
Reasoning about Backward
Compatibility of Class Libraries

Yannick Welsch

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte

Dissertation

Datum der wissenschaftlichen Aussprache: 29. August 2013

Dekan: Prof. Dr. Arnd Poetzsch-Heffter
Vorsitzende der Promotionskommission: Prof. Dr. Katharina A. Zweig
Erster Berichterstatter: Prof. Dr. Arnd Poetzsch-Heffter
Zweiter Berichterstatter: Prof. Dr. Peter Müller

D386

Abstract

Backward compatibility of class libraries ensures that an old implementation
of a library can safely be replaced by a new implementation without breaking
existing clients. Formal reasoning about backward compatibility requires an
adequate semantic model to compare the behavior of two library implemen-
tations. In the object-oriented setting with inheritance and callbacks, finding
such models is difficult as the interface between library implementations and
clients are complex. Furthermore, handling these models in a way to support
practical reasoning requires appropriate verification tools.

This thesis proposes a formal model for library implementations and a rea-
soning approach for backward compatibility that is implemented using an
automatic verifier. The first part of the thesis develops a fully abstract trace-
based semantics for class libraries of a core sequential object-oriented language.
Traces abstract from the control flow (stack) and data representation (heap)
of the library implementations. The construction of a most general context
is given that abstracts exactly from all possible clients of the library imple-
mentation. Soundness and completeness of the trace semantics as well as the
most general context are proven using specialized simulation relations on the
operational semantics. The simulation relations also provide a proof method for
reasoning about backward compatibility. The second part of the thesis presents
the implementation of the simulation-based proof method for an automatic
verifier to check backward compatibility of class libraries written in Java. The
approach works for complex library implementations, with recursion and loops,
in the setting of unknown program contexts. The verification process relies on
a coupling invariant that describes a relation between programs that use the
old library implementation and programs that use the new library implementa-
tion. The thesis presents a specification language to formulate such coupling
invariants. Finally, an application of the developed theory and tool to typical
examples from the literature validates the reasoning and verification approach.

iii

Acknowledgments

If you make it plain you like people,
it’s hard for them to resist liking you back.

— Lois McMaster Bujold

I would like to thank my thesis advisor, Prof. Dr. Arnd Poetzsch-Heffter, for
the patient guidance, encouragement and advice he has provided throughout
my time as his student. I have been extremely lucky to have a supervisor who
cared so much about my work, provided me with much liberties, and who
responded to my questions and queries so promptly. I extend my thanks to Prof.
Dr. Peter Müller for acting as second reviewer and Prof. Dr. Katharina Zweig
for chairing my doctoral committee.

Many thanks go to Mathias Weber and Peter Zeller for participating in the
discussions and implementation of the BCVERIFIER tool and to Ilham Kurnia for
carefully proof reading this thesis. A very warm thank you also goes to the other
current and former members of the Software Technology Group, especially
Patrick Michel and Ilham Kurnia for sharing the joys and sorrows of a PhD
student.

A special thanks goes to the anonymous reviewers of my papers I came to
love and hate at the same time. Their (sometimes harsh) criticism truly helped
me improve the presentation of my ideas.

My research was funded by the Federal State of Rhineland Palatinate and
the project “Highly Adaptable and Trustworthy Software using Formal Models”
(HATS), which is funded by the European Union. I thank all partners of the
HATS project, in particular the project lead, Prof. Dr. Reiner Hähnle, for making
such a wonderful project possible.

I owe a huge debt of gratitude to my family and friends, providing me with
much support to pursue my goals. Last but not least, I thank my life partner
Julie for always believing in me.

v

Contents

1 Introduction 1

1.1 Challenges and Approach . 2
1.2 Formal Setting . 7
1.3 Contributions . 9
1.4 Outline . 10

2 Interface Compatibility 13

2.1 Formalization of LPJAVA . 16
2.2 Well-formedness and Typing . 18
2.3 Source Compatibility . 22

2.3.1 Formalization . 24
2.3.2 Checkable Conditions . 25

2.4 Discussion . 30
2.4.1 Language and Program Design 30
2.4.2 Static Compatibility Checking 34
2.4.3 Package-local Refactoring 35

2.5 Related Work . 36

3 Trace-based Semantics 39

3.1 Operational Model . 41
3.2 Traces . 42
3.3 Well-formed Configurations . 48
3.4 Observable Behavior . 51
3.5 Properties . 52
3.6 Discussion . 56

4 Most General Context 57

4.1 Construction . 58

vii

Contents

4.2 Properties . 61
4.3 Conclusion . 64

5 Full Abstraction 65

5.1 Discussion . 66
5.2 Related Work . 66
5.3 Simulation-based Proofs . 68

5.3.1 Context and Library Independence 68
5.3.2 Restricted Program Contexts 73
5.3.3 Sound MGC Abstraction . 73
5.3.4 Complete MGC Abstraction 75
5.3.5 Differentiating Context . 82

5.4 Conclusion . 83

6 Simulation-based Reasoning 85

6.1 Reasoning about Backward Compatibility 85
6.2 From Traces to Program Code . 89
6.3 Related Work . 90
6.4 The Formal Model Revisited . 93

6.4.1 Characterization of Library State 94
6.4.2 Indistinguishable States . 95
6.4.3 Proof Obligations . 95

6.5 Specification Language . 96

7 Experience and Evaluation 99

7.1 Type Abstraction . 99
7.2 Information Hiding . 101
7.3 Callbacks . 106
7.4 Control Flow Relations . 111

7.4.1 Synchronous Execution . 111
7.4.2 Asynchronous Execution . 114

7.5 Larger Case Study: ObservableList 116

8 Speci�cation and Tool Support 125

8.1 Invariant Specification Language . 125
8.1.1 Syntax . 125
8.1.2 Types and Semantics . 126
8.1.3 Well-formedness . 129
8.1.4 Discussion . 130

8.2 The BCVERIFIER Tool . 131

viii

Contents

8.3 Related Work . 133

9 Conclusion 135

9.1 Contributions . 135
9.2 Discussion and Outlook . 137

Bibliography 141

List of Symbols 155

Index 159

About the Author 161

ix

List of Figures

1.1 Observer example . 4
1.2 Program context for Observer example 4

2.1 Syntax of LPJAVA . 16
2.2 Context conditions for codebases 21
2.3 Well-formedness conditions for codebases 21
2.4 Typing rules for expressions . 23
2.5 Additional typing functions . 23
2.6 Conditions to check source compatibility in LPJAVA 26
2.7 Case study to validate additional accessibility restrictions 31
2.8 Example for name disambiguation in Java 33

3.1 Semantic entities for LPJAVA . 41
3.2 Evaluation contexts for LPJAVA . 42
3.3 Rules for the enhanced small-step semantics (local steps) 44
3.4 Syntax of traces . 45
3.5 Rules for the enhanced small-step semantics (interactions) . . . 46
3.6 Rules for large-step semantics . 47
3.7 Semantic helper functions . 49
3.8 Observability for LPJAVA . 51

4.1 Syntax extension, typing and rules for the most general context 60

5.1 Classes of constructed context . 76
5.2 main package of constructed context 78
5.3 Method bodies of constructed context 79

6.1 Cell example . 87

xi

List of Figures

7.1 Subtypes example . 100
7.2 Name generation example . 102
7.3 OBool example . 102
7.4 Callback example . 107
7.5 Callback with lock example . 109
7.6 Awkward example . 110
7.7 One-off loop example . 112
7.8 Cubes example . 114
7.9 Termination example . 115
7.10 ObservableList example (Observer and Node) 118
7.11 ObservableList example (Observable) 119
7.12 ObservableList example (Iterator, MyIter and ObsIter) 120

8.1 Syntax of ISL . 127

xii

List of Definitions, Theorems and
Lemmas

Definitions

2.1 Codebase . 17
2.2 Library implementation . 17
2.3 Program . 18
2.4 Program context . 18
2.5 Deterministic and most general program contexts 18
2.6 Source compatibility . 24
3.1 Renaming ρ . 47
3.2 Equivalence on terms (≡ρ) . 47
3.3 Initial configuration S init

KX . 48
3.4 Trace semantics . 48
3.5 Well-formed runtime configuration . 50
3.6 Successful (3) and unsuccessful (7) programs 52
3.7 Contextual compatibility . 52
3.8 Contextual trace compatibility . 52
4.1 Trace behavior of a library implementation 61
4.2 Trace compatibility . 61
5.1 Source, contextual and trace equivalence 65
5.2 Minimality and consistency of renamings 68
5.3 Preorder relations ²L . 69
5.4 MGC stack abstraction nondet(F) . 73
5.5 Preorder relation≪ . 74
5.6 Preorder relation≫ . 79
6.1 Adequate coupling . 86

xiii

List of Definitions, Theorems and Lemmas

Theorems

1 Soundness and completeness of checkable conditions 26
2 Contextual compatibility iff contextual trace compatibility 53
3 Contextual trace compatibility iff trace compatibility 61
4 Full abstraction . 65
5 Soundness and completeness of adequate couplings 87

Lemmas

2.1 Completeness of checkable conditions 26
2.2 Expression type is accessible . 28
2.3 Soundness of checkable conditions . 28
3.1 Initial state is well-formed . 50
3.2 Preservation of well-formedness . 50
3.3 Well-formed traces . 51
3.4 Library independence . 53
3.5 Context independence . 53
3.6 Differentiating context . 54
3.7 Library causes distinctive behavior . 54
3.8 Contextual compatibility implies contextual trace compatibility . . . 55
3.9 Contextual trace compatibility implies contextual compatibility . . . 56
4.1 MGC abstraction is sound . 62
4.2 MGC abstraction is complete . 62
4.3 Additional types in Y not observable for program contexts of X . . . 62
4.4 Contextual trace compatibility implies trace compatibility 62
4.5 Trace compatibility implies contextual trace compatibility 63
5.1 Initial states are related under ²

lib
. 69

5.2 Initial states are related under ²ctxt . 70
5.3 ²L simulates small step from L . 70
5.4 τ steps in ¬L preserve ²L . 70
5.5 Similar labels from ¬L preserve ²L . 71
5.6 ²L simulates single large step from L 71
5.7 Similar single large step from ¬L preserves ²L 71
5.8 ²L simulates multiple large steps . 72
3.4 Library independence . 72

xiv

3.5 Context independence . 72
4.3 Additional types in Y not observable for program contexts of X . . . 73
5.9 Initial states are related under ²

lib
∩≪ 74

5.10 ²
lib
∩≪ simulates small steps . 75

4.1 MGC abstraction is sound . 75
5.11 Initial states are related under ²

lib
∩≫ after a few steps 80

5.12 ²
lib
∩≫ simulates small steps . 81

4.2 MGC abstraction is complete . 81
3.6 Differentiating context . 82

xv

1 Introduction

Computer Science is a science of abstraction
– creating the right model for a problem and devising

the appropriate mechanizable techniques to solve it.

— A. Aho and J. Ullman

Object-oriented libraries are usually realized by the complex interplay of
different classes. As libraries evolve over time, adaptations have to be made
to their implementations. Sometimes such evolution steps do not preserve
backward compatibility with existing clients, classified as breaking API changes
by Dig and Johnson [DJ06], but often libraries should be modified, extended,
or refactored in such a way that client code is not affected. Guaranteeing
backward compatibility is especially important for libraries with many users,
for example the standard class libraries that are part of the Java platform.
Unfortunately, the state of the practice in backward compatibility checking is
that only informal guidelines (e.g., [Riv07]) and tools checking simple syntactic
aspects (e.g., [EclPDE]) are available.

Reasoning about backward compatibility in a formal way requires an ade-
quate semantic model to compare the behavior of two library implementations.
In the object-oriented setting with inheritance and callbacks, the model must
especially account for the complex interface between library implementations
and clients. In addition, the library developer is usually unaware of the client
implementations that are using the library. Since the Seventies [Plo77; Mil77]
much theoretical work has been done on representation independence and
fully abstract semantic models for various calculi and programming languages.
It is still an important and popular topic each year at major conferences on
theoretical computer science. Meanwhile, a lot of effort has been spent in
the last fifteen years on bringing program verification for object-oriented pro-

1

Chapter 1 Introduction

grams to the mainstream by automating the verification process and devel-
oping powerful verification tools (e.g., VERIFAST [Jac+11], SPEC# [BLS05],
ESC/JAVA [Fla+02], KEY [BHS07], JACK [Bar+06], KRAKATOA/WHY [MPU04],
LOOP [BJ01], JIVE [MP00]). However, when it comes to verifiers that compare
different program parts with respect to their full functional behavior and cover
main-stream programming languages such as Java, no such tools exist.

This thesis makes contributions at the theoretical level of studying backward
compatibility for class libraries as well as advancing the state of the art in formal
verification of backward compatibility. Most of these contributions have been
published or are currently under publication [WP13; Wel+13; WP12; Poe+12;
DPW12; WP11].

1.1
Challenges and Approach

To illustrate the intricacies of defining an adequate semantic model for object-
oriented library implementations, we consider a simple utility library in Fig-
ure 1.1 that provides classes to implement the Subject/Observer pattern. The
observers, which implement the Observer interface, can be added to the Subject

using the addObserver method and are stored in a linked list. The Subject also
offers the possibility to get an iterator, basically a cursor, to navigate over the
list of registered observers. Furthermore, the Subject provides the convenience
method notifyObservers to update all the registered observers with the given
argument. Let us further consider a client for the library, in the following also
called a program context. The program context, defined in Figure 1.2, consists
of an implementation of the Observer interface and a main method which uses
the Subject. The example illustrates some of the difficulties when dealing with
representation independence of OO libraries:

Information hiding: A part of the objects of a library can be provided to the
context whereas others can be hidden by the library implementation. For
example, LinkedList objects can be used directly by the context (as the
LinkedList class is public) as well as serve as an internal representation of
the Subject class.

Complex representation: There may be multiple objects (e.g., iterators) avail-
able to the context that access shared internal data of the library (e.g.,
the LinkedList representation).

2

1.1 Challenges and Approach

Type abstraction: The Iterator interface allows abstracting from internal class
implementations, i.e., clients of the library do not need to be aware of the
implementation type of the iterator. Vice versa, the library does not need
to know about possible classes in the program context implementing the
Observer interface.

Callbacks: During a notification, i.e., call of the method update, an observer
can make a callback to the Subject under consideration. In particular,
new observers can be added using the addObserver method during the
notification process.

In the following, we give a rough overview of the approach to backward
compatibility taken as part of this thesis. A prerequisite for backward com-
patibility is that the new library implementation provides at least the same
interface as the old implementation. In this thesis, we require the new library
implementation to be source compatible with the old implementation. This
means that all client code that compiles against the old library implementation
also compiles against the new implementation. Source compatibility solely
depends on the well-formedness conditions and type system of the language.
As the definition of source compatibility quantifies over all possible clients,
which are usually unknown, it is not useful for automatic checking. We thus
derive checkable conditions and prove them sound and complete with respect
to source compatibility.

The central part of the thesis focuses on behavioral aspects of backward
compatibility. Backward compatibility is formalized in terms of a contextual
preorder relation: A new library implementation is backward compatible with
an older implementation if the new library implementation preserves the ob-
servable behavior of the old implementation in all possible class contexts of the
old implementation. The notion of observation we consider is based on the
functional behavior of the library in terms of inputs and outputs, in contrast
to quality aspects such as memory consumption or timing behavior. For exam-
ple, replacing the LinkedList representation of the Subject class by an array is a
backward compatible change. Mutual compatibility corresponds to the classi-
cal notion of contextual equivalence: Two class library implementations are
equivalent if they exhibit the same operational behavior in every possible class
context. Comparing the behavior of two library implementations is challenging
because (1) the possible contexts are unknown and complex, (2) the stacks and
heaps can be significantly different between the library implementations, and
(3) the standard definition of backward compatibility does not lend itself to
inductive proofs. To meet these challenges, we exploit denotational methods.

3

Chapter 1 Introduction

1public interface Observer {
2public void update(Object arg);
3}
4public class Subject {
5private LinkedList obs;
6public void addObserver(Observer o) { ... }
7public Iterator iterator() { return new ObsIter(); }
8public void notifyObservers(Object arg) {
9while (...) { ... o.update(arg); ... }
10}
11...
12private class ObsIter implements Iterator {
13private int currIdx;
14ObsIter() { ... }
15public boolean hasNext() { ... }
16public Object next() { ... }
17}
18}
19public interface Iterator {
20public boolean hasNext();
21public Object next();
22}
23public class LinkedList { ... }

Figure 1.1: Observer example

1public class IntObs implements Observer {
2private int count = 0;
3public void update(Object arg) {
4count += ((Integer)arg).intValue();
5} }
6

7// Body of main method
8Subject sj = new Subject();
9Observer ob = new IntObs();

10sj.addObserver(ob);
11sj.notifyObservers(new Integer(5));

Figure 1.2: Program context for Observer example

4

1.1 Challenges and Approach

A denotational semantics is called fully abstract [Plo77; Mil77] if program
parts that have the same denotation are exactly those that are contextually
equivalent. In particular, a fully abstract semantics has to abstract from stacks
and heaps to meet challenge (2) above. Proving that two sets of classes are
equivalent in the (fully abstract) denotational setting amounts to proving that
they have the same denotation. We introduce a trace-based semantics that
abstracts from the state and heap representation in the old and new implemen-
tation. It solves challenges (2) and (3). To obtain a finite representation of all
contexts and solve challenge (1), we construct a non-deterministic most general
context that exhibits exactly all the possible behavior of contexts with respect
to the trace-based semantics. The behavior of a library implementation is then
expressed as the set of (finite) traces that the most general context exhibits
with the library implementation. The central contributions of this thesis are
the design of such a fully abstract semantics for sealed packages of a sequential
Java subset, a detailed explanation of the full abstraction proof and a method
for reasoning about backward compatibility using simulation relations.

We first derive an adequate semantic model for library implementations. A
library implementation is formalized in terms of its input/output behavior in
order to abstract from its complex representation (heap and stack configura-
tions). The main questions to address are what to consider as the points where
such observable behavior occurs and what the input/output information is.
As we consider a sequential setting, control flow can at a fixed point in the
execution either be in code of the library or code of the program context. As the
observer is outside the library, the points of observation are thus those where
the program context is executing, which we also call the observable states.1 The
observable states are not statically bound to fixed program points such as start
and end of methods. For example, calling the method o.update(arg) in line 9
of the Subject class can lead to an observable state where the update method
defined in the class IntObs is executing. However, it could also be possible that
the library has a class that implements the Observer interface and was registered
with the Subject. In that case, calling the update method does not lead to an
observable state, as execution stays within code of the library. The behavior
of a program context with a library is described by a trace, i.e., a sequence of
labels that record the input/output between the context and the library, such
as name of the method that was called or values that were passed as part of
the method call. The form of the input/output labels is chosen in a way that
they capture all relevant information about the behavior of the library.

1We use the term observable states in allusion to the visible states based techniques [Dro+08;
Mey97; MPL06]

5

Chapter 1 Introduction

The trace-based semantics is defined in terms of the interactions between
code belonging to the library and code belonging to the program context. We
start with a standard operational semantics for our formalized language. In the
first step, the operational semantics is augmented in a way that the interactions
between library and context can be made explicit. In the second step, traces
of interaction labels are used to semantically characterize the library behavior.
A non-trivial aspect is the treatment of inheritance, because with inheritance,
some code parts of a class or an object might belong to the context and other
parts to the library under investigation. Using a standard operational model as
a starting point has the advantage that we can use simulation relations applied
to standard configurations (i.e., heap, stack) for the full abstraction proof and
as a reasoning method for backward compatibility. Furthermore, it provides
a direct relation to many program analysis techniques. In the third step, we
construct a non-deterministic most general context (MGC) that exhibits exactly
all the possible behavior of contexts with respect to the trace-based semantics.
The behavior of a library implementation is then expressed as the set of finite
traces that the MGC exhibits with the library implementation. As mentioned
earlier, we give a (standard) formal definition of backward compatibility in
terms of a contextual preorder relation, relying on the operational semantics
of the language. Using the trace-based semantics and the MGC construction,
an alternative definition of backward compatibility between two library imple-
mentations can be given in terms of set inclusion between the sets of traces
of the library implementations. A large part of this thesis shows how to prove
that this definition is equivalent to the previous one, known as full abstraction
result for our formalized language. The proof relies on specialized simulation
relations between the program configurations of program contexts with the
old and new library implementation. The simulation relations also provide a
basis to reason about backward compatibility. The trace-based definition of
backward compatibility can be equated to the existence of a special simulation
relation between the MGC with the old library implementation and the MGC
with the new library implementation. This relation has to hold in simulating
observable program states, i.e., the states where the behavior of the library
implementations can be observed. Backward compatibility can thus be proven
by stating such a relation (known as coupling invariant) that relates the config-
urations of both libraries and that holds at corresponding observable states in
the execution, and proving that the relation has the simulation property.

6

1.2 Formal Setting

1.2
Formal Setting

We formalize our approach for a sequential object-oriented kernel language,
called LPJAVA (Lightweight Package Java), that essentially extends CLASSIC-
JAVA [FKF99]with packages and simple access control. A library implementation
is a finite set of packages. The design of LPJAVA is motivated as follows:

◦ LPJAVA covers the core OO features, in particular interfaces, classes,
inheritance, and subtyping; in addition, we also include downcasts.

◦ LPJAVA supports package-local types and private fields as light-weight,
language-defined encapsulation mechanisms. This enable the change
of several classes from one implementation to the next without break-
ing compatibility. For example, this makes it possible to exchange data
structures implemented by several classes.

The selection of the formal language framework is always a tradeoff. On one
hand, it should focus on the essential aspects to keep the proofs manageable.
On the other hand, it should be as realistic as possible with respect to the
features that are in the focus of the analysis. The focus here is on the type
and object interface at package boundaries. In particular, we allow downcasts
and exposition of references with a class type, because this is very common
in existing OO languages. Furthermore, we focus on encapsulation mecha-
nisms defined by the programming language. Other encapsulation mechanisms
(for example defined by additional specification constructs) and more general
encapsulation policies are discussed in the related work section.

To keep the formal framework manageable, LPJAVA has some limitations. We
assume that packages are sealed (cf. [GPV01], Sect. 2), meaning that once a
package is defined no new class and interface definitions can be added to the
package. This means that program contexts can not define a class as part of the
same package as library classes, thus giving stronger encapsulation guarantees.

Similarly to Jeffrey and Rathke [JR05b], we assume that library implementa-
tions are definition-complete, i.e., every type used in the library implementation
must be declared in it. This means that library implementations can be type-
checked/compiled in isolation, containing all dependencies. This excludes for
example library implementations with classes that have unknown superclasses
or create objects of an unknown type. This restriction does not limit communi-
cation in the OO setting, as due to dynamic dispatch, calling methods defined

7

Chapter 1 Introduction

in the program context from the library code is still possible. For example,
the method call o.update(arg) in line 9 of the Subject class can dispatch to the
update method defined in the class IntObs of the program context. Definition-
completeness ensures that the library implementation defines the interface
with which it communicates with program contexts. From the point of view of
types, the interface is fixed but still allows subtypes. From the point of view of
objects, the interface of a library is very dynamic. For example, a list object can
dynamically create new iterator objects providing multiple access points to the
list.

Definition completeness of libraries introduces an asymmetry between the
library and its contexts: A context can create objects of library classes, but
not the other way round. To avoid this asymmetry, stronger module concepts
with mutual dependencies and well-defined import interfaces would be needed
for OO languages. As we developed the fully abstract semantics mainly for
reasoning about backward compatibility of existing library implementations,
the asymmetry is not a practical limitation.

In LPJAVA, fields are private. Fields with other accessibility modifiers, in
particular public fields, can be simulated by using getter and setter methods
with appropriate naming conventions. Thus, the theory can handle public field
access, though at the price of syntactical inconvenience. For simplicity, we also
decided to only consider public methods in this thesis. From a practical point of
view this is a limitation. However, allowing private and package-local methods
would not change the behavior at the package boundary and only add further
cases to the proofs. Supporting protected methods would complicate source
compatibility [WP10], but has no substantial effect on contextual compatibility,
because contexts can invoke protected methods in subclasses.

As a further simplification, we only consider finite traces, which makes the
presented semantics not amenable to the study of liveness properties. The
notion of observation also does not take memory consumption or other non-
functional properties such as timing behavior into account. If the old library
implementation does not reach an observable state, for example by looping, we
allow the new library to behave in an arbitrary way. This means that the new
library implementation can show additional behavior in these cases. LPJAVA

is deterministic up to the non-deterministic nature of the memory allocator.
As the language cannot directly observe the address of a reference (but check
whether another reference points to the same address) and has no pointer
arithmetic, we follow the other works in this setting [BN05a; KW07] and use a
(bijective) relation between heap locations to talk about corresponding objects
in different program runs.

8

1.3 Contributions

1.3
Contributions

We present the first tool-supported formal verification approach for backward
compatibility or equivalence checking of object-oriented libraries. The thesis
provides the following technical contributions:

1. We provide a formal model of source compatibility for LPJAVA and a set of
sound and complete checkable conditions to ensure source compatibility.

2. We develop a novel fully abstract trace-based semantics for library imple-
mentations in LPJAVA. The semantics meets the following challenges:

a) Information hiding: To achieve full abstraction, objects of the library
implementation can be hidden from the context and vice versa. This
is realized by distinguishing in the dynamic semantics whether an
object is exposed or internal.

b) Complex representation: The semantics allows arbitrary sharing
of internal representations between different interface objects. In
particular, the shape of object structures is not restricted, which is
prevalent in other works (e.g., [BN05a]).

c) Type abstraction and downcasts: Subtyping and package-local types
allow objects of a package-local class to be exposed at the level
of a public supertype. The trace labels do not only keep track of
the identity of objects, but also of the types of the object visible to
the context. These are the types that the object can be cast to and
which determine the methods that can be invoked on the object. The
technical challenge here is that objects do not always have a unique
public type. For example, the library might expose an object of an
internal class type that implements two (disjoint) public interfaces.

d) Callbacks: The trace semantics naturally accounts for callbacks,
having also labels for method calls that are executed by code of the
library and result in code of the program context to be executed.

The fully abstract semantics for LPJAVA packages comes with two techni-
cal contributions. First, we present a simulation-based proof technique
for full abstraction by augmenting a standard reduction-style small-step
operational semantics with additional information. Second, we develop
an explicit and finite representation of the most general context. Whereas

9

Chapter 1 Introduction

in other works, the most general context is implicit in the semantics (e.g.,
[JR05b; Ábr+04]), we separate the most general context from the trace
semantics and give it a program representation that is as close as possible
to a normal program context. To represent the MGC, the core language
only needs to be extended by a single new non-deterministic expression.

3. Inspired by the simulation-based proofs of the full abstraction theorem,
we develop a simulation-based reasoning method needed to prove library
implementations backward compatible.

4. We present the Invariant Specification Language (ISL) to specify the simu-
lations in the form of coupling invariants. ISL is a first-order logic-based
assertion language that can express complex data and control flow rela-
tions between two library implementations.

5. We present the BCVERIFIER tool that implements the verification approach
using the automatic verifier BOOGIE. The web frontend [BCVb] and the
code of the tool [BCVa] are publicly available for inspection.

6. We show that our theory and tool is applicable to a variety of classic
examples from the literature. The examples (and more) are also available
on the website [BCVb] and can directly be checked online.

1.4
Outline

The thesis is structured into nine chapters. Chapter 2 introduces the formalized
Java dialect LPJAVA and gives a detailed account of source compatibility. Chap-
ter 3 formalizes the operational and trace-based semantics of LPJAVA, gives
a formal definition of observable behavior and shows that the traces capture
exactly the observable behavior. Chapter 4 gives the construction of a most
general context (MGC) and shows that the MGC simulates exactly all possible
standard program contexts. Chapter 5 presents the “full abstraction” theorem
and its proof using specialized simulation relations. Chapter 6 describes a
proof method for reasoning about backward compatibility of libraries based
on the developed semantics and simulation relations. Chapter 7 shows how
the developed reasoning approach can be applied to typical examples in the
literature. Chapter 8 gives a more detailed overview of the ISL specification
language and discusses the BCVERIFIER tool. Chapter 9 presents directions for

10

1.4 Outline

future work and concludes. The related work on the specific contributions of
this thesis is presented in the corresponding chapters (Sections 2.5, 5.2, 6.3
and 8.3).

11

2 Interface Compatibility

A class, in Java, is where we teach objects how to behave.

— R. Pattis

A prerequisite for backward compatibility is that the new library implemen-
tation provides at least the interface1 of the old implementation. In modern
object-oriented languages, interfaces of libraries are complex due to the in-
terplay of inheritance, subtyping, namespace mechanisms and accessibility
modifiers. We assume that libraries consist of a collection of sealed packages
[GPV01], meaning that clients cannot add new class definitions to the packages.
In particular, non-public types are not visible to clients, which allows for more
interesting changes in new library implementations. We also assume that no
introspection, reflection or other magic is used by clients to break the encapsu-
lation properties of libraries. Depending on whether a library is distributed in
source or binary form, two notions of interface compatibility are relevant.

Source compatibility ensures that every program that compiles against the
old library implementation also compiles against the new library implementa-
tion. In such a case, we call the new implementation source compatible with
the old one. For languages with elaborate static encapsulation mechanisms
like Java, source compatibility is a complex property and, prior to this work,
checking tools did not exist. Checking source compatibility for packages is a
difficult task with two central challenges:

◦ Complexity: The complexity of package interfaces is often underestimated.
The reason is the intricate interplay of mechanisms to express and restrict
subtyping aspects, such as abstract and final types and methods, with

1We use the word interface here in the general sense, which should not be confused with the
programming concept of Java interfaces.

13

Chapter 2 Interface Compatibility

the mechanisms to control encapsulation. For example, the information
whether or not two non-public types are in a subtype relationship may
affect source compatibility of Java packages [WP10].

◦ Modularity: Source compatibility should be checked in a modular way,
i.e., without knowing the client code. A checking technique is needed
that can abstract from the infinite number of possible client contexts.

As the definition of source compatibility quantifies over all possible client
contexts, it cannot directly be used for automatic checking. We thus derive
statically checkable conditions for compatibility that are proved necessary
and sufficient. Such checkable conditions give interesting insight into the
encapsulation of Java packages, allow us to discuss language and program
design aspects and provide the basis for package-local refactoring tools.

Typical requirements for source compatibility in Java are that existing public
types cannot be removed (but new public types can be added under the re-
striction that no “star” imports are used by clients). Furthermore, the subtype
relation between public types must be preserved. Describing source compatible
changes to classes or interfaces is a bit more tricky, as object-oriented libraries
often present two interfaces: (1) A caller interface, which enables the creation of
objects and calling of methods; and (2) an implementor interface, which provides
the possibility to extend the functionality of the provided types via inheritance.
Changes of a class which are compatible with respect to the caller interface can
be incompatible for the implementor interface and vice versa. On the one hand,
adding a new method to an interface usually breaks compatibility with program
contexts that implement the interface but ensures compatibility for callers. On
the other hand, widening the return type of a method parameter breaks compat-
ibility for callers but ensures compatibility for the implementors [Riv07] as the
covariance of the return types is ensured for overriding methods. To distinguish
caller and implementor interface, object-oriented languages support different
access modifiers. In Java, these encompass the modifiers public, protected

and �nal. Unfortunately, the modifiers are often not expressive enough. For
example, the Java access modifiers do not allow us to specify that a class can
only be subclassed in the library but not by clients. One way is to overcome the
deficiencies of the language by introducing additional annotations [EclPDE] to
refine the description of library interfaces. For example, Eclipse developers use
additional annotations to refine the description of library interfaces [EclPDE].
Another way is to accept the limitations and adopt special programming patterns
to extend library implementations in a source compatible way. For example,
the implementation of the Eclipse IDE uses the concept of extension interfaces

14

to guarantee source compatibility. Existing interfaces are not adapted but only
new interfaces introduced with the additional methods. Objects have then to
be cast to the right interface type if the extension is to be used. Other, more ad
hoc solutions exist, but are not the focus of this thesis. Just as an example for
such solutions, the developers of the Hamcrest Matcher framework have added
a method void _dont_implement_Matcher___instead_extend_BaseMatcher_()

to the Matcher interface.2

Binary compatibility ensures that every program that links against the binary
form of the old library also links against the binary form of the new implementa-
tion. It is formally defined in the Java Language Specification (JLS) [Gos+05].
Source and binary compatibility are incomparable; neither one implies the
other [Dar08]. However, a set of checkable rules can be established for both
forms of interface compatibility. Our theory of backward compatibility was
developed in the setting where clients are recompiled with the new library
implementation. In the following, only source compatible library implementa-
tions are considered. Nonetheless, we believe that large parts of the theory are
directly transferable to a setting where binary compatibility is desired instead.

This thesis defines source compatibility for sealed packages of a formalized
Java subset with only a limited set of access modifiers. The reason for this is that
we want to give a larger focus on behavioral aspects of backward compatibility
and a more substantial presentation of typing aspects would deviate from these
goals without providing further substantial insight. In other work, however,
we have formally explored a larger subset of Java that contained all relevant
access modifiers [WP10].3 In Section 2.1, we formalize a subset of Java, called
LPJAVA. Section 2.2 provides a formalization of the well-formedness conditions
and typing rules of the language. Section 2.3 gives a formal definition of source
compatibility for LPJAVA and provides a set of checkable rules that ensure
source compatibility. Section 2.4 discusses the impact of source compatibility
on language and program design and possible applications. Section 2.5 presents
the related work.

2http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/Matcher.html
3This study led us to find a bug in the Eclipse JDT compiler, see https://bugs.eclipse.
org/271303

15

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/Matcher.html
https://bugs.eclipse.org/271303
https://bugs.eclipse.org/271303

Chapter 2 Interface Compatibility

K , X , Y ::= P
P ::= package p ; D
D ::= public? class c extends p.c implements p.i { F Mc }
| public? interface i extends p.i { Ma }

F ::= private p.t f ;
Ma ::= public p.t m(p.t x) ;
Mc ::= public p.t m(p.t x) { E }

E ::= x | null | new p.c | (p.t)E err E | E. f | E. f = E
| let p.t x = E in E | E.m(E) | (E == E ? E : E)

t ::= c | i

Figure 2.1: Syntax of LPJAVA

2.1
Formalization of LPJAVA

The formalized language considered in the following is a sequential object-
oriented language called LPJAVA (Lightweight Package Java). It has the standard
object-oriented features such as classes, interfaces, inheritance, dynamic dis-
patch, and mutable state. To allow for interesting scenarios of library evolution,
we also consider the Java namespace mechanism to hide certain types in li-
braries, known under the name of a package system [Gos+05].

Notation. We use the overbar notation x to denote a finite sequence and
the hat notation bx to denote a finite set. The empty sequence and set are
denoted by • and the concatenation of sequence x and y is denoted by x · y.
Concatenation is sometimes implicit by writing terms in juxtaposition, e.g.,
x y. Single elements are implicitly treated as sequences/sets when needed.
The function last(. . .) returns the last element of a sequence. The expression
M[x 7→ y] yields the mapM where the entry with key x is updated with the
value y , or, if no such key exists, the entry is added. The empty map is denoted
by ∅ and dom(M) and rng(M) denote the domain and range of the mapM.
To improve readability, we often use the underscore place-holder _ instead of a
free logical variable that occurs only once in the formula. Proofs are written in
a hierarchically structured style as advocated by Lamport [Lam12]. A list of all
mathematical symbols and a glossary are available on pages 155 and 159 of

16

2.1 Formalization of LPJAVA

the thesis.

Syntax. The syntax of LPJAVA is presented in Figure 2.1. We use the following
meta-variables to represent elements of different syntactic categories: c denotes
class names (incl. Object), i interface names, p package names (incl. lang),
f field names, m method names and x local variable and method parameter
names (incl. this). As class and interface names can often occur in similar places,
we use the meta-variable t to subsume both syntactic categories c and i. For
simplicity, we mix syntactic categories with names of their typical elements. The
meta-symbol ? denotes an optional item in the grammar. A package, denoted
by P, has a name and consists of a sequence of type declarations. We assume
that packages are sealed (cf. [GPV01, §2]), meaning that once a package is
defined no new class and interface definitions can be added to the package.
Types are fully qualified by their package name. Classes and interfaces, denoted
by D, can be declared either package-local or public. Primitive data types (like
boolean, int, etc.) are not considered as they do not provide additional insight.
Abstract methods, occurring in interfaces, are denoted by Ma, whereas methods
with bodies, occurring in classes, are denoted by Mc. Fields are denoted by
F . All methods are assumed to be public and all fields to be private. For
reasons of conciseness, we sometimes omit the public and private modifiers on
methods and fields in the following. We assume that every class has a default
constructor. Similarly to Java [Gos+05], the default constructor has the same
access modifier as its class. LPJAVA has the typical expressions, denoted by E, for
a formalized OO subset. In addition, it also allows explicit casting, which leads
to more distinguishing power from class contexts. The operator (p.t)E1 err E2
encodes both an instanceof and cast operator, i.e., it yields the value of E2 if the
value of E1 cannot be cast to p.t. Sequencing of expressions can be done using
the expression let p.t x = E1 in E2. To make the program text more readable,
we allow abbreviating the previous expression by E1; E2 if x does not freely
appear in the subexpression E2.

Terminology. To establish a precise terminology throughout the thesis, we
give formal definitions for what we consider as codebase, library implementa-
tion, program and program context.

Definition 2.1 (Codebase)
A codebase consists of a sequence of packages (i.e., P) and is denoted by the
meta-variables K , X or Y . ♦

17

Chapter 2 Interface Compatibility

Definition 2.2 (Library implementation)
A codebase is called a library implementation if it satisfies all the well-formedness
conditions of the language, i.e., well-formed type hierarchy, well-typedness of
method bodies, etc. Well-formedness of a codebase X is formalized as ` X in
Figure 2.3 and explained in the next section. ♦

Definition 2.3 (Program)
A program is a codebase that has a main class with a main method and that
satisfies all the well-formedness conditions of the language. ♦

Definition 2.4 (Program context)
If we join a codebase K (with a main method) and a library implementation X
to form a program, we call K a program context of X . ♦

To join two codebases into a larger codebase, we write them in juxtaposition
(e.g., KX). In the following, we use K for codebases that take the role of
program contexts and X and Y for codebases that take the role of library
implementations.

Definition 2.5 (Deterministic and most general program contexts)
In order to distinguish standard program contexts from most general (program)
contexts of Chapter 4, we call the previous ones deterministic program contexts.
Program contexts then simply subsume both deterministic and most general
program contexts. ♦

2.2
Well-formedness and Typing

In this section, we introduce the notation and rules used to describe the well-
formedness and typing conditions for LPJAVA. Most of the presented relations
take the codebase X to be checked as an explicit parameter. Often this parameter
is left implicit in language formalizations. However, as we want to talk later on
about different codebases when comparing them for compatibility, it is useful
to make explicit which codebase we are referring to.

Names. We denote by uniquenamesX that package declarations in a code-
base X do not share the same package name. We further assume that class
and interface names in each package are unique and field and method names

18

2.2 Well-formedness and Typing

declared in each type are unique (i.e., we do not consider method overload-
ing). We define PX as the set of package names for which there is a package
declaration in X . We define CX as the set of (qualified) class identifiers for
which there is a declaration in X . Similarly, IX represents the set of declared
interfaces. We then define the set of types TX

def
= CX ∪ IX ∪ {lang.Object} ∪ {⊥},

where ⊥ will be used to type the null expression and is called the null type.
To simplify the presentation we use the meta-variable T to denote all kind
of types (T ::= p.c | p.i | ⊥). The public types of X are characterized by the
predicate publicX . In particular, publicX (lang.Object) and publicX (⊥) hold for
any codebase X under consideration.

Subtyping. The following symbols express relations between the types. For
a codebase X , we define the direct subtype relation <d

X as the least relation
with the following properties. The relation contains p1.c1 <

d
X p2.c2 if a class

c1 in package p1 has an extends clause mentioning the class p2.c2. Similarly, it
contains p1.i1 <

d
X p2.i2 if an interface i1 in package p1 has an extends clause

mentioning the interface p2.i2. If a class c1 in package p1 mentions an interface
p2.i2 in its implements clause, the relation contains p1.c1 <

d
X p2.i2. The direct

subtype relation also contains p.i <d
X lang.Object for each interface type p.i in

IX that has an empty extends clause. By <X we denote the transitive closure
of <d

X ∪ {(⊥, p.t) | p.t ∈ CX ∪ IX ∪ {lang.Object}}, by ≤X the reflexive closure
of <X .

Field and method membership. To describe that a type declaration pro-
vides methods or fields, we introduce the membership relation ∈X . We write
〈 f , p0.t0〉 ∈X p.c to describe that a field f of type p0.t0 is declared in a class
c of package p. In contrast to fields which are always private, methods are
public and can thus be inherited. The membership symbol ∈X for methods
also considers all transitively inherited members. We write 〈m, T , T 〉 ∈X p.t to
describe that a method m of signature T is member of the type p.t. The addi-
tional type T is used to denote in which supertype the method is implemented
if the method is inherited. Method signatures are simply written as a sequence
T

def
= (p0.t0 · p1.t1) where the first element p0.t0 of the sequence represents the

return type of the method and p1.t1 denotes the parameter types. Method mem-
bership is defined inductively. We have two base cases (1) If a method m with
signature T is declared in a class p.c then 〈m, T , p.c〉 ∈X p.c. (2) If a method m
with signature T is declared in an interface p.i then 〈m, T ,⊥〉 ∈X p.i. We use
⊥ as a place-holder as methods in interfaces provide no implementation. The

19

Chapter 2 Interface Compatibility

inductive steps are then given in the rules below. A method is inherited from a
superclass if it is not overridden, i.e., there is no method with the same name
and signature declared in the inheriting class (D-INH-METHOD-C). Methods from
superinterfaces are always inherited (D-INH-METHOD-I).

D-INH-METHOD-C

p1.c1 <
d
X p2.c2 〈m, T , T 〉 ∈X p2.c2

〈m, T , p1.c1〉 /∈X p1.c1

〈m, T , T 〉 ∈X p1.c1

D-INH-METHOD-I

p1.i1 <
d
X p2.i2

〈m, T ,⊥〉 ∈X p2.i2
〈m, T ,⊥〉 ∈X p1.i1

Judgments. Using the presented notation, we formalize well-formedness of
a codebase. The following judgments are used:

◦ ` X denotes that the codebase X is well-formed, i.e., X is a library imple-
mentation.

◦ X ` P denotes that the package declaration P is well-formed in codebase
X .

◦ X , p ` D denotes that the type declaration D (class or interface) of package
p is well-formed in codebase X .

◦ X , p.t ` Ma and X , p.t ` Mc denote that the methods Ma and Mc declared
in type p.t are well-formed in X .

◦ X , p.c,Γ ` E : T denotes that the expression E in class p.c has type T
under local variable typing Γ , which is a map from local variable names to
types. The result type T represents the exact static type of the expression
E.

The well-formedness and typing rules are given in Figures 2.3 and 2.4 and
explained in the following.

Context conditions. A codebase X is well-formed (see rule T-LIB) if it satis-
fies the context conditions C1X -C4X . The context conditions for a codebase
X are defined in Figure 2.2. Free logical variables in the conditions are uni-
versally quantified. Condition C1X states that types occurring in extends and
implements clauses must be accessible. Accessibility, defined as accX (p.t, p′) in
Figure 2.5, guarantees that a type is defined and either public or part of the
same package. The type system guarantees that the type of expressions, if not⊥,
is accessible in the context of the method in which the expression was defined

20

2.2 Well-formedness and Typing

p1.t1 <
d
X p2.t2⇒ accX (p2.t2, p1) (C1X)

〈m, T1, _〉 ∈X T ∧ 〈m, T2, _〉 ∈X T ⇒ T1 = T2 (C2X)

〈m, T , _〉 ∈X p1.i1 ∧ p2.c2 <
d
X p1.i1⇒∃T ′ : 〈m, T , T ′〉 ∈X p2.c2 (C3X)

publicX (T)∧ 〈m, T , _〉 ∈X T ⇒ publicX (T) (C4X)

Figure 2.2: Context conditions for a codebase X

T-LIB

uniquenamesX
<X is acyclic C1X -C4X

X = P X ` P

` X

T-PACKAGE

P = package p; D
p 6= lang X , p ` D

∃t : p.t ∈ CP ∪ IP ∧ publicP(p.t)

X ` P

T-CLASS

accX (p1.t1, p)
X , p.c ` Mc

X , p ` . . . class c . . . {p1.t1 f ; Mc}

T-INTF

X , p.i ` Ma

X , p ` . . . interface i . . . {Ma}

T-METHSIG

(this · x) pairwise distinct
accX (p0.t0 · p1.t1, p)

X , p.t ` p0.t0 m(p1.t1 x) ;

T-METHOD

X , p.c ` p0.t0 m(p1.t1 x) ;
Γ =∅[this 7→ p.c][x 7→ p1.t1]
X , p.c,Γ ` E : T T ≤X p0.t0

X , p.c ` p0.t0 m(p1.t1 x) { E }

Figure 2.3: Well-formedness conditions for codebases

21

Chapter 2 Interface Compatibility

(see Lemma 2.2). Condition C2X enforces the absence of method overloading.
Condition C3X ensures that a class implements all the methods of the interfaces
that it implements. Condition C4X states that the signature of (public) methods
(defined or inherited) in public classes must only contain public types. The C#
language specification [ECM06] defines restrictions that are more general than
C4X . In particular, [ECM06, Sect. 10.5.4 on accessibility constraints] presents
conditions that among others require parameter and return types to be at least
as accessible as the method itself. These additional constraints, discussed in
Section 2.4, lead to important properties; they ensure, for example, that public
interfaces can always be implemented.

Well-formedness and typing. For a codebase to be well-formed, each pack-
age declaration in it must be well-formed (T-LIB). The notation X ` P is used
to abbreviate ∀P ∈ P : X ` P. A package declaration is well-formed (T-PACKAGE

in Figure 2.3) if it does not use the existing package name lang and each type
declaration in it is well-formed. An additional sanity condition we assume
is that each package declares at least one public type.4 Class and interface
declarations are well-formed if their members are well-formed (T-CLASS and
T-INTF). Field and method types must be accessible in the package in which
they are used (T-CLASS, T-METHSIG and T-METHOD). The typing of expressions is
straightforward and stated mostly for completeness (Figure 2.4). We highlight a
few particularities. All types that are explicitly mentioned in the program must
be accessible (T-NEW, T-LET and T-CAST). The rule T-IF only allows expressions of
comparable type (modeled using the predicate cmpX (T1, T2) in Figure 2.5) and
yields the maximal type of both subexpressions (modeled using the predicate
maxX (T1, T2) in Figure 2.5).

2.3
Source Compatibility

A prerequisite for a library implementation to be backward compatible with
another one is that whenever the first library implementation joined with a
program context yields a program, then the second library implementation
joined with the same program context must also yield a program. This prop-
erty, focusing solely on typing and not behavioral aspects, is called source
compatibility.

4This simplifies the source compatibility conditions by requiring PX = PY instead of PX ⊇ PY .

22

2.3 Source Compatibility

T-NULL

X , p.c,Γ ` null :⊥

T-VAR

Γ (x) = p1.t1

X , p.c,Γ ` x : p1.t1

T-NEW

accX (p1.c1, p)

X , p.c,Γ ` new p1.c1 : p1.c1

T-GET

X , p.c,Γ ` E : p.c
〈 f , p1.t1〉 ∈X p.c

X , p.c,Γ ` E. f : p1.t1

T-SET

X , p.c,Γ ` E1. f : p1.t1
X , p.c,Γ ` E2 : T T ≤X p1.t1

X , p.c,Γ ` E1. f = E2 : p1.t1

T-CALL

X , p.c,Γ ` E : p1.t1
〈m, p0.t0 · p2.t2, _〉 ∈X p1.t1

X , p.c,Γ ` E : T T ≤X p2.t2

X , p.c,Γ ` E.m(E) : p0.t0

T-LET

X , p.c,Γ ` E1 : T1 T1 ≤X p1.t1
accX (p1.t1, p) x /∈ dom(Γ)
X , p.c,Γ [x 7→ p1.t1] ` E2 : T2

X , p.c,Γ ` let p1.t1 x = E1 in E2 : T2

T-IF

X , p.c,Γ ` Ei : Ti
cmpX (T1, T2) cmpX (T3, T4)

T =maxX (T3, T4)

X , p.c,Γ ` (E1 == E2 ? E3 : E4) : T

T-CAST

accX (p1.t1, p)
X , p.c,Γ ` Ei : Ti

cmpX (p1.t1, T1) T2 ≤X p1.t1

X , p.c,Γ ` (p1.t1)E1 err E2 : p1.t1

Figure 2.4: Typing rules for expressions

accX (p.t, p′)
def
= p.t ∈ TX ∧ (publicX (p.t)∨ p = p′)

cmpX (T1, T2)
def
= T1 ≤X T2 ∨ T2 ≤X T1

maxX (T1, T2)
def
=

¨

T2 if T1 ≤X T2

T1 if T2 ≤X T1

Figure 2.5: Additional typing functions

23

Chapter 2 Interface Compatibility

2.3.1 Formalization

Using the previous definition of well-formedness, we formalize source compati-
bility for LPJAVA as follows:

Definition 2.6 (Source compatibility)
A library implementation Y is source compatible with a library implementation
X if for any codebase K: ` KX implies ` KY . ♦

In particular, the definition states that every program context of X is also a
program context of Y . The definition is not useful to compute that a library
implementation Y is source compatible with X , because it quantifies over an
infinite set of contexts. However, a set of checkable conditions that are necessary
and sufficient for Y to be source compatible with X can be given.

Discussion. We explained source compatibility in the introduction as the
property between two library implementations that allows all clients which
compiled against the old library implementation to compile against the new
one. However, when considering whether a client can compile against a library
implementation, one has to make the distinction between observability [Gos+05,
§7.3 and §7.4.3] (sometimes also called visibility5) and accessibility of types
[Buc10]. Observability is a property of the host platform. At compile time,
observability of a type means that the compiler can locate the type definition.
For most Java compilers (e.g. javac), observability can be influenced by setting
the class- or source-path accordingly. Most module systems (e.g., [OSGI])
on the JVM manage observability via class loaders (i.e., at runtime). In the
context of this thesis, we do not consider observability and focus on accessibility,
which is a property based on the access modifiers of the language (e.g., private,
protected, public). When we talk about a context compiling against a library
implementation, we assume that all the concerned packages and types are
observable.

A restriction of our setting is that we only consider sealed packages. That
is, we do not allow contexts to add new classes and interfaces to packages
contained in the library implementations X and Y that are compared for com-
patibility.6 We selected the above definition from a number of other candidates,
mainly because it is simple and can handle interesting practical scenarios. In

5Not to be confused with the meaning of visibility in the setting of declaration scopes for
programming languages [Gos+05, §6.3.1]

6However, context codebases can still extend classes and interfaces from the library implemen-
tations.

24

2.3 Source Compatibility

particular, the compatibility definition allows us to compare single packages
that do not import other packages. More importantly, it allows to check compat-
ibility of library implementations X and Y that share common library packages
(e.g., java.util, etc.).

Other definitions of compatibility are possible. The first alternative is whether
to define compatibility for packages or for library implementations. As a package
often imports other packages, two package versions might import different
packages. If we define compatibility for packages and allow that packages
import other packages, we have to be careful about the set of contexts. For
example, consider two implementations P1 and P2 of a package with name p
where P1 imports a package P ′1 and P2 imports a package P ′2 with a different
name. Even if P1 and P2 are “intuitively” compatible, a context K which is
well-formed with P1P ′1 might not be well-formed with P2P ′2 just because it has
a conflict with P ′2 (e.g., contains a package with the same name). Thus, one
can only quantify over codebases K that are not in conflict with P1 and P2.

For some situations, the sketched problem can be handled by allowing the
hiding of imported packages (as some module systems do). But, as illustrated
in earlier work [WP10], there are other situations where even non-public types
can affect the well-formedness of entities outside the package. That is why we
defined compatibility for library implementations X and Y . Compatibility of
packages P1 and P2 of the example above is treated in our setting as compatibility
of the library implementations X

def
= P1P ′1P ′2 and Y

def
= P2P ′1P ′2.

Considering library compatibility, as we do, has the additional advantage
that we can compare library implementations where several packages have new
versions. Furthermore, we can allow recursive package dependencies within
the library implementation. We also investigated more structured versions
of the definition where compared library implementations X and Y import
from compatible library implementations X ′ and Y ′. Such a more structured
definition would not lead to different results for the problem of this thesis.
However, it is a step towards well-understood import interfaces and helpful
to check compatibility of large library implementations incrementally. We
have investigated such scenarios with “open” packages [DPW12]. But the
generalization complicates the definitions and proofs here in such a way that it
deviates from the central ideas without adding substantial insight.

2.3.2 Checkable Conditions

In the following we formalize syntactically checkable conditions which guar-
antee source compatibility for LPJAVA. The formal definitions, explained below,

25

Chapter 2 Interface Compatibility

PX = PY (S1X ,Y)

publicX (T) ⇒ publicY (T) (S2X ,Y)

publicX (T1)∧ publicX (T2)∧ T1 ≤X T2⇒ T1 ≤Y T2 (S3X ,Y)

publicX (T) ⇒ (∃T1 : 〈m, T , T1〉 ∈X T ⇔ ∃T2 : 〈m, T , T2〉 ∈Y T)
(S4X ,Y)

Figure 2.6: Conditions to check source compatibility in LPJAVA

are presented in Figure 2.6. The package names occurring in X must exactly
be those occurring in Y (S1X ,Y). Every public type defined in X must appear in
Y (S2X ,Y). Note that this implies that public class (interface) types declared
in X are public class (interface) types declared in Y , because the set of class
and interface identifiers are disjoint in LPJAVA. The subtype hierarchy between
public types of X must be preserved in Y (S3X ,Y). Finally, for public types of X ,
every method which is part of the type (declared or inherited) in X must also
have a method with the same signature in Y and vice versa (S4X ,Y). We state
that the conditions are necessary and sufficient in the following theorem. For a
rationale we refer to the subsequent proofs.

Theorem 1 (Soundness and completeness of checkable conditions)
A library implementation Y is source compatible with a library implementation
X if and only if S1X ,Y -S4X ,Y hold. ♦

PROOF: By Lemmas 2.1 and 2.3. �

Compatibility is a preorder relation, that is, it is reflexive and transitive, but
not antisymmetric. Conceptually, compatibility can be seen as a “structural
subtype relation” on library implementations (although the exact character-
ization of what a library signature or interface is will remain implicit in this
presentation). We prove both directions of the theorem.

Lemma 2.1 (Completeness of checkable conditions)
Consider two library implementations X and Y . If Y is source compatible with
X then S1X ,Y -S4X ,Y hold. ♦

PROOF: By contraposition:
ASSUME: ` X and ` Y such that S1X ,Y -S4X ,Y do not hold
PROVE: ∃K : ` KX and 6` KY

26

2.3 Source Compatibility

The proof considers each of the conditions on a per-case basis. For each condi-
tion, it assumes that the previous conditions hold. Let us consider a package
name p0 in the following which does neither occur in X nor Y .
〈1〉1. CASE: ¬S1X ,Y
〈2〉1. CASE: ∃p ∈ PY \PX
uniquenamesKY does not hold if K

def
= package p; public class c {}

〈2〉2. CASE: ∃p ∈ PX \PY
〈3〉1. ∃t : p.t ∈ TX ∧ publicK(p.t)

By T-PACKAGE

〈3〉2. p.t /∈ TY
By assumption 〈2〉2
〈3〉3. Q.E.D.

T-CLASS (accKY (p.t, p0)) does not hold by step 〈3〉2 if K
def
=

package p0; public class c { p.t f ; }
〈1〉2. CASE: S1X ,Y and ¬S2X ,Y

LET: p.t such that publicX (p.t)∧¬publicY (p.t)
T-CLASS (accKY (p.t, p0)) does not hold if K

def
=

package p0; public class c { p.t f ; }
〈1〉3. CASE: S1X ,Y , S2X ,Y and ¬S3X ,Y

LET: p1.t1, p2.t2 such that publicX (p1.t1) ∧ publicX (p2.t2) ∧ p1.t1 ≤X
p2.t2 ∧ p1.t1 6≤Y p2.t2

T-METHOD does not hold if K
def
=

package p0; public class c { p2.t2 m(p1.t1 x) { x } }

〈1〉4. CASE: S1X ,Y , S2X ,Y , S3X ,Y and ¬S4X ,Y
〈2〉1. CASE: publicX (p.t)∧〈m, p1.t1 ·p2.t2, _〉 ∈X p.t∧〈m, p1.t1 ·p2.t2, _〉 /∈Y

p.t
〈3〉1. CASE: ∃T : 〈m, T , _〉 ∈Y p.t ∧ T 6= p1.t1 · p2.t2
〈4〉1. CASE: t = c

C2KY does not hold if K
def
=

package p0; public class c0 extends p.c { p1.t1 m(p2.t2 x) { null } }

〈4〉2. CASE: t = i
C2KY does not hold if K

def
=

package p0; public interface i0 extends p.i { p1.t1 m(p2.t2 x); }
〈3〉2. CASE: 6 ∃T : 〈m, T , _〉 ∈Y p.t

T-CALL does not hold if K
def
=

package p0; public class c0 { lang.Object m(p.t x) { x .m(null) } }

〈2〉2. CASE: publicX (p.t)∧〈m, p1.t1 ·p2.t2, _〉 /∈X p.t∧〈m, p1.t1 ·p2.t2, _〉 ∈Y
p.t

〈3〉1. CASE: ∃T : 〈m, T , _〉 ∈X p.t ∧ T 6= p1.t1 · p2.t2

27

Chapter 2 Interface Compatibility

LET: T
def
= p3.t3 · p4.t4

〈4〉1. CASE: t = c
C2KY does not hold if K

def
=

package p0; public class c0 extends p.c { p3.t3 m(p4.t4 x) { null } }

〈4〉2. CASE: t = i
C2KY does not hold if K

def
=

package p0; public interface i0 extends p.i { p3.t3 m(p4.t4 x); }
〈3〉2. CASE: 6 ∃T : 〈m, T , _〉 ∈X p.t
〈4〉1. CASE: t = c

C2KY does not hold if K
def
=

package p0; public class c0 extends p.c { p0.c0 m() { null } }

〈4〉2. CASE: t = i
C2KY does not hold if K

def
=

package p0; public interface i0 extends p.i { p0.i0 m(); } �

Lemma 2.2 (Expression type is accessible)
If ` X and X , p.c,Γ ` E : p0.t0 and accX (rng(Γ), p), then accX (p0.t0, p). ♦

PROOF: By induction on the typing derivation of E. �

Lemma 2.3 (Soundness of checkable conditions)
Consider two library implementations X and Y . If S1X ,Y -S4X ,Y hold, then Y is
source compatible with X . ♦

PROOF SKETCH: Direct proof:
ASSUME: ` X and ` Y and S1X ,Y -S4X ,Y hold and ` KX
PROVE: ` KY
We first prove a few properties, the main proof then happens in the last step:
〈1〉1. p ∈ PK ∧ accKX (p1.t1, p)⇒ accKY (p1.t1, p)

Directly from Def. of acc and S2X ,Y
〈1〉2. accKX (p1.t1, p)∧ accKX (p2.t2, p)∧ p1.t1 ≤KX p2.t2⇒ p1.t1 ≤KY p2.t2

By S2X ,Y , S3X ,Y and sealed packages
〈1〉3. p.t ∈ TK ⇒ (∃T1 : 〈m, T , T1〉 ∈KX p.t⇔∃T2 : 〈m, T , T2〉 ∈KY p.t)

We show one direction, the other is similar: PROOF: By induction on the
derivation of 〈m, T , T1〉 ∈KX p.t (as <KX acyclic and finite):
〈2〉1. Induction basis: T1 = p.t or p.t is an interface that defines the method

Trivial
〈2〉2. Induction step: T1 6= p.t and p.t is not an interface that defines the

method
Rule D-INH-METHOD-C or D-INH-METHOD-I must apply:

28

2.3 Source Compatibility

〈3〉1. CASE: p.t <d
KX p0.t0 ∧ p0.t0 ∈ TK

By induction hypothesis
〈3〉2. CASE: p.t <d

KX p0.t0 ∧ p0.t0 ∈ TX
By S4X ,Y

〈1〉4. Consider p.c ∈ CK and accKX (rng(Γ), p).
If KX , p.c,Γ ` E : T then KY, p.c,Γ ` E : T .

PROOF: By induction on the typing derivation of E:
〈2〉1. Induction basis
〈3〉1. CASE: T-NULL or T-VAR

Trivial
〈3〉2. CASE: T-NEW

By step 〈1〉1
〈2〉2. Induction step
〈3〉1. CASE: T-GET, T-SET or T-LET

By step 〈1〉2 and Lemma 2.2
〈3〉2. CASE: T-IF or T-CAST

By step 〈1〉2, Lemma 2.2 and Def. of cmp(,)
〈3〉3. CASE: T-CALL

By step 〈1〉2, Lemma 2.2, step 〈1〉3 and S4X ,Y
〈1〉5. ` KY

PROOF: By induction on the typing derivation of ` KY :
〈2〉1. Induction basis
〈3〉1. CASE: T-METHSIG

By step 〈1〉1
〈2〉2. Induction step
〈3〉1. CASE: T-LIB

〈4〉1. uniquenamesKY
Trivial
〈4〉2. <KY acyclic

By <KX and <Y acyclic and ` Y
〈4〉3. C1KY

By S2X ,Y
〈4〉4. C2KY -C4KY

By S2X ,Y -S3X ,Y and step 〈1〉3
〈3〉2. CASE: T-PACKAGE, T-INTF or T-CLASS

By step 〈1〉1
〈3〉3. CASE: T-METHOD

By step 〈1〉2, Lemma 2.2 and step 〈1〉4 �

29

Chapter 2 Interface Compatibility

2.4
Discussion

Interfaces are well-understood on the object or type level (programming in the
small). Type systems allow compilers to check that type-related programming
errors are avoided, e.g., suitable co-/contravariance typing and appropriate
choice of access modifiers in overriding methods. However, interface support on
the package level (programming in the large) still needs improvement. We en-
vision that future package constructs allow compilers to check for compatibility
in the same way as today’s compilers check for nominal or structural subtyp-
ing. In this section we discuss the impact of source compatibility on language
and program design by illustrating issues and solutions for a selected choice
of language constructs. We also present possible applications for syntactic
compatibility relations.

2.4.1 Language and Program Design

Simpler accessibility system. In Section 2.2 we restricted our language by
additional accessibility conditions that go beyond those given in the JLS. Context
condition C4X requires that public methods of public types only have public
parameter and return types. For example, while being a legal Java program, we
reject the following code as the parameter type of the method m is not public:

package p;
public interface i1 { public i1 m(i2 x); }
interface i2 {}

The C# language specification [ECM06] defines similar restrictions. Sec-
tion 10.5.4 of the specification on accessibility constraints presents conditions
that among others require parameter and return types to be at least as accessible
as the method itself. These additional constraints lead to important properties;
they ensure for example that public interfaces can always be implemented,
which is not the case in Java. For example the interface i1 above cannot be
implemented outside of p, although it is public.7 The constraints further ensure
that at each call site the method parameter and return types are types which
are accessible to the calling context. Accounting for non-accessible types in
these cases complicates the syntactic conditions and proofs.

7The same problem can occur for classes, e.g., if an abstract method uses nested types of
restricted accessibility as a parameter type.

30

2.4 Discussion

Codebase Total Occurrences (number of methods)
methods Accessibility of method:

public protected

Accessibility of parameter type:
protected package private package private

1 77508 5 47 162
2 47975 2
3 146397 44 79 17 51 2
4 48604 5
5 164314 35 24
6 16183 4 3
7 2628
8 966 2
9 8966 2

Legend of codebases considered (with packages):
1 JRE rt.jar Version 1.6.0_16-b01 (com.sun.* | sun.*)
2 JRE rt.jar Version 1.6.0_16-b01 (rest)
3 ECLIPSE 3.5.1 (org.eclipse.*.internal*)
4 ECLIPSE 3.5.1 (org.eclipse.* rest)
5 NETBEANS 6.7.1 (org.netbeans.*)
6 ACTIVEMQ 5.3.0 (*.activemq*)
7 BCEL 5.2
8 JUNIT 4.7
9 LUCENE 2.9.1

Figure 2.7: Case study of the additional accessibility restrictions. The table
presents the number of methods in public types which have
the given characteristics.

31

Chapter 2 Interface Compatibility

To substantiate our claim that the restrictions are acceptable and reasonable,
we investigated the impact of this simplification on real, industrial-strength
Java libraries and programs. We developed a tool [SCWeb] that can analyze
huge codebases for counter examples violating the rules. To handle full Java
code, the tool goes beyond the subset considered in this thesis. In particular, it
can handle nested classes with all access modifiers and covers the additional
cases for access modifiers in methods’ signatures as well. In our analysis, we
mainly focused on libraries and frameworks, because they usually provide more
interesting encapsulation aspects.

The results are shown in Table 2.7. As we did not eliminate duplicates which
occur due to inheritance of methods, a realistic count would lead to even less
occurrences. In summary, the number of occurrences (= violations) is very
small (blank space indicates no occurrence), and most of them are in ECLIPSE

packages containing the name “internal”. These packages are, according to the
ECLIPSE naming conventions [Ecl12], part of the platform implementation and
not part of the exposed API. We found that most of the occurrences were design
errors which can easily be fixed. In conclusion, the additional context conditions
lead to simpler package interfaces and simplify compatibility checking without
imposing restrictions for practical use of the language.

Ambiguous names. We considered the set of package, class and variable
identifiers to be disjoint in our formalization, which is not the case in Java. For
example, in Java, the name a.b.c might refer to the class c in package a.b, but
could as well refer to the static member class c of the class b in package a. To deal
with this issue, the JLS provides precedence rules for disambiguation [Gos+05,
§6.3.2]. For example, variables will be chosen in preference to types and types
will be chosen in preference to packages. As consequence, even adding a private
field can be an incompatible change. As an illustrative example, consider the
code in Figure 2.8 (inspired by the excellent Java Puzzlers book of Bloch and
Gafter [BG05, Puzzle 68]) which consists of the package p (which represents
the library implementation to be evolved) and the package k which represents
one possible context. If we add private static d c2; as a static field to class c1,
the field obscures the class c2 and the context expression p.c1.c2.c3 does not
compile anymore against our new library implementation as the private field
c2 is not accessible.

In our Java subset, we avoided issues of ambiguous type names, as we require
all our type names to be fully qualified. For full Java, however, adding a public
type to a library implementation can result in ambiguous type names in the
context if the context uses “star” imports (e.g., import p.∗;) [Dar08]. Naming

32

2.4 Discussion

package p;

public class c1 {
public static class c2 { public static Object c3; }

}
public class d { Object c3; }

package k;

class c { Object m(){ return p.c1.c2.c3; }}

Figure 2.8: Example for name disambiguation in Java

conventions and programming guidelines in general [Ecl12; Net05; Mic99]
help to avoid the issues described above. In particular, one might want to
restrict the set of contexts (e.g., contexts should not use “star” imports).

Adding a method. As we have shown in Section 2.3.2, adding a method
declaration to an interface is already an API breaking change. In order to deal
with this issue, ECLIPSE developers adopt the following convention described
in [DJ06]. They create a new interface which extends the old interface with
the new method. However, this has the drawback that, in order to use the
new interface, clients need to resort to casting in order to access the additional
methods. Defender methods [Goe11] in Java 8 allow the possibility to provide
a default implementation of methods in interfaces, which alleviates some of
the problems.

Another possible solution is to give programmers more control over the two
different API’s (client and implementor) provided by the interface. For example
(as advocated for in [BGP01]), programmers might declare interfaces which
can be publicly used from a client point of view, yet only implemented within
the same package (This restriction can currently be encoded in Java by adding
a dummy method with a non-public parameter type to the interface).

Checked exceptions. Proper handling of checked exceptions is enforced by
the JLS [Gos+05, §11.2]. If a method declares that it might throw a checked
exception, then call sites have to provide an exception handling block to deal
with the exceptions (or alternatively they can just declare throwing the excep-
tion themselves). It is thus obvious that, if we change a method in our library

33

Chapter 2 Interface Compatibility

implementation such that it can throw a checked exception by adding a throws

clause, possible calling contexts will stop from compiling.
The more interesting question is whether removing the throws clause of a

method is an incompatible change. For API consumers which extend the type
where the method is declared, this may break the requirement that overriding
methods must not be declared to throw more checked exceptions than the
overridden ones [Gos+05, §8.4.6]. For API users, which use the method at
calling sites, removing the throws clause is also an incompatible change. This
is due to the fact that if a client declares an exception handling block for a
checked exception, then there must be a preceding call site of a method which
declares throwing such an exception [Gos+05, §11.2.3]. In order to provide
better support for this last kind of API users, the JLS could instruct compilers
to only issue warnings as this additional restriction does not have an influence
on type safety.

Further topics. We have only considered a selected range of programming
language constructs which influence compatibility. In our formalized subset,
we have not considered constructors with reduced accessibility, static members,
nested classes, nested packages, generics and many more Java features.

Future programming languages and module systems should consider such
compatibility issues, e.g., a good definition of a module should lead to simple
syntactic compatibility conditions. We have seen in this section, that for OO
languages, sometimes more static restrictions than in Java (e.g., C4X), as well
as less restrictions (e.g., checked exceptions) would provide better support
for compatibility. We argue that simpler compatibility checking should be a
design goal for programming language design. The aim is to reduce the number
of breaking changes by providing the right abstractions for API evolution. A
prerequisite is that language designers become aware of compatibility issues
when designing the abstractions and well-formedness rules of the language.

2.4.2 Static Compatibility Checking

The ECLIPSE Platform provides guidelines [Riv07] and tools [EclPDE] to support
(compatible) API evolution. The tools detect binary incompatibilities and usage
of non-API code between plug-ins (where API code must be tagged as such).
However they do not detect source incompatible changes as presented here.

Instead of defining the syntactic compatibility relation directly on package
implementations, as it was done here, it is also possible to derive (syntactic)

34

2.4 Discussion

package signatures from the implementations and then define compatibility
based on these signatures (like SML [MTH90] signatures and signature subtyp-
ing). This is a two-step process which might lead to better module/package
designs. Currently, the package signature is hidden in the definitions of compat-
ibility. A possible application for this is modular typechecking at the package
level, e.g., the compiler may not need to know about non-public types to type-
check other packages. We have investigated this signature-based type-checking
for a subset of the Java language [DPW12].

2.4.3 Package-local Refactoring

There exists a lot of work in the refactoring community to support API evolution.
Many solutions focus on creating compatibility layers for the libraries or adapt-
ing the client programs (in binary and source setting), for example [BTF05;
CN96; Dig+08; Fre06; HD05], but this addresses a different issue. The ques-
tion, what the API of a library actually is, is left unanswered or only partially
answered for a fixed set of clients. Most semantic-preserving refactoring tech-
niques assume that the complete program is available (the typical closed-world
view). They allow to reason about semantic preservation of refactorings for one
single context, the given program. This might fit well for developers of a single
program, but not at all for library or component developers. While most of the
existing work which tries to address this issue, e.g., [BTF05; CN96; Dig+08;
Fre06; HD05], track modifications of the library and creates compatibility layers
or adapts the clients, we consider a setting where no such tracking is needed.

Let us consider for example the Rename Variable refactoring as described by
Schäfer, Ekman, and Moor [SEM08]. The refactoring should work in such a
way that all bindings are preserved, i.e., all accesses to a declaration should be
preserved by the renaming. In a complete program, all accesses to a declaration
are known. In the setting of refactoring a library, however, this assumption
does not hold. However, our syntactic compatibility conditions provide an
abstraction for all such accesses from outside the package.

We see two ways to realize package-local refactoring. One way would be
to do the refactoring and then check if the new library implementation is
(syntactically) compatible with the old one. Another way would be to statically
prove that a certain class of refactorings guarantee (syntactic) compatibility.
One could also restrict the set of possible contexts by describing acceptable
contexts syntactically in the signature (contract) of the package, which would
be a prerequisite for true modular refactoring.

35

Chapter 2 Interface Compatibility

2.5
Related Work

In this section, we present related work not covered so far. Dmitriev [Dmi02]
investigated make technology for the Java language, in particular how a change
to a class may affect other classes. Source incompatible changes (at the class,
not package level) are listed in a semi-formal way, but neither proved necessary
nor sufficient. To our knowledge there is no other work for object-oriented
languages that makes source compatibility the focus of investigation. In the
following, we discuss work on behavioral equivalence of object-oriented com-
ponents that also consider source compatibility, work on binary compatibility,
separate compilation, object-oriented module systems, language design aspects,
and refactoring techniques.

Behavioral equivalence. Two classes, two packages, or generally two com-
ponents are called behaviorally equivalent if they have the same interface
behavior. Source compatibility is a prerequisite for behavioral equivalence: If
two components are not source compatible, there is a context that compiles
with one, but not with the other component and thus the components are not
equivalent. Koutavas and Wand [KW07] present proof techniques to show that
two classes are equivalent, but source compatibility is trivial in the language
subset they consider, without packages and with only very restricted use of
access modifiers. Closely related to our work is the notion of compatibility by
Jeffrey and Rathke [JR05b], which presented a fully abstract trace semantics
for a Java-like core language with a package construct. The syntactic charac-
terization of (source) compatibility8 ([JR05b, §3]) is a prerequisite to a fully
abstract semantics of packages. Their paper, however, neither gives a formal
definition of the type system nor a proof for source compatibility.

Binary compatibility. Chapter 13 of the Java Language Specification [Gos+05]
defines properties for binary compatibility: a set of changes that developers
are permitted to make to their packages, classes, or interfaces. This set must
guarantee that preexisting class files which linked with the previous (package,
class or interface) implementations still link with the current implementations.
As mentioned in the JLS [Gos+05, §13.2], binary compatibility is different from
source compatibility. For example, introducing a new field, with the same name

8Their work provided one of the starting points of our studies.

36

2.5 Related Work

as an existing field in a subclass of the class containing the existing field decla-
ration, does not break binary compatibility with preexisting binaries. However,
at the source code level, this may lead to source incompatibility (typing error).
A new declaration is added, changing the meaning of a name in an unchanged
part of the source code, while the preexisting binary for that unchanged part of
the source code retains the fully qualified, previous meaning of the name.

Binary compatibility gives weaker guarantees to clients than source com-
patibility. If we consider the case that a library developer has made binary
compatible changes to his code, a client developer may not be able to recompile
his ongoing project with the new implementation of the library (e.g., if he
wants to make some fixes to his client code). Another important issue with
compatibility as defined by the JLS is that only (supposedly) sufficient condi-
tions are given (e.g., [Gos+05, §13.3]). Different encapsulation boundaries
are also considered by the JLS (e.g., packages, classes and interfaces) which
makes it quite a complex chapter in the language specification.

Forman et al. [For+95] have investigated binary compatibility for IBM’s
System Object Model. They provide a set of transformations which should
guarantee compatibility, but do not provide any proofs. Drossopoulou, Wragg,
and Eisenbach [DWE98] analyzed binary compatibility as it is defined in the JLS,
show that some of the transformations described in the JLS do not guarantee
successful linking, and prove their own binary compatibility criteria correct for
a Java subset. However, they do not consider whether the criteria they give are
necessary conditions for binary compatibility.

Separate compilation. Ancona and Zucca [AZ04] give principal typings for
a Java subset without access modifiers. Ancona et al. [Anc+05] also propose
a compositional compilation scheme for open codebases, e.g., which do not
contain all used types. Although this work has goals different to ours, one
of the main common aspects is that they have to find a representation for all
possible contexts.

Lagorio [Lag04] investigates how to extract dependency information from
Java sources to deal with dependencies.

Module systems and language design. Many module systems [SSP07; JSR277;
AZ01; MFH01; Cor+03; Zen05] have been proposed for Java. We focus on the
(currently) most popular ones. The OSGi Alliance provides a module system
[OSGI] for Java which focuses on the run-time module environment. How-
ever, as the module system is not tightly integrated with the Java language,

37

Chapter 2 Interface Compatibility

the compile-time module environment may differ from the run-time module
environment. Project Jigsaw [Jigsaw] aims at providing a simple, low-level
module system to modularize the JDK. It was initially planned for Java 7 but is
currently deferred to Java 9.

Most of the aforementioned module systems focus more on visibility issues
than on accessibility (as explained at the beginning of Section 2.3). The Java
Specification Request (JSR) 294 [JSR294] defines a standard for module acces-
sibility but does not fix the module boundaries. This allows module systems
such as [OSGI] to fix module boundaries on top of it.

The existing module systems do not really solve the question what the API
of a module is. Very often, this is defined as the aggregation of the API of a
set of packages or types. However, it remains unclear what the actual API of
a package or type is. With the presented compatibility conditions we aim to
initiate further research on alternative definitions of modules and their interplay
with compatibility.

The following work studies the Java accessibility modifiers. Müller and
Poetzsch-Heffter [MP98] identify the changes that access modifiers in a program
can have on the program semantics. Schirmer [Sch04] gives a formalization of
the access modifiers and shows interesting runtime properties with respect to
access integrity.

38

3 Trace-based Semantics

[...] operational semantics [...] forces people to think about programs in terms
of computational behaviours, based on an underlying computational model.
This is bad, because operational reasoning is a tremendous waste of mental

effort.

— E.W. Dijkstra, On the cruelty of really teaching computing science

In this chapter, we develop a trace-based semantics for LPJAVA. A trace-based
semantics characterizes the behavior of a library implementation with program
contexts in terms of sequences of interactions. The crucial advantage of the
semantic model is that it abstracts from the complex runtime configurations of
an operational model, such as heap and stack.

In the following, we illustrate the trace-based semantics using the example
library of the introductory chapter. The traces which are generated by the
program that consists of the program context and the utility library in Figures 1.1
and 1.2 on page 4 are of the form

call o1.addObserver(o2) · rtrn _ · call o1.notifyObservers(o3) ·
call o2.update(o3) · rtrn _ · rtrn _

where o1, o2, o3 are arbitrary but distinct object identifiers.1 In the following,
we describe how this trace is constructed.

Program execution starts at line 7 (beginning of the main method) of the
program context in Figure 1.2. As LPJAVA only has default constructors, the
first interaction happens at line 10, where the method addObserver is called.
Execution jumps to the beginning of the body of this method, which is defined

1To simplify the presentation for this example, we have omitted some of the information in the
trace regarding types.

39

Chapter 3 Trace-based Semantics

in the library implementation at line 6 in Figure 1.1. Due to the change in
control from the program context to the library, the interaction is marked with
the input label call o1.addObserver(o2) . It contains the information that we
have a method call of the method addObserver, that two distinct objects o1 and
o2 are callee and parameter of the method call and that the direction of the
change in control is from the program context to the library, which is denoted
by for input. As library implementations are the focus of our work, we take a
library-centric view and use the words input and output from the perspective
of the library. Within the body of the addObserver method (which is not shown),
the observer is added to the list of observers and the method returns. When
the method returns, we have again a change in control, but this time in the
reverse direction. The output label rtrn _ is thus recorded, which contains
the information that the change in control is due to a method return, that no
values are passed (void method) and denotes that this is an output label. We
are now back executing in the program context and execute the next statement
in line 11 of Figure 1.2 by calling the method notifyObservers. This leads to
the label call o1.notifyObservers(o3) , which contains the information that the
method is called on the same object o1 that we called addObserver before. In the
body of the notifyObservers method at line 9 in Figure 1.1, the program iterates
over the (singleton) list of registered observers and calls the update method.
This leads again to a change in control as the update method for this particular
observer has been defined in the program context. This is recorded by the label
call o2.update(o3) that shows exactly which objects are involved in this call.
Finally the update method returns (rtrn _), then the notifyObservers method
returns (rtrn _) and the main method terminates.

The rest of this chapter is structured as follows. We first present in Section 3.1
a standard operational semantics enriched in such a way that the interactions
between a library implementation and its program contexts become explicit
and call it the enhanced semantics. Based on the enhanced semantics, we char-
acterize in Section 3.2 the behavior of a library implementation X in terms of
its possible interaction traces with program contexts and define the interaction
traces of X with program contexts. Section 3.3 presents the invariants on the
program configurations that hold for arbitrary LPJAVA programs in each state
of the enhanced semantics. Section 3.4 gives a formal definition of observable
behavior and formalizes backward compatibility in terms of a contextual pre-
order. Section 3.5 presents an equivalent definition of backward compatibility
in terms of the trace-based semantics and states the properties needed to prove
said equivalence. Section 3.6 provides a discussion.

40

3.1 Operational Model

3.1
Operational Model

The small-step operational semantics of LPJAVA is presented in the style of
FEATHERWEIGHTJAVA [IPW01] and CLASSICJAVA [FKF99]. A configuration has
the form S def

= KX ,O,F where KX is the program consisting of the program
context K and the library implementation X that is run, O denotes the heap
and F the stack. In order to generate the traces and realize the most general
context, the configurations are augmented with additional information. They
are for example aware of which part of the code belongs to the program context
and which part to the library implementation. The additional information
does, however, not change the standard operational behavior.2 The syntax
of configurations is given in Figure 3.1, where the augmented information is
highlighted.

S ::= KX ,O,F configuration
v ::= o | null value
O ::= o 7→ (V, L, p.c,G) heap
V ::= exposed | internal exposure flag
L ::= ctxt | lib origin location
G ::= (p.c, f) 7→ v field mapping
F ::= EL:p.t | EL:p.t stack slice
E ::= . . . | v extended expressions

Figure 3.1: Semantic entities for LPJAVA, where o ∈ object identifiers

Heap. Values occurring in the runtime configurations, denoted by v, can
either be object identifiers o or the special value null. The heap O is a map from
object identifiers to heap entries. Heap entries consist of the special flags L and
V, the runtime class type p.c of the object and field values G. The flag L ranges
over {ctxt, lib} and indicates whether the object has been created by code of
the program context K or the library implementation X . The flag V ranges
over {exposed, internal} and is used in heap entries to denote whether an object
created in the context has been exposed (i.e., made known) to the library or
vice versa. The field mapping G maps pairs of field name and class name to

2We do not formally postulate this claim in the thesis.

41

Chapter 3 Trace-based Semantics

E ::= bc | E . f | E . f = E | v. f = E | let p.t x = E in E | (p.t)E err E | E .m(E)
| v.m(v · E · E) | (E == E ? E : E) | (v == E ? E : E)

Figure 3.2: Evaluation contexts for LPJAVA

values. The class name determines the class where the field was defined and is
used to distinguish fields with same name that occur in different classes of the
subtype hierarchy.

Stack. The stack is represented as a sequence of stack slices F . This partition-
ing of the stack into stack slices allows marking parts of the stack as belonging
to the program context or the library. A stack slice consists of a typed expression
or evaluation context and flag L. Expressions that appear in stack slices can,
in contrast to the expressions of the previous chapter, contain values v. An
evaluation context E (see [WF94]) is an expression with a hole bc somewhere
inside the expression. We write EbEc to mean that the hole in E is replaced by
expression E. A hole in E can only appear at certain positions, as defined in
Figure 3.2. The topmost stack slice in the stack contains an expression E and all
other stack slices contain an evaluation context E . Stack slices are associated
with either the library implementation X or the context K using the flag L. It is
used in stack slices to mark if the code (E or E) that is part of this stack slice
originates from X or K .

3.2
Traces

The operational rules for a program are based on a labeled small-step reduction

judgment of the form S
γ
 S′, defined in Figures 3.3 and 3.5. We say that X

controls execution if code of X is executed; otherwise K controls execution. The
function exec(S) from Figure 3.7 is used to determine who controls execution
in a particular configuration S. An interaction is a change of control. Labels
indicate whether a change of control happened in a particular step. The syntax
of labels is given in Figure 3.4. Interaction is considered from the viewpoint of
the library. Input labels (marked by) express a change of control from the
context to the library; output labels (marked by) express a change of control
from the library to the context. Transitions which do not express a control

42

3.2 Traces

flow change are marked as silent transitions with the label τ. In our language,
changes of control can only happen via method calls or returns. To indicate
this, there are input and output labels for method invocation and return. The
labels for method invocation and return include the parameter and result values
together with their abstracted types, the rationale for which is given later.

Local steps. We give a short overview of the rules in Figure 3.3. We use the
helper relation L

KX , defined by rule R-INTERNAL-STEP, to denote τ steps that
are local to an evaluation context in a stack slice. We first describe the rules
that encompass such local steps. Object allocation is given by rule R-NEW. A
new object identifier is non-deterministically chosen and a heap entry for it is
created. The new object is marked as internal and its origin L is set depending
on who controls execution. The fields of the object are initialized with default
values using the function initfKX (p.c) defined in Figure 3.7. The cast operator
is described using the rule R-CAST and uses the function typeO(v) defined in
Figure 3.7 to get the dynamic type of the value v. The rule R-LET shows how
the values of local variables are substituted in the follow-up expression. Field
access and writes are formalized using the rules R-GET and R-SET. Here, we
assume that the class name of the class which defines the field was attached to
the field name in the type-checking phase (e.g., fp.c). The condition operator,
described by R-IF, checks whether the two values are equal to select one of
the sub-expressions. The rule R-CALL-INTERN considers method calls where
control of execution stays within the library. The function selectKX (L), defined
in Figure 3.7, yields the program context K or the library implementation X ,
depending on the value of L. The crucial part of the rule is that it requires that
the body of the method m is defined in a class p.c that is part of the program
context K , if K controls execution, or part of the library implementation X , if X
controls execution. The function bodyKX (p.c, m) yields the names of the formal
parameters and the body of the method m defined in the class p.c.

Interactions. The last two rules, presented in Figure 3.5, handle changes
of control, i.e., interactions. The rule R-CALL-BOUNDARY considers changes of
control that are caused by a method call, contrasted to the previous rule R-CALL-
INTERN with the negation ¬L in the rule antecedent p.c ∈ CselectKX (¬L). Negation,
defined in Figure 3.7, simply yields the other value in a two-valued domain.
Interactions allocate or deallocate stack slices in contrast to method calls within
the context or the library implementation that are handled within the same
stack slice (see R-CALL-INTERN). In case of a method call, a new stack slice F ′ is

43

Chapter 3 Trace-based Semantics

R-INTERNAL-STEP

O, E L
KX O

′, E′

KX ,O,EbEcL:p.t ·F
τ
 KX ,O′,EbE′cL:p.t ·F

R-NEW

o /∈ dom(O) G = initfKX (p.c) O′ = O[o 7→ (internal, L, p.c,G)]

O,new p.c L
KX O

′, o

R-IF

E′
def
=

¨

E1 if v1 = v2

E2 otherwise

O, (v1 == v2 ? E1 : E2) L
KX O, E′

R-CAST

E′
def
=

¨

v if typeO(v)≤KX p.t
E otherwise

O, (p.t)v err E L
KX O, E′

R-LET

O, let p.t x = v in E L
KX O, E[v/x]

R-GET

O(o) = (_, _, _,G)

O, o. fp.c L
KX O,G(p.c, f)

R-SET

O(o) = (V, L′, p′.c′,G) G′ = G[(p.c, f) 7→ v]

O, o. fp.c = v L
KX O[o 7→ (V, L′, p′.c′,G′)], v

R-CALL-INTERN

〈m, _, p.c〉 ∈KX typeO(o)
p.c ∈ CselectKX (L) bodyKX (p.c, m) = (x , E)

O, o.m(v) L
KX O, E[o/this, v/x]

Figure 3.3: Rules for the enhanced small-step semantics (local steps)

44

3.2 Traces

γ ::= µ | µ | τ label
µ ::= call oα.m(vα) call message
| rtrn vα return message

oα ::= o:Tα abstracted object
vα ::= oα | null abstracted value
Tα ::= 〈Óp.t,Òm〉 abstracted type

Figure 3.4: Syntax of traces, i.e., sequences of labels γ

created that contains the body of the called method. The stack slice is typed,
containing the return type p′.t ′ of the method that was invoked. At this part
of the presentation, the type provides no additional use, but will be useful to
model the most general context. The interaction created by the method call
generates a label γ using the function mcallKX (o, m, v,O, L) that is defined as

call valabsKX (o,O).m(valabsKX (v,O)) from(L)

using helper functions in Figure 3.7. The choice as to whether an input or
output label is to be generated is done using the extra information L tagged
to the current stack slice. The function from(L) yields an input label if the
program context was executing, and an output label otherwise. The label
also contains the receiver and parameter values of the method call together
with their abstracted types. The function valabsKX (v,O) yields an abstracted
value, which amounts to adding an abstracted type to the value, if it is an
object identifier. The functions typeabsKX (p.c) and expose(v,O) are presented
in the next paragraphs, and followed by an explanation of the rule R-RETURN-
BOUNDARY.

Type abstraction. The idea behind the type abstraction is to allow the possi-
bility to compare labels of different library implementations in a way that
is independent from program contexts. Thus, we abstract from types de-
clared in the context (e.g., IntObs in Figure 1.2). Similarly, local types do
not appear in the labels, as they cannot be observed by program contexts.
This allows library implementations to use different local types, i.e, renam-
ing the ObsIter class in Figure 1.1 should not matter to program contexts.
Types in labels are abstracted (see typeabsKX (p.c) in Figure 3.7) to a repre-
sentation which only preserves the information (1) which public supertypes
of p.c belong to the library and (2) which of their methods are not overrid-
den by the context. In our example, the type of ObsIter objects is abstracted

45

Chapter 3 Trace-based Semantics

R-CALL-BOUNDARY

〈m, p′.t ′ · T , p.c〉 ∈KX typeO(o) p.c ∈ CselectKX (¬L)
bodyKX (p.c, m) = (x , E) γ=mcallKX (o, m, v,O, L)
O′ = expose(o · v,O) F ′ = E[o/this, v/x]¬L:p′.t ′

KX ,O,Ebo.m(v)cL:p.t ·F
γ
 KX ,O′,F ′ · EL:p.t ·F

R-RETURN-BOUNDARY

γ=mrtrnKX (v,O, L) O′ = expose(v,O)

KX ,O, vL:p′.t ′ · E¬L:p.t ·F
γ
 KX ,O′,Ebvc¬L:p.t ·F

Figure 3.5: Rules for the enhanced small-step semantics (interactions)

to 〈{lang.Object, Iterator}, {hasNext,next}〉 and the type of IntObs objects is ab-
stracted to 〈{lang.Object,Observer},•〉. The reason for (1) is that these are the
types of X that can be used in cast expressions in the context. Based on the
label, it becomes thus clear which cast expressions will succeed and which not.
The reason for (2) is that, based on the label, we know the methods that are or
are not overridden by the context and, if invoked on the receiver object, thus
lead to changes of control. As X defines a finite set of types (denoted by TX),
there are only a finite set of abstracted types that can occur in traces with X .
This set is denoted by T αX and can be constructed from X .

Information hiding. Finally, the values that are passed from the library im-
plementation to the program context or vice versa are exposed, denoted using
the function expose(o ·v,O). This means that the semantics tracks exactly which
objects of the library implementation are known to the program context and
vice versa. Remember that objects are always created internally.

The rule R-RETURN-BOUNDARY shows the situation where control of execution
is caused by a method return. In that case, a label is created using the function
mrtrnKX (v,O, L) that is defined as

rtrn valabsKX (v,O) from(L)

and the value is exposed in the same way as for method calls. Finally the stack
slice is deallocated and the result inserted into the evaluation context of the
stack slice below.

46

3.2 Traces

L-STEP

S

i times, i∈N
︷ ︸︸ ︷

τ
 . . .

τ
 S′ S′

γ
 S′′ γ 6= τ

S
γ
−→ S′′

L-EMPTY

S
•
−→ S

L-ACCUM

S
γ
−→ S′

S′
γ
−→ S′′

S
γ·γ
−→ S′′

Figure 3.6: Rules for large-step semantics

Large-step semantics. In the following, we consider (interaction) traces as
sequences of labels γ which are generated by steps of the enhanced operational
semantics. To abstract from silent τ steps of a computation, we provide a

large step version of the enhanced semantics (denoted
γ
−→) that is inductively

defined in Figure 3.6. Every large step (L-STEP) represents a finite number of τ
steps followed by a non-τ step. Note that τ does not appear in labels of large
steps. Large steps represent the execution of small steps up to the state right
after the next non-τ label has been generated. The large step semantics then
accumulates the non-τ labels into a sequence (L-EMPTY and L-ACCUM).

As can be seen from the transition rules, evaluation is deterministic (up to
object naming). In order to deal with the non-deterministic choice of fresh
object identifiers in the traces, we introduce (object) renamings.

Definition 3.1 (Renaming ρ)
A renaming is a bijective relation on object identifiers. We write ρ for such a
relation. ♦

We can then consider traces equivalent modulo a renaming. We have equivalent
traces γ1 ≡ρ γ2 iff the object identifiers appearing at the same positions in the
traces are related under the renaming ρ and the types appearing at the same
position are equal. In the following, we use the straightforward generalization
of this definition of equivalence modulo a renaming (≡ρ) to arbitrary syntactic
terms.

Definition 3.2 (Equivalence on terms (≡ρ))
Two syntactic terms are equivalent modulo a renaming (written ≡ρ) if the
object identifiers appearing at the same positions in the terms are related under
the renaming ρ and the remaining parts of the terms are syntactically equal. If
we are not interested in a particular ρ, we omit it for brevity. ♦

47

Chapter 3 Trace-based Semantics

Initial configuration. As described in Definition 2.4, a program context is
a codebase that has a main class p.c with a main method lang.Object main(),
where the class p.c is also called a startup class. It is executed by calling main.
In the following we assume without loss of generality that the startup class has
the name main.Main and is defined in the context K .

Definition 3.3 (Initial configuration S init
KX)

The initial configuration S init
KX is defined as KX ,O,F · • where

◦ O def
=∅[o 7→ (internal, ctxt,main.Main,G)],

◦ G def
= initfKX (main.Main),

◦ F def
= E[o/this]ctxt:lang.Object,

◦ o is an arbitrary object identifier, and
◦ (_, E)

def
= bodyKX (main.Main,main). ♦

Our goal in this subsection was to characterize the behavior of a library
implementation X in terms of its possible interaction traces with program
contexts, which we achieve by the following definition.

Definition 3.4 (Trace semantics)
The traces of a library implementation X with a program context K are given

by traces(KX)
def
= {γ | ∃S : S init

KX
γ
−→ S} ♦

Note that traces(KX) is closed with respect to renaming, i.e., if γ1 ∈ traces(KX)
and γ1 ≡ γ2, then also γ2 ∈ traces(KX). Furthermore, traces(KX) is prefix-
closed and only refers to public types in X .

3.3
Well-formed Configurations

Well-formedness conditions on runtime configurations tell us about the invari-
ants that hold during program runs (i.e., how we expect runtime configurations
to look like). For example, absence of dangling pointers or well-typedness of ref-
erences are standard well-formedness conditions. Before giving the definition
of well-formed runtime configuration (which also subsumes type soundness),
we first present a few helper functions (formally defined in Figure 3.7). The
function stackabsL(F) yields all the L-tagged stack slices of F and �eldsL

KX (G)
restricts G to fields that are defined in classes of L. The function �lter(O,L)
returns all object identifiers of objects in O that are tagged as L (similar for V).

48

3.3 Well-formed Configurations

¬L
def
= L′ where L 6= L′ (similar for ¬V)

absX (〈Óp.t,Òm〉) def
= 〈Óp.t ′,Òm′〉 where

Óp.t ′
def
=Óp.t ∩ {p.t | p.t ∈ TX ∧ publicX (p.t)} and

Òm′
def
= Òm∩ {m | 〈m, _, _〉 ∈X p.t ∧ p.t ∈Óp.t ′}

available(O, L)
def
= �lter(O, exposed)∪ �lter(O, internal, L)

bodyKX (p.c, m)
def
= (x , E) where x are the formal parameters

and E is method body of m in p.c

expose(v,O) def
=

¨

O if v = null

O[v 7→ (exposed, L, p.c,G)] if O(v) = (_, L, p.c,G)
exec(KX ,O,F) def

= L if F = EL:p.t ·F ′

�eldsL
KX (G)

def
= {(p.c, f) 7→ v | ((p.c, f) 7→ v) ∈ G and p.c ∈ CselectKX (L)}

�lter(O, V)
def
= {o ∈ O | O(o) = (V, _, _, _)}

�lter(O, L)
def
= {o ∈ O | O(o) = (_, L, _, _)}

�lter(O, V, L)
def
= �lter(O, V)∩ �lter(O, L)

from(L)
def
=

¨

if L= ctxt

if L= lib

initfKX (p.c)
def
= {(p0.c0, f) 7→ null | 〈 f , _〉 ∈KX p0.c0 ∧ p.c ≤KX p0.c0}

objectrefs(_)
def
= yields all object identifiers contained in the

syntactic element _

selectKX (L)
def
=

¨

K if L= ctxt

X if L= lib

stackabsL(F)
def
=

• if F = •
F · stackabsL(F

′
) if F = F ·F ′ and F = _ L:p.t

stackabsL(F
′
) if F = F ·F ′ and F = _¬L:p.t

typeO(v)
def
=

¨

⊥ if v = null

p.c if O(v) = (_, _, p.c, _)
typeabsKX (p.c)

def
= 〈Óp.t,Òm〉 where

Óp.t
def
= {p0.t0 | p.c ≤KX p0.t0 ∧ publicX (p0.t0)} and

Òm
def
= {m | 〈m, _, p0.c0〉 ∈KX p.c ∧ p0.c0 ∈ CX }

valabsKX (v,O) def
=

¨

null if v = null

o:typeabsKX (typeO(o)) if v = o

Figure 3.7: Semantic helper functions (alphabetically sorted)

49

Chapter 3 Trace-based Semantics

The function available(O, L) returns all object identifiers of objects in O that are
either tagged as exposed or tagged as internal to L. These represent the objects
that are potentially “known” to the library implementation or program context,
depending on the parameter L. The function objectrefs(. . .) yields all object
identifiers contained in a syntactic element.

Definition 3.5 (Well-formed runtime configuration)
A runtime configuration S = KX ,O,F is well-formed if
◦ S is well-typed (standard definition, not detailed further here)
◦ The top of the stack F is an expression of the form EbEc, the rest are

evaluation contexts of the form E
◦ Stack frames in F are alternatively from lib and from ctxt and the lowest

stack frame is from ctxt

◦ Stack consistency and separation (Object identifiers used in L-tagged slices
of the stack are L-available in the heap): ∀L : objectrefs(stackabsL(F)) ⊆
available(O, L)
◦ Store consistency: objectrefs(rng(O)) ⊆ dom(O)
◦ Store separation (Only L-available objects can be accessed from L-available

objects): ∀o ∈ available(O,L) such that O(o) = (_, _, p.c,G) follows that
rng(�eldsL

KX (G)) ⊆ available(O, L)
◦ Objects created by code of X are of a type of X : ∀o ∈ �lter(O, lib) :
typeO(o) ∈ CX ∪ {lang.Object}
◦ Internal objects of K have their X fields null: ∀(internal, ctxt, p.c,G) ∈
rng(O) : rng(�eldslibKX (G)) = {null}. The reason for this is that changes to
the X fields of an object created by K can only be made by X (as all fields
are private) and hence the object must first have been exposed to X . ♦

In a similar fashion to the preservation lemma in type soundness proofs [WF94],
we state in the following that runtime configurations of programs are always
well-formed. Initial program states are well-formed (Lemma 3.1) and well-
formedness is preserved by small operational steps (Lemma 3.2).

Lemma 3.1 (Initial state is well-formed)
The initial state S init

KX for a program KX is well-formed. ♦

PROOF: Trivial. �

Lemma 3.2 (Preservation of well-formedness)
Consider a well-formed configuration S. If S

γ
 S′, then S′ is well-formed as

well. ♦

50

3.4 Observable Behavior

E ::= . . . | success
γ ::= . . . | succ

T-SUCCESS

X , p.c,Γ ` success :⊥

R-SUCCESS

F = Ebsuccesscctxt:p.t ·F ′ · E ′ctxt:p
′.t ′

KX ,O,F
succ
 KX ,O,nullctxt:p

′.t ′

Figure 3.8: Observability for LPJAVA

PROOF: By case distinction on operational rule used. �

In the following, we present the formal definition of backward compatibility
that the results are based on in this thesis.

3.4
Observable Behavior

A standard way to compare two program parts is to use termination behav-
ior [Mor68] or reachability of a certain state [Hen88] (e.g., a program point [Ste06;
JR05a]) as the observation result. In this thesis, we use a formal model of
state reachability by introducing a special expression success which we add to
our surface syntax of LPJAVA in Figure 3.8. The expression has no influence
on source compatibility as it is typed in the same way as null (T-SUCCESS). If,
during a program run, such an expression (R-SUCCESS) is reached, then the
execution of the running program is stopped (as we are not interested in the
further execution of the program, we only want to make the observation) and
the special label succ is emitted to represent the observation in the trace. We
put no restrictions on how often the success expression is used in programs.
However, following other works [Ste06; JR05a], we additionally assume that
only the observer (i.e., program context) can produce the succ label, so that
succ cannot be fabricated by the library. From this definition, we can derive
the shape of traces generated by the enhanced semantics.

Lemma 3.3 (Well-formed traces)
Let K be a program context of the library implementation X . If γ ∈ traces(KX),
then γ is of the form (µ ·µ)∗ · (succ | µ)?. This means that traces consist of
an alternating sequence of input and output labels and potentially end with
the label succ, if it was not preceded by an input label (i.e., success was caused

51

Chapter 3 Trace-based Semantics

by the program context). ♦

PROOF: Follows directly from the operational rules. �

We introduce abbreviating notations to denote whether a program run leads
to an observation or not. Note that the success expression is reached in the
program run if and only if the label succ occurs in the trace.

Definition 3.6 (Successful (3) and unsuccessful (7) programs)
We write S3 if there exists a configuration S′ such that S

γ
−→ S′ and last(γ) =

succ. We write S7 in the other cases. ♦

We use 3 and 7 only for programs with deterministic program contexts. We
use the wording program and program run interchangeably in this case, as
a program can only have a single program run modulo renaming of object
identifiers.

Using the formalized notion of observation, we can then define the standard
notion of contextual compatibility, namely that any program context that can
make an observation with the first library implementation must be able to do
the observation with the second library implementation.

Definition 3.7 (Contextual compatibility)
A library implementation Y is contextually compatible with a library implemen-
tation X if Y is source compatible with X and for any deterministic program
context K of X : S init

KX 3 implies S init
KY 3. ♦

3.5
Properties

The definition of contextual compatibility quantifies over all possible program
contexts and does not support inductive proofs. However, using the definitions
of traces, we can compare the behavior of two library implementations at the
level of the traces, providing direct support for inductive proofs.

Definition 3.8 (Contextual trace compatibility)
A library implementation Y is contextually trace compatible with a library im-
plementation X if Y is source compatible with X and for any deterministic
program context K of X : traces(KX) ⊆ absX (traces(KY)). ♦

We cannot simply state trace inclusion, as Y may have more public types
than X (see Definition 2.6 and S2X ,Y). Our solution is to abstract from these

52

3.5 Properties

additional types in the traces with the function absX (Tα), defined in Figure 3.7,
which restricts types occurring in the abstracted type Tα to public types occur-
ring in X and restricts the methods to those that appear in these types. The
resulting type is always non-empty as lang.Object appears in each abstracted
type. We simplify the notation by lifting the function absX (Tα) from abstracted
types to traces, which corresponds to applying it point-wise to each abstracted
type occurring in the trace.

Finally we can state that the formalized notions of backward compatibility of
Definitions 3.7 and 3.8 coincide.

Theorem 2 (Contextual compatibility iff contextual trace compatibility)
Consider two library implementations X and Y . Then Y is contextually com-
patible with X iff Y is contextually trace compatible with X . ♦

PROOF: The proof is given at the end of this section. The left-to-right direction
is given by Lemma 3.8 and the right-to-left direction by Lemma 3.9. �

The theorem essentially states that our definition of trace semantics is well-
chosen with respect to the notion of observation that we gave in the previous
section. The following lemmas reveal the core properties of the trace seman-
tics and form the constituents needed to prove the previous theorem. All of
these lemmas are proven using specialized simulation relations. The simula-
tion relations and the proofs of these lemmas are presented in more detail in
Section 5.3.

The first two lemmas show that libraries and contexts compute the next label
only based on the trace history.

Lemma 3.4 (Library independence)
Consider two program contexts K1 and K2 for X such that γ · γ ∈ traces(K1X)
and γ ∈ traces(K2X) and last(γ) = µ . Then γ · γ ∈ traces(K2X). ♦

PROOF: Given in Section 5.3.1. �

In short, the lemma states that the next label generated by the library im-
plementation is independent of a specific program context, it only depends on
the trace behavior of the program context. We give a similar lemma for source
compatible library implementations.

Lemma 3.5 (Context independence)
Let Y be source compatible with X , K be a program context for X and Y , and
γ · γ ∈ traces(KX) and γ ∈ absX (traces(KY)) and γ= • or last(γ) = µ . Then,
γ · γ ∈ absX (traces(KY)). ♦

53

Chapter 3 Trace-based Semantics

PROOF: Given in Section 5.3.1. �

Similarly to the previous lemma, context independence states that the next
label generated by a program context is independent of a specific library imple-
mentation that this context runs with, it only depends on the trace behavior of
the library implementation. Both independence lemmas show that the trace
does not contain too much information.

On the flip side, the following lemma provides us with the information that
the trace contains all relevant information to distinguish two library imple-
mentations. It states that whenever we have two library implementations that
respond in a different way when run with a deterministic program context, we
can construct a deterministic program context that can observe this difference.

Lemma 3.6 (Differentiating context)
Let Y be source compatible with X and K be a deterministic program context
for X and Y such that γ · γ ∈ traces(KX) and γ ∈ absX (traces(KY)) but γ · γ /∈
absX (traces(KY)). Then there is a deterministic program context K ′ such that
S init

K ′X 3 and S init
K ′Y 7. ♦

PROOF: Given in Section 5.3.5. �

In the following, we provide the proof of Theorem 2. We show both directions.
The proofs are done at the level of the traces and rely on the lemmas previously
defined (but not yet proven). In order to keep the presentation slick, the proofs
do not account for source compatibility. However, all the theorems and lemmas
explicitly state source compatibility as requirements. We first give a small helper
lemma.

Lemma 3.7 (Library causes distinctive behavior)
Let Y be source compatible with X and K be a program context for X and Y such
that γ · γ ∈ traces(KX) and γ ∈ absX (traces(KY)) but γ · γ /∈ absX (traces(KY)).
Then, last(γ) = µ . ♦

PROOF: We repeat the proof goal by numbering the assumptions:
ASSUME: There is a program context K and trace γ · γ such that

a) γ · γ ∈ traces(KX)
b) γ ∈ absX (traces(KY))
c) γ · γ /∈ absX (traces(KY))

PROVE: last(γ) = µ
The proof goes by contradiction:
ASSUME: last(γ) 6= µ
PROVE: Contradiction

54

3.5 Properties

We distinguish two cases:
〈1〉1. CASE: γ= • or last(γ) = µ
〈2〉1. γ · γ ∈ absX (traces(KY))

From Lemma 3.5 by assumptions (a) and (b)
〈2〉2. Q.E.D.

Contradiction by assumption (c) and step 〈2〉1
〈1〉2. CASE: last(γ) = succ

Contradiction by Lemma 3.3 and assumption (a)
〈1〉3. Q.E.D.

Cases exhaustive due to Lemma 3.3 �

Finally we prove both directions of Theorem 2.

Lemma 3.8 (Contextual compatibility implies contextual trace compatibility)
Consider two library implementations X and Y . If Y is contextually compatible
with X then Y is contextually trace compatible with X . ♦

PROOF: By unfolding Definitions 3.7 and 3.8:
ASSUME: For any deterministic program context K of X : S init

KX 3 implies S init
KY 3

PROVE: For any deterministic program context K of X , we have: traces(KX) ⊆
absX (traces(KY))

The proof goes by contraposition:
ASSUME: There is a deterministic program context K of X such that traces(KX) 6⊆

absX (traces(KY))
PROVE: There is a deterministic program context K of X such that S init

KX 3 and
S init

KY 7

This is equivalent to the following formulation, as the empty trace is in both
sets and they are prefix-closed:
ASSUME: There is a deterministic program context K of X and a trace γ ·γ such

that
a) γ · γ ∈ traces(KX)
b) γ ∈ absX (traces(KY))
c) γ · γ /∈ absX (traces(KY))

PROVE: There is a deterministic program context K of X such that S init
KX 3 and

S init
KY 7

We first prove that γ ends in an input label, i.e., that the library implementations
cause the distinctive behavior. The proof then follows directly by Lemma 3.6:
〈1〉1. last(γ) = µ

From Lemma 3.7 by assumptions (a), (b) and (c)
〈1〉2. Q.E.D.

55

Chapter 3 Trace-based Semantics

From Lemma 3.6 by assumptions (a), (b), (c) and step 〈1〉1 �

Lemma 3.9 (Contextual trace compatibility implies contextual compatibility)
Consider two library implementations X and Y . If Y is contextually trace
compatible with X then Y is contextually compatible with X . ♦

PROOF: By unfolding Definitions 3.7 and 3.8:
ASSUME: For any deterministic program context K of X , we have: traces(KX) ⊆

absX (traces(KY))
PROVE: For any deterministic program context K of X : S init

KX 3 implies S init
KY 3

The claim then follows directly by Definitions 3.4 and 3.6 �

3.6
Discussion

The definition of contextual compatibility is based on the notion of successful
program, which again relies on the large-step semantics and the shape of the
last label of the trace being succ. At first, it might seem odd that the presented
notion of observation directly relies on the definition of the traces. We can give,
however, an equivalent definition of successful programs in terms of the small-
step semantics and the expression success. The advantage of the definition as
stated originally allows for an easier treatment in the proofs.

In an earlier version of the semantics [WP11], we used termination behavior
as the notion of observation, which lead to a more complicated presentation of
the semantics and proofs. We believe that both notions of observation lead to
the same results for the given language. However, if we generalize the approach
to a more complex setting, for example with concurrency, only the notion of
observation based on reachability is a useful one [Hen88].

Another thing to note is that Lemmas 3.4, 3.5 and 3.7 were not only stated
for deterministic program contexts, but are also applicable for most general
contexts (which we will consider in the next chapter). This means that these
properties are preserved by the introduction of most general contexts. The
proofs of the lemmas, which are deferred to a later chapter, (obviously) account
for both kind of contexts.

56

4 Most General Context

An abstraction is one thing that represents several real things equally well.

— Edsger W. Dijkstra

The characterization of the behavior of a library with a program context in
terms of traces is independent of the program configurations, i.e., heaps and
stacks. Although the traces abstract from types and steps in the context, we
still have to consider the traces of all possible program contexts in order to
describe the full behavior of a library. In this chapter, we introduce a most
general context (MGC) that enables all interactions that a standard program
context can engage in. Compared to a standard program context, the most
general context abstracts over types, objects and operational steps.

We recapitulate the capabilities of standard program contexts before we
describe the abstraction realized by the MGC. In terms of program code, program
contexts can define classes that rely on the library, either by calling code of the
library or by extending classes and implementing interfaces of the library (e.g.,
class IntObs in Figure 1.2). In terms of operational steps, program contexts can

◦ create objects of classes that are defined in the program context (e.g.,
IntObs in line 7 of Figure 1.2) or objects of classes that are defined in the
library and accessible to the program context (e.g., Subject in line 8, but
not ObsIter).

◦ perform steps that do not lead to a change in control, e.g., access and
write fields and method calls/returns that are dispatched to code of the
program context (e.g., line 4 in Figure 1.2). The MGC abstracts over
these steps.

◦ call methods that are defined in the library (e.g., line 10 in Figure 1.2) or
return to code that is defined in the library (e.g., line 5 in Figure 1.2).

57

Chapter 4 Most General Context

The only relevant actions which should be done by the MGC are those that
lead to a change in control. In short, the MGC can call methods using available
objects or simply return to method invocations from the library. Available
objects are either those that are created by the MGC or the ones that have been
exposed by the library.

The rest of this chapter is structured as follows. Section 4.1 introduces the
construction of the most general context for a library implementation X that
represents all standard program contexts of X . Section 4.2 presents another
definition of backward compatibility in terms of the trace-based semantics and
the most general context. This definition is independent of the quantification
over all possible program contexts. Section 4.3 concludes.

4.1
Construction

In this section we construct a most general context mgc(X) based on the library
implementation X that enables all possible interactions that X can engage in.
The program context mgc(X) finitely represents exactly all program contexts
that X can have. Compared to a standard program context, mgc(X) abstracts
over types, objects, and operational steps. To express mgc(X), we add a non-
deterministic expression nde to LPJAVA.

Program context representation. The most general context of X is con-
structed from the library implementation X which we denote by the construc-
tion function mgc(X). Let pmgc be a package name not occurring in X . For each
abstracted type Tα = 〈Óp.t,Òm〉 ∈ T αX , we construct a class of the following form
in the package pmgc:

public class c extends p0.c0 implements p.i { ÓM c }

where

◦ c is a class name that is unique for each abstracted type Tα,

◦ p0.c0 is the smallest class in Óp.t,

◦ p.i are the interfaces in Óp.t,

◦ ÓMc def
= {p0.t0 m(p1.t1 x) { nde } | 〈m, p0.t0 · p1.t1, _〉 ∈KX p.t ∧ p.t ∈

Óp.t ∧m /∈ Òm}. The body of the method (nde) is explained later.

58

4.1 Construction

The idea behind this construction is to create a class for each possible abstracted
type Tα of the context that can occur in labels. This class has the shape such
that the abstracted type of objects of the class is exactly that of the abstracted
type from which the class was constructed. Formally stated, this means that
typeabsmgc(X)X (pmgc.c) = Tα. For a library implementation consisting of a
single class with two methods, the most general context would consist of four
classes subclassing the class, overriding either none or one of the methods or
both, and a class subclassing Object with no methods (if the Object class has no
methods either).

The most general context mgc(X) also has an additional class Main, which is
the startup class:

package main; public class Main { lang.Object main() { nde } }

The body of the methods that are defined in the most general context can-
not be represented by LPJAVA, which is why we extend LPJAVA with the non-
deterministic expression nde and introduce corresponding reduction rules (Fig-
ure 4.1). The nde expression has no influence on source compatibility as it
is typed in the same way as null (T-NDE). We know that if Y is source com-
patible with X , then every program context of X is also a program context of
Y . In particular, this property is preserved for most general contexts. This
means that if we have `mgc(X)X and Y is source compatible with X , then also
`mgc(X)Y . In particular, running the most general context of X with a library
implementation Y should simulate all possible runs of program contexts of X
with Y .

Semantics of nde. The nde expression is only allowed in most general con-
texts and has the following semantics. Reducing a non-deterministic expression
can lead to no effect at all (MGC-SKIP).1 It can lead to a successful observation
(MGC-PREPARE-SUCCESS). It can lead to the creation of new objects of accessible
types (MGC-PREPARE-NEW). If we have a most general context representing all
program contexts for X and run it with a library implementation Y (ctxt

mgc(X)Y
in the consequent of the rule), then the most general context can only create
objects of an accessible type that is known to X . As all classes in a most general
context are public, only public classes of mgc(X)X are considered. Reducing
a non-deterministic expression can also lead to a change in control with a
well-formed method call or return using MGC-PREPARE-CALL or MGC-PREPARE-
RETURN. These rules rely on the extra information V and L tagged to objects to

1Note that MGC-SKIP is only introduced to simplify the simulation proofs.

59

Chapter 4 Most General Context

E ::= . . . | nde
T-NDE

X , p.c,Γ ` nde :⊥

MGC-SKIP

O,nde ctxt
KX O,nde

MGC-PREPARE-SUCCESS

O,nde ctxt
KX O, success

MGC-PREPARE-NEW

p.c ∈ Tmgc(X)X publicmgc(X)X (p.c) x fresh

O,nde ctxt
mgc(X)Y O, let lang.Object x = new p.c in nde

MGC-PREPARE-CALL

o · v ⊆ available(O, ctxt)∪ {null}
〈m, _, p.c〉 ∈mgc(X)Y typeO(o) p.c ∈ CY

typeO(o · v)≤mgc(X)Y p0.t0 · p2.t2 〈m, p1.t1 · p2.t2, _〉 ∈mgc(X)X p0.t0

x ′, x , x fresh E = let p0.t0 x = o in let p2.t2 x = v in x .m(x)

O,nde ctxt
mgc(X)Y O, let lang.Object x ′ = E in nde

MGC-PREPARE-RETURN

v ∈ available(O, ctxt)∪ {null} typeO(v)≤KX p.t

KX ,O,ndectxt:p.t ·F
τ
 KX ,O, vctxt:p.t ·F

Figure 4.1: Syntax extension, typing and rules for the most general context

determine what objects are known to the context (available(O, ctxt)). The func-
tion available(O,L), defined in Figure 3.7, returns the object identifiers of all
exposed objects and objects internal to L. Using the rule MGC-PREPARE-CALL, a
most general context for X can create a method call x .m(x) that is well-typed in
mgc(X)X , i.e., 〈m, p1.t1·p2.t2, _〉 ∈mgc(X)X p0.t0. The values used in the method
call have to be known to the context (o · v ⊆ available(O, ctxt) ∪ {null}) and
have the right type (typeO(o · v)≤mgc(X)Y p0.t0 · p2.t2). Finally, the method call
must be a boundary method call (〈m, _, p.c〉 ∈mgc(X)Y typeO(o) and p.c ∈ CY).
The rule MGC-PREPARE-RETURN, preparing a change in control with a method
return, relies on the extra type information p.t tagged to the stack slices to
choose a type-correct return value.

60

4.2 Properties

4.2
Properties

We confirm that the properties stated in the previous chapters are preserved by
the introduction of the most general context and that mgc(X)X is a program
(i.e., well-formed). We refrain from stating these properties again in this
chapter. Using the definitions of traces and most general context, we can give
the denotation of a library implementation without quantifying over all possible
program contexts.

Definition 4.1 (Trace behavior of a library implementation)
Let Y be a library implementation that is source compatible with a library
implementation X . Then the trace-based behavior of Y with all possible program
contexts of X is defined as absX (traces(mgc(X)Y)). ♦

Based on this definition, we can give a more convenient formalization of
backward compatibility which we call trace compatibility.

Definition 4.2 (Trace compatibility)
A library implementation Y is trace compatible with a library implementation X if
Y is source compatible with X and traces(mgc(X)X) ⊆ absX (traces(mgc(X)Y)).♦

In the following theorem, we state that the formalized notions of backward
compatibility of Definitions 3.8 and 4.2 coincide.2 The theorem essentially
states that our definition of most general context is well-chosen with respect to
the trace semantics.

Theorem 3 (Contextual trace compatibility iff trace compatibility)
Consider two library implementations X and Y . Then Y is contextually trace
compatible with X iff Y is trace compatible with X . ♦

PROOF: The proof is given at the end of this section. The left-to-right direction
is given by Lemma 4.4 and the right-to-left direction by Lemma 4.5. �

Similarly as in the previous chapter, we present in the following the lemmas
that reveal the core properties of the most general context and form the con-
stituents needed to prove the previous theorem. All of these lemmas are proven

2In our earlier SBMF paper [WP11], we defined trace compatibility wrongly as
traces(mgc(X)X) ⊆ absX (traces(mgc(Y)Y)), a property that follows from the current defini-
tion of trace compatibility, but is too weak to prove that Definitions 3.8 and 4.2 coincide.

61

Chapter 4 Most General Context

using specialized simulation relations. The simulation relations and the proofs
of these lemmas are presented in more detail in Section 5.3.

The following two lemmas state that the most general context for a library
implementation X simulates exactly all possible program contexts for X .

Lemma 4.1 (MGC abstraction is sound)
Let Y be source compatible with X and K be a deterministic program context
of X . Then, traces(KY) ⊆ traces(mgc(X)Y). ♦

PROOF: Given in Section 5.3.3. �

Lemma 4.2 (MGC abstraction is complete)
Let Y be source compatible with X and γ ∈ traces(mgc(X)Y). Then, there is a
deterministic program context K of X with γ ∈ traces(KY). ♦

PROOF: Given in Section 5.3.4. �

The last lemma in this section provides a property for program contexts that
make only use of a subset of the API provided by a library. The lemma considers
that types of Y can appear in traces of program contexts of X with the library
implementation Y . However, these additional types cannot be observed by the
program contexts of X , i.e., no distinctions based on these types can be made.

Lemma 4.3 (Additional types in Y not observable for program contexts of X)
Let Y be source compatible with X and K1 and K2 be deterministic program
contexts of X such that γ1 ∈ traces(K1Y) and γ2 ∈ traces(K2Y) and absX (γ1) =
absX (γ2). Then γ1 = γ2. ♦

PROOF: Given in Section 5.3.2. �

In the following, we prove both directions of Theorem 3.

Lemma 4.4 (Contextual trace compatibility implies trace compatibility)
Consider two library implementations X and Y . If Y is contextually trace
compatible with X then Y is trace compatible with X . ♦

PROOF: By unfolding Definitions 3.8 and 4.2:
ASSUME: a) For any deterministic program context K of X , we have: traces(KX) ⊆

absX (traces(KY))
b) γ ∈ traces(mgc(X)X)

PROVE: γ ∈ absX (traces(mgc(X)Y))
The proof goes in five steps:
〈1〉1. There is a deterministic program context K ′ of X such that γ ∈ traces(K ′X)

62

4.2 Properties

From Lemma 4.2 by assumption (b)
〈1〉2. γ ∈ absX (traces(K ′Y))

By step 〈1〉1 and assumption (a)
〈1〉3. γ′ ∈ traces(K ′Y) where absX (γ

′) = γ
By definition of abs()
〈1〉4. γ′ ∈ traces(mgc(X)Y)

From Lemma 4.1 by step 〈1〉3
〈1〉5. Q.E.D.

By definition of abs() and steps 〈1〉3 and 〈1〉4 �

Lemma 4.5 (Trace compatibility implies contextual trace compatibility)
Consider two library implementations X and Y . If Y is trace compatible with X
then Y is contextually trace compatible with X . ♦

PROOF: By unfolding Definitions 3.8 and 4.2:
ASSUME: traces(mgc(X)X) ⊆ absX (traces(mgc(X)Y))
PROVE: For any deterministic program context K of X , we have: traces(KX) ⊆

absX (traces(KY))
The proof goes by contraposition:
ASSUME: There is a deterministic program context K of X such that traces(KX) 6⊆

absX (traces(KY))
PROVE: traces(mgc(X)X) 6⊆ absX (traces(mgc(X)Y))
This is equivalent to the following formulation, as the empty trace is in both
sets and they are prefix-closed:
ASSUME: There is a deterministic program context K of X and a trace γ ·γ such

that
a) γ · γ ∈ traces(KX)
b) γ ∈ absX (traces(KY))
c) γ · γ /∈ absX (traces(KY))

PROVE: γ · γ ∈ traces(mgc(X)X) and γ · γ 6∈ absX (traces(mgc(X)Y))
We prove that the trace γ · γ is included in the first but not the second set of
traces:
〈1〉1. γ · γ ∈ traces(mgc(X)X)

From Lemma 4.1 by assumption (a)
〈1〉2. γ · γ /∈ absX (traces(mgc(X)Y))

We first prove that γ ends in an input label, i.e., that the library implementa-
tions cause the distinctive behavior.
〈2〉1. last(γ) = µ

From Lemma 3.7 by assumptions (a), (b) and (c)
The proof then goes by contradiction:

63

Chapter 4 Most General Context

ASSUME: γ · γ ∈ absX (traces(mgc(X)Y))
PROVE: Contradiction
〈2〉2. There is a trace γ′ ·γ′ such that γ′ ·γ′ ∈ traces(mgc(X)Y) and absX (γ

′ ·
γ′) = γ · γ and last(γ′) = µ′

By definition of abs() and step 〈2〉1
〈2〉3. There is a deterministic program context K ′ of X such that γ′ · γ′ ∈

traces(K ′Y) and absX (γ
′ · γ′) = γ · γ and last(γ′) = µ′

From Lemma 4.2 by step 〈2〉2
〈2〉4. There is a trace γ′′ such that γ′′ ∈ traces(KY) and absX (γ

′′) = γ
By definition of abs() and assumption (b)
〈2〉5. γ′ = γ′′

From Lemma 4.3 by steps 〈2〉3 and 〈2〉4 and prefixed-closedness of traces
〈2〉6. γ′ · γ′ ∈ traces(KY)

From Lemma 3.4 by steps 〈2〉3, 〈2〉4 and 〈2〉5
〈2〉7. γ · γ ∈ absX (traces(KY))

By steps 〈2〉6 and 〈2〉2
〈2〉8. Q.E.D.

Contradiction by step 〈2〉7 and assumption (c)
〈1〉3. Q.E.D.

By steps 〈1〉1 and 〈1〉2 �

4.3
Conclusion

The most general context presented in this chapter has a finite representation
that is structurally very close to standard program contexts. As shown, the
class table, except for method bodies, corresponds exactly to that of a standard
program context.

Whereas in other works, the most general context is implicit in the semantics
(e.g., [JR05b; Ábr+04]), we separate the most general context from the trace
semantics and give it a program representation that is as close a possible to a
normal program context. To represent the MGC, the core language only needs
to be extended by a single new non-deterministic expression. The advantage of
this explicit representation is that it gives a simple syntactic characterization of
all possible program contexts. It also allows for a simpler definition of a more
restricted set of contexts, for example by giving a smaller class table or putting
additional antecedents to the operational rules.

64

5 Full Abstraction

All models are wrong; some models are useful.

— G. Box

In this chapter, we state the main theorem of this thesis, namely that the
developed trace-based semantics with the most general context is fully abstract:

Theorem 4 (Full abstraction)
Consider two library implementations X and Y . Then Y is trace compatible
with X iff Y is contextually compatible with X . ♦

PROOF: Immediate from Theorems 2 and 3. �

The theorem states that Definition 4.1, which describes the behavior of a
library implementation in terms of the traces with the most general context, is an
adequate model to study the (observable) behavior of library implementations.

All compatibility notions are preorder relations, i.e., reflexive and transitive.
As consequence, the definitions and properties stated so far can directly be
transferred to a setting which studies the equivalence of library implementations,
as equivalence is just compatibility in both directions.

Definition 5.1 (Source, contextual and trace equivalence)
Library implementations X and Y are ψ equivalent, ψ ∈ {source, contextually,
trace}, if X is ψ compatible with Y and Y is ψ compatible with X . ♦

The remaining part of this chapter is structured as follows. In Section 5.1,
we discuss the fully abstract semantics. In Section 5.2, we present the related
work. Section 5.3 finally provides the proofs that have been promised for the
lemmas in the previous two chapters. Section 5.4 concludes.

65

Chapter 5 Full Abstraction

5.1
Discussion

From a refinement point of view, the definition of trace compatibility might
seem unusual. Typically, trace inclusion for contextual refinement is stated the
other way around: The set of traces of Y is included in the set of traces of X .
Usually, refinement considers the removal of non-determinism (i.e., removing
uncertainty or underspecification) as well as adding behavior in undefined
situations. As our language is deterministic up to object allocation, and the
set of traces closed under renaming and thus object allocation, our setting
only focuses on the second aspect. In fact, the new library implementation
Y can only exhibit additional behavior if the old library implementation X
fails. These include traces of runs that get either stuck at some point (e.g.,
null. f) or diverge locally by executing a infinite number of consecutive τ
steps. Under these restrictions, an alternative, equivalent definition to trace
compatibility can be given where the inclusion goes in the other direction.
For this, the following must be observed. A set of traces T can be stated
as a relation R(T) def

= {(γ,γ) | γ · γ ∈ T}. Trace compatibility can then be
restated as R(traces(mgc(X)X)) ⊆ R(absX (traces(mgc(X)Y))). The relation
can be totalized, as described for data refinement in [WD96, Chapter 16]; such
a totalization is given the dotted notation Ṙ(T). It can then be shown that there
is an equivalent definition of trace compatibility where the inclusion goes the
other way around, namely Ṙ(traces(mgc(X)X)) ⊇ Ṙ(absX (traces(mgc(X)Y))).
This definition is useful to prove that an arbitrarily chosen property that holds
for all behaviors of X also holds for Y as the behaviors of Y are a subset of the
behaviors of X . However, for the purposes of this thesis (i.e., the formalized
property backward compatibility), the definition of trace compatibility as stated
in Definition 4.2 gives a more direct connection to the operational model
of LPJAVA and the simulation-based reasoning approach that is presented in
Chapter 6.

5.2
Related Work

Probably closest to our work is the fully abstract trace semantics for Java
Jr., a Java subset with a package-like construct, developed by Jeffrey and

66

5.2 Related Work

Rathke [JR05b]. The package system of Java Jr. is quite different from stan-
dard Java packages. In particular, class types are always package-local and
interfaces public. Thus, code in one package cannot directly create objects in
another package. Such cross-boundary object creations have to be simulated
by using statically created named objects1 and factory methods. The more
severe restriction of Java Jr. is that cross-boundary inheritance is not allowed;
in particular, a user of a library cannot inherit from library classes which is
often done in practice, e.g., to specialize widgets of GUI frameworks. The fully
abstract semantics of LPJAVA overcomes these restrictions and additionally sup-
ports downcasts. Thus, the LPJAVA semantics covers more features of existing
OO programming languages. On the other hand, the restrictions of the Java Jr.
package system allow for a more symmetric relationship between components
and their contexts.

Steffen [Ste06] and Ábrahám et al. [Ábr+04] give a fully abstract trace
semantics for a concurrent class-based language, i.e., a language without inher-
itance and subtyping. Similarly to Java Jr., the full abstraction proof strongly
relies on the property that the traces can be decomposed into complementary
traces (and recomposed) due to the duality of the component and context. An
interesting technical difference between [JR05b; Ste06] and our semantics
is that they use configurations in which component and context each have
their own stack and heap, whereas our technique enriches normal small-step
operational semantics. We developed this different approach to achieve a closer
relationship to existing programming logics.

In the setting of concurrent data structures, Gotsman and Yang [GY11] use
traces and a most general client to check whether a library linearizes another.
Filipovic et al. [Fil+10a] use a trace abstraction to study whether sequential
consistency or linearizability implies observational refinement in the setting of
(abstract) object systems.

Additional related work on denotational semantics that are not formulated in
terms of traces, more general refinement and simulation-based proof techniques
are covered in the next chapter (Section 6.3).

1A particularity of Java Jr. that is not available in Java.

67

Chapter 5 Full Abstraction

5.3
Simulation-based Proofs

In this section, we prove the open lemmas from the previous two chapters
using specialized simulation relations. Before we can proceed, we need to
extend our terminology by the notions of minimal renaming and consistency
between renamings. Remember that a renaming is simply a bijective relation on
object identifiers. Union, subset and composition operations on renamings have
their usual mathematical interpretation for binary relations. It is important to
note, however, that the union of two bijective relations does not always yield
a bijective relation, as conflicting pairs of values might occur in the resulting
relation.

Definition 5.2 (Minimality and consistency of renamings)
A renaming ρ is minimal for a property P if ρ satisfies P and no renaming ρ′

exists which is a strict subset (ρ′ ⊂ ρ) and which satisfies P. Two renamings
are consistent if the union of both relations yields a renaming again, i.e., they
agree on the common value pairs. ♦

Note that consistency is an equivalence relation. Composition (◦) of two
renamings yields a renaming again. Union (∪) of two renamings that are
consistent with each other yields a renaming again.

5.3.1 Context and Library Independence

We introduce the preorder relations ²
lib

and ²ctxt that relate two well-formed
runtime configurations if their lib or ctxt part is the same and the other part
behaves in a similar way. This allows us for example to relate runtime con-
figurations when programs only differ either in the context or library, as in
Lemmas 3.4 to 4.2, but generate the same traces. We give their definition in
the following. We then show that they have simulation properties on the small
step relations and extend this to large step relations.

We present the definitions of the relations ²
lib

and ²ctxt in a single definition
²ρL , and rely on helper functions that were given in Figure 3.7. An informal
explanation is given after the definition. Similar to the equivalence relation
on terms (≡ρ), the preorder relations ²

lib
and ²ctxt relate two configurations

with objects relying on a non-deterministic allocator. Hence, the relations
are parameterized in the renaming ρ (e.g., ²ρ

lib
), which we omit when the

68

5.3 Simulation-based Proofs

particular ρ is not important (however, some ρ that satisfies the relation must
still exist).

Definition 5.3 (Preorder relations ²L)
Consider two well-formed configurations of the form S1

def
= K1X1,O1,F1 and

S2
def
= K2X2,O2,F2 such that X2 is source compatible with X1. We write S1 ²

ρe
L S2

if ρe is a renaming from �lter(O1, exposed) to �lter(O2, exposed) and there is a
renaming ρi from �lter(O1, internal, L) to �lter(O2, internal, L) and ρ = ρe ∪ρi
such that
◦ if L= ctxt then K1 = K2 else X1 = X2
◦ exec(S1) = exec(S2)
◦ stackabsL(F1)≡ρ stackabsL(F2)
◦ if o1 ≡ρ o2 withO1(o1) = (V1, L1, p1.c1,G1) andO2(o2) = (V2, L2, p2.c2,G2),

then
◦ V1 = V2 and L1 = L2
◦ �eldsL

K1X1
(G1)≡ρ �eldsL

K2X2
(G2)

◦ if L1 = L
then p1.c1 = p2.c2
else typeabsK1X1

(p1.c1) = absX1
(typeabsK2X2

(p2.c2)) ♦

In the following, we explain the definition. We first require that there is a
renaming from the exposed objects of the first configuration to the exposed
objects of the second. As the exposed objects are exactly those that have so far
appeared in the traces, this means that the same amount of distinct objects have
appeared in the traces for both programs. As the L parts of both configurations
are the same, we also have the property that there is a renaming between the
(internal) objects that are created by L. In contrast to the renaming of the
internal objects, the renaming of the exposed objects is reified in the parameter
of the relation (S1 ²

ρe
L S2) as we later describe how it is affected by operational

steps. The definition also requires that for related configurations the execution
is at the same place (either in code of the library or the context). Furthermore,
we require the parts of the stack that consist of code from L to be equivalent
under the object renaming. For related objects, the heap entries must also
match in the following way. The exposure and location flags must be the same.
The values of fields that are defined in L must be equivalent under the object
renaming. At last, the dynamic type of related objects must be equal if they are
created by L. Otherwise, they must have the same abstracted types.

We confirm in the following lemmas that initial states are related under ²L.

69

Chapter 5 Full Abstraction

Lemma 5.1 (Initial states are related under ²
lib

)
Consider two program contexts K1 and K2 and a library implementation X such
that ` K1X and ` K2X . Then S init

K1X ²lib S
init
K2X . ♦

PROOF: Trivial. �

Lemma 5.2 (Initial states are related under ²
ctxt

)
Consider two library implementations X1 and X2 such that X2 is source com-
patible with X1 and a program context K of X1. Then S init

KX1
²ctxt S

init
KX2

. ♦

PROOF: Trivial. �

We first present the connection between the relations ²L and steps of the
small-step operational semantics and later consider large steps.

Small-step Semantics

To study the simulation properties of the relations ²L at the level of the small-
step operational semantics, we consider three different cases. We distinguish
whether the steps are initiated from L or from ¬L. For steps initiated from ¬L,
we also distinguish whether the steps are labeled by τ or another label. For
illustration purposes, we depict the situations graphically.

Lemma 5.3 (²L simulates small step from L)
If S1 ²

ρ
L S2 and S1

γ1 S′1 and exec(S1) = L, then S2
γ2 S′2 and γ1 ≡ργ absX1

(γ2)

and ργ minimal and consistent with ρ and S′1 ²
ρ∪ργ
L S′2. ♦

S1 S2

S′1

γ
1

²L

exec(S1) = L

thenIf

S1 S2

S′1 S′2

γ
1
 γ

2

²L

²L

≡

PROOF: By case distinction on reduction rule used. �

Lemma 5.4 (τ steps in ¬L preserve ²L)
Assume that S1 ²

ρ
L S2 and exec(S1) = ¬L. If S1

τ
 S′1 then S′1 ²

ρ
L S2. Similarly,

if S2
τ
 S′2 then S1 ²

ρ
L S
′
2. ♦

70

5.3 Simulation-based Proofs

S1 S2

S′1

τ

²L

exec(S1) = ¬L

thenIf

S1 S2

S′1
τ

²L

² L

PROOF: By case distinction on reduction rule used. �

Lemma 5.5 (Similar labels from ¬L preserve ²L)
If S1 ²

ρ
L S2 and S1

γ1 S′1 and exec(S1) = ¬L and S2
γ2 S′2 and γ1 ≡ργ

absX1
(γ2) 6= τ and ργ minimal and consistent with ρ, then S′1 ²

ρ∪ργ
L S′2. ♦

S1 S2

S′1 S′2
γ

1 6=
τ
 γ

2

²L

exec(S1) = ¬L

≡ thenIf

S1 S2

S′1 S′2

γ
1
 γ

2

²L

²L

≡

PROOF: By case distinction on reduction rule used. �

Large-step Semantics

The three lemmas of the previous subsection can be extended to single large
steps and then to many large steps, i.e., (partial) program runs.

Lemma 5.6 (²L simulates single large step from L)
If S1 ²

ρ
L S2 and S1

γ1−→ S′1 and exec(S1) = L, then S2
γ2−→ S′2 and γ1 ≡ργ

absX1
(γ2) and ργ minimal and consistent with ρ and S′1 ²

ρ∪ργ
L S′2. ♦

PROOF: By induction on the number of small steps and Lemma 5.3. �

Lemma 5.7 (Similar single large step from ¬L preserves ²L)
If S1 ²

ρ
L S2 and S1

γ1−→ S′1 and exec(S1) = ¬L and S2
γ2−→ S′2 and γ1 ≡ργ

absX1
(γ2) and ργ minimal and consistent with ρ, then S′1 ²

ρ∪ργ
L S′2. ♦

PROOF: By induction on the number of τ steps and Lemma 5.4 and Lemma 5.5.
�

71

Chapter 5 Full Abstraction

We then relate many large steps. For deterministic contexts, we can state that
if we have a run starting from a state and another run starting from a related
state which emits a trace equivalent to the first one, then the end states are
related. We generalize this in the following corollary, where we also consider
non-deterministic (i.e., most general) contexts.

Lemma 5.8 (²L simulates multiple large steps)
If S1 ²

ρ
L S2 and S1

γ1−→ S′1 and S2
γ2−→ S′2 and γ1 ≡

ρ12
γ absX1

(γ2) andρ12
γ

minimal

and consistent with ρ, then ∃S′3 such that S2
γ3−→ S′3 and γ1 ≡

ρ13
γ absX1

(γ3) and

ρ13
γ

minimal and consistent with ρ and S′1 ²
ρ∪ρ13

γ

L S′3. ♦

PROOF: The (quite technical) proof goes by induction on the length of trace γ1
and uses Lemmas 5.6 and 5.7. For the induction to work, a stronger consequent

relating S′2 and S′3 is needed, namely that S′2 ²
ρid
S2
∪(ρ13

γ
◦ρ12
γ

−1)

¬L S′3. �

The states S′1 and S′2 might not be related, as during the runs S1
γ1−→ S′1

and S2
γ2−→ S′2, the same most general context might have chosen different

executions as it is non-deterministic. For example, it may create more objects
that are internal to it in one execution than in another, but still generate an
equivalent trace. For deterministic contexts, however, S′1 ²L S

′
2.

Proofs of Independence Lemmas

We restate Lemmas 3.4 and 3.5 and prove them using the previous lemmas.

Lemma 3.4 (Library independence)
Consider two program contexts K1 and K2 for X such that γ · γ ∈ traces(K1X)
and γ ∈ traces(K2X) and last(γ) = µ . Then γ · γ ∈ traces(K2X). ♦

PROOF: The initial states of K1X and K2X are related by ²
lib

due to Lemma 5.1.
By Lemma 5.8, the states right after the trace γ are related by ²

lib
as well. By

Lemma 5.6, the library implementations then give similar outputs. �

Lemma 3.5 (Context independence)
Let Y be source compatible with X , K be a program context for X and Y , and
γ · γ ∈ traces(KX) and γ ∈ absX (traces(KY)) and γ= • or last(γ) = µ . Then,
γ · γ ∈ absX (traces(KY)). ♦

PROOF: Follows similarly to the proof of the previous lemma by the relation
²ctxt, Lemmas 5.2, 5.6 and 5.8. �

72

5.3 Simulation-based Proofs

5.3.2 Restricted Program Contexts

We restate Lemma 4.3 and give a proof outline.

Lemma 4.3 (Additional types in Y not observable for program contexts of X)
Let Y be source compatible with X and K1 and K2 be deterministic program
contexts of X such that γ1 ∈ traces(K1Y) and γ2 ∈ traces(K2Y) and absX (γ1) =
absX (γ2). Then γ1 = γ2. ♦

PROOF: The proof relies on the deterministic nature of the operational semantics
and a simulation relation between K1Y and K2Y . This relation is based on ²

lib
and additionally states that the types of corresponding context objects have
the property that if absX (typeabsK1Y (p1.c1)) = absX (typeabsK2Y (p2.c2)), then
typeabsK1Y (p1.c1) = typeabsK2Y (p2.c2). �

5.3.3 Sound MGC Abstraction

In this section we define the simulation relation to prove Lemma 4.1. The goal
is to prove that traces(KY) ⊆ traces(mgc(X)Y) for any program context K of
X . We thus give a simulation relation on runtime configurations that relates
the configurations of KY and mgc(X)Y such that whenever for related states
the first configuration can make a step, the second one can make the same step
(plus a few τ steps). This relation is defined as the intersection between two
relations ²

lib
∩≪, the first of which was defined in an earlier section.

We first give a function that abstracts stack slices of deterministic program
contexts to their MGC counterpart.

Definition 5.4 (MGC stack abstraction nondet(F))
Let E ′ def

= let lang.Object x = bc in ndectxt:p.t. Then

nondet(F) def
=

• if F = •
ndectxt:p.t · nondet(F ′) if F = Ectxt:p.t ·F ′

E ′ · nondet(F ′) if F = Ectxt:p.t ·F ′

F if F = vctxt:p.t

The topmost stack slice, which is an expression E, is abstracted to the nde

expression. Lower stack slices, which are evaluation contexts E , are abstracted
to evaluation contexts of the form E ′. The evaluation context E ′ directly reflects
the shape that stack slices of the most general context take when a boundary

73

Chapter 5 Full Abstraction

method is called (cf. MGC-PREPARE-CALL and R-CALL-BOUNDARY). Note that the
choice of the identifier x can be normalized. We omit the details for simplicity.
The last case considers terminal configurations (e.g., after R-SUCCESS), which
are left unchanged.

We define the relation≪ρ, which relates the deterministic program context
to the MGC, as follows:
Definition 5.5 (Preorder relation≪)
Let S1 = KY,O1,F1 and S2 = mgc(X)Y,O2,F2 be two well-formed config-
urations such that Y is source compatible with X and K is a deterministic
program context of X . We write S1≪ρe S2 if ρe is a bijective renaming from
�lter(O1, exposed) to �lter(O2, exposed) and ρi is a bijective renaming from
�lter(O1, internal, ctxt) to �lter(O2, internal, ctxt) and ρ = ρe ∪ρi such that
◦ nondet(stackabsctxt(F1))≡ρ stackabsctxt(F2)
◦ if o1 ≡ρ o2 andO1(o1) = (V1, L1, p1.c1,G1) andO2(o2) = (V2, L2, p2.c2,G2),

then:
◦ V1 = V2 and L1 = L2
◦ typeabsKY (p1.c1) = typeabsmgc(X)Y (p2.c2) ♦

The main requirements of the relation≪ are that the stack of the MGC
corresponds to the abstracted stack of the deterministic program context and
that related objects have the same abstracted type. We confirm that the relation
²

lib
∩≪ has the simulation property.

Lemma 5.9 (Initial states are related under ²
lib
∩≪)

Consider two library implementations such that Y is source compatible with X
and a deterministic program context K of X . Then S init

KY ²lib ∩≪ S init
mgc(X)Y . ♦

PROOF: Trivial. �

Note that sometimes two operational steps are needed by the MGC to simu-
late one operational step of the deterministic program context. Steps by the
deterministic context using the rule R-NEW are simulated by the MGC using the
rules MGC-PREPARE-NEW, R-NEW and R-LET. Steps by the context using the rule
R-CALL-BOUNDARY are simulated by applying the rules MGC-PREPARE-CALL, R-LET

and R-CALL-BOUNDARY. Steps by the context using the rule R-RETURN-BOUNDARY

are simulated using the rules MGC-PREPARE-RETURN and R-RETURN-BOUNDARY.
Finally, all other steps by the context are simulated using the rule MGC-SKIP.
Steps by the library using any rule are simulated using the same rule (except
R-RETURN-BOUNDARY which is simulated by R-RETURN-BOUNDARY and R-LET, as
stack slices of the MGC are of the form let lang.Object x = v in nde due to
MGC-PREPARE-CALL).

74

5.3 Simulation-based Proofs

Lemma 5.10 (²
lib
∩≪ simulates small steps)

If S1 ²
ρ

lib
∩≪ρ S2 and S1

γ1 S′1, then either

◦ ∃i ∈ N : S2

i times
︷ ︸︸ ︷

τ
 . . .

τ
 _

γ2 S′2 or

◦ ∃i ∈ N : S2
γ2 _

i times
︷ ︸︸ ︷

τ
 . . .

τ
 S′2

and γ1 ≡ργ γ2, ργ minimal and consistent with ρ and S′1 ²
ρ∪ργ
lib

∩≪ρ∪ργ S′2.♦

PROOF: By case distinction on reduction rule used. Lemmas 5.3 to 5.5 are also
used. �

We restate Lemma 4.1:

Lemma 4.1 (MGC abstraction is sound)
Let Y be source compatible with X and K be a deterministic program context
of X . Then, traces(KY) ⊆ traces(mgc(X)Y). ♦

PROOF: By using the simulation relation ²
lib
∩≪ between the configurations

of a run of KY and the configurations of a run of mgc(X)Y (Lemmas 5.9
and 5.10). �

5.3.4 Complete MGC Abstraction

In this section, we give the construction of a deterministic program context to
simulate a run of the most general context and define the simulation relation≫
to prove Lemma 4.2. The story goes as follows: Let Y be source compatible with
X and γ ∈ traces(mgc(X)Y). We consider a run of mgc(X)Y which simulates
this γ and show that we can construct a deterministic program context K of X
which simulates this run and leads to the same trace. The simulation relation
is defined as ²

lib
∩≫.

Construction of Deterministic Program Context

We construct a deterministic program context based on a (partial) run of the
most general context. Running the constructed program context should lead to
an equivalent trace. The high level idea behind the construction is the following.
The class structure for the constructed context K of X is nearly the same as

75

Chapter 5 Full Abstraction

public class c extends p0.c0 implements p.i {
main.Main fmain;
lang.Object setMain(main.Main x){ this. fmain = x }
ÓM c

}

Figure 5.1: Classes of constructed context

for mgc(X) (except method bodies and a few extra fields and methods). The
method bodies however now contain expressions that simulate the choices
made by the most general context (when executing the non-deterministic
expression nde). As the choices may differ for different method incarnations, the
construction needs to account for this and distinguish the different incarnations.
This is done by having a bookkeeping object (which every object of a type of the
context refers to) that globally counts method incarnations of methods defined
in the context. To enable access to all available objects (MGC-PREPARE-CALL

and MGC-PREPARE-RETURN), the bookkeeping object has extra fields to store
references to all objects that have been created so far by the program context
or that have been exposed by the library.

We start by constructing the class structure of K which is similar to the one for
the construction of the most general context in Section 4.1. For each class pmgc.c
in mgc(X) except main.Main, we construct a class such as given in Figure 5.1
with same name and header (extends and implements clause), where (1) fmain

is a field name to refer to the initial object of class main.Main, (2) setMain is
a method name not occurring anywhere in X , (3) ÓMc is the set of methods
corresponding to the ones of the class pmgc.c in mgc(X), but with different
method bodies. The method bodies are explained after the description of the
class main.Main.

The class main.Main (see Figure 5.2) is the startup class and plays the book-
keeping role. It has field declarations p j .c j f ctxtj ; for every object that is created
in the (partial) run by the most general context, where p j.c j is the dynamic
class type of the object. For every object of the library that is exposed in the run,
we declare a field f libj of type lang.Object. We cannot provide a more specific
type to these fields, because the dynamic type of these objects might be local to
a package of the library and thus not accessible in K. However, it may have
public supertypes that are accessible in K . When we use the objects for method
calls or returns, we cast to an appropriate super-type, however. For example,

76

5.3 Simulation-based Proofs

assume an object of a dynamic class type that is local to a package of the library
but implementing a public interface i1 with a method m1 and a public interface
i2 with a method m2. Depending on whether we want to invoke m1 or m2, we
have to cast the object to i1 or i2. We provide getter and setter methods for the
f ctxtj and f libj fields.

To count method incarnations, we use objects of an additional Number class
which we define in the package main. Each number is represented by a different
Number object. We add a field main.Number f N

j ; for each number that refers to
the corresponding Number object. The field fcurrNum stores a reference to the
object representing the number of the current method incarnation. The method
incrNum sets the fcurrNum field to the object representing the next number (it is
implemented as a huge if-else cascade). We also provide getter methods for the
f N

j fields and fcurrNum. In the main method, we initialize the Number fields.

Using the given definition of the main.Main class, we can now implement
the method bodies of ÓMc. They are illustrated in Figure 5.3, where we use
if-else syntax for better readability. For each invocation of a method in the
context, we increase the method incarnation counter. Then we choose the right
code NODE j to execute based on which method incarnation we currently are
simulating. Each NODE j will only be executed once and its construction is
based on the steps done by the MGC when reducing the expression nde in the
corresponding method incarnation. For each step, an expression is created,
which thus leads to a sequence of expressions (delimited by ;). In the following
we explain the construction of NODE j.

First, NODE j starts by storing the transmitted values (parameters of the
method call for this method incarnation j) if necessary, i.e., if these values have
not been stored already by an earlier NODE. We call these actions STORE(x)
and they have the following form: STORE(x) is null if we do not care about
the value pointed to by x , i.e., if this value was already stored, or if the value is
null. We use the expression this. fmain.set f libj (x) for library objects that have not
been previously stored and the expression this. fmain.set f ctxtj ((p.c)x err null) for
context objects of dynamic type p.c that have not been previously stored. Note
that j is the index to the right field we use to store the object. Note that for
each object that occurs in available(O, ctxt) in the program run, there is exactly
one STORE instruction in the constructed program context K . Also note that
we need to put STORE(this) at the beginning of NODE0.

After the storage, we now construct for each step by the MGC an expression
which simulates the step. We thus get a sequence of expressions in NODE j . We
start with the simple cases:

77

Chapter 5 Full Abstraction

package main;

public class Main {
main.Main fmain;
p0.c0 f ctxt0 ; . . . pnx .cnx f ctxtnx ;

lang.Object f lib0 ; . . . lang.Object f libnm;

main.Number f N
0 ; . . . main.Number f N

z ;
main.Number fcurrNum;

getter−methods for all f N
j and fcurrNum

getter− and setter−methods for all f ctxtj and f libj

lang.Object incrNum() { ... }

lang.Object main() {
this. fmain = this;

initialize f N
j �elds with distinct Number objects

this. fcurrNum = this. f N
0 ;

NODE0
}

}

public class Number {}

Figure 5.2: main package of constructed context

78

5.3 Simulation-based Proofs

this. fmain.incrNum();

if (this. fmain.get fcurrNum() == this. fmain.get f N
j1
()) { NODE j1 }

else if ... { ... }

else if (this. fmain.get fcurrNum() == this. fmain.get f N
jn
()) { NODE jn }

else { null } // never reached

Figure 5.3: Method bodies of constructed context

◦ For a step with MGC-PREPARE-NEW, we use the expression

let p.c x = new p.c in (x .setMain(this. fmain); STORE(x))

where x is a fresh variable name not appearing elsewhere in the construc-
tion.
◦ For MGC-SKIP, we use the expression (main.Main)null err null (arbitrarily

chosen expression which does not have any observable effect).
◦ For MGC-PREPARE-SUCCESS, we use the expression success.

For the cases MGC-PREPARE-CALL and MGC-PREPARE-RETURN, we need to ac-
cess appropriate values in available(O, ctxt). This is done by accessing the
corresponding field on the bookkeeping object, which we denote by vcorr

def

= this

. fmain.get f ctxtj (), this. fmain.get f libj () or null.
◦ For MGC-PREPARE-RETURN, we use (p.t)vcorr err null where p.t is the return

type of the enclosing method.
◦ For MGC-PREPARE-CALL, we use

let lang.Object x = E in STORE(x)

where
E

def
= ((p0.t0)vcorr err null).m((p2.t2)vcorr err null)

and p0.t0 and p2.t2 are the types occurring in the rule and x is a fresh
variable name not appearing elsewhere.

Simulation

Using the previous construction, we can then define the simulation relation
≫ρ between the most general and the constructed program context.

79

Chapter 5 Full Abstraction

Definition 5.6 (Preorder relation≫)
Let S1 = mgc(X)Y,O1,F1 and S2 = KY,O2,F2 be two well-formed configura-
tions where Y is source compatible with X and K is a program context of X
derived using the construction described in Section 5.3.4. We write S1≫ρe

S2 if ρe is a bijective renaming from �lter(O1, exposed) to �lter(O2, exposed)
and ρi is a bijective renaming from �lter(O1, internal, ctxt) to the subset of
�lter(O2, internal, ctxt)with class type different to main.Number andρ = ρe∪ρi
such that
◦ stackabsctxt(F1)≡ρ nondet(stackabsctxt(F2))
◦ If o1 ≡ρ o2 andO1(o1) = (V1, L1, p1.c1,G1) andO2(o2) = (V2, L2, p2.c2,G2):

◦ V1 = V2 and L1 = L2
◦ p1.c1 = p2.c2

◦ ∃omain such that O2(omain) = (internal, ctxt,main.Main,G) and
◦ objectrefs(G(main.Main, f ctxt))≡ρ �lter(O1, ctxt)
◦ objectrefs(G(main.Main, f lib))≡ρ �lter(O1, exposed, lib)
◦ G(f N) holds the main.Number objects, which are distinct each. The

value G(fcurrNum) represents the current node and holds an object
from G(f N).
◦ ∀o ∈ dom(O2) with O2(o) = (_, ctxt, p.c,G2) and p.c ∈ CK and p.c 6=
main.Number, we have G2(p.c, fmain) = omain. ♦

On one hand, we have a coupling that is stronger than≪, as the constructed
context uses exactly the same classes as the abstract context, just with other
method bodies. On the other hand, the coupling is weaker as it does not relate
all internal objects of ctxt (i.e., the helper objects representing numbering).
To show the simulation property of ²

lib
∩≫, similarly to Section 5.3.3, we

first show that initial states are related and that the relation is preserved by
small steps. We assume that the steps that are done by the MGC are those upon
which we based the construction of the deterministic program context.

The constructed program context needs to initialize first (i.e., execute the
statements that appear before NODE0 in the main method) before it can simu-
late the MGC, shown in the following lemma by multiple τ steps:

Lemma 5.11 (Initial states are related under ²
lib
∩≫ after a few steps)

Consider two library implementations such that Y is source compatible with
X and a deterministic program context K constructed from a run of mgc(X)Y .

Then ∃i ∈ N : S init
KY

i times
︷ ︸︸ ︷

τ
 . . .

τ
 S and S init

mgc(X)Y ²lib ∩≫ S. ♦

PROOF: Trivial. �

80

5.3 Simulation-based Proofs

Often, many steps are needed by the constructed context to simulate a step
of the MGC. A technical challenge is that there are steps by the MGC for which
the relation≪ cannot be established, e.g., MGC-PREPARE-CALL yields a stack
slice that is not in the range of nondet(). In that case, we know that there is
always a unique next step for which the relation can be established. Steps
that are guaranteed to occur after each other are MGC-PREPARE-CALL and R-
CALL-BOUNDARY, MGC-PREPARE-SUCCESS and R-SUCCESS, or R-RETURN-BOUNDARY

and R-LET if it is a return to the MGC. In the following simulation lemma we
distinguish three disjoint cases (which are exhaustive).

Lemma 5.12 (²
lib
∩≫ simulates small steps)

Consider S1 ²
ρ

lib
∩≫ρ S2.

◦ If S1
τ
 S′1 is a step using the rule MGC-PREPARE-CALL or MGC-PREPARE-

SUCCESS, then there are unique S′′1 , γ1 such that S′1
γ1 S′′1 and

�

∃i, j ∈

N : S2

i times
︷ ︸︸ ︷

τ
 . . .

τ
 _

γ2 _

j times
︷ ︸︸ ︷

τ
 . . .

τ
 S′2 and γ1 ≡ργ γ2 and ργ minimal and

consistent with ρ and S′′1 ²
ρ∪ργ
lib

∩≫ρ∪ργ S′2
�

(?).

◦ If S1
γ1 S′1 where γ1 is an return output label (i.e., rtrn _), then there

are unique S′′1 , γ such that S′1
γ
 S′′1 and γ= τ and ?.

◦ If S1
γ1 S′′1 and none of the previous cases apply, then ?. ♦

PROOF: By case distinction on reduction rule used. Lemmas 5.3 to 5.5 are also
used. �

We restate Lemma 4.2:

Lemma 4.2 (MGC abstraction is complete)
Let Y be source compatible with X and γ ∈ traces(mgc(X)Y). Then, there is a
deterministic program context K of X with γ ∈ traces(KY). ♦

PROOF: By constructing a deterministic program context from a run of mgc(X)Y
(see Section 5.3.4) and using the specialized simulation relation ²

lib
∩≫

(Lemmas 5.11 and 5.12). �

81

Chapter 5 Full Abstraction

5.3.5 Differentiating Context
We restate Lemma 3.6:
Lemma 3.6 (Differentiating context)
Let Y be source compatible with X and K be a deterministic program context
for X and Y such that γ · γ ∈ traces(KX) and γ ∈ absX (traces(KY)) but γ · γ /∈
absX (traces(KY)). Then there is a deterministic program context K ′ such that
S init

K ′X 3 and S init
K ′Y 7. ♦

PROOF: The proof follows directly from the following construction:
In order to distinguish two library implementations that generate different labels
at some point in the trace, we construct a deterministic program context that
makes the first configuration succeed and prevents the second one to do so. To
construct such a context, we have to generate program code that can distinguish
the situations. By Lemma 3.7, we know that the library implementations cause
the distinctive behavior, i.e., that last(γ) = µ .
By Lemma 4.1, we have γ · γ ∈ traces(mgc(X)X). We then use the same
construction as in Section 5.3.4. However, we also add a method lang.Object

loop() { this.loop(); } to the main.Main class. To prevent a program to succeed,
we then just call this diverging method by this. fmain.loop() in a node where we
distinguish the situations.
As our constructed context is deterministic (up to object naming), the con-
structed program context reaches the same nodes (NODE j) for equivalent
prefixes of the trace. The construction then depends on the last label in which
the two traces differ. If there is no such label for the second implementation
(6 ∃γ′ : γ · γ′ ∈ traces(KY)), then a node is reached in the first implementation
whereas the second implementation is stuck or diverges and does not reach any
node NODE j. We then put success in the previous node. If different nodes are
reached (which is e.g., the case if one label is a call and the other is a return
or if they are both calls but with different method names) we put in the first
node success and in the second one we call this. fmain.loop(). If the same node is
reached, we have to compare the abstract values that occur at the same position
in the labels. Without loss of generality we assume that they differ at a certain
place and that this value is referred to by variable x: if one value is null and the
other one not, we use the expression (x == null ? success : this. fmain.loop()).
We assume in the following that both are abstracted objects and consider the
two remaining cases:
◦ At least one object has occurred earlier in the trace. Then we compare

the objects to the corresponding object stored in the f ctxt or f lib field:
(x == this. fmain.get f libj () ? success : this. fmain.loop()).

82

5.4 Conclusion

◦ Both objects are created by the library and have not occurred earlier in
the trace: Then the abstracted types Tα1 of vα1 and Tα2 of vα2 have to be
different.2 Without loss of generality let p.t be a public type in Tα1, but
not in Tα2. Thus, we can distinguish the values by casting to this type:
(((p.t)x err null) == null ? success : this. fmain.loop()). �

5.4
Conclusion

This chapter has shown how particular preorder relations, that have simulation
properties on the enhanced operational semantics, can be used to prove the
full abstraction result. The presented trace-based semantics can be used to
study different (functional) behavioral properties of library implementations.
For example, it can be used to prove that a library implementation conforms
to a certain specification. In the remaining part of the thesis, however, we use
the model to study the presented formalized notion of backward compatibility,
a property that relates two library implementations and is central to the full
abstraction result.

2Note that for objects created by the library, their dynamic class type is always defined in
the library implementation (Definition 3.5), and thus the set Òm of the abstracted type
Tα

def
= 〈Óp.t,Òm〉 of the object is uniquely determined by Óp.t.

83

6 Simulation-based Reasoning

All things are difficult before they are easy.

— Dr. Thomas Fuller

Building on the formal foundations of the previous sections, we outline in
the following a method for reasoning about backward compatibility of libraries.
The reasoning method, presented in Section 6.1, is based on the idea of directly
connecting the representations of both library implementations using a so-
called coupling relation [Hoa72; Mor94; BAW98]. As reasoning is done in
terms of code, we discuss the relation between traces and program code in
Section 6.2. Section 6.3 discusses the related work. Section 6.4 recapitulates
the formal model in simpler terms and generalizes it to a larger subset of Java.
Section 6.4 gives a short introduction to a specification language that supports
the presented reasoning approach.

6.1
Reasoning about Backward Compatibility

Before describing the reasoning method, we recapitulate the proof obligations
that are needed in order to prove two library implementations compatible. We
also describe how the direct connection of the trace semantics to the operational
semantics can be exploited to prove compatibility.

In order to prove that a library implementation Y is backward compatible
with a library implementation X using the trace-based definition of compatibility,
the following steps are necessary. First, Y must be proven source compatible
with X . This can be directly done by the checks detailed in Section 2.3. The

85

Chapter 6 Simulation-based Reasoning

more difficult part is to prove, as per Definition 4.2, that traces(mgc(X)X) ⊆
absX (traces(mgc(X)Y)).

In the following, we present an approach for proving backward compatibility
based on the specialized simulation relations introduced earlier. Similarly to
the full abstraction proof, we use specialized simulations for reasoning about
backward compatibility. From Lemmas 5.2, 5.3 and 5.8 we get the property that
there is a relation ²ρctxt between ctxt parts of corresponding states of the two
library implementations whenever these implementations are trace compatible.
The relation ensures that large steps from the context are simulated properly
(Lemma 5.6). In order to prove trace inclusion, we then need to prove that
large steps from related states in the library implementations are also simulated
properly. For this, we need to relate also the parts of the configurations which
belong to the respective library implementations. Such a relation is called a
coupling relation. The relation can rely on the following properties of ²ρctxt (see
Definition 5.3). There is a renaming ρ from the exposed objects of the first
configuration to the exposed objects of the second (i.e., the objects occurring
in the trace). We call this renaming a correspondence relation. This relation
between objects of the different runtime configurations can be exploited to
relate two implementations of a library, namely, we can talk about corresponding
objects, which are those, that appear at the same positions in both traces.

To prove trace compatibility, a coupling relation needs to be provided. The
coupling relation between the states of both library implementations can be
described using the correspondence relation ρ. We then need to prove for
coupled states that the next labels of small steps in the context or large steps
in the library are also related and the states coupled and that the coupling
holds for the initial states of the programs. We introduce the notion of adequate
coupling relation to denote coupling relations having this simulation property.

Definition 6.1 (Adequate coupling)
²inv is an adequate coupling relation for two source compatible library imple-
mentations X and Y if
◦ S init

mgc(X)X ²ctxt ∩²inv S
init
mgc(X)Y , and

◦ If S1 ²
ρ
ctxt ∩²

ρ
inv S2 and exec(S1) = ctxt and S1

γ1 S′1, then S2
γ2 S′2 and

γ1 ≡ργ absX (γ2) and ργ minimal and consistent with ρ and S′1 ²
ρ∪ργ
ctxt

∩²ρ∪ργinv S′2, and

◦ If S1 ²
ρ
ctxt ∩ ²

ρ
inv S2 and exec(S1) = lib and S1

γ1−→ S′1, then S2
γ2−→ S′2

and γ1 ≡ργ absX (γ2) and ργ minimal and consistent with ρ and S′1 ²
ρ∪ργ
ctxt

∩²ρ∪ργinv S′2. ♦

86

6.1 Reasoning about Backward Compatibility

public class Cell { // old impl.
private Object c;
public void set(Object o) {
c = o;

}
public Object get() {
return c;

}
}

public class Cell { // new impl.
private Object c1, c2;
private boolean f;
public void set(Object o) {
f = !f;
if (f) c1 = o; else c2 = o;

}
public Object get() {
if (f) return c1; else return c2;

}
}

Figure 6.1: Cell example

Please note that different definitions of adequacy are possible. For example,
the second condition can be defined in terms of large steps instead of small
steps. A result of this are smaller coupling relations that are adequate. In
general, a coupling relation only needs to talk about the library part of the
configuration. If the relation only relates the lib parts, then we also have the
guarantee that it is preserved by the context, which allows us to disregard steps
in the (most general) context in the proof.

We can show that a coupling relation always exists if two library implemen-
tations are backward compatible. This completeness result comes basically for
free from our full abstraction proof using specialized simulations.

Theorem 5 (Soundness and completeness of adequate couplings)
Consider two library implementations X and Y . Then Y is trace compatible
with X iff there exists an adequate coupling relation for X and Y . ♦

PROOF: Soundness follows directly from Definitions 3.4 and 4.2. Completeness
follows by constructing such a relation using Lemmas 5.2, 5.3 and 5.8.

Cell example. In the following, we illustrate coupling relations using the
Cell example in Figure 6.1, which provides a Cell class to store and retrieve
object references. In a more refined version of the Cell library on the right
of Figure 6.1, a library developer might now want the possibility to not only
retrieve the last value that was stored, but also the previous value. In the new
implementation of the class, he therefore introduces two fields to store values
and a boolean flag to determine which of the two fields stores the last value that

87

Chapter 6 Simulation-based Reasoning

has been set. This second representation allows to add a method to retrieve
not only the last value that was stored, but also the previous one, for example
public T getPrevious() { if(f) return c2; else return c1; }.

The developer might now wonder whether the old version of the library
can be safely replaced with the new version, i.e., whether the new version
of the Cell library still retains the behavior of the old version when used in
program contexts of the old version. The definition of a coupling relation is
also called a coupling invariant. Intuitively, the developer might argue in the
following way why he believes that both libraries are equivalent: If the boolean
flag in the second library version is true, then the value that is stored in the
field c1 corresponds to the value that is stored in the field c in the first library
version. Similarly, if the boolean flag is false, then the value that is stored in c2

corresponds to the value that is stored in c. Using the correspondence relation
ρ, we can formally talk about corresponding objects in both program runs.
For all corresponding objects (o1, o2) ∈ ρ that have the dynamic type Cell or
a subtype thereof and where the value of the field o2.f is true, the values that
are stored in the fields o1.c and o2.c1 are either both null or corresponding
objects, i.e., (o1.c, o2.c1) ∈ ρ. Similarly, if the value of the field o2.f is false,
then (o1.c, o2.c2) ∈ ρ or these fields are both null. We can formalize this as
follows. We write O(o, p.c, f)

def
= G(p.c, f) if O(o) = (_, _, _,G) and then define

²ρinv as {(S1,S2) | ∀(o1, o2) ∈ ρ : typeO1
(o1) ≤mgc(X1)X1

Cell⇒ if O1(o1,Cell, f)
then O1(o1,Cell, c)≡ρ O2(o2,Cell, c1) else O1(o1,Cell, c)≡ρ O2(o2,Cell, c2)}.

We then show that ²ρinv is an adequate coupling relation. For that, we need
to know the shape of labels occurring in the trace. A superset of the shapes
(i.e., types and method names) of all possible input labels can be derived from
the code of the library implementation, e.g., the public methods. We discuss
this in more detail in Section 6.2. For this particular example, the input labels
are of the form call oα.get() and call oα.set(vα) . Showing that the simulation
property is preserved by small steps from the context is done by case distinction
over the reduction rule used (the reduction rules which are prefixed by MGC).
As the coupling invariant talks only about the lib part of the configurations,
this proof is trivial. The only interesting case is where related objects which
have been created by the most general context with the type Cell or a subtype
thereof are exposed to the library. In this case, we know that the fields of both
objects are null (see Definition 3.5) and thus the coupling is preserved.

The main proof obligation is to show that the simulation property is preserved
by large steps from the library. We consider the states after related inputs (e.g.,
call oα1 .get() and call oα2 .get() if (o1, o2) ∈ ρ) in states which are coupled
(i.e., where the coupling invariant holds). We then have to prove that the

88

6.2 From Traces to Program Code

states right after the next change in control are also coupled and the generated
(output) labels are related. In the following, we denote the first implementation
of the Cell library by X and the second one by Y . We suffix elements of the
configurations of X by 1 and of Y by 2. We only consider the states right after
labels of the form call oα.get() , i.e., we have configurations of the form
◦ S1

def
=mgc(X)X ,O1,bodymgc(X)X (Cell,get)[o1/this]lib:lang.Object ·F1 and

◦ S2
def
=mgc(X)Y,O2,bodymgc(X)Y (Cell,get)[o2/this]lib:lang.Object ·F2

such that S1 ²
ρ
ctxt ∩²

ρ
inv S2. After large steps, we then have

◦ S1
rtrn vα1−→ mgc(X)X ,O1,F ′1

where vα1 = valabsmgc(X)X (O1(o1,Cell, c),O1), and

◦ S2
rtrn vα2−→ mgc(X)Y,O2,F ′2

where vα2 =

¨

valabsmgc(X)Y (O2(o2,Cell, c1),O2) if O2(o2,Cell, f)
valabsmgc(X)Y (O2(o2,Cell, c2),O2) otherwise

From S1 ²
ρ
inv S2, we get the property then that rtrn vα1 ≡ρ absX (rtrn vα2). As

we also had S1 ²
ρ
ctxt S2, the successor states are related as well by ²ρctxt ∩²

ρ
inv.

6.2
From Traces to Program Code

An important part of the reasoning method is to establish a relation between
the traces and the program code. If we have a call input label, we need to find
out what the possible targets of such a call are, i.e., the method bodies in the
library implementation resulting from a method dispatch that leads to such a
label. Similarly, if we have a return input label, we need to find the places in the
library implementation where we can return to. In general, these places cannot
statically be determined, as we illustrate in the following example. Consider a
public class C and a local class D as part of a library implementation where the
method m in D overrides the method m in C.

public class C { public void m() { BODY1 } }
class D extends C { public void m() { BODY2 } }

Also consider a program context from which the class D is not accessible (i.e.,
defined in another package). If a D object is exposed under the C type, then a
change in control can reach BODY2. This is the case, e.g., if there is a method
of the following form in the library implementation:

89

Chapter 6 Simulation-based Reasoning

public class Factory { public static C instance() { return new D(); } }

If an input label of the form call oα.m() occurs where the abstracted type of oα

is 〈{C},•〉, then the program could, depending on the actual runtime type, either
lead to a dispatch of the method m defined in C or in D (i.e., BODY1 or BODY2).
The places which are targets of a change in control can be approximated based
on the types that appear in the input/output labels. As the labels are based on
the runtime type information, we can give an inverse of the abstraction function
typeabsKX (p.c) that computes the abstracted types of the labels. This inverse is
a relation, i.e., it associates multiple places in the library implementation with
a certain shape of message.

A more precise static analysis in the likes of [GP11] can be used to statically
determine the shape of messages in most cases. Remaining (open) cases have
to be formulated as part of a program invariant. For example, the invariant
may specify the property that there are no exposed objects of dynamic type D.
In that case, input labels could never contain D objects and thus never dispatch
to a method in the class D.

6.3
Related Work

We first discuss papers where program equivalence is achieved using denota-
tional state-transformer semantics and specific confinement notions. In the
second part, we relate our approach to work on refinement and simulation-based
proof techniques that are directly based on a standard operational semantics.

Denotational semantics and confinement. Classical denotational methods
have been successfully used to investigate properties of object-oriented pro-
grams [Coo89]. The denotational semantics according to these methods map
program parts (e.g., classes) to state transformers describing how the program
part modifies the stack and heap. However, these denotations are often not fully
abstract, i.e., they differentiate between classes that cannot be distinguished by
a context. Banerjee and Naumann [BN05a] presented a method to reason about
whole-program equivalence in a Java subset. Under a notion of confinement
for class tables, they prove equivalence between different implementations
of a class by relating their (classical, fixpoint-based) denotations by simula-
tions. More recently, Naumann, Sampaio, and Silva extended this technique to
multiple classes [NSS12].

90

6.3 Related Work

With these works, we share the goal to verify that different implementations of
program parts are equivalent or in a preorder relation. However, the approaches
differ with respect to the semantical methods (see above) and the encapsulation
techniques. Whereas we focus here on language-defined accessibility control,
the previously mentioned works use ownership confinement that partitions the
heap into disjoint groups of objects, so-called islands, dominated each by an
owner object of the same type. This encapsulation boundary allows specifying
the correspondence between an island of the old and new implementation in
terms of a local coupling relation between islands. The proof obligation is to
show that the local coupling relation has the simulation property. Confinement
then guarantees that local couplings induce coupling relations on the whole
program configurations. The advantage of ownership confinement is that it
allows reasoning in terms of small, local couplings, having an inherent notion of
modularity. A drawback is that the confinement conditions restrict the specific
structures of object graphs that are supported by the method. To remedy this
problem, Banerjee and Naumann use in subsequent work [BN05b] a discipline
using assertions and ghost fields to specify heap encapsulation (by ownership
techniques). This inv/own discipline, adapted from [LM04], provides an explicit
representation of when object invariants and couplings are known to hold. The
advantage of this approach is that the ownership structure of the heap is not
fixed but can be manipulated using assertions, enabling ownership transfer
between islands as well as from and to the client. In our setting, invariants
must simply hold in observable states.

Ownership confinement can be understood as part of a verification technique
for programs following this discipline. The goal of this thesis is a more generic
semantics framework that only takes language-defined encapsulation mecha-
nisms into account. It can be combined with ownership confinement, but it
can also be used together with more flexible confinement disciplines that relax
“owners as dominators” [CPN98] and allow different boundary objects to share
their representation (e.g., a list with iterators).

Refinement. The formalized notion of backward compatibility can be seen
as a form of data refinement [Mor94], restricted to a deterministic setting.
Class refinement has been studied for various extensions of the Z specification
language [WD96], however focusing on class specifications and not implemen-
tations. Exceptions to this are the works of Mikhajlova and Sekerinski [MS97]
and Back, Mikhajlova, and Wright [BMW00], which consider refinement re-
lations between a single class and its subclass, omitting more complex object
structures. Filipovic et al. present a powerful theory of data refinement based

91

Chapter 6 Simulation-based Reasoning

on simulations in the setting of a programming model with dynamic storage and
pointer arithmetic [Fil+10b]. The setting of low-level programs, which they
consider, only offers weak encapsulation guarantees. Bridging the gap between
higher-level and leaky lower-level abstractions motivate that refinement is not
considered under all possible contexts, but only those that do not interfere
with the considered module. This approach is coined by them as blaming the
client. Leino and Yessenov develop a system for refinement of single classes with
automated tool support [LY12]. Following the approach of blaming the client,
contexts are restricted using a model of memory permissions. Blaming the
client requires that specifications outside the programming model are available
that formalize what the clients can and cannot do. In this thesis, we strived for
a simple, comprehensive model that works under all possible program contexts.

Proof techniques. Bisimulations were first used by Hennessy and Milner
[HM80] to reason about concurrent programs. Sumii and Pierce used bisimu-
lations which are sound and complete with respect to contextual equivalence
in a language with dynamic sealing [SP07a] and in a language with type
abstraction and recursion [SP07b]. Koutavas and Wand, building on their
earlier work [KW06] and the work of Sumii and Pierce, used bisimulations
to reason about the equivalence of single classes [KW07] in different Java
subsets. The subset they considered includes inheritance and down-casting
but neither interfaces nor accessibility of types. Showing equivalence between
two class implementations in their setting amounts to constructing adequate
relations (which are sound and complete with respect to contextual equiva-
lence). These adequate relations are similar1 to the specialized simulation
relations outlined in Section 6.1 (the auxiliary relation Rl in their work to talk
about related objects corresponds to our correspondence relation ρ). As a
proof method, the authors provide conditions that are sufficient for proving
adequacy of a given relation. In the setting of class libraries, deriving such
conditions is a lot more complicated, as it is for example not statically clear
which objects or method bodies need to be related (see Section 6.2). Keeping
track of the exposed objects, our simulation relations can be considered as
environmental (bi-)simulations [SKS07]: In contrast to (standard) applicative
bisimulations, environmental bisimulations have beside the tested terms an
additional environment component that keeps track of additional knowledge.

1Whereas their proof goes by induction on the complexity of possible expressions (where
complexity denotes the number of steps it takes to reduce the expression to a value), our
proof goes by induction on the length of the traces of the library with the most general
context.

92

6.4 The Formal Model Revisited

6.4
The Formal Model Revisited

The examples in the upcoming evaluation chapter cover a larger subset of
Java than the formal model. In this section, we recapitulate the formal model
presented so far in simpler terms and generalize it to a larger subset of Java.

Proving backward compatibility of two library implementations relies on
a particular kind of simulation relation. The library developer specifies the
relation using a coupling invariant which describes how the old library im-
plementation is related to the new implementation. The developer (or an
automatic tool such as the developed BCVERIFIER) then proves that the relation
induced by the coupling invariant has the simulation property. The relation has
to hold in the states where control of execution is in code that is not part of
the library, i.e., where code of the program context is executing. These are the
states where a program (context) can observe if two implementations behave
differently. As libraries can make internal method calls and also call back into
client code using dynamic dispatch (see example in Section 7.3), the observable
states are not statically bound to program points such as start and end of library
methods.

The relation only equates observable states where the behavior of the two
library implementations is indistinguishable. Checking that the relation induced
by the coupling invariant is a proper simulation between programs with the
old library implementation and programs with the new library implementation
consists of ensuring that 1) the initial (observable) states are in the relation,
and that 2) computational steps between consecutive observable states are
properly simulated. Assuming a single-threaded setting2, two cases can occur:
2a) Computational steps where the next state is an observable state again, i.e.,
control of execution stays in code of the program context. 2b) Computational
steps where the next state is not an observable state. This means that control
of execution goes to code of the library and returns at some later point to the
program context. This is the case in which the library code, that differs in the
two implementations, gets to execute.

If the old library implementation does not reach an observable state, for ex-
ample by diverging or crashing, the behavior of the new library implementation
is not relevant. This means that the new library implementation has the liberty
to add additional behavior. To define whether or not observable states of two

2A generalization of the theory to a setting with concurrency is considered as future work.

93

Chapter 6 Simulation-based Reasoning

library implementations are indistinguishable, it is necessary to know what part
of the state results from code of the library implementation and which part
results from the program context.

6.4.1 Characterization of Library State

In the single-threaded setting, a program state usually consists of a single stack
and a heap. A stack is a sequence of stack frames. Stack frames are created by
method invocations. If the body of the invoked method is defined in the library,
then we say that the stack frame belongs to the library; otherwise it is part of
the program context. We group consecutive stack frames that belong either all
to the library or the program context into stack slices. A well-formed stack then
consists of an alternating sequence of stack slices that belong to the library and
stack slices that belong to the program context, i.e., the stack corresponds to a
zipper with alternating teeth. The stack slice at the bottom of the stack belongs
to the program context as execution starts in the program context, usually with
a main method.

Separating the heap into a part that belongs to the library and a part that
belongs to the program context is a bit more difficult. With inheritance, some
code parts of an object can belong to the context and other parts to the library.
We differentiate for fields whether they have been defined in classes of the
program context or the library. For simplicity, we assume that code outside the
library does not directly access fields that are defined in the library, which is
usually considered bad practice anyhow. For the libraries to be indistinguishable,
the heap state reachable from stack slices of the program context must be
similar. To better characterize the objects which are potentially reachable by
the program context, we distinguish (1) which objects have been created by
code of the library or by code of the program context, and (2) which objects
created by the program context have been exposed (i.e., made known) to the
library or vice versa.

As all possible program contexts have to be considered, we assume that every
object which has been made known to the program context at some point in
time can later be used again by the program context. The objects which can
appear in stack slices of the program context are then only objects which have
been created by the program context or those which have been created by the
library and which have been exposed.

94

6.4 The Formal Model Revisited

6.4.2 Indistinguishable States

In the following, we call program states for programs with the old library
implementation old program states and the program states for programs with
the new library implementation new program states. The simulation relation
equates program states which have the same number of stack slices and where
the stack slices of the program context are similar. This allows stack slices
of the library implementations to be completely different. Due to the non-
deterministic choice of object identifiers (i.e., heap locations) during object
allocation, the stack slices of the program context can only be identical modulo a
renaming between objects identifiers appearing in the old and object identifiers
appearing in the new state. The renaming tracks which new objects take the
place of the old objects and must be a bijective relation in order to guarantee
indistinguishability, as otherwise an identity check from the program context
using the == operator would yield true for one library implementation and false
for the other. The simulation relation thus equates program states for which
there is a renaming between the exposed objects of the old program state and
the exposed objects of the new program state. We call this the correspondence
relation and talk about corresponding objects, modeled in the formal model
with the equivalence ≡ρ.

The two library implementations might however still create different objects
as long as these are not exposed to the program context. Corresponding objects
can have different dynamic types but must have the same public super types
that are defined in the old library implementation as the context can only use
the public types to distinguish them. As we assume that code outside of the
library does not directly access fields that are defined in the library, we can
abstract from the fields of classes that are defined in the library. Similarly to
the correspondence relation, there must be a renaming between the internal
objects created by the (same) program context of the old and new program
state. Here the runtime types of the objects are exactly the same, as these
objects have been created by the same expression in the program context (e.g.,
new C()).

6.4.3 Proof Obligations

As most important step to prove backward compatibility, we need to show
that computational steps between observable states are properly simulated. If
control of execution goes from code of the program context to library code,
this can only be due to a method call, method return or a constructor call.

95

Chapter 6 Simulation-based Reasoning

We thus have to consider calls of all available (public or protected) methods
and constructors. Similarly, we have to consider all possible return points in
code of the library where a method was called that could potentially lead to
code of the program context to be executed. We assume for the pre-states
that they were related, which means that they are indistinguishable and satisfy
the coupling invariant. As the observable pre-states were indistinguishable
and we had a method call, this means that the receiver/parameters of the call
were corresponding and a method with the same name and source compatible
signature was called. Similarly, if we had a method return, then the return
values were corresponding. For the post-states (if they exist), we must prove
that they are related again. This means that we need to prove that the coupling
invariant still holds for the post-states. In order to satisfy indistinguishability,
we need to check again in case of a method call whether a method with the
same name and similar signature was called and the receiver/parameters
are indistinguishable, or for a method return whether the return values are
indistinguishable.

Constructor calls from the program context present a slightly more compli-
cated situation. The receiver object of such a constructor call, at first internal
to the context, is exposed as soon as the first library constructor in the class
hierarchy executes.3 As library implementations are supposed to be definition-
complete (i.e., contain all dependencies and can be typechecked/compiled
in isolation), we can safely assume that all parameters that are passed to the
constructor are exposed. We can safely deal with callbacks that occur during
construction, because as soon as the first library constructor is invoked, the
object is marked as exposed. This means that the object becomes part of the
observable state as soon as the control flow returns to code of the program
context, independently whether it is caused by a method call to code of the pro-
gram context that appears within the body of the constructor or by termination
of the constructor.

6.5
Specification Language

To facilitate the specification of coupling invariants, a specification language
called ISL (Invariant Specification Language) is introduced. Specifications in

3Here, we additionally consider constructors with expression bodies and not only default
constructors as in the formalized model.

96

6.5 Specification Language

ISL describe properties about the two program configurations as well as their
relation. To this means, ISL provides facilities to access the (abstracted) heap
and stack of the enhanced runtime configurations. For example, the coupling
invariant that was mathematically stated in Section 6.1 for the Cell example of
Figure 6.1 can be stated in ISL in the following way.

invariant forall old Cell o1, new Cell o2 ::
o1 ∼ o2 ⇒ if o2.f then o1.c ∼ o2.c1 else o1.c ∼ o2.c2;

The coupling invariant, which has to hold in properly simulated observable
program states, states that the field values must correspond between objects
o2 of the new type Cell (or subtype thereof) and the Cell objects o1 of the old
library implementation for which they act as a substitute. The specification
language uses the operator ∼ to denote the correspondence between old and
new reference values (i.e., ≡ρ in the mathematical description). The forall

quantification in ISL only ranges over objects that are not internal to the program
context, i.e., objects which are exposed or created by the library. The reason for
this is that objects which are internal to the program context are not relevant
for the behavior of the library. We then need to prove the simulation property,
which amounts to three proof cases:

◦ The initial state must satisfy the coupling invariant, which is trivial to
prove as no Cell objects are allocated in this state.

◦ The coupling must be preserved by steps in the program context. As the
invariant only talks about the library state of exposed Cell objects (due to
o1 ∼ o2), which remains untouched in steps of the program context, the
proof is trivial.

◦ The coupling must be preserved by interactions with the library. Program
contexts can either call the (empty) Cell constructor or the methods get
and set and the libraries react by returning from the constructor or method
by returning a value or not (void). The property can be established in the
same way as was done in Section 6.1.

Specifications in ISL are typed, which allows to catch errors in specifications
with a type checker. For example, expressions have to be properly typed. The
conditional expression if ... then ... else ... only makes sense if the if clause
is an expression of boolean type. In a similar way, field access on a certain
variable is only reasonable if a field with that name is defined for values stored
by this variable (e.g., o1.c). More semantic well-formedness conditions (e.g.,
disallowing field access on a null value), that are highly context-dependent, are

97

Chapter 6 Simulation-based Reasoning

not covered by the type-based discipline and instead turned into additional
proof obligations. The different features of ISL are introduced on a per-need
basis in the following chapter.

98

7 Experience and Evaluation

Even rats learn from experience.

— George Skarbek

This chapter validates the presented theory using a number of classical
examples from the literature. Each section addresses typical challenges that
arise in the setting of proving backward compatibility of object-oriented libraries
and illustrates them with examples. Section 7.1 discusses type abstraction,
Section 7.2 information hiding, Section 7.3 callbacks and Section 7.4 more
elaborate forms of control flow. Hand in hand with the various challenges, we
provide features of the ISL specification language for dealing with the different
forms of data and control flow abstraction that appear in libraries. A more
exhaustive overview of ISL is deferred until the next chapter.

7.1
Type Abstraction

A typical feature of object-oriented programming are interfaces, which allow
library developers to hide implementation details from clients. In particular,
it allows the library developer to provide different class implementations that
implement the same (Java) interface. In the setting of library evolution, this
gives the library developer the additional choice to replace implementations.
As the choice of implementation can be based on input values provided by the
program context, a static verifier has to account for all possible replacements.
To reduce all possible replacements to the ones that can really occur, valid
replacements can be specified in the coupling invariant, thereby ruling out illegal
combinations as they become part of the proof assumptions and obligations.

99

Chapter 7 Experience and Evaluation

public interface Fruit {} // old and new impl.
public class Apple implements Fruit {}
public class Banana implements Fruit {}

1public class Factory { // old impl.
2public static Fruit
3giveMeAFruit(boolean b) {
4if (b)
5return new Apple();
6else
7return new Banana();
8}
9}

1public class Factory { // new impl.
2public static Fruit
3giveMeAFruit(boolean b) {
4if (b)
5return new Apple();
6else
7return new BabyBanana();
8}
9}

1public class BabyBanana
2extends Banana {} // new impl.

Figure 7.1: Subtypes example

As an example, consider the library implementation in Figure 7.1 that has
a public interface Fruit with implementing classes Apple and Banana. In the
new implementation, the library developer decides to deliver objects of a new
subclass BabyBanana instead of the class Banana. This can be implemented for
example using the factory method pattern [Gam+95] which describes how to
create objects by leaving the choice which class to instantiate to the library
implementor. The knowledge that apples are replaced by apples and bananas
are substituted by either bananas or baby bananas can be specified in the
coupling invariant, which is then checked to hold in all observable states:

invariant forall old Fruit o1, new Fruit o2 :: o1 ∼ o2 ⇒
(o1 instanceof old Apple⇔ o2 instanceof new Apple);

Depending on which implementation types are public or not, some combi-
nations are acceptable whereas others are not. If Apple and Banana are public
classes in the old library implementation, Banana can never be returned by the
new library implementation instead of an Apple. Otherwise, a dynamic type
check from a program context, for example using the instanceof operator, could
distinguish them (see Section 6.4.2). To take these properties into account,
a formal model of the type system and the properties of source compatibility
is needed. The verifier, developed as part of this thesis, encodes many such

100

7.2 Information Hiding

properties. For example, calls of methods with same name but on objects of
unrelated types (see the example in Section 7.2) should not be considered as
valid simulation steps.

7.2
Information Hiding

Information hiding is an essential principle for modular development. The
following two examples illustrate coupling invariants that specify properties
about the internal representation of the library implementations.

Name generation example. We present in Figure 7.2 a Java adaptation of
an example given by Ahmed, Dreyer, and Rossberg [ADR09]. Both library
implementations (old and new) provide a Factory class that has two methods;
a method fresh to generate fresh names, and a method check to test whether
two names are equal. The old library implementation uses an integer field
in the returned instance to represent the identity (where we ignore integer
overflows) and the new library implementation uses directly the object identity.
This relation between the two library implementations, which guarantees that
both implementations of the check method return the same result, is captured
by the coupling invariant in the following way:

invariant forall old C c1, old C c2, new C c3, new C c4 ::
c1 ∼ c3 ∧ c2 ∼ c4 ⇒ (c1.z == c2.z⇔ c3 == c4);

In order to establish this invariant as well for calls to the fresh method, an
additional property of the old library implementation is needed, namely that
the used integer value ++x is indeed fresh:

invariant forall old C c :: c.z <= old Factory.x;

Such a property about a single (library) implementation is usually called a
representation invariant and can be modeled in ISL in the same way as coupling
invariants. A more elaborate example follows.

OBool example. Libraries are usually composed of many classes and form
their behavior with multiple cooperating objects. Consider the example given
in Figure 7.3, adapted from Banerjee and Naumann [BN05a]. The example
library consists of a Bool class that represents mutable boolean objects and a
class OBool that realizes the same behavior by wrapping the previous class Bool.

101

Chapter 7 Experience and Evaluation

1package namegen; // old impl.
2public class C {
3int z;
4C(int z) { this.z = z; }
5}

1package namegen; // old impl.
2public class Factory {
3private static int x;
4public static C fresh() {
5return new C(++x);
6}
7public static boolean
8check(C o1, C o2) {
9if (o1 != null ∧ o2 != null)

10return o1.z == o2.z;
11return false;
12}
13}

1package namegen; // new impl.
2public class C {}

1package namegen; // new impl.
2public class Factory {
3public static C fresh() {
4return new C();
5}
6public static boolean
7check(C o1, C o2) {
8if (o1 != null ∧ o2 != null)
9return o1 == o2;
10return false;
11}
12}

Figure 7.2: Name generation example

public class Bool { // old and new impl.
private boolean f;
public void set(boolean b) { f = b; }
public boolean get() { return f; }

}

1public class OBool { // old impl.
2private Bool g = new Bool();
3public OBool(){ g.set(false); }
4public void set(boolean b){
5g.set(b);
6}
7public boolean get(){
8return g.get();
9}

10}

1public class OBool { // new impl.
2private Bool g = new Bool();
3public OBool(){ g.set(true); }
4public void set(boolean b){
5g.set(!b);
6}
7public boolean get(){
8return !g.get();
9}
10}

Figure 7.3: OBool example

102

7.2 Information Hiding

The class Bool is identical in both library implementations. The class OBool

is implemented in the new implementation by storing the complement in the
wrapped Bool instance. The example illustrates that objects of the same class
Bool can appear in different roles, either as exposed or internal objects.

The coupling invariant then specifies that for corresponding Bool objects
(which implies that they are exposed), the boolean value that is stored in field
f is the same. For corresponding OBool objects, the boolean values that are
stored in their referenced (non-exposed) Bool instances are complements. In
the ISL specification language, this looks as follows:

invariant forall old Bool o1, new Bool o2 :: o1 ∼ o2 ⇒ o1.f == o2.f;
invariant forall old OBool o1, new OBool o2 :: o1 ∼ o2 ⇒ o1.g.f == !o2.g.f;

The coupling invariant consists of the logical conjunction of all specified invari-
ants. A requirement we have is that the specifications must be well-formed. In
particular, the verifier does not accept specifications where null could potentially
be dereferenced, e.g., o1.g.f. As we know that for exposed OBool objects the g

field always refers to Bool objects, we put this knowledge into the following
invariant

invariant forall old OBool o :: o.g != null; // same for new OBool

and write the same for new OBool objects. This condition has to be put be-
fore the previous invariants as preceding invariants are used to prove well-
formedness of succeeding invariants. A more detailed overview of well-formedness
is given in Section 8.1.

Even though the specification is now well-formed, the given coupling invari-
ant is not strong enough to prove backward compatibility. Two more issues need
to be solved. First, a verifier cannot know whether the method calls g.set(...)
and g.get() in lines 3, 5 and 8 may lead to execution of code in the program
context as g might point to an object of a subclass of Bool that is defined in the
program context with overriding methods. The reason for this is that, when
considering the execution paths through the methods, the verifier is unaware
of the statement g = new Bool() in line 2. The knowledge, that no method
overridden by the context is called, has to be put as part of a representation
invariant.1 A simple way to assert that the methods are not overwritten by the
program context is to specify that the object referred to by g has been created by
the library. As library implementations are supposed to be definition-complete
(i.e., contain all dependencies and can be typechecked/compiled in isolation)

1An example where calling methods will lead to execution of code in the program context is
given in the next subsection.

103

Chapter 7 Experience and Evaluation

Bool is the only possible implementation type. The ISL language provides a
number of built-in predicates that reify the reasoning concepts of Section 6.4.1.
The predicate createdByLibrary determines whether an object has been created
by code of the library or by code of the program context and returns true in the
first case, and false in the second one:

invariant forall old OBool o :: createdByLibrary(o.g); // same for new OBool

The second reason why the coupling invariant is not strong enough is directly
related to a classical problem of object-orientation, namely aliasing. We show
how to address it for the given example but believe this problem to be largely
orthogonal to the issues addressed in this thesis. In particular, we do not
prescribe any specific aliasing discipline. We first state using the built-in ISL
predicate exposed that the objects referenced by the g field are not exposed.
This ensures that the first invariant which was presented at the beginning of
this subsection does not apply to these objects.

invariant forall old OBool o :: !exposed(o.g); // same for new OBool

Next, we describe the exact shape of the compound OBool object structures.
A simple way to describe the structure is to assert that there is no aliasing
between different g fields. We specify the invariant

invariant forall old OBool o1, old OBool o2 :: o1 != o2 ⇒ o1.g != o2.g; //Alt. 1

and write the same for new OBool objects. Note that a typical ownership
discipline [CPN98] could be used to achieve the same effect.

Interestingly, a weaker form of aliasing is sufficient to prove equivalence of
the previous implementations, namely that the Bool objects referenced by the
g field are consistently aliased, meaning that the Bool objects referenced by g

coincide for two arbitrary pairs of corresponding OBool objects:

invariant forall old OBool o1, old OBool o2, new OBool o3, new OBool o4 ::
o1 ∼ o3 ∧ o2 ∼ o4 ⇒ (o1.g == o2.g⇔ o3.g == o4.g); //Alt. 2

To illustrate the differences between the previous two variants of specifica-
tions, let us consider a variant of the example where both implementations of
OBool have an additional method which returns a shallow clone of the current
OBool object by sharing the same inner Bool instance:

public OBool clone() { OBool cl = new OBool(); cl.g = g; return cl; }

This is an example where we have multiple exposed objects sharing a common
representation, a difficult scenario for ownership disciplines. The first invariant
(Alt. 1, No aliasing) is violated by this method, but equivalence can still be
established using the second invariant (Alt. 2). The key observation we made

104

7.2 Information Hiding

from examples such as the previous one is that stating the exact shape of the
object structures is not always needed to prove backward compatibility. Often
it is sufficient to find some kind of isomorphism between the object structures.
For example, the previous aliasing property can be reformulated as a graph
homomorphism of the field relation g from the graph of the bijection ∼ to the
graph of some bijection bij:

invariant exists binrelation bij :: bijective(bij) ∧
forall old OBool o1, new OBool o2 :: o1 ∼ o2 ⇒ related(bij, o1.g, o2.g);

ISL supports custom binary relations (beside the special built-in bijection ∼
) as we found them to be particularly useful for the setting of equivalence

checking. The ISL specification language provides the built-in type binrelation

to denote binary relations on reference values and the built-in predicates related

and bijective to check whether two reference values are in a relation and to
check whether a relation is bijective. Unfortunately, the automatic verifier
BCVERIFIER fails to verify the OBool constructors using the given invariant. The
reason for this is that the underlying SMT solver is not smart enough to find an
instantiation for bij that satisfies the given conditions. Ideally, the bijection bij in
the poststates should be similar as for the one in the prestates where the newly
created Bool objects are added. To assist the prover, the library developer needs
to describe how the bijection changes over time. Similar as in specification
languages for single programs [Cha+05], we introduce ghost variables in ISL
to enable the definition and manipulation of auxiliary state.

Extension of Program State. A ghost variable is an updatable variable that
does not appear in the program. ISL provides facilities to declare and assign
values to ghost variables. The variables can then be referred to in the coupling
invariant. To preserve the behavior of the library, ghost variables can only be
assigned values from the program code, but not influence variables of the imple-
mentation. To verify the previous example, we declare three ghost variables bij,
x1 and x2 in a global scope. The variable bij represents the previously discussed
bijection between internal Bool objects. The variables x1 and x2 are used to
refer to the Bool objects that are added to the relation bij. Initial values for the
ghost variables need to be specified, as the coupling invariant is checked for
the initial states of the programs. In observable states, the relation bij must be
bijective and the ghost variables x1 and x2 contain the null value:

var binrelation bij = empty();
var old Bool x1 = null; var new Bool x2 = null;
invariant bijective(bij) ∧ x1 == null ∧ x2 == null;

105

Chapter 7 Experience and Evaluation

invariant forall old OBool o1, new OBool o2 ::
o1 ∼ o2 ⇒ related(bij, o1.g, o2.g);

The ISL function empty yields the empty relation. To update the relation bij,
the following steps are taken. The newly created Bool objects are assigned to
the ghost variables x1 and x2. This is done at the beginning of the respective
OBool constructor. When control flow exits the library, i.e., right before the
next observable states, the relation bij is updated with the values of x1 and x2 if
both values are non-null, which means that the constructor has been executed.
Finally null is assigned to both x1 and x2 to preserve the invariant. In ISL, the
given steps can be specified as follows:

local place p1 = line 3 of old OBool assign x1 = this.g nosync;
local place p2 = line 3 of new OBool assign x2 = this.g nosync;
assign bij = if x1 != null ∧ x2 != null then add(bij, x1, x2) else bij;
assign x1 = null;
assign x2 = null;

Local places and nosync are explained in more detail in Sections 7.4 and 7.5. In
this case, they are solely used to assign a value to a ghost variable at a specific
program point.2 All expressions in ISL are pure, meaning that their evaluation
is free of side effects. Following this principle, the ISL function add yields the
relation where the given values are added.

7.3
Callbacks

Callbacks are ubiquitous in object-oriented programs which makes reasoning
very hard. The following adapted example [MS88; BN05a], given in Figure 7.4,
presents an interface C with a method run that can be implemented by clients
of the library. The class A has a method exec that invokes the run method on
the passed parameter and returns a boolean that denotes whether the value
stored in the g field is even. The class also has a method inc which increments
the field g by two.

In a new implementation of A, the library developer now optimizes the body
of the exec method and replaces return (g + i) % 2 == 0; by return true;. As
there is no implementation of the C interface in the library implementations,

2In JML [Bur+03], the assignments to ghost variables are stated as comments in the code. As
we wanted to leave the implementations untouched and for tooling reasons, we opt to state
the assignments as part of the specification.

106

7.3 Callbacks

public interface C { // old and new impl.
public void run();

}

1public class A { // old impl.
2private int g = 0;
3public boolean exec(C c) {
4int i = 4;
5if (c != null) c.run();
6return (g + i) % 2 == 0;
7}
8public void inc() { g = g + 2; }
9}

1public class A { // new impl.
2private int g = 0;
3public boolean exec(C c) {
4int i = 4;
5if (c != null) c.run();
6return true;
7}
8public void inc() { g = g + 2; }
9}

Figure 7.4: Callback example

the verifier can prove for both library implementations that the call c.run() will
lead to execution of code in the program context. The crucial part is that a
program context can now call back into the library, for example the method
inc on the same object. This means that the coupling invariant needs to be
established before the call of run and can be assumed to hold after the call.
The specification necessary to verify the given example states that the value
stored in the field g is even in observable states:

invariant forall old A a :: a.g % 2 == 0;

The verifier inlines external calls by default into the verification condition.
This means that the verifier checks that there are corresponding external calls
in both implementations (same method name and signature, corresponding
receiver and parameters) and that the coupling invariant holds. The verifier
then drops all knowledge about both heaps, assumes that the invariant holds,
and continues the verification process at the point where the external calls
happened by assuming that the returned values are corresponding. Instead of
inlining external calls, the verifier can also be configured to prove the given
example in two separate steps (up to that point, and then from that point on).
The drawback about splitting the verification condition is that information about
the stack then needs to be encoded in the invariant. The splitting program point
is defined using a place definition. The splitting behavior can be deactivated
for places with the nosplit option. The invariant then needs to be strengthened
by stating that for all library stack slices, if the topmost stack frame in the stack

107

Chapter 7 Experience and Evaluation

slice is at that particular call of the method run, the value stored in the local
variable i is 4.3

place p1 = call run in line 5 of old A;
place p2 = call run in line 5 of new A;
invariant forall int s :: librarySlice(old, s) ∧ at(p1, s) ⇒ eval(p1, s, i) == 4;

The ISL specification relies on the built-in function librarySlice to characterize
whether the integer s is a valid index to a library stack slice of the stack of the
old library implementation. The function at denotes that the execution is at
a certain program point in a specific stack slice. The function eval allows to
access the value of local variables at a certain program point. For example, the
application eval(p1, s, i) yields the value of the local variable i at the program
point denoted by p1 in the stack slice indexed by s. Place definitions enable ISL
specifications to be more strongly typed. For eval expressions to be well-formed
in ISL, it must be ensured that the execution is at the specified place. This is
done by guarding the eval expressions with corresponding at expressions.

Callback with lock example. We present in Figure 7.5 a Java adaptation of
a tricky example given by Ahmed, Dreyer, and Rossberg [ADR09]. Let us first
ignore the lines of code that make use of the lock field. In this variation of the
callback example, the run method is called in line 8 of the old implementation
before incrementing the value x. In the new implementation, the value of x
is first stored in a variable n. After the callback in line 9, the value stored in
n is used to increment x. In the setting of callbacks which might call the inc

method again and again, the value stored in n might be outdated upon return
of the run method. To safeguard against callbacks, the implementations use a
lock variable that disables the functionality of the inc method for reentrant calls.
Under this locking behavior, both implementations can be proven equivalent
with the following coupling invariant:

invariant forall old A o1, new A o2 ::
o1 ∼ o2 ⇒ o1.x == o2.x ∧ o1.lock == o2.lock;

place p = call run in line 9 of new A nosplit;
invariant forall int s :: librarySlice(new, s) ∧ at(p, s) ⇒
eval(p, s, this.lock ∧ n == this.x);

To ensure that the value of n is not changed when the method run is running,
we assert that in all stack slices at the place p2 the value of x is equal to n.

3A weaker invariant, stating that the value is even, is also sufficient.

108

7.3 Callbacks

public interface C { // old and new impl.
public void run();

}

1public class A { // old impl.
2private int x;
3private boolean lock;
4public void inc(C c) {
5if (c == null) return;
6if (!lock) {
7lock = true;
8c.run();
9x = x + 1;

10lock = false;
11}
12}
13public int get() {
14return x;
15}
16}

1public class A { // new impl.
2private int x;
3private boolean lock;
4public void inc(C c) {
5if (c == null) return;
6if (!lock) {
7lock = true;
8int n = x;
9c.run();
10x = n + 1;
11lock = false;
12}
13}
14public int get() {
15return x;
16}
17}

Figure 7.5: Callback with lock example

Awkward example. We present in Figure 7.6 another Java adaptation of an
example given by Ahmed, Dreyer, and Rossberg [ADR09] (which they could
not prove using their reasoning method), a variation of the “awkward” example
of Pitts and Stark [PS98]. In the setting of callbacks, the value of the field x in
the old implementation changes back and forth between 0 and 1. Due to the
shape of the call stack, however, the value that is returned is always 1, which
is given as a proof obligation by the new implementation that always returns
1. For simplicity, let us first assume that the field x and the methods are static.
The example then is specified using the following invariant:

place p = call run in line 7 of old Awk nosplit;
invariant forall int s :: librarySlice(old, s) ∧ s == topSlice(old) − 1 ∧ at(p, s)
⇒ old Awk.x == 1;

The invariant states that if the top-most stack slice that belongs to the library
is at the second invocation of the run method, then the value of x is 1.

109

Chapter 7 Experience and Evaluation

public interface C { // old and new impl.
public void run();

}

1public class Awk { // old impl.
2private int x;
3public int exec(C c) {
4x = 0;
5if (c != null) c.run();
6x = 1;
7if (c != null) c.run();
8return x;
9}

10}

1public class Awk { // new impl.
2public int exec(C c) {
3if (c != null) c.run();
4if (c != null) c.run();
5return 1;
6}
7}

Figure 7.6: Awkward example

If the field x is non-static (as in the code listing), the invariant needs to
account for multiple objects. We can then not talk about the top-most library
stack slice, but the top-most stack slice that is associated with an object. We
say that the value of x is 1 for a certain object if the highest stack slice for this
object is at p2, i.e., there is no higher stack slice for that object that is at p1.
Written formally, the invariant thus becomes:

place p1 = call run in line 5 of old Awk nosplit;
place p2 = call run in line 7 of old Awk nosplit;
invariant forall int s :: librarySlice(old, s) ⇒ at(p1, s) ∨ at(p2, s);
invariant forall int s :: librarySlice(old, s) ∧ at(p2, s)
∧ !(exists int s2 :: s2 > s ∧ librarySlice(old, s2) ∧ at(p1, s2)

∧ eval(p2, s, this) == eval(p1, s2, this))
⇒ eval(p2, s, this.x == 1);

The examples shown in this section demonstrate that our approach can
handle complex callback scenarios.

110

7.4 Control Flow Relations

7.4
Control Flow Relations

In a setting with no callbacks, library implementations can also hide complex
control flow. Reasoning about program behavior in the setting of loops and
recursion usually requires some kind of induction principle. To prove steps that
encompass methods with complex loops or recursion, we allow the programmer
to specify that the coupling relation can relate custom user-definable non-
observable states. The library developer specifies these program states for
the old and new library implementation. These states are defined similarly to
conditional breakpoints (debugging terminology) and are called local places.
Using the local places, the library developer can establish custom relations
using a coupling invariant. To facilitate the specification of such properties that
hold only at local places, we introduce local invariants. Local invariants are
defined in a similar way as coupling invariants but only have to hold in local
places, i.e., synchronization points where the library is in control of execution.

7.4.1 Synchronous Execution

As an example for local places and local invariants, consider the example
in Figure 7.7, adapted from Barthe, Crespo, and Kunz [BCK11]. The old
implementation uses a for loop and the new implementation uses a while loop.
The body of the for loop is executed once more than the body of the while

loop, namely for the value i == 0. To prove that both methods yield the same
results, we establish a local simulation that relates the second iteration of the
loop in the old implementation and the first iteration of the loop in the new
implementation and then consecutive loop iterations. We first characterize
the states in both library implementations that we want to relate. The first
local place definition p1 denotes all program states where the statement to be
executed is the first one in line 5 of the old implementation and where the
value of the local variable i is positive. Similarly, the local place definition p2

denotes the states where the execution is at the beginning of line 6 of the new
implementation.

The next step is to define the relation that ties the states of the two imple-
mentations together. As we want to reason locally about the execution here,
we are only interested in the top-most stack slice. The overloaded function at

yields the top-most stack splice if no additional parameter is provided. As only
a single local place is defined for each implementation, the implicit invariant

111

Chapter 7 Experience and Evaluation

1public class C { // old impl.
2public int m(int n){
3int x = 0;
4for(int i=0; i<n; i++){
5x += i;
6}
7return x;
8}
9}

1public class C { // new impl.
2public int m(int n){
3int x = 0;
4int i = 1;
5while(i<n){
6x += i;
7i++;
8}
9return x;
10}
11}

local place p1 = line 5 of old C when i > 0;
local place p2 = line 6 of new C;
local invariant at(p1) ∧ at(p2) ⇒

eval(p1, n) == eval(p2, n)
∧ eval(p1, x) == eval(p2, x)
∧ eval(p1, i) == eval(p2, i);

Figure 7.7: One-off loop example

at(p1)⇔ at(p2) must hold. The application eval(p1, n) yields the value of the
local variable n at the program point denoted by p1 (in the top-most stack slice).
The local invariant states that in coupled non-observable states, the values of
the local variables n, x, and i of both implementations coincide. Due to the
introduction of local places, four program paths need to be considered to reason
about the new implementation, depicted in the following control flow diagram
on the right: (1) From an observable state, depicted in plain white, calling the
method m with an input n ≤ 1 that leads to returning from the method and
resulting again in an observable state (i.e., the self-loop on the white state),
(2) from an observable state calling the method m with n > 1 to the program
place p2, (3) from the program place p2 going into the next loop iteration to
the program place p2 if i−1 < n in the pre-state, and (4) by returning from p2

to an observable state if i−1 ≥ n.

p1 p2

call m
call/return m

return m

call m
call/return m

return m

112

7.4 Control Flow Relations

For the old implementation, an infinite number of paths must be considered:
Executing the body of the for loop zero times, once, twice, thrice, etc. Luckily,
we can prove that a certain depth is never reached.4 This means that either a
local place or an observable state (via external method call with split option)
is encountered before or we have an infeasible path. In the example, two
“executions” of the loop body are sufficient because during the second iteration
the place p1 with i > 0 is always reached. Effectively, this reduces the feasible
paths to the ones depicted in the control flow diagram on the left. Comparing
this diagram to the one on the right illustrates the synchronization of the
executions of both implementations.

The proof obligations are as follows. We have to check that a local place is
reached in the old implementation if and only if a local place is reached in the
new implementation. If such local places are reached, the invariants (and in
particular local invariants) are checked. We also have to assume two arbitrary
local places such that the local invariants hold and start execution from these
places and check whether the continuations behave similarly. For the example,
the local invariant is proved to hold initially, for each iteration and finally the
last iteration guarantees that the values returned by both methods are the same.

Cubes example. We give another example for synchronous execution in Fig-
ure 7.8, which is adapted from Leino and Yessenov [LY12]. Both methods take
as parameter an integer value n and compute the sum of cubes from 1 to n. The
first method implementation computes the sum

∑n
i=0 i3, whereas the second

method implementation computes the same result with a different formula
(
∑n

i=0 i)2 that uses a single multiplication. We define two local places to syn-
chronize the loop iterations of both method bodies. The coupling invariant,
adapted directly from Leino and Yessenov, then connects the values as follows:

local place inLoop1 = line 6 of old C when i < n;
local place inLoop2 = line 6 of new C when i < n ∧ 2 ∗ t == i ∗ (i + 1);
local invariant at(inLoop1) ∧ at(inLoop2) ⇒

eval(inLoop1, n) == eval(inLoop2, n)
∧ eval(inLoop1, i) == eval(inLoop2, i)
∧ eval(inLoop1, s) == eval(inLoop2, t ∗ t);

4The BCVERIFIER unrolls loops and recursion automatically unrolled up to a user-definable
depth d and tries to prove that depth d + 1 is never reached.

113

Chapter 7 Experience and Evaluation

1public class C { // old impl.
2public int cubes(int n){
3int i = 0;
4int s = 0;
5while(i < n){
6i++;
7s += i ∗ i ∗ i;
8}
9return s;

10}
11}

1public class C { // new impl.
2public int cubes(int n){
3int i = 0;
4int t = 0;
5while(i < n){
6i++;
7t += i;
8}
9return t ∗ t;
10}
11}

Figure 7.8: Cubes example

7.4.2 Asynchronous Execution

More complex relations can be specified that allow to relate one state in one
implementation to many states in the other implementation. We say that
one of the implementations is stalled while the other executes. Only one
implementation can be stalled at a time. If the old implementation is stalled,
then we additionally need to prove that the new implementation is not diverging.
The proof obligation is stated in terms of a termination measure, an integer
expression which must be positive and strictly decreasing between consecutive
local places. The application of stalling places and termination measure can
be seen in the example of Figure 7.9. In this example, we want to prove
that the new implementation of the method m terminates. As a reference
implementation for the method m, we use an implementation that obviously
terminates in all cases.

We define a local place p1 for the body of the old method and two local places
p2inLoop and p2afterLoop in the new method, one in the loop and one after the
loop. We then need to show that the new implementation always reaches the
p2afterLoop place. Graphically depicted, we have the following situation:

114

7.4 Control Flow Relations

1public class C { // old impl.
2public void m(int n) {
3return;
4}
5}

1public class C { // new impl.
2public void m(int n) {
3int x = 0;
4for (int i = 0; i < n; i++) {
5x = x + i;
6}
7return;
8}
9}

local place p2inLoop = line 5 of new C;
local place p2afterLoop = line 7 of new C;
local place p1 = line 3 of old C
stall when at(p2inLoop) with measure
if at(p2inLoop) then eval(p2inLoop, n − i) else 0;

local invariant at(p2inLoop) ⇒ eval(p2inLoop, i < n);

Figure 7.9: Termination example

p1

p2inLoop

p2afterLoop

call m

return m

call m
call m

return m

The idea is now to stall the computation of the old implementation until the
new implementation reaches p2afterLoop. This is specified by the stall condition
at(p2inLoop) which states that the old implementation is stalled at the place p1

if the computation in the new implementation starts in the place p2inLoop. The
termination measure is specified as a positive integer expression. To ensure
that the expression is positive and the measure decreases from p2inLoop to
p2afterLoop, the local invariant i < n is added. Writing eval(p2inLoop, n − i) is
short for eval(p2inLoop, n) − eval(p2inLoop, i). The condition i < n is needed5 as
the measure can otherwise not be proved to be positive.

The previous for vs. while loop example (synchronous execution) could also
be proved by defining the local place p1 without the condition i > 0 but stalling

5Note that the condition eval(p2inLoop, i < n) could also be put as a when clause for the
local place p2inLoop.

115

Chapter 7 Experience and Evaluation

the place p2 until the place p1 is reached the second time. For this, the place p2

is defined as follows:

stall when at(p1) ∧ eval(p1, i) == 0;

The last part of the local invariant (eval(p1, i) == eval(p2, i)) then needs to be
replaced by

eval(p1, i) >= 0 ∧ eval(p1, n) > 1 ∧
eval(p2, i) == (if eval(p1, i) == 0 then 1 else eval(p1, i))

where the first line fixes the value ranges of i and n for the verifier to only
consider reasonable paths. The second line establishes the connection between
the value of the i variables in the first iteration (then clause), and then successive
iterations (else clause).

Local places are a powerful concept and have many other uses: (1) They
can be used to handle diverging computations, for example, to show that two
methods terminate or diverge for the same inputs. (2) Synchronous execution in
combination with asynchronous execution can be used to verify that a recursive
method and a method with a loop behave equivalently. If the recursive method
does the computation before the recursive call, each recursive call can be
associated with one iteration of the loop. Asynchronous computations can then
be used to stall the loop-based implementation when popping the stack frames
of the recursive function.

7.5
Larger Case Study: ObservableList

In this section, we show that the techniques presented so far can directly be
applied to a complex example studied by Banerjee and Naumann [BN05a]. We
also illustrate the facilities of ISL to describe invariants that allow reasoning
about the shape of complex call stacks, needed in the setting of recursive
method calls. Figures 7.10 and 7.11 present two library implementations of the
observer pattern [Gam+95]. Each implementation consists of a public Observer

interface, to be implemented by clients of the library, a public Observable class
to register and notify observers and a non-public Node class that is used by the
Observable class to manage the observers in a singly linked list. In addition,
the Observable class provides a method get(int i) to retrieve the i-th observer
that was registered using the method add and a method iterator to iterate over
the observers using the interfaces and classes presented in Figure 7.12 (going

116

7.5 Larger Case Study: ObservableList

beyond the example of Banerjee and Naumann [BN05a]). Formal reasoning
about (and verification of) such implementations is highly non-trivial as the
sizes of the data structures, as well as the computations (e.g., number of loop
iterations in the old notifyAllObs() method implementation), are unbounded.

The data and control flow representations of the implementations differ in
a number of ways. The old implementation of the Observable class stores the
first observer directly in the first Node object whereas the new implementation
uses a sentinel node. The Node class of the old implementation provides no
methods, whereas the new implementation provides a proper constructor and
getter and setter methods. The method add illustrates the manipulation of
the internal representation, and the method get shows how internal control
flow can depend on input values. The methods of the new implementation
are written in a clearer and more concise way than their counterpart in the
old implementation. The method notifyAllObs, illustrating the possibility of
callbacks, loops over all nodes in the old implementation and notifies the
observers, whereas the new implementation relies on the recursive method
notifyRec defined in the new Node class.

We have shown backward compatibility of the implementations using the
BCVERIFIER tool. In the following, we give the most relevant parts of the ISL
specification that was used. The first step is to establish a relation between
the heap state of the old and the new implementation. Similarly to the OBool

example, we use a bijection between the internal Node objects. The bijection
is constructed such that the pair (null, null) is part of the relation. For two
corresponding Observable objects, the first node of the old implementation and
the first real node, skipping the sentinel node, are in the bijection. The sentinel
node is not in the relation. If two nodes are in the relation, the nodes referred
to by the next fields are also in the relation, and the observer objects which are
stored in the ob fields are corresponding:

var binrelation bij = add(empty(), null, null);
invariant bijective(bij) ∧ related(bij, null, null);
invariant forall old Observable l1, new Observable l2 ::
l1 ∼ l2 ⇒ related(bij, l1.fst, l2.snt.next);

invariant forall old Node n1, new Observable l2 :: !related(bij, n1, l2.snt);
invariant forall old Node n1, new Node n2 ::
related(bij, n1, n2) ⇒ related(bij, n1.next, n2.next) ∧ n1.ob ∼ n2.ob;

Similarly to the OBool example, to verify the add methods, the bijection needs
to be updated with the right values:

var old Node x1 = null;
var new Node x2 = null;

117

Chapter 7 Experience and Evaluation

package util; // old and new impl.
public interface Observer {
public void notifyObs();

}

1package util; // old impl.
2class Node {
3Observer ob;
4Node next;
5}

1package util; // new impl.
2class Node {
3private Observer ob;
4private Node next;
5

6Node(Observer ob, Node next) {
7this.ob = ob;
8this.next = next;
9}
10

11Node getNext() {
12return next;
13}
14

15void setNext(Node next) {
16this.next = next;
17}
18

19Observer getObs() {
20return ob;
21}
22

23void notifyRec() {
24ob.notifyObs();
25if (next != null) {
26next.notifyRec();
27}
28return; // dummy statement
29}
30}

Figure 7.10: ObservableList example (Observer and Node)

118

7.5 Larger Case Study: ObservableList

1package util; // old impl.
2public class Observable {
3Node fst;
4int modCount = 0;
5

6public void add(Observer ob) {
7if (ob == null) return;
8Node newNode = new Node();
9newNode.ob = ob;

10newNode.next = fst;
11fst = newNode;
12modCount++;
13}
14

15public Observer get(int i) {
16int c = 0;
17Node n = fst;
18while(c < i) {
19if (n != null) {
20n = n.next;
21c++;
22} else { break; }
23}
24if (n != null) { return n.ob; }
25else { return null; }
26}
27

28public void notifyAllObs() {
29Node n = fst;
30while (n != null) {
31n.ob.notifyObs();
32n = n.next;
33}
34return; // dummy statement
35}
36

37public Iterator iterator() {
38return new MyIter(this);
39}
40}

1package util; // new impl.
2public class Observable {
3Node snt = new Node(null, null);
4int modCount = 0;
5

6public void add(Observer ob) {
7if (ob == null) return;
8snt.setNext(new Node(ob,
9snt.getNext()));
10modCount++;
11}
12

13public Observer get(int i) {
14Node n = snt.getNext();
15for (int c = 0; c < i; c++) {
16if (n == null) return null;
17n = n.getNext();
18}
19if (n == null) return null;
20return n.getObs();
21}
22

23public void notifyAllObs() {
24Node n = snt.getNext();
25if (n != null) n.notifyRec();
26}
27

28public Iterator iterator() {
29return new ObsIter(this);
30}
31}

Figure 7.11: ObservableList example (Observable)

119

Chapter 7 Experience and Evaluation

package util; // old and new impl.
public interface Iterator {
boolean hasNext();
Observer next();

}

1package util; // old impl.
2class MyIter implements Iterator {
3private Node n;
4private Observable o;
5private int cnt;
6

7MyIter(Observable o) {
8this.o = o;
9this.n = o.fst;

10this.cnt = o.modCount;
11}
12

13public boolean hasNext() {
14if (o.modCount != cnt)
15return false;
16return n != null;
17}
18

19public Observer next() {
20if (o.modCount != cnt)
21return null;
22if (n == null)
23return null;
24Observer temp = n.ob;
25n = n.next;
26return temp;
27}
28}

1package util; // new impl.
2class ObsIter implements Iterator {
3private Node n;
4private Observable o;
5private int cnt;
6

7ObsIter(Observable o) {
8this.o = o;
9this.n = o.snt.getNext();
10this.cnt = o.modCount;
11}
12

13public boolean hasNext() {
14if (o.modCount != cnt)
15return false;
16return n != null;
17}
18

19public Observer next() {
20if (o.modCount != cnt)
21return null;
22if (n == null)
23return null;
24Observer temp = n.getObs();
25n = n.getNext();
26return temp;
27}
28}

Figure 7.12: ObservableList example (Iterator, MyIter and ObsIter)

120

7.5 Larger Case Study: ObservableList

invariant x1 == null ∧ x2 == null;
local place p1 = line 11 of old Observable assign x1 = newNode nosync;
local place p2 = line 7 of new Node assign x2 = this nosync;
assign bij = if x1 != null ∧ x2 != null then add(bij, x1, x2) else bij;
assign x1 = null;
assign x2 = null;

The local places have the option nosync to configure that these places are not
synchronized to places in the old implementation, i.e., they only serve to insert
the assignment expressions in the code.

To verify the get methods, we define local places that synchronize the execu-
tions of the while and the for loop:

local place q1 = line 20 of old Observable when c < i ∧ n != null;
local place q2 = line 16 of new Observable when c < i ∧ n != null;
local invariant at(q1)⇔ at(q2);
local invariant at(q1) ∧ at(q2) ⇒ related(bij, eval(q1, n), eval(q2, n))
∧ eval(q1, c) == eval(q2, c) ∧ eval(q1, i) == eval(q2, i);

Finally, to verify the notifyAllObs methods, we define local places that syn-
chronize each loop iteration to a recursive call. Here it is important to encode
the shape of the call stack for the new implementation, i.e., that the method
notifyRec was originally called from the method notifyAllObs:

local place pcall = call notifyRec in line 25 of new Observable nosync;
local place pn1 = line 31 of old Observable when n != null;
local place pn2 = line 24 of new Node when topFrame(new) > 0 ∧ at(pcall, 0);
local invariant at(pn1)⇔ at(pn2);
local invariant at(pn1) ∧ at(pn2) ⇒ related(bij, eval(pn1, n), eval(pn2, this));

The function topFrame(new) yields the offset of the current (top) stack frame
in the current library stack slice of the new implementation. The function
at(pcall, 0) determines whether the stack frame at offset 0 (bottom of the current
stack slice) is currently at the place pcall. Similar as for the get methods, we
state that the node referred to by n in the loop and the node referred to by
this in the recursive method are in the bijection bij. We need to take special
care that this property is preserved as well after the notification of an observer
with the notifyObs method. Notifying an observer can lead to reentrant calls. A
program context can for example call the method add during the notification.
Similar as for the heaps (see Section 7.3), all knowledge about ghost variables,
that is not stated in the coupling invariant, is dropped when the call is inlined
into the verification condition. This means that after the calls we have lost the
information that the variables n and this are in the bijection. This information
needs to be added as an invariant:

121

Chapter 7 Experience and Evaluation

place pc1 = call notifyObs in line 31 of old Observable nosplit;
place pc2 = call notifyObs in line 24 of new Node nosplit;
invariant forall int s :: librarySlice(old, s) ∧ at(pc1, s) ∧ at(pc2, s) ⇒

related(bij, eval(pc1, s, n), eval(pc2, s, this));

The nosplit option denotes that the call is inlined into the verification condition.
The invariant quantifies (implicitly) over all library stack slices, which means
that the property must not only hold for the topmost stack slice, but all stack
slices. This allows the verifier to check that the property is not destroyed by
other interactions (e.g., by calling the method add during the notification).
As nodes are only added to the bijection and never removed, the property is
trivially preserved.6

Each loop iteration is connected to a call of the recursive method. Finally, we
have the situation where the loop condition and the condition for the recursive
call do not hold anymore. In this case, the execution in the old implementation
leaves the loop. In the new implementation, the execution is left with a stack
slice which has a size that represents the number of Node objects visited. As
this size is not statically fixed, the path that ends all the notifyRec method
invocations is not bounded in size and the verifier needs assistance to prove
termination. We introduce two local places, one after the loop and another at
the end of the notifyRec method. As our tool chain currently only allows the
definition of local places before an existing statement, we introduce two dummy
return statements in the library implementations. Finally, we use asynchronous
execution by stalling the old implementation at the old place up to the point
where the stack slice of the new implementation has size 1. The size of the stack
slice of the new library implementation serves as the termination measure:

local place qn1 = line 34 of old Observable
stall when topFrame(new) > 1 with measure topFrame(new);

local place qn2 = line 28 of new Node when topFrame(new) > 0 ∧ at(pcall, 0);
local invariant at(qn1)⇔ at(qn2);

The last step is to prove is that the executions starting from qn1 and qn2 are
properly simulated. This follows directly from the shape of the stack specified
for qn2 and the negated stalling condition for qn1.

For the iterators, a few additional invariants are necessary. First, the ref-
erenced lists must be non-null and cnt must not exceed modCount. Then, for
corresponding iterators, the cnt value must be equal and the referenced lists
corresponding. If the iterators are not invalidated (cnt == o.modCount), the
referenced nodes must be in the internal bijection bij.

6Note that this still allows nodes to be removed from the list.

122

7.5 Larger Case Study: ObservableList

invariant forall old MyIter i :: i.o != null; // same for new ObsIter
invariant forall old MyIter i :: i.cnt <= i.o.modCount; // same for new ObsIter
invariant forall old MyIter i1, new ObsIter i2 ::
i1 ∼ i2 ⇒ i1.cnt == i2.cnt ∧ i1.o ∼ i2.o;

invariant forall old MyIter i1, new ObsIter i2 ::
i1 ∼ i2 ∧ i1.cnt == i1.o.modCount ⇒ related(bij, i1.n, i2.n);

This concludes the example. In this chapter, we have seen that ISL, using a
manageable set of specification concepts, can be readily used to specify coupling
relations between complex changes in library implementations. In the following
chapter, a more structured overview of ISL is given, together with a tool that
automatically verifies all of the presented examples.

123

8 Specification and Tool Support

Computers do not solve problems
– computers carry out solutions, specified by people, to problems.

— D. D. Spencer

This chapter introduces the implementation of the reasoning approach, de-
tailed in the previous chapters. The BCVERIFIER tool takes two library implemen-
tations and an ISL specification as input, and checks backward compatibility. It
fully verifies all the examples in this thesis. Section 8.1 presents an overview of
the ISL specification language, Section 8.2 the BCVERIFIER tool, and Section 8.3
related work on specification and verification approaches.

8.1
Invariant Specification Language

ISL is a first-order logic-like specification language that provides facilities to
express complex data and control flow relations between two library implemen-
tations. In the following, we give a short overview of the language.

8.1.1 Syntax

The syntax of ISL is presented in Figure 8.1. Non-terminals are represented in
ALL CAPS. We use the meta-symbol | to denote alternatives and the brackets

�

...
�

to group elements. The meta-symbol
�

X
�

? is used to denote an optional item
X and

�

X
�

∗ to denote an arbitrary sequence of elements X. The non-terminal
ID represents identifiers and INT integer constants. In contrast to the previous

125

Chapter 8 Specification and Tool Support

chapters where specifications were written using logical connectives, we use
the ASCII representation of ISL in this chapter. The logical connectives have
the following ASCII representation in ISL: 1)⇒ becomes ==> 2)⇔ becomes
<==> 3) ∧ becomes && and 4) ∨ becomes ||.

8.1.2 Types and Semantics

In the following, we present the types occurring in ISL specifications and an
informal semantics. A full formalization is out of scope for this thesis.

ISL supports the following types:

◦ Java primitive types boolean and int.

◦ Java class and interface types parameterized with library version. The
library version is either old or new. The Java type can be referenced by the
fully qualified name or just by the name of the class if it is unambiguous.

◦ The special place type that is used to type places.

◦ The special built-in binrelation type defining binary relations on reference
values (i.e., object identifiers or null).

Built-in functions. ISL only supports built-in functions, presented in the
following.

◦ boolean exposed(Object o) checks if the object o is exposed.

◦ boolean createdByLibrary(Object o) checks if the object o is created by the
library or the program context.

◦ int topSlice(VERSION v) returns the index of the top-most stack slice in
the stack of the old or the new library implementation.

◦ int topFrame(VERSION v, int slice) returns the index for the top-most stack
frame in the stack slice indexed by slice for the old or the new library
implementation.

◦ int topFrame(VERSION v) is a shorthand for topFrame(v, topSlice(v)).

◦ boolean librarySlice(VERSION v, int slice) checks if the stack slice indexed
by slice in the stack of the old or new library implementation belongs to
the library.

126

8.1 Invariant Specification Language

SPECIFICATION ::=
�

DECLARATION
�

∗

DECLARATION ::=
�

local
�

? invariant EXPRESSION ;

|
�

local
�

? place ID = PROGPOS
�

when EXPRESSION
�

?
�

STALLCONDITION
�

?
�

ASSIGN
�

∗
�

nosplit
�

?
�

nosync
�

?;

| var VARDEF = EXPRESSION ;
| ASSIGN ;

PROGPOS ::= line INT of TYPE | call ID in line INT of TYPE

ASSIGN ::= assign ID = EXPRESSION

STALLCONDITION ::= stall when EXPRESSION
�

with measure EXPRESSION
�

?

EXPRESSION ::= ID
| true | false | null | INT // literals
| EXPRESSION . ID // �eld access
| TYPE . ID // static �eld access
| UNARYOPERATOR EXPRESSION
| EXPRESSION BINARYOPERATOR EXPRESSION
| EXPRESSION instanceof TYPE // Java instanceof operator
| if EXPRESSION then EXPRESSION else EXPRESSION
| (EXPRESSION) // parenthesized expression

| ID (
�

EXPRESSION
�

, EXPRESSION
�

∗
�

?) // function call

|
�

forall | exists
�

VARDEF
�

, VARDEF
�

∗ :: EXPRESSION

| VERSION

VARDEF ::= TYPE ID

TYPE ::= int | boolean | binrelation | VERSION ID
�

.ID
�

∗

VERSION ::= old | new

BINARYOPERATOR ::= ∼ // correspondence relation
| + | − | * | / | % | == // Java operators
| != | < | <= | > | >= | && | || // Java operators
| ==> | <==> // other logical operators

UNARYOPERATOR ::= ! | − // Java operators

Figure 8.1: Syntax of ISL

127

Chapter 8 Specification and Tool Support

◦ boolean librarySlice(VERSION v) is a shorthand for librarySlice(v, topSlice(v)).

◦ boolean at(place p, int slice, int frame) checks if the stack frame indexed
by frame in the stack slice indexed by slice is currently at place p.

◦ boolean at(place p, int slice) is a shorthand for at(p, slice, topFrame(v,

slice)) where v is the version of the place p.

◦ boolean at(place p) is a shorthand for at(p, topSlice(v)) where v is the ver-
sion of the place p.

◦ T eval(place p, int slice, int frame, EXPRESSION<T> e) evaluates the ex-
pression e in the context of the place p. This means that local Java
variables, that are defined at the given place, can be used. The values of
the variables will be taken from the stack frame indexed by frame of the
stack slice indexed by slice. The expression e is typed using the type of
the local Java variables at place p.

◦ T eval(place p, int slice, EXPRESSION<T> e) is a shorthand for eval(p,

slice, topFrame(v, slice), e) where v is the version of the place p.

◦ T eval(place p, EXPRESSION<T> e) is a shorthand for eval(p, topSlice(v),
e) where v is the version of the place p.

◦ boolean related(binrelation b, old Object o1, new Object o2) checks if the
pair (o1, o2) is in the relation b.

◦ binrelation empty() returns the empty binary relation on reference values.

◦ binrelation add(binrelation b, old Object o1, new Object o2) returns the re-
lation which is the same as b except where the pair (o1, o2) is added.

◦ binrelation remove(binrelation b, old Object o1, new Object o2) returns the
same relation as b except where the pair (o1, o2) is removed.

Operators. All boolean operators are short-circuit operators and evaluated
from left to right. The right expression is only evaluated if the value of the
left expression does not already fix the value of the overall expression. The
correspondence operator ∼ expects two reference types: one from the old
library implementation on the left hand side and one from the new library
implementation on the right hand side. An expression o1 ∼ o2 evaluates to true

if and only if o1 and o2 are two objects in correspondence or o1 and o2 are both
null.

128

8.1 Invariant Specification Language

Top-level constructs. Top-level expressions appearing in local place defini-
tions are implicitly wrapped with eval for that place. This means that local Java
variables can directly be used in the definition without using eval expressions
(see, e.g., the definition of p1 in Figure 7.7). Termination measures are specified
by integer expressions which must be positive. This becomes, together with
the decreasing property, part of the proof obligations.

Global invariants (without the keyword local) have to hold in observable
states and at local places. Local invariants must hold at local places. Local
invariants can be considered as syntactic sugar: local invariant e; is equivalent
to invariant librarySlice(topSlice(old)) ⇒ e;.

Local places with a stalling condition that are defined for the old implemen-
tation must have a termination measure, as we must show that there is only a
finite number of steps in the new implementation whenever execution is stalled
in the old implementation. Conversely, stalling local places that are defined for
the new implementation must not have a termination measure.

8.1.3 Well-formedness

To check whether a place or an invariant is well-formed, a separate proof
obligation is generated. Typical well-formedness conditions for expressions are
the following:

◦ There must not be any division by zero.

◦ null must not be dereferenced.

As all boolean operators are short-circuit operators the first expression in the
following example is well-formed and the second expression is not well-formed.

x > 0 && y/x == 2
y/x == 2 && x > 0

The order in which invariants are defined is important. Preceding invariants
can be used to show that following invariants are well-formed. In the following
example the first invariant states that c.x is never zero and thus the second
invariant is well-formed. If the invariants were defined in reverse order, the
well-formedness of the division could not be shown.

invariant forall old C c :: c.x != 0
invariant forall old C c :: 10 / c.x > 3

In the following, we give a definition of well-formedness for expressions
as a function WD

�

...
�

. We use the meta brackets
��

to distinguish them from

129

Chapter 8 Specification and Tool Support

standard brackets in the ISL language. TR
�

...
�

denotes the translation function,
which is not detailed in the thesis. We present the well-formedness checks for
the most important expressions.

WD
�

if e then e1 else e2
�

:= WD
�

e
�

∧
(TR

�

e
�

⇒ WD
�

e1
�

) ∧ (¬TR
�

e
�

⇒ WD
�

e2
�

)

WD
�

e1 && e2
�

:= WD
�

e1
�

∧ (TR
�

e1
�

⇒ WD
�

e2
�

)

WD
�

e1 ==> e2
�

:= WD
�

e1 && e2
�

WD
�

e1 || e2
�

:= WD
�

e1
�

∧ (¬TR
�

e1
�

⇒ WD
�

e2
�

)

WD
�

e1 / e2
�

:= WD
�

e1
�

∧ WD
�

e2
�

∧ TR
�

e2 != 0
�

WD
�

e1 % e2
�

:= WD
�

e1 / e2
�

WD
�

e.f
�

:= WD
�

e
�

∧ TR
�

e != null
�

WD
�

exposed(e)
�

:= WD
�

e
�

∧ TR
�

e != null
�

WD
�

createdByLibrary(e)
�

:= WD
�

e
�

∧ TR
�

e != null
�

WD
�

at(p, es, ef)
�

:= WD
�

es
�

∧ WD
�

ef
�

∧
TR
�

0 <= es
�

∧ TR
�

es <= topSlice(v)
�

∧
TR
�

0 <= ef
�

∧ TR
�

ef <= topFrame(v,es)
�

// where v is the version of the place p

WD
�

eval(p, es, ef, e)
�

:= WD
�

at(p,es,ef)
�

∧ TR
�

at(p,es,ef)
�

∧ WD
�

e
�

8.1.4 Discussion

The inclusion of some ISL features, such as binary relations and ghost variables,
was example-driven. The core features are, however, directly motivated by the
need to access the enhanced configurations (heap and stack) as well as using the
correspondence relation to relate reference values of both configurations. Here,
the stack allows direct indexing (with positive integer expressions), whereas
such an access to the heap is not useful due to the non-deterministic nature
of the object allocator. Heap access is realized by using local variables on the
stack or by quantifying over all objects of a certain type. The syntax of ISL is
kept very simple. For example, stack access is realized with a few pre-defined
functions. A more powerful syntax would certainly make specifications feel
more natural. One important and conflicting goal of the current language draft
is however to facilitate the rapid prototyping of new concepts.

Further more powerful features might be desirable for other examples. Mi-
grating more features from specification-based techniques in the single-program
world would probably be extremely useful, e.g., pre-post specifications of meth-
ods, further specification-only types such as sets, lists and maps, and higher-level

130

8.2 The BCVERIFIER Tool

specification constructs for typically occurring relations. Other features become
superfluous in the two-program world or can already be nicely simulated with
the given approach. A good example for this are ghost variables on the instance
level. Currently ISL only supports ghost variables that are defined in a global
scope. Ghost fields or local variables cannot directly be specified but can easily
be simulated by standard fields and local variables. A library developer can
introduce these additional variables (and corresponding assignments) directly
in the implementations. An additional proof obligation is then to show that
the same library implementation without ghost variables is equivalent to the
one using ghost variables, i.e., that the ghost variables have no effect on the
observable behavior.

8.2
The BCVERIFIER Tool

The main task of the BCVERIFIER implementation is to generate a represen-
tation of the libraries under investigation, the specification of the coupling
invariant and the proof obligations for the intermediate verification language
BOOGIE [Lei08]. BOOGIE is usually used as an intermediate language to study
correctness of single programs with respect to specifications, for example
Spec# [BLS05], Dafny [Lei10], or Chalice [LMS09]. The purpose of BOO-
GIE is to facilitate the generation of verification conditions for these complex
programming languages. Such generation is split into two parts; first, the
program and proof obligations are transformed into a corresponding BOOGIE

representation, from which the BOOGIE tool [Bar+05] can then generate logical
formulas which can be fed to theorem provers. For our studies, the SMT solver
Z3 [MB08] was used. The BOOGIE encoding is explained in the Master thesis
of Weber [Web12]. A tricky part is to encode the interleaving of the executions
of both library implementations properly. In contrast to existing encodings of
the aforementioned languages, our encoding does not only reify a single stack
frame but the complete stack in the BOOGIE program. To encode the complex
control flow from and to the two library implementations (e.g., local places),
both library implementations are generated into a single BOOGIE procedure.
The control flow is then encoded using unstructured control statements (goto).

The BCVERIFIER accepts specifications using one of two possible syntaxes:
(1) ISL (see Section 8.1) is a high level specification language to specify the
coupling invariant. Specifications in this language are validated against the Java
library code and transformed into a consistent BOOGIE specification. (2) The

131

Chapter 8 Specification and Tool Support

low-level syntax uses pure BOOGIE expressions, which are directly inserted as
is into the generated BOOGIE representation.

The BCVERIFIER also offers a number of configuration options. The recursion
and loop unroll cap needs to be fixed to a reasonable value by the program-
mer. This triggers how often the BOOGIE program is (soundly) unrolled. For
example, the OBool example needs a higher unroll count as the Cell example
because of control flow paths that involve internal method and constructor
calls. Unfortunately, unrolling is done globally at the level of the generated
interleaved BOOGIE procedure. Even though most paths through the unrolled
procedure are infeasible, the unrolled procedure is fed in its whole to the SMT
solver. Here, a two-pass approach would be better, incrementally checking
reachability of certain paths and then selective unrolling [LQL12].

The performance of BCVERIFIER depends on the unroll count, and how much
aliasing is involved in the example. Examples without complex aliasing are
usually verified within a few seconds, whereas more elaborate examples can
take up to a minute. We believe, however, that encoding aliasing properties
in a smarter way (e.g., using ownership techniques) and using static analyses
that over-approximate reachability of program paths can vastly improve the
performance. Changes to BOOGIE itself over the course of the development of
BCVERIFIER also improved the performance dramatically. For example, BOOGIE

now interprets integer division and modulo, on which our BOOGIE model of
stack slices relies.

The BCVERIFIER tool currently supports a limited subset of Java. In particu-
lar, arrays, floats, doubles, static fields and exceptions are not yet supported.
Furthermore, the tool is unaware of the standard JDK library except that there
is a class java.lang.Object which is at the root of the type hierarchy. The user
feedback component of BCVERIFIER works as follows: when the verification
process fails, then the verifier returns a path through the library implementa-
tions and the proof obligation that failed. To improve the quality of BCVERIFIER

and gain confidence in its results, we use an automated suite of both posi-
tive and negative tests. We also use smoke tests, where the BOOGIE verifier
searches for infeasible paths through the generated BOOGIE program, to detect
an inconsistent axiomatization of our formal model.

A running instance of the web frontend of BCVERIFIER is available here [BCVb]
and the code of BCVERIFIER here [BCVa].

132

8.3 Related Work

8.3
Related Work

Of the works mentioned in Sections 5.2 and 6.3, only Leino and Yessenov
present an embedding of their reasoning approach into a mechanized ver-
ification framework. While tackling the more general problem of stepwise
refinement of class specifications into implementations, they impose a set of
restrictions: (1) The refinement relation is established between single classes.
(2) As refinements are described by sets of changes, the classes must share
structural similarities in their method bodies. (3) Callbacks and more complex
control flow relations are not considered.

In the following, we present work on program comparison techniques that
were not specifically developed for the object-oriented setting. Relational Hoare
Logic [Ben04] and Relational Separation Logic [Yan07] provide custom logics
to reason about program equivalence. Currently, only simple imperative lan-
guages are considered, structurally similar programs assumed, and (automated)
verifiers based on these logics do not exist. In the area of compiler optimiza-
tions, a lot of work has been done on proving intra-procedural transformations.
Kundu, Tatlock, and Lerner [KTL09] employ Parameterized Equivalence Check-
ing (PEC) to fully automatically verify equivalence of low-level program code
using bisimulation relations. The PEC approach automatically infers a correla-
tion relation (which, in our setting, would amount of automatically determining
local places and invariants). Asynchronous steps (i.e., stalling places), are not
covered by the approach.

Self-composition [BDR11] allows to describe information flow policies in
terms of a safety property; the idea is to sequentially compose a program
with a slightly modified version of itself and employ traditional verification to
check whether equal inputs lead to equal outputs. For Java programs, Darvas,
Hähnle, and Sands [DHS05] use a dynamic logic and the KeY tool, whereas
Naumann [Nau06] employs the ESC/Java and Spec# tools to verify information
flow properties. Leino and Müller [LM08] use self-composition to verify with
BOOGIE that two executions of the same method yield equivalent results.

Barthe, Crespo, and Kunz [BCK11] provide more sophisticated verification
conditions for equivalences in imperative programs using the notion of product
programs that supports a direct reduction of relational verification to standard
verification. The basic idea is to construct step-by-step a single program out
of two programs. We believe this to be difficult in the object-oriented setting.
First, the product program has to be represented in the language. As not every

133

Chapter 8 Specification and Tool Support

internally called method instance in one program needs to be represented by
a single method instance in another program, stacks of different size would
need to be merged. Another issue is dynamic dispatch, which would lead to a
quadratic blow up as all possible combinations of invocations would need to be
represented in the product program. Inspired by capabilities of their model, we
represented their rule for asynchronous steps by the concept of stalling places.

Godlin and Strichman [GS12] prove equivalence of closely related C pro-
grams, which they call regression verification. They operate under a fixed notion
of equivalence (functions with same input should emit same outputs) and use
uninterpreted functions for recursive calls. More complex value relations than
equivalence between internal function calls cannot be specified. Hawblitzel
et al. [Haw+13] describe a contract mechanism called Mutual Summaries to
modularly compare two procedural programs. The idea is to generalize single
program contracts that describe the effect of a procedure to two programs by
describing the relative effect of two procedures from different programs. To fit
the concept of specifications that describe relative procedural effects, loops first
need to be translated into tail-recursive procedures. Object-oriented features
are not considered and the notion of equivalence needs to be defined by the
programmer. By relating computational effects of internal parts of libraries,
the Mutual Summaries approach can handle aspects that are not possible to
describe using local invariants, like reordering of internal method calls. The
concepts are currently being realized in the tool SymDiff [Lah+12], which
also uses the automatic program verifier BOOGIE. At the moment, SymDiff
only supports simple syntactic mappings to match procedures, globals, and
constants of two programs. In closely related work [Lah+13], Lahiri et al. give
a different approach (named differential assertion checking) to write relative
specifications. This approach is amenable to automatic inference of relative
specifications for pairs of procedures.

134

9 Conclusion

Life can only be understood backwards; but it must be lived forwards.

— Søren Kierkegaard

Backward compatibility for class libraries is an important problem to study.
This thesis provides a formal model of class libraries and backward compatibility
and integrates it in a mechanized approach. The last chapter of this thesis gives,
in light of the presented material, a recapitulation of the contributions made
(Section 9.1). Finally, it provides directions for future work and gives a general
outlook (Section 9.2).

9.1
Contributions

The contributions made by this thesis are manyfold, the most prominent ones
of which are:

◦ A formal treatment of source compatibility and its implications on lan-
guage and program design.

◦ The development of a fully abstract trace-based semantics that captures
the most essential properties of object-oriented class libraries.

◦ The development of a sound and complete reasoning approach for back-
ward compatibility and the development of a specification language to
support said reasoning approach.

◦ The implementation of the reasoning approach in an automatic verifier.

135

Chapter 9 Conclusion

Although each contribution can be judged on its own merits individually,
the combination of these puzzle pieces yields a powerful approach to tackle
backward compatibility for class libraries.

Historical Background. Arnd Poetzsch-Heffter, Mathias Weber and Peter
Zeller contributed directly to the goal of this thesis. To better detail the contri-
butions made by them, I give an overview of how this thesis came about (to the
best of my knowledge). My thesis advisor Arnd Poetzsch-Heffter provided the
initial idea to develop a fully abstract semantics for packages. This was sparked
by earlier work of Poetzsch-Heffter, Gaillourdet, and Schäfer to develop a fully
abstract semantics for a new (dynamic) component model [PGS08].1 The
non-standard nature of the component model led to a complicated semantic
model, which hindered practical uses. The goal of the subsequent work carried
out by Poetzsch-Heffter and myself was to derive a useful practical model for a
well-known notion of component. Hence, Java packages were chosen. Many
versions of the semantics for various subsets of Java were developed over the
years 2009–2011 until a practically relevant subset was identified [WP11].
Various forms of the semantics and notions of observation were chosen for the
given language subset. In the end, a small subset was identified that contained
many relevant aspects of Java and led itself to a full formalization. Later, I
adapted these definitions to a setting with a differently formalized notion of
observation (reachability of a certain state instead of termination) and used
specialized simulations to prove the connection to the operational semantics.
Meanwhile (2008–2010), I studied source compatibility aspects on a larger Java
subset in more detail [WP10] and developed an implementation of a source
compatibility checker for a substantial Java subset [SCWeb]. The Encapsulation
Analyzer [SCWeb], used in Section 2.4.1, was developed as part of a Bachelor
thesis by Mathias Weber that I supervised. The BCVERIFIER (2012–2013) was a
joint implementation effort with Weber and Zeller which I coordinated. Based
on my earlier results to manually encode the verification conditions in Boogie
[WP12], Weber implemented most of the library implementation to Boogie
translation as part of his Master thesis [Web12]. This sparked the initial ideas
for a high-level Java-like specification language to describe coupling invariants,
which was implemented by Zeller as a student assistant. Finally, to add a good
user experience to the tool, I developed a web frontend for BCVERIFIER.

1My master’s thesis was based on this component model [Wel08a; Wel08b]

136

9.2 Discussion and Outlook

9.2
Discussion and Outlook

The story does not end here, of course. There are many scenarios for backward
compatibility of class libraries for which the presented approach does not
provide satisfactory answers. In the following, I point out the limitations of the
model and discuss various directions for future work.

One of the strong points of the presented theory of backward compatibility
is that it allows the representation of the library implementations to change
in complex ways. Small changes to library implementations (e.g., renaming
a field) are currently, however, not well supported. Such changes at present
require the library developer to state as part of the coupling invariant that most
parts of the state remain indeed the same (in the form of an identity relation on
the states modulo the correspondence relation). To overcome this limitation,
it is necessary to either have better support at the theory or at the tool level
(e.g., automatic inference of properties). To further enhance automation, a vast
improvement would be to include in BCVERIFIER an automatic inference of
single-program properties such as nullness or exposedness of fields. Ultimately,
it would be useful to infer parts of the coupling invariants and establish local
invariants. Here, the additional difficulty of local invariants over loop invariants
is to find the program points that should be matched. A first way to automatically
establish such specifications might be to derive them from recorded refactoring
operations.

Although the presented reasoning method is, in theory, complete with respect
to the formalized notion of backward compatibility, from a practical point of
view, some coupling relations are very difficult (if not impossible) to express
in a concise way. The presented specification language also has its limitations.
Some specifications are not easily expressible in ISL, either because they become
very large or ISL not powerful enough. ISL is solely based on invariants. This
means that the properties can only be expressed in terms of invariants. This
makes it very hard to reason about relative effects, for example the change of
order of two commuting operations. If the control flow and data manipulation
of related data of the library implementations do not correspond in a rather
linear way, invariant-based specifications deter to specifications that capture the
full functional behavior. For example, if one loop with n iterations doing two
things becomes replaced by two consecutive loops with n iterations, coupling
invariants are probably not the right tool (from a reasoning point of view).
Coupling invariants correspond to class invariants in the single-program setting,

137

Chapter 9 Conclusion

lifted from the level of single classes to libraries, whereas local invariants can
be seen as a generalization of loop invariants to two programs. Migrating
more features from specification-based techniques in the single-program world
to the world of two programs could also be extremely useful. Such features
include pre-post specifications of methods, further specification-only types such
as sets, lists and maps, and higher-level specification constructs for typically
occurring relations. For example, this could contribute to an easy description
of the relation between a loop and its corresponding tail-recursive method. On
the downside, reasoning about effects of computation allows us to handle more
scenarios but introduces a whole new level of complexity (specification of state
transformers instead of states).

The conciseness of ISL specifications could also be improved. Based on my
experience with the case studies, the specification code has about the size of
the code that has been changed in the library. It can be further decreased
by improving the specification language ISL. Currently, the syntax of ISL is
quite verbose. Places are textually defined and invariants textually attached to
certain places. With better tool support, places and invariants could be directly
inserted into the code or attached like break-points for debugging (e.g., in a
verification IDE). I expect that automation techniques can be developed to find
coupling invariants for the code parts with no changes or the parts with simple
syntactic changes (e.g., by tracking refactoring steps). Having a formal model
for (a subset of) ISL would also provide a strong case for examining further
higher-level specification constructs.

Another aspect not covered in this thesis are more complex information hiding
policies. This brings in specifications (that need to specify such policies) or
good defaults for such policies (often found in various ownership disciplines).
Sometimes we are not interested in the equivalence of the full behavior of
two library implementations but only under a restricted set of contexts or a
subset of the API. For example, we might be interested in checking that the
new version of a library has the same behavior as the old one with respect
to a subset of its interface methods. Here BCVERIFIER could be enhanced to
consider only a marked subset of methods as entry points (e.g., as in the case
of the Eclipse PDE API Tools [EclPDE]). Currently this can be regulated by
using appropriate access modifiers. It remains for future work to investigate
other more complex restrictions on contexts and to extend the specification
and verification technique to handle these restrictions. Other weaker notions
of compatibility might be useful, e.g., those that do not check that returned
values are related/equal, but only check that the new implementation does
not crash when the old implementation shows behavior. This opens up the

138

9.2 Discussion and Outlook

possibility for the user to specify a broader relation between values that appear
as input/output, e.g., a relation on references that is not necessarily a bijection.

To make the approach usable in practice, additional language features must
be considered. Concurrency and exceptions are having especially big impacts
on the existing model. Another important aspect is to introduce modularity
in the reasoning approach to ensure scalability of the approach. Possibilities
to achieve this are structural disciplines (e.g., [BN05b]), special logics (e.g.,
separation logic [ORY01] or region logic [BNR08]), or other more ad-hoc
approaches (e.g., [Coh+10]).

Bringing formal verification tools to the mainstream is a crucial challenge
for the twenty-first century. I hope that this thesis contributes to the challenge
and serves as incentive to other researchers to leverage the advancements in
automatic program verification to construct similar (and more powerful) tools
in the setting of backward compatibility verification.

139

Bibliography

[Ábr+04] Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, and
Martin Steffen. “Object Connectivity and Full Abstraction for a
Concurrent Calculus of Classes”. In: ICTAC. Ed. by Zhiming Liu
and Keijiro Araki. Vol. 3407. Lecture Notes in Computer Science.
Springer, 2004, pp. 37–51 (cit. on pp. 10, 64, 67).

[ADR09] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. “State-dependent
representation independence”. In: POPL. Ed. by Zhong Shao and
Benjamin C. Pierce. ACM, 2009, pp. 340–353 (cit. on pp. 101,
108, 109).

[Anc+05] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and
Elena Zucca. “Polymorphic bytecode: compositional compilation
for Java-like languages”. In: POPL. Ed. by Jens Palsberg and Martín
Abadi. ACM, 2005, pp. 26–37 (cit. on p. 37).

[AZ01] Davide Ancona and Elena Zucca. “True Modules for Java-like Lan-
guages”. In: ECOOP. Ed. by Jørgen Lindskov Knudsen. Vol. 2072.
Lecture Notes in Computer Science. Springer, 2001, pp. 354–380
(cit. on p. 37).

[AZ04] Davide Ancona and Elena Zucca. “Principal typings for Java-like
languages”. In: POPL. Ed. by Neil D. Jones and Xavier Leroy. ACM,
2004, pp. 306–317 (cit. on p. 37).

[Bar+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. “Boogie: A Modular Reusable Verifier for
Object-Oriented Programs”. In: FMCO. Ed. by Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever.
Vol. 4111. Lecture Notes in Computer Science. Springer, 2005,
pp. 364–387 (cit. on p. 131).

141

Bibliography

[Bar+06] Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin Grégoire,
Marieke Huisman, Jean-Louis Lanet, Mariela Pavlova, and Antoine
Requet. “JACK - A Tool for Validation of Security and Behaviour of
Java Applications”. In: FMCO. Ed. by Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever. Vol. 4709.
Lecture Notes in Computer Science. Springer, 2006, pp. 152–174
(cit. on p. 2).

[BAW98] Ralph-Johan J. Back, Abo Akademi, and J. Von Wright. Refinement
Calculus: A Systematic Introduction. Springer, Heidelberg, 1998
(cit. on p. 85).

[BCK11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Relational
Verification Using Product Programs”. In: FM. Ed. by Michael
Butler and Wolfram Schulte. Vol. 6664. Lecture Notes in Computer
Science. Springer, 2011, pp. 200–214 (cit. on pp. 111, 133).

[BCVa] BCVerifier Code Repository. https://softech.cs.uni-kl.de
/hg/public/bcverifier (cit. on pp. 10, 132).

[BCVb] BCVerifier Web Frontend. https://softech.cs.uni-kl.de/b
cverifier (cit. on pp. 10, 132).

[BDR11] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. “Secure
information flow by self-composition”. In: 21.6 (2011), pp. 1207–
1252 (cit. on p. 133).

[Ben04] Nick Benton. “Simple relational correctness proofs for static analy-
ses and program transformations”. In: POPL. Ed. by Neil D. Jones
and Xavier Leroy. ACM, 2004, pp. 14–25 (cit. on p. 133).

[BG05] Joshua Bloch and Neal Gafter. Java Puzzlers: Traps, Pitfalls, and
Corner Cases. Addison-Wesley Professional, 2005 (cit. on p. 32).

[BGP01] Marina Biberstein, Joseph Gil, and Sara Porat. “Sealing, Encap-
sulation, and Mutability”. In: ECOOP. Ed. by Jørgen Lindskov
Knudsen. Vol. 2072. Lecture Notes in Computer Science. Springer,
2001, pp. 28–52 (cit. on p. 33).

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, eds. Verifi-
cation of Object-Oriented Software: The KeY Approach. LNCS 4334.
Springer-Verlag, 2007 (cit. on p. 2).

142

https://softech.cs.uni-kl.de/hg/public/bcverifier
https://softech.cs.uni-kl.de/hg/public/bcverifier
https://softech.cs.uni-kl.de/bcverifier
https://softech.cs.uni-kl.de/bcverifier

Bibliography

[BJ01] Joachim van den Berg and Bart Jacobs. “The LOOP Compiler for
Java and JML”. In: TACAS. Ed. by Tiziana Margaria and Wang Yi.
Vol. 2031. Lecture Notes in Computer Science. Springer, 2001,
pp. 299–312 (cit. on p. 2).

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. “The
Spec# Programming System: An Overview”. In: vol. 3362. Lecture
Notes in Computer Science. Springer-Verlag, 2005, pp. 49–69 (cit.
on pp. 2, 131).

[BMW00] Ralph-Johan Back, Anna Mikhajlova, and Joakim von Wright.
“Class Refinement as Semantics of Correct Object Substitutability”.
In: 12.1 (2000), pp. 18–40 (cit. on p. 91).

[BN05a] Anindya Banerjee and David A. Naumann. “Ownership confine-
ment ensures representation independence for object-oriented
programs”. In: 52.6 (2005), pp. 894–960 (cit. on pp. 8, 9, 90, 101,
106, 116, 117).

[BN05b] Anindya Banerjee and David A. Naumann. “State Based Owner-
ship, Reentrance, and Encapsulation”. In: ECOOP. Ed. by Andrew P.
Black. Vol. 3586. Lecture Notes in Computer Science. Springer,
2005, pp. 387–411 (cit. on pp. 91, 139).

[BNR08] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. “Re-
gional Logic for Local Reasoning about Global Invariants”. In:
ECOOP. Ed. by Jan Vitek. Vol. 5142. Lecture Notes in Computer
Science. Springer, 2008, pp. 387–411 (cit. on p. 139).

[BTF05] Ittai Balaban, Frank Tip, and Robert M. Fuhrer. “Refactoring sup-
port for class library migration”. In: OOPSLA. Ed. by Ralph E.
Johnson and Richard P. Gabriel. ACM, 2005, pp. 265–279 (cit. on
p. 35).

[Buc10] Alex Buckley. JSR 294 and Module Systems. http://blogs.or
acle.com/abuckley/entry/jsr_294_and_module_systems.
Jan. 2010 (cit. on p. 24).

[Bur+03] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
“An overview of JML tools and applications”. In: 80 (2003), pp. 75–
91 (cit. on p. 106).

143

http://blogs.oracle.com/abuckley/entry/jsr_294_and_module_systems
http://blogs.oracle.com/abuckley/entry/jsr_294_and_module_systems

Bibliography

[Cha+05] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
“Beyond Assertions: Advanced Specification and Verification with
JML and ESC/Java2”. In: FMCO. Ed. by Frank S. de Boer, Marcello
M. Bonsangue, Susanne Graf, and Willem P. de Roever. Vol. 4111.
Lecture Notes in Computer Science. Springer, 2005, pp. 342–363
(cit. on p. 105).

[CN96] Kingsum Chow and David Notkin. “Semi-automatic update of
applications in response to library changes”. In: ICSM. IEEE Com-
puter Society, 1996, pp. 359– (cit. on p. 35).

[Coh+10] Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies.
“Local Verification of Global Invariants in Concurrent Programs”.
In: CAV. Ed. by Tayssir Touili, Byron Cook, and Paul Jackson.
Vol. 6174. Lecture Notes in Computer Science. Springer, 2010,
pp. 480–494 (cit. on p. 139).

[Coo89] William R. Cook. A Denotational Semantics of Inheritance. 1989
(cit. on p. 90).

[Cor+03] John Corwin, David F. Bacon, David Grove, and Chet Murthy.
“MJ: a rational module system for Java and its applications”. In:
OOPSLA. Ed. by Ron Crocker and Guy L. Steele Jr. ACM, 2003,
pp. 241–254 (cit. on p. 37).

[CPN98] David G. Clarke, John Potter, and James Noble. “Ownership Types
for Flexible Alias Protection”. In: OOPSLA. Ed. by Bjørn N. Freeman-
Benson and Craig Chambers. ACM, 1998, pp. 48–64 (cit. on pp. 91,
104).

[Dar08] Joseph D. Darcy. Kinds of Compatibility. http://blogs.oracl
e.com/darcy/entry/kinds_of_compatibility. Aug. 2008
(cit. on pp. 15, 32).

[DHS05] Ádám Darvas, Reiner Hähnle, and David Sands. “A Theorem Prov-
ing Approach to Analysis of Secure Information Flow”. In: SPC.
Ed. by Dieter Hutter and Markus Ullmann. Vol. 3450. Lecture
Notes in Computer Science. Springer, 2005, pp. 193–209 (cit. on
p. 133).

[Dig+08] Danny Dig, Stas Negara, Vibhu Mohindra, and Ralph E. Johnson.
“ReBA: refactoring-aware binary adaptation of evolving libraries”.
In: ICSE. Ed. by Wilhelm Schäfer, Matthew B. Dwyer, and Volker
Gruhn. ACM, 2008, pp. 441–450 (cit. on p. 35).

144

http://blogs.oracle.com/darcy/entry/kinds_of_compatibility
http://blogs.oracle.com/darcy/entry/kinds_of_compatibility

Bibliography

[DJ06] Danny Dig and Ralph E. Johnson. “How do APIs evolve? A story
of refactoring”. In: 18.2 (2006), pp. 83–107 (cit. on pp. 1, 33).

[Dmi02] Mikhail Dmitriev. “Language-specific make technology for the Java
programming language”. In: OOPSLA. Ed. by Mamdouh Ibrahim
and Satoshi Matsuoka. ACM, 2002, pp. 373–385 (cit. on p. 36).

[DPW12] Ferruccio Damiani, Arnd Poetzsch-Heffter, and Yannick Welsch.
“A type system for checking specialization of packages in object-
oriented programming”. In: SAC. Ed. by Sascha Ossowski and
Paola Lecca. ACM, 2012, pp. 1737–1742 (cit. on pp. 2, 25, 35,
162).

[Dro+08] Sophia Drossopoulou, Adrian Francalanza, Peter Müller, and Alexan-
der J. Summers. “A Unified Framework for Verification Techniques
for Object Invariants”. In: ECOOP. Ed. by Jan Vitek. Vol. 5142.
Lecture Notes in Computer Science. Springer, 2008, pp. 412–437
(cit. on p. 5).

[DWE98] Sophia Drossopoulou, David Wragg, and Susan Eisenbach. “What
is Java Binary Compatibility?” In: OOPSLA. Ed. by Bjørn N. Freeman-
Benson and Craig Chambers. ACM, 1998, pp. 341–361 (cit. on
p. 37).

[Ecl12] Eclipse Naming Conventions. http://wiki.eclipse.org/Nam
ing_Conventions. Apr. 2012 (cit. on pp. 32, 33).

[EclPDE] Eclipse PDE API Tools. http://www.eclipse.org/pde/pde-a
pi-tools/ (cit. on pp. 1, 14, 34, 138).

[ECM06] ECMA. C# Language Specification (Standard ECMA-334, 4th edi-
tion). http://www.ecma-international.org/publication
s/standards/Ecma-334.htm. June 2006 (cit. on pp. 22, 30).

[Fil+10a] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok
Yang. “Abstraction for concurrent objects”. In: 411.51-52 (2010),
pp. 4379–4398 (cit. on p. 67).

[Fil+10b] Ivana Filipovic, Peter W. O’Hearn, Noah Torp-Smith, and Hongseok
Yang. “Blaming the client: on data refinement in the presence of
pointers”. In: 22.5 (2010), pp. 547–583 (cit. on pp. 91, 92).

145

http://wiki.eclipse.org/Naming_Conventions
http://wiki.eclipse.org/Naming_Conventions
http://www.eclipse.org/pde/pde-api-tools/
http://www.eclipse.org/pde/pde-api-tools/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

Bibliography

[FKF99] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
“A Programmer’s Reduction Semantics for Classes and Mixins”.
In: Formal Syntax and Semantics of Java. Ed. by Jim Alves-Foss.
Vol. 1523. Lecture Notes in Computer Science. Springer, 1999,
pp. 241–269 (cit. on pp. 7, 41).

[Fla+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. “Extended Static Checking
for Java”. In: PLDI. Ed. by Jens Knoop and Laurie J. Hendren.
ACM, 2002, pp. 234–245 (cit. on p. 2).

[For+95] Ira R. Forman, Michael H. Conner, Scott Danforth, and Larry
K. Raper. “Release-to-Release Binary Compatibility in SOM”. In:
OOPSLA. Ed. by Rebecca Wirfs-Brock. ACM, 1995, pp. 426–438
(cit. on p. 37).

[Fre06] Tammo Freese. “Refactoring-aware version control”. In: ICSE. Ed.
by Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa.
ACM, 2006, pp. 953–956 (cit. on p. 35).

[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995 (cit. on pp. 100, 116).

[Goe11] Brian Goetz. Interface evolution via virtual extension methods. htt
p://cr.openjdk.java.net/~briangoetz/lambda/Defende
r Methods v4.pdf. June 2011 (cit. on p. 33).

[Gos+05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. The Java Series. Addison-
Wesley, 2005 (cit. on pp. 15–17, 24, 32–34, 36, 37).

[GP11] Kathrin Geilmann and Arnd Poetzsch-Heffter. “Modular Checking
of Confinement for Object-Oriented Components using Abstract In-
terpretation”. In: International Workshop on Aliasing, Confinement
and Ownership. 2011 (cit. on p. 90).

[GPV01] Christian Grothoff, Jens Palsberg, and Jan Vitek. “Encapsulat-
ing Objects with Confined Types”. In: OOPSLA. Ed. by Linda M.
Northrop and John M. Vlissides. ACM, 2001, pp. 241–253 (cit. on
pp. 7, 13, 17).

[GS12] Benny Godlin and Ofer Strichman. “Regression Verification: Prov-
ing the Equivalence of Similar Programs”. In: (2012) (cit. on
p. 134).

146

http://cr.openjdk.java.net/~briangoetz/lambda/Defender Methods v4.pdf
http://cr.openjdk.java.net/~briangoetz/lambda/Defender Methods v4.pdf
http://cr.openjdk.java.net/~briangoetz/lambda/Defender Methods v4.pdf

Bibliography

[GY11] Alexey Gotsman and Hongseok Yang. “Liveness-Preserving Atom-
icity Abstraction”. In: ICALP (2). Ed. by Luca Aceto, Monika Hen-
zinger, and Jiri Sgall. Vol. 6756. Lecture Notes in Computer Sci-
ence. Springer, 2011, pp. 453–465 (cit. on p. 67).

[Haw+13] Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Hen-
rique Rebêlo. “Towards Modularly Comparing Programs Using Au-
tomated Theorem Provers”. In: CADE. Ed. by Maria Paola Bonacina.
Vol. 7898. Lecture Notes in Computer Science. Springer, 2013,
pp. 282–299 (cit. on p. 134).

[HD05] Johannes Henkel and Amer Diwan. “CatchUp!: capturing and
replaying refactorings to support API evolution”. In: ICSE. Ed. by
Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh.
ACM, 2005, pp. 274–283 (cit. on p. 35).

[Hen88] Matthew Hennessy. Algebraic theory of processes. MIT Press series
in the foundations of computing. MIT Press, 1988, pp. I–VI, 1–270
(cit. on pp. 51, 56).

[Her+07] Sebastian Herold et al. “CoCoME - The Common Component
Modeling Example”. In: CoCoME. Ed. by Andreas Rausch, Ralf
Reussner, Raffaela Mirandola, and Frantisek Plasil. Vol. 5153.
Lecture Notes in Computer Science. Springer, 2007, pp. 16–53
(cit. on p. 163).

[HM80] Matthew Hennessy and Robin Milner. “On Observing Nondeter-
minism and Concurrency”. In: ICALP. Ed. by J. W. de Bakker and
Jan van Leeuwen. Vol. 85. Lecture Notes in Computer Science.
Springer, 1980, pp. 299–309 (cit. on p. 92).

[Hoa72] C. A. R. Hoare. “Proof of Correctness of Data Representations”. In:
1 (1972), pp. 271–281 (cit. on p. 85).

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Feather-
weight Java: a minimal core calculus for Java and GJ”. In: 23.3
(2001), pp. 396–450 (cit. on p. 41).

[Jac+11] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. “VeriFast: A Powerful, Sound, Pre-
dictable, Fast Verifier for C and Java”. In: NASA Formal Methods.
Ed. by Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holz-
mann, and Rajeev Joshi. Vol. 6617. Lecture Notes in Computer
Science. Springer, 2011, pp. 41–55 (cit. on p. 2).

147

Bibliography

[Jigsaw] Project Jigsaw. http://openjdk.java.net/projects/jigsa
w/ (cit. on p. 38).

[JR05a] Alan Jeffrey and Julian Rathke. “A fully abstract may testing
semantics for concurrent objects”. In: 338.1-3 (2005), pp. 17–63
(cit. on p. 51).

[JR05b] Alan Jeffrey and Julian Rathke. “Java Jr: Fully Abstract Trace
Semantics for a Core Java Language”. In: ESOP. Ed. by Shmuel
Sagiv. Vol. 3444. Lecture Notes in Computer Science. Springer,
2005, pp. 423–438 (cit. on pp. 7, 10, 36, 64, 66, 67).

[JSR277] JSR 277: Java Module System. http://jcp.org/en/jsr/deta
il?id=277. Nov. 2006 (cit. on p. 37).

[JSR294] JSR 294: Improved Modularity Support in the Java Programming
Language. http://jcp.org/en/jsr/detail?id=294 (cit. on
p. 38).

[KPW10] Ilham W. Kurnia, Arnd Poetzsch-Heffter, and Yannick Welsch.
“State-based Object Models Are More Abstract Than Trace-based
Models: Towards a Unified Specification Framework”. In: Technical
Report No. 2010-13. 2010-13. Karlsruhe, June 2010, pp. 268–282
(cit. on p. 163).

[KTL09] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. “Proving opti-
mizations correct using parameterized program equivalence”. In:
PLDI. Ed. by Michael Hind and Amer Diwan. ACM, 2009, pp. 327–
337 (cit. on p. 133).

[KW06] Vasileios Koutavas and Mitchell Wand. “Bisimulations for Untyped
Imperative Objects”. In: ESOP. Ed. by Peter Sestoft. Vol. 3924.
Lecture Notes in Computer Science. Springer, 2006, pp. 146–161
(cit. on p. 92).

[KW07] Vasileios Koutavas and Mitchell Wand. “Reasoning About Class
Behavior”. In: Informal Workshop Record of FOOL. 2007 (cit. on
pp. 8, 36, 92).

[Lag04] Giovanni Lagorio. “Capturing ghost dependencies in Java sources”.
In: 3.11 (2004), pp. 77–96 (cit. on p. 37).

148

http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://jcp.org/en/jsr/detail?id=277
http://jcp.org/en/jsr/detail?id=277
http://jcp.org/en/jsr/detail?id=294

Bibliography

[Lah+12] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Hen-
rique Rebêlo. “SYMDIFF: A Language-Agnostic Semantic Diff Tool
for Imperative Programs”. In: CAV. Ed. by P. Madhusudan and
Sanjit A. Seshia. Vol. 7358. Lecture Notes in Computer Science.
Springer, 2012, pp. 712–717 (cit. on p. 134).

[Lah+13] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and
Chris Hawblitzel. “Differential assertion checking”. In: ESEC/SIG-
SOFT FSE. Ed. by Bertrand Meyer, Luciano Baresi, and Mira Mezini.
ACM, 2013, pp. 345–355 (cit. on p. 134).

[Lam12] Leslie Lamport. “How to write a 21st century proof”. In: 11 (1
2012), pp. 43–63 (cit. on p. 16).

[Lei08] K. Rustan M. Leino. This is Boogie 2. Manuscript KRML 178. Avail-
able at http://research.microsoft.com/~leino/papers.h
tml. 2008 (cit. on p. 131).

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for
Functional Correctness”. In: LPAR (Dakar). Ed. by Edmund M.
Clarke and Andrei Voronkov. Vol. 6355. Lecture Notes in Computer
Science. Springer, 2010, pp. 348–370 (cit. on p. 131).

[Lie+10] Michael Lienhardt, Ivan Lanese, Mario Bravetti, Davide Sangiorgi,
Gianluigi Zavattaro, Yannick Welsch, Jan Schäfer, and Arnd Poetzsch-
Heffter. “A Component Model for the ABS Language”. In: FMCO.
Ed. by Bernhard K. Aichernig, Frank S. de Boer, and Marcello
M. Bonsangue. Vol. 6957. Lecture Notes in Computer Science.
Springer, 2010, pp. 165–183 (cit. on p. 163).

[LM04] K. Rustan M. Leino and Peter Müller. “Object Invariants in Dynamic
Contexts”. In: ECOOP. Ed. by Martin Odersky. Vol. 3086. Lecture
Notes in Computer Science. Springer, 2004, pp. 491–516 (cit. on
p. 91).

[LM08] K. Rustan M. Leino and Peter Müller. “Verification of Equivalent-
Results Methods”. In: ESOP. Ed. by Sophia Drossopoulou. Vol. 4960.
Lecture Notes in Computer Science. Springer, 2008, pp. 307–321
(cit. on p. 133).

[LMS09] K. Rustan M. Leino, Peter Müller, and Jan Smans. “Verification of
Concurrent Programs with Chalice”. In: FOSAD. Ed. by Alessandro
Aldini, Gilles Barthe, and Roberto Gorrieri. Vol. 5705. Lecture
Notes in Computer Science. Springer, 2009, pp. 195–222 (cit. on
p. 131).

149

http://research.microsoft.com/~leino/papers.html
http://research.microsoft.com/~leino/papers.html

Bibliography

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. “A Solver for
Reachability Modulo Theories”. In: CAV. Ed. by P. Madhusudan and
Sanjit A. Seshia. Vol. 7358. Lecture Notes in Computer Science.
Springer, 2012, pp. 427–443 (cit. on p. 132).

[LY12] K. Rustan M. Leino and Kuat Yessenov. “Stepwise refinement of
heap-manipulating code in Chalice”. In: 24.4-6 (2012), pp. 519–
535 (cit. on pp. 92, 113, 133).

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver”. In: TACAS. Ed. by C. R. Ramakrishnan
and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science.
Springer, 2008, pp. 337–340 (cit. on p. 131).

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Second
edition. Prentice-Hall, 1997 (cit. on p. 5).

[MFH01] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. “Jiazzi: New-
Age Components for Old-Fashioned Java”. In: OOPSLA. Ed. by
Linda M. Northrop and John M. Vlissides. ACM, 2001, pp. 211–
222 (cit. on p. 37).

[Mic99] Sun Microsystems. Code Conventions for the Java Programming
Language. http://www.oracle.com/technetwork/java/cod
econv-138413.html. Apr. 1999 (cit. on p. 33).

[Mil77] Robin Milner. “Fully Abstract Models of Typed lambda-Calculi”.
In: 4.1 (1977), pp. 1–22 (cit. on pp. 1, 5).

[Mor68] James H. Morris. Lambda-Calculus Models of Programming Lan-
guages. 1968 (cit. on p. 51).

[Mor94] Carroll C. Morgan. Programming from specifications, 2nd Edition.
Prentice Hall International series in computer science. Prentice
Hall, 1994, pp. I–XV, 1–332 (cit. on pp. 85, 91).

[MP00] Jörg Meyer and Arnd Poetzsch-Heffter. “An Architecture for In-
teractive Program Provers”. In: TACAS. Ed. by Susanne Graf and
Michael I. Schwartzbach. Vol. 1785. Lecture Notes in Computer
Science. Springer, 2000, pp. 63–77 (cit. on p. 2).

[MP98] Peter Müller and Arnd Poetzsch-Heffter. “Kapselung und Method-
enbindung: Javas Designprobleme und ihre Korrektur”. In: Java-
Informations-Tage. 1998, pp. 1–10 (cit. on p. 38).

150

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html

Bibliography

[MPL06] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. “Mod-
ular invariants for layered object structures”. In: 62.3 (2006),
pp. 253–286 (cit. on p. 5).

[MPU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. “The
KRAKATOA tool for certificationof JAVA/JAVACARD programs
annotated in JML”. In: 58.1-2 (2004), pp. 89–106 (cit. on p. 2).

[MS88] Albert R. Meyer and Kurt Sieber. “Towards Fully Abstract Seman-
tics for Local Variables”. In: POPL. Ed. by Jeanne Ferrante and
P. Mager. ACM Press, 1988, pp. 191–203 (cit. on p. 106).

[MS97] Anna Mikhajlova and Emil Sekerinski. “Class Refinement and
Interface Refinement in Object-Oriented Programs”. In: FME. Ed.
by John S. Fitzgerald, Cliff B. Jones, and Peter Lucas. Vol. 1313.
Lecture Notes in Computer Science. Springer, 1997, pp. 82–101
(cit. on p. 91).

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. Definition of stan-
dard ML. MIT Press, 1990, pp. I–XI, 1–101 (cit. on p. 35).

[Nau06] David A. Naumann. “From Coupling Relations to Mated Invari-
ants for Checking Information Flow”. In: ESORICS. Ed. by Dieter
Gollmann, Jan Meier, and Andrei Sabelfeld. Vol. 4189. Lecture
Notes in Computer Science. Springer, 2006, pp. 279–296 (cit. on
p. 133).

[Net05] NetBeans Code Conventions. http://netbeans.org/communi
ty/guidelines/code-conventions.html. July 2005 (cit. on
p. 33).

[NSS12] David A. Naumann, Augusto Sampaio, and Leila Silva. “Refactor-
ing and representation independence for class hierarchies”. In:
433 (2012), pp. 60–97 (cit. on p. 90).

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local
Reasoning about Programs that Alter Data Structures”. In: CSL.
Ed. by Laurent Fribourg. Vol. 2142. Lecture Notes in Computer
Science. Springer, 2001, pp. 1–19 (cit. on p. 139).

[OSGI] OSGi Service Platform. http://www.osgi.org/ (cit. on pp. 24,
37, 38).

[PGS08] Arnd Poetzsch-Heffter, Jean-Marie Gaillourdet, and Jan Schäfer.
“Towards a Fully Abstract Semantics for Object-Oriented Program
Components”. July 2008 (cit. on p. 136).

151

http://netbeans.org/community/guidelines/code-conventions.html
http://netbeans.org/community/guidelines/code-conventions.html
http://www.osgi.org/

Bibliography

[Plo77] Gordon D. Plotkin. “LCF Considered as a Programming Language”.
In: 5.3 (1977), pp. 223–255 (cit. on pp. 1, 5).

[Poe+12] Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and
Yannick Welsch. “Model-Based Compatibility Checking of Sys-
tem Modifications”. In: ISoLA (1). Ed. by Tiziana Margaria and
Bernhard Steffen. Vol. 7609. Lecture Notes in Computer Science.
Springer, 2012, pp. 97–111 (cit. on pp. 2, 162).

[PS98] Andrew Pitts and Ian Stark. “Operational Reasoning for Functions
with Local State”. In: Higher Order Operational Techniques in Se-
mantics. Ed. by Andrew Gordon and Andrew Pitts. Publications of
the Newton Institute, Cambridge University Press, 1998, pp. 227–
273 (cit. on p. 109).

[Riv07] Jim des Rivières. Evolving Java-based APIs. http://wiki.eclip
se.org/Evolving_Java-based_APIs. Oct. 2007 (cit. on pp. 1,
14, 34).

[Sch04] Norbert Schirmer. “Analysing the Java package/access concepts
in Isabelle/HOL”. In: 16.7 (2004), pp. 689–706 (cit. on p. 38).

[SCWeb] Source Compatibility for Java Packages Website. http://softe
ch.cs.uni-kl.de/~scomp (cit. on pp. 32, 136).

[SEM08] Max Schäfer, Torbjörn Ekman, and Oege de Moor. “Sound and
extensible renaming for java”. In: OOPSLA. Ed. by Gail E. Harris.
ACM, 2008, pp. 277–294 (cit. on p. 35).

[SKS07] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. “Environ-
mental Bisimulations for Higher-Order Languages”. In: LICS. IEEE
Computer Society, 2007, pp. 293–302 (cit. on p. 92).

[SP07a] Eijiro Sumii and Benjamin C. Pierce. “A bisimulation for dynamic
sealing”. In: 375.1-3 (2007), pp. 169–192 (cit. on p. 92).

[SP07b] Eijiro Sumii and Benjamin C. Pierce. “A bisimulation for type
abstraction and recursion”. In: 54.5 (2007) (cit. on p. 92).

[SSP07] Rok Strnisa, Peter Sewell, and Matthew J. Parkinson. “The java
module system: core design and semantic definition”. In: OOPSLA.
Ed. by Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes,
and Guy L. Steele Jr. ACM, 2007, pp. 499–514 (cit. on p. 37).

[Ste06] Martin Steffen. “Object-Connectivity and Observability for Class-
Based, Object-Oriented Languages”. Habilitation thesis. July 2006
(cit. on pp. 51, 67).

152

http://wiki.eclipse.org/Evolving_Java-based_APIs
http://wiki.eclipse.org/Evolving_Java-based_APIs
http://softech.cs.uni-kl.de/~scomp
http://softech.cs.uni-kl.de/~scomp

Bibliography

[WD96] Jim Woodcock and Jim Davies. Using Z - Specification, Refinement,
and Proof. Prentice Hall, 1996 (cit. on pp. 66, 91).

[Web12] Mathias Weber. Generating Boogie Verification Conditions for Back-
ward Compatibility of Class Libraries. Available at http://soft
ech.cs.uni-kl.de/pub?id=191. Oct. 2012 (cit. on pp. 131,
136).

[Wel+13] Yannick Welsch, Mathias Weber, Peter Zeller, and Arnd Poetzsch-
Heffter. “A Backward Compatibility Verifier for Java Libraries”.
Internal report, available at https://softech.informatik.u
ni-kl.de/twiki/pub/Homepage/YannickWelsch/bcverifi
er.pdf. 2013 (cit. on pp. 2, 163).

[Wel08a] Yannick Welsch. Grey-Box Specification and Runtime Testing of
Object-Oriented Program Components. May 2008 (cit. on p. 136).

[Wel08b] Yannick Welsch. “Grey-box specifications for object-oriented pro-
gram components”. In: OOPSLA Companion. Ed. by Gail E. Harris.
ACM, 2008, pp. 913–914 (cit. on pp. 136, 163).

[WF94] Andrew K. Wright and Matthias Felleisen. “A Syntactic Approach
to Type Soundness”. In: 115.1 (1994), pp. 38–94 (cit. on pp. 42,
50).

[WP10] Yannick Welsch and Arnd Poetzsch-Heffter. “Source Compatibility
for Java Packages”. Internal report, available at https://soft
ech.informatik.uni-kl.de/twiki/pub/Homepage/Publik
ationen/WelschPoetzschHeffter10Comp.pdf. 2010 (cit. on
pp. 8, 14, 15, 25, 136, 163).

[WP11] Yannick Welsch and Arnd Poetzsch-Heffter. “Full Abstraction at
Package Boundaries of Object-Oriented Languages”. In: SBMF.
Ed. by Adenilso da Silva Simão and Carroll Morgan. Vol. 7021.
Lecture Notes in Computer Science. Springer, 2011, pp. 28–43
(cit. on pp. 2, 56, 61, 136, 162).

[WP12] Yannick Welsch and Arnd Poetzsch-Heffter. “Verifying backwards
compatibility of object-oriented libraries using Boogie”. In: Pro-
ceedings of the 14th Workshop on Formal Techniques for Java-like
Programs. FTfJP ’12. ACM, 2012, pp. 35–41 (cit. on pp. 2, 136,
162).

153

http://softech.cs.uni-kl.de/pub?id=191
http://softech.cs.uni-kl.de/pub?id=191
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/YannickWelsch/bcverifier.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/YannickWelsch/bcverifier.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/YannickWelsch/bcverifier.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPoetzschHeffter10Comp.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPoetzschHeffter10Comp.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPoetzschHeffter10Comp.pdf

Bibliography

[WP13] Yannick Welsch and Arnd Poetzsch-Heffter. “A Fully Abstract Trace-
based Semantics for Reasoning About Backward Compatibility of
Class Libraries”. In: Science of Computer Programming. To appear.
Elsevier, 2013 (cit. on pp. 2, 162).

[WS11] Yannick Welsch and Jan Schäfer. “Location Types for Safe Dis-
tributed Object-Oriented Programming”. In: TOOLS (49). Ed. by
Judith Bishop and Antonio Vallecillo. Vol. 6705. Lecture Notes in
Computer Science. Springer, 2011, pp. 194–210 (cit. on p. 162).

[WSP13] Yannick Welsch, Jan Schäfer, and Arnd Poetzsch-Heffter. “Location
Types for Safe Programming with Near and Far References”. In:
Aliasing in Object-Oriented Programming. Types, Analysis and Veri-
fication. Ed. by Dave Clarke, James Noble, and Tobias Wrigstad.
Vol. 7850. Lecture Notes in Computer Science. Springer, 2013,
pp. 471–500 (cit. on p. 162).

[Yan07] Hongseok Yang. “Relational separation logic”. In: 375.1-3 (2007),
pp. 308–334 (cit. on p. 133).

[Zen05] Matthias Zenger. “KERIS: evolving software with extensible mod-
ules”. In: 17.5 (2005), pp. 333–362 (cit. on p. 37).

154

List of Symbols

• Empty sequence or set 16
∅ Empty map 16
_ Place-holder for a free logical variable that occurs only

once in the formula
16

⊥ Null type, to type the null expression 19
<d

X Direct subtype relation on X 19
<X Transitive subtype relation (not reflexive) 19
≤X Reflexive and transitive subtype relation 19
∈X Field or method membership relation 19
≡ρ Equivalence on terms modulo a renaming ρ 47
²ρL Relation between program configurations if L parts

are equivalent under ρ
68

γ
 Small-step reduction relation 42
 L

KX Helper relation for τ steps local to L 43
γ
−→ Large-step reduction relation 47

Input label 42
Output label 42

3 Successful program run (makes observation) 52
7 Unsuccessful program run (does not make observa-

tion)
52

≪ρ Relation between deterministic program context and
MGC

74

≫ρ Relation between MGC and constructed deterministic
program context

79

c Class name 17

155

List of Symbols

CX Set of (qualified) class names for which there is a
declaration in X

19

D Type declaration 16

E Expression 16, 41,
51, 60

E Evaluation context 42

F Field declaration 16
f Field name 17
F Stack slice 41

G Field mapping 41
o Object identifier 41
γ Label 45, 51
Γ Local variable typing 20

i Interface name 17
IX Set of (qualified) interface names for which there is a

declaration in X
19

K Codebase, usually denoting a program context 16, 18

L Origin location 41

m Method name 17
µ Message 45
Ma Abstract method declaration 16
Mc Method declaration with body 16

O Heap (Object store) 41
oα Abstracted object 45

P Package declaration, containing a list of type declara-
tions

16

p Package name 17
PX Set of package names for which there is a package

declaration in X
19

156

List of Symbols

ρ Renaming (bijective relation on object identifiers) 47

S Runtime configuration (of the form KX ,O,F) 41
S init

KX Initial (startup) configuration 48

T Shorthand to denote all kind of type names (p.c | p.i |
⊥)

19

t Class or interface name 16
Tα Abstracted type 45
T αX Set of abstracted types that can occur in traces with X 46
TX Set of all types defined by X (CX ∪IX ∪{lang.Object}∪

{⊥})
19

τ Silent transition label 43

V Exposure flag 41
v Reference value 41
vα Abstracted value 45

X Codebase, usually denoting a library implementation 16, 18
x Local variable or method parameter name 17

Y Codebase, usually denoting a library implementation 16, 18

157

Index

Accessibility, 24
Adequate coupling, 86

Codebase, 17
Compatibility

backward, 3
contextual, 52
contextual trace, 52
source, 24
trace, 61

Contextual refinement, 66
Correspondence relation, 86
Coupling invariant, 88
Coupling relation, 86

Data refinement, 91
Deterministic program context, 18

Functions
¬, 49
absX (〈Óp.t,Òm〉), 49
accX (p.t, p′), 23
available(O, L), 49
bodyKX (p.c, m), 49
cmpX (T1, T2), 23
dom(M), 16
exec(S), 49
expose(v,O), 49
�eldsL

KX (G), 49

�lter(O, V), 49
�lter(O, L), 49
�lter(O, V, L), 49
from(L), 49
initfKX (p.c), 49
maxX (T1, T2), 23
objectrefs(_), 49
publicX (T), 19
rng(M), 16
selectKX (L), 49
stackabsL(F), 49
traces(KX), 48
typeO(v), 49
typeabsKX (p.c), 49
uniquenamesX , 18
valabsKX (v,O), 49

JLS, 15
Judgments
` X , 20
X ` P, 20
X , p ` D, 20
X , p.t ` Ma, 20
X , p.t ` Mc, 20
X , p.c,Γ ` E : T , 20

S
γ
 S′, 42
O, E L

KX O
′, E′, 44

S
γ
−→ S′, 47

159

Index

Library implementation, 7, 17

Most general context, 57

Observability, 24

Program, 18
Program context, 18

Rules
(C1X), 21
(C2X), 21
(C3X), 21
(C4X), 21
(S1X ,Y), 26
(S2X ,Y), 26
(S3X ,Y), 26
(S4X ,Y), 26
D-INH-METHOD-C, 20
D-INH-METHOD-I, 20
L-ACCUM, 47
L-EMPTY, 47
L-STEP, 47
MGC-PREPARE-CALL, 60
MGC-PREPARE-NEW, 60
MGC-PREPARE-RETURN, 60
MGC-PREPARE-SUCCESS, 60
MGC-SKIP, 60
R-CALL-BOUNDARY, 46
R-CALL-INTERN, 44
R-CAST, 44
R-GET, 44
R-IF, 44
R-INTERNAL-STEP, 44
R-LET, 44
R-NEW, 44
R-RETURN-BOUNDARY, 46
R-SET, 44
R-SUCCESS, 51
T-CALL, 23

T-CAST, 23
T-CLASS, 21
T-GET, 23
T-IF, 23
T-INTF, 21
T-LET, 23
T-LIB, 21
T-METHSIG, 21
T-METHOD, 21
T-NDE, 60
T-NEW, 23
T-NULL, 23
T-PACKAGE, 21
T-SET, 23
T-SUCCESS, 51
T-VAR, 23

Special values
lib, 41
ctxt, 41
success, 51
exposed, 41
internal, 41
nde, 59, 60
succ, 51

Stack slice, 42
Stalling, 114

Termination measure, 114
Type abstraction, 45

Well-formed
abstract method, 20
codebase, 20
expression, 20
method, 20
package declaration, 20
runtime configuration, 48
type declaration, 20

160

About the Author

NAME: Yannick Welsch
E-MAIL: yannick@welsch.lu
WEB SITE: http://www.welsch.lu

Education

◦ 2008-2013: Research Assistant at the Software Technology Group, Uni-
versity of Kaiserslautern, Germany.

◦ 2006-2008: Master of Science in Computer Science, University of Kaiser-
slautern, Germany, Thesis title: Grey-Box Specification and Runtime
Testing of Object-Oriented Program Components.

◦ 2003-2006: Bachelor of Science in Computer Science, University of Kaiser-
slautern, Germany, Thesis title: Using Boxes in Java Programming: An
evaluation.

◦ 2003: Diplôme de fin d’études secondaires, Lycée classique d’Echternach,
Luxembourg, Section Latin et Langues Vivantes - Mathématiques, option
Sciences Physiques.

161

yannick@welsch.lu
http://www.welsch.lu

About the Author

Publications

A list of my (peer-reviewed) publications in reverse chronological order:

◦ Yannick Welsch and Arnd Poetzsch-Heffter. “A Fully Abstract Trace-based
Semantics for Reasoning About Backward Compatibility of Class Libraries”.
In: Science of Computer Programming. To appear. Elsevier, 2013

◦ Yannick Welsch, Jan Schäfer, and Arnd Poetzsch-Heffter. “Location Types
for Safe Programming with Near and Far References”. In: Aliasing in
Object-Oriented Programming. Types, Analysis and Verification. Ed. by
Dave Clarke, James Noble, and Tobias Wrigstad. Vol. 7850. Lecture Notes
in Computer Science. Springer, 2013, pp. 471–500

Invited contribution to LNCS State-of-the-Art Surveys volume.

◦ Yannick Welsch and Arnd Poetzsch-Heffter. “Verifying backwards com-
patibility of object-oriented libraries using Boogie”. In: Proceedings of the
14th Workshop on Formal Techniques for Java-like Programs. FTfJP ’12.
ACM, 2012, pp. 35–41

◦ Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and Yannick
Welsch. “Model-Based Compatibility Checking of System Modifications”.
In: ISoLA (1). Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 7609.
Lecture Notes in Computer Science. Springer, 2012, pp. 97–111

◦ Ferruccio Damiani, Arnd Poetzsch-Heffter, and Yannick Welsch. “A type
system for checking specialization of packages in object-oriented program-
ming”. In: SAC. ed. by Sascha Ossowski and Paola Lecca. ACM, 2012,
pp. 1737–1742

◦ Yannick Welsch and Arnd Poetzsch-Heffter. “Full Abstraction at Package
Boundaries of Object-Oriented Languages”. In: SBMF. ed. by Adenilso da
Silva Simão and Carroll Morgan. Vol. 7021. Lecture Notes in Computer
Science. Springer, 2011, pp. 28–43

Received the best paper award at the SBMF conference.

◦ Yannick Welsch and Jan Schäfer. “Location Types for Safe Distributed
Object-Oriented Programming”. In: TOOLS (49). Ed. by Judith Bishop
and Antonio Vallecillo. Vol. 6705. Lecture Notes in Computer Science.
Springer, 2011, pp. 194–210

162

◦ Michael Lienhardt, Ivan Lanese, Mario Bravetti, Davide Sangiorgi, Gian-
luigi Zavattaro, Yannick Welsch, Jan Schäfer, and Arnd Poetzsch-Heffter.
“A Component Model for the ABS Language”. In: FMCO. ed. by Bernhard
K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue. Vol. 6957.
Lecture Notes in Computer Science. Springer, 2010, pp. 165–183

◦ Yannick Welsch. “Grey-box specifications for object-oriented program
components”. In: OOPSLA Companion. Ed. by Gail E. Harris. ACM, 2008,
pp. 913–914

◦ Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deiters, An-
dreas Rausch, Ralf Reussner, Klaus Krogmann, Heiko Koziolek, Raffaela
Mirandola, Benjamin Hummel, Michael Meisinger, and Christian Pfaller.
“CoCoME - The Common Component Modeling Example”. In: CoCoME.
ed. by Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek
Plasil. Vol. 5153. Lecture Notes in Computer Science. Springer, 2007,
pp. 16–53

Other relevant drafts (not subsumed by previously mentioned publications):

◦ Yannick Welsch, Mathias Weber, Peter Zeller, and Arnd Poetzsch-Heffter.
“A Backward Compatibility Verifier for Java Libraries”. Internal report,
available at https://softech.informatik.uni-kl.de/twiki/pub
/Homepage/YannickWelsch/bcverifier.pdf. 2013

◦ Yannick Welsch and Arnd Poetzsch-Heffter. “Source Compatibility for
Java Packages”. Internal report, available at https://softech.inform
atik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPo
etzschHeffter10Comp.pdf. 2010

◦ Ilham W. Kurnia, Arnd Poetzsch-Heffter, and Yannick Welsch. “State-based
Object Models Are More Abstract Than Trace-based Models: Towards
a Unified Specification Framework”. In: Technical Report No. 2010-13.
2010-13. Karlsruhe, June 2010, pp. 268–282

163

https://softech.informatik.uni-kl.de/twiki/pub/Homepage/YannickWelsch/bcverifier.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/YannickWelsch/bcverifier.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPoetzschHeffter10Comp.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPoetzschHeffter10Comp.pdf
https://softech.informatik.uni-kl.de/twiki/pub/Homepage/Publikationen/WelschPoetzschHeffter10Comp.pdf

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Definitions, Theorems and Lemmas
	Introduction
	Challenges and Approach
	Formal Setting
	Contributions
	Outline

	Interface Compatibility
	Formalization of LPJava
	Well-formedness and Typing
	Source Compatibility
	Formalization
	Checkable Conditions

	Discussion
	Language and Program Design
	Static Compatibility Checking
	Package-local Refactoring

	Related Work

	Trace-based Semantics
	Operational Model
	Traces
	Well-formed Configurations
	Observable Behavior
	Properties
	Discussion

	Most General Context
	Construction
	Properties
	Conclusion

	Full Abstraction
	Discussion
	Related Work
	Simulation-based Proofs
	Context and Library Independence
	Restricted Program Contexts
	Sound MGC Abstraction
	Complete MGC Abstraction
	Differentiating Context

	Conclusion

	Simulation-based Reasoning
	Reasoning about Backward Compatibility
	From Traces to Program Code
	Related Work
	The Formal Model Revisited
	Characterization of Library State
	Indistinguishable States
	Proof Obligations

	Specification Language

	Experience and Evaluation
	Type Abstraction
	Information Hiding
	Callbacks
	Control Flow Relations
	Synchronous Execution
	Asynchronous Execution

	Larger Case Study: ObservableList

	Specification and Tool Support
	Invariant Specification Language
	Syntax
	Types and Semantics
	Well-formedness
	Discussion

	The BCVerifier Tool
	Related Work

	Conclusion
	Contributions
	Discussion and Outlook

	Bibliography
	List of Symbols
	Index
	About the Author

