records, but they neither support
subclassing, nor can the direction of their subelements be as
easily defined or changed as in Chisel. This makes bundling
wires and interfacing modules easier in Chisel while also
allowing for easy code reuse with hierarchical datatypes. Both
Chisel and VHDL support operator overloading for these types,
but Chisel makes it easier by automatically inferring bit widths
at compile time. This is also useful, if abstract functions
described in the next section are used.

B. Functions, Abstraction and Polymorphism

1) Abstract functions
 Reusing code requires that code to be as generic as
possible, ideally beyond the scope of a specific data type.
While functions exist in both Chisel and VHDL, Chisel also
allows for parameterized functions which can handle all data
types with a common superclass. This concept of
polymorphism is not present in VHDL, requiring the hardware

18.10.2013

designer to write the same function multiple times for each data
type to be used.

2) Functional Instantiation
Chisel also supports functional instantiation to quickly

connect small blocks within a larger design. Using a
constructor for e.g. a Mux2 object, the inputs and outputs can
directly be connected to signals in the surrounding block. No
comparable functionality exists in VHDL where modules are
always defined as entities which have to be wired at the
appropriate place in the code.

C. C++ Simulator

While producing synthesizable Verilog, Chisel can also
output a fast C++ simulator of the design. Case studies in [8]
show a speedup of up to 8x compared to a state of the art
simulation technique. This, however, was strongly dependent
on the simulated design, and the amount of cycles. Faster
speeds were only achieved when simulating millions of cycles
or more, with FPGA emulation being fastest if the simulation
exceeded billions of target cycles.

D. Memories and Black Boxes

Since hardware languages cater to a wide variety of target
hardware, IP cores provided by the foundry or the vendor
usually provide a more efficient implementation than the one
that tools can generate from the HDL. To embed IP cores,
Chisel provides objects called black boxes. Using a black box
in Chisel yields an empty module in Verilog, which can then be
implemented by using an external IP core. Unfortunately, no
simulation can be carried out if black boxes are used, since
they compile into an empty C++ object with inputs wired to
their outputs. It would be useful, to be able to either specify
C++ behavior and latency for the black box, or provide the
ability to embed C++ models for the IP cores which vendors
provide. A similar approach already exists for parameterized
caches and memories, where parameters like depth and
read/write delay can be used to specify detailed timing while
simultaneously providing the flexibility to either map to
behavioral Verilog or an externally provided instance. VHDL
uses vendor supplied block generators for memories and most
advanced arithmetic functions. While they provide easy
parameterization, the code is usually closed source and not
transparent to the hardware designer, who has to resort to the
documentation of the used block for details.

IV. CASE STUDY

Since the results of the previous section only explore the
advantages of Chisel in theory a case study on Chisel [7] was
carried out, where the programming language was evaluated
based on a real world implementation task. The Heston Model,
used by financial mathematicians to evaluate stock options,
was implemented in hardware. During this implementation
process, due to the early stage of development of Chisel, more
challenges presented themselves:

A. Languagy instability and revisions

Being in active development in its early stages, Chisel
syntax and functionality is subject to a lot of changes. This

leads to inconsistencies when using papers published early and
language tutorials of a more recent date. During the case study,
Chisel 2.0 was released, resulting in the aforementioned variety
of changes to the syntax and parameters. Ultimately, the
previously working implementation of the black box ceased to
work, giving irresolvable compile errors. The author believes
that these minor issues will be resolved as the language enters
future iterations and becomes more stable.

B. Missing functionality/arithmetic

The Heston Model requires a square root to be computed,
which was not possible with native Chisel syntax. The final
implementation used a black box for the square root, which
was later replaced with the Cordic IP block by Xilinx. This,
however, made the Chisel implementation unsuitable for
simulation, since the square root behavior could not be taken
over to the C++ simulator. This problem requires more effort
by the creators of Chisel, since the language has to be extended
to work around these problems, either by implementing the
missing functionality in Chisel itself, or by providing a more
sophisticated way to embed external solutions. Because of
this, comparisons could only be made in terms of code size and
implementation size after synthesis.

V. CONCLUSION

In this paper, Chisel, and its advertised benefits have been
compared to VHDL. In the end, the problems with the early
stage of Chisel were pointed out with the help of a case study.
At this time Chisel is still in early development and subject to
significant changes in terms syntax and function parameters.
While it provides advantages in terms of productivity and code
size (after an initial education period), the immaturity of the
language makes it not yet suitable for use in the industry.
Given more time, the author believes that the language is still
very promising and suggests a new evaluation once stable
syntax and documentation is achieved, because, in its current
state, Chisel already provides productivity benefits both in
terms of code reuse and general code size reduction with its
efficient syntax.

REFERENCES

[1] Shacham, O. et al. “Rethinking digital design: Why design must
change.”

[2] Bellows, P., Hutchings, B. “JHDL – an HDL for reconfigurable
systems”

[3] Li, Y., Leeser, M. “HML – a novel hardware description language and
its translation to VHDL”

[4] Berry, G., Gonthier G. “The Esterel synchronous programming
language: Design, Semantics, implementation”

[5] Budiu, M., Goldstein, S. „Fast compilation for pipelined reconfigurable
fabrics“

[6] Bluespec Inc. “Bluespec™ SystemVerilog Reference Guide: Description
of the Bluespec SystemVerilog Language and Libraries”

[7] Stumm C., “Investigate the hardware decription language Chisel”

[8] Bachrach J. et al. “Chisel: Constructing Hardware in a Scala Embedded
Language”

