
TU Kaiserslautern

Fachbereich Mathematik

Curve interactions in R2:

An analytical and stochastical approach

Benedikt Heinrich

Datum der Disputation: 31.10.2013

Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur

Verleihung des akademischen Grades Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation

1. Gutachter: Prof. Dr. Heinrich von Weizsäcker
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Chapter 1

Introduction

In the last few years a lot of work has been done in the investigation of Brownian motion with

point interaction(s) in one and higher dimensions. Roughly speaking a Brownian motion

with point interaction is nothing else than a Brownian motion whose generator is disturbed

by a measure supported in just one point. So in terms of measures we talk about point

measures or in terms of distributions about dirac-delta distributions. By careful reading one

can find the main stochastic results on this interactions in one dimension already in a paper

by Ito and McKean Jr. published in the year 1963, see [20]. There a Feynman-type formula

is proven which connects the question of point interaction in one dimension to a local time

of Brownian motion in this point, i.e.

Ex [f (Xt)] = Ex
[
f (Bt) e

−κLt
]

(1.1)

for suitable functions f . Here Bt is the usual one-dimensional Brownian motion and Lt the

associated local time process in the interaction point. The generator of such a process is

calculated explicitly given as restriction of the one dimensional Laplace operator to a set of

functions which have a jump in the derivative in the interesting point given by the value of

the function in this point. Also an stochastic interpretation of Xt is given: It is a process

which behaves like a Brownian motion up to a stopping time τ with conditional law e−κLt .

Later Albeverio et al. could prove that these generators are all self-adjoint extensions of

the one dimensional Laplace operator restricted to the set of infinitely often continuously

differentiable functions with compact support and function value zero in this point, see [2].

Now, using this result Albeverio et al. constructed the heat kernels of these extensions and

some similar extensions in two and three dimensions, see [1]. Based on this work Fleischmann

and Mueller constructed superprocesses connected to the extensions in the two and three

dimensional case, see [14], whereas Engländer and Pinsky constructed the superprocesses in

one dimension by a very different approach, see [10].
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The purpose of the present work is the generalization of these results to a curve interaction

of the two dimensional Brownian motion for a closed curve C. In view of the results of

Albeverio et al. in [2] for the case of point interactions we will understand a curve interaction

as a self-adjoint extension of the restriction of the Laplacian to the set of infinitely often

continuously differentiable functions with compact support in R2 which are constantly 0 at

the closed curve. This technical approach to curve interactions was chosen since there seems

to be no natural way to extend the interpretation of the point interactions as ∆ + αδ for

some real α and a suitable Dirac-delta distribution δ to a curve interaction. There is no

equivalent to the Dirac-delta distribution of one point in the case of a closed curve.

For a better understanding of curve interactions in R2 the first chapter gives a full description

of all required self-adjoint extensions. Based especially on a work by Posiliciano, see [27], it

is shown that these extensions are completely determined by a jump relation of the normal

derivatives and the function value on the curve, which are given as generalized sobolev traces

along the curve for the functions in the domain of the extensions. Moreover we will develop

conditions under which a given jump relation really describes a self-adjoint extension we are

interested in.

But if one has functions with a jump in the normal derivative along the closed curve, then

these functions are not C1-functions and therefore we cannot apply the classical Ito formula

to them. To calculate the stochastic differential of such a function we will prove in the

second chapter a generalization of Tanaka’s formula to R2. Tanaka’s formula gives us the

stochastic differential of the absolute value function in R which is a continuous function

harmonic outside 0 and having a jump in the first derivative at the point 0. Hence we

define g to be a so-called harmonic single layer with continuous layer function η in R2. This

function is continuous in R2, harmonic in the complement of our closed curve and has a

jump in the normal derivative which is given by the continuous function η along the curve.

For such a function g we prove

g (Bt) = g (B0) +

t∫
0

∇g (Bs) dBs +

t∫
0

η (Bs) dL (s, C) (1.2)

where Bt is just the usual Brownian motion in R2 and L (t, C) is the connected unique local

time process of Bt on the closed curve C, which is constructed for example in the work of

Blumenthal-Getoor, [4], pp.216.

On the one hand by use of (1.2) we can extend Ito’s formula to functions with a jump in the

normal derivative along C. This extension will be used in the later chapters to determine

the stochastic processes related to curve interactions. On the other hand we can show that

(1.2) holds for every parallel curve Cr of C and hence we can prove for suitable ε > 0 the



following Radon-Nikodyn property of L (t, Cr):

t∫
0

1Cε (Bs) ds =

ε∫
−ε

1

2
L (t, Cr) dr (1.3)

where Cε is just the set of points in R2 with distance less than ε to C. The proof of (1.3) is

then an analogue to the proof in the one-dimensional case given in the book of Chung and

Williams, see [5]. To the best of the author’s knowledge a proof of (1.3) has not yet been

published.

As already mentioned we will use (1.2) in the following chapter to construct classes of

processes related to curve interactions. The first class is just the generalization of (1.1), i.e.

we construct processes with

Ex [f (Xt)] = Ex
f (Bt) exp

− t∫
0

η (Bs) dL (s, C)


for non-negative and regular η on C. We show that the generator of Xt is given by

a curve interaction and that we have the same stochastic interpretation as in the one-

dimensional case, i.e. a Brownian motion up to a stopping time with conditional law

exp

(
−

t∫
0

η (Bs) dL (s, C)
)

.

The other class of processes we are looking for is a class of processes which does not exist in

the one point interaction case. Since L (t, C) gives us a new time scale on the closed curve

C we can take a process on C and add this movement in the time scale of L (t, C) to a usual

Brownian motion in R2. We end up with a process which behaves like a Brownian motion

in the complement of C and has an additional movement along the curve if the Brownian

motion hit C. Such processes do not exist in the one point case since there we cannot move

when the Brownian motion is in the point. By constructing the processes with additional

movement on C and show that the generator is given by a curve interaction we really see a

difference between point and curve interactions.

The next two chapters will deal with superprocesses related to some of the curve interac-

tions. In the first one we will show existence of superprocesses, in the second one for a

better understanding of the dynamics of these superprocesses an approximation by a system

of branching particles is shown.

The existence of superprocesses related to some curve interactions are established using the

results of the work of Engländer and Pinsky, see [10]. There it is shown that for ”nice” po-

tentials V we get superprocesses with generator ∆ + V . By establishing an approximation

of a curve interaction by operators of the form ∆ + Vn with ”nice” potentials Vn we are

able to deduce that the related sequence of superprocesses has a limit point which is again

a superprocess and has the curve interaction as generator. To be more detailed we prove for



a Hölder-continuous function η on the curve C the existence of a measure valued process Xt

such that for any bounded and continuous function g

Eµ (exp 〈Xt,−g〉) = exp

−∫
R2

u (t, x)µ(dx)


holds, where u (t, x) is the unique non-negative solution of

u (t, ·) =

∫
R2

g (y) p (t, ·, y) dy

+

t∫
0

∫
C

η (y)u (s, y) p (t− s, ·, y) dS(y) ds

−
t∫

0

∫
R2

α (y)u2 (s, y) p (t− s, ·, y) dy ds.

In the following chapter we will give an approximation of the superprocesses of chapter 5

and the superprocesses for the one dimensional point interactions constructed in [10]. This

approximation gives a better understanding of the related mass creation. Based on the fun-

damental work of A. Etheridge, see [12], we can prove that the approximation is given via

a different mass creation of the branching particles w.rt. to the interaction point or curve,

respectively. If the branching particles die outside of an ε-neighborhood of the point or the

curve, respectively, no additional mass creation will happen. But if the particles die inside

of the ε-neighborhood we will get additional mass creation given by the ”strength” of the

interaction, i.e. for the one dimensional case the prefactor of the dirac-distribution and in

the case of the curve interactions the continuous function η. If we fix now the additional

mass creation and choose the right proportion of ε ↓ 0 and the lifetime of the branching

particles tending to zero we can show that in the limiting case we just get the interactions

we are interested in. Hence a point or curve interaction is nothing else but a super Brow-

nian motion with additional mass creation near the point or the curve, respectively. The

interesting point here is that we do not need the existence of a local time for performing the

approximation. So maybe one can use this result to find a branching particle approximation

of the superprocesses constructed by Fleischmann and Mueller in [14]. There we do not

have a local time process since singular points are polar sets of Brownian motion in higher

dimensions.

In the last section a new and short proof for the explicit formulas of the moments of a one-

dimensional Brwonian local time which are given e.g. in a paper of Takacs, [31] is presented.

The proof based on the interpretation of the point interaction via the semigroup

Ex [f (Xt)] = Ex
[
f (Bt) e

−κLt
]



given in the work of Ito and McKean, [20], and the explicit formula for the heat kernel of the

point interaction given by Albeverio et al. in [1]. Hence we are able to calculate Ex
[
e−κLt

]
by choosing f ≡ 1 in Ex

[
f (Bt) e

−κLt
]
.





Chapter 2

Self-adjoint extensions

As mentioned in the introduction we will understand a curve interaction as a self-adjoint

extension of the Laplace operator restricted to functions which are zero at the curve. These

functions do not “feel” the curve and hence any singular perturbation of the Laplace opera-

tor via the curve does not have any influence to such functions. Thus it seems to be natural

to understand curve interactions as extensions of such restricted Laplace operators.

The idea of treating singular interactions with the help of self-adjoint extensions is pre-

sented in all its details in a joint work of S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H.

Holden, see [2]. There all possible point interactions of the Laplace operator in dimensions

one, two and three are presented with the help of extension theory. The main advantage of

this technical approach is the big box of mathematical tools to handle self-adjoint operators.

For example, it is shown in the appendix of [2] that one can calculate the difference of the

resolvent operators of two different self-adjoint extensions in an explicit form. Thus if one

knows one self-adjoint extension and its resolvent operator one can easily answer questions

on spectral properties or semiboundedness of the other self-adjoint extensions with the help

of classical statements on self-adjoint operators, see e.g. [28].

Our aim in the present work is the construction of the self-adjoint extensions and a under-

standing with the help of boundary values. We will see that we can understand all self-adjoint

extensions as restriction of the distributional Laplace operator to sets of functions with suit-

able boundary values. The biggest difficulty in treating these boundary conditions arises in

the fact that the boundary values only exist in a fractional Sobolev space of negative order

on the curve C, i.e. the boundary values are only distributions.

The structure of the chapter is as follows: First of all we have to give mathematical pre-

liminaries which we need for the construction and a better understanding of the self-adjoint

extension. For example we will give the definition of fractional Sobolev spaces along C. The
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next step is to construct the self-adjoint extensions in a general form using the results of

A. Posiliciano, see [27]. Afterwards we will give an equivalent description with the help

of boundary values. The last part is dedicated to the question how we can check if some

boundary condition we have in mind really gives us a self-adjoint extension.

Preliminaries For analyzing the self-adjoint extensions we need the following technical

framework.

For the whole of the present work let C ⊆ R2 denote a closed, C2,α-curve with Lebesgue

measure zero in R2, where α > 0 is a Hölder parameter, i.e. the second derivative of the

parametrization of C is Hölder-continuous with parameter α.

Denote by H2,2
(
R2
)

the Sobolev space of second order in L2
(
R2
)
,i.e.

H2,2
(
R2
)

=
{
f ∈ L2

(
R2
)

: Dβf ∈ L2
(
R2
)

for every multiindex β, s.t. |β| ≤ 2
}
,

where Dβ is given by

Dβ =
∂β1

∂β1
x1

∂β2

∂β2
x1

.

For the rest of the work fix the notation ∆ for the Laplace operator.

The spaces Hs (C) The space Hs (C) for any real s is constructed in the following form,

see [23], Ch.1, Section 7.3:

Let ∆LB denote the negative definite Laplace-Beltrami operator on L2 (C) and for the self-

adjoint operator −∆LB + 1 one can define

〈f, g〉Hs(C) = (f, (−∆LB + 1)
s
g)L2(C)

for elements of C∞ (C). Hs (C) is then the completion of C∞ (C) with respect to this scalar

product.

Using this construction one regards for the restriction of (−∆LB + 1)
3/2

to C∞ (C) an unitary

extension as mapping from Hs (C) to Hs−3 (C) which we will denote by Λ. For further details

of this construction see [23], Ch.1, Example 2.4.

The trace operators and normal derivatives For f ∈ C∞
(
R2
)

and x ∈ C denote by(
∂

∂n+
f

)
(x) = n (x)ext · ∇f (x)

the outer normal derivative and by(
∂

∂n−
f

)
(x) = n (x)int · ∇f (x)

the inner normal derivative of f along C and by

(µf) (x) = f (x)



the restriction of f to C,respectively. Here nint is the inner, next the outer normal vector on

C.

The operators

τ : H2,2
(
R2
)
→ H3/2 (C)

γ+ : H2,2
(
R2
)
→ H1/2 (C)

γ− : H2,2
(
R2
)
→ H1/2 (C)

are defined as unique, bounded and surjective extensions of the operators µ, ∂
∂n+ and ∂

∂n− ,

respectively, see [23], Ch.1, Section 8.2. These operators are called trace operators.

Later on we will see that it is not enough to know trace operators for these Sobolev spaces.

We will have less regularity. Hence denote by Ω the inner domain of C and take

W =
{
f ∈ L2

(
R2
)
∩H2,2

loc

(
R2\{C}

)
: ∆f ∈ L2 (Ω) , ∆f ∈ L2

(
R2\Ω

)}
.

The Laplacian here is understood in the sense of distributions and H2,2
loc

(
R2\{C}

)
is defined

in the following form

H2,2
loc

(
R2\ {C}

)
={f ∈ L2

(
R2
)

: ∀ multiindex β, s.t. |β| ≤ 2 ∃ vβ,f ∈ L2
(
R2
)
, s.t.∫

R2

fDβgdx = (−1)
|β|
∫
R2

vβ,fgdx ∀g ∈ C∞0
(
R2\{C}

)
}.

It is proven in [23], Ch.2, Section 6.5, for the inner domain of C, and in [18], Theorem 9.20,

for the outer domain of C, respectively, that one can extend the operator τ to an operator

τ̃+,− : W → H−1/2 (C)

where + represents the extension from the outer domain and − the extension from the

inner domain, respectively. These extended trace operators are sometimes called generalized

Sobolev trace operators.

Since τ̃+ and τ̃− are the results of two different extension procedures, namely the extension

from the outer domain and the extension from the inner domain, it is not necessarily true

that

τ̃+f = τ̃−f.

But if this is the case we just write τ̃ f .

In the same way see [18], Theorem 9.20, the operators γ+ and γ− can be extended to

operators

γ̃+ : W → H−3/2 (C)

and

γ̃− : W → H−3/2 (C) .



In the following work the jump operator κ defined as

κ = γ̃+ + γ̃− (2.1)

plays an important role in the description of our self-adjoint extensions. The titling jump

operator for κ is quite natural since κ represents the difference between the outer and the

inner normal derivative, respectively. We have to take here the sum of the derivatives to get

the difference since the derivatives are directed derivatives in diametrical directions which

implies for differentiable functions that
(

∂
∂n+

)
= −

(
∂

∂n−

)
and thus the sum represents the

jump in the normal derivatives. For the reader which are familiar with the classical jump

operators in potential theory we remark that the classical jump operator defined as the

difference of the outer and the inner limit of the inner normal derivative is nothing else but

−κ. For further information about the classical jump operator and the normal derivatives

involved see e.g. [30].

Remember, for a bounded domain U ⊆ R2 with boundary Γ (U) and f, g ∈ H2,2 (U) Green’s

formula states

〈∆f, g〉L2(U) − 〈f,∆g〉L2(U) =

〈(
∂

∂n−
f

)
, τ (g)

〉
L2(Γ(U))

−
〈
τ (f) ,

(
∂

∂n−
g

)〉
L2(Γ(U))

.

It is shown in [23], Ch.2, Section 6.5, that this formula holds for elements of W restricted

to Ω by replacing τ and ∂
∂n− by its extensions τ̃−f and γ̃− : W → H−3/2 (C), respectively.

For the outer domain Green’s formula holds for functions with compact support and there

we can also exchange the classical trace operators by its extensions, see e.g. [18], Theorem

9.21.

2.1 The operator T

In the following we want to give a precise definition of the operator whose self-adjoint

extensions we want to determine. Afterwards we will show with the help of the fundamental

results in [27] how we can represent the self-adjoint extensions in a general form. In a last

step we use the operator κ to give a description of the self-adjoint extensions with the help

of boundary conditions.

The operator T We are looking for the self-adjoint extensions of the operator

T : D (T ) ⊆ L2
(
R2
)
→ L2

(
R2
)

Tf =
1

2
∆f

with

D (T ) =
{
f ∈ C∞0

(
R2
)

: τ (f) = 0
}
.



It is obvious that

L : H2,2
(
R2
)
⊆ L2

(
R2
)
→ L2

(
R2
)

Lf =
1

2
∆f

is a self-adjoint extension of T and therefore the existence of self-adjoint extensions of T is

clear.

The theory of self-adjoint extensions Following the work of Posiliciano, see [27], The-

orem 2.1, we get the self-adjoint extensions in the following way:

For z ∈ ρ
(

1
2∆
)
, the resolvent set of ∆, define

G (z) : H3/2 (C)→ L2
(
R2
)

G (z) =

(
τ

(
−1

2
∆ + z

)−1
)∗

where ∗ denotes the Hilbert space adjoint.

It was shown, see [27], that there is a family of bounded, linear operators

Γ (z) : H3/2 (C)→ H3/2 (C)

with the properties

Γ (z)
∗

= Γ (z)

Γ (z)− Γ (ω) = (z − ω)G (ω)
∗
G (z)

for ω ∈ ρ (∆).

Remark 1 It is also shown that one possible choice of Γ is

Γ (z) = τ (G (α)−G (z))

for α ∈ R∩ρ (∆). For the rest of this chapter we will take Γ (z) in this form for one arbitrary

but fixed α ∈ R ∩ ρ (∆).

For the description of all self-adjoint extensions we need even more technical framework.

Take an orthogonal projection

Π : H3/2 (C)→ V ⊆ H3/2 (C)

and a self-adjoint operator

θ : D (θ) ⊆ V → V

where V is the range of Π. Define

ΓΠ,θ (z) : D (θ) ⊆ V → V



by

ΓΠ,θ (z) = θ + Π (Γ (z)) Π

and take z ∈ ρ
(

1
2∆
)

such that 0 ∈ ρ (ΓΠ,θ (z)).

Remark 2 That we can find a z ∈ ρ
(

1
2∆
)

such that 0 ∈ ρ (ΓΠ,θ (z)) is also shown in [27],

Theorem 2.1.

The self-adjoint extension TΠ,θ of T is then given by

D (TΠ,θ) =
{
φ ∈ L2

(
R2
)

: φ = φz +G (z) Π
(

ΓΠ,θ (z)
−1
)

Πτφz, φz ∈ H2,2
(
R2
)}

(2.2)

with the calculation rule

(−TΠ,θ + z)φ =

(
−1

2
∆ + z

)
φz.

This definition is z-independent and the decomposition of φ is unique, see [27], Theorem

2.1. It was also shown that one gets all self-adjoint extensions in this way.

To understand the self-adjoint extensions it seems to be necessary to investigate the operator

G (z).

The properties of G (z) We will start with a description of D (T ∗) and then we will show

how we can use the operator κ to describe G(z).

In the following denote by R(·) the range and by N (·) the kernel of an operator, respectively.

Lemma 3

D (T ∗) = {f ∈W : τ̃−f = τ̃+f}

T ∗f =
1

2
∆f

Proof. Following [7], Ch.XIII.2, we get T ∗f = 1
2∆f and D (T ∗) ⊆ W , hence we only have

to show the boundary condition τ̃−f = τ̃+f .

“⊆” Denote by d (x, C) the distance of a point x ∈ R2 to C. Define the set Cε by

Cε = {x ∈ R2 : d (x, C) < ε}



Take g ∈ D (T ) and f ∈ D (T ∗). Then by Green’s formula

0 = (Tg, f)L2(R2) − (g, T ∗f)L2(R2)

= lim
ε→0

[
(Tg, f)L2(R2\{Cε}) − (g, T ∗f)L2(R2\{Cε})

]
= lim
ε→0

[(
1

2
∆g, f

)
L2(R2\{Cε})

−
(
g,

1

2
∆f

)
L2(R2\{Cε})

]

=
1

2

(
〈γ+ (g) , (τ̃+) f〉L2(C) − 〈τ (g) , (γ̃+) f〉L2(C)

)
+

1

2

(
〈γ− (g) , (τ̃−) f〉L2(C) − 〈τ (g) , (γ̃−) f〉L2(C)

)
.

But g ∈ D (T ) and therefore τ (g) = 0 and we have that g is continuously differentiable

and hence there is no jump in the normal derivatives along C and hence the outer normal

derivative is just the negative inner normal derivative. Therefore we got

〈γ+ (g) , (τ̃+) f〉L2(C) − 〈τ (g) , (γ̃+) f〉L2(C) + 〈γ− (g) , (τ̃−) f〉L2(C) − 〈τ (g) , (γ̃−) f〉L2(C)

= 〈γ+ (g) , (τ̃+ − τ̃−) f〉L2(C) .

The assertion follows now by the definition of the operator γ+. This argument will be shown

in detail in the proof of Lemma 2 in the case of the operator τ .

“⊇” Obvious. Take g ∈ D (T ) and make use of Green’s formula. �

In [27], Theorem 2.1, it was shown, that G (z) (·) ∈ R (−T + z)
⊥

. This is equivalent to

G (z) (·) ∈ N (−T ∗ + z) and therefore G (z) (·) fulfills the so-called Helmholtz-equation in

R2\{C}, i.e. (
−1

2
∆ + z

)
G (z) (·) = 0

in R2\{C}.

Lemma 4 For any possible choice of z we have κ (G (z) f) = 2Λf in H−3/2 (C).

Proof. Take g ∈ C∞0
(
R2
)
. Calculate〈(

−1

2
∆ + z

)
g,G (z) f

〉
L2(R2)

in two different ways:

By the section above G(z) =
(
τ
(
− 1

2∆ + z
)−1
)∗

and therefore

〈(
−1

2
∆ + z

)
g,G (z) f

〉
L2(R2)

= 〈τ (g) , f〉H3/2(C)

= 〈τ (g) ,Λf〉L2(C) .



Here 〈·, ·〉L2(C) denotes the L2 (C)-dual pairing.

By the Helmholtz-equation, the regularity of g and Green’s formula one gets:〈(
−1

2
∆ + z

)
g,G (z) f

〉
L2(R2)

=

〈(
−1

2
∆ + z

)
g,G (z) f

〉
L2(R2)

−
〈
g,

(
−1

2
∆ + z

)
G (z) f

〉
L2(R2)

=

〈(
−1

2
∆

)
g,G (z) f

〉
L2(R2)

−
〈
g,

(
−1

2
∆

)
G (z) f

〉
L2(R2)

=
1

2
〈τ (g) , (γ̃+ + γ̃−)G (z) f〉L2(C) −

1

2
〈(γ̃+ + γ̃−) (g) , τ̃G (z) f〉L2(C)

=
1

2
〈τ (g) , (γ̃+ + γ̃−)G (z) f〉L2(C) .

Now the assertion follows by the definition of the operator τ as unique, bounded and surjec-

tive extension of the restriction operator µ. Hence for g ∈ H3/2 (C) it exists gn ∈ C∞0
(
R2
)

such that τ (gn)→ g in H3/2 (C). Therefore, since Λf and 1
2 (γ̃+ + γ̃−)G (z) f ∈ H−3/2 (C),

we have〈
g,Λf − 1

2
(γ̃+ + γ̃−)G (z) f

〉
L2(C)

= lim
n→∞

〈
τ (gn) ,Λf − 1

2
(γ̃+ + γ̃−)G (z) f

〉
L2(C)

= 0

and the lemma is shown. �

By [6], it can be seen that G (z) f = Sz (Λf), where Sz (·) is the so called acoustic single-layer

potential. There it is mentioned that the operator G (z) can be written as integral operator

along C with the fundamental solution of 1
2∆ + z as integral kernel. This result gives us a

nice representation of G (z) f for f ∈ H3 (C):

(G (z) f) (x) = (Sz (Λf)) (x) =

∫
C

(Λf) (y)K2z (x− y) dS(y)

Here Kz is the so-called MacDonald function, see e.g [17], pp.951.

2.2 The self-adjoint extensions of T

The section above gives us a new description of the self-adjoint extensions of T by the use

of the proven jump relations. For the description we need the following lemma

Lemma 5 We have

D (T ∗) ∩N (κ) = H2,2
(
R2
)
.

Proof. Take φ ∈ H2,2
(
R2
)

then

κ (φ) = (γ̃+ + γ̃−)φ = (γ+ + γ−)φ



by the definition of γ̃± as extensions of γ±. Due to [23], Ch.1, Remark 7.3 we have that

C∞0
(
R2
)

is dense in H2,2
(
R2
)
. Take a sequence φn ∈ C∞0

(
R2
)

which converges to φ in

H2,2
(
R2
)
. Then we have

κ (φ) = lim
n→∞

(γ+ + γ−)φn = lim
n→∞

(
∂

∂n+
+

∂

∂n−

)
φn

by the definition of γ± as bounded extensions of ∂
∂n± . But φn ∈ C∞0

(
R2
)

hence it has no

jump in the derivatives and therefore

κ (φ) = lim
n→∞

(
∂

∂n+
+

∂

∂n−

)
φn = 0

Take now φ ∈ D (T ∗)∩N (κ). It is mentioned in [27], Theorem 3.1 that we can write every

element φ of D (T ∗) as

φ = g +G(i)h1 +G(−i)h2

for g ∈ H2,2
(
R2
)

with τ (g) = 0 and h1, h2 ∈ H3/2 (C). Due to Lemma 2 and the first part

of this proof we have

κ (φ) = 2Λ (h1 + h2)

If we now assume that κ (φ) = 0 we have 2Λ (h1 + h2) = 0 and this implies by the unitarity

of Λ that h2 = −h1 in H3/2 (C). Hence

φ = g + (G(i)−G(−i))h1.

But it is shown in [27], Theorem 2.1 that G(i)−G(−i) maps into H2,2
(
R2
)
. Hence φ is as

sum of elements of H2,2
(
R2
)

an element of H2,2
(
R2
)
. �

The lemmata 2 and 3 give us a new understanding of elements of D (TΠ,θ). It can be seen in

(2.2) that one can decompose an element of D (TΠ,θ) into the sum of an element of H2,2
(
R2
)

and a function given by G (z) (·). Due to lemma 2 and lemma 3 we know that the boundary

conditions are totally described by G (z) (·) and we see the independence of z since the

boundary condition of lemma 2 and therefore the boundary condition of TΠ,θ is independent

of z.

Corollary 6 Take α as in remark 1 and choose f ∈ D (T ∗). Then we have

fα = f −
(

1

2
G (α) Λ−1κf

)
∈ H2,2

(
R2
)

(2.3)

Proof. In [27], Ch.2, it is shown that G (α) maps into D (T ∗). Hence fα is an element of

D (T ∗). The next step is to show that fα ∈ N (κ). But

κ (fα) = κ

(
f −

(
1

2
G (α) Λ−1κf

))
= κ (f)− κ (f) = 0



where we used the result of Lemma 2 to see that κ
(

1
2G (α) Λ−1κf

)
= κf . Hence fα ∈

D (T ∗) ∩N (κ) and therefore due to Lemma 3 it is in H2,2
(
R2
)
. �

Remark 7 Later on we will see that we can use the function fα defined in (2.3) to get a

new description of elements of D (TΠ,θ) with the help of a boundary condition given via the

jump operator κ. Little warning: We only know that α ∈ ρ (∆) but we do not know whether

0 ∈ ρ (ΓΠ,θ (α)) or not. Thus we cannot substitute the parameter z by our nice α in the

definition of D (TΠ,θ) given in (2.2).

Definition 8 Corollary 6 allows us to define an operator τα by

τα : D (T ∗)→ H3/2 (C)

ταf = τ (fα) .

Taken in to account that due to lemma 3 we have κf = 0 for f ∈ H2,2
(
R2
)

we get fα = f

and hence τα = τ on H2,2
(
R2
)
. So the operator τα is an extended trace operator which we

want to use to describe the self-adjoint extensions in a new way which immediately includes

some boundary condition.

Now we are able to give the desired new description.

Theorem 9 If we denote by TΠ,θ the self-adjoint extension given by Π and θ we get

D (TΠ,θ) =
{
f ∈ D (T ∗) : Λ−1κf ∈ D (θ) , 2Πταf = θΛ−1κf

}
,

where τα is just the operator defined in definition 8.

Proof. Take f ∈ D (TΠ,θ), then by the decomposition given in the definition of D (TΠ,θ)

f = fz +G (z) ΠΓΠ,θ (z)
−1

Πτfz (2.4)

with fz ∈ H2,2
(
R2
)

and therefore by Lemma 2 and Lemma 3:

κf = 2ΛΠ
(

ΓΠ,θ (z)
−1
)

Πτ (fz) .

Since ΓΠ,θ (z) maps from D ((θ)) ⊆ V into the range of Π, which is given by V , we have

1

2
Λ−1κ (f) = ΓΠ,θ (z)

−1
Πτ (fz) ∈ D (θ) .

Therefore we have

ΓΠ,θ (z)
1

2
Λ−1κ (f) = Πτ (fz)



and hence by use of the definition of ΓΠ,θ (z) and Γ (z) we get

1

2
θΛ−1κ (f) = Πτ (fz)−ΠΓ (z) Π

1

2
Λ−1κ (f)

= Π

(
τ (fz)− Γ (z) Π

1

2
Λ−1κ (f)

)
= Π

(
τ (fz)− τ (G (α)−G (z))

1

2
Λ−1κ (f)

)
= Π

(
τ̃
(

(fz) +G (z)
(

ΠΓΠ,θ (z)
−1
)

Πτ (fz)
)
− 1

2
τ̃G (α) Λ−1κ (f)

)
= Π

(
τ̃

(
f − 1

2
G (α) Λ−1κ (f)

))
and this implies by use of (2.3)

θΛ−1κf = 2Πτ̃

(
f −

(
1

2
G (α) Λ−1κ

)
f

)
= 2Πτ̃ (fα)

= 2Πτα (f) .

Now take f ∈ D (T ∗) such that Λ−1κ (f) ∈ D (θ) and 2Πτα (f) = θΛ−1κ (f). We have

f =

(
f − 1

2
G (z) Λ−1κ (f)

)
+

1

2
G (z) Λ−1κ (f)

= fz +
1

2
G (z) Λ−1κ (f) .

Taken into account that fz is nothing else but (2.3) with z instead of α we have fz ∈

H2,2
(
R2
)

and therefore if we show

1

2
Λ−1κ (f) = ΓΠ,θ (z)

−1
Πτ (fz)

we would have

f = fz +G (z) ΠΓΠ,θ (z)
−1

Πτ (fz)

for some fz ∈ H2,2
(
R2
)

and hence f ∈ D (TΠ,θ).

By assumption we have Λ−1κ (f) ∈ D (θ) and therefore we can apply ΓΠ,θ (z) to it and reach

at

1

2
ΓΠ,θ (z) Λ−1κ (f) =

1

2
(θ + ΠΓ (z) Π) Λ−1κ (f)

=
1

2
θΛ−1κ (f) +

1

2
ΠΓ (z) Λ−1κ (f)

= Πτα (f) +
1

2
ΠΓ (z) Λ−1κ (f)

where we used the second assumption that 2Πτα (f) = θΛ−1κ (f). Hence by (2.3) and the

definition of Γ (z) we get

1

2
ΓΠ,θ (z) Λ−1κ (f) = Π

(
τ̃

(
f − 1

2
G (α) Λ−1κ (f) +

1

2
(G (α)−G (z)) Λ−1κ (f)

))
= Πτ (fz)



and we are done. �

2.3 Boundary conditions and examples

This section is dedicated to the question how we can check if some boundary condition

we have in mind belongs to a self-adjoint extension of T or more formally: Under which

conditions on an operator A can we find Π and θ as in (2.2) such that

{f ∈ D (T ∗) : κf = Aτ̃f} = D (TΠ,θ) . (2.5)

Before we start with the construction of Π and θ for some A we want to define an operator

Pλ which we will use later on.

Definition 10 For any λ ∈ ρ (∆) define Pλ = 1
2 τ̃Sλ.

Let us collect the properties of Pλ which we will need for our calculations.

Proposition 11 For any λ ∈ ρ (∆) we have that the operator Pλ is L2 (C)-symmetric and

fulfills

Pλ : Hσ (C)→ Hσ+1 (C) is bounded for all σ ∈ [−2, 2] , (2.6)

if φ ∈ Hs (C) and Pλφ ∈ Hs+1+σ (C) then φ ∈ Hs+σ (C) for all s ∈
[
−1

2
,

3

2

]
, σ ≥ 0 (2.7)

Proof. A proof of these properties can be found in [16], theorem 1 and theorem 2. �

For our α chosen due to remark 1 we have the following.

Corollary 12 Choose α as in remark 1 then we get

τα (f) = τ̃ (f)− Pακ (f)

for f ∈ D (T ∗).

Proof. The identity above follows directly by the formulas

G (α) g = Sα (Λg)

and

τα (f) = τ

(
f − 1

2
G (α) Λ−1κf

)
which were shown in the sections before. �



Boundary conditions We want to give conditions on an operator A such that

{f ∈ D (T ∗) : κf = Aτ̃f} =
{
f ∈ D (T ∗) : Λ−1κf ∈ D (θ) , 2Πταf = θΛ−1κf

}
holds for an orthogonal projection Π and a self-adjoint operator θ.

Theorem 13 Take a symmetric operator A : D (A) ⊆ L2 (C)→ L2 (C) such that

Id− PA : D (A) ⊆ L2 (C)→ H3/2 (C) (2.8)

and

R
(
Λ−1A

)⊥
= N (A) (2.9)

where the orthogonal complement is taken w.r.t. the H3/2 (C)-scalar product. Define Π to

be the orthogonal projection on H3/2 (C) to R (Λ−1A) = N (A)⊥ and the operator

θ : D (θ) = R
(
Λ−1A

)
→ N (A)

⊥

via

θ
(
Λ−1A

)
f = 2Π (Id− PA) f. (2.10)

(a) The operator θ is symmetric and

{f ∈ D (T ∗) : κf = Aτ̃f} =
{
f ∈ D (T ∗) : Λ−1κf ∈ D (θ) , 2Πταf = θΛ−1κf

}
.

(b) The restriction of T ∗ to {f ∈ D (T ∗) : κf = Aτ̃f} is a self-adjoint extension of T if

and only if θ is self-adjoint on N (A)⊥.

Proof. First of all we want to mention that condition (2.8) implies that N (A) ⊆ H3/2 (C)

and hence condition (2.9) and the definition of Π is well defined.

Proof of part (a) Our first aim is to show that the operator θ given in (2.10) is really

symmetric. For this purpose take F,G ∈ D (θ). Then there exist f, g ∈ D (A) such that

Λ−1Af = F and Λ−1Ag = G, respectively. Hence by use of the definitions of the scalar

product in H3/2 (C) and of Π we reach at

〈θF,G〉H3/2(C) − 〈F, θG〉H3/2(C)

=
〈
θΛ−1Af,Λ−1Ag

〉
H3/2(C) −

〈
Λ−1Af, θΛ−1Ag

〉
H3/2(C)

=
〈
2Π (Id− PαA) f,Λ−1Ag

〉
H3/2(C) −

〈
Λ−1Af, 2Π (Id− PαA) g

〉
H3/2(C)

= 2
(〈

(Id− PαA) f,ΠΛ−1Ag
〉
H3/2(C) −

〈
ΠΛ−1Af, (Id− PαA) g

〉
H3/2(C)

)
= 2

(
〈(Id− PαA) f,Ag〉L2(C) − 〈Af, (Id− PαA) g〉L2(C)

)
= 2

(
〈f,Ag〉L2(C) − 〈Af, g〉L2(C) − 〈PαAf,Ag〉L2(C) + 〈Af, PαAg〉L2(C)

)
.



Pα is L2 (C)-symmetric, hence

〈f,Ag〉L2(C) − 〈Af, g〉L2(C) − 〈PαAf,Ag〉L2(C) + 〈Af, PαAg〉L2(C)

= 〈f,Ag〉L2(C) − 〈Af, g〉L2(C)

= 0

since A is symmetric and we are done. The last step is to show that

{f ∈ D (T ∗) : κf = Aτ̃f} =
{
f ∈ D (T ∗) : Λ−1κf ∈ D (θ) , 2Πταf = θΛ−1κf

}
.

To do this take f ∈ D (T ∗) such that κf = Aτ̃f . Then we have

Λ−1κf = Λ−1Aτ̃f ∈ R
(
Λ−1A

)
= D (θ)

and

2Πταf = 2Π (τ̃ f − Pακf) = 2Π (Id− PαA) τ̃ f = θΛ−1Aτ̃f = θΛ−1κf.

For the inclusion in the other direction take f ∈ D (T ∗) such that Λ−1κf ∈ D (θ) =

R
(
Λ−1A

)
. This implies the existence of some g ∈ D (A) with κf = Ag. The condition

2Πταf = θΛ−1κf is then equivalent to

2Π (τ̃ f − PαAg) = θΛ−1Ag.

But by the definition of θ given in (2.10) we have

θΛ−1Ag = 2Π (Id− PαA) g

and hence

2Π (τ̃ f − g) = 0.

Proof of part (b) Since Π is the orthogonal projection into N (A)
⊥

we have τ̃ f = g + u

for some u ∈ N (A). Hence τ̃ f ∈ D (A) and

Aτ̃f = Ag = κf.

Thus we can obtain that

{f ∈ D (T ∗) : κf = Aτ̃f} =
{
f ∈ D (T ∗) : Λ−1κf ∈ D (θ) , 2Πταf = θΛ−1κf

}
.

But in theorem 9 it was shown that

{
f ∈ D (T ∗) : Λ−1κf ∈ D (θ) , 2Πταf = θΛ−1κf

}
gives us a self-adjoint extension of T if and only if θ is self-adjoint on R (Π). �



The next theorem will answer the question which conditions on the operator A guarantees

that the symmetric operator defined in theorem 13 is self-adjoint.

Theorem 14 Take the operators A, Π and θ as in theorem 13 (a). Let us additionally

assume that

A : D (A) ⊆ H3/2 (C)→ H1/2 (C)

with D(A) dense in H3/2 (C). Denote by

Ã : D
(
Ã
)
⊆ H−1/2 (C)→ H−3/2 (C)

the extension of A to H−1/2 (C) given by the adjoint of A w.r.t. the L2 (C)-dual pairing.

(For further information on this construction of Ã see [18], Ch.9)

If R (PαΛΠ) ⊆ D
(
Ã
)

then the restriction of T ∗ to {f ∈ D (T ∗) : κf = Aτ̃f} is a self-

adjoint extension of T if and only if for every g ∈ H3/2 (C) and v ∈ H3/2 (C) ∩D
(
Ã
)

(
Id− ÃPα

)
ΛΠg = Ãv ⇒ Πg ∈ R

(
Λ−1A

)
= D (θ) . (2.11)

Remark 15 The condition R (PαΛΠ) ⊆ D
(
Ã
)

implies that
(

Id− ÃPα
)

ΛΠ is a well-

defined operator on H3/2 (C).

Proof. Due to theorem 13 (b) we have to check whether the operator θ defined in (2.10) is

self-adjoint on N (A)
⊥

. For this reason take f ∈ D(A) and g ∈ H3/2 (C), then we have〈
θΛ−1Af, g

〉
H3/2(C) = 〈2Π (Id− PαA) f, g〉H3/2(C)

and if Πg ∈ D (θ∗) we obtain that〈
θΛ−1Af, g

〉
H3/2(C) =

〈
f,Λ−1Ãθ∗Πg

〉
H3/2(C)

. (2.12)

Lemma 16 The operator

Λ−1
(

Id− ÃPα
)

ΛΠ : H3/2 (C)→ H3/2 (C)

coincides with

(Π (Id− PαA))
∗

: H3/2 (C)→ H3/2 (C) .

on the set R
(
Λ−1A

)
⊕N (A).

Proof. Since D(A) is dense in H3/2 (C) we could talk about (2Π (Id− PαA))
∗
. Take u ∈

D(A) and v ∈ N (A). Define g = Λ−1Au+ v. Then we get(
Id− ÃPα

)
ΛΠg =

(
Id− ÃPα

)
Au.



Since Ã = A on D(A) we have(
Id− ÃPα

)
Au = Ã (Id− PαA)u.

By the definition of Ã and the symmetry of Pα we have for f ∈ D(A)〈
f,Λ−1Ã (Id− PαA)u

〉
H3/2(C)

= 〈Af, (Id− PαA)u〉L2(C)

= 〈(Id− PαA) f,Au〉L2(C)

=
〈
(Id− PαA) f,Λ−1Au

〉
H3/2(C)

= 〈Π (Id− PαA) f, g〉H3/2(C)

and we are done. �

By combining now lemma 16 and (2.12) we can conclude that

2Λ−1
(

Id− ÃPα
)

ΛΠ = Λ−1Ãθ∗Π (2.13)

on the set R
(
Λ−1A

)
⊕N (A). But we have the following observations:

Lemma 17 The set R
(
Λ−1A

)
⊕N (A) is dense in H3/2 (C) and the operator

Λ−1
(

Id− ÃPα
)

ΛΠ : H3/2 (C)→ H3/2 (C)

is bounded.

Proof. The statement that R
(
Λ−1A

)
⊕N (A) is dense in H3/2 (C) follows immediately by

our assumption (2.9), i.e. R
(
Λ−1A

)⊥
= N (A). For the boundedness of

(
Id− ÃPα

)
ΛΠ

we use that ΛΠ is a bounded operator from H3/2 (C) to H−3/2 (C), that due to (2.6) Pα is

bounded from H−3/2 (C) to H−1/2 (C) and that Ã is as adjoint operator a closed operator

from H−1/2 (C) to H−3/2 (C). Hence
(

Id− ÃPα
)

ΛΠ is a closed operator defined on the

full space H3/2 (C) and therefore by the closed graph theorem
(

Id− ÃPα
)

ΛΠ is a bounded

operator from H3/2 (C) to H−3/2 (C). Since Λ−1 : H−3/2 (C) → H3/2 (C) is bounded the

statement follows. �

By combining now lemma 17 and (2.13) we can conclude that

2Λ−1
(

Id− ÃPα
)

ΛΠ = Λ−1Ãθ∗Π

on the set D (θ∗)⊕N (A).

Hence if θ is not self-adjoint we can find an element of D
(
Ã
)

such that (2.11) does not hold

and if (2.11) does not hold we can extend θ∗ to a larger set than R
(
Λ−1A

)
. This implies

that θ is self-adjoint if and only if (2.11) holds. �



Example 1 Closed range If R
(
Λ−1A

)
= V i.e. R

(
Λ−1A

)
is closed in H3/2 (C) then θ

is obviously self-adjoint as symmetric operator on the full set V .

Proposition 18 If R (A) is closed in H−3/2 (C) then θ is self-adjoint.

Proof. Since Λ−1 is unitary mapping we have that R (A) is closed in H−3/2 (C) if and only

if R
(
Λ−1A

)
is closed in H3/2 (C). �

An easy example of an operator having a closed range in H−3/2 (C) is a finite rank operator.

For the next examples the following observation is very useful.

Proposition 19 Under the chosen assumptions we have

R
(
Λ−1A

)⊥
= R (A)

⊥ ∩H3/2 (C)

where the orthogonal complement on the left side is taken w.r.t. the H3/2 (C)-scalar product

and the one on the right side w.r.t the L2 (C)-scalar product.

Proof. Take u ∈ R
(
Λ−1A

)⊥
, then

0 =
〈
u,Λ−1Av

〉
H3/2(C) = 〈u,Av〉L2(C)

for every v ∈ D (A). Hence u ∈ R (A)
⊥ ∩H3/2 (C).

For u ∈ R (A)
⊥ ∩H3/2 (C) we get

0 = 〈u,Av〉L2(C) =
〈
u,Λ−1Av

〉
H3/2(C)

for every v ∈ D (A) and we are done. �

Example 2 Multiplication operator Our next example will be the multiplication by a

regular function.

Theorem 20 Take a bounded and measurable η : C → R such that the multiplication

operator given by η maps for some 0 < ε ≤ 1 Hs (C) to Hs−1+ε (C) for any s ∈
[
− 1

2 ,
3
2

]
. Here

the multiplication operator given by η is defined as Mη : L2 (C) → L2 (C) with Mηf = ηf .

The multiplication operator for Hs (C) with s < 0 is then given by the adjoint of Mη w.r.t.

the L2 (C)-dual pairing. Define now A as restriction of Mη to H3/2 (C). Then the restriction

Tη of T ∗ to D (Tη) =
{
f ∈ D (T ∗) : τ̃ f ∈ H3/2 (C) and κf = ητ̃f

}
is a self-adjoint extension

of T .

Remark 21 It is mentioned in [26] that one can choose η ∈ C0,1/2+ε (C) to get a sufficiently

regular multiplication operator.



Proof. We prove{
f ∈ D (Mη) : (Id− PαMη) f ∈ H3/2 (C)

}
= H3/2 (C) . (2.14)

If this holds true then the operator A is the restriction of Mη to{
f ∈ D (Mη) : (Id− PαMη) f ∈ H3/2 (C)

}
and hence A is of the form which we need in theorem 13. We start the proof with

Lemma 22
{
f ∈ D (Mη) : (Id− PαMη) f ∈ H3/2 (C)

}
= H3/2 (C)

Proof. Take f ∈ H3/2 (C). Then Mηf ∈ H1/2+ε (C) by the mapping properties of Mη and

hence PαMηf ∈ H3/2+ε (C) by (2.6). Therefore f − PαMηf ∈ H3/2 (C).

Take now f ∈ D (Mη) such that (Id− PαMη) f ∈ H3/2 (C). Then we can write f =

u+ PαMηf for some u ∈ H3/2 (C). For f ∈ D (Mη) = L2 (C) we get PαMηf ∈ Hε (C) since

Mη maps L2 (C) to H−1+ε (C) and Pα maps H−1+ε (C) to Hε (C) by (2.6). Hence f ∈ Hε (C)

as sum of u ∈ H3/2 (C) and PαMηf ∈ Hε (C). But for f ∈ Hε (C) we get PαMηf ∈ H2ε (C)

and hence f ∈ H2ε (C). By an iteration of this argument we will end up with the fact that

f ∈ H3/2 (C) and (2.14) is proven. �

Now we want to show that the operator A fulfills the conditions of theorem 14, i.e.

(a) A is symmetric,

(b) D(A) is dense in H3/2 (C),

(c) Id− PαA : D (A) ⊆ L2 (C)→ H3/2 (C),

(d) R
(
Λ−1A

)⊥
= N (A),

(e) R (PαΛΠ) ⊆ D
(
Ã
)

and that (2.11) holds.

The conditions (a) and (b) are obviously fulfilled by the definition of A and property (c)

follows immediately by lemma 22.

Condition (d) we will get in the following way: Take φ ∈ L2 (C) and a sequence φn ∈ H3/2 (C)

such that φn → φ in L2 (C). Then since η is bounded we have ηφn → ηφ in L2 (C). Therefore

R (A) is dense in R (Mη). Due to proposition 14 we have that

R
(
Λ−1A

)⊥
= R (A)

⊥ ∩H3/2 (C)

and hence

R
(
Λ−1A

)⊥
= R (Mη)

⊥ ∩H3/2 (C) .



But since η is bounded and real-valued Mη is self-adjoint on L2 (C) and therefore R (Mη)
⊥

=

N (Mη). So we have

R
(
Λ−1A

)⊥
= N (Mη) ∩H3/2 (C) = N (A)

by the definition of A.

Since A is just the restriction of Mη to H3/2 (C) we obviously have that the adjoint of A is

just Mη and by the mapping properties of Mη we have that H−1/2 (C) = D
(
M̃η

)
. But we

also have that ΛΠ maps H3/2 (C) into H−3/2 (C) and hence by (2.6) we get R (PαΛΠ) ⊆

H−1/2 (C) and property (e) is proven.

Finally, in order to apply theorem 14 we need to check if (2.11) holds. Take g, v ∈ H3/2 (C)

such that (
Id− M̃ηPα

)
ΛΠg = M̃ηv.

Since M̃ηv = Mηv ∈ H1/2 (C) we get
(

Id− M̃ηPα

)
ΛΠg ∈ H1/2 (C). ΛΠg ∈ H−3/2 (C) by

the definition of Λ. But Pα maps H−3/2 (C) to H−1/2 (C) by (2.6) and M̃η maps H−1/2 (C)

to H−3/2+ε (C) and hence ΛΠg ∈ H−3/2+ε (C). By an iteration of this argument we get

ΛΠg ∈ H1/2 (C) and hence PαΛΠg ∈ H3/2 (C). This implies that ΛΠg = Mη (v + PαΛΠg)

with v + PαΛΠg ∈ H3/2 (C). Hence Πg ∈ R
(
Λ−1A

)
and we are done. �

In subsequent chapters we will need some properties of the constructed Tη. Indeed we have

that D (Tη) consists of continuous functions and we can represent Tη with the help of some

Dirac-delta distributions on C.

Corollary 23 The set D (Tη) is contained in the continuous functions over R2 and for any

f ∈ D (Tη) we have

Tηf =
1

2
∆f +

∫
C

η(y)f(y)δ0 (· − y) dS(y) (2.15)

where δ0(·) is the Dirac-delta distribution in R2 at 0.

Proof. We will use the representation of elements of D (T ∗) shown in corollary 6, p.15.

There it is proven that for every f ∈ D (Tη) we can find a v ∈ H2,2
(
R2
)

such that f =

v + Szκf where Sz is the acoustic single layer potential for some fixed z used in (2.2). For

further details see pp.12. But for f ∈ D (Tη) we get that κf = ητ̃f with τ̃ f ∈ H3/2 (C).

And hence by the mapping properties of η we have κf ∈ H1/2+ε (C). By the usual Sobolev

embeddings, see e.g. [13], pp.275 we get κf ∈ C0 (C). But it is shown in [30],Ch.201, pp.528

that Szg ∈ C0
(
R2
)

for any g ∈ C0 (C). Therefore we have that Szκf ∈ C0
(
R2
)

and since

H2,2
(
R2
)
⊆ C0

(
R2
)
, see again [13], pp.275, we can obtain that f is continuous.



Write again f = v+Szκf . It is shown, again in [30], Ch.201, pp.528, that in a distributional

sense we get (
−1

2
∆ + z

)
Sακf =

∫
C

κf(y)δ0 (· − y) dS(y).

But we assumed that f ∈ D (Tη). Hence κf = ητ̃f . From the first part of the proof we can

deduce that f is continuous and thus we can obtain that(
−1

2
∆ + z

)
Szκf =

∫
C

η(y)f(y)δ0 (· − y) dS(y).

therefore we get again in a distributional sense that(
−1

2
∆ + z

)
f =

(
−1

2
∆ + z

)
v +

∫
C

η(y)f(y)δ0 (· − y) dS(y). (2.16)

But due to the definition of the self-adjoint extensions given in (2.2) we get the equality

(−Tη + z) f =
(
− 1

2∆ + z
)
v. Thus (2.15) follows immediately by (2.16). �

Example 3 Laplace-Beltrami operator Our last example will be the Laplace-Beltrami

operator on a suitable domain.

Theorem 24 Denote by ∆LB the self-adjoint Laplace-Beltrami operator from H2 (C) ⊆

L2 (C) to L2 (C). We will denote by DLB the distributional Laplace-Beltrami which has the

properties that

DLB : Hs (C)→ Hs−2 (C) for any s ∈ R, (2.17)

If f ∈ Hs (C) and DLBf ∈ Hs−1 (C) then f ∈ Hs+1 (C) for any s ∈ R. (2.18)

For further details see e.g. [23], Ch.2, Section 3.

Define now A as restriction of ∆LB to the set H5/2 (C). Then the restriction of T ∗ to{
f ∈ D (T ∗) : τ̃ f ∈ H5/2 (C) and κf = ∆LB τ̃ f

}
is a self-adjoint extension of T .

Proof. We prove{
f ∈ D (∆LB) : (Id− Pα∆LB) f ∈ H3/2 (C)

}
= H5/2 (C) . (2.19)

If this holds true then the operator A is the restriction of ∆LB to{
f ∈ D (∆LB) : (Id− Pα∆LB) f ∈ H3/2 (C)

}
and hence A is of the form which we need in theorem 13 (a). We start the proof with

Lemma 25
{
f ∈ D (∆LB) : (Id− Pα∆LB) f ∈ H3/2 (C)

}
= H5/2 (C)



Proof. Take f ∈ H5/2 (C). Then ∆LBf ∈ H1/2 (C) by (2.17) and thus we can obtain by

(2.6) that Pα∆LBf ∈ H3/2 (C). Therefore f − Pα∆LBf ∈ H3/2 (C).

Take now f ∈ D (∆LB) such that (Id− Pα∆LB) f = u ∈ H3/2 (C). For any f ∈ D (∆LB) =

H2 (C) we get Pα∆LBf ∈ H3/2 (C) as sum of u ∈ H3/2 (C) and f ∈ H2 (C). Hence ∆LBf ∈

H1/2 (C) by (2.7). Thus f ∈ H3/2 (C) and ∆LBf ∈ H1/2 (C) hence f ∈ H5/2 (C) by (2.18)

and (2.19) is proven. �

As in the example before we have to check whether

(a) A is symmetric,

(b) D(A) is dense in H3/2 (C),

(c) Id− PαA : D (A) ⊆ L2 (C)→ H3/2 (C),

(d) R
(
Λ−1A

)⊥
= N (A),

(e) R (PαΛΠ) ⊆ D
(
Ã
)

and that (2.11) holds.

The conditions (a) and (b) are obviously fulfilled by the definition of A and property (c)

follows immediately by lemma 25.

Condition (d) follows by the fact that the closure of A w.r.t. L2 (C) is ∆LB which is shown in

[28], p.160, example 4. Therefore the image of A is dense in the range of ∆LB w.r.t. L2 (C).

Combining now the self-adjointness of ∆LB with proposition 14 we get as in example 2

R
(
Λ−1A

)⊥
= N (∆LB) ∩H3/2 (C) = N (∆LB) (2.20)

by the definition of ∆LB . In [28], p.160, example 4 it is also shown that N (∆LB) ⊆ C∞ (C).

Since C∞ (C) ⊆ H5/2 (C) we obtain that N (∆LB) = N (A). This implies by (2.20) that

R
(
Λ−1A

)⊥
= N (A) and condition (d) is proven.

Since Ã = DLB , see [28], p.160, example 4 , we have that D
(
Ã
)

= H−1/2 (C). By (2.6)

PαΛΠ is a mapping from H3/2 (C) to H−1/2 (C). Hence R (PαΛΠ) ⊆ D
(
Ã
)

which is

condition (e).

Since Ã = DLB (2.11) is equivalent to

(Id−DLBPα) ΛΠg = DLBv ⇒ Πg ∈ R
(
Λ−1A

)
. (2.21)

for every g, v ∈ H3/2 (C).

To proof that (2.21) holds true take g, v ∈ H3/2 (C) such that

(Id−DLBPα) ΛΠg = DLBv.



Since ΛΠg ∈ H−3/2 (C) we get by (2.6) that PαΛΠg ∈ H−1/2 (C). But we also have that

DLBPαΛΠg = ΛΠg −DLBv. Since v ∈ H3/2 (C) we get by (2.17) that DLBv ∈ H−1/2 (C)

and therefore DLBPαΛΠg ∈ H−3/2 (C). This implies by (2.18) that PαΛΠg ∈ H1/2 (C).

Hence due to (2.7) we have ΛΠg ∈ H−1/2 (C). Following the same argumentation line

now starting with ΛΠg ∈ H−1/2 (C) we get ΛΠg ∈ H1/2 (C). By (2.21) we can write

ΛΠg = DLB (v + PαΛΠg). But v + PαΛΠg ∈ H3/2 (C) by (2.6) and since ΛΠg ∈ H1/2 (C)

we get by (2.18) that v+PαΛΠg ∈ H5/2 (C) = D(A) and hence Πg ∈ R
(
Λ−1A

)
and we are

done. �

Open problems It is still an open question if the multiplication by an indicator function

of some subset U of C gives us a self-adjoint extension of T . The difficulty arises in the

question whether R (PΛΠ) ⊆ D
(
Ã
)

.



Chapter 3

A Tanaka type formula

Assume we have a function g ∈ C0
(
R2
)

and for α > 0 a closed C2,α-curve C ⊆ R2, such

that g is harmonic in the complement of C in R2, i.e. ∆g = 0 in R2\C. But κg 6= 0, i.e. the

normal derivative has a jump along C, and therefore g /∈ C1
(
R2
)
. What can we say about

g (Bt), where Bt is a Brownian motion in R2?

The question of dealing with functions having a jump in the normal derivatives along C

naturally arises in the context of the self-adjoint extensions constructed in the chapter

before. Remember that we have shown that the extensions are given via a jump relation.

Thus if we want to do some stochastic with such functions we have to know how we can gain

control of these jumps in connection with stochastic differential equations. For a detailed

study how we can use the results of chapter 3 in the case of the self-adjoint extensions

constructed in chapter 2 see chapter 4, especially theorem 57 for the explicit use of a single-

layer potential.

The idea behind this chapter is to generalize Tanaka’s formula for the absolute value function,

which obviously fulfills the same properties as the function g in two dimensions. For the

absolute value function one gets

|Bt − x| = |B0 − x|+
∫ t

0

sgn(Bs − x) dBs + Lxt

where Lxt is a local time of the Brownian motion in the point x, namely the Radon-Nikodyn

derivative of the Brownian occupation measure, i.e.

µ(a, b) =

∫ t

0

1(a,b) (Bs) ds =

∫ b

a

Lxt dx (3.1)

for a, b ∈ R, a ≤ b. The aim of this section is the proof of the following theorem:

Theorem 26 Let C be chosen as before, dS the usual volume measure on C and η ∈ C0 (C).

29



Define

g (x) = − 1

2π

∫
C
η (y) ln (|x− y|) dS(y). (3.2)

The function g is called harmonic single-layer potential with layer function η.

We have

g (Bt) = g (B0) +

t∫
0

∇g (Bs) dBs +

t∫
0

η (Bs) dL (s, C) (3.3)

where L (t, C) is the invariant local time of the Brownian motion on C in the sense of [4], i.e.

L (t, C) is a non-decreasing, time-continuous and adapted process which only increases if Bt

is on C, see [4], pp.216.

In addition, as already mentioned in the introduction we are able to prove that

t∫
0

1Cε (Bs) ds =

ε∫
−ε

1

2
L (t, Cr) dr (3.4)

where Cε is just the set of points in R2 with distance less than ε to C and L (t, Cr) is the

local time process for parallel curves Cr. The proof is based on our choice of fε which allows

us to generalize the proof of (3.1) in [5]. For more details see proposition 51.

The chapter is organized in the following way: First of all we will collect basic facts on g

and C. Afterwards we will prove theorem 26. This proof is split into several parts:

• Approximation procedure At first we want to construct a sequence fε ∈ C1
(
R2
)

with ∆fε ∈ L∞
(
R2
)

such that fε → g uniformly in R2 and ∇fε → ∇g point-wise in

R2\C if ε tends to zero. What we have in mind is to generalize the approximation of

the absolute value function used in [5]. There it is shown that

hε(x) =
1

2ε

ε∫
−ε

|x− y|dy

admits an uniform approximation of the absolute value with

h′ε =
1

2ε

ε∫
−ε

sgn(x− y)dy. (3.5)

This proof is not really hard because one can calculate hε explicitly. But then (3.5)

is used to proof (3.1). We want to perform a similar approximation using single-layer

potentials gr for parallel curves of C. We will define

fε(x) =
1

2ε

ε∫
−ε

gr(x)dr



and show that

∇fε(x) =
1

2ε

ε∫
−ε

∇gr(x)dr.

The proof of the uniform convergence of fε to g and the explicit formula for ∇fε is

much harder than the proofs for hε because we cannot use an explicit calculation of

fε.

• Ito formula The next step is to show that
t∫

0

∇fε (Bs) dBs →
t∫

0

∇g (Bs) dBs and then

deduce by use of the Ito formula for fε that we have

g (Bt) = g (B0) +

t∫
0

∇g (Bs) dBs + lim
n→∞

t∫
0

1

2
∆fε (Bs) ds.

• Identifying the limit point The last step is to identify lim
ε→0

t∫
0

1
2∆fε (Bs) ds with

t∫
0

η (Bs) dL (s, C).

At the end of the chapter we will give the proof of (3.4).

3.1 Notations and basic facts

Before we start with the approximation procedure let us fix some notation and collect

properties of g and some geometric facts on C which we will need later on.

Notation For any x ∈ R2 and δ > 0 Bδ(x) is the closed ball around x with radius δ. By

‖ · ‖∞,U we will denote the L∞(U)-norm and for z ∈ C nz is the outer normal of C in z.

For r > 0 denote by Cr the set

{
x ∈ R2 : d (x, C) < r

}
where d (x, C) is the usual distance of x to C. By Cr we will denote a parallel surface of C,

i.e.

Cr =
{
x ∈ R2 : x = z + rnz for some z ∈ C

}
for fixed r ∈ R. Such a parallel surface is called a Runge parallel surface if it has the same

regularity properties as C, see e.g. [30], Ch.200, pp.513.

Lemma 27 For a C2,α-surface C it exists an β > 0 such that for every x ∈ Cβ it exists a

unique z ∈ C with x = z + rnz for some r ∈ (−β, β) and such that Cr is a Runge parallel

surface of C for every r ∈ (−β, β).

Proof. A proof of this statement can be found in [30], Ch.200, pp.513. �



Notation Fix β > 0 such that Cr is a Runge parallel surface of C for every r ∈ (−β, β)

and denote for every x ∈ Cβ by ΠC(x) the unique z ∈ C such that x = z + rnz for some

r ∈ (−β, β).

Lemma 28 For an integrable function f on Cβ one has

∫
Cβ

f (x) dx =

β∫
−β

∫
Cr

f (y) dSr (y) dr (3.6)

and it exists an interval (−α, α) ⊆ (−β, β) such that for any r ∈ (−α, α)∫
Cr

f (y) dSr (y) =

∫
C

f (y + rny) (1 + rκ(y)) dS (y) (3.7)

where κ(y) is the curvature of C in y.

Proof. A proof of these statements can be found in [30], Ch.200, pp.513.

A short proof for the existence of the interval (−α, α) can be given in the following way:

Take ψ : [a, b] → R2 to be a parametrization of C. Denote by nψ(t) the unit outer normal

vector in ψ(t). Then ψr : [a, b]→ R2 with ψr(t) = ψ(t) + rnψ(t) is a parametrization of Cr

for any r ∈ (−β, β). Hence

∫
Cr

f (y) dSr (y) =

b∫
a

f (ψr(t))
∥∥∥ψ̇r(t)∥∥∥dt.

The derivative ψ̇r(t) is obviously given by ψ̇(t) + rṅψ(t). But it is well known, see e.g. [13],

appendix B, that ṅψ(t) = κ(ψ(t))ψ̇(t) where κ(ψ(t)) is the curvature of C in ψ(t). Therefore∥∥∥ψ̇r(t)∥∥∥ = |1 + rκ(ψ(t))|
∥∥∥ψ̇(t)

∥∥∥ and thus we obtain

∫
Cr

f (y) dSr (y) =

b∫
a

f (ψr(t))
∥∥∥ψ̇r(t)∥∥∥ dt

=

b∫
a

f
(
ψ(t) + rnψ(t)

)
|1 + rκ(ψ(t))|

∥∥∥ψ̇(t)
∥∥∥dt.

Since C is a closed C2,α-curve we have that κ(y) is a continuous and therefore bounded

function, see again [13], appendix B. If we define α = 1
sup
t∈[a,b]

|κ(ψ(t))| then α > 0 since κ(y)

is bounded and for every r ∈ (−α, α) we have that |1 + rκ(ψ(t))| = 1 + rκ(y) and (3.7)

is shown. By the continuity of κ(y) we get that |1 + rκ(y)| is a non-negative, continuous

function on (−α, α)× C. �

Notations For the rest of this chapter we fix β = α and we define φ(r, y) = 1 + rκ(y).

Now we want to give some bounds on the scalar product of elements of C with the normal

field.



Lemma 29 There is a positive constant M such that for any r ∈ (−β, β) and every x,

y ∈ Cr

|〈x− y, ny〉| ≤M |x− y|2 .

Proof. A proof of this statement can be found in [15], Ch.3, pp.151. �

This lemma allows us to deduce the following.

Corollary 30 It exists an R > 0 and a K > 0 such that for every r1, r2 ∈ (−R,R) and

every x, y ∈ Cr

|x+ r1nx − y − r2ny| ≥ K |x− y| . (3.8)

Proof. We get

|x+ r1nx − y − r2ny|2 = |x− y|2 + 2 〈x− y, r1nx − r2ny〉+ |r1nx − r2ny|2

≥ |x− y|2 − 2 |r1| |〈x− y, nx〉| − 2 |r2| |〈x− y, ny〉|

≥ |x− y|2 − 2 |r1|Cy |x− y|2 − 2 |r2|Cx |x− y|2

≥ |x− y|2 (1− 2M (|r1|+ |r2|))

by the lemma before. Fix now some 0 < R < 1
4M . Then for any r1, r2 ∈ (−R,R) we have

1− 2M (|r1|+ |r2|) ≥ 1− 4MR > 0.

Fix now K =
√

1− 4MR and we are done. �

Notations For the rest of this chapter fix K > 0 such that (3.8) holds.

The corollary 30 gives us the following.

Lemma 31 It exists a constant W > 0 and for any 0 < δ < 1
2 an R > 0 such that for all

r ∈ (−R,R) and all x, y ∈ Cr with |x− y| < δ we have

|ln (|x− y − rny|)| ≤W + |ln (|x− y|)| . (3.9)

Proof. Fix 0 < δ < 1
2 . Choose R1 > 0 such that (3.8) holds and define R = min{ 1

2 , R1}.

Then for r ∈ (−R,R) we get by the monotonicity of the logarithm that

ln (|x− y − rny|) ≥ ln (K |x− y|) .



But |x− y − rny| ≤ |x− y|+ |r| ≤ δ + 1
2 ≤ 1 by our choice of R. Hence

|ln (|x− y − rny|)| = − ln (|x− y − rny|)

≤ − ln (K |x− y|)

= |ln (K |x− y|)|

≤ |ln (K)|+ |ln (|x− y|)| .

Define W = |ln (K)| and we are done. �

Definitions Take x ∈ Cβ . For η continuous on C define

η̃(x) = η (ΠC(x)) (3.10)

and for x ∈ R2 we define

gr (x) = − 1

2π

∫
Cr

η̃ (y) ln (|x− y|) dSr(y). (3.11)

We obviously have that g0 = g.

Proposition 32 For any r ∈ (−β, β) the function gr fulfills

• gr is continuous in R2

• κgr = −η̃

• ∆gr = 0 in R2\C.

For any x ∈ Cr define

Hr (y) =

∫
Cr

cos (x− y, nx)

|x− y|
dSr (y)

where (x− y, nx) is the angle between x− y and nx. One has

• Hr is continuous on Cr

• It exist positive constants K1 and K2 such that for every r ∈ (−β, β)

‖∇gr‖∞,R2 ≤ K1 + ‖η‖∞,C
(
K2 + ‖Hr‖∞,Cr

)
. (3.12)

Remark 33 ∇gr(x) is not well-defined on Cr but ∇gr(x) can be continuously continued

to Cr from the inner domain and from the outer domain, respectively. Both continuations

are bounded on C and hence we could talk about ‖∇gr‖∞,R2 and if we denote by Crint ⊆ R2

the set bounded by Cr and by Crext = R2\Crint then the classical mean value theorem holds

on Crint and on Crext with the related continuous extensions of ∇gr to Cr, respectively. For

further information see [30], Ch.192ff, pp.489.



Proof. A proof of these statements can be found in [30], Ch.192ff, pp.489. �

We have even more:

Lemma 34 gr(x) is continuous in r for fixed x.

Proof. Fix x ∈ R2 and choose rm, r ∈ (−β, β) such that rm → r. By (3.7) and the

definition of η̃ we have

grm(x) = − 1

2π

∫
Crm

η̃ (y) ln (|x− y|) dSrm(y)

= − 1

2π

∫
C

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y).

By the continuity of φ we get

η(y) ln (|x− y − rmny|)φ (rm, y)→ η(y) ln (|x− y − rny|)φ (r, y)

for every y − rny 6= x. If x /∈ Cr one has 0 < m ≤ |x− y − rmny| ≤ M < ∞ for any

|rm| < d (x, Cr). Hence

|η(y) ln (|x− y − rmny|)φ (rm, y)| ≤ K <∞

and therefore by dominated convergence

grm(x) = − 1

2π

∫
C

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y)

→− 1

2π

∫
C

η (y) ln (|x− y − rny|)φ (r, y) dS(y) = gr(x).

If x ∈ Cr split C into C\Bδ (ΠC(x)) and C ∩ Bδ (ΠC(x)) for some 0 < δ < 1
2 . For y ∈

C\Bδ (ΠC(x)) one has again 0 < m ≤ |x− y − rmny| ≤ M < ∞ and hence by dominated

convergence

− 1

2π

∫
C\Bδ(ΠC(x))

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y)

→− 1

2π

∫
C\Bδ(ΠC(x))

η (y) ln (|x− y − rny|)φ (r, y) dS(y).

For |rm − r| small enough we have that (3.9) holds on C ∩ Bδ (ΠC(x)). Since ln (|x− y|)

is an integrable function along C, see [30], Ch.192ff, pp.489, we get again by dominated

convergence

− 1

2π

∫
C∩Bδ(ΠC(x))

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y)

→− 1

2π

∫
C∩Bδ(ΠC(x))

η (y) ln (|x− y − rny|)φ (r, y) dS(y).



Hence

grm(x) = − 1

2π

∫
C

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y)

= − 1

2π

∫
C∩Bδ(ΠC(x))

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y)

+− 1

2π

∫
C\Bδ(ΠC(x))

η (y) ln (|x− y − rmny|)φ (rm, y) dS(y)

→ − 1

2π

∫
C∩Bδ(ΠC(x))

η (y) ln (|x− y − rny|)φ (r, y) dS(y)

+− 1

2π

∫
C\Bδ(ΠC)(x)

η (y) ln (|x− y − rny|)φ (r, y) dS(y)

= − 1

2π

∫
C

η (y) ln (|x− y − rny|)φ (r, y) dS(y) = gr(x)

and we are done. �

Additionally we get continuity of gr(x) in x and r. To proof these joint continuity we need

the following:

Lemma 35 The function ‖Hr‖∞,Cr is bounded in r for r ∈ (−β, β).

Proof. Take x ∈ Cr then

|Hr(x)| ≤
∫
Cr

|cos (x− y, nx)|
|x− y|

dS (y)

=

∫
Cr

|〈x− y, nx〉|
|x− y|2

dS (y)

by the definition of the scalar product. By lemma 22 we have

|〈x− y, ny〉| ≤M |x− y|2

and hence

|Hr(x)| ≤ML (Cr)

where L (Cr) is the length of Cr. This implies that

‖Hr‖∞,Cr ≤ML (Cr)

and the lemma is proven since L (Cr) is obviously bounded in r for r ∈ (−β, β). �

By this lemma we can conclude the boundedness of ∇gr.

Corollary 36 The function ∇gr (x) is bounded in (r, x) on (−β, β)× R2.



Proof. The statements follows immediately by (3.12) and the lemma before. �

Now we are able to proof the continuity property of gr which we are interested in.

Proposition 37 gr(x) is continuous on (−β, β)× R2

Proof. Take rn and xn such that rn → r and xn → x. Then

|grn (xn)− gr(x)| ≤ |grn (xn)− grn (x)|+ |grn (x)− gr(x)|

Take a closer look at |grn (xn)− grn (x)|. Let us separate into two cases: x ∈ Cr and x /∈ Cr.

At first take x /∈ Cr. W.l.o.g. assume that x ∈ Crext with d (x, Cr) ≥ δ > 0. By the

convergence of rn to r and xn to x we obtain an N ∈ N such that |xn − x| ≤ δ
4 and

|rn − r| ≤ δ
4 for n ≥ N . But then xn and x are both elements of Crnext and we get by the

mean value theorem and the boundedness of ∇gr that

|grn (xn)− grn (x)| ≤M |xn − x|

for some positive constant M .

Take now x ∈ Cr. If xn and x are both elements of Crnext or Crnint, respectively we get again

by the mean value theorem and the boundedness of ∇gr that

|grn (xn)− grn (x)| ≤M |xn − x|

for some positive constant M . Let us assume now that x ∈ Crnext and xn ∈ Crnint. Define for

c ∈ [0, 1] T (c) = (1− c)xn + cx and denote by zn ∈ Crn the point where T (c) hits Crn . Then

|grn (xn)− grn (x)| ≤ |grn (xn)− grn (zn)|+ |grn (zn)− grn (x)| .

Now again by the mean value theorem and the boundedness of ∇gr we have that

|grn (xn)− grn (x)| ≤M (|xn − zn|+ |zn − x|)

for some positive constant M . Since xn → x and rn → r we obtain that zn → x. Hence

|xn − x|, |xn − zn| and |zn − x| tends to zero. By the continuity of gr(x) in r for fixed x we

get

|grn (xn)− gr(x)| ≤ |grn (xn)− grn (x)|+ |grn (x)− gr(x)| → 0

as n→∞ and we are done. �

This finishes our collection of properties of gr and we will start with the proof of theorem

26.



3.2 Approximation procedure

First of all let us fix the definition of the approximation function fε:

fε(x) =
1

2ε

ε∫
−ε

gr(x)dr (3.13)

for x ∈ R2 and 0 < ε < β.

Lemma 38 The function fε defined as in (3.13) is an element of C1
(
R2
)

with

∆fε(x) =
1

2ε
η̃(x)1Cε(x) (3.14)

and

∇fε(x) =
1

2ε

ε∫
−ε

∇gr(x)dr. (3.15)

Proof. Since the logarithm is an integrable function on Cβ we get by use of (3.6) that

− 1

2π

∫
R2

1

2ε
1Cε(y)η̃(y) ln (|x− y|) dy = − 1

2π

∫
Cε

1

2ε
η̃(y) ln (|x− y|) dy

=
1

2ε

ε∫
−ε

− 1

2π

∫
Cr

η̃(y) ln (y) ln (|x− y|) dSr(y)dr

= fε(x).

But

f̃(x) = − 1

2π

∫
R2

1

2ε
1Cε(y)η̃(y) ln (|x− y|) dy

is an element of C1
(
R2
)

and (3.14) holds as it is shown in [30], Ch.192ff., pp.489.

For the proof of (3.15) we have to look at two different cases:

If x /∈ Cε we could just interchange differentiation and integration because∇gr(x) is bounded

by 1
d(x,Cε) .

For x ∈ Cε take rx such that x ∈ Crx . Define xt = x + tei for some t ∈ R and a standard

basis vector ei. Then for small t we have xt ∈ Crxt for rxt ∈ (−ε, ε). Define δt = |rxt − rx|.

Then we have

δt = |rxt − rx| ≤ |xt − x| = |t| . (3.16)



And we have

fε (xt)− fε(x) =
1

2ε

rx−δt∫
−ε

gr (xt)− gr(x)dr

︸ ︷︷ ︸
(I)

+
1

2ε

rx+δt∫
rx−δt

gr (xt)− gr(x)dr

︸ ︷︷ ︸
(II)

+
1

2ε

ε∫
rx+δt

gr (xt)− gr(x)dr

︸ ︷︷ ︸
(III)

.

In (III) xt and x are elements of Crint hence

(III) =

ε∫
rx+δt

∂

∂xi
gr(x)t+ o(t)dr.

Therefore we can can obtain by skipping terms of order o (t) that

lim
t→0

(III)

t
= lim
t→0

ε∫
rx−δt

∂

∂xi
gr(x)dr.

Now as mentioned in remark 26 we can ∂
∂xi

grx continuously continue from Crxint to Crx and

hence the integral
ε∫

rx

∂

∂xi
gr(x)dr

is well-defined. This implies that

lim
t→0

(III)

t
= lim

t→0

ε∫
rx−δt

∂

∂xi
gr(x)dr

=

ε∫
rx

∂

∂xi
gr(x)dr − lim

t→0

rx−δt∫
rx

∂

∂xi
gr(x)dr.

But is shown in corollary 29 that ∇gr(x) is uniformly bounded in r and x and therefore

lim
t→0

rx−δt∫
rx

∂

∂xi
gr(x)dr = 0.

Thus we can conclude that

lim
t→0

(III)

t
=

ε∫
rx

∂

∂xi
gr(x)dr.



By repeating now these arguments using the continuous continuation of ∂
∂xi

grx from Crxext to

Crx as mentioned in remark 26 we are able to show that

lim
t→0

(I)

t
=

rx∫
−ε

∂

∂xi
gr(x)dr.

For (II) we have by the continuity of gr

(II) = 2gr1 (xt) δt − 2gr2(x)δt

for some r1 and r2 ∈ (rxt , rx). By (3.16) and since gr(x) is continuous in r and x as shown

in proposition 30 we get

lim
t→0

(II)

t
= lim
t→0

2δt
t

(gr1 (xt)− gr2(x)) = 0.

These calculations imply

lim
t→0

fε (xt)− fε(x)

t
=

1

2ε

rx∫
−ε

∂

∂xi
gr(x)dr +

ε∫
rx

∂

∂xi
gr(x)dr

=
1

2ε

ε∫
−ε

∂

∂xi
gr(x)dr

and we are done. �

The representation of ∇fε allows us to deduce boundedness of ∇fε.

Corollary 39 The function ∇fε (x) is bounded in (ε, x) on (−β, β)× R2.

Proof. ∇gr is uniformly bounded by corollary 36 and hence we get that ∇fε is uniformly

bounded. �

Our next aim is to show convergence results for fε.

Proposition 40 fε converges to g uniformly in R2.

Proof. First of all we want to mention that

Lemma 41 fε converges to g point-wise in R2.

Proof. Since gr(x) is continuous on r for fixed x as shown in lemma 34 we have

lim
ε→0

fε(x) = lim
ε→0

1

2ε

ε∫
−ε

gr(x)dr

= lim
ε→0

gr̃(x) = g(x)

where r̃ ∈ (−ε, ε). �



Now we want to prove the uniform convergence of fε by splitting R2 into a compact set K

containing Cβ and R2\{K}.

Since ∇fε is uniformly bounded on (−β, β) × R2, i.e. there exists a positive constant C

such that |∇fε(x)| ≤ C for any x ∈ R2 and any ε ∈ (−β, β), we get by the mean value

theorem that |fε(x)− fε(y)| ≤ C |x− y| for any possible choice of x and y ∈ R2. Hence the

family fε is equicontinuous on every compact subset K of R2 and converges point-wise to the

continuous function g. Therefore fε converges to g uniformly on K, see [13], p.718, theorem

C.8. Take now an R > 0 such that Cβ ⊆ BR(0) = K. Then we have for any x /∈ BR(0) that

|fε(x)− g(x)| =

∣∣∣∣∣∣ 1

2ε

ε∫
−ε

gr(x)dr − g0(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
C

η(y)

 1

2ε

ε∫
−ε

φ(r, y) ln (|x− y − rny|) dr − ln (|x− y|)

 dS(y)

∣∣∣∣∣∣ .
Since x /∈ K we have that x− y − rny 6= 0 for any possible choice of y and r hence we can

make a Taylor expansion of ln (|x− y − rny|) around |x− y| w.r.t. r. We get a ζ ∈ (0, r)

such that

ln (|x− y − rny|) = ln (|x− y|) + r
∂

∂r
ln (|x− y − ζny|) .

Since ∂
∂r ln (|x− y − rny|) is continuous in (−β, β)×R2\BR(0) and behaves like 1

d(x,Cβ) for

large x we get a positive constant M such that

sup
(r,x)∈(−β,β)×R2\BR(0)

∣∣∣∣ ∂∂r ln (|x− y − rny|)
∣∣∣∣ ≤M <∞.

Hence ∣∣∣∣∣∣ 1

2ε

ε∫
−ε

φ(r, y) ln (|x− y − rny|) dr − ln (|x− y|)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ln (|x− y|)

 1

2ε

ε∫
−ε

φ(r, y)dr − 1

∣∣∣∣∣∣+ εM

=

∣∣∣∣∣∣ln (|x− y|)

 1

2ε

ε∫
−ε

(1 + rκ(y)) dr − 1

∣∣∣∣∣∣+ εM

= εM.

Therefore |fε(x)− g(x)| ≤ ‖η‖∞,CMε and this implies that fε converges uniformly to g on

R2\BR(0). Hence we have uniform convergence on R2\BR(0) and on BR(0) and therefore

we get uniform convergence in R2. �

The last step in the approximation procedure is to show that

Lemma 42 ∇fε → ∇g point-wise in R2\C.



Proof. Take x ∈ R2\C and choose 0 < ε < d (x, C). Then∇gr(x) is continuous in r ∈ (−ε, ε)

for fixed x which can be seen as follows: Since ε < d (x, C) and r ∈ (−ε, ε) we have

∇gr(x) = − 1

2π

∫
Cr

η̃ (y)∇ ln (|x− y|) dSr(y)

= − 1

2π

∫
C

η (y)φ(r, y)∇ ln (|x− y − rny|) dS(y).

If we take now a sequence rm → r then we see that the integrand

η (y)φ (rm, y)∇ ln (|x− y − rmny|)

converges to

η (y)φ (r, y)∇ ln (|x− y − rny|)

and is bounded by some constant since x has a positive distance to Cε. Hence by domi-

nated convergence we get ∇grm(x) → ∇gr(x) and this implies the point-wise convergence

of ∇fε(x) = 1
2ε

ε∫
−ε
∇gr(x)dr to ∇g(x). �

3.3 Ito formula

In this section we want to calculate g (Bt) by use of Ito’s formula for fε. Let us first mention

some conclusion of Ito’s isometry which will use later on.

Proposition 43 For any f : R2 → R2 such that the Ito integral
t∫

0

f (Bs) dBs exists we

have

E

 t∫
0

f (Bs) dBs
2

 ≤ 2E

 t∫
0

|f (Bs)|2 ds

 . (3.17)

Proof. We obtain by the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
for any a and b ∈ R that almost

surely

t∫
0

f (Bs) dBs
2

=

 2∑
i=1

t∫
0

fi (Bs) dBis

2

≤ 2

2∑
i=1

 t∫
0

fi (Bs) dBis

2

.

Hence we have

E

 t∫
0

f (Bs) dBs
2

 ≤ 2

2∑
i=1

E


 t∫

0

fi (Bs) dBis

2
.



By Ito’s isometry we obtain

2∑
i=1

E


 t∫

0

fi (Bs) dBis

2
 =

2∑
i=1

E

 t∫
0

fi (Bs)
2

ds


= E

 t∫
0

2∑
i=1

fi (Bs)
2
ds


= E

 t∫
0

|f (Bs)|2 ds


and (3.17) is shown. �

Now we are able to proof the following:

Theorem 44 For each t ∈ R+ we have almost surely

g (Bt) = g (B0) +

t∫
0

∇g (Bs) dBs + lim
ε→0

1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds (3.18)

where the limit is taken w.r.t. L2 (Ω,P).

Proof. It is shown in [4], pp.210 that for any closed C2-curve C the set {t ∈ R : Bt ∈ C}

has Lebesgue measure 0 almost surely. Thus we can apply Ito’s formula to any h ∈ C1
(
R2
)

with ∆h ∈ L∞
(
R2
)
∩ C0

(
R2\{M}

)
where M is a finite union of C2-curves, i.e.

h (Bt) = h (B0) +

t∫
0

∇h (Bs) dBs +
1

2

t∫
0

∆h (Bs) ds. (3.19)

But we have already shown that fε ∈ C1
(
R2
)

and that ∆fε = 1
2ε η̃(x)1Cε(x), see lemma 31.

Hence since Cε ∪ C−ε is a union of C2-curves we have for every 0 < ε < β:

fε (Bt) = fε (Bt) +

t∫
0

∇fε (Bs) dBs +
1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds. (3.20)

Since fε converges uniformly to g we get

E
(
|fε (Bt)− fε (B0)− g (Bt) + g (B0)|2

)
→ 0.

We also have that ∇fε(x) converges to ∇g(x) for x ∈ R2\{C} and ∇fε and ∇g are bounded

by some constant M , see corollary 33. Hence, since 1C (Bs) = 0 almost surely for every s

we get

E

 t∫
0

|∇fε (Bs)−∇g (Bs)|2 ds

→ 0



by dominated convergence and Fubini. By (3.17) we obtain

E

 t∫
0

∇fε (Bs)−∇g (Bs) dBs
2

→ 0

and the theorem is proven. �

We get even a more general result

Remark 45 Take Cr to be a Runge parallel surface of C. Then we have

gr (Bt) = gr (B0) +

t∫
0

∇gr (Bs) dBs + lim
ε→0

1

4ε

t∫
0

η̃ (Bs)1Crε (Bs) ds. (3.21)

Proof. Follows exactly in the same way as in the case of C. �

3.4 Tanaka type formula

The last step is to identify the limit point of (3.18), i.e lim
ε→0

1
4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds. The aim

of this section is to show the following theorem

Theorem 46 For every r ∈ (−β, β) and for any φ ∈ C0
(
R2
)
∩ L∞

(
R2
)

we have

lim
ε→0

1

4ε

t∫
0

φ (Bs)1(Cr)ε
(Bs) ds =

t∫
0

φ (Bs) dL (s, Cr) (3.22)

where the right hand side is defined as Riemann-Stieltjes integral for the continuous and

non-decreasing function L (·, Cr). Here L (t, C) is the invariant local time of the Brownian

motion on C in the sense of [4], i.e. L (t, C) is a non-decreasing, time-continuous and adapted

process which only increases if Bt is on C. Additionally we have for every open subset U ⊆ R2

and every f ∈ C∞
(
R2
)

with f−1 ({0}) ∩ U = C ∩ U and ∂
∂n
f > 0 on C ∩ U that

t∫
0

1U (Bs) dls =

t∫
0

1U (Bs) |∇f (Bs)|dL (s, C)

where l is the local time of f (B) at 0. For further details see [4], pp.216.

Remark 47 It is shown in [29], Lemma 2.3 that L (t, Cr) has a version which is jointly

continuous in r and t.

Proof. For the proof of theorem 46 we will start with the following observation.



Lemma 48 For any r ∈ (−β, β) and every t > 0 we obtain

lim
ε→0

1

4ε

t∫
0

1(Cr)ε
(Bs) ds = L (t, Cr) (3.23)

Proof. We obviously have

1

4ε

t∫
0

1Crε (Bs) ds =
1

2

1

2ε

t∫
0

1(0,ε) (d (Bs, Cr)) ds.

But it is mentioned in [22], Theorem 4.1 and its corollary, that the local time of the distance

functional, i.e. lim
ε→0

1
2ε

t∫
0

1(0,ε) (d (Bs, Cr)) ds is equal to 2L (t, Cr). �

We conclude by use of theorem 44 and lemma 48 that for φ ≡ 1 we have for any r ∈ (−β, β)

and every t > 0

gr (Bt) = gr (B0) +

t∫
0

∇gr (Bs) dBs + L (t, Cr) (3.24)

Now we want to show that (3.22) holds for an arbitrary continuous φ. We will give the proof

in the case r = 0, i.e. for C. If r 6= 0 we will get the result in the same way but to clarify

the notation we only proof the special case r = 0. Let us start with the following.

Lemma 49 Take φ ∈ C0
(
R2
)
∩ L∞

(
R2
)

and denote by η ∈ C0 (C) the restriction of φ to

C. Define η̃ as in (3.10). Then we have

lim
ε→0

1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds =

t∫
0

η (Bs) dL (s, C).

Proof. Denote by fε,1 and g0,1 the approximation function and the single layer in the case

η ≡ 1, respectively. Define Xt = g0,1 (Bt)− fε,1 (Bt). The proof is split into two steps:

1. Step: If η ∈ C2 (C) then η̃ is obviously an element of C2 (Cβ). Now we want to give an

extension η of η̃ which is in C2
0

(
R2
)
. Fix 0 < δ < β and denote by φ a cut-off function of

Cδ in Cβ , i.e. φ ∈ C2
0

(
R2
)

with φ ≡ 1 on Cδ and φ ≡ 0 on R2\{Cβ}, for further details see

e.g. [13], p.328. Define η = η̃(x)φ(x). Then η ∈ C2
0

(
R2
)

and η = η̃ on Cδ.

Choose 0 < ε < δ and take a look at η (Bt)Xt. By stochastic product rule we obtain

η (Bt)Xt = η (B0)X0 −
t∫

0

η (Bs) dXs −
t∫

0

Xsdη (Bs)−
t∫

0

d [X, η (B·)] s. (3.25)

By (3.24) and (3.34) we get

dX = ∇ (g0,1 − fε,1) (B) dB + dL (·, C)− 1

4ε
1Cε (B) dB.



By substituting this in (3.25) we get

1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) dBs −
t∫

0

η (Bs) dL (s, C) = (3.26)

η (Bt)Xt − η (B0)X0︸ ︷︷ ︸
(I)

+

t∫
0

η (Bs) (∇g0,1 − fε,1) (Bs) dBs︸ ︷︷ ︸
(II)

+

t∫
0

Xsdη (Bs) +

t∫
0

d [X, η (B·)] s︸ ︷︷ ︸
(III)

We want to show that the left hand side of (3.26) tends to 0 if ε→ 0. Since fε,1 converges

uniformly to g0,1 and η is bounded we get E
(
(I)2

)
→ 0. By dominated convergence we have

E

 t∫
0

η (Bs) |(∇g0,1 − fε,1) (Bs)|2 ds

→ 0

and therefore we obtain by (3.17) that E
(
(II)2

)
→ 0. We can conclude by use of Ito’s

formula for η, (3.24) and (3.34) that

(III) =

t∫
0

Xs∇η (Bs) dBs +

t∫
0

Xs
1

2
∆η (Bs) + (∇g0,1 − fε,1) (Bs)∇η (Bs) ds. (3.27)

Now since ∇η and ∆η are bounded we get by repeating the arguments for (I) and (II) that

E (r.h.s. of (3.27))
2 → 0 and hence E

(
(III)2

)
→ 0. Thus we have

lim
ε→0

1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds =

t∫
0

η (Bs) dL (s, C). (3.28)

2. Step: Take η ∈ C0 (C). Choose a sequence ηn ∈ C2 (C) such that ‖ηn − η‖∞,C → 0 as

n→∞. We obviously have that∣∣∣∣∣∣ 1

4ε

t∫
0

(η̃n − η̃) (Bs)1Cε (Bs) ds

∣∣∣∣∣∣ ≤ ‖ηn − η‖∞,C 1

4ε

t∫
0

1Cε (Bs) ds. (3.29)

Since L (·, C) is non-negative and non-decreasing we get∣∣∣∣∫ t

0

(ηn − η) (Bs) dL (s, C)
∣∣∣∣ ≤ ‖ηn − η‖∞,C L (t, C) . (3.30)

Furthermore we obtain by (3.24) that

E
(
L (t, C)2

)
= E


g0,1 (Bt)− g0,1 (B0)−

t∫
0

∇g0,1 (Bs) dBs

2


≤ 2E
(

(g0,1 (Bt)− g0,1 (B0))
2
)

+ 2E


 t∫

0

∇g0,1 (Bs) dBs

2
 .



Since E
(
t∫

0

|∇g0,1 (Bs)|2 ds

)
≤Mt for some positive constant M we conclude by (3.17) that

E

((
t∫

0

∇g0,1 (Bs) dBs

)2
)

is bounded. Since g0,1 is a continuous function which behaves

like ln (d (x, C)) for large x we get by the exponential decay of the Brownian transition

kernel that 2E
(

(g0,1 (Bt)− g0,1 (B0))
2
)

is bounded. Hence E
(
L (t, C)2

)
is bounded. By

the L2-convergence of 1
4ε

t∫
0

1Cε (Bs) ds to L (t, C) we obtain that

E

 1

4ε

t∫
0

1Cε (Bs) ds
2

 ≤M <∞ (3.31)

for some positive M independent of ε. By this boundedness, (3.29) and (3.30) we have that

E


 1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds−
t∫

0

η (Bs) dL (s, C)

2


≤ C ‖ηn − η‖∞,C + E


 1

4ε

t∫
0

η̃n (Bs)1Cε (Bs) ds−
t∫

0

ηn (Bs) dL (s, C)

2


for some positive constant independent of ε and n. Fix δ > 0. Choose n ∈ N such that

‖ηn − η‖∞,C ≤
δ

2C . For this n take an α > 0 due to (3.28) such that for every ε ≤ α we have

E


 1

4ε

t∫
0

η̃n (Bs)1Cε (Bs) ds−
t∫

0

ηn (Bs) dL (s, C)

2
 ≤ δ

2
.

Hence

E


 1

4ε

t∫
0

η̃ (Bs)1Cε (Bs) ds−
t∫

0

η (Bs) dL (s, C)

2
 ≤ δ

for every ε ≤ α and the lemma is proven. �

The last step for proving theorem 46 is to show that (3.22) holds not only in the special case

of η̃.

Lemma 50 Take φ ∈ C0
(
R2
)
∩ L∞

(
R2
)

and denote by η ∈ C0 (C) the restriction of φ to

C. Define η̃ as in (3.10). Then we have

lim
ε→0

1

4ε

t∫
0

φ (Bs)1Cε (Bs) ds =

t∫
0

η (Bs) dL (s, C).

Proof. For the proof it is enough to show that

lim
ε→0

E

 1

4ε

t∫
0

(φ− η̃) (Bs)1Cε (Bs) ds

2

= 0.



By use of (3.31) we obtain that

E

 1

4ε

t∫
0

(φ− η̃) (Bs)1Cε (Bs) ds

2

≤M ‖φ− η̃‖∞,Cε → 0

by the continuity of φ− η̃ and because φ− η̃ ≡ 0 on C. �

Thus theorem 46 is proven and this was the last step to prove theorem 26. �

Now we want to show the “Radon-Nikodyn”- property of L (t, Cr).

Proposition 51 For every (α, γ) ⊆ (−β, β) we have

γ∫
α

L (t, Cr) dr = 2

t∫
0

1Cγα (Bs) ds. (3.32)

Remark 52 The proof for (3.32) which is given here seems to be new in the case of an

arbitrary closed C2,α-curve in R2. In the special case of a sphere one gets the result by

writing the distance functional of C in terms of the radial part of the polar coordinates.

Then one can identify the radial part of the Brownian motion by a Bessel process and then

for example the results of Blumenthal and Getoor , see [3], Corollary 3.4, gives us (3.32).

There an explicit structure of the resolvent of the Bessel process is used which is unknown

in the case of an arbitrary C2,α-curve.

Proof. Since gr(x) is jointly continuous in r and x we find a version of gr (Bt) which is

jointly continuous in r and t. Since L (t, Cr) is also jointly continuous in r and t we found

by (3.24) a jointly continuous version of
t∫

0

∇gr (Bs) dBs. Define

frε (x) =
1

2ε

r+ε∫
r−ε

gz(x)dz

for any r ∈ (−β, β). The rest of the proof follows the ideas of the proof for the one-

dimensional case, which can be found in [5], Theorem 7.3. Since

∇frε (x) =
1

2ε

r+ε∫
r−ε

∇gz(x)dz

as shown in lemma 31 we get almost surely that

t∫
0

∇frε (Bs) dBs =
1

2ε

t∫
0

r+ε∫
r−ε

∇gz (Bs) dzdBs

=
1

2ε

r+ε∫
r−ε

t∫
0

∇gz (Bs) dBsdz (3.33)



if the change of integration is allowed. We cannot take Fubini’s theorem here since there is

a stochastic integral involved. To obtain the result we do some approximation via Riemann

sums. Let

φn(x) =
∑
k

1

2n
∇g(r−ε+k2−n)(x)

where the sum is over all k such that k2−n ∈ (r − ε, r + ε). Since
t∫

0

∇g· (Bs) dBs is contin-

uous we have almost surely that

r+ε∫
r−ε

t∫
0

∇gz (Bs) dBsdz = lim
n→∞

∑
k

1

2n

t∫
0

∇g(r−ε+k2−n) (Bs) dBs

= lim
n→∞

t∫
0

φn (Bs) dBs.

We also have that φn(x) converges point-wise to
r+ε∫
r−ε
∇gy(x)dy on R2. Since ∇gz(x) is

uniformly bounded on (−β, β)× R2 we obtain by dominated convergence that

E

 t∫
0

|φn (Bs)− 2ε∇fε (Bs)|2 ds

→ 0.

Hence by (3.17) lim
n→∞

t∫
0

φn (Bs) dBs is equal almost surely to
t∫

0

2ε∇fε (Bs) dBs and the

change of integration is verified. Putting (3.33) into (3.20) we obtain almost surely that

frε (Bt)− frε (Bt)−
1

2ε

r+ε∫
r−ε

t∫
0

∇gz (Bs) dBsdz =
1

4ε

t∫
0

1(Cr)ε
(Bs) ds. (3.34)

We want to integrate this over r, but (3.34) holds only for each fixed r hence we again

approximate by Riemann sums to do this integration. Denote by F (r) the left member of

(3.34). Since F is continuous we have

γ∫
α

F (r)dr = lim
n→∞

∑
k

2−nF
(
k2−n

)
where the sum is over all k such that k2−n ∈ (α, γ). By (3.34) this integral is equal almost

surely to the limit of the following as n→∞:

1

4ε

t∫
0

∑
k

2−n1(Ck2−n)
ε

(Bs) ds.

For Bs ∈ Cγ+ε
α−ε take rBs such that Bs ∈ CrBs then

1(Ck2−n)
ε

(Bs) = 1(rBs−ε,rBs+ε)

(
k2−n

)
.



Hence ∑
k

2−n1(Ck2−n)
ε

(Bs) =
∑
k

2−n1(rBs−ε,rBs+ε)

(
k2−n

)
.

The sum on the right hand side is bounded by 2ε+ 1 and converges as n→∞ to

γ∫
α

1(rBs−ε,rBs+ε)(r)d(r).

It follows that almost surely

γ∫
α

frε (Bt)− frε (Bt)−
1

2ε

r+ε∫
r−ε

t∫
0

∇gz (Bs) dBsdz

 dr =
1

4ε

t∫
0

γ∫
α

1(C∇)ε
(Bs) drds. (3.35)

For x ∈ R2

lim
ε→0

1

2ε

γ∫
α

1(Cr)ε
(x)dr = 1Cγα(x) +

1

2
(1Cγ (x) + 1Cα(x)) . (3.36)

By letting ε → 0 in (3.35), using the continuity of
t∫

0

∇g· (Bs) dBs and (3.36) we obtain

almost surely

γ∫
α

gr (Bt)− gr (B0)−
t∫

0

∇gr (Bs) dBs

dr =
1

2

t∫
0

1Cγα (Bs) ds

since 1Cr (Bs) = 0 almost surely for each r and s. But this is nothing else but (3.32) in the

view of (3.24). �



Chapter 4

Stochastic processes related to

extensions of T

The goal of this chapter is to construct stochastic processes whose generators are given by

self-adjoint extensions of T , where T is given via

T : D (T ) ⊆ L2
(
R2
)
→ L2

(
R2
)

Tf =
1

2
∆f

with

D (T ) =
{
f ∈ C∞0

(
R2
)

: τC (f) = 0
}
.

The self-adjoint extensions which will be investigated are the extensions given by a multipli-

cation operator, see chapter 2, example 2, and the extension given by the Laplace-Beltrami

operator, see chapter 2, example 3.

We will show that the self-adjoint extension Tη of T given by the multiplication operator

Mη : D (Mη) ⊆ L2 (C)→ L2 (C)

Mηf = ηf

for a non-negative η generates a process X which has a killing rate depending on the integral∫ t
0
η (Bs) dL (s, C). To be more detailed: The semigroup of X is given by a Feynman-Kac

type formula, i.e. Ex [f (Xt)] = Ex
[
f (Bt) exp−

(∫ t
0
η (Bs) dL (s, C)

)]
. This result is not

surprising since in one dimension we already know that the boundary condition f ′ (0+) −

f ′ (0−) = κf(0) generates a sticky Brownian motion, i.e. a stochastic process Xt with semi-

group Ex [f (Xt)] = Ex [f (Bt) exp− (L (t, 0))], see e.g. the work of Ito and McKean jr., [20].

Thus the extensions related to multiplication operators just generalize the case of one point

51



interaction in one dimension to the case of a closed curve in two dimensions.

For the extension T∆LB
given by the Laplace-Beltrami operator we get a different picture.

We will get processes behaving like a Brownian motions with additional movement along

C in the time scale of L (t, C). This process shows a difference between point and curve

interactions. The geometry of the curve allows us to move along the curve in a local time

scale whereas in the case of one point there is no possibility to move since the geometry is

to simple. So in the case of curve interactions we have a richer situation than in the one

point case.

The chapter is organized as follows: At first we want to give basic results of classical L2-

semigroup theory which can be found in the book of Ma and Röckner, [24]. Afterwards

we will show how we can use the harmonic single-layer defined in chapter 3 to get rid of

the jump in the normal-derivative of special elements of D (T ∗) and to obtain a function

where we can easily apply an Ito formula. Later on we will use this construction to calculate

the Ito formula for elements of D (Tη) and D (T∆LB
), respectively. After this spadework

we construct the processes for the multiplication case and then for the case of the Laplace-

Beltrami operator.

4.1 Basic results

Before we start with our calculations we want to state the main results on semigroups which

we will need later on and we want to show how we can deal with the jump in the normal

derivative of elements of D (T ∗) with the help of the single-layer g given in (3.2).

General results on semigroups

In this section we will deal with strongly continuous contraction semigroups or short s.c.c.s.

on L2
(
R2
)

and their generators.

Definition 53 Denote by B
(
L2
(
R2
))

the set of bounded operators in L2
(
R2
)
. A map

P : R+ → B
(
L2
(
R2
))

is called an L2
(
R2
)
- strongly continuous contraction semigroup if

• ‖Pt‖ ≤ 1 for every t > 0, i.e. every Pt is a contraction,

• P0 = Id,

• for every t, s ∈ R+ we have Pt+s = PtPs (semigroup property),

• for every f ∈ L2
(
R2
)

we have lim
t↓0
‖Ptf − f‖ = 0 (strong continuity).



Here ‖·‖ denotes the strong operator topology. The generator A of such a semigroup (Pt)t>0

is defined by

Af = lim
t↓0

1

t
(Vtf − f)

whenever the limit exists.

For further details on semigroups and their generators we refer to the book of Ma and

Röckner, [24]. Later on we want to apply two general results on semigroups and its generators

to prove our statements. Both statements are proven in [24], chapter 2. The first one is an

immediate consequence of the Hille-Yosida-theorem.

Theorem 54 Every negative definite self-adjoint operator in L2
(
R2
)

generates a strongly

continuous contraction semigroup in L2
(
R2
)
.

The second statement allows us to restrict our calculations to nice subsets.

Theorem 55 If an operator B generates a strongly continuous contraction semigroup

(Pt)t>0 in L2
(
R2
)

and if for a Markov process Xt

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) = Af(x) (4.1)

in L2
(
R2
)

for a core of A, then Xt is the stochastic process associated to (Pt)t>0, i.e.

Ex (f (Xt)) = Vtf(x) for every f ∈ L2
(
R2
)
.

In the case of a self-adjoint operator there is a nice way of characterizing a core with the

help of essentially self-adjointness.

Remark 56 Take B to be a self-adjoint operator. If the restriction of B to a subset V ⊆

D (B) is essentially self-adjoint, then V is a core of B.

Proof. Denote by A the restriction of B to V . Then we have have that V = D (A) ⊆ D (B).

Since B is self-adjoint we can conclude that

D (B) ⊆ D (A∗) (4.2)

and that

D
(
A
)
⊆ D (B) (4.3)

since B is a closed operator. Here A is the closure of A.We assume A to be essentially

self-adjoint, i.e. D
(
A
)

= D (A∗). Hence we can conclude by combining (4.2) and ((4.3)

that

D
(
A
)
⊆ D (B) ⊆ D (A∗) = D

(
A
)
.

Hence D
(
A
)

= D (B) and this is equivalent to our statement that V = D (A) is a core of

D (B). �



A differentiability theorem

In this part of the work we want to show a theorem which gives us the possibility to apply

Ito’s formula to elements of D (T ∗). We will use this result later on for the calculation of

E (f (Xt)) where Xt is some given stochastic process.

Theorem 57 Take f ∈ D (T ∗) ∩ C2
(
Cint

)
⊕ C2

(
Cext

)
. Denote by gκf the single layer

potential with layer function κf as it is defined in (3.2). Then F = f + gκf ∈ C1
(
R2
)

with

∆F = ∆f on R2\{C}.

Remark 58 By this result we are able to apply Ito’s formula to f . We have that F ∈

C1
(
R2
)

and by construction F ∈ C2 (Cint)⊕ C2 (Cext) and hence we can just apply an Ito

formula to F , see the remarks to (3.19) in chapter 3. For gκf we have shown a Tanaka type

formula in the chapter before. By putting these two formulas together we obtain the Ito

formula for f .

Proof. First of all we want to mention that by our choice of f κf ∈ C0 (C).

We will start the proof by showing that F ∈ C0
(
R2
)
. Since κf ∈ C0 (C) we have by

proposition 32, p.34, that gκf is continuous. Since f ∈ C2
(
Cint

)
⊕C2

(
Cext

)
it is continuous

up to the boundary for Cint and Cext, respectively. But it was shown in lemma 3, p.12, that

f ∈ D (T ∗) implies that the restriction of f to C coming from the inner domain is the same

as passing from the outer domain. Hence f ∈ D (T ∗)∩
{
C2
(
Cint

)
⊕ C2

(
Cext

)}
is continuous

up to C from the outer and the inner domain, respectively, with the same value on C. This

implies that f and therefore F is continuous.

To show that F ∈ C1
(
R2
)

we have to look what happens at C since we obviously have that

F ∈ C1
(
R2\{C}

)
. By proposition 32, p.34, we obtain that κgκf = −κf and hence κF = 0.

Therefore we have no jump in the normal derivatives of F along C and since the normal

derivatives of f and gκf can be continuously continued to C, see remark 33, p.34, we get the

continuity of the normal derivatives of F by passing through C.

To prove that also the tangential derivative of F along C is continuous by passing through

C we will use the representation of elements of D (T ∗) shown in corollary 6, p.15. There it

is shown that for every f ∈ D (T ∗) ∩
{
C2
(
Cint

)
⊕ C2

(
Cext

)}
we can find a v ∈ H2,2

(
R2
)

such that f = v+Sακf where Sα is the acoustic single layer potential for some fixed α ∈ R.

For further details see chapter 2, pp.12. Hence we have that F = v + Sακf + gκf . But it is

shown in [30], Ch.192ff, pp.489, that for continuous layer functions the tangential derivative

of the acoustic single layer potential Sα and the tangential derivative of the single layer

potential g are continuous by passing through C. Furthermore it is shown in [25] that the

tangential derivative of elements of H2,2
(
R2
)
∩
{
C2
(
Cint

)
⊕ C2

(
Cext

)}
is continuous by

passing through C. Hence the tangential derivative of F is continuous and combining this



with the fact that the normal derivative is also continuous along C we get that F ∈ C1
(
R2
)
.

The equality ∆F = ∆f on R2\{C} follows immediately by the fact that gκf is harmonic in

R2\{C}, see proposition 32, p.34. �

4.2 The extensions given by multiplication operators

The results of this subsection are based on [20], pp.198, where some similar questions in the

case of a half-line are answered.

For this section fix φ /∈ R2 and take the compactification of R2 ∪ φ with the convention

f (φ) = 0 for all f ∈ C0
(
R2
)
. The detailed statement on the processes related to self-

adjoint extensions is the following:

Theorem 59 Choose a real-valued and non-negative η ∈ L∞ (C) such that the multiplica-

tion operator Mη given by η fulfills the requirements of chapter 2, example 2, i.e. it exists an

ε > 0 such that Mη : Hs (C)→ Hs−1+ε (C) for every s ∈
[
− 1

2 ,
3
2

]
. Denote by T−η the self-

adjoint extension of T given by D (T−η) =
{
f ∈ D (T ∗) : τ̃ f ∈ H3/2 (C) and κf = −ητ̃f

}
.1

Let B be a Brownian motion in R2 and define an exponential holding time c independent

of B with law

P· (c > t) = e−t. (4.4)

Define τ = inf{t :
t∫

0

η (Bs) dL (s, C) ≥ c}. Then the generator of the s.c.c.s. associated to

the process Xt given by

Xt = Bt if t < τ

Xt = φ if t ≥ τ

is just T−η.

Proof. If T−η and Xt fulfill the requirements of theorem 55, i.e. T−η generates a s.c.c.s.

and we have a core of T−η such that (4.1) holds for Xt on this core then the application of

theorem 55 to T−η and Xt will give the statement of theorem 59. We will start the proof

with the following proposition.

Proposition 60 The operator T−η generates a s.c.c.s.

Proof. We want to apply theorem 54 hence we have to show that T−η is a negative definite

operator. To do this take f ∈ D (T−η). By use of Green’s formula for elements of D (T ∗)

1 See chapter 2, example 2 for a detailed study of such extensions.



mentioned in chapter 2, p.9, we reach at

〈T−ηf, f〉L2(R2) = −1

2
〈∇f,∇f〉L2(R2) +

1

2
〈κf, τ̃f〉L2(C)

= −1

2
〈∇f,∇f〉L2(R2) −

1

2
〈ητ̃f, τ̃f〉L2(C)

≤ 0.

This implies that T−η is a negative definite operator. Since T−η is self-adjoint by construction

we will get by theorem 54 that T−η generates a s.c.c.s. �

The next step is to find a suitable core V of T−η. By remark 56 it is enough to show that

T−η restricted to the set V is essentially self-adjoint.

Proposition 61 Define the set V = D (T−η) ∩ C2
(
Cint

)
⊕ C2

(
Cext

)
. Then the restriction

of T−η to V is essentially self-adjoint.

Proof. Denote by A the restriction T−η to V . Due to [28], p.141 A is essentially self-adjoint

if and only if N (A∗ ± i) = {0}. We will show that

N (A∗ ± i) ⊆ N (T−η ± i) . (4.5)

Since T−η is self-adjoint we obtain that N (T−η ± i) = {0} and hence (4.5) implies the

essentially self-adjointness of A and therefore the core property of V .

The proof of (4.5) can be given in the following way: Since D (T ) ⊆ V we obviously have that

D (A∗) ⊆ D (T ∗). Take now f ∈ V . Since V ⊆ D (T−η) we have that κf = −ητ̃f . Using

this boundary condition and Green’s formula, see chapter 2, p.9 we get for any g ∈ D (T ∗)

that 〈
1

2
∆f, g

〉
L2(R2)

−
〈
f,

1

2
∆g

〉
L2(R2)

=
1

2
〈κf, τ̃g〉L2(C) −

1

2
〈τ̃ f, κg〉L2(C)

= −1

2
〈τ̃ f, ητ̃g + κg〉L2(C) .

Here we used that η is real-valued and hence 〈ητ̃f, τ̃g〉L2(C) = 〈τ̃ f, ητ̃g〉L2(C). Thus we obtain

that

D (A∗) = {f ∈ D (T ∗) : κf = −ητ̃f} .

By the results of [27], Theorem 2.1 we can represent every element f of N (T ∗ ± i) as

G (±i)w for some w ∈ H3/2 (C) where the operator G (±i) is defined in chapter 2, p.10. Due

to the results of chapter 2, pp.12 we have that G (±i)w = S±ig where g = Λw ∈ H−3/2 (C)

and S±i is the so-called acoustic single-layer potential. By chapter 2, lemma 2 we have that

κf = 2g and τ̃ f = 2P±ig with the operator P±i defined as in corollary 12, p.18. This implies

that for f ∈ D (A∗) we have that

2g = κf = −ητ̃f = −2ηP±ig. (4.6)



It is mentioned in proposition 12, p.18, that P±i maps Hs (C) to Hs+1 (C) for any s ∈ [−2, 2].

Hence if we take g ∈ H−3/2 (C) then −ηP±ig ∈ H−3/2+ε (C) by the mapping properties of

η. If we now assume that (4.6) holds then we get that g ∈ H−3/2+ε (C). By repeating this

argument we will come up with the property that g ∈ H1/2 (C) and hence P±ig ∈ H3/2 (C).

This is equivalent to τ̃ f ∈ H3/2 (C) and therefore we get that f ∈ N (A∗ ± i) implies that

f ∈ D (T ∗), τ̃ f ∈ H3/2 (C) and κf = −ητ̃f . But this is nothing else but f ∈ D (T−η).

Hence N (A∗ ± i) ⊆ N (T−η ± i). Thus (4.5) is proven and this shows proposition 61. �

The last step in the proof of theorem 59 is to show that (4.1) holds on V .

Proposition 62 For f ∈ V we have that

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) = T−ηf(x)

in L2
(
R2
)
.

Proof. We want to start with the representation of Ex (f (Xt)) by a Feynman-Kac type

formula. Afterwards we will use theorem 57 to calculate f (Bt) for functions in V . Then

the combination of these two results will finish the proof.

Lemma 63 For every f ∈ L2
(
R2
)

we have

Ex (f (Xt)) = Ex
f (Bt) exp

− t∫
0

η (Bs) dL (s, C)

 . (4.7)

Proof. With the help of the law (4.4) and since η ≥ 0 we get

P (τ > t) = P

c > t∫
0

η (Bs) dL (s, C)

 = exp

− t∫
0

η (Bs) dL (s, C)

. (4.8)

Take now an arbitrary f ∈ L2
(
R2
)
. Then by the definition of Xt we obtain that

Ex (f (Xt)) = Ex
(
f (Bt)1{τ>t}

)
.

By (4.8) we get that

Ex
(
f (Bt)1{τ>t}

)
= Ex

(
E
[
f (Bt)1{τ>t}|B

])
= Ex (f (Bt)P (τ > t))

= Ex
f (Bt) exp

− t∫
0

η (Bs) dL (s, C)


which proves the lemma. �



Take f ∈ V . Then as already mentioned in theorem 57 we have that f ∈ C0
(
R2
)
. This

implies that τ̃ f is just the restriction of f to C. Additionally we get by f ∈ V that κf ∈

C0 (C). For an f ∈ V define F = f + gκf where gκf is the single layer potential with layer

function κf defined in (3.2). Then by theorem 57 we can apply Ito’s formula to F and

obtain that

F (Bt) = F (B0) +

t∫
0

∇F (Bs) dBs +
1

2

t∫
0

∆F (Bs) ds.

Together with the Tanaka type formula for gκf shown in theorem 26, p.29, i.e.

gκf (Bt) = gκf (B0) +

t∫
0

∇gκf (Bs) dBs +

t∫
0

κf (Bs) dL (s, C)

we are able to deduce that

f (Bt) = f (B0) +

t∫
0

∇f (Bs) dBs +
1

2

t∫
0

∆F (Bs) ds−
t∫

0

κf (Bs) dL (s, C). (4.9)

By use of (4.9) and stochastic product rule we get that

Ex
f (Bt) exp

− t∫
0

η (Bs) dL (s, C)


=f(x) + Ex

1

2

t∫
0

∆F (Bs) exp

− s∫
0

η (Bu) dL (u, C)

ds

 (4.10)

+ Ex
 t∫

0

(−κf (Bs)− f (Bs) η (Bs)) exp

− s∫
0

η (Bu) dL (u, C)

dL (s, C)

 .

But we assume that κf = −ητ̃f and this implies that

t∫
0

(−κf (Bs)− f (Bs) η (Bs)) exp

− s∫
0

η (Bu) dL (u, C)

dL (s, C) = 0. (4.11)

Hence by combining (4.10) and (4.11) we obtain with the help of lemma 63 that

Ex (f (Xt)) = f(x) + Ex
1

2

t∫
0

∆F (Bs) exp

− s∫
0

η (Bu) dL (u, C)

ds


and thus we obtain that point-wise

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) =

1

2
∆F (x).

But we obviously have that

∣∣∣∣1t (Ex (f (Xt))− f(x))

∣∣∣∣ ≤ 1

t
Ex
1

2

t∫
0

|∆F (Bs)|ds

 .



But it is well known, see e.g. [24], Ch.3, Example 2, that

lim
t↓0

1

t
Ex
1

2

t∫
0

|∆F (Bs)|ds

 = |∆F (x)|

in L2
(
R2
)
. Therefore we can conclude by dominated convergence that also in L2

(
R2
)

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) =

1

2
∆F (x).

Since ∆F = ∆f on R2\{C} as shown in theorem 57 and f ∈ D (T−η) we get that 1
2∆F =

T−ηf and the proposition is proven. �

To put it in a nutshell: T−η generates a s.c.c.s. and on a core of T−η we have that

lim
t↓0

1
t (Ex (f (Xt))− f(x)) = T−ηf . Hence by theorem 55 we get the statement of theo-

rem 59. �

4.3 The extension given by the Laplace-Beltrami oper-

ator

In this section we want to construct the stochastic process related to the self-adjoint ex-

tension of T given by the Laplace-Beltrami operator as given in chapter 2, example 3. We

will see that the process behaves like a Brownian motion in R2\{C} whereas on C we get

an additional movement in the the time scale of L (t, C). The additional movement is just a

Brownian motion on C. The generator of the C-Brownian motion is given by the Laplace-

Beltrami operator, see [19], Ch.V, Theorem 1.1.

Theorem 64 Take ∆LB to be the self-adjoint Laplace-Beltrami operator from H2 (C) ⊆

L2 (C) to L2 (C).Denote by T 1
2 ∆LB

the self-adjoint extension of T given by D
(
T 1

2 ∆LB

)
={

f ∈ D (T ∗) : τ̃ f ∈ H5/2 (C) and κf = 1
2∆LB τ̃ f

}
.2

Take now a Brownian motion W in R and define Z = ψ (W ), where ψ is a parametrization

of Cwith respect to the arc length. Then the generator of the process Xt = Bt + ZL(t,C) is

T 1
2 ∆LB

. Here Bt is a Brownian motion in R2 independent of W .

Proof. As in the proof of theorem 59 we want to show that T 1
2 ∆LB

and Xt fulfill the

requirements of 55, i.e. T 1
2 ∆LB

generates a s.c.c.s. and we have a core of T 1
2 ∆LB

such that

(4.1) holds for Xt on this core. Then the application of theorem 55 to T 1
2 ∆LB

and Xt will

give the statement of theorem 64. We will start the proof with the following proposition.

Proposition 65 The operator T 1
2 ∆LB

generates a s.c.c.s.

2 For further details see chapter 2, example 3.



Proof. As in the proof of proposition 60 we want to show that T 1
2 ∆LB

is a negative definite

operator. Then an application of theorem 54 will give the result. By the same calculations

as in the proof of proposition 60 we get for any f ∈ D
(
T 1

2 ∆LB

)
that

〈
T 1

2 ∆LB
f, f
〉
L2(R2)

= −1

2
〈∇f,∇f〉L2(R2) +

1

2

〈
1

2
∆LB τ̃ f, τ̃f

〉
L2(C)

.

Since ∆LB is a negative definite operator, see [28], p.160, example 4, we get that T 1
2 ∆LB

is

a negative definite and self-adjoint operator. Hence we will get by theorem 54 that T 1
2 ∆LB

generates a s.c.c.s. �

Now we will find a core of T 1
2 ∆LB

.

Proposition 66 The restriction of T 1
2 ∆LB

to V = D
(
T 1

2 ∆LB

)
∩ C2

(
Cint

)
⊕ C2

(
Cext

)
is

essentially self-adjoint.

Proof. In correspondence to the proof of proposition 61 it is enough to show that A, i.e.

the restriction of T 1
2 ∆LB

to V , is essentially self-adjoint. Then remark 56 shows that V is a

core of T 1
2 ∆LB

.

By the same argumentation as in proposition 61 it is enough to show that

N (A∗ ± i) ⊆ N
(
T 1

2 ∆LB
± i
)
.

By copying the arguments of proposition 61 we get for any f ∈ N (A∗ ± i) the existence of

a function g ∈ H−3/2 (C) such that

g = κf =
1

2
DLB τ̃ f =

1

2
DLBP±ig. (4.12)

Here DLB denotes the distributional Laplace-Beltrami which has the property that

If f ∈ Hs (C) and DLBf ∈ Hs−1 (C) then f ∈ Hs+1 (C) for any s ∈ R, (4.13)

see chapter 2, example 3. If we start with g ∈ H−3/2 (C) then we get that P±ig ∈ H−1/2 (C)

since P±i maps Hs (C) to Hs+1 (C) for any s ∈ [−2, 2] as mentioned in proposition 12, p.18.

If we now assume that (4.12) holds we get by (4.13) that P±ig ∈ H1/2 (C). But it is also

mentioned in proposition 12, p.18, that for any s ∈
[
− 1

2 ,
3
2

]
and for all σ ≥ 0 we can obtain

if φ ∈ Hs (C) and Pφ ∈ Hs+1+σ (C) then φ ∈ Hs+σ (C). Hence g ∈ H−1/2 (C). By repeating

now this argument we end up with the fact that P±ig = τ̃ f ∈ H5/2 (C). Since we also have

that κf = 1
2DLB τ̃ f we conclude that f ∈ D

(
T 1

2 ∆LB

)
. This finishes the proof of proposition

66. �

Hence V = D
(
T 1

2 ∆LB

)
∩ C2

(
Cint

)
⊕ C2

(
Cext

)
is a core of T 1

2 ∆LB
. The last step in the

proof of theorem 64 is to show that (4.1) holds on V .



Proposition 67 For f ∈ V we have that

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) = T 1

2 ∆LB
f(x)

in L2
(
R2
)
.

Proof. We will start the proof by collecting some useful facts on Zt. Afterwards we will use

again the Tanaka type formula for the single-layer potential proven in chapter 3 to determine

the generator of Xt.

Lemma 68 It exists a σ : R2 → R2×2 and a b : R2 → R2 such that

dZ = σ(Z)dW + b(Z)ds.

Moreover the generator of Z is equal to 1
2∆LB on C.

Proof. A proof of these statements can be found in [19], Ch.V, Theorem 1.1 and Theorem

1.2. �

Take f ∈ V and define F = f+gκf where gκf is the single layer potential with layer function

κf defined in (3.2). Then by theorem 57 we can apply Ito’s formula to F and obtain that

F (Xt) =F (X0) +

∫ t

0

∇F (Xs) dBs +

∫ t

0

∇F (Xs)σ (Zs) dWL(s,C) +
1

2

∫ t

0

∆F (Xs) ds

+
1

2

∫ t

0

∆LBF (Xs) dL (s, C).

With the help of the Tanaka type formula for the single layer potential given in (3.3) we get

gκf (Xt) =gκf (X0) +

∫ t

0

∇gκf (Xs) dBs +

∫ t

0

∇gκf (Xs)σ (Zs) dWL(s,C)

+

∫ t

0

κf (Xs))dL (s, C) +
1

2

∫ t

0

∆LBgκf (Xs) dL (s, C).

By combining these two equalities we get

f (Xt) =f (X0) +

∫ t

0

∇f (Xs) dBs +

∫ t

0

∇f (Xs)σ (Zs) dWL(s,C)

+
1

2

∫ t

0

∆F (Xs) ds

+

∫ t

0

1

2
∆LBf (Xs)− κf (Xs) dL (s, C).

But we assume that κf = 1
2∆LBf and hence

Ex (f (Xt)) = f(x) + Ex
(

1

2

∫ t

0

∆F (Xs) ds

)
.

Thus we obtain that point-wise

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) =

1

2
∆F (x) .



By our construction we have that ∆F is a bounded function and hence

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) = lim

t↓0

1

t
Ex
(

1

2

∫ t

0

∆F (Xs) ds

)
≤ ≤ 1

2
‖∆F‖∞ .

Thus we can obtain by dominated convergence that for every bounded K ⊆ R2 we have

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) =

1

2
∆F (x)

in L2 (K). Take now K such that there exists a positive constant M with d (x, C) ≥ M for

any x ∈ R2\K. If we denote by Sr(x) the ball with radius r around x and by τr,x the first

exit time of Sr(x) for the process Xt starting in x we see immediately from the definition of

Xt that for any x ∈ R2\K and every r ≤ M
2 the process Xt behaves like a Brownian motion

up to τr,x. Therefore we get by Dynkin’s representation of the generator, see [21], Chapter

7, that

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) = lim

r↓0

Ex
(
f
(
Xτr,x

))
− f(x)

Ex (τr,x)

= lim
r↓0

Ex
(
f
(
Bτr,x

))
− f(x)

Ex (τr,x)

= lim
t↓0

1

t
(Ex (f (Bt))− f(x)) .

But lim
t↓0

1
t (Ex (f (Bt))− f(x)) = 1

2∆f(x) in L2
(
R2
)

and since ∆F = ∆f on R2\{C} as

shown in theorem 57 we have that

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) =

1

2
∆F (x)

in L2
(
R2\K

)
. Thus we obtain that

lim
t↓0

1

t
(Ex (f (Xt))− f(x)) =

1

2
∆F (x)

in L2
(
R2
)
. Since ∆F = ∆f on R2\{C} as shown in theorem 57 and f ∈ D

(
T 1

2 ∆LB

)
we get

that 1
2∆F = T 1

2 ∆LB
f and the proposition is proven. �

To put it in a nutshell: T 1
2 ∆LB

generates a s.c.c.s. and on a core of T 1
2 ∆LB

we have that

d
dtE

x (f (Xt)) = T 1
2 ∆LB

f . Hence by theorem 55 we get the statement of theorem 64. �



Chapter 5

Superprocesses

In the chapter before we restrict ourselves to non-negative functions η to construct stochastic

processes related to the extensions Tη of T . In this section we get rid of the restriction on

the sign of η. But we have to pay a price for forgetting the sign of η. Instead of classical

stochastic processes as in chapter 4 we have to deal with measure valued processes, so-called

superprocesses.

An overview on the theory of superprocesses can be found in [12]. One main interesting fact

is that the semigroup of the generator of such a measure valued process does not have to be

sub-Markovian anymore, i.e. Pt1 � 1. Hence we can construct superprocesses for a larger

class of operators than classical stochastic processes.

The strategy of this chapter is to show the existence of a superprocess related to Tη with

the help of a similar approximation procedure as in chapter 3. At first we will give the

general definition of a superprocess with the help of a partial differential equation. Then

we will give the description of the superprocess we are interested in with the help of some

integral equation. The next step is to show the connection between the integral equation

in our special case, the partial differential equation in the general case and the operators

Tη. Afterwards we will use an approximation procedure to show the unique solvability of

the defining integral equation. Furthermore we will use the existence of a superprocess for

any approximation step to show the existence of the superprocess in the limiting case. The

existence of the approximating superprocesses is shown by J. Engländer and R.G.Pinsky,

see [10].

Preliminaries As in [9], letM denote the set of finite measures on R2 equipped with the

topology of weak convergence and denote by 〈µ, g〉 the integral
∫
R2

g dµ. Let α, γ be Hölder

continuous functions on R2 with sup
x∈R2

γ (x) <∞ and α > 0.
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Then we have a unique M-valued time continuous Markov process X satisfying

Eµ (exp 〈Xt,−g〉) = exp

−∫
R2

u (t, x)µ(dx)


for any µ ∈ M and any bounded, continuous g : R2 → R, where u is the minimal non-

negative solution to

∂

∂t
u =

1

2
∆u+ γu− αu2 on R2 × (0,∞) (5.1)

with the boundary condition

lim
t→0+

u (t, ·) = g (·) .

This process is called a superdiffusion and the process (X,Pµ, µ ∈M) is sometimes called

the
(

1
2∆, α, γ,R2

)
-superprocess.

5.1 Main statement and basic notations

We want to proof the existence of a superprocess X under a slight modification of (5.1).

Theorem 69 For any η ∈ C0,1/2+ε (C) with ε ∈ (0, 1) it exists a unique M-valued time

continuous Markov process X such that

Eµ (exp 〈Xt,−g〉) = exp

−∫
R2

u (t, x)µ(dx)

 (5.2)

for any µ ∈ M and any bounded, continuous g : R2 → R, where u is the minimal non-

negative solution to

u (t, ·) =

∫
R2

g (y) p (t, ·, y) dy

+

t∫
0

∫
C

η (y)u (s, y) p (t− s, ·, y) dS(y) ds (5.3)

−
t∫

0

∫
R2

α (y)u2 (s, y) p (t− s, ·, y) dy ds.

Here α is a positive, bounded and Hölder-continuous function on R2 and p (t, ·, y) is the

usual transition kernel of the Brownian motion in R2.

Before we start with the proof of theorem 69 we give some integral equation approximation

result and fix some notation.



Approximation result and notations

For establishing the existence of a solution of equation (5.3) we will use the following integral

equation approximation theorem which can be found in [11], Ch. 5.

Theorem 70 Take a k (t, x, y) : R+×R2×R2 → R+ which is for any t > 0 continuous in x

and y and it exists a constant C such that for any t ≥ 0 and every x ∈ R2
∫
R2

k (t, x, y) dy = C.

Furthermore take a sequence ψε ∈ C0
(
R2
)
∩ L1

(
R2
)

such that ψε converges weakly to a

distribution Ψ, i.e. for every bounded and continuous f we have

lim
ε→0

∫
R2

ψε(x)f(x)dx = Ψ (f)

with |Ψ (f)| ≤ ‖f‖∞. Define the integral equation

uε (t, ·) =

∫
R2

g (y) k (t, ·, y) dy

+

t∫
0

∫
R2

ψε(y)uε (s, y) k (t− s, ·, y) dy ds (5.4)

−
t∫

0

∫
R2

α (y)u2
ε (s, y) k (t− s, ·, y) dy ds

for some non-negative and bounded α.

If there exists a δ > 0 such that the equation (5.4) has a solution uε (t, x) which is uniformly

bounded in (ε, t, x) on [0, δ]× [0, T ]×R2 for any finite T > 0 and if additionally there exists

a function h (t) which is integrable on every finite interval [0, T ] such that for every x ∈ R2

and every 0 < ε ≤ δ ∫
R2

|ψε(y)| k (t, x, y) dy ≤ h (t) (5.5)

then uε (t, x) (maybe by dropping to a subsequence) converges uniformly to u (t, x) as ε

tends to zero where u (t, x) is a solution of

u (t, x) =

∫
R2

g (y) k (t, x, y) dy

+

t∫
0

Ψ (u (s, ·) k (t− s, x, ·)) ds (5.6)

−
t∫

0

∫
R2

α (y)u2 (s, y) k (t− s, x, y) dy ds.

The main tool for the prove of theorem 70 is the application of the theorem of Arzela and

Ascoli .



Later on we will identify k (t, x, y) with p (t, x, y) and construct a weak convergent sequence

ψε such that (5.5) holds.

Notations Denote as in chapter 2 by Tη the extension of T related to the multiplication

operator given by η as in (2.5). Fix β > 0 such that for every r ∈ (−β, β) Cr is a Runge

parallel surface of C and (3.8) holds. Define η̃ as in (3.10) and take φ (r, y) as in (3.7).

5.2 Construction of superprocesses

Before we start with the actual proof of theorem 69 we want to establish the connection of

(5.3) to Tη. Remember that we have shown in corollary 23 that

Tηu (·) =
1

2
∆u (·) +

∫
C

η(y)u(y)δ0 (· − y) dS(y) (5.7)

for any u ∈ D (Tη). Define now

u (t, ·) =

∫
R2

g (y) p (t, ·, y) dy +

t∫
0

∫
C

η (y)u (s, y) p (t− s, ·, y) dS(y) ds.

Then formally we have

d

dt
u (t, ·) =

1

2
∆u (t, ·) +

∫
C

η(y)u(y)δ0 (· − y) ds(y)

and thus (5.3) is nothing else but a weak formulation of (5.1) in the case of Tη.

As already mentioned in the beginning of this chapter we have for any Hölder continuous

functions α and γ a
(

1
2∆, α, γ,R2

)
-superprocess, see [10], Appendix A. Now we want to

approximate (5.3) by use of Hölder continuous functions γε and then use the existence of an(
1
2∆, α, γε,R2

)
-superprocess to construct the superprocess we are interested in.

Proof. We will start the proof with the construction of an approximation of (5.3).

Lemma 71 Choose a Dirac-sequence mε ∈ C1 (R) with supp (mε) ⊆ (−ε, ε). Take

D(x) =− d (x, C) if x ∈ Cint

= d (x, C) if x ∈ Cext

and define

γε(x) = η̃(x)mε (D(x)) . (5.8)

for any ε ≤ β
2 . Then γε is a Hölder continuous function in R2 for every ε < β

2 .

Proof. It is shown in [30], Ch.201, pp.528, that D ∈ C1 (Cβ). Hence we get by the definition

of mε that γε ∈ C0
(
R2
)
. Furthermore γε is Hölder-continuous in Cβ and γε ≡ 0 on R2\Cε.

Thus γε is Hölder continuous in R2. �



Integral equation

First of all we want to show the unique solvability of (5.3) with some approximation via γε.

The existence of a solution will be established with the help of theorem 70. The uniqueness

of the solution is then just a little calculation.

Proposition 72 The integral equation (5.3) has a unique non-negative solution.

Proof. Take γε as in (5.8). Then by [10], Appendix A and the references therein we have

that

uε (t, ·) =

∫
R2

g (y) p (t, ·, y) dy

+

t∫
0

∫
R2

γε(y)uε (s, y) p (t− s, ·, y) dy ds (5.9)

−
t∫

0

∫
R2

α (y)u2
ε (s, y) p (t− s, ·, y) dy ds,

has a unique non-negative solution continuous in t and x with sup
0≤s≤t

‖uε (s, ·)‖∞ <∞. The

next step is to proof that uε → u and that u is indeed a solution of (5.3). Afterwards we

show that (5.3) has a unique solution.

Existence of solutions For the existence of a solution we want to apply theorem 70. If

we identify k (t, x, y) with p (t, x, y) and ψε with γε then we easily see that for any bounded

and continuous function f we have

lim
ε↓0

∫
R2

γε(y)f(y)dy =

∫
C

η(y)f(y)dS(y).

Hence we only have to check the required uniform boundedness of uε and (5.5).

Lemma 73 It exist constants K1 and K2 such that for every x ∈ R2 and every ε < β
2∫

R2

|γε (y)| p (t, x, y) dy ≤ ‖η‖∞

(
K1 +

K2√
2πt

)
. (5.10)

Remark 74 The function 1√
t

is obviously integrable on every finite interval [0, T ] and thus

we obtain by lemma 73 the needed estimate of (5.5).

Proof. By the definition of γε given in (5.8) we immediately see that∫
R2

|γε (y)| p (t, x, y) dy ≤ ‖η‖∞
∫
R2

mε (D(y)) p (t, x, y) dy. (5.11)



Take a closer look at∫
R2

mε (D(y)) p (t, x, y) dy =

∫
Cε

mε (D(y)) p (t, x, y) dy

=

ε∫
−ε

∫
Cr

p (t, x, y) dSr (y)mε (r) dr

=

ε∫
−ε

∫
C

p (t, x, y + rny)φ (r, y) dS (y)mε (r) dr.

If x ∈ Cβ then there exists a z ∈ C and an r̃ ∈ (−β, β) such that x = z + r̃nz. Hence∫
C

φ (r, y) p (t, x, y + rny) dS(y) =

∫
C

φ (r, y) p (t, z + r̃nz, y + rny) dS(y)

=

∫
C\Bδ(z)

φ (r, y) p (t, z + r̃nz, y + rny) dS(y) (5.12)

+

∫
C∩Bδ(z)

φ (r, y) p (t, z + r̃nz, y + rny) dS(y). (5.13)

for some 0 < δ < 1
2 . For (5.12) we have | (z + r̃nz)− (y + rny) | ≥ δ and therefore∫

C\Bδ(z)

φ (r, y) p (t, z + r̃nz, y + rny) dS(y) ≤ N 1

2πt
exp

(
−δ

2

2t

)
L (C) (5.14)

where L (C) represents the length of C and N is the upper bound of φ. For (5.13) we get by

(3.8) a positive constant K such that

| (z + r̃nz)− (y + rny) |2 ≥ K |z − y|2

Hence ∫
C∩Bδ(z)

φ (r, y) p (t, z + r̃nz, y + rny) dS(y)

=

∫
C∩Bδ(z)

φ (r, y)
1

2πt
exp

(
−| (z + rnz)− (y + rny) |2

2t

)
dS(y)

≤ N

∫
C∩Bδ(z)

1

2πt
exp

(
−K|z − y|

2

2t

)
dS(y).

Take now a parametrization φ of C with φ(0) = z. Then there exist v, w ∈ R such that∫
C∩Bδ(z)

1

2πt
exp

(
−K|z − y|

2

2t

)
dS(y)

=

w∫
v

1

2πt
exp

(
−K |φ(0)− φ(u)|2

2t

)∣∣∣(φ̇) (u)
∣∣∣ du.



By a Taylor expansion of φ we get

φ(u) = φ(0) + uφ̇(ζ)

for some ζ between 0 and u. And φ is C2,α hence
∣∣∣φ̇∣∣∣ is bounded by a positive constant M .

Therefore we have
w∫
v

1

2πt
exp

(
−K |φ(0)− φ(u)|2

2t

)∣∣∣(φ̇) (u)
∣∣∣du

=

w∫
v

1

2πt
exp

−K
∣∣∣uφ̇(ζ)

∣∣∣2
2t

∣∣∣(φ̇) (u)
∣∣∣ du

≤ M

w∫
v

1

2πt
exp

−u2
(
K
∣∣∣φ̇(ζ)

∣∣∣)2

2t

du.

Since φ is C2,α we have that
∣∣∣φ̇∣∣∣ ≥ C > 0, see [30], Ch.200, pp.513. Thus we obtain

w∫
v

1

2πt
exp

−u2
(
K
∣∣∣φ̇(ζ)

∣∣∣)2

2t

du

≤
w∫
v

1

2πt
exp

(
−u

2 (KC)
2

2t

)
du.

By performing the substitution x
√
t = uKC we get

w∫
v

1

2πt
exp

(
−u

2 (KC)
2

2t

)
du

≤ 1√
2πt

1√
2πKC

w∫
v

exp

(
−u

2

2

)
du

≤ 1√
2πt

1

KC
(5.15)

which is obviously independent of x.

If x /∈ Cβ we obviously have that p (t, x, y) is bounded by

1

2πt
exp

(
−d (x, supp (mε))

2t

)
≤ 1

2πt
exp

(
−d (x, Cε)

2t

)
.

But d (x, Cε) ≥ β − ε and since we have chosen ε ≤ β
2 we can conclude that

1

2πt
exp

(
−d (x, Cε)

2t

)
≤ 1

2πt
exp

(
− β

2t

)
. (5.16)

Since
β∫
−β

mε(r)dr = 1 for any ε we obtain by combining (5.14), (5.15) and (5.16) the existence

of positive constants L and M such that∫
R2

mε (D (y)) p (t, ·, y) dy ≤ 1

2πt
exp

(
− L

2t

)
+

M√
2πt

. (5.17)



Since 1
2πt exp

(
− L

2t

)
is bounded on every [0, T ] we get by combining (5.11) and (5.17) positive

constants K1 and K2 such that∫
R2

|γε (y)| p (t, x, y) dy ≤ ‖η‖∞

(
K1 +

K2√
2πt

)
which is just the statement of our lemma. �

The last step to establish a solution of (5.3) is to show the uniform boundedness of uε.

Lemma 75 For any finite T ≥ 0 we have that the unique non-negative bounded solution

uε (t, x) of (5.9) is uniformly bounded in (ε, t, x) on
[
0, β2

]
× [0, T ]× R2.

Proof. Take uε given by (5.9). Since α ≥ 0 we get

0 ≤ uε (t, x) ≤
∫
R2

g (y) p (t, ·, y) dy +

t∫
0

∫
R2

γε (y)uε (s, y) p (t− s, ·, y) dy ds

≤‖g‖∞,R2 + ‖η‖∞,C

t∫
0

‖uε (s, ·) ‖∞,R2

(
K1 +

K2√
2π (t− s)

)
ds

where the last inequality is an immediate consequence of lemma 73. Hence

‖uε (t, ·) ‖∞,R2 ≤ ‖g‖∞,R2 + ‖η‖∞,C

t∫
0

‖uε (s, ·) ‖∞,R2

(
K1 +

K2√
2π (t− s)

)
ds

and thus we can obtain by Gronwall’s inequality, see [13], Appendix B, pp.706, that

‖uε (t, ·) ‖∞,R2 ≤ ‖g‖∞,R2 exp

‖η‖∞,C t∫
0

(
K1 +

K2√
2π (t− s)

)
ds

. (5.18)

But the right hand side of (5.18) is obviously independent of ε and bounded on every finite

interval [0, T ] which proves the lemma. �

Now the lemmata 73 and 75 imply with the help of theorem 70 the existence of a solution

u of equation (5.3). Since uε is non-negative we have u is non-negative.

The uniqueness of the solution It is left to show that (5.3) has a unique solution.

Lemma 76 The integral equation (5.3) has a unique non-negative solution.

Proof. Assume u and v are non-negative solutions of (5.3). Then

u (t, ·)− v (t, ·) =

t∫
0

∫
C

η (y) (u (s, y)− v (s, y)) p (t− s, ·, y) dS(y) ds

−
t∫

0

∫
R2

α (y)
(
u2 (s, y)− v2 (s, y)

)
p (t− s, ·, y) dy ds.



With the help of a binomial formula and since u and v are uniformly bounded on [0, T ]×R2

which can be shown as in lemma 75 we get the existence of a positive constant M such that

t∫
0

∫
R2

α (y)
∣∣u2 (s, y)− v2 (s, y)

∣∣ p (t− s, ·, y) dy ds ≤
t∫

0

M ‖u(s, ·)− v(s, ·)‖∞,R2 ds.

Hence with the help of lemma 73 we get that

‖u(t, ·)− v(t, ·)‖∞,R2 ≤
t∫

0

‖u(s, ·)− v(s, ·)‖∞,R2

(
M + ‖η‖∞,C

(
K1 +

K2√
2π (t− s)

))
ds.

Thus by an easy application of Gronwall’s inequality we get that ‖u(t, ·)− v(t, ·)‖∞,R2 = 0

which proves the lemma. �

The lemmata 73, 75 and 76 together just shows proposition 72. �

Construction of the superprocess

The next step is to construct the superprocesses which will be done by a result of [10]. There

it is shown that for every ε > 0 in our approximating procedure we have a superprocess

X(ε) such that

Eµ
(

exp
(〈
X

(ε)
t ,−g

〉))
= exp

− ∫
R2

uε (t, x)µ(dx)

 (5.19)

for every bounded and continuous g and µ ∈M.

Proposition 77 For any fixed t there is a random measure Xt such that

Eµ (exp (〈Xt,−g〉)) = exp

−∫
R2

u (t, x)µ(dx)

 .

.

Proof. By the uniform convergence of uε (t, ·) we obtain that the right hand side of (5.19)

converges to

exp

−∫
R2

u (t, x)µ(dx)


where u solves (5.3). Therefore also the left hand side converges. Due to [8], sect.3.3.4,

pp 50-51, it is enough to show that
∫
R2

u (t, x)µ(dx) tends to zero from above as g tends

uniformly to zero to get the limit of the left hand side to be a Laplace transform of a

random measure, which we will call Xt. But by (5.18) and since µ is a finite measure we

find a positive constant L such that

0 ≤
∫
R2

u (t, x)µ(dx) ≤ ‖u (t, ·) ‖∞,R2µ
(
R2
)

≤ L‖g‖∞,R2 → 0



and hence there exists for every fixed t a random measure Xt such that

Eµ (exp (〈Xt,−g〉)) = exp

−∫
R2

u (t, x)µ(dx)

 .

�

The last step is to establish the Markovian character of X. Due to [14], Theorem 4.4 it is

enough to show that u(t, x) fulfills the semigroup property, i.e. if we write u (t, x) = (Vtg) (x)

then Vs+t (g) = Vs (Vt (g)). So for finishing the proof of theorem 69 we have to establish

that Vs+t (g) = Vs (Vtg).

To do this look at

u (s+ t, ·) =

∫
R2

g (y) p (s+ t, ·, y) dy

+

s+t∫
0

∫
C

η (y)u (ω, y) p (s+ t− ω, ·, y) dS(y) dω

−
s+t∫
0

∫
R2

α (y)u2 (ω, y) p (s+ t− ω, ·, y) dy dω.

Since p (·, x, y) fulfills Chapman-Kolmogorov we can write this in the following form

u (s+ t, ·) =

∫
R2

∫
R2

g (z) p (t, y, z) dz p (s, ·, y) dy

+

∫
R2

t∫
0

∫
C

η (y)u (ω, z) p (t− ω, y, z) dS(z) dω p (s, ·, y) dy

−
∫
R2

t∫
0

∫
R2

α (z)u2 (ω, z) p (t− ω, y, z) dz dω p (s, ·, y) dy

+

s+t∫
t

∫
C

η (y)u (ω, y) p (s+ t− ω, ·, y) dS(y) dω

−
s+t∫
t

∫
R2

α (y)u2 (ω, y) p (s+ t− ω, ·, y) dy dω

and this is by the notation above nothing else but

u (s+ t, ·) =

∫
R2

(Vtg) (y) p (s, ·, y) dy

+

s+t∫
t

∫
C

η (y) (Vωg) (y) p (s+ t− ω, ·, y) dS(y) dω

−
s+t∫
t

∫
R2

α (y) (Vωg)
2

(y) p (s+ t− ω, ·, y) dy dω



and therefore with the help of the substitution ω = ω + t we regard

(Vs+tg) (·)− Vs (Vtg) (·)

=

s∫
0

∫
C

η (y) ((Vt+ωg) (y)− Vω (Vtg) (y)) p (s− ω, ·, y) dS(y) dω

−
s∫

0

∫
R2

α (y)
(

(Vt+ωg)
2

(y)− (Vω (Vtg))
2

(y)
)
p (s− ω, ·, y) dy dω.

Now exactly the same calculation as in the uniqueness proof of the solution u (t, ·) shows

that

(Vs+tg) (·) = Vs (Vtg) (·)

and we have established the Markovian character of X.

Thus for any Hölder-continuous function η ∈ C0 (C) we have constructed a superprocess

given by (5.2) and (5.3). �

Remark 78 The integral
∫
C
η (y)u (s, y) p (t− s, ·, y) dS(y) shows somehow the kind of in-

teraction related to Tη.

It is no point interaction in the classical sense because there we would not have the integral

along C, we would just have η (y)u (s, y) p (t− s, ·, y) for some fixed point y. Remember

that we have shown that
∫
C
η (y)u (s, y) p (t− s, ·, y) dS(y) has a singularity, namely 1√

t−s ,

which is integrable on [0, t] whereas p (t− s, ·, y) has a non-integrable singularity, namely

1
t−s . Hence the interaction described here is somehow weaker than a point interaction.





Chapter 6

Approximation by branching

processes

It seems to be interesting to find branching processes, i.e. a system of particles, which ap-

proximates our superprocesses constructed in the chapter before. This approximation could

give a better understanding of these processes, because one should see there the dynamics

behind. We will see that the superprocesses can be understand as limit of branching pro-

cesses which admit a special performance in mass creation. For every approximation step we

will get an area around the interaction point in one dimension, around C in two dimensions,

respectively, such that outside this area we have a mass creation with expectation value

whereas inside the area we have an additional mass creation with expected value 1 + α in

the one-dimensional case and 1 + η(y) in the two dimensional case, respectively. Here α is a

non-negative real number and η is a continuous function in the area around C. In the next

approximation step we will get the same mass creation but on a smaller area. We will also

scale the lifetime of the branching particles in the right manner, i.e. find the correct con-

vergence speed to 0. Then we can show that the approximation with given additional mass

creation on an area which tends to the interaction point, C, respectively, and with the right

convergence speed of the lifetime parameter will have as limit point just the superprocesses

we are interested in. Our idea behind is as follows: The additional mass creation happens

only in the interesting area. Thus we have to take the right ratio of the enhancement of the

area and the lifetime of the particles. It should be possible for particles created in the area

to leave the area but not too many since otherwise the effect of the additional mass creation

will drop out. On the other hand we do not want to have too many particles to die in the

area since then we get a mass explosion.

Our results here are divided into two parts. At first we want to show how to approximate the

75



one-dimensional case, the so called super-Brownian motion with single point source, which

is generated via a Dirac-delta perturbation of the Laplace operator in one dimension. In the

second part we want to use this result for finding the approximation for our superprocesses

of chapter 5 in the case of η ≥ 0.

Definition 79 (Branching process) The definition of a branching process given here can

be found in [12],p.1. A branching process is given by three ingredients

• The spatial motion: During her lifetime, each individual in the population moves

around in Rd (independently of each other) according to a stochastic process in our

case this will be a Brownian motion.

• The branching rate, V: Each individual has an exponentially distributed lifetime with

parameter V

• The branching mechanism Φ: When she dies an individual leaves behind (at the loca-

tion where she died) a random number of offspring with probability generating function

Φ. Conditional on their lifetime and place of birth offspring evolve independently of

each other (in the same way as their parent)

Tightness Later on we will show that a sequence of branching processes is tight in a

suitable path space which implies that the sequence has at least one weakly convergent

subsequence. For a better understanding of tightness we will give a short introduction here.

For a detailed discussion we refer to [12], pp.8.

Define D ([0,∞),M) to be the space of cadlag paths inM. We call a sequence,
{
X(n)
.

}
n≥1

,

of processes taking values in the space D ([0,∞),M) tight if their distributions are tight.

And a family of probability measures M on a metric space S is said to be tight if for each

ε > 0 there exists a compact K ⊆ S with such that for all µ ∈ M , µ(K) > 1 − ε. Since

checking tightness of
{
X(n)
.

}
n≥1

in D ([0,∞),M) directly can be very difficult one uses

the following equivalence: The tightness of
{
X(n)
.

}
n≥1

in D ([0,∞),M) is equivalent to

the tightness of
〈
X(n)
. , φ

〉
as a family of processes in D ([0,∞),R) for every non-negative,

bounded and continuous function φ.

6.1 The one dimensional case

For the one dimensional case we have to understand first what we have in mind by talking

about super-Brownian motion with single point source.



Definition 80 Denote by M the set of finite measures on R. A super-Brownian motion

with single point source at the origin is the continuous M-valued process X given by the

log-Laplace equation

Eµ (exp 〈Xt,−g〉) = exp

−∫
R

u (t, x)µ(dx)

 (6.1)

and the integral equation

u (t, ·) =

∫
R
g (y) p (t, ·, y) dy +

∫ t

0

γu (s, ·) p (t− s, ·, 0) ds (6.2)

−
∫ t

0

∫
R
α (y)u2 (s, y) p (t− s, ·, y) dy ds (6.3)

where p (t, x, y) = 1√
2πt

exp− (x−y)2

2t is the usual transition kernel of the 1-dimensional Brow-

nian motion. For more details see [9], Paragraph 1.4, p.42 and the references therein.

Remark 81 All of the results presented in this section also holds in the case of a single

point source not in the origin, i.e instead of (6.2) we have

u (t, ·) =

∫
R
g (y) p (t, ·, y) dy +

∫ t

0

γu (s, ·) p (t− s, ·, ω) ds

−
∫ t

0

∫
R
α (y)u2 (s, y) p (t− s, ·, y) dy ds

for some ω ∈ R. The only reason for restricting ourselves to the special case of the origin is

a simplification of notation.

The procedure now is to define the martingale problem related to the super-Brownian motion

with single point source and then define branching processes such that the coefficients of

their martingale problems converge to the coefficients of the super-Brownian motion with

single point source martingale problem. But first of all we want to show the connection to

the one dimensional point interactions defined by Albeverio et al. in [2].

Definition 82 Take γ ≥ 0 and define the operator Tγ by

D (Tγ) ={f ∈ H1,2 (R) ∩H2,2 (−∞, 0)⊕H2,2 (0,∞) : f ′
(
0+
)
− f ′

(
0−
)

= −2γf (0)}

Tγf =
1

2
f ′′.

The operator Tγ is called a point interaction with strength γ.

The connection of the point interactions Tγ and the super-Brownian motion with single

point source can be seen as follows.

Lemma 83 The integral equation (6.2) is an equivalent formulation of

d

dt
u (t, ·) = Tγu (t, ·)− α (·)u2 (t, ·) . (6.4)



Proof. It is mentioned for example in [9], Paragraph 1.4, p.42, that (6.2) is an equivalent

formulation to

d

dt
u (t, ·) =

1

2
u′′ (t, ·) + γu (t, 0) δ0 − α (·)u2 (t, ·) . (6.5)

where δ0 represents the Dirac-delta distribution in 0. In [2], Ch.1.3, p.75, it is shown that

1
2u
′′ (t, ·) + γu (t, 0) δ0 is nothing else but Tγu (t, ·) and we are done. �

The interpretation of Tγu as 1
2u
′′ (t, ·) + γu (t, 0) δ0 let us think about an approximation of

Tγ by a suitable approximation of δ0. The rigorous statement is as follows.

Proposition 84 For any φ ∈ D (Tγ) we find a sequence φn ∈ C1 (R) such that

φn → φ uniformly, (6.6)

1

2
φ′′n = Tγφ−

n

2
γφ(0)1(− 1

n ,
1
n ) (6.7)

and it exists a constant K such that for all n ∈ N

‖φ′n‖∞,(−1,1) ≤ K. (6.8)

Proof. Take φ ∈ D (Tγ). Define Fφ = φ + γφ(0) |x|. Then Fφ is obviously an element of

C1 (R) since the jump in the first derivative just cancels. Moreover we have

1

2
F ′′φ =

1

2
φ′′ + γφ (0) δ0 = Tγφ.

Take wn = n
2

1
n∫
− 1
n

|x− y|dy. Then direct calculations show that

‖wn − |x|‖∞ ≤
1

2n
, (6.9)

‖w′n‖∞,R = 1 (6.10)

and that

w′′n = n1(− 1
n ,

1
n ). (6.11)

Define now φn = Fφ − γφ(0)wn. Then φn ∈ C1 (R) and with the help of (6.11) we obtain

that
1

2
φ′′n = Tγφ−

n

2
γφ(0)1(− 1

n ,
1
n ).

Since φ = Fφ − γφ(0) |x| we have

‖φn − φ‖∞ = |γφ(0)| ‖wn − |x|‖∞ ≤
1

2n
|γφ(0)|

by (6.9). Hence φn converges uniformly to φ and and (6.8) is an immediate consequence of

(6.10). �



Later on we will use this approximation to determine the right parameters of the approxi-

mating branching processes.

Martingale problem Our next goal is to give two equivalent descriptions of the martin-

gale problem related to the super-Brownian motion with single point source.

Theorem 85 The martingale problem for the super-Brownian motion with single point

source is given in the following way: A distribution Pµ solves the martingale problem if

Pµ (X0 = µ) = 1

and if

exp (〈Xt,−φ〉)− exp (〈X0,−φ〉)−
∫ t

0

〈
Xs,−Tγφ+ αφ2

〉
exp (〈Xs,−φ〉) ds

is a Pµ martingale for every non-negative and bounded φ ∈ D (Tγ) such that the integrand is

bounded. An equivalent formulation is as follows: A distribution P satisfies the martingale

problem if for all φ ∈ D (Tγ)

[Mt] (φ) = 〈Xt, φ〉 − 〈X0, φ〉 −
∫ t

0

〈Xs, Tγφ〉ds

is a P-martingale with quadratic variation process

[M·φ]t =

∫ t

0

〈
Xs, αφ

2
〉

ds.

The solution of the martingale problem is unique.

Proof. The statements follow immediately by the general results of [12], pp.15. �

Branching processes Now we want to give a sequence of branching processes X
(n)
t which

should converge to Xt.

Theorem 86 For n ∈ N define X
(n)
t to be a branching process with

• n individuals each of mass 1
n moving around in R (independently of each other) ac-

cording to a Brownian motion,

• the life-time parameter is given by Vn = n
2 ,

• the sample mechanism fulfills

Φx (1) = 1, Φ′x (1) = 1 + γ1(− 1
n ,

1
n ) (x) , Φ′′x = 4α (x) .

The sequence X
(n)
t is tight in D ([0,∞),M) and converges to Xt.



Remark 87 The last point in the definition of the sample mechanism means nothing else

but different performance of the mass creation depending on the place of death of an indi-

vidual. If she dies outside of
(
− 1
n ,

1
n

)
we expect 1 new individual (Φ′x (1) = 1) with variance

4α (x), if she dies inside of
(
− 1
n ,

1
n

)
we expect 1 +γ new individuals again with variance 4α.

This means nothing else but additional mass creation in
(
− 1
n ,

1
n

)
.

Before proving the theorem, we need a lemma.

Lemma 88 For any stopping time τ ≤ t we have

sup
x∈R

Eδx
(〈
X(n)
τ .1

〉)
≤ exp

(
γ

√
2t

π

)
(6.12)

and

sup
x∈R

Eδx

γn
2

τ∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds

 ≤ exp

(
γ

√
2t

π

)
− 1. (6.13)

Proof. Since

Eδx
(〈
X(n)
τ , 1

〉)
≤ Eδx

(〈
X

(n)
t , 1

〉)
and

Eδx

γn
2

τ∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds

 ≤ Eδx
γn

2

t∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds


it is enough to show (6.12) and (6.13) for τ = t. Furthermore it is shown for example in

[12], p.13, that

〈
X

(n)
t , 1

〉
−
〈
X

(n)
0 , 1

〉
−

γn
2

t∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds


is a martingale and thus

Eδx

γn
2

t∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds

 = Eδx
(〈
X

(n)
t , 1

〉)
− 1.

Therefore for τ = t (6.13) follows by (6.12). It is mentioned in [8], section I.3.1 that

vn (t, x) = Eδx
(〈
X

(n)
t , 1

〉)
solves

∂

∂t
vn (t, x) =

1

2
v′′n (t, x) +

γn

2
1− 1

n ,
1
n
vn (t, x) (6.14)

with boundary condition vn(0, x) = 1. But equality (6.14) with the boundary condition

vn(0, x) = 1 is obviously equivalent to

vn(t, x) = 1 +

t∫
0

∫
R

γn

2
1(− 1

n ,
1
n )vn(s, y)p(t− s, x, y)dy ds



where p(t, x, y) = 1√
2πt

exp
(
− |x−y|

2

2t

)
is the usual transition kernel of the Brownian motion.

Since exp
(
− |x−y|

2

2t

)
≤ 1 for all x, y ∈ R we have

‖vn(t, ·)‖∞ ≤ 1 +

t∫
0

‖vn(s, ·)‖∞ γ
1√

2π(t− s)
ds.

But it is also mentioned in [8], section I.3.2 that sup
0≤s≤t

‖vn(s, ·)‖∞ < ∞ and thus we can

obtain by Gronwall’s inequality that

‖vn(t, ·)‖∞ ≤ exp

(
γ

√
2t

π

)

which proves the lemma. �

Now we are able to proof theorem 86.

Proof. We will denote by µn the starting measure and we assume that the sequence µn is

tight in the space M (R), i.e. especially that the sequence 〈µn, 1〉 is bounded. Furthermore

define βn = γn
2 1(− 1

n ,
1
n ).

For proving tightness of the sequence X
(n)
t we have to check the following properties (for

details see [10], Theorem A.2)

(a) For T > 0 fixed and ε > 0 given it exists K > 0 such that

Pµn
(

sup
0≤t≤T

〈
X

(n)
t , 1

〉
≤ K

)
≥ 1− ε

(b) For ψ ∈ C2 (R) such that ψ and ψ′′ are bounded one can define a semimartingale

Y
(n)
t,ψ =

〈
X

(n)
t , ψ

〉
Denote by V

(n)
t,ψ the predictable finite variation process and by M

(n)
t,ψ the quadratic

variation related to Y
(n)
t,ψ , respectively. Then we have to check that for each n ∈ N,

ε > 0 and K ≥ 0 it exists a δ = δ(n, ε,K, ψ) > 0 such that for each positive stopping

time τn bounded by n

lim sup
n→∞

sup
0≤θ≤δ

Pµn
(∣∣∣V (n)

τn+θ,ψ − V
(n)
τn,ψ

∣∣∣ ≥ K) ≤ ε (6.15)

and

lim sup
n→∞

sup
0≤θ≤δ

Pµn
(∣∣∣M (n)

τn+θ,ψ −M
(n)
τn,ψ

∣∣∣ ≥ K) ≤ ε. (6.16)

For proving (a) choose K1 such that

1

K1

(
2 exp

(
γ

√
2T

π

)
− 1

)
〈µn, 1〉 < ε/2



and K2 with

1

K2

(
exp

(
γ

√
2T

π

)
− 1

)
〈µn, 1〉 < ε/2.

Define K = K1 +K2. Then we can obtain that

Pµn
(

sup
0≤t≤T

〈
X

(n)
t , 1

〉
> K

)

= Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds+

t∫
0

〈
X(n)
s , βn

〉
ds

 > K


≤ Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

+ sup
0≤t≤T

 t∫
0

〈
X(n)
s , βn

〉
ds

 > K


= Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

+

T∫
0

〈
X(n)
s , βn

〉
ds > K1 +K2


since βn ≥ 0. Furthermore we have

Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

+

T∫
0

〈
X(n)
s , βn

〉
ds > K1 +K2


= Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

+

T∫
0

〈
X(n)
s , βn

〉
ds > K1 +K2 ∩

T∫
0

〈
X(n)
s , βn

〉
ds ≥ K2


+Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

+

T∫
0

〈
X(n)
s , βn

〉
ds > K1 +K2 ∩

T∫
0

〈
X(n)
s , βn

〉
ds < K2


= Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

+

T∫
0

〈
X(n)
s , βn

〉
ds > K1 +K2 ∩

T∫
0

〈
X(n)
s , βn

〉
ds ≥ K2


+Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

 > K1 +K2 −
T∫

0

〈
X(n)
s , βn

〉
ds ∩

T∫
0

〈
X(n)
s , βn

〉
ds < K2


≤ Pµn

 sup
0≤t≤T

〈X(n)
t , 1

〉
−

t∫
0

〈
X(n)
s , βn

〉
ds

 ≥ K1





+Pµn

 T∫
0

〈
X(n)
s , βn

〉
ds ≥ K2


≤ 1

K1
Eµn

〈1, X
(n)
T

〉
−

T∫
0

〈
X(n)
s , βn

〉
ds

+
1

K2
Eµn

 T∫
0

〈
X(n)
s , βn

〉
ds

 .

The last inequality is an immediate consequence of Markov’s inequality and the martingale

property of
〈
X

(n)
t , 1

〉
−
〈
X

(n)
0 , 1

〉
−
(
γn
2

t∫
0

〈
X

(n)
s ,1(− 1

n ,
1
n )

〉
ds

)
. By lemma 88 we can

conclude that

1

K1
Eµn

〈X(n)
T , 1

〉
−

T∫
0

〈
X(n)
s , βn

〉
ds

+
1

K2
Eµn

 T∫
0

〈
X(n)
s , βn

〉
ds


≤ 1

K1

(
2 exp

(
γ

√
2T

π

)
− 1

)
〈µn, 1〉+

1

K2

(
exp

(
γ

√
2T

π

)
− 1

)
〈µn, 1〉 .

Thus we obtain by our choice of K1 and K2 that

Pµn
(

sup
0≤t≤T

〈
X

(n)
t , 1

〉
≥ K

)
< ε

and (a) is proven.

For checking part (b) we follow the calculations of [12], p.6 and get

V
(n)
t,ψ =

〈
X

(n)
t ,

1

2
ψ′′ + Vn (Φ′x (1)− 1)

〉
=

〈
X

(n)
t ,

1

2
ψ′′ +

n

2
γ1(− 1

n ,
1
n )ψ

〉
and

M
(n)
t,ψ =

〈
X

(n)
t ,

(
ψ2
)′′ − 2ψψ′′ + nγ1(− 1

n ,
1
n )ψ + n

(
Φ
(
e−φ

)
− e−φ

e−φ

)〉
.

To prove (6.15) take a look at

Eµn

 τn+δ∫
τn

∣∣∣∣〈X(n)
s ,

1

2
ψ′′ + βnψ

〉∣∣∣∣ ds
 = EµnEX(n)

τn

 δ∫
0

∣∣∣∣〈X(n)
s ,

1

2
ψ′′ + βnψ

〉∣∣∣∣ds


≤ 1

2
‖ψ′′‖∞ EµnEX(n)

τn

 δ∫
0

∣∣∣〈X(n)
s , 1

〉∣∣∣ds
+ ‖ψ‖∞ EµnEX(n)

τn

 δ∫
0

∣∣∣〈X(n)
s , βn

〉∣∣∣ ds
 .

Again with the help of lemma 88 we obtain that

1

2
‖ψ′′‖∞ EµnEX(n)

τn

 δ∫
0

∣∣∣〈X(n)
s , 1

〉∣∣∣ds
+ ‖ψ‖∞ EµnEX(n)

τn

 δ∫
0

∣∣∣〈X(n)
s , βn

〉∣∣∣ ds


≤ 1

2
‖ψ′′‖∞ Eµn

(〈
X(n)
τn , 1

〉)
δ exp

(√
2δ

π

)

+ ‖ψ‖∞ Eµn
(〈
X(n)
τn , 1

〉)(
exp

(√
2δ

π

)
− 1

)

≤ 〈µn, 1〉 exp

(√
2n

π

)(
1

2
‖ψ′′‖∞ δ exp

(√
2δ

π

)
+ ‖ψ‖∞ exp

(√
2δ

π
− 1

))
.



Thus we have

Pµn

 τn+δ∫
τn

∣∣∣∣〈X(n)
s ,

1

2
ψ′′ + βnψ

〉∣∣∣∣ ds ≥ K


≤ 1

K
〈µn, 1〉 exp

(√
2n

π

)(
1

2
‖ψ′′‖∞ δ exp

(√
2δ

π

)
+ ‖ψ‖∞ exp

(√
2δ

π
− 1

))

which proves (6.15). The calculation for (6.16) is essentially the same. Thus tightness is

shown.

The last step in our proof is to find for every non-negative and bounded ψ ∈ D (Tγ) with

Tγψ bounded a sequence of test functions fn such that the martingale description of the

branching process applied to fn converge to the martingale description of the super-Brownian

motion with single point source applied to ψ. In the following every convergence which is

not specified is understood in the sense of weak convergence.

Take a non-negative and bounded ψ ∈ D (Tγ) and denote by ψn the sequence constructed

in proposition 84. Define fn = 1 − ψn
n . Then due to the results of proposition 84 we can

conclude that fn is bounded, fn ≤ 1, fn ∈ C1 (R) and f ′′n is bounded. Thus since nX
(n)
t is

just a process which counts the number of particles moving around we get due to [12],p.13

that

exp
(〈
nX

(n)
t , ln (fn)

〉)
− exp

(〈
nX

(n)
0 , ln (fn)

〉)
−
∫ t

0

〈
nX(n)

s ,
1
2f
′′
n + Vn (Φn,x (fn)− fn)

fn

〉
exp

(〈
nX(n)

s , ln (fn)
〉)

ds

is a martingale. By a simple Taylor expansion we obtain that

Φn,x (fn) = Φn,x

(
1− ψn

n

)
= 1− ψ

n
Φ′n,x(1) +

ψ2
n

2n2
Φ′′n,x(1) + o

(
1

n2

)
.

By the definition of Φn,x we get

Φn,x (fn)− fn = −ψn
n
γ1(− 1

n ,
1
n ) (x) + 2

ψ2
n

n2
α (x) .

By plugging this expansion into the martingale description we get that

exp

(〈
X

(n)
t , n ln

(
1− ψn

n

)〉)
− exp

(〈
X

(n)
0 , n ln

(
1− ψn

n

)〉)
+ o

(
1

n2

)

−
∫ t

0

〈
X(n)
s ,
− 1

2ψ
′′
n − n2

2

(
ψn
n γ1(− 1

n ,
1
n )

)
+ ψ2

nα

1− ψ
n

〉
exp

(〈
X(n)
s , n ln

(
1− ψn

n

)〉)
ds

= exp

(〈
X

(n)
t , ln

(
1− ψn

n

)n〉)
− exp

(〈
X

(n)
0 , ln

(
1− ψn

n

)n〉)
+ o

(
1

n2

)
−
∫ t

0

〈
X(n)
s ,
− 1

2ψ
′′
n − n

2ψnγ1(− 1
n ,

1
n ) + ψ2

nα

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds.



In proposition 84 it is shown that ψn converges uniformly to ψ. Thus we get that(
1− ψn

n

)n
=

(
1− ψ

n
+
ψ − ψn
n

)n
→ e−ψ

uniformly in R. Hence we can conclude with the tightness of X
(n)
t in the space of finite

measures that we have∣∣∣∣〈X(n)
t , ln

(
1− ψn

n

)n
+ ψ

〉∣∣∣∣ ≤ ∥∥∥∥ln

(
1− ψn

n

)n
+ ψ

∥∥∥∥
∞

〈
X

(n)
t , 1

〉
→ 0

for n→∞ and for every t ≥ 0. Therefore we obtain that for n→∞ we have〈
X

(n)
t , ln

(
1− ψn

n

)n〉
=

〈
X

(n)
t , ln

(
1− ψn

n

)n
+ ψ − ψ

〉
→ 〈Xt,−ψ〉 .

This implies that

exp

(〈
X

(n)
t , ln

(
1− ψn

n

)n〉)
− exp

(〈
X

(n)
0 , ln

(
1− ψn

n

)n〉)
→ exp (〈Xt,−ψ〉)− exp (〈X0,−ψ〉).

With essentially the same calculations we can show that〈
X(n)
s ,

ψ2
nα

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
→
〈
Xs, αψ

2
〉

exp (〈Xs,−ψ〉)

and thus by the tightness of X
(n)
t in D ([0,∞),M) we get∫ t

0

〈
X(n)
s ,

ψ2
nα

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds

→
∫ t

0

〈
Xs, αψ

2
〉

exp (〈Xs,−ψ〉) ds.

In proposition 84 it is also shown that 1
2ψ
′′
n = Tγψ− n

2 γψ(0)1(− 1
n ,

1
n ). Hence we obtain that

−1

2
ψ′′n −

n

2
ψ1(− 1

n ,
1
n ) = −Tγψ +

n

2
γ1(− 1

n ,
1
n ) (ψn(x)− ψ(0)) (6.17)

and this implies that∫ t

0

〈
X(n)
s ,
− 1

2ψ
′′
n − n

2ψnγ1(− 1
n ,

1
n )

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds

=

∫ t

0

〈
X(n)
s ,

−Tγψ
1− ψn

n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds︸ ︷︷ ︸

(I)

+

∫ t

0

nγ

2

〈
X(n)
s ,

(ψn − ψ(0))1(− 1
n ,

1
n )

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds︸ ︷︷ ︸

(II)



For (I) we get with the same arguments as above that it converges to∫ t

0

〈Xs,−Tγψ〉 exp (〈Xs,−φ〉) ds.

For (II) taking into account that ψn ∈ C1 (R) which implies for every x ∈
(
− 1
n ,

1
n

)
the

existence of a ζ ∈
(
− 1
n ,

1
n

)
such that ψn(x) = ψn(0) + ψ′n(ζ)x. Therefore |ψn(x)− ψ(0)| ≤

|ψn(0)− ψ(0)| + |ψ′n(ζ)x|. By proposition 84, especially with the help of (6.9) and (6.10),

we find a non-negative constant M such that |ψn(0)− ψ(0)|+ |ψ′n(ζ)x| ≤ M
n . Therefore we

have that ∣∣∣n
2
γ1(− 1

n ,
1
n ) (ψn(x)− ψ(0))

∣∣∣ ≤ M

2
γ1(− 1

n ,
1
n ).

Using this inequality and the fact that ψn ≥ 0 we obtain the existence of a constant C such

that ∣∣∣∣∣
∫ t

0

nγ

2

〈
X(n)
s ,

(ψn − ψ(0))1(− 1
n ,

1
n )

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds

∣∣∣∣∣
≤Cγ

2

t∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds

Thus we can obtain with lemma 88 and Markov’s inequality that for every K > 0

Pµn

(∣∣∣∣∣
∫ t

0

nγ

2

〈
X(n)
s ,

(ψn − ψ(0))1(− 1
n ,

1
n )

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds

∣∣∣∣∣ ≥ K
)

≤Pµn

Cγ
2

t∫
0

〈
X(n)
s ,1(− 1

n ,
1
n )

〉
ds ≥ k

 ≤ C

K

1

n
〈µn, 1〉 exp

(
γ

√
2t

π

)
→ 0

and hence∫ t

0

nγ

2

〈
X(n)
s ,

(ψn − ψ(0))1(− 1
n ,

1
n )

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds→ 0.

Put all the results together we have shown that

exp

(〈
X

(n)
t , ln

(
1− ψn

n

)n〉)
− exp

(〈
X

(n)
0 , ln

(
1− ψn

n

)n〉)
−
∫ t

0

〈
X(n)
s ,
− 1

2ψ
′′
n − n

2ψnγ1(− 1
n ,

1
n ) + ψ2

nα

1− ψn
n

〉
exp

(〈
X(n)
s , ln

(
1− ψn

n

)n〉)
ds

→ exp (〈Xt,−ψ〉)− exp (〈X0,−ψ〉)−
∫ t

0

〈
Xs,−Tγψ + αφ2

〉
exp (〈Xs,−ψ〉) ds

which is nothing else but the martingale structure of the super-Brownian with single point

source given in theorem 85. Hence the sequence of branching processes X
(n)
t converges to

the super-Brownian motion with single point source. �

Remark 89 The interesting point in the construction above is the choice of Vn as n
2 . One

can easily see that if Vn is in order less than n, X
(n)
t just converges to a super-Brownian



motion without a single point source. If we choose Vn in a higher order we get in trouble

with the tightness since 1
2ψ
′′+Vnγ1(− 1

n ,
1
n ) would not tend to Tγ . The interpretation of this

fact is maybe the following:

Think about the additional mass creation. If an individual starts her life far away from(
− 1
n ,

1
n

)
, then the probability that this particle will die in

(
− 1
n ,

1
n

)
is very small. Hence

most of the effect of additional mass creation will be generated by the individuals start

living closed to or in
(
− 1
n ,

1
n

)
. But the probability for an individual starting in

(
− 1
n ,

1
n

)
to

die in
(
− 1
n ,

1
n

)
is somehow monotone in Vn. Larger Vn gives a higher probability since the

life-time is shorter.

Hence if Vn is ”‘too big”’ we have too much mass creation, i.e. too many individuals born

in
(
− 1
n ,

1
n

)
will die there. The picture behind is that somehow nearly all particles will die

before they can leave
(
− 1
n ,

1
n

)
and we get a mass explosion.

But if we choose Vn ”‘too small”’ we do not have enough mass creation since too many

individuals can leave
(
− 1
n ,

1
n

)
before dying. Hence Vn should be the life-time where these

two effects are in balance.

A better understanding of this fact seems to be interesting for the question of an approx-

imation by branching processes for super-Brownian motion with a single point source in

higher dimensions. The one dimensional case bases on the fact that we find the right ap-

proximation for Tγ . This can be easily done by use of stochastic calculus which gives us

a description of processes related to Tγ in terms of of the local time Lt. Hence we choose

in our approximation something which will approximate Lt. In higher dimensions we do

not have this description via a local time in one point and therefore it is not clear which

approximation we should use. Therefore one has to find Vn in a different way.

6.2 The two dimensional case

We want to transport our results from one dimension to the case of superprocesses related

to interactions along C.The essential tools for the proof in one dimension were the approx-

imation of elements of D (Tκ) by suitable differentiable functions shown in proposition 84

and the upper bound for the expected total mass given in lemma 88. Having similar results

in dimension two the tightness and the convergence to the superprocesses of chapter 5 will

follow immediately.

Proposition 90 For any φ ∈ D (Tη) we find a sequence φn ∈ C1
(
R2
)

such that

φn → φ uniformly, (6.18)

1

2
∆φ′n = Tηφ−

n

2
η̃(x)1C 1

n

(x) (6.19)



and it exists a constant K such that for every n ∈ N

‖∇φn‖∞,Cβ ≤ K. (6.20)

Proof. The proof is exactly the same as in proposition 84 by interchanging the absolute

value function by a suitable harmonic single-layer potential. Then chapter 4, corollary 23 and

the uniform approximation result of chapter 3, proposition 40 gives us the desired result. �

Martingale problem Our next goal is to give two equivalent descriptions of the martin-

gale problem related to the superprocesses constructed in chapter 5.

Theorem 91 The martingale problem for the superprocess Xt constructed in chapter 5,

theorem 69 is given in the following way: A distribution Pµ solves the martingale problem

if

Pµ (X0 = µ) = 1

and if

exp (〈Xt,−φ〉)− exp (〈X0,−φ〉)−
∫ t

0

〈
Xs,−Tetaφ+ αφ2

〉
exp (〈Xs,−φ〉) ds

is a Pµ martingale for every non-negative and bounded φ ∈ D (Tη) such that the integrand is

bounded. An equivalent formulation is as follows: A distribution P satisfies the martingale

problem if for all φ ∈ D (Tη)

[Mt] (φ) = 〈Xt, φ〉 − 〈X0, φ〉 −
∫ t

0

〈Xs, Tηφ〉ds

is a P-martingale with quadratic variation process

[M·φ]t =

∫ t

0

〈
Xs, αφ

2
〉

ds.

The solution of the martingale problem is unique.

Proof. The statements follow immediately by the general results of [12], pp.15. �

Branching processes Now we want to give a sequence of branching processes X
(n)
t which

should converge to Xt.

Theorem 92 Take a non-negative η ∈ C0,1/2+ε for a ε > 0. For n ∈ N take X
(n)
t to be a

branching process given with

• n individuals each of mass 1
n moving around in R (independently of each other) ac-

cording to a Brownian motion,



• the life-time parameter is given by Vn = n
2 ,

• the sample mechanism fulfills

Φx (1) = 1, Φ′x (1) = 1 + η̃ (x)1{
C 1
n

} (x) , Φ′′x = 4α (x) .

The sequence X
(n)
t is tight and converges to Xt, the superprocess related to Tη constructed

in chapter 5.

Before we can prove the theorem we want to give the two dimensional version of lemma 88.

Lemma 93 For any stopping time τ ≤ t we have

sup
x∈R2

Eδx
(〈
X(n)
τ .1

〉)
≤ exp

(
‖η‖∞,C

(
t+

√
2t

π

))
(6.21)

and

sup
x∈R2

Eδx

n
2

τ∫
0

〈
X(n)
s , η̃1C 1

n

〉
ds

 ≤ exp

(
‖η‖∞,C

(
t+

√
2t

π

))
− 1. (6.22)

Proof. Since η is non-negative we see by the definition of X
(n)
t that

Eδx
(〈
X(n)
τ , 1

〉)
≤ Eδx

(〈
X

(n)
t , 1

〉)
and

Eδx

n
2

τ∫
0

〈
X(n)
s , η̃1C 1

n

〉
ds

 ≤ Eδx
n

2

t∫
0

〈
X(n)
s , η̃1C 1

n

〉
ds

 .

Thus it is enough to show (6.21) and (6.22) for τ = t. Furthermore it is shown for example

in [12], p.13, that

〈
X

(n)
t , 1

〉
−
〈
X

(n)
0 , 1

〉
−

n
2

t∫
0

〈
X(n)
s , η̃1C 1

n

〉
ds


is a martingale and thus

Eδx

n
2

t∫
0

〈
X(n)
s , η̃1C 1

n

〉
ds

 = Eδx
(〈
X

(n)
t , 1

〉)
− 1.

Therefore for τ = t (6.22) follows by (6.21). Now as in the one dimensional case we can use

[8], section I.3.1 to see that vn (t, x) = Eδx
(〈
X

(n)
t , 1

〉)
solves

vn(t, x) = 1 +

t∫
0

∫
R2

n

2
η̃1C 1

n

vn(s, y)p(t− s, x, y)dy ds



where p(t, x, y) is the usual transition kernel of the two dimensional Brownian motion. Now

we can prove as in chapter 5, lemma 75, that

‖vn(t, ·)‖∞ ≤ exp

(
‖η‖∞,C

(
t+

√
2t

π

))

which proves the lemma. �

Proof. Now the proof of the tightness and the convergence of X
(n)
t is equivalent to the

one-dimensional case. �



Chapter 7

The moments of a

one-dimensional local time

The aim of this section is to proof the results of L.Takacs on the moments of the local time

process in one dimension, see [31], in a new way.

Lemma 94 Let Bt denote a Brownian motion on R and Lt the local time process of this

Brownian motion in 0. Then for every n ≥ 1 and x ∈ R it holds:

Ex (Lnt ) = n

∞∫
0

u(n−1)

(
1− p

(
u+ |x|√

2t

))
du.

Especially for x = 0 one reaches at

E0 (Lnt ) =
(2t)

n/2

√
π

Γ

(
n+ 1

2

)
.

The function p denotes here the probability integral, i.e.

p (x) =
2√
π

x∫
0

e−t
2

dt

and Γ denotes the Gammafunction. The proof uses the results of Ito and McKean Jr. in

[20] and Albeverio et al. in [1]

By the work of Ito and McKean Jr., see [20], p.199 one can easily prove that the generator

of the semigroup

Ttf (x) = Ex
(
f (Bt) e

−κLt
)

, κ ≥ 0

is given by

D (Tκ) = {f ∈ H2,2 (−∞, 0) ∩H2,2 (0,∞) ∩ C0 (R) : f ′
(
0+
)
− f ′

(
0−
)

= 2κf (0)}
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Tκ (f) = −1

2
f ′′

0+ denotes the right limit of a function at zero, 0− the left limit, respectively. To be more

explicit: In [20], p.199 the resolvent of T is calculated and the equality system (9) states for

every α > 0
∞∫

0

e−αtTtf(x)dx =

∞∫
0

e−αtEx
(
f (Bt) e

−κLt
)

dx

and hence by the uniqueness of the Laplace transform we get the desired result.

Albeverio et al. constructed in [1] the heat kernel of the operator

T̃κf = −f ′′

D
(
T̃κ

)
= {f ∈ H2,2 (−∞, 0) ∩H2,2 (0,∞) ∩ C0 (R) : f ′

(
0+
)
− f ′

(
0−
)

= κf (0)}

in the following form:

Pt (x, y) =
1√
4πt

e−
(x−y)2

4t − κ

2

∞∫
0

e−
κ
2 u

1√
4πt

e−
(u+|x|+|y|)2

4t du.

Proof. Based on the equation

(Tκ − λ)
−1

= 2
(
T̃2κ − 2λ

)−1

one can calculate the heat kernel of Tκ as

Pt (x, y) =
1√
2πt

e−
(x−y)2

2t − κ
∞∫

0

e−κu
1√
2πt

e−
(u+|x|+|y|)2

2t du.

Now applying this formula to the function f , which is constantly 1 on R, we arrive at

Ex
(
e−κLt

)
= Ex

(
f (Bt) e

−κLt
)

=

∞∫
−∞

 1√
2πt

e−
(x−y)2

2t − κ
∞∫

0

e−κu
1√
2πt

e−
(u+|x|+|y|)2

2t du

 dy

= 1− κ
∞∫

0

e−κu
1√
2πt

∞∫
−∞

e−
(u+|x|+|y|)2

2t dydu

= 1− κ
∞∫

0

e−κu
2√
2πt

∞∫
0

e−
(u+|x|+y)2

2t dydu

= 1− κ
∞∫

0

e−κu
(

1− p
(
u+ |x|√

2t

))
du



and therefore we get

Ex (Lnt ) = (−1)
n

lim
κ↓0

∂n

∂κn
Ex
(
e−κLt

)
= (−1)

n
lim
κ↓0

∂n

∂κn

1− κ
∞∫

0

e−κu
(

1− p
(
u+ |x|√

2t

))
du


= (−1)

n
lim
κ↓0

−κ ∞∫
0

(−u)
n
e−κu

(
1− p

(
u+ |x|√

2t

))
du


− (−1)

n
lim
κ↓0

n ∞∫
0

(−u)
n−1

e−κu
(

1− p
(
u+ |x|√

2t

))
du


=n

∞∫
0

u(n−1)

(
1− p

(
u+ |x|√

2t

))
du.

The formula for x = 0 is just evaluating this integral using formula 6.281 of [17]. �





Chapter 8

List of frequently used symbols

Symbol Meaning

Ω closure of Ω

Ck (Ω) set of k-times continuously differentiable functions on Ω

Ck
(
Ω
)

set of functions with derivatives up to order k has a cont. continuation to Ω

Dα partial derivative of order α, i.e. Dα = ∂α

∂α1 ··∂αn with α1 + ...+ αn = α

∆ the Laplace operator

Ck,γ (Ω) set of functions on Ω with γ- Hölder-continuous k-th derivative

Lp (Ω) the usual Lp-space on Ω

Hq,p (Ω) the Sobolev space of order q in Lp (Ω)

Hq (Ω) the Sobolev space of order q in L2 (Ω)

〈µ, φ〉
∫
φ dµ for a measure µ and an integrable φ

〈f, g〉V scalar product in V

N (·) the kernel of an operator

R(·) the range of an operator

Π orthogonal projection

C closed C2,γ-curve in R2

nz normal vector of C in z ∈ C

τC trace operator along C

Λ unitary transformation from H3/2(C) to H−3/2(C)
∂
∂n

a normal derivative

κ jump operator defined in chapter 2, p.10

τα a special trace operator along C defined in chapter 2, p.16

Sλ acoustic single layer to parameter λ defined in chapter 2, p.14

Pλ a special trace of Sλ defined in chapter 2, p.18
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Symbol Meaning

Cε set of points in R2 with distance less than ε to C

Cε parallel surface in distance ε to C

dSr the usual volume element of Cr

Bδ(x) closed ball with radius δ around x

‖ · ‖∞,Ω the L∞-norm on Ω

M (Ω) set of finite measures on Ω

Eµ expectation conditioned on starting measure µ

Pµ distribution conditioned on starting measure µ

Ex expectation conditioned on starting point x

Px distribution conditioned on starting point x

Bt standard Brownian motion

L (t, ·) local time of a Brownian motion in (·)
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[6] M. Costabel Boundary integral operators on Lipschitz domains: Elementary results,

SIAM J. Math. Anal. 19 (1988), pp. 613-626

[7] N. Dunford, J.T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience,

New York-London, 1963

[8] E.B. Dynkin, An Introduction to Branching Measure-Valued Processes, AMS, Prov-

idence, RI, 1994

[9] J. Engländer, K. Fleischmann, Extinction properties of super-Brownian motions

with additionally spatially dependent mass production, Stochastic processes and

their applications 88 (2000), pp. 37-58

[10] J. Engländer, R.G. Pinsky, On the construction and support properties of measure-

valued diffusions on D ⊂ Rd with spatially dependent branching, Ann. Probab 27

(2), pp. 684-730

97



[11] R. Escada, R. Kanwal, Singular Integral Equations, Birkhäuser, 2000
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