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Abstract

In this paper we introduce a binary autoregressive model. In contrast to the typi-
cal autoregression framework, we allow the conditional distribution of the observed
process to depend on past values of the time series and some exogenous variables.
Such processes have potential applications in econometrics, medicine and environ-
mental sciences. In this paper, we establish stationarity and geometric ergodicity
of these processes under suitable conditions on the parameters of the model. Such
properties are important for understanding the stability properties of the model as
well as for deriving the asymptotic behavior of the parameter estimators.

1 Introduction and Model Definition

Binary time series are important in many areas of applications, e.g., econometrics,
medical sciences and meteorology. They typically occur if one is observing whether
a certain event has or has not occurred within a given time frame. Wilks and Wilby
[6] for example observe, whether it has been raining on a specific day, Kauppi and
Saikkonen [3] and Startz [4] observe whether the US economy were in the recession
in a given month.

∗Email: claudia.kirch@kit.edu
†Email: tadjuidj@mathematik.uni-kl.de

1



1 Introduction and Model Definition

Let us consider the Binary autoregressive -BAR- process with exogenous vari-
ables defined via its conditional distribution given the past realizations of the ob-
served process as well as those of the exogenous variables,

Yt | Yt−1, Yt−2, . . . , Ut−1, Ut−2, . . . ,∼ Bern(πt(β)) (1.1)

with Zt = (Yt, . . . , Yt−p+1, Ut, . . . , Ut−q+1)
′. It then follows β ∈ R

p+q. Additionally,

πt(β) : R −→ [0, 1],

for example,

πt(β) = g−1(β′Zt−1)

with the canonical link function

g(x) = log

(

x

1− x

)

as popular choice.
The model defined here can be purely autoregressive or exogenous based or a

mixture of both. The purely autoregressive case p ≥ 1, q = 0, is analyzed by Wang
and Li [5]. For sake of simplicity and for illustrating the challenges we have to deal
with, while dealing with the more general model, we focus on the case p = q = 1
here. However, the results presented can be extended to the higher order processes,
i.e., p, q ≥ 1.

Let us postulate a standard first order autoregressive model on the exogenous
component,

Ut = αUt−1 + εt (1.2)

and introduce the following assumptions.

C. 1. (Model Assumptions)

1. Yt | εt, Yt−1, Ut−1 ∼ Yt | Yt−1, Ut−1 and εt i.i.d., (0, σ2
ε) random variables,

with continuous probability density function fε which is positive everywhere
on the real line.

2. g−1 is a continuous function, satisfying for all x ∈ R,

g−1(x) > 0

The assumption on g−1 is satisfied, for example, by the canonical link function,
which is the function considered in the BAR model without exogenous variable
investigated in Wang and Li [5].

The aim of this paper is to establish stationarity and geometric ergodicity of these
processes under suitable conditions on the parameters of the model. In particu-
lar, proving that Zt is geometric ergodic, implies Zt is β-mixing with exponential
rate (see e.g, Davydov [1]). Such properties are important for understanding the
stability properties of the model as well as for deriving the asymptotic behavior of
various statistics and model parameters. Furthermore, the theory we develop here
is primarily motivated by, for example, deriving the NULL asymptotic of various
statistics in the change point set up for BAR models.
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2 Stability of the Model

Although it is obvious to see that {Yt} alone is not a homogenous Markov, our
main result still relies on the stability theory of Markov chains. Therefore, we first
design the Markov chain from which we will derive the desired properties

Lemma 2.1. Under the model assumptions C.1, {Zt = (Yt, Ut)} is a homogenous
first order Markov chain with the Feller property.

Proof. For proving that the extended process Zt is a Markov chain, we need,
for example, to compute the conditional distribution of Zt given Zt−1. Indeed,

P (Yt = s, Ut ∈ du | Yt−1 = yt−1, Ut−1 = ut−1)

= P (Yt = s | Ut ∈ du, yt−1, ut−1)P (Ut ∈ du | yt−1, ut−1)

= P (Yt = s | εt, yt−1, ut−1)P (Ut ∈ du | yt−1, ut−1))

= P (Yt = s | yt−1, ut−1)P (Ut ∈ du | yt−1, ut−1))

= g−1(β′zt−1)fε (u− αut−1)

The first equality is derived by applying twice the definition of the conditional
probability, for the third one, we use the conditional independence of Yt and εt
and for the last equality we use the model definition in (1.1) and (1.2) .

Remark 2.1. From the proof above, it obvious to see that the one step transition
kernel g−1(β′zt−1)fε (u− αut−1) is positive every where on the real line, using the
model assumptions C.1.

To show that Zt is a Feller chain, we need to consider a bounded continuous
function

hbc : {0, 1} × R −→ R

and prove that

E
(

hbc(Zt) | Zt−1 = (v, w)′
)

is bounded and continuous. In fact, using the definition of the conditional expec-
tation,

E
(

hbc(Zt) | Zt−1 = (v, w)′
)

=

∫

hbc(s, u)P (Yt = s, Ut ∈ du | Yt−1 = v, Ut−1 = w)duds

=

∫

hbc(s, u)g
−1(β′Zt−1)fε (u− αw) duds

= g−1(β′Zt−1)

∫

hbc(s, u)fε (u− αw) duds

which is obviously bounded continuous. Indeed, g−1 is bounded by definition and
continuous by assumption and, by mean of the dominated convergence theorem,
∫

hbc(s, u)fε (u− αw) duds is bounded and continuous in w, therefore, in (v, w).
The next step toward our main result is to prove that the designed Markov chain

is irreducible.
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Lemma 2.2. Under the model assumptions C.1 and for a suitable measure λ, Zt

is λ-irreducible.

Proof. Let us consider λ = λ1 ⊗ λ2 with λ1 any probability measure on {0, 1}
and λ2 the Lebesgue measure on R. We further consider A ∈ P ⊗B (for simplicity,
P is the partition of {0, 1} and B the Borel σ-algebra on R) with λ(A) > 0.
It is enough to prove, for example,

P 2(Z,A) = P (Z2 ∈ A | Z0 = z0) > 0.

Indeed,

P (Z2 ∈ A | Z0 = z0)

=

∫

A

P (Z2 | Z1)P (Z1 | Z0 = z0)dZ1dZ2

=

∫

A

g−1(β′Z1)g
−1(β′z0)fε (u2 − αu1) fε (u1 − αu0) du1du2dy1

> 0,

due the fact, see Remark 2.1, that the one step transition kernel is strictly positive
over the real line.

Theorem 2.1. Under the model assumptions C.1 and if additionally |α| < 1, then,
Zt is geometrically ergodic.

Remark 2.2. In the purely exogenous based model in (1.1), Theorem 2.1 confirms
the intuition that we only need the exogenous variable to be geometric ergodic in
order to achieve the geometric ergodicty property of the binary process. In fact, |α|
is the standard parameter constraint for the geometric ergodicity of first order AR.
Furthermore, depending on the choice of the V function (see Theorem 1 of Feigin
and Tweedie [2] below), we will automatically derive the existence of moments of
certain order for the exogenous variables.

To conclude with the stability property of our process, we need to make use of
Theorem 1 of Feigin and Tweedie [2], that we rephrase here for sake of completeness.

Theorem 2.2. (Feigin and Tweedie, 1985, Theorem 1)
Suppose Zt is a Feller Chain, that there exist a measure λ and a compact set A
with λ(A) > 0 such that

1. Zt is λ-irreducible

2. there exists a non-negative continuous function V : {0, 1}×R −→ R satisfying

V (x) ≥ 1, ∀ x ∈ A (2.1)

and for some 0 < β < 1

E[V (Zt) | Zt−1 = z] ≤ (1− β)V (z) for z ∈ Ac. (2.2)

Then, Zt is geometrically ergodic.

4



References

Proof. For the proof of Theorem 2.1, let us first note that Lemma 2.1 and
Lemma 2.2 already prove Zt is an irreducible Feller chain. Now, to use Theorem
2.2, we define,

V (Zt) = 1 + Y 2
t + U2

t .

It is obvious that V satisfies (2.1) in Theorem 2.2. Additionally, let us compute

E
(

V (Zt) | Zt−1 = (y, u)′
)

= 1 + g−1(β′(y, u)′) + E
(

U2
t | Zt−1 = (y, u)′

)

= 1 + g−1(β′z) + α2u2 + σ2
ε

≤ 1 + α2u2 + (1 + σ2
ε)

since 0 < g−1(β′z) ≤ 1. Finally, for 0 < α2 < δ < 1 we have

E
(

V (Zt) | Zt−1 = (y, u)′
)

≤ 2 + α2u2 + σ2
ε < δ(1 + u2) ≤ δV (y, u)

for all u ∈ Ac
2, with

A2 =

{

u ∈ R : |u|2 ≤
2− δ + σ2

ε

δ − α2

}

Consequently, (2.2) follows for β = 1− δ and

A = {0, 1} ×A2.
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