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English Summary 
The noise issue in manufacturing system is widely discussed from legal and health aspects. 

Regarding the existing laws and guidelines, various investigation methods are implemented in 

industry. The sound pressure level can be measured and reduced by using established 

approaches in reality. However, a straightforward and low cost approach to study noise issue 

using existing digital factory models is not found.  

This thesis attempts to develop a novel concept for sound pressure level investigation in a 

virtual environment. With this, the factory planners are able to investigate the noise issue 

during factory design and layout planning phase.  

Two computer aided tools are used in this approach: acoustic simulation and virtual reality 

(VR). The former enables the planner to simulate the sound pressure level by given factory 

layout and facility sound features. And the latter provides a visualization environment to view 

and explore the simulation results. The combination of these two powerful tools provides the 

planners a new possibility to analyze the noise in a factory.  

To validate the simulations, the acoustic measurements are implemented in a real factory. 

Sound pressure level and sound intensity are determined respectively. Furthermore, a software 

tool is implemented using the introduced concept and approach. With this software, the 

simulation results are represented in a Cave Automatic Virtual Environment (CAVE).  

This thesis describes the development of the approach, the measurement of sound features, the 

design of visualization framework, and the implementation of VR software. Based on this 

know-how, the industry users are able to design their own method and software for noise 

investigation and analysis.  
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Deutsche Zusammenfassung 
Mitarbeiter in produzierenden Unternehmen sind zahlreichen Emissionen ausgesetzt, die ihre 

Gesundheit und ihr Wohlbefinden negativ beeinflussen. Unter den unterschiedlichen 

Emissionen verursacht Lärm die meisten gesundheitlichen Schäden. Zudem sind viele 

Mitarbeiter in der Produktion Lärm ausgesetzt. Daher stellt die Lärmreduzierung eine 

wichtige Aufgabe dar, da Geräusche aus Bearbeitungsprozessen die Gesundheit der 

Mitarbeiter schädigen können. Aktuelle Methoden zur Lärmmessung und -analyse sind häufig 

zeitaufwändig, verursachen hohe Kosten und werden daher in der Regel nicht in den 

Fabrikplanungsprozess integriert.  

Die Virtuelle Realität (VR) bietet im Rahmen der Gestaltung von Produktionssystemen 

erhebliches Unterstützungspotential. Änderungen können an Modellen von 

Produktionssystemen virtuell durchgeführt und analysiert werden. Dadurch werden 

Auswirkungen auf Produktionssysteme bereits im Vorfeld identifiziert und unnötige 

nachträgliche Änderungen vermieden. Durch die Veränderungen der Daten über eine zentrale 

Schnittstelle wird der Aufwand, um die Konsistenz der Daten aufrecht zu erhalten und sie zu 

pflegen, deutlich reduziert. 

Ziel der vorliegenden Dissertation ist die Simulation und Visualisierung von Lärmanalysen in 

die VR zu integrieren. Die Gestaltung von Produktionssystemen wird verbessert, indem 

Schallquellen und die Schallausbreitung in Produktionssystemen bereits im Vorfeld betrachtet 

werden. Dadurch erfolgt eine Gestaltung von lärmreduzierten Produktionssystemen, die nicht 

erst im Nachhinein aufwändig geändert werden müssen.  

Zunächst erfolgt eine umfangreiche Literaturrecherche im Bereich Lärmschutz, Gesetze der 

Arbeitssicherheit, akustische Modellierung und Simulation, VR Theorie und industrielle VR 

Applikationen. Um die Simulation und Visualisierung von Lärmanalysen in die VR zu 

integrieren, wird auf bestehende Ansätze aus dem Stand der Technik zurückgegriffen. Darauf 

aufbauend, werden das Konzept zur Implementierung und die benötigten Methoden 

entwickelt. Dabei werden digitalen Werkzeuge, wie Modellierungssoftware und VR-

Editierungssoftware, nach definierten Kriterien ausgewählt und angewendet.  

Drei Hauptdatenquellen werden für die Datenerhebung und -erfassung herangezogen. 

Zunächst werden geometrische und Objektdaten aus der Fertigung nach einer vorgegebenen 

Checkliste gesammelt und mit Software modelliert. Dadurch wird die 3D-Umgebung für die 

spätere Implementierung geschaffen. Informationen, die innerhalb der virtuellen Umgebung 

erfasst werden, sind beispielsweise die Form, Massen, Material und 

Oberflächeneigenschaften. Durch akustische Messungen in der realen Fabrik, werden 

grundlegende Daten aufgenommen, wie Schallquellenenergie und Schalldruckpegel. Die 

Messungen werden in Abhängigkeit von unterschiedlichen Bedienungspositionen und 

Arbeitsvorgängen durchgeführt. Zusätzliche Informationen aus der deutschen Gesetzgebung 

und aus technischen Richtlinien werden in die Visualisierung implementiert. Dadurch werden 

Überschreitungen von Grenzwerten visualisiert.  

Zur Schallsimulation wurde ein Phonon-Tracing-Algorithmus verwendet, der die Ausbreitung 

und Reflexion der Phononen (Schall- bzw. Soundteilchen) berechnet. Als Inputdaten dienen 

die Geometriegegebenheiten, die Eigenschaften der Schallquellen und die Schallabsorption 
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der Oberflächen auf den Produktionsobjekten. Die Simulation wird in zwei separaten 

Durchgängen durchgeführt.  Im ersten Durchgang wird die Energie- oder Druckzersetzung für 

jedes Phonon aus einer Schallquelle berechnet. Anhand der Ergebnisse des ersten Durchgangs 

wird die Impulsantwort im zweiten Durchgang für ausgewählte Positionen berechnet und 

dokumentiert. Anschließend wird das Ergebnis aus beiden Durchgängen visualisiert, wie z. B. 

die Schallintensität, die Schallausbreitung und die Oberflächen der Hauptreflektionen. 

Für die Implementierung der Simulation und der Visualisierung in die VR wird eine 

Softwarearchitektur aufgebaut, die einen Webserver benutzt. Als Modellierungs- und 

Visualisierungssprache für die VR wurde die Virtual Reality Modeling Language (VRML) 

verwendet. Eine 3D-Benutzeroberfläche ermöglicht Anwendern eine intuitive und interaktive 

Navigation und Modifizierung in einer virtuellen Umgebung. Die Visualisierung von VRML-

Modellen und Simulationsergebnissen ist mit Hilfe einer Datenschnittstelle sowohl in 

desktopbasierten als auch in Cave Automatic Virtual Environment (CAVE) basierten VR-

Systemen umgesetzt. Die Schallemissionsniveaus in einer virtuellen Umgebung wurden nach 

Simulationsergebnissen und Bedienungspositionen bewertet und mit verschiedenen Farben 

visualisiert. Durch die Visualisierung und die Interaktion wird das Verständnis der Anwender 

für große Datenmengen deutlich verbessert.  

Das Konzept wird in mehreren Anwendungsfällen umgesetzt und evaluiert. Somit kann es 

effektiv zur Lärmevaluation und Lärmreduzierung eingesetzt werden. Innerhalb der 

Dissertation wurden wichtige grundlegende Erkenntnisse zur Modellierung und Simulation 

von Lärmentwicklungen gewonnen. Die entwickelte Daten- und 

Programmierungsschnittstelle kann auf weitere Applikationen erweitert werden. Die 

Visualisierung der Schallausbreitung in beiden VR-Systemen – desktopbasiert  und CAVE-

basiert – ermöglicht es, ausgehend von Schallquellen wie z.B. Maschinen, und der Wirkung 

verschiedener Materialien und Geometrien, die spektrale Energie- und Druckverteilung im 

Raum zu beobachten. Die Untersuchungen geben Aufschluss darüber, welche 

Frequenzbereiche stark absorbiert werden und wie viel Schallenergie in die Umgebung 

reflektiert wird. Die Schallintensität einzelner Arbeitsplätze wird durch verschiedene 

Farbindikatoren angezeigt. Diese sind entsprechend den Normen klassifiziert, wie zum 

Bespiel der Verordnung zum Schutz der Beschäftigten vor Gefährdungen durch Schall und 

Vibrationen (LärmVibrationsArbSchV). Bei Bedarf können Baumaterialien zunächst in der 

Digitalen Fabrik ersetzt werden. Nach einer Evaluierung der Änderungen in der VR können 

diese anschließend in der Realität ausgetauscht werden. 
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1 Introduction  
The employee is a key element in manufacturing systems, but they are often stressed out by 

different influences during their work. Negative factors typically include the noise emitted by 

the machine processes, pollution from chemical solvent, heat from thermo forming process, or 

extremely high/low levels of humidity in some industries. The noise - an essential problem 

and risks for workers in a factory - can be caused by machinery, power tools or other 

activities. The uncontrolled noise can influence employees’ wellbeing potentially causing 

diseases and other health problems. Not only are the employees exposed to the noise from the 

factory, the neighbors are as well. Responding to the neighbors’ complaints and reducing their 

acoustic pollution is also a duty of the enterprisers.  

Currently, the study of negative noise factor is often ignored during factory design and 

planning. Therefore, to analyze and reduce the negative noise effects in the working 

environment of manufacturing systems is an essential and urgent issue. This issue is also 

related to ergonomics research, human factors, working safety, as well as other topics. 

The conventional method is to measure the sound pressure level (SPL) after the factory is 

built and the manufacturing system is setup. Using the data, the necessary changes are made if 

the noise level exceeds the limit. This approach is useful, but is usually costly and causes 

production to stop. Sometimes the necessary changes cannot be made because of the required 

time and costs. Thus, a new and more efficient approach needs to be developed.  

One of the useful tools to support the noise investigation in factory is acoustic simulation, 

which provides the data of sound wave behavior and SPLs. Inspired by the well-established 

approaches and algorithms in computer graphics, acoustic simulation has been investigated 

and further rapidly developed in recent years. Furthermore, the increased computer hardware 

performance and software technology enables complex calculation of sound propagation and 

evaluation of its effects to the environment. 

In recent years, the Virtual Reality (VR) or virtual environment has become one of the most 

important research topics, not only in computer science but also in mechanical engineering. 

Due to its beneficial features –immersion, interaction and imagination– VR has opened a new 

perspective for researchers in a variety of fields, which enables them to extend current 

implementations. In industry, VR applications are being developed for experimental and 

practical research, especially for product design, production and factory planning, information 

and data visualization, simulation integration, etc. Within a virtual environment, high quality 

visualization and other types of output, such as audio output and haptic feedback, facilitate 

participants’ perception and understanding. The rich methods of interaction, such as using fly 

stick and the gesture tracking, allow users to explore the virtual world, analyze the complex 

data sets, and manipulate the single virtual object. 

VR has extended the power of the digital factory concept and become a more and more 

widely applicable platform to address different issues in manufacturing. Acoustic simulation 

and visualization in the virtual environment is a sub-topic of virtual workplace design, 

addressing the issue of noise analysis and control in a manufacturing system. More precisely, 

sound simulation concerns the influence of sound propagation in workplace design and 

planning of a factory. Through analysis of the simulated factory layout, absorption material 
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and used machinery, designers and planners can understand the noise effects before the 

factory is actually setup. In a virtual environment, changes could be easily made without high 

costs and potential risks. Different planning choices are able to be viewed and evaluated 

directly in VR.  

Currently, some research projects integrated sound simulation in a digital factory or a VR 

system. However, there is no existing and well-developed solution for noise investigation in a 

virtual factory. Some solutions focus on the improvement of simulation algorithms; others 

only use VR as a visualization tool, ignoring the communication between simulation software 

and VR systems. To make a better use of acoustic simulation connecting VR systems for 

industrial applications, it’s necessary to connect it to VR systems. 

This thesis attempts to contribute to the noise investigation through combining acoustic 

simulation and VR. The acoustics simulation provides the necessary data and VR is 

considered to be an ideal implementation platform for simulation and visualization. Although 

the acoustic measurements are expensive and complex, data from an actual factory provides 

important input and validation of the simulation, as well as information for further 

investigation. Hence, the sound pressure and sound energy measurements are taken from a 

real factory. This factory is then recreated in 3D with geometric details, which provides the 

basic input data for acoustic simulation and visualization in VR. To facilitate the use of 

acoustic simulation and enhance the data interface between simulation and VR, a software 

tool is designed based on the research proposition and application scenario. Several issues are 

taken into account, such as the converting of file formats, control of simulation processing, 

and generation of user interfaces.  

This thesis is structured as follows. Chapter 2 provides an overview of related research topics 

and current research. First, the noise issues in manufacturing, general knowledge of noise 

effects and the established noise investigation methods are introduced. Second, the basic laws 

of sound waves, acoustic modeling and simulation, and visualization methods are described. 

The third part provides a brief introduction of VR, including the historic development, term 

definition, system components, and main features. Then, a review of current VR application 

from manufacturing system level to the workstation level are presented and summarized. 

Chapter 3 introduces the main research question in this thesis and defines the key tasks and 

requirements. Based on research question, chapter 4 describes the development of research 

approach in five steps. Data acquisition step of the design introduces the required data, the 

methods to collect the data from an actual factory, acoustic measurements, and a legal 

regulation study. The modeling step provides a guide to model a virtual manufacturing 

environment, a sound source, and a human model (avatar). The acoustic simulation step 

introduces the implementation of “phonon tracing” and “phonon collection” for sound wave 

simulation and visualization. The last two steps introduce the connection between sound 

simulation and the VR system, as well as the required hardware and software configurations. 

Chapter 5 presents the implementation process of the software tool. The software architecture, 

data basis, user interface design and distributed computing concept are discussed. In chapter 

6, several use cases are used to validate the software tools and sound simulation in a virtual 

factory. The result provides an evaluation of proposed approach and the software tool. 

Chapter 7 provides a summary of the entire research work and an outlook for further 

development.  
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2 State of the Art 
In manufacturing systems, noise is an important issue which affects the health and safety of 

workers, as well as the working efficiency. Therefore, the impact of noise in a factory, 

selected legal regulations, and some established investigation and control methods are 

described. To handle such issues, different computer aided methods are implemented, such as 

the acoustic simulation and visualization. Therefore, brief introduction of these methods is 

made. Further chapters give an overview of the VR technologies and their recent 

development. And the implemented applications in manufacturing systems are discussed, 

which enables a systematic analysis and comparison of current research work in VR field. 

Based on the information presented here, the main research questions and involved tasks will 

be defined in later chapter.  

 

2.1 Noise in manufacturing systems  

2.1.1 Effects of noise in a factory 

The factory workers are exposed to any number of occupational hazards every day, such as 

chemical solvent, heat, vibration, bad lighting, etc. The noise issue is among these hazards, 

which is starting point of this thesis. Noise in a factory can be caused by machinery, power 

tools or other activities, which can influence employees’ health and even cause diseases. 

According to Deutsches Institut für Normung (DIN) standard 1320 and Association of 

German Engineers (VDI, Verein Deutscher Ingenieure) standard 99, noise is described as 

unwanted sound causing disorder and health problems. When the noise exceeds specific 

limits, the risks of hearing loss or other sicknesses increase. Figure 1 shows a brief 

identification of the noise influences to humans at different SPLs [Fuch10, Mart94, Work02 

and Hoes75]. 

 
Figure 1: Scale of SPLs in common situations 

SPL dB(A)

0 Hearing threshold

Effect to humanExample sound source
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In acoustics, the SPL is usually used to measure the effective pressure of a sound wave (P) 

relative to a reference value (P0). The unit of SPL (Lp) is decibel (dB), which is converted 

from sound pressure unit Pascal (Pa).The basic calculation is: Lp = 20 lg (P/P0) in dB 

Noise is becoming one of the most frequent occupational hazards in manufacturing. A 

literature study shows that the well-established investigations are made in different countries. 

The following facts show the importance of this issue.  

� According to the investigation of the Federal Institute for Occupational Safety and Health 
(BAuA), about five million employees are exposed to noise in Germany [Schm09 and 
BAuA11]. Figure 2 shows the recognized occupational diseases and patient rates in 2009, 
which is based on German Statutory Accident Insurance (DGUV) data. About 34% 
occupational diseases belong to noise-induced hearing loss and the accident insurances 
pay about 170 million Euros every year for those cases. Especially in metal manufacturing 
enterprises, the proportion of noise related diseases is 41% of all recognized occupational 
diseases cases [Schm09]. 

 
Figure 2: Recognized occupational diseases in Germany 2009, based on DGUV data 

� In Singapore, an investigation was made in small and medium-sized enterprises (SME). 
Over 38,000 workers are examined by designated factory doctors annually. Among them, 
about 88% are due to noise exposure [Phoo90].  

� CLARK stated in 1991 that over six million workers in the USA are exposed to hazardous 
noise [Clar91]. According to the evaluation by Centers for Disease Control and 
Prevention in 2011, approximately 22 million workers in the United States are exposed to 
hazardous noise levels at work. An estimated 242 million dollars are spent annually on 
workers’ compensation for hearing loss disability [CDC11]. 

� There is no national standard in Kuwait. Therefore, the researchers investigated the 
industrial noise pollution in Kuwait according to the UK standard (British Noise at Work 
Regulation of 1989). The research results show that the workers at all five investigated 
manufacturing facilities, such as cutting, canning or packing, are exposed to noise louder 
than allowed minimum values [Khur00].  

� A study of the Health and Safety Executive estimated that as many as 170,000 people in 
England suffer from deafness, tinnitus, and other hearing difficulties resulting from 
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exposure to noise at work. And over one million employees are estimated to be exposed to 
potentially harmful levels of noise [Brit10]. From 1991 to 1995, members of UK 
Association of British Insurers handled about 230,000 noise related claims for deafness 
[ABI96]. Furthermore, in the period from 2008 to 2009, 210 people in England qualified 
as new cases of noise caused deafness (permanent hearing loss) based on the statistical 
data from the Industrial Injuries Disablement Benefit (IIDB) scheme (see appendix 11.1).  

� In the study made by CHEW and LIN in Hong Kong at 1988, more than a thousand workers 
were examined. 37.5% were found to be working in locations with the noise level in 
excess of the limit and 18.6% were found to have industrial hearing loss [Wong90]. 

The impacts of noise to the workers in manufacturing systems are classified into three main 

categories: occupational safety, negative health impact and preservation of work performance. 

They are described as follows:  

� The occupational safety: according to International Organization for Standardization 
(ISO) 7731 [ISO03a], for workers’ safety the loudness of warning signal in industries 
must be 15 dB louder than the ambient noise. The high noise level could cause the waning 
signal to be ignored which may cause accidents. Another case is the communication 
requirement among workers. The quality of lingual communication is deteriorated with 
excess noise in a working environment, another potential unsafe factor. More details about 
communication problems caused by noise refer to [ISO03b]. 

� The negative health impacts: health damages results from exposure to repeated or very 
loud noise at work. The health damage could be stress and tiredness, dizziness, hearing 
damage, temporary/permanent hearing loss, heart diseases, among others. However, the 
effects of noise caused hearing loss are irreversible, which means there is no cure if an 
employee’s hearing has been lost [Brit10]. For other noise related health risks, such as 
physiological effects, loss of eye clarity, or loss of color perception and night vision refer 
to [VDI88, Kryt94 and VDI99]. 

� The preservation of work performance: Much research work discusses about the impact of 
noise to workers’ performance. The results of studies point to the same conclusion. 
Different authors stated a significantly poorer performance when employees are exposed 
to noise [Sher90, Sund94 and Ljun07].  

The costs paid for the negative effects of noise to employees are huge. “Such costs include not 

only the financial compensation or damages that must be paid, and the reduced enjoyment of 

everyday life for those with a hearing loss, but also less quantifiable factors such as reduced 

productivity, increased stress, disturbed speech communication and risk of accidents for a 

large number of workers.” [Embl97] Therefore, a comprehensive approach to investigate the 

noise issue in earlier planning is necessary. The costs and time to take this issue into account 

in design and planning is considerably less than the costs for factory re-planning or the costs 

for employee compensations.  

2.1.2 Legal regulations in Germany 

The laws and guidelines for noise control differ among countries. Some examples are the 

British Noise at Work Regulation of 1989 in England, the US Occupational Safety and Health 

Administration (OSHA) standards of 1996 in USA, and the Law of the People’s Republic of 

China on the Prevention and Control of Environmental Noise Pollution of 1996. These 

legislations show differences, such as the upper limits on noise over an eight hour period and 
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the limits of peak SPL. For example, the limitation of an eight hour average A-weighted SPL 

is 85 dB in Austria, Brazil, Finland and Germany, but 90 dB in Argentina, India, Japan, and 

some states in Canada. An overview of the main features of legislation in various countries 

can be found in 11.2 [Embl97]. The investigation in this thesis uses the legislations of 

Germany. Based on this study of the essential laws and guidelines, the noise limits to ensure 

employee health and safety in German industries are well-defined and used in this thesis’s 

approach.  

ASiG 

The Germany's Occupational Safety Adviser Act “Gesetz über Betriebsärzte, 

Sicherheitsingenieure und andere Fachkräfte für Arbeitssicherheit (Arbeitssicherheitsgesetz - 

ASiG)” was legislated in 1973 and the last change was made in 2006. This Act defines the 

basic organizational structure of occupational safety and the employers’ duties at operational 

level including their tasks, responsibilities and established collaboration. It can be used in 

combination with other occupational safety laws as guidelines for employers. 

LärmVibrationsArbSchV  

Commonly in the European Union, the minimum requirements to protect the workers from 

noise are determined by European Parliament and the Council with directive 2003/10/EC 

[EC03]. In 2007, the Federal Ministry of Labour and Social Affairs of Germany (BMAS) 

published the “Verordnung zum Schutz der Beschäftigten vor Gefährdungen durch Lärm und 

Vibrationen (Lärm- und Vibrations-Arbeitsschutzverordnung - LärmVibrationsArbSchV)” as 

guidelines for employers [BMAS07]. It is the German transposition of the European directive 

2003/10/EC. This ordinance closed a gap in the German law for occupational safety and 

health. Since then, the 2003/10/EC directive has been adapted by using national legislation 

LärmVibrationsArbSchV. The most recent changes were made in 2010 (BGBl. I S. 964). 

The main features of the both ordinances are identical. For example, based on §6 of 

LärmVibrationsArbschV, correspondingly §6 of 2003/10/EC, the upper and lower action 

values are provided to guide the noise control duties. The upper and lower action value of a 

eight hour average A-weighted (Lex, 8h) are 85 dB(A) and 80 dB(A), respectively. 

Furthermore, the upper and lower action values of peak SPL (LCpk) are 137 dB(C) and 135 

dB(C), respectively. 

With the new ordinance, employers have legal information about the limits of dangerous 

noise and risk assessment methods for the noise hazard. The employers are also responsible 

for informing the workers about the noise hazard and for providing the safety training and the 

appropriate health surveillance. In addition, the employees need to know the technical and 

organizational methods that can be used to eliminate or to reduce the risk of over-limited 

noise. It is an essential duty for the employers to train their workers about safe working 

practices to minimize the exposure to industrial noise.  

UVV - Lärm 

In 1989, the European directive 86/188/EWG was implemented in Germany by using the 

guideline “Unfallverhütungsvorschrift (UVV) - Lärm” (number BGV B3), which aims to 

reduce the risks of hearing damage and hearing loss resulting from working conditions. In 
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2007, the use in this guideline was replaced by LärmVibrationsArbSchV. The corresponding 

accident prevention measures were passed on the new directive.  

ArbStättV  

The workplace ordinance “Verordnung über Arbeitsstätten (Arbeitsstättenverordnung - 

ArbStättV)” was released in 2004 and the last change was made in 2010 (BGBl. I S. 2179). In 

this ordinance, the setup and operation of the workplace with respect to the safety and health 

of employees are established. Chapter §2 defines the term noise and noise hazard in industry 

and further defines an area of noise over 85dB as noise endangered area. Chapter §15 

establishes the upper limits of noise in different work areas, namely the labor, office, industry 

and social room. This ordinance also suggests that the noise should be kept as low as possible 

given the nature of the undertaking. The action values of A-weighted SPL and peak SPL are 

identical to the defined action values in LärmVibrationsArbSchV. 

TA Lärm 

Based on §48 chapter of the national law BlmSchG, the guideline “Technische Anleitung zum 

Schutz gegen Lärm mit Erläuterungen (TA Lärm)” was made (GMBl Nr. 26/1998 S. 503). It 

aims to protect the neighborhood and the general public from the harmful effects of noise and 

prevent negative environmental effects caused by noise. It provides many realistic based 

methods and tools to measure, analyze, and evaluate the effects caused by noise emitted from 

industry. Different limitations for day and night time are provided, with the area types, such 

as the pure residential area, the mixed residential area, and the pure industry area taken into 

consideration.  

VDI 2058 

This German directive, which was established by VDI, aims to provide guidelines for 

assessment of industrial noise and prevent its negative effects in the neighborhood. This 

directive is not a law, but as a collection of expert options, it is still essential reference for 

noise control. Therefore, it is now often implemented together with “TA Lärm” and is as 

generally the accepted principle for manufacturers in Germany.  

 
Table 2-1: A brief summary of various legal limitations in Germany 

According to the study of these laws, directives and guidelines, the limitations of A-weighted 

SPL and peak SPL that are implemented in German industry are listed in Table 2-1. For an 

Legislations

Situation lower action value upper action value exposure threshold exceptional situation

Limitation of SPL (A) Lex, 8h 80 dB(A) 85 dB(A) 87 dB(A) 90 dB(A)

Limitation of Peak SPL LCpk 135 dB(C) 137 dB(C) 140 dB(C) 

Legislations

Situation day, industry area night, industry area day, mixed area night, mixed area

Limitation of SPL (A) Lex, 8h 65 dB(A) 50 dB(A) 60 dB(A) 45 dB(A)

TA Lärm and VDI 2058

Outdoor Area

Indoor Area

LärmVibrationsArbSchV and ArbStättV
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indoor area, the lower action value, upper action value and the exposure threshold of SPL are 

80dB, 85dB and 87dB, respectively. They are the most essential limitations for noise control 

in a factory. The actions to be implemented as the limits are exceeded are shown in next 

section. For outdoor limitation for the two typical areas in day and night are also shown in 

Table 2-1. However, this thesis focuses on the indoor acoustic simulation and evaluation. In 

addition, the simulation algorithms and approach for indoor and outdoor areas are 

fundamentally different. Therefore, the investigation of outdoor area limitations is not further 

considered.  

Duties of employers 

The laws and guidelines require employers to act on the noise risks, namely to eliminate or 

reduce the risks from exposure to noise. Specific duties are also placed on employers when 

the noise exposure to average SPL and peak SPL reach certain limits. Then, the corresponding 

methods should be implemented in the factory. Table 2-2 provides an overview of these 

methods at different limitations, which are based on the investigation of 

LärmVibrationsArbSchV and ArbStättV [Schm09].  

 
Table 2-2: Employer duties as this noise arrived specific limits [Schm09] 

At the lower action value (average SPL of 80dB or peak SPL of 135dB) employers have a 

duty to provide their employees information on the risks posed by noise and about how to 

protect themselves. Hearing protection methods and wearable equipment, as well as the health 

surveillance, should also be provided by employers at the lower action value.  

Additional measures are required as the noise level reaches the upper action value (average 

SPL of 85dB or peak SPL of 137dB). The employers have a legal duty to identify/mark the 

noise area and make sure the workers are protected by wearing ear protections. The blue sign 

to identify the noise threatened area is shown in Figure 3a. If the noise evaluation shows that 

the workers are often exposed at or above upper action value, the employers have to 

implement suitable noise reduction measures. More investigation about noise control and 

employer duties can be found in [Hoes75 and Brit10]. 

Lex, 8h dB(A) 80 81 82 83 84 85 86 ≥ 87

LCpk dB(C) 135 137 138 ≥ 140

Information Provided for Staffs

Duties of 

employer at 

different 

action values 

and 

limitations

Hearing Protection

provided suitable and sufficient hearing protection

required hearing protection

information, introduction on the risks posed by noise and and training on protection methods

general information and instruction of occupational health

136

identified noise areas

noise reduction programms

Additional Measures

Preventive Medical Examinations

provided health surveillance required medical examination
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Figure 3: The sign of a noise-identified area (a) and various hearing protection tools (b) 

2.1.3 Noise investigation and reduction 

To evaluate the noise risks and to select suitable noise control measures in a factory, a few 

methods are commonly implemented. These methods include the identifications of noise 

types, noise sources, noise related effects, hearing protection methods, and the noise 

assessments. They are listed as follows [Brit10]: 

� Identify the different types of noise in the workplace. Usually all sound sources are taken 
into account, from speech between employees to the sound from machinery. 

� Identify people who might be exposed to noise. The exposure time and area are recorded 
as well. 

� Estimate the employees’ noise exposures and compare them with legal limits. 

� Identify the types of noise measurements that are needed. 

� Identify the types of hearing protection that are needed. Determine protection method 
which is best for each employee based on their noise exposure. 

� The results of health surveillance are taken into account. 

� Record all results of noise assessment in factories. 

� Update the assessment regularly, etc. 

These measures ensure a step by step noise investigation in a factory. However, most of these 

measures are based on the measurements and surveys once a factory is running. An early 

check during factory planning is not possible. Due to the high costs and time, subsequent 

adaptions and modifications in a manufacturing system are preferred to be avoided. 

Therefore, an approach to enable the noise assessment during the factory and workplace 

design phase, with respect to the manufacturing processes and facilities, is required. 

According to the noise analysis and evaluation, the methods to reduce noise in a factory are 

required in case of exceeded action values. SCHMISCHKE summarized the different methods 

and classified them into five main categories [Schm09]. These methods, shown in Figure 6, 

rang from technical solutions to organizational measures and personal protections. The 

primary methods are more efficient and more cost-effective than the secondary methods. The 

objective for implementing such methods is to create a better working environment, improve 

communication in the workplace, reduce stress, and reduce the risk of hearing damage.  
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The methods in the first category achieve to eliminate the noise sources directly. For example, 

selecting and using low-noise machines and manufacturing processes. Commonly, a duty of 

facility manufacturers is to provide the emission information of their products [VDI96 and 

EC06], so that the factory designer and production planner are able to compare and evaluate 

different facility choices in the design phase. In other words, the noise related risks should be 

reduced before the manufacturing system is established, if possible. It helps the employers to 

meet their legal obligations and reduces the need for additional sound reduction measures at a 

later stage, which mostly result in high costs. In [Fach07 and Brit10], the author provides a set 

of guidelines to help employers purchase quieter machineries.  

 
Figure 4: Noise reduction method classification 

The methods in the second category focus on reducing the sound propagation through air and 

objects. Typical methods are encapsulation and shielding of noisy machinery, use of noise 

absorption materials to isolate the noise sources, or vibration isolation etc. [DIN10d and 

Möse10b]. The third category provides the noise reduction methods for noise polluted areas. 

Methods include building a cabin or using absorption shields. Figure 5 shows the cabin and 

shield products from the company J.I.M. GmbH. More suggestions and guidelines to 

implement cabins and shields in a manufacturing system can be found in [VDI83a and 

VDI83b] 

 
Figure 5: The noise isolation cabin (a) and noise absorption shield (b) [JIM12] 

Reduction of 
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The organizational methods include factory layout planning and work scheduling related 

approaches. For example, the redesigning of the workplace and more breaks for the workers 

in a quiet social room. Such measures cannot reduce the noise and its propagation in a factory, 

but can reduce the negative effects of noise to the workers. The personal hearing protections 

would also be required. It is important for the employees to have a range of protectors to 

choose from, so that they can have the best suitable ones. Therefore, it is important for the 

employers to provide a wide range of hearing protection solutions and encourage their 

employees to use them. Some of the protectors, such as foam earplugs, pre-molded earplugs, 

earmuffs, and custom ear molds are shown in Figure 3b. 

In addition to the typical noise control methods, Active Noise Control (ANC) approaches 

have rapidly developed in recent years. Limited by the high costs of hardware configuration, 

these methods are not widely implemented despite their efficient noise reduction effects. 

Several successful implementations can be found in military and aerospace use. Hansen 

provides a review of current and future ANC industrial application. Different essential 

components, such as sensor, controller and filter, are described. He also discusses the 

necessary further developments to overcome the technical limitations of ANC applications in 

industry [Hans05]. As an important supplement to currently widely used methods, ANC 

offers new potentials to improve the noise control systems in industrial applications.  

 

2.2 Sound simulation and visualization 

Nowadays, there are many established methods for sound simulation and sound visualization, 

which are widely implemented for computer games, multi-sensory user interface, or acoustic 

prototyping. These methods are mostly wave-based or geometric methods. This chapter 

provides an overview of the basic laws of sound propagation, as well as existing acoustic 

modeling and simulation approaches.  

2.2.1 Basic laws of sound propagation 

Both the wave-based method and geometric method of sound simulation are based on the 

fundamental physical laws of sound wave propagation. Phenomena such as reflection, 

refraction and absorption are used in the methods and are briefly introduced in this section. 

A sound wavefront is commonly understood as a surface consisting of all points on a sound 

wave at the same position in a wave cycle. That means all of the points located on the crests 

or troughs of the same wave form a sound wavefront. Based on Huygens’s principle, a basic 

physical law which interprets the propagation of waves, the sound envelope of sound waves 

can be understood well. The Dutch physicist CHRISTIAN HUYGENS states that: every point of a 

wavefront may be considered the source of secondary wavelets that spread out in all 

directions with a speed equal to the speed of propagation of the waves [Grim91]. Figure 6a 

and Figure 6b show the propagation of plane and spherical sound wavefronts respectively. 

HUYGENS’s principle shows that both the plane and spherical wavefronts resemble plane 

wavefronts as they travel. Each of the spherical wavelets for all of the points on each 

wavefront has the same radius and travels to another plane wave (the sound speed is 

considered as constant). And as shown in the figure with the arrow, the direction in which the 

spherical wavelets travel is locally perpendicular to the wavefronts. 
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Figure 6: The illustration of plane wavefronts and spherical wavefronts [Dein08] 

When the sound wave leaves one medium and enters another one, a portion of the sound wave 

will be absorbed by the medium (absorption), while the rest reflects off of the medium surface 

(reflection). Secondary effects such as refraction, dissipation and diffraction are also involved. 

Using HUYGENS’s principle, such phenomena during sound wave propagations can be 

explained well. 

Reflection 

The effect of reflection changes the direction of the waves that are emitted by the sound 

sources. A refection occurs when the sound wave bounces off a surface, such as a surface on a 

wall or a machine. The reflection of the sound wave follows the law “angle of incoming 

(incidence) equals angle of outgoing (reflection)”, also known as the “law of reflection.” The 

same phenomena are observed with light and other waves as well. Therefore, performing 

calculations using Huygens’s law obtains identical results as NEWTON’s geometric optics, 

which focuses on the particle principle of light. 

 
Figure 7: The illustration of sound wave reflection at surfaces (specular and diffuse) 

According to the surface features, the reflections are divided into two types, specular 

reflection and diffuse reflection. Figure 7, illustrates both cases. If the reflecting surface is 

“smooth”, for example a flat mirror, the sound wave reflexes specularly. The incident sound 

wave and the reflected sound wave are on the opposite sides of the normal with the same 

angle (Figure 7a). If the surface is not smooth, the sound waves are reflected unevenly in 

different directions, referred to as diffuse reflection (Figure 7b). For more discussion about 

diffusion effect, refer [Cowa94 and Embr01].The smoothness of surface is measured by using 

wave-length. If the dimensions of surface unevenness are considerably smaller than the wave-

length then the sound wave is specularly reflected. Many common materials show a mixture 
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of specular and diffuse reflections. Due to their longer wave-lengths, for the sound waves at 

low frequencies it is easier to find a perfect reflector compared to the sound waves at high 

frequencies. 

Absorption and refraction 

When the incident sound wave strikes a surface, only a part of the energy is reflected back, 

the rest is absorbed by the material. The energy loss of a sound wave during absorption can be 

considered as two parts: refraction and dissipation. As a result of dissipation, the fibers or 

particles the absorbing material vibrate and cause heat due to the friction. In other words, the 

sound absorption is accomplished by way of energy to heat conversion. This also explains 

why a fibrous material is more absorptive than a denser material.  

The velocity of a sound wave is dependent upon the properties of the medium through which 

the wave propagates. If the medium property changes, the wave velocity changes. Therefore, 

refraction occurs as the sound waves pass through from one medium to another in a changed 

direction due to changed wave velocity. Huygens’s principle also explains the refraction 

phenomenon and is used to derive SNELL’s law, also known as law of refraction. The 

refraction coefficient is able to be calculated through the ratio between the transmitted sound 

intensity and the incident sound intensity. 

To describe the absorption property of a material surface, one factor and four coefficients are 

used. The reflection factor R expresses the amplitude and phase changes of a sound wave, 

which strikes a material surface and reflects back. The absolute value of R varies according to 

the frequency and to the direction of the incident sound wave. Then the reflection coefficient 

ρ is equal to |R|2. Derived from the reflection coefficient, the absorption efficient is α = 1- ρ. 

For more details about the derivations, refer to [Kutt00].The absorption coefficient can be 

further divided into two parts: refraction coefficient τ and dissipation coefficient δ. The 

energy balance of a sound wave can be described using following formal: α + τ + δ = 1 

[Faso84]. 

 
Figure 8: The refraction of sound waves 
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The absorption coefficient value at different frequencies can be determined by experimental 

approaches. A commonly used method is the KUNDT’s tube measuring method, which is 

normed according to DIN EN ISO 10534-1 [DIN10a] and DIN EN ISO 10534-2 [DIN10b]. 

Two different measurement settings are respectively based on voltage standing wave ratio 

[DIN10a] and transfer function [DIN10b]. DIN EN ISO 354 shows another measuring 

method for estimating the absorption coefficient in a reverberation room [DIN03b]. Two 

reverberation times are measured, with or without a specimen placed in a reverberation room. 

The sound absorption coefficient of the acoustic material for various angles of sound 

incidences is then averaged. This method is widely implemented as an evaluation index for 

acoustic design of a concert hall, interior materials for automobiles, or construction materials. 

Both of these two methods are limited to laboratory measuring conditions, while the 

ADRIENN-method is more application-related. Using this method, the absorption coefficient is 

calculated by determining the difference between the impulse responses in empty space and in 

front of the measuring surface.  

Air which absorbs sound is a medium in most working space. The amount of the absorption is 

dependent upon the frequency, the relative air humidity, the air temperature and the 

environmental pressure. The sound intensity after absorption can be calculated through the 

original sound intensity at the source, the distance the wave travelled, and the attenuation 

coefficient [Kutt00]. Some of the attenuation coefficients at 20 oC and normal environment 

pressure are shown in Table 2-3. For the calculation, refer to [Bass90]. 

Relative 

Humidity in % 

Frequency in kHz 

0.5 1.0 2.0 3.0 4.0 6 8 

40 0.60 1.07 2.58 5.03 8.40 17.71 30.00 

50 0.63 1.08 2.28 4.20 6.84 14.26 24.29 

60 0.64 1.11 2.14 3.72 5.91 12.08 20.52 

70 0.64 1.15 2.08 3.45 5.32 10.62 17.91 
Table 2-3: Example air attenuation coefficients at 20 oC with normal pressure [Kutt00]  

Diffraction 

Diffractions occur when a sound wave goes through an opening within a barrier. According to 

the HUYGENS’s principle, every point of the sound wave within the opening can be considered 

as a newly created circular wave which propagates outward from the opening (see Figure 9).  

 
Figure 9: The diffractions of sound waves 
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In other words, the sound bends around a change of medium [Berg95], which is why sound 

can be heard around corners or behind a barrier between the sound source and the listener 

[Crem78]. The diffractions occur often around bigger objects, such as tables and lathes, while 

small objects, such as bottles and cups, have little effect on the sound wave propagation. 

2.2.2 Acoustic modeling and simulation  

In order to determine the influences of noise in a factory, the acoustic simulations rebuild the 

sound propagation processes, enhancing the understanding of noise behavior. Based on the 

literature review, an overview of the different simulation methods is provided in this chapter. 

The methods are commonly divided into numerical and geometric methods. A survey of those 

methods is also given in [Rabe97, Sche98, Sven02, Dein08 and Silt10b]. 

The numerical methods, such as Finite Difference Time Domain (FDTD), Boundary Element 

Methods (BEM), and Finite Element Methods (FEM), rely on the first principles of physics. 

Discrete simulations are developed by discretization of Partial Differential Equations (PDE). 

They enable the exact physical modeling and simulation since the spatial and temporal step 

sizes are defined small enough. To ensure the accuracy, the step size has to be smaller than 

the wave length, but this causes the computational load to exceed today’s desktop capabilities. 

The geometric methods, such as the image source method, ray tracing and beam tracing 

methods, use a simplification of the sound propagation processes. The sound waves are 

considered as acoustic rays, which travel in the mediums and reflects at the boundaries of 

mediums according to the geometric laws. Compared to the numerical methods, the geometric 

methods improve the computational performance of sound simulation significantly, but at the 

cost of simplifying assumptions.  

2.2.2.1 Numerical methods 

The numerical methods, also known as wave-based methods, are based on Huygens’s 

Principle and commonly use the KIRCHHOFF-HELMHOLTZ integral [Helm60, Kirc83, Born99 

and Rile02]. They provide accurate solution of sound propagation and are independent of 

model complexity. However the computing performance is limited at low and middle 

frequencies. 

The FDTD method is one of the grid-based differential time-domain numerical modeling 

methods, which uses a Cartesian grid for discretization [Yee66]. A FDTD formulation 

without a Cartesian grid is also implemented in [Bott95]. In traditional FDTD methods for 

sound propagation simulation, the sound pressure and volume velocity are needed and 

determined for each grid point. However, using only one variable is also possible [Savi10]. 

The corresponding PDE are estimated using finite difference functions simplifying the 

solution of the system. The implementation of the FDTD methods is straightforward and all 

the calculations are done in the time domain. More discussions of FDTD methods can be 

found in [Bott95, Savi02, Wils04 and Savi10].  

In FEM, the computational domain is subdivided into small volumes called elements. Each 

element is assigned to a size and a constitutive behavior that describes the acoustic material 

properties to which the element belongs [Ihle98 and Brae03]. For a closed space, the wave 

equations could preferably be solved using FEM, which approximates the wave equations by 

a large system of ordinary differential equations (ODEs). However, the FEM simulation is not 
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able to simulate the sound waves at high frequencies because it approximates the oscillating 

pressure field by smoothly. To resolve a wave, at least three or four elements per wave are 

needed, leading to a huge number of degrees of freedom. For more implementations of FEM 

simulation in acoustic investigation, refer to [Kopu95 and Kaga98] 

The BEMs are numerical computational methods to solve linear PDEs that are formulated as 

integral equations (such as KIRCHHOFF-HELMHOLTZ equation). This method is widely applied 

in science and engineering areas [Bane94], including the acoustic investigations [Kopu95 and 

Wu00]. The BEMs only subdivide the boundaries of the considered environment, not the 

entire surface or volume. In the FEM or FDTD simulations, the whole domain of the PDEs is 

discretized. The basic idea is to describe the propagation of sound waves in the interior of the 

domain by means of the static variables at the boundary. And the estimation of the sound 

pressure or velocity is a linear combination of a finite number of basic functions on the 

elements. Hence, the BEM is often applied because it is easier to use and more 

computationally efficient than the FEM and FDTD methods [Kaga92 and Kopu95].  

Such numerical methods for sound simulation are mainly used at low frequencies and for 

simple geometric models, because the computing time and storage space increase 

dramatically at higher frequencies. Therefore, due the time and memory consuming, FEM and 

BEM methods are not often used for interactive virtual environment applications.  

2.2.2.2 Geometric methods 

Sound, like light, is also a wave. Therefore, many geometric methods for sound propagation 

modeling and simulation are inspired by methods in computer graphics, such as the ray 

tracing related, beam tracing related, and radiosity related methods. Some essential 

differences between light and sound were considered and taken into account during the 

method development for this thesis. For example, the sound wave has a much longer wave 

length than light, so diffractions around small objects are not remarkable. As a result, the 

geometry for sound simulation is usually large scaled and with a low level of detail. For more 

different considerations between the methods from computer graphic and sound wave 

simulation, refer to [Sche98, Dein08 and Silt10b].  

Image source methods  

The image source method is the simplest solution of the geometric simulation methods which 

treats boundary problems. Figure 10 shows the basic idea of image source method: new sound 

sources model the specular reflections. The sound effect caused by the reflected sound source 

S at the surface 1 is simplified to the sound effect caused by a new sound source S1, which is 

reduced by absorption. For simple geometries, construction of image sources up to certain 

number of reflection times is easy. Based on the image source simulation, the SPL at the 

listener position can be calculated by using all the new generated sound sources (virtual sound 

sources). 

However, the number of virtual sound sources increases remarkably with geometry 

complexity and exponentially with the number of times the reflection occurred. Therefore, 

this method is usually implemented for simple geometry and a low number of reflection order 

cases. More details about image source method can be found in [Alle79, Bori84, Kris93 and 

Rabe97].  
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Figure 10: Illustrated principle of image source [Rabe97] 

Ray tracing related methods 

Specular reflection is well simulated in the image source method, but diffuse reflection needs 

other methods. In the ray tracing method, reverberation paths between a source and listener 

are determined by emitting rays from the sound source position and following them through 

the room until an appropriate set of rays reach a representation of the listener position 

[Kroc68 and Kulo84]. Monte Carlo path tracing methods are used to generate paths from the 

source to the receiver randomly.  

The ray tracing method depends on the calculation of the intersections between rays and 

surfaces and the energy loss in the paths. Therefore, the computing complexity increases sub 

linearly with the number of surfaces. When each intersection is found, the paths of specular 

reflections, diffuse reflections, diffractions, and refractions can be sampled [Cook84]. 

However, the discretely sampled set of paths leads to aliasing and errors in predicted room 

responses. Moreover, the results are dependent on listener position dependent, so that a 

recalculation is required if the listener moves in the room. More discussion of advantages and 

disadvantages of the ray tracing method can be found in [Kaji86 and Lehn93]. 

  
Figure 11: Illustrated basic principle of ray tracing method [Funk98] 
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Beam tracing related method 

Beam Tracing can be considered an improvement of the ray tracing method [Funk98]. The ray 

line, whose thickness is zero, is replaced with pyramidal beam. In beam tracing, the 

intersection between beams and surfaces (polygons) are detected. The original beams are split 

into transmission beams and reflection beams. The transmission beams are used to determine 

the shadow region and the reflection beams are constructed by mirroring the transmission 

beam over the polygon’s plane. This basic idea is shown in Figure 12. This method has been 

widely used in acoustic modeling [Dado85, Funk98 and Funk99] and radio wave propagation 

[Fort99]. 

 
Figure 12: Illustrated basic principle of beam tracing method [Funk98] 

When compared to the image source method, the beam tracing method needs less virtual 

sources for simulation. The beam tracing method has also the advantage of spatial coherence 

when compared to the ray tracing method. For interactive application, such as the VR 

applications, beam tracing results can be pre-computed to enhance the usability of the 

applications. However, similar the image source method, beam tracing cannot handle complex 

geometry, especially curved surfaces, and depends on listener position.  

Radiosity related methods  

Another type of geometric method is the radiosity method, which was originally used in 

thermodynamics [Sieg81] and further implemented in computer graphics [Cohe85]. Unlike 

the image source and ray tracing methods, the radiosity method is a listener position 

independent algorithm. Based on the input of geometry and sound source features, the sound 

field within the geometry can be constructed without recalculation when the listener moves.  

 
Figure 13: Illustration of the radiosity method [Cohe85] 
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The basic idea of radiosity is to calculate the wave energy within the given environment. The 

space is split into more finite sub-patches and the energy transfers among them are 

determined (Figure 13). As compared to the FEM simulation, the size of each patch does not 

have to be smaller than the wave length, so this method is more efficient than FEM. 

However, the energy exchange between two patches is commonly defined through the so-

called form factor, whose calculation is time consuming. In [Shi93], an algorithm is 

introduced to use the radiosity method for sound wave simulation. The air absorption and 

time delay of arriving sound are considered in this algorithm. More introduction and 

improved computation approaches can be found in [Nosa04]. 

More acoustic simulation methods 

In addition to the previously discussed methods, there are also computer aided approaches, 

which are implemented for sound wave propagation modeling and simulation. Some of them 

are inspired by the computer graphic methods and others combine two or more basic methods 

to overcome the disadvantages of a single method.  

� The radiance method is closely related to radiosity method. The main difference is that the 
radiosity methods uses Lambertian diffuse reflection algorithms, while the radiance 
method allows for any directions of reflection. SILTANEN et al. introduced an adapted 
radiance method for sound wave implementation. The hybrid modeling brings benefits by 
combining the advantages of the beam tracing and radiance methods [Silt07b and Silt10a]. 

� Inspired by photon mapping, another geometric method called sonel mapping is 
introduced in [Kapr04 and Kapr06]. The sonel mapping is a particle based Monte Carlo 
method and can be implemented for acoustic calculations for complex geometries. Sonel 
mapping is a two stage method which enables the modeling and simulation of sound 
specular reflection, diffuse reflection and diffraction. In the first stage, sound particles 
called sonels are traced through the virtual scene in order to populate the sonel map. This 
map is then used in the second stage called the rendering stage. In combination with 
distribution ray tracing, the rendering stage calculates the echogram at a given listener 
position. 

� The simulation software “ODEON” provides a hybrid method, which uses rays to 
discover the location of image sources. The ray cones are used to find valid image sources 
that could possibly be missed [Nayl93]. 

� In [Vorl88], the ray tracing method is used for visibility detection. Moreover, the ray 
tracing method is combined with image source method for calculation of direct sound and 
early reflection [Hein93]. 

� LEWERS represented another hybrid simulation method combining beam tracing with 
radiosity [Lewe93] in a two stage approach. Firstly, the triangular beams are traced in the 
space for calculation of early specular reflection. The diffuse energy is stored at the 
surfaces for each reflection. Secondly, the stored energy is used to determine the diffuse 
reverberant.  

� To combine the advantages of image source method, tray/beam tracing methods and 
radiosity method, the quantized pyramidal beam tracing approach is introduced by 
STEPHENSON. The sound wave energy is carried with polygonal beams and split into 
reflection and diffraction. This method improves the computation time but used more 
memory [Step04].  
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� SCHIETTECATTE and NACKAERTS introduced a so called “mesh tracing” approach, which 
combines both the mesh-based numerical method and ray tracing method. Three 
computing steps are included: preprocess to create a randomized waveguide mesh, 
impulse response calculation for each pair of sound source and listener, and real-time 
reverberation using a fast convolution algorithm. This approach enables an acoustic 
simulation in real-rime [Schi03]. 

� To overcome the high computing expense of geometric methods in the case of complex 
geometry, TSINGOS et al. developed an improved method using programmable graphics 
hardware. This method can accelerate the simulation calculations and provide more 
realistic modeling scattering [Tsin07a and Tsin07b]. 

Phonon tracing method 

Due to the computation complexity, the wave-based and geometric methods are not practical 

or efficient for large geometric models. An improved geometric approach called “phonon 

tracing” was developed by DEINES et al. to simulate sound propagation [Bert05, Dein06a, 

Dein08 and Dein10] and is introduced and implemented in this thesis. This method is inspired 

by the photon tracing method which uses the light particles called photons and simulates 

photo realistic images [Chri00 and Jens96]. Analogous to photon tracing, the phonon tracing 

method uses particles called “phonons” to model the sound source with defined acoustic 

energy. The simulation result is further used for visualization of wavefronts and evaluation of 

the sound energy, as well as sound pressure levels at different positions inside a virtual 

environment.  

This phonon tracing method involves phonon emitting/tracing and phonon collecting/filtering 

processes. Using an unchanged sound source, only one tracing step is needed. The tracing 

only needs to be executed again if the sound source is changed. Based on the traced phonon 

map, more collections can be made for different listener positions. In the phonon emission 

step, the phonons emitted from the sound source carry defined information: energy, initial 

position, outgoing direction, and the distance traversed from the source. The emission is based 

on the given energy distribution, which is estimated as a sphere shape. The speed of phonons 

in the air is set as a constant. With each reflection, the phonon’s sound pressure is decreased 

according to the material’s absorption coefficient. At each reflection position (intersection 

point), the current sound pressure of the phonon is stored. The simulation can be terminated 

according to a pre-defined minimum number of phonons distributed to the phonon map or 

minimum number of reflections. These two conditions will be explained in chapter 4. 

After the emission and tracing step, the phonon collection step calculates the influence of all 

phonons to a particular listener position. The information of all reflection positions is 

collected and weighted according to their distance to the listener. To trace the energy and the 

pressure for different frequency bands, the finite response filters (FIR) are used for each 

listener position. More details about filter design can be found in [Bert05].  

In phonon tracing, all reflections are considered as specular reflection and the diffuse 

reflections are not taken into account. This simplification does not significantly affect the 

accuracy of the simulation, because sound wave lengths are long, therefore the diffuse 

reflection is usually not as considerable as light. However, the assumption is not true if the 

surface structure is not significantly smaller than the wave length. In order to model the 

diffusion, a scattering coefficient could be implemented to differentiate the reflection type 
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between specular and diffuse. If the implementation is done, the phonon emission step would 

be improved [Mich08]. 

Using phonon tracing, refraction and dissipation are both considered as absorption and are not 

separately computed, since only the reflected sound waves are essential in room acoustics. 

Compared to the wave-based methods, the phonon tracing method and other geometric 

methods fail in the low frequency range. There are two main reasons for this: 

� Because the wave lengths of sound are long and of the order of typical dimensions of the 
room, the diffraction and interference are necessary to consider. However, they are 
however not taken into account in geometric methods. 

� The air damping is commonly lower at lower frequencies so the reverberation time 
becomes much longer. Representing such a long reverberation time using reasonable 
length for a convolution kernel is difficult. 

Due to the limitation of geometric methods, a combined approach could provide more ideal 

and accurate simulation. For example, DEINES suggested an additional wave-based method 

implementation to simulate the sound wave propagation at low and middle frequencies 

[Dein06b]. In this thesis, the simulation algorithm is not extended. However, based on the 

application scenario, a new software tool is made to facilitate the use of it. 

2.2.2.3 Summary of sound modeling and simulation methods 

A short summary and comparison of wave-based and geometric methods can be seen in Table 

2-4. These methods are shown with a short description of the features, such as the input/out 

data, advantages and disadvantages, and the essential references used in this thesis. To 

compare the methods, several features, such as the computing performance, listener 

dependence, geometric applicability, frequency accuracy, are taken into account. 

The selection between wave-based and geometric methods for a given frequency depends on 

the complexity and size of the model. For example, for small rooms the wave-based methods 

can be used in the mid-frequency range. But for large space such as factory halls, geometric 

models are needed. More discussion about the strengths and weaknesses of sound simulation 

methods can be found in [Rabe97, Sven02 and Silt10b]. 

In room acoustic investigation and especially in VR applications, most implemented methods 

are based on geometrical acoustics methods, due to the higher computing speed. Because the 

accuracy and performance fulfill the implementation requirements of current research work, 

the original phonon tracing is used in this thesis without any improvement. 
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Table 2-4: A comparison of main sound simulation methods 

Data Input Pros and Cons References

Finite Difference

Time Domain

(FDTD)

• sound position and time

discreted pressure
•  grid discreted geometry

⁺ straightforward

⁺ ideal computing for low frequencies

⁺ operating in the time domain

⁺ accurate and robust

⁻ middle computational expense

⁻ restricted to low frequencies

Bott95
Savi02
Wils04
Savi10

Boundary Element

Method (BEM)

• position of sound source and
sound energy
• mesh discreted geometry
• set of boundary
conditions

⁺ very accurate

⁺ relative high computing speed

⁺ less discreted mesh

⁺/⁻ mesh size dependent computing speed

⁻ restricted to low frequencies

⁻ middle computational expense
- only solves linear problems

Kaga92
Kopu95
Wu00

Sven02

Finite Element

Method (FEM)

• position of sound source and
sound energy

• mesh discreted geometry

⁺ very accurate

⁺ also solves nonlinear problems

⁺ many commercial software

⁺/⁻ mesh size dependent computing speed

⁻ restricted to low frequencies

⁻ high computational expense

Kopu95
Kaga98

Ihle98
Brae03

Image source

related method

• position of sound source
• position of listener
• geometry with material acoustic
properties

⁺ simple and robust

⁺ accurate for low ordered specular reflection

⁺ fast computing in box shaped geometry

⁻ not physical modeling

⁻ diffuse reflection is not considered

⁻ only for simple geometries, not for curved surfaces

⁻ only for low order of reflections

Alle79
Bori84
Kris93
Rabe97

Sven02

Ray tracing

related method

• position of spherical sound
source
• spherical listener position
• geometry with material acoustic
properties

⁺ easy to implement

⁺ efficient computing for complex geometry

⁺ generality for reflection, diffraction etc.

⁻ aliasing and errors in predicted room responses

⁻ to avoid possibly missed  reverberation paths, a large
number of samples are requried for computation

⁻ recalculation is needed for new listener postion

Kroc68
Kulo84
Cook84
Kaji86
Lehn93
Rabe97

Radiosity

related method

• sound source description

• geometry with material acoustic
properties

⁺ listner postion independent

⁺ efficient computing for complex geometry

⁺ ideal difuse reections

⁻ high computing expense

Shi93
Nosa04

Beam tracing

related method

• position of sound source
• position of listener
• geometry with material acoustic
properties

⁺ less virtual sources

⁺ spatial coherence with less sample error

⁺ possible pre-computing for interactive applications

⁻ too complex for 3D geometry

⁻ only for simple geometries, not for curved surfaces

Dado85
Funk98

Funk99
Rabe97
Fort99

Phonon tracing

method

• position of spherical sound
source with energy distribution
• geometry with acoustic
properties
• position of listener

⁺ listner postion independent

⁺ efficient computing for complex geometry

⁺ pre-computing for finite response filter

⁺ reusable phonon map

⁻ diffuse reflection is not considered

⁻ restricted to high frequencies

Bert05
Dein06a
Dein08
Dein10
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2.2.3 Visualization of sound propagation 

Sound propagation can be described as data sets, which are complex, not intuitive, and 

difficult to understand. Visualization serves as a key method to improve verification of 

models, understanding of simulation results, design, and communication among a non-

technical audience [Rohr00 and Kühn06]. According to the survey made by LOKKI and 

NENONEN [Lokk06], simulation, when compared to measurement data, enables several 

essential features of sound visualization, such as the ray/phonon paths, beam paths, particle 

clouds and diffractions. Therefore, high quality visualization enhances the understanding of 

data significantly. 

The main acoustic visualization methods are divided into two groups. The first group of 

methods focuses on the propagation of the sound waves inside a room. Based on simulated 

results using the FDTD approach, YOKOTA et al. visualized sound propagation in 2D room 

sound fields [Yoko02]. PETRAUSCH and RABENSTEIN introduced an OpenGL based 

visualization of 2D sound wave propagation in real-time [Petr05]. BERTRAM et al. introduced 

their approach to visualize the frequency-dependent sound fronts in a room which enables the 

viewing of sound propagation in air and sound reflection at selected material and selected 

frequencies [Bert05]. This approach was further extended by DEINES et al. through more 

functions, such as the visualization of SPLs [Dein08]. In [Toki05], the authors represented the 

particle displacements in a cube-shaped room, which is pre-computed using wave-based 

simulation. Additionally, an implementation using VRML, enabling a time step dependent 

presentation, was shown. 

The second group of methods focuses on the room impulse response for individual listener 

positions based on measured or simulated data. LOKKI and NENONEN provided a review of 

acoustic visualization and further implemented the visualization using the CAVE System, in 

which the trace paths and particle paths are shown. [Lokk06]. Based on the beam tracing 

approach, FUNKHOUSER et al. visualized source point, pyramidal beams, and reverberation 

paths, which enhance the understanding and evaluation of their modeling method [Funk98]. 

KHOURY et al. represented the visualized SPLs using color maps and the first wavefront using 

isosurfaces. The color maps provide not only sound propagation information but also an 

overview of sound pressure in a room [Khou98]. After optimization of acoustic systems, 

MONKS et al. introduced the visualization using different acoustic metrics. For example, the 

sound strength was visualized at room surfaces, which indicated the SPL at different time 

using colors. This approach enables the users to optimize their room design and compare the 

acoustic values between two designs [Monk00].  

In this thesis, the visualization of acoustic simulation is basically an adaption and further 

development of the approach introduced by DEINES et al. [Bert05, Dein06a, Dein08 and 

Mich08]. Several visualization methods are implemented, which enables the viewing of the 

source point, phonon path, 3D sound front and SPLs at specific positions in a virtual 

environment. The simulation algorithm is not further developed, but the implementation of a 

software tool helps the user to use phonon tracing method to analyze noise issues in a 

manufacturing system. 
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2.3 Virtual Reality (VR) theory 

2.3.1 A brief history and definitions 

The human perception of the outside world is controlled by five senses: sight, hearing, touch, 

smell, and taste. If the sensory inputs are produced intentionally and artificially, commonly by 

computer technology, the reality could be called “Virtual Reality (VR).” The term “Virtual 

Reality” was introduced by JARON LANIER in 1986 in a conversation regarding the work of 

SCOTT FISHER, who used the term “Virtual Environment” in 1986 [Fish86].  

MORTON L. HEILIG invented the first multi-sensory simulator named “Sensorama” (see Figure 

14a) in 1957 and patented it in 1962. This mechanical device provided the users with an 

illusion using a 3D motion picture with smell, stereo sound, vibrations of the seat, and wind in 

the hair. This system was not interactive; the view was fixed and pre-recorded [Rhei91]. In 

fact, this invention is much older than the computer graphic field itself. 

As a pioneer of computer graphics, SUTHERLAND wrote about “the ultimate display” in 1965, 

which is described as a device providing interactive graphics, tactile feedback, and mentioned 

audio, smell, and even taste [Suth65]. He invented a “Head-Mounted Display” (HMD) in 

1968. This system had two displays which enabled the viewer to have a computer generated 

graphic overlaid on the real world [Suth68]. Together with his colleagues and students at the 

University of Utah, SUTHERLAND also developed fast algorithms for removing hidden 

surfaces from 3D graphics images. This contribution is essential to generate high quality 

visual image for a VR environment. 

 
Figure 14: The Sensorama system (a) [Rhei91] and the VIVED system (b) [Fish86] 

An implementation of a virtual environment named “VIVED” (VIrtual Visual Environment 

Display) at NASA Ames Research Center was made in 1984 [Fish86]. This system was a 

head-mounted, wide angle, stereoscopic display controlled by the user’s position, voice and 

gestures (see Figure 14b). The VIVED is considered to be the first low-costs HMD with high 

immersive degree. Later, based on VIVED, an extension named VIEW (Virtual Interactive 

Environment Workstation) was implemented with the focus of human-computer interaction. 
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This project was under the direction of SCOTT FISHER. At the same time, Furness designed a 

virtual cockpit, which enabled a very wide field of vision, for fighter-airplane pilots [Furn86].  

At the University of Wisconsin, KRUEGER worked on the development of his “Videoplace” 

system. In the graphic scene, the relation between the user’s image and the virtual image 

could be controlled by the computer. Moreover, the movement of a virtual object could be 

coordinated with the actions of the user [Krue83]. 

DEFANTI and SANDIN developed the first functional gloves, “Sayre Glove,” in 1977, which 

provided an effective method for multidimensional control. After that, GRIMES developed and 

patented a digital data entry glove in 1983. This glove integrated finger flex sensors, tactile 

sensors, orientation sensors, and wrist-positioning sensors. More details about gloves and 

gesture interface devices can be found in [Stur94 and Bier08].  

The first virtual environment, with the concept of a graphic projected room, was invented at 

the Electronic Visualization Lab at the University of Illinois Chicago Circle in 1992. This 

system has been called “CAVE” (CAVE Automatic Virtual Environment) [Cruz92 and 

Cruz93] and significantly improved immersion in a virtual environment.  

The rapid development of computer power and software development made it possible to 

create real-time images and visualize large-scale sets of data. More novel in/output devices 

were developed to enhance the human-computer-interaction. Each of these earlier efforts and 

attempts enabled the foundation and development of the VR concept. More investigation 

about the historic development of VR can be found in [Kala93a, Mazu96, Burd03, Bril08, and 

Zhou09].  

Nowadays, VR is a comprehensively developed technology and widely implemented for 

scientific visualization, education and training, operation in hazardous environment, space 

exploration, entertainment etc. [Giga93 and McLe04]. VR became a highly multidisciplinary 

field drawing from computer graphics, human-computer-interaction, software engineering, 

and even social and psychological issues. However, there is not unambiguous definition of 

term “VR”.  

Under broad definition, VR is often referred to as “Cyberspace,” “Artificial Reality,” and 

“Virtual Environments.” MYRON KRUEGER discussed “Artificial Reality” in 1983 [Krue83], 

and a year later, WILLIAM GIBSON used the term “Cyberspace” in his book “Neuromancer” 

[Gibs84]. The term “Artificial Reality” is described as a video-based, computer-mediated 

interactive media and the term “Cyberspace” has the meaning of a global information and 

entertainment network. However, these two definitions do not correctly describe VR. The 

term “Virtual Environment” is considered by many authors as synonym for VR [Furn86, 

Kala93a], because it involves the most essential features as VR. Based on a review of current 

research in field of VR and its applications, various definitions can be found in the literature. 

Some are selected and listed as follows: 

� The definition made by SUTHERLAND was: “a system that can display information to all 
senses of the user with an equal or bigger resolution than the one that can be achieved in a 
natural way so that the user cannot say that the artificial world is not real.” [Suth65] 

� GIGANTE provided a definition of VR: “The illusion of participation in a synthetic 
environment rather than external observation of such an environment. VR relies on three 



State of the Art 26 

 

dimensional (3D), stereoscopic, head-tracked display, hand/body tracking and binaural 
sound. VR is an immersive, multisensory experience.” [Giga93] 

� BRIGGS defined VR in 1996: “Virtual reality can be defined as a three-dimensional, 
computer-generated simulation in which one can navigate around, interact with, and be 
immersed in another environment.” [Brig96] 

� According to BURDEA, “Virtual Reality is a high-end user-computer interface that 
involves real-time simulation and interactions through multiple sensorial channels. These 
sensorial modalities are visual, auditory, tactile, smell, and taste.” [Burd03] 

� MANETTA and BLADE defined VR in their book as “a computer system used to create an 
artificial world in which the user has the impression of being in that world and with the 
ability to navigate through the world and manipulate objects in the world.” [Mane95] 

� MCLELLAN defined VR “as a class of computer-controlled multisensory communication 
technologies that allow more intuitive interactions with data and involve human senses in 
new ways.” [McLe04] 

More attempts to define VR term can be found in [Steu92, Kala93a, Bane94, Bril08, VDI09, 

Zhao09, Zhou09 and Brac11]. Based on above definitions, two main perspectives can be 

found. The first perspective considers VR as a computer-based technology or an integration of 

more technologies.  Another perspective focuses on the application of VR and sees VR as an 

artificial environment or a human-computer user interface. These two perspectives identify 

VR with respect to technical issues and application experience, but also cohere with each 

other. Therefore, some essential commonalities can be found in these various definitions:  

� VR is a computer generated environment. 

� The user can interact with virtual objects inside. 

� Real human perceptions are created by artificial world. 

In this thesis, the term VR, considering the further implementation in manufacturing systems, 

can be described as following: a virtual environment generated by combined communication 

and information technologies, in which the user can navigate, interact and manipulate the 

environment and its involved objects. Human perceptions, which exist in real world, will be 

enabled in the VR. The usability of the human-computer-system and the understanding to the 

objects, which are rebuilt in a virtual world, can be enhanced. 

2.3.2 Main features of VR  

In addition to term definition, the main features are important in order to distinguish one 

technology from the others. “Immersion”, “Interaction” and “Imagination” are commonly 

understood as three main features of VR. BURDEA represented these three features in a three 

I’s illustration [Burd93 and Burd03], which is shown in Figure 15a. Figure 15b extends these 

three features with their essential elements. Similar understanding of these features can also 

be found in [Kuhl99, Bier08, Bril08 and Brac11]. According to some authors, the “real-time 

simulation” is considered as the third essential features of VR, instead of “Imagination.” The 

immersion experience can be improved significantly when the real-time simulation is 

integrated into the VR system. These features distinguish VR systems from other computer 

systems and illustrate the unique advantages of VR systems.  
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Figure 15: The three I’s of VR systems [Burd93 and Burd03] 

Interaction 

Interaction is the possibility for the user to move within a virtual world or to interact with the 

objects in a virtual world. LUNENFELD defines interaction in two categories: extractive 

interaction and immersive interaction [Lune93]. When the user accesses information via 

hyperlinks, then it is an extractive interaction. When the user is immersed in a 3D world, then 

it is an immersive interaction. Each interaction approach can be implemented in a wide 

variety of ways. The objective is to establish a natural and intuitive mapping between a user 

action in the reality and the resulting action in the virtual world.  VR interactions involve four 

basic components [Mine95]: 

� Navigation: the simplest and the most essential interaction for users in a VR is to move 
through the virtual environment. To do that, the mapping of physical motion of users to 
virtual motion is needed. The correspondence between physical motion and virtual motion 
is an issue that needs to be considered. Navigation be one-to-one or a highly exaggerated 
correspondence. Some alternative methods to move through a virtual world which are 
independent of physical motion are also possible (e.g. flying by using a joystick). 

� Selection: interaction with virtual objects requires different ways of object selection, such 
as the touching on grabbing of an object. There are two primary selection techniques: 
local and at-a-distance. The local technique means that the desired object is within reach 
and the user can interact with it directly (e.g. a touchscreen). If the user is not able to reach 
the objects, then the action-at-a-distance selection is required. 

� Manipulation: it is one of the most important interactions in VR, which enables the user to 
change the specifications of an object’s position, orientation or scale in a virtual world. 
Only if the virtual world is changeable, the interaction between virtual objects and 
participants can be considered as “real”. The manipulation function is usually combined 
with selection and movement.  

� Menu interaction: the menus and toolboxes in a virtual environment enable the user to 
change additional functions. For example, the user can set filters for complex data to show 
the useful information only. The menu interactions are distinguished by using different 
visual design (e.g. list menu or sphere menu) and selection mechanism (e.g. touching or 
clicking). 
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An interaction is also possible to be made between two people in two different virtual worlds 

or between one immersed person and another person in real world. More interaction 

possibilities are discussed in [Sher02, Bril08 and Zhao09]. The interaction techniques also 

rely on suitable hardware devices and VR systems. Some of the input devices are introduced 

in next section. Generally, no single interaction technique can fulfill all the needs of all tasks. 

Therefore, several different interaction techniques are usually required at the same time. A 

comprehensive review of different interaction methods is provided in [Bier08].  

Immersion 

The term “immersion” has been investigated by psychologists for long time and can be easily 

understood as “being there”. CSIKSZENTMIHALYI defined immersion as “the state of being 

completely involved in an activity for its own sake and losing other unrelated perceptions is 

called as immersion” [Csik75]. In other words, the virtual environment created by VR allows 

the users to be in an artificial surrounding and to isolate themselves from the real world. This 

immersion perception is attributed to the high quality visualization with wide field of view as 

well as interactive user interfaces. Because of the missing perception from real world, the 

users can sometimes feel uncomfortable or even sick [Bril08]. LAVIOLA JR. provided a 

comprehensive investigation and discussion of the sickness phenomenon in virtual 

environment and called it “cybersickness” [LaVi00].  

Immersion is directly related to real-time visualization and interaction issues. The quality of 

visual perception determines degree of immersion. SHERIDAN discussed the relation between 

immersion and interactivity. In order to obtain the feeling of immersion, the user must be able 

to move through the virtual world and to observe it under any point of view [Sher91]. THANH 

also investigated the increasing immersion degree by using more interaction functions with 

higher interaction degrees [Than10]. To enhance immersion, different input devices are 

needed, which simplify the creating and modifying of 3D models in a virtual environment. 

Some examples are 3D-Maus, data glove, and fly stick. Additionally, acoustic and tactile 

perception effects the immersion [Brac11]. The speed of image rendering and interaction is a 

key issue for immersion, so that real-time interactive graphic is required. BRILL also 

mentioned that, the interaction speed commonly depends on the hardware and software 

configurations [Bril08].  

Imagination 

ALBERT EINSTEIN said, “Imagination is more important than knowledge. Knowledge is 

limited. Imagination encircles the world.” [Vier29] But in reality, imagination cannot be 

created without perception of knowledge. In VR, different data are visualized and enable the 

participants to have a comprehensive presentation of the artificially created world. To 

generate this “replacement” of the real world, modeling and simulation are key elements. 

Modeling tools enable a static description of existing and non-existing environments and 

objects in 3D, with realistic color, texture and lighting. Some VR systems allow direct 

modeling tools in a virtual environment, and others provide data interface for external 

modeling software. The simulation presents the dynamic process data for VR, such as the 

object moving, shape changing or time dependent processing. This enables the use of realistic 

exploring, training, and designing. The virtual world extends the human knowledge and 

encourages the people to image, overcoming the limits of existing knowledge.  
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2.3.3 Various VR systems 

VR concept involves various computer technologies, such as real-time 3D graphic rendering, 

stereoscopic displays, viewer position tracking, gesture tracking/controlling, binaural sound, 

haptic in/output, etc. Based on the need of the application, users can design a suitable system 

with different system configurations. For example, KALAWSKY represented a simple and a 

comprehensive VR system in 1993. This full immersive enables the participants to interact 

with computer generated objects and artificial persons (avatars) [Kala93b]. 

2.3.3.1 Main components of a VR system 

Nowadays, a typical VR system involves computer, VR software, input devices and output 

devices. The computer is used to install an operating system, to execute a simulation, to 

manage the data, and to compute different software tools. To enhance the computing 

performance, powerful computer servers and modern multimode computer systems for 

distributed computing are implemented [Pach06 and Jin07]. The proportion of computer costs 

for the whole VR system costs is continually decreasing.  

The VR software provides the user with different functions, such as the data input, filter 

setting, data presentation, connection with different hardware devices, etc. Due to the 

graphic’s role in a VR system, the VR software is a central element in the whole system. The 

requirements of VR software are application and cost dependent. Issues, such as the data 

interface, rendering performance, editor functions, network connection security, and 

programming interfaces are usually taken into account. Currently, numerous types of VR 

software are being developed, some for specific users and others for more general 

applications. Some examples of commercial software tools are: VIZARD, EON, 3DVIA, 

Avizo, Amira, IC:IDO, DeltaGen, and COVISE. A few open source software/library 

providers are as VTK, VRJuggler, Vrui, VISTA, and VDT.  

 
Table 2-5: An overview and comparison of commonly used VR software 

Generally, these programs provide an interface to import/export 3D files, connections to VR 

hardware and interaction devices, and extendable libraries. According to users and 

applications, the usability and implementation are various. A brief summary and comparison 

VR Software Provider Last Release

Open 

Source API

3D 

Visualization Modular

CAVE 

Support

User 

Tracking

Vizard WorldViz V4.0 (02/2012) No Yes Yes Yes Yes Yes

EON EON Reality V7.6 (08/2011) No Yes Yes Yes Yes Yes

3DVIA Dassault Systemes V6 (12/2011) No Yes Yes Yes Yes Yes

Avizo VSP V7.0 (09/2011) No Yes Yes Yes Yes Yes

Amira Visage Imaging V5.4.2 (03.2012) No Yes Yes Yes Yes Yes

IC:IDO ICIDO VDP9.0 (03/2012) No No Yes Yes Yes Yes

DeltaGen RTT AG V11.0 (06/2012) No - Yes Yes Yes Yes

COVISE HLRS V6.5 (2011) No Yes Yes Yes Yes Yes

CAVELib Mechdyne V3.2 (2008) No Yes Yes - Yes Yes

K2Vi AAM V3 (2011) No - Yes - No No

VR4MAX Tree C Technology R7 (2011) No - Yes - Yes Yes

VTK Kitware V5.10.0 (2011) Yes Yes Yes Yes Yes Yes

VRJuggler Iowa State University V3.0 (06/2010) Yes Yes Yes Yes Yes Yes

Vrui UC Davis V2.3 (03/2012) Yes Yes Yes Yes Yes Yes

VISTA RWTH Aachen V1.13.0 (07/2012) Yes Yes Yes Yes Yes Yes

WorldToolKit Sense8 V0.8.6 (07/2009) No Yes Yes Yes - Yes

VDT Fraunhofer IFF - (not specified) No No Yes - Yes Yes
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of 15 software tools is provided in Table 2-5. All of these software tools support 3D 

visualization and most of them support the CAVE system, user tracking, API and modular 

extension.  

For a better immersion experience, the interaction quality is an essential element. The 

interaction combines input and output together as user-computer interfaces, using perception 

canals of humans.  

Output devices usually contain graphic, audio and haptic output technologies. Visual 

perception provides the main input and dominants the immersion degree. Graphic output 

technologies are for example the conventional LCD/LED displays and modern active/passive 

3D projections. For desktop-based VR solution, LCD/LED displays are often used as the 

graphic output solution. 3D display is rapidly popularized in recent years. The greatest 

weakness of the displays is a small field of view. To realize a large sized display for 

Powerwall or CAVE, projection technology is preferable. Therefore, 3D projection, both 

active and passive, has been rapidly popularized in recent years. 

In addition to graphic output, the sound and haptic output supply the human perception for 

hearing and feeling. A study by HENDRIX showed that the spatial sound is associated with 

higher presence than either no sound or non-spatial sound [Hend96]. In [Bril08], a 5.1 

surround sound system for VR was introduced. Haptic perception provides non-visual 

information about shape, texture or force from objects and further improves the co-presence 

of the user in a virtual world [Basd00]. AZIZ provides a review of current haptic output 

devices used in VR and defined different terms, such as the “Haptic”, “Proprioceptive”, 

“Kinesthetic”, “Tactile”, etc. [Aziz09]. 

Input devices can be classified into conventional input devices, tracking devices, navigation 

devices, and audio interfaces. The conventional input devices include the mouse, keyboard, 

and draw pad. These devices are commonly used for a desktop system, but are not suitable for 

immersive systems. To manage a complex file system, the wireless keyboard is sometimes 

used in an immersive VR system. 

Various tracking systems enable the interaction between the user and virtual world. From a 

technical perspective, the systems are divided into mechanical tracking, magnetic tracking, 

ultrasound tracking, optical tracking, and hybrid tracking. A review of these technologies can 

be found in [Burd03 and Bier08]. The tracking systems are developed for position tracking, 

motion tracking, gesture tracking, and eye tracking. Position tracking provides and maps the 

user position in a virtual world, so that the viewpoint can be continuously adapted. Motion 

tracking enables the interaction between real and virtual actions in a virtual environment (e.g. 

the implementation of fly stick). The gesture tracking technology enables a gesture-interface 

in VR or a device free interaction. A gesture-interface is implemented by using devices, such 

as a data glove [Burd03]. Open source software platforms enable a customized 

implementation, for example the SDK from CyberGlove. A device free gesture-based 

interaction relies on gesture recognition systems, such as the popular product “Kinect” from 

Microsoft. Eye tracing technology captures the gaze point and eye motion of user, which can 

be used for user interface or product design investigation in a virtual environment. Since it is 

an important technology, eye tracking has already been implemented in several research 

projects [Duch02 and Haff09]. As an example, Figure 16 shows the fly stick, finger gesture 
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tracker, the head position tracker using markers from company A.R.T., the gesture/motion 

tracker Kinect from Microsoft, and the eye motion tracker Tobi Glasses from the company 

Tobi.  

 
Figure 16: Fly stick (a), finger tracker (b) and 3D glasses with markers from A.R:T., gesture 

tracker (d) from Microsoft and eye tracker (e) from Tobi 

Navigation devices enable participant to move and explore the virtual world. They are 

essential interact devices, which relate directly to tracking technology. The fly stick and track 

ball, for example, are dependent on the optical or magnetic tracker. New navigation methods, 

such as the eye tracking or gesture tracking based navigation systems are also found in 

[Tanr00, Kim04, Pfei08 and Ding09]. The audio input interface, such as a microphone used 

for voice recognition, can also be implemented to enhance the human-computer interaction. 

MCGLASHAN described the benefits of voice interface in VR and discussed the requirements 

of voice recognition and language understanding in a virtual environment [McGl95]. 

In [Mine95, Mazu96, Talb97 and Ni06], more information about VR technologies can be 

found. TALBERT discussed the human factor in a VR environment and said that a VR system 

should be a human-centered system. Different visualization and interaction technologies 

enhance the human perception in a virtual world and further improve the system’s usability 

and practical applications [Talb97]. SANCHEZ-VIVES investigated the relation between virtual 

presence and different interaction methods. Several case studies show that the presence 

experience in VR is also worth study on its own [Sanc05]. 

2.3.3.2 VR system classification 

According to the user immersion levels, the VR systems are classified into non-immersive, 

semi-immersive, and full immersive. A non-immersive VR system is, according to some VR 

definitions, not a real VR system. In this thesis, this type of VR systems is considered as a 

desktop-based workstation with conventional graphics using monitors, keyboards, and a 
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mouse. This system allows users to view 3D models with different perspectives, manipulate 

the models, interact with the virtual objects, and implement different applications [Robe93]. 

 
Figure 17: Various VR systems. From left to right: HMD from SONY, Powerwall at the 

University of California, Davis and CAVE system at the FBK institute 

The full-immersive VR systems, such as CAVE, provide the most costly and complex 

solution, but with unique benefits. Compared to a non-immersive system, an immersive VR 

system has a higher sense of situational awareness, a wider field of view, a higher scale 

perception and a sense of immersion. However, a non-immersive VR has the advantages of 

lower costs, shorter development time, and better implementation conditions.  

VR System Classification Advantages Disadvantages 

Display Non-

immersive 

� high resolution 

� viewed by one or more 

person at same time 

� small field of view 

� very low immersion 

� only active 3D 

visualization available  

� only for simply analysis 

and evaluation 

HMD Semi-

immersive 

� 1:1 visualization available 

� relative high immersion 

� simple implementation 

� small field of view  

� only for one person 

� low resolution 

� limited movement by 

connection cables  

Powerwall Semi-

immersive 

� viewed by one or more 

person at same time 

� active and passive 3D 

visualization available  

� front and rear projection 

available 

� relative low immersion 

� the field of view and virtual 

space are dependent on the size 

of projection surface 

CAVE Full-

immersive 

� 1:1 visualization  

� viewed by one or more 

person at same time 

� wide field of view 

� active and passive 3D 

visualization available  

� very high degree of 

immersion 

� expensive and complex 

solution (equipment, space, 

people etc.)  

� limited movement inside 

CAVE 

� only rear projection 

available 

Table 2-6: Comparison of four typical VR systems  
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Semi-immersive VR systems have an immersion level between the non-immersive and full 

immersive ones. Powerwall systems and the head mounted displays (HDMs, und also called 

“goggles”) are a few examples. The costs and system complexity fall in between as well. In 

Table 2-6, the detailed advantages and disadvantages of different systems are listed [Nube01 

and  Mujb04]. 

Due to the considerable advantages, the CAVE system has become a popular visualization 

environment for scientists and industry users. In 1992, the first CAVE system was invented at 

the University of Illinois Chicago Circle [Cruz92 and Cruz93]. Based on this method, a 

virtual environment is built in a room with stereo graphics projected from behind the walls. 

The first implementation by CRUZ-NEIRA et al. was a back-projection method, which is 

strongly followed today by many further developers. In CAVE, the users are surrounded by 

the projected images and are free to move inside the room. Compared to other ordinary VR 

systems, the CAVE system has the advantage of users having wider field of vision.  

A CAVE is not only a surround screen VR system, but also a surround sound system, and a 

head and hand tracking system, along with some additional parts. Based on the user position 

tracked by tracking system, the correct perspective is produced. A sound system enables the 

participants to have audio feedback. Visual and auditory sensorial channels are the main 

methods to improve the user’s perception in a virtual environment. Multiple participants are 

allowed to share experiences and discuss while inside the CAVE, enabling researchers to 

exchange their ideas. Usually, one user is the active viewer who is controlling the 3D input 

device, while the other users are passive viewers. 

 

2.4 Industrial VR applications 

As a promising technology, VR is widely used in every field for manufacturing systems. 

PHILIPPSEN gave a comprehensive review of the VR applications in different fields, such as 

the telecommunication, entertainment, training, medicine, design and prototyping, and 

automobile industry [Kala93a and Phil99]. At the annual IEEE Virtual Reality Conference, 

VR topics related to various application fields are covered. On the one hand, rapidly 

developed VR technology including simulation, modeling tools furthers implementation; on 

the other hand, the application needs further research and development to be successful. 

VR enables a direct link of simulations to an immersive, virtual environment and allows users 

to interact and model during processes simulation and visualization. This offers high potential 

for exploring complex interactions between users, objects and operations [Doro10]. 

Therefore, VR is a reliable platform for virtual design/planning tools and suitable to support a 

wide range of manufacturing applications. These applications include production planning, 

product design or the technical qualification of employees [Benn05, Oliv07 and Rund07]. 

To set the boundaries for facilitating a literature review of current VR applications, a model of 

a manufacturing system with hierarchical levels is used. Figure 18 shows the levels including 

manufacturing network, manufacturing location, manufacturing segment, manufacturing 

system, manufacturing cell, and workstation/machine [West09]. Due to the proposed 

development, the focus is on the last there levels and the other three levels are not involved in 

literature review. 
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Figure 18: Hierarchical manufacturing levels of an enterprise [West09] 

2.4.1 Manufacturing system level  

At manufacturing system level, VR is implemented to support analyzing, modifying and 

simulating existing shop floors to improve the design of new layouts. Some fields such as the 

layout design, manufacturing environment analysis, CIP (Continuous Improvement Process), 

and system monitoring are widely investigated by researchers.  

Factory layout design and planning 

Layout design is a rich area of industrial research and practice, which involves many essential 

issues, such as the throughput time, production volumes, product quality, and employee 

morale. A well-designed factory layout provides the investigation basis, on which idle time 

and bottlenecks in a manufacturing system can possibly be prevented. VR has the potential to 

help the facility designers and engineers to view and compare various design choices with 

significantly reduced costs and time. 

SMITH and HEIM described a design environment that was constructed to evaluate the use of 

VR for layout design of manufacturing facilities [Smit99]. Firstly, they reviewed the layout 

design methods and various virtual environment designs. Then, they summarized the need of 

layout design and the benefits of VR implementation. Two major benefits could be found in 

this paper. One is “to improve the decision-making processes from both qualitative and 

quantitative perspectives”. Some needs are the visualization of workplace, assessment of 

layouts, and rearrangement of workplaces. The corresponding VR solutions were also shown. 

Another benefit is to enable designer access to use and modify the rich information in VR so 

that they could do their tasks much more efficiently. This benefit relies on a well-designed 

virtual environment with rich interaction possibilities, such as haptic feedback or eye tracking 

input. Furthermore, the authors implemented a design environment for aircraft manufacturing. 

Because of extra-long materials and work pieces, movement of the objects is a problem. 

Considering the limitations, the production areas, machine tools and material flows are 

redesigned. To do so, a non-immersive VR system was used and the interactions, such as the 

grabbing, moving, coloring, were enabled. Data import and export between CAD system and 

VR system was also introduced. Of course, the network structure is not comparable with 

Manufacturing network

Manufacturing location

Manufacturing segment

Manufacturing system

Manufacturing cell

Workstation/Machine

1

2

3

4

5

6
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current technology. However, this paper provided a relatively comprehensive view of the VR 

implementation addressing the layout planning issue.  

WESTKÄMPER and RUNDE presented VR applications relating to the “digital factory” concept 

in industry, especially in factory design and planning fields [West06]. Various research issues 

were involved: factory planning, assembly planning, manufacturing process planning, 

workplace design, and training and learning. Different VR systems and their applications 

were represented in this paper. For example, the application based on Holobench was shown, 

which enables user to evaluate the assembly workplace considering the issues such as the 

light, air and noise [Mers02]. Another application showed the visualization of the 

relationships among objects in a factory, which represented their complex logistical 

connections in a CAVE system. Not only was each single application field discussed, but also 

the work technique, such as the distanced and collaborative use of VR. 

ABEL and FRANKE provided a practical case study of VR application for factory and facility 

planning. Based on the needs of a middle-size foundry, they showed solutions based on 

Powerwall, planning table and CAVE systems [Abel07]. Their solution enabled the 

integration of the data from modeling, simulation and designing and the use of data from 

product design to layout planning and even employee training.  

Based on their study, BRACHT and REICHERT introduced the use of 3D factory planning and 

provided fundamental methods as well as the implementation requirements [Brac10]. 

Considering the needs and limitations of small and middle size enterprises, they demonstrated 

their concept including the analyzing step, check list generation, modeling method selection, 

adaption of technique infrastructure, and project execution. Several essential check questions 

were listed to evaluate the implementation conditions. For example: “If the hardware 

performance fulfills the application requirements?”, “What kinds of data should be shared/not 

shared/partly shared/highly protected?”, or “Which ERP interface is needed?” The authors 

showed a comprehensive project information system and considered VR as an essential 

component of it. Additionally, they introduced the potential use of a VR mobile platform in 

factory planning, especially the potential improvement of data input, output and visualization.  

Manufacturing environment 

There are numerous factors within a factory environment, such as noise, light, air pollution 

and radiation. These effects are difficult to measure, analyze and control. Based on an existing 

factory, the adaptions to reduce these factors that cause damage to employees are costly. 

However, employee as a human factor is the most essential element in manufacturing 

systems. In other words, the working safety and health are top priority for the manufacturing 

designer and employers. To avoid remedies and huge compensation costs, these factors are 

considered during design. For example, AHREND and FLOSS investigated the noise control 

issue in manufacturing design. Comprehensive study of limitations and control methods are 

included in [Ahre00]. However, a VR-related discuss is not provided. Due to the immersion 

feature of VR, some other researchers have already attempted to integrate visualization and 

simulation in VR in order to investigate these manufacturing environment issues.  

In [Viga09], Viganò et al. introduced the “GIOVE” toolkit, which enables planning with 

respect to the human factor. They conclude that there are major advantages of the human-

oriented factory planning, such as the increased efficiency of collaboration, reduced 
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complexity of communication, reduced factory design time, and better working conditions. 

However, concrete methods to describe the light, air quality or noise in a factory were not 

mentioned. In the computer science field, RAGHUVANSHI et al. represented a real-time 

simulation approach for sound wave propagation, especially for game engine [Ragh10]. This 

approach was further tested using different scenarios, such as in a living room and outdoor 

walkway. The potential implementation in manufacturing system is considerable.  

“SoundPLAN” is a commercial software tool, which provides an indoor noise model based on 

VDI 3760 [Soun12]. Using this model, a simulation and evaluation of noise level in 

manufacturing is facilitated. Different assessment and visualization methods are included in 

this tool. At the same time, the extended module “AirPLANs” enables the designer to 

simulate the indoor and outdoor environment air pollution levels. However, the application of 

this tool is limited by simplified conditions and environments. Furthermore, an interface 

connecting the simulation and extended visualization tools and VR systems has not been 

found.  

CIP (Continuous Improvement Process)  

To support the improvement of processes in a manufacturing system, a well-established 

method is applied, namely the CIP-workshop. The research focus of AURICH and 

OSTERMAYER is investigated continuously in a virtual environment [Auri06, Oste08 and 

Auri09]. This extended VR-based CIP-workshop overcomes the disadvantages of a traditional 

one. In a virtual manufacturing environment, the workers, designers and decision makers are 

involved together on a shared platform. The immersive environment provides the participants 

rich perception and better understanding of the manufacturing systems. Within this virtual 

environment the CIP-workshop is implemented in five steps: i) detecting problems, ii) 

analyzing selected problems, iii) developing improvement measures, iv) realizing the 

measures with workers and v) evaluating the results. Following the successful implementation 

of the workshop the results are immediately transferred to enable the realization in the real 

production environment. 

System simulation and monitoring 

As a promising approach, VR enables users to have a clear overview of complex systems. 

Customized interfaces connect simulation and the VR system, so that the information in the 

virtual environment is much richer. Static and dynamic data are visualized and allows 

interactive modeling and analyzing.  

DANGELMAIER described a system architecture using VR and AR to support the planning 

process of complex manufacturing systems [Dang05]. The integration of discrete simulation 

into the virtual factory was shown. The proposed system assisted users during modeling, 

simulating, validating and the optimization of a manufacturing system. To visualize the 3D-

data within VR and AR environments, a graphic rendering library was used. As an example, 

the visualization of an assembly line in automotive industry using Powerwall was 

demonstrated. According to their approach, the dynamic process simulation is directly 

connected to this visualization.  

In his dissertation, RUNDE investigated VR implementation possibilities, methods and benefits 

in industrial enterprises systematically [Rund07]. Four methods were developed to describe 

the four steps: the requirements in digital factory identification, job description, VR 
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system/solution selection, and the implementation of VR in industry. This work provided 

concrete implementation steps with detailed information, such as the hardware device model, 

rendering library, and software tool.  

ZHOU et al. combined process simulation and system monitoring into one VR application 

[Zhou11]. Established simulation architecture with a closed loop of virtual factory integrated 

platform was introduced, which includes the 3D data, dynamic and static simulation data and 

integrated database system. A chemical industry was taken as an example to validate this 

concept. Functions included the visualization of static and dynamic simulated fluid and gas 

flows or the visualization of process information (temperature, pressure, flow volume, etc.).  

The most interesting use of this concept was to visualize the process faults, for example the 

spilled oil from the tower top. Important process information was well visualized and 

monitored using a 3D environment, which brings significant benefits for complex 

manufacturing systems. 

To summarize, a few selected research works were studied, considering their application 

fields at the manufacturing system level. The most investigated field is the layout design and 

planning, due to the large scale visualization feature of VR. Manufacturing environmental 

studies and the CIP-workshop can be seen as small but necessary supplements to mainstream 

research work. More studies and discussions of VR applications including the research issues 

can be found in [Flai98, Wien02, Brac06 and Brac11]. 

2.4.2 Manufacturing cell level 

At the level of the manufacturing cell, VR is often used to design and analyze a single work 

cell or assembly process within a system. Comparing several approaches and related problems 

occurring in physical situations, different methods using VR lead to suitable benchmarks. 

Through identifying constraints and oblique problems in early design stages, various choices 

can be compared and improved. To improve the parts flow through a shop floor or factory is 

another key issue, which can be solved by using different simulation measures in VR. 

Work cell design 

Combining the uses of different software tools, such as “Delmia-Quest”, “eM-Workplace” 

and “Factory CAD”, CAPUTO et al. introduced their concept to simulate layout and robotics in 

work cells. They recommended that the using real size of the factory plant in VR facilitates 

the layout evaluation for the work cell. Their research also involved the ergonomic issues in a 

work cell. The workers were modeled as avatars (e.g. “JACK” model) and integrated to the 

virtual environment. The process of train manufacturing was studied as an example for both 

work cell layout planning and ergonomic evaluation [Capu06].  

Considering the special needs of engineering changes and the impacts to factory layout 

planning and rearrangement, MALAK et al. presented their concept to enhance the planning 

processes [Mala11]. This concept was further implemented using Java3D based software 

tools, which enabled users to access, view and modify the object information directly. A 3D-

visualisation of the manufacturing system and its objects, such as the machine tools, 

transporters and energy slots, provided users a clear and panoramic overview. The needs of 

factory planning, which are discussed in [Smit99], were realized in this paper. Users are 
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allowed to change the layout directly in a non-immersive VR system and compare the 

different planning choices. 

Material flow simulation 

BRACHT and MASURAT integrated material flow simulation and process simulation in Virtual 

Reality for digital process prototyping in logistics and production [Brac03]. They studied a 

high-frequency welding process and built 3D models in a digital factory. Based on the digital 

data, the movement sequence of robots, band conveyers, cutting machines, and feeders were 

programed according to the well-designed manufacturing processes. The material flow was 

further simulated using both geometric and process data. The process information of each 

facility, such as the manufacturing time, pending time and set-up time, could be monitored in 

real-time. The movement and material flow was then visualized in a non-immersive VR.  

Combining the virtual manufacturing environment and simulation, AURICH et al. introduced 

their concept to integrate material flow simulation and FEM simulation in VR [Auri07]. 

Software tools VD2 and eM-Plant were used to operate the CAVE system and simulation 

respectively. Concrete implementation steps were well described and an implementation 

guideline was provided.  

JIMENO and PUERTA made a state of the art study involving current research works in the VR 

field for product design and manufacturing processes [Jime07]. According to their survey, 

using VR use for process simulation minimalizes material waste and material flow 

bottlenecks. In addition to presenting essential VR benefits, several disadvantages, such as 

complicated implementation in some cases, were also noted by them.  

SCHENK et al. implemented both production simulation and worker qualification in VR 

[Sche09]. This application could be used firstly as simulation tool for foundry planning. The 

eM-Plant runs as a material flow simulator and the VR software VDT (also see in Table 2-5) 

provides a VR environment. Furthermore, this application enables the simulation and training 

of a power generator assembly. 

Assembly simulation and visualization 

Assembly is an interaction-intensive and physically based process. To simulate these 

processes in a virtual environment, the algorithms, framework, and suitable devices are all 

necessary. The VR provides significant benefits to improve the user experience, filling the 

perception gap between the real and virtual world. So, complex and high-risk assembly jobs 

can be simulated and visualized in advance and even be practiced by workers. 

SHARMA et al. introduced their assembly evaluation tool [Shar97] and two implementations 

were presented. The first one showed an AR-based assembly support system. Useful 

information could be shown and mapped to the real objects. The second implementation 

enabled image capture and identification during assembly and interrelationships were verified. 

Since the technology was not as advanced as today, there was no high quality 3D graphic 

implementation. However, this method opened a new prospective. 

CHRYSSOLOURIS et al. investigated the VR-based method to simulate and verify manual 

assembly processes [Chry00]. In an immersive and interactive virtual environment, the 

processes are realistically generated. Additionally, an ergonomic model was integrated in this 

application, which enabled ergonomically acceptable conditions. To validate this method, a 
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semi-experimental time model was developed for an assembly test case. In this application, a 

number of process parameters and their interrelations were considered as well. 

BEIER described several web-based VR applications for the manufacturing system [Beie00], 

such as the simulation of ship production or the robotics simulation in a manufacturing cell. 

VRML was the basic VR language and the modeling was implemented by CAD/CAM. 

However, these applications were limited at the low complex level without Java supported 

algorithms. The geometric modeling and human-computer interaction was relatively simple. 

Thus, the user perception was relatively poor.  

Using haptic devices, KRAUSE et al. [Krau00] implemented VR as test platform for simulation 

and evaluation of complex assembly and disassembly processes. The parts were modeled 

graphically and the user hand motion could be transferred to the virtual assembly scene 

through haptic hardware. The manipulation of virtual objects and the force feedbacks were 

simulated in real-time. Even though it is not an immersive environment, the user perception is 

in this case significantly improved through the haptic interaction.  

ZACHMANN provided a comprehensive review of VR techniques, focusing on collision 

detection, interaction and simulation algorithms. He also introduced an implementation 

concept for assembly simulation in VR and developed a framework and several native 

functions, such as the nature grasping and collision detection [Zach00]. Based on this 

framework, he implemented the assembly simulation using the VD2 platform. 

REINHART et al. introduced the integrated use of AR and VR in the area of manual assembly. 

The extended use of digital models was not only implemented for assembly planning in a 

virtual environment, but also supported the assembly workers using AR. A case study in the 

automotive industry showed the steps and benefits for the user. [Rein02] 

Using IC:IDO software, an application to simulate and validate the complex cable bundle was 

developed [Wien08]. A real-time simulation and visualization of the physical behavior of 

flexible objects (cables) was realized. The algorithms were adapted according to the cable 

types and showed high accuracy. Based on their validation, 90% of the solutions would be 

adequate, if the environment is typical. 

At the manufacturing cell level, the most intensive investigated issue is the assembly process. 

This issue directly or indirectly influences the design of the work cell and material flow. More 

applications about virtual assembly can be found in [Brac11 and Seth11].  

2.4.3 Workstation and machine level 

As essential element in a factory, the human factor is more of a focus at the workstation and 

machine level, because the interaction between human and machines influences directly the 

processes in manufacturing system. In addition, human factor involves more research issues 

in virtual environment [Stan98]. A lot of research has been done with respect to the human 

performance, health and safety. Next, the research work in fields of workstation design, 

training and manufacturing process simulation are described. 

Workstation design 

The issue of workstation design relates with rich research topics, such as the CIP, training, 

and assembly simulation. In addition to these topics, ergonomics is another close related 
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research focus. ZÜLCH classified ergonomics into micro- and macro-ergonomics [Zülc05]. 

Micro-ergonomics analyzes human posture and body motion during tasks execution, whereas 

macro-ergonomics analyzes the stress and strain of the tasks accomplished by the workers. 

Some of the following research work showed the application in this field. 

HEGER introduced a VR-supported method to analyze and evaluate the manual assembly 

workstation. Using the virtual product prototypes and the algorithms of grapping, moving and 

joining, the virtual manufacturing processes were simulated and visualized in VR. An 

interaction between the participant, virtual objects, and avatars were possible. The assembly 

time, steps and schedules could be analyzed and optimized in a virtual world in advance, 

which provided a significant advantage to reduce the planning time and costs [Hege98]. 

BENNIS et al. gave a review of the VR technology and applications in industry and considered 

VR as a human-centered tool. Therefore, more human-centered applications, such as training, 

ergonomics, maintenance were discussed [Benn05].  

Within the research project “DiFac” (Digital Factory for Human Oriented Production 

System), LAWSON et al. described ergonomics, presence, and collaboration in virtual 

environment. They extended the conventional method of an ergonomics study using VR. The 

benefits were analyzed by using a few established applications and software tools [Laws06].  

YANG et al. investigated an engine assembly line and implemented VR for workplace 

planning and ergonomics evaluation [Yang07a]. For the use of “JACK” model in this 

application, refer to [Capu06]. 

HOFFMANN and DANGELMAIER used their applications to facilitate the optimization of 

industrial manual workplaces [Hoff08]. Numerical human models and user motion tracking 

systems were integrated. The user motion from the real world could be mapped to the avatar 

in the virtual world. Through 1:1 large size visualization, analysis of workplace layout design 

and assembly processes was significantly improved. In addition to this application, they 

provided an evaluation tool “iTeach” to reduce the assessment process. 

SCHIRRA described an innovative concept to enable a complete planning workflow with one 

VR application [Schi08]. To do so, user requirements and technical requirements were 

studied. A data server for CAD data was built to control the parametric and VR converter and 

the data model was made by using information from entire product, process and resources. 

Changes of the system components could be made directly through the server in an immersive 

environment. The 3D GUI made the interaction more straightforward and intuitive. 

Furthermore, six persons were involved in the evaluation which showed positive results.  

Process simulation and visualization  

Simulation and visualization enable an essential feature of VR: imagination. In the lower 

levels of manufacturing process, simulations and software tools like CAD/CAM are widely 

used in the industry today. However, just a few of them can be implemented directly in a 

virtual environment [Ceci07]. 

RANGA and GRAMOLL [Rang00] introduced and implemented Java programming into VRML 

and improved the performance in 3D FEM analysis. This web-based virtual environment 

includes customized GUI as well. The useful implementations of Java and JavaScript enable a 

mobile 3D FE analysis and visualization without high performance software and hardware. A 
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similar application made by YANG et al. also showed significantly improved simulation by 

implementation do to the JavaScript coding. Chip formation and material removal were 

simulated and visualized in real-time in a VRML based scene graph [Yang11c]. 

HUHN and SIEGERT attempted to improve machinery development. The features and 

advantages of VR, such as immersion and interaction, were found to enhance the process 

analysis and optimization [Huhn02]. USTARROZ et al. introduced their application 

“VIRTOOL”, which enabled users to perform a 3D cutting process analysis [Usta04]. At the 

same time, this application provided a learning environment for machine tool use.  

By using VTK and VISTA (also see in Table 2-5), SCHÖNING and HAMEYER implemented 

both non-immersive and immersive VR systems for FEM simulation [Scho08]. Huge data 

could be managed, filtered and visualized according to the engineering needs. 

JIN et al. introduced an X3D based method to support 3D visualization and animation of 

cutting processes. The method also enabled a collaborative use through the web for people 

with the same models [Jin07].  

VRABIC presented a grinding animation in the immersive VR [Vrab09]. The kinematic of the 

grinding process was visualized using a parametric description of the object surfaces. The 

purpose of this animation was to enhance the understanding of the process and to assist the 

machine tool operator. However, the simulation software was not connected to the VR system 

with real-time communication.  

For operation for geometrically determined cutting edge, HE and WU [He09] illustrated their 

architecture for web-based simulations with VRML for milling operations. The positioning of 

the work piece element, the tool and their interaction by tool movement was realized by Java. 

The visualization of the work piece and the tool can be used for checking collisions or 

optimization of tool paths. The combination of Java and VRML upgrades increases the 

possibilities in VR-visualization.  

Training and learning 

In addition to various VR applications in their training center, BLÜMEL et al. found value for 

in-factory training of the manufacturing system [Blüm03]. Through the combination of more 

sub-systems (authoring system, training scenario, run time system and VR), different training 

modes were enabled for employees with different qualification degrees. For example, the 

guided mode was made for new learners and a free training mode was provided for 

experienced employees. In the application, VRML-sequences, CAD-drawings and video 

presentations are used to support the different learning modes.  

WANG et al. introduced a VR training system for CNC machining [Wang04]. Based on the 

WTK platform, they implemented a 3D environment with interactive controls. The creation 

and editing of numerical control codes, as well as the modification of the cutter, was enabled. 

OLIVEIRA et al. implemented a CAD integrated VR system to enable industrial training 

[Oliv07]. This application allows the use of the proprietary file format or the VRML/X3D 

format. The most significant advantage is that the training data and software can be 

distributed together in a unique device.  

Using VR, the company VRSim developed the “SimSpray” software tool for spray painting 

and coating training and “VRTEX360” for arc welding training [VRSi12]. The costs of spray 
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painting are caused by high materials usage (e.g. paint, thinners, work pieces, and air filters), 

facilities, and time. The realistic experience of training in a virtual environment accelerates 

the learning of fundamental spray painting skills and minimizes costs at the same time. 

Because the learning and training are operated in the VR, the potential for accidents is also 

minimized and the solution is environmentally friendly.  

2.4.4 Other VR applications 

VR applications facilitate the data visualization, analysis, and modification in extensive 

industrial fields and can involve all essential research issues. A complete review of all 

industrial VR applications is not made in this thesis. In this section, more than 50 research and 

practice related papers were reviewed and represented and close to one hundred applications 

were involved in these papers.  

In addition to the applications already mentioned, a few important research works were also 

studied, without being classified into the pre-defined manufacturing levels. They show 

comprehensive use of VR in various fields like the logistics system, change management, data 

visualization and product design.  

� In [Baro09 and Jime07] and [Bues07], product design and product prototyping using 
virtual environment are discussed respectively. The essential VR features for designers, 
such as the realistic texture rendering and shape verification, were shown. NEUGEBAUER et 
al. described VR tools used to visualize and analyze the energy flow and consumption of 
machinery during machining processes. This method improved both energy consumption 
optimization and product design [Neug11]. 

� In the virtual development and training center in Magdeburg, the VR researchers focused 
not only on the manufacturing system but also the logistics field [Sche10]. Through the 
study of VR supported product life cycle investigation, the logistics chain was analyzed 
and the time/costs saving were considerable.  

� Some authors show the benefits of data visualization in VR [Lang04 and Stra04]. The 
huge and complex data such as FEM and CFD simulation could be filtered and 
manipulated in an immersive environment, which makes understanding easier. BARBIERI 
et al. also showed the integration of CAD/CAE use in VR as well [Barb08]. 

� SCHENK et al. extended VR application to the service field [Sche04]. They provided a few 
practical case studies and the implemented applications to the use of VR for product 
presentation, product use introduction, and product maintenance.  

� Based on established object library and simulation algorithms, KOCAR and AKGUNDUZ 

introduced their implementation of VR for engineering change management [Koca10]. 
The merging of graphical and parametric data of the processes into a virtual platform 
improved the comprehension of users and hence decreased the required time. 

The described applications, addressed on three selected manufacturing levels of enterprises, 

provide a well-established research basis in theory and practice. Some applications are 

implemented at the low immersive level and provide relative poor user experience. There are 

two reasons for this. First, many applications are limited by the technologies of the day. 

Second, some applications serve a customized problem in which the immersion is not the only 

issue. Thus, these applications provide basic concepts and ideas for the proposal, which will 

be implemented in this thesis. 
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3 Research Question 
Noise is a prevalent issue in manufacturing systems. The estimation of noise level in a factory 

and technical solutions to address this issue are usually costly and time consuming. Digital 

Factory tools enable the analysis and simulation of noise related problems during factory 

design and planning process. VR systems, one type of Digital Factory tools, provide 

significant advantages such as the information visualization and user-computer interaction, 

which enhance the understanding of complex issues. The main objective in this thesis is to 

develop an innovative VR-supported method which improves the analysis and evaluation of 

noise level in workplace design. Figure 19 illustrates the research question with the main 

elements involved. A new method could enhance the assessment quality and efficiency of 

sound problems in a factory. The simulation method, which serves as central element of this 

approach, is much more cost-effective compared to acoustic measurement approaches. 

Furthermore, the virtual environment allows planners to try different solution options without 

stopping the manufacturing process. The visualization from the simulation results helps the 

planner to improve their understanding of noise propagation and support the solution finding 

process in a factory. 

 
Figure 19: The research issue in this thesis 

To achieve the aforementioned objective, several tasks (subdivided objectives) are involved 

and will be implemented in this thesis. They are organized in Figure 20 and listed in below: 

� Development of the sound investigation approach in VR  

� A survey of noise-related legal regulations  

� Design and implementation of acoustic measurements in a manufacturing environment 

� Summary and evaluation of measurement data 

� 3D modeling of a manufacturing environment 

� Description of a sound source  

� Parameter setting of acoustic simulation 

� Comparison and validation between simulation results and measurement data 

� Development of a data interface between VR and simulation 

� Implementation of sound simulation and visualization in VR 
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Figure 20: A road map of the tasks (objectives)  

This road map demonstrates the involved tasks and their contexts. By using acoustic 

measurements, the necessary data for sound source description and the data for simulation 

validation are acquired. Before a simulation starts, the parameters are specified according to 

the knowledge from the acoustic measurements and the interpretation of those measurements. 

At the same time, a Manufacturing Lab is built into a 3D model which provides a virtual 

environment for simulation and visualization. A data interface is constructed to enable the 

data exchange between the simulation and VR system. Then the simulation and visualization 

are conducted in a virtual environment. The simulation is validated with the measurements 

from the Manufacturing Lab. Combining with investigation of legal regulations for 

manufacturing the visualization using simulation results facilitates the analysis of noise issue 

in a factory.  

Several studies are conducted in both manufacturing engineering and computer science fields. 

The sound simulation and its implementation using a VR system are namely the research 

focus, which ensure the usability and efficiency of intended approach. Therefore, the 

following requirements are taken into account: 

� a comprehensive and simplified solution for the noise issue in manufacturing 

� efficient and safe data transfer and file converting 

� a straightforward user interface in virtual environment 

� enhanced understanding of sound propagation in a factory 

� simple and understandable visualization 

� enhanced layout design and planning taking the noise issue into account 

� extendable software with function modules 

� and the hardware and software compatibilities 

These requirements are considered during the development, implementation, and validation 

steps of this approach. For example, the user interface design, software tool development and 

programming language choice steps consider these requirements as assessment criterion.  

Description and modeling 
of sound sources

Interface between 
simulation and VR

Sound simulation and 
visualization in VR

Setting simulation 
parameters

Validation of simulation 
results 

Acoustic measurements 
in a factory

Modeling of a virtual 
environment

Description of legal 
regulations 

Development of the approach
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4 VR Application for Sound Simulation and 

Visualization 

4.1 Development of the approach 

This chapter provides an overview of the approach development, which attempts to achieve 

the objective detailed in the last chapter. Based on the discussed tasks in this thesis, this 

approach is broken down into five main steps: data acquisition, modeling, sound simulation, 

an interface to VR, and VR system preparation (Figure 21). Each level is introduced 

respectively in the next sections. 

 
Figure 21: Development of the approach and the structure of chapter 4 

The research questions defined in chapter 3 are answered and the subdivided tasks are 

discussed in terms of main elements in this approach. The data acquisition level is introduced 

in chapter 4.2, which describes the methods for collecting the required geometric data from a 

real factory and the sound data from acoustic measurements. An introduction of the 

Manufacturing Lab at the FBK institute and the essential input information for further 

acoustic simulation are shown. Chapter 4.3 introduces the methods for modeling a 3D virtual 

environment, describing a sound source, and building a human model inside a virtual factory. 

The necessary data for modeling step are supplied from chapter 4.2. Chapter 4.4 involves the 

sound simulation environment, the setting of simulation parameters, and the setting of 

evaluation positions. This chapter provides a better understanding of acoustic simulation use 

in a virtual factory. Furthermore, the approach used to integrate the sound simulation and 

visualization in a VR system is described, including issues such as data management, 

visualization methods, and interaction techniques. Finally, the necessary preparation of a VR 

system for approach implementation is discussed in chapter 4.6. Hardware and software 

4.1 Development of the Approach

4.7 Summary of the approach 
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4.3.1 Modeling of 
virtual environment

4.3.3 Modeling of 
human

4.6 CAVE System Preparation  4.6.2 VR software
4.6.1 Hardware 
configuration



VR Application for Sound Simulation and Visualization 46 

 

configuration, as well as system settings, are taken into account. The CAVE system used in 

FBK is introduced and used as the implementation platform.  

 

4.2 Data acquisition 

The data acquisition step, the first step of the approach, provides the necessary data for 

modeling and simulation. Existing information is analyzed and classified according to the 

needs of this thesis. Two main data resources are considered: data from real manufacturing 

environment and data from acoustic measuring.  

4.2.1 Data from a real factory 

A real manufacturing system contains extensive information which comes from three main 

sources: the production objects, the production environment, and the people in production. 

These resources connect with and affect each other. The production objects include machines, 

transportation equipment, different work tools, storage equipment, etc., which fulfill different 

jobs in a manufacturing process. The manufacturing environment is usually understood as a 

given space, e.g. a building or a part of a building, in which the manufacturing processes are 

implemented. The human is the central factor of a manufacturing system. To consider this 

factor, some information about the human is required.  

 
Figure 22: Manufacturing Lab in institute FBK 

In this thesis, the manufacturing lab is used as a referential data source for an approach 

development. Figure 22 represents the Manufacturing Lab from two different points of view, 

in which a middle size and complex system with various manufacturing objects are shown. 

Due to the need of sound simulation and the complexity of the system, some small and middle 

sized objects, such as the vernier calipers or the oil bottles, are neglected during the data 

acquisition step.  

Geometry and layout 

The fundamental data from a real factory is the geometric data which contains the geometric 

information of manufacturing facilities, machines, transporters, layout, etc. The shape, 

location, material feature, textures, and other information of single object in a manufacturing 

system are represented by 3D-modeling. 
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The methods of data collection are case-dependent. The general data sources are classified 

into primary data source (e.g. the blueprint of a factory or original drawing of a machine) and 

secondary data source (e.g. the measurement data or the estimated parameters). Usually, a 

construction plan and layout of the manufacturing facility provide a straightforward way to 

start the data collection step of geometries and layouts. If there are no such plans, a manual 

measuring is required. In this thesis, a blueprint of the layout was made before measuring (see 

Figure 23). Number 1 to number 57 refers to objects in the Manufacturing Lab. The names 

and their classification are detailed in appendix 11.2. 

 
Figure 23: A blueprint of Manufacturing Lab layout 

To ensure the completeness of the data collection, an analysis and classification of required 

information are made in advance. A checklist for the whole Manufacturing Lab is generated 

to identify and describe the necessary data and chosen methods. In this checklist, the objects 

in the Manufacturing Lab are listed and information such as identification name, size, 

manufacturer, position, orientation, color, is recorded. For each of the main machines, e.g. the 

milling center, tool gridding machine, and CNC cutting machine, an additive checklist is 

generated to provide more detailed information. Based on such checklists, the needed data 

from the Manufacturing Lab are measured and documented. Appendix 11.4 shows a filled 

checklist using the CNC cutting machine as an example. In this case, the requirement for 

accuracy are low, thus no optical measuring devices are used. Part of the information is 

directly recorded according to the machine manual from the manufacturer.  

Material surface features 

As a necessary input parameter for sound simulation, an absorption coefficient for each 

material is needed, which indicates how much of the sound wave energy is absorbed by a 

material (for more details about sound wave features see 2.1.1). The absorption coefficient is 

usually dependent on the material and varies with the frequency of sound: αj: Ω → (0, 1]. The 

value 0 means there is full reflection, while 1 means full absorption. It is also often described 
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as an absorption function. Figure 24 shows two typical absorption functions provided by the 

software CARA [CARA12]. 

If the surface is not specular, but corrugated, then an acoustic BRDF (bidirectional reflection 

distribution functions) is needed for each material. Because of the complexity of large 

environments, the case of corrugated surfaces is not discussed in this thesis. More details 

about the BRDF implementation in acoustic simulation can be found in [Silt07b]. 

 
Figure 24: Absorption functions provided by CARA [Dein08] 

In this thesis, the absorption coefficients of object materials are taken from existing database, 

e.g. CARA and WSDG database of common building materials. The data from different 

databases varies because of different measuring methods and conditions. In Table 4-1, the 

absorption coefficients of several common materials are shown. More absorption coefficients 

of materials can be seen in appendix 11.5 [WSDG11]. 

 
Table 4-1: The absorption coefficient of common materials at different frequencies 

Description 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz

Door, oak 0,58 0,22 0,07 0,04 0,03 0,07

Drywall, 1/ 2" 0,10 0,08 0,05 0,03 0,03 0,03

Floor, Concrete 0,01 0,01 0,01 0,02 0,02 0,02

Floor, Linoleum 0,02 0,03 0,03 0,03 0,03 0,02

Floor, wood 0,15 0,11 0,10 0,07 0,06 0,07

Floor, wood parquet 0,04 0,04 0,07 0,06 0,06 0,07

Floor, carpet, 1/ 8" pile 0,05 0,05 0,10 0,20 0,30 0,40

Floor, carpet. 1/ 4" pile 0,05 0,10 0,15 0,30 0,50 0,55

Floor, carpet, 5/ 16" pile 0,05 0,15 0,30 0,40 0,50 0,60

Glass, normal window 0,35 0,25 0,18 0,12 0,07 0,04

Glass, heavy plate 0,18 0,06 0,04 0,03 0,02 0,02

Glass, laminated 0,18 0,06 0,04 0,03 0,02 0,02

Plywood, 1/ 4" 0,58 0,22 0,07 0,04 0,03 0,07

Plywood, 3/ 8" 0,28 0,22 0,17 0,09 0,10 0,11

Plaster, rough finish 0,02 0,03 0,04 0,05 0,04 0,03

Plaster, smooth finish 0,02 0,02 0,03 0,04 0,04 0,03

wood paneling 0,24 0,19 0,14 0,08 0,13 0,10

wood roof decking 0,24 0,19 0,14 0,08 0,13 0,10

Carpet, 3/ 32"  pile 0,10 0,16 0,11 0,30 0,50 0,47

Carpet, 3/ 4"  pile 0,15 0,17 0,12 0,32 0,52 0,57

Carpet, 3/ 8"  pile 0,17 0,18 0,21 0,50 0,63 0,83

Person, adult 2,50 3,50 4,20 4,60 5,00 5,00

Person, child, high school 2,20 3,80 4,50

Chair, hard seat, up 0,19 0,24 0,39 0,38

Chair, theatre, heavy upholstery 3,40 3,00 3,30 3,60

Air, per 1000 cubic feet 0,90 2,30 7,20
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4.2.2 Data from acoustic measuring 

Running machines and their power supply systems are commonly considered as the sound 

sources in a manufacturing system. Hence, the features of sound sources are directly related 

with machine types, machining processes, machining tool selection, work piece materials, etc. 

Acoustic measuring provides the necessary data for characterization of sound sources and the 

supplementary data for human modeling. One or more sound sources in the Manufacturing 

Lab need to be described mathematically by using the values of sound power acquired by 

sound intensity measurements. Further description of sound sources enables simulation 

settings and validation of simulation results. Sound pressure level measurements from near 

the machines are needed in order to evaluate worker’s exposure to noise. A machine 

dependent measurement provides additional data for sound source modeling, while the 

position-based measurement enables a validation for simulation.  

Human hearing can only perceive a limited range of frequencies. Depending on the study, the 

range can be anywhere from 20 Hz to 20 kHz [Wein08] or from 16 Hz to 16 kHz [Henn08]. 

The human ear perceives equal sound pressure at varying frequencies differently [Crem78]. 

Therefore, to estimate the perception of sound pressure for human hearing in a manufacturing 

environment, a frequency weighting is needed. Different weighting methods are introduced in 

[Möse07] and indicated by using A-, B-, C-, and D-. The B- and D- weightings have fallen 

partly into disuse. The A-weighting is commonly used for environmental measurements and 

as a standard in many SPL meters. In this thesis, the measurement results are estimated by 

using linear and A-weighted methods. 

4.2.2.1 Sound power 

Sound power is one of the most essential sound features which indicates the total energy of a 

sound wave per unit of time and is measured in watts. Part of a machine’s technical features is 

to describe the total emitted energy as sound waves.  

Experimental setup 

The sound power can be measured by using sound pressure methods or sound intensity 

methods. The advantages and disadvantages of both methods are compared and represented in 

Table 4-2 [Schi06 and Möse07].  

Measures Pro Con Standards 

Sound 

pressure 

method 

� Simple implementation 

� Simple measurement 

method 

� Correction of environment 

� Correction of interference 

sound level 

� No near-field measuring 

DIN EN ISO 

3741, 3743, 

3744, 3745, 

3746, 3747 

Sound 

intensity 

method 

� Direct measure of sound 

intensity 

� No effect by interferential 

sound sources 

� No effect by reflexion  

� High cost and complex 

measurement 
DIN EN ISO 

9614-1, 2, 3 

Table 4-2: A comparison of sound power measurement methods  
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Due to the distinct advantage of accuracy, the sound power is measured by using the sound 

intensity method and is determined by sound intensity level, which is usually expressed as 

sound power level (sound watts level, SWL) Lw. Considering the high cost and complexity, 

the measurement is only made on a lathe machine as reference in the Manufacturing Lab. The 

selected methods, measuring settings, and self-developed supporting equipment can be used 

for other machines. A sound intensity probe, which shown in Figure 25a, is often used for 

sound intensity measuring. This probe is made from two condenser microphones and a 

distance holder between them. For more details of its construction refer to [Brüe91]. The 

sound intensity can be determined by using the difference between two measured SPLs, 

which are recorded by both microphones [Henn08]. Before the measurement, a pressure 

calibrator is needed to calibrate the microphone. See Figure 25b for the calibrator and 

calibration setup. 

 
Figure 25: Devices for sound intensity measurement: a) a sound intensity probe, b) a pressure 

calibrator, and c) setting of the probe 

 
Figure 26: Measuring surface and measuring positions  
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DIN EN ISO 9614-1 [DIN09b], 9614-2 [DIN96], and 9614-3 [DIN10c] define an enveloping 

surfaces method. The measurements are conducted around a selected machine, directly facing 

the five surface sides (front, back, left, right, and top) with a measurement distance of 0.5 

meters from the machine. According to the guideline, each measurement for every surface 

should be repeated at least 10 times per square meter [DIN09b]. To complete the 

measurements, all 5 surfaces and 247 measuring points of the lathe are firstly drawn as a 

sketch (Figure 26a). Based on this blueprint, a grid is made from several wood frames and 

thin cords to assist with the measurements around the lathe (Figure 26b). This grid defines the 

sub-surfaces for measuring and helps the operator find the right position to place the intensity 

probe. 

 

Result of the measurements 

Using the grid the sound intensity measurements are repeated in the middle of each sub-

surface Ax,y (see Figure 27a). The machine speed during measurement is 1120 rpm without 

cutting a work piece. The sound power of each sub-surface Lw,i is visualized in Figure 28 as a 

2D and 3D illustration. The point of maximum SWL, which was thought to be near the 

cutting tool, is actually close to the electric motor. Near the back side of the motor, the SWL 

reaches 82.9 dB because the back cover is thinner than the front one. Due to the reflexion of 

floor, the SWL shows a higher value of 86.3 dB at the bottom of the electric motor (Figure 

27b). The 3D representation of SWL distribution, shown in Figure 28b, enables a 

straightforward understanding of sound power of a sound source and provides detailed data 

for a more realistic modeling of the sound source. The SWL of a sound source Lw is estimated 

by summing all parts of the Lw,i. The estimation can be made both with linear and A-weighted 

methods. Figure 29 shows the SWL which is represented according to third-octave band 

frequencies. The result the of linear summation Lw is 92.8 dB and the A-weighted value is 

92.5 dB (A).  

 
Figure 27: Measurement setting for sound energy 
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Figure 28: SPLs of sub-surfaces at spindle speed =1120 rpm/SWL 92.8 dB 

 
Figure 29: Linearly estimated SWLs of turning lathe  

4.2.2.2 Sound pressure 

Sound pressure is calculated by the difference between local pressure and atmospheric 

pressure caused by a sound wave. The SPL indicates the effective sound pressure relative to a 

reference value, defined in ANSI S1.1-1994 [ANSI94]. 20 µPa at 1000 Hz, the zero dB, is 

commonly understood as threshold of human hearing [Gelf90]. This index is often used to 

identify the sound impact on humans (for different effects see section 2.1.1). SPL is measured 

on a logarithmic scale and ranges from 0 to 140 dB [Henn08]. Every 3 dB increase of SPL 

means a doubled value of sound pressure. 

Experimental setup 

A SPL meter is used to measure the SPL. This equipment is normed by IEC 60804 [DIN02], 

IEC 60651 [DIN03a], and DIN EN ISO 61672-1 [DIN10c]. Figure 30 shows a widely used 

set of products from company Brüel&Kjӕr. A portable display (model: “Investigator”, type: 

2260) allows for parameter settings, the storage of measurement results, and result 

visualization (Figure 30b). Refer to [Möse10a] for the basic design and mechanisms of this 

type of SPL meter. Figure 30a shows the condenser microphone which is used to record the 

sound. Because the microphone has a spherical characteristic, high frequency measurements 

are accrual (to 10 kHz) [Brüe96]. However, significant errors will appear when measuring 
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sound waves at extra high frequencies. More investigation and discussion about measurement 

error caused by the SPL meter can be found in [Brüe94, Payn04]. In this thesis, this type of 

errors is not taken into account because the extra high frequency sounds are not commonly 

found in a factory. 

Before being used, a calibration of the microphone is done by using an airborne sound 

calibrator, which is normed by IEC 60942 [DIN04]. This calibrator is placed in front of the 

microphone and generates a reference sound wave with pre-defined pressure and frequency. 

The calibrator and calibration setup are shown in Figure 30c. During measurement, the 

microphone is positioned by using a tripod with an extension arm. The microphone is 

adjusted to the head position and viewing the direction of the operators with a distance of 0.10 

meters and a height of 1.55 meters. More details about microphone placement for different 

situations can be found in DIN EN ISO 9612 [DIN09a]. For example, in Figure 33a, the 

microphone is placed to face the control panel or operation side. 

 
Figure 30: Devices for SPL measurement from company Brüel&Kjӕr: a) condenser 

microphone, b) SPL meter, and c) microphone calibrator 

Result of the Machine-based SPL measurements 

The SPL measurements are taken in both machine-based and position-based setups. Firstly, 

the investigation and analysis of SPLs at working areas in the Manufacturing Lab are 

machine-based, based on the guidelines DIN 45645-2 [DIN97] and DIN EN ISO 9612 

[DIN09a]. When it’s feasible, the measurements should be conducted in front of running 

machines without the influence of operators or other machines. However, this optimal 

simulation is not usually possible in practice. The measurements are made in five main 

manufacturing facilitates in Manufacturing Lab (CNC milling center, CNC grinding machine, 

CNC machining center, and two different models of turning lathe), during 3 typical 

machining processes (idling, normal machining speed, and high machining speed). 

The time-averaged sound level (energy equivalent) Leq, peak SPL LCpk, as well as the Leq over 

third-octave frequency bands are determined by the previously described measuring devices, 

methods, and setups. Leq and LCpk enable an evaluation of noise emission level in a 

manufacturing environment. In laws and guidelines of manufacturing noise, the noise 
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exposure Lex is commonly equal to Leq. And the Leq over third-octave frequency bands 

provides additional data for sound source modeling. 

 
Figure 31: Comparison of average SPL of grinding machine during idling and machining  

Using the CNC grinding machine as an example, Figure 31 shows the average SPL and peak 

SPL at idling status and at grinding speed of 4500 rpm, while Figure 32 shows the Leq over 

third-octave frequency bands. Significant differences of Leq between idling and middle speed 

grinding is not found, but the peak SPL shows a considerable increase during the 4500 rpm 

grinding. Seen in Figure 32, the highest sound pressures are found between 250 Hz and 2500 

Hz. Since 2500 Hz is lower than 10 KHz, the measurement error caused by condenser 

microphone can be ignored. 

 
Figure 32: Comparison of average SPL of grinding machine during idling and machining  
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Result of the position-based SPL measurements 

 
Figure 33: Measurements setup and measured positions in Manufacturing Lab  

The measurements are conducted at 11 pre-defined positions in the Manufacturing Lab during 

a typical workday. These positions are usually used as operation positions in the 

Manufacturing Lab. In Figure 33, the measuring positions are illustrated on Manufacturing 

Lab layout from 1 to 11. The detailed description, coordinate, and microphone orientation are 

shown in Table 4-3.  

Position 

Nr. 

Description of measurement positions Coordinate 

(x,y) 

Microphone  

orientation (x,y) 

1 operator station of the milling center (4.13, 13.08) (0,-1) 

2 operator station of the grinding machine (4.57, 4.38)  (0,-1) 

3 operator station of the CNC machining 
center 

(10.8, 9.75) (1,0) 

4 operator station of the turning lathe 1 (12.2, 5.80) (1,0) 

5 operator station of the turning lathe 2 (12.57, 4.78) (0,1) 

6 operator station of the drilling machine (8.22, 6.35) (1,0) 

7 position of the desk (8.37, 3.46) (1,0) 

8 position of sink nearby the grinding 
machine 

(2.30, 1.23) (-1,0) 

9 workbench of the milling center (facing the 
wall) 

(2.33, 13.05) (1,0) 

10 position of sink nearby the CNC 
machining center 

(8.84, 13.01) (1,0) 

11 Position of the table between the milling 
center and the CNC machining center 
(facing the CNC lathing center) 

(5.65, 10.85) (0,1) 

Table 4-3: Description of the measurement positions 
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The typical machining speeds as well as the setups of the five machines during measurements 

are shown in Table 4-4. This information is used as reference for manufacturing setup to 

evaluate noise exposure in a workday. The noise level will be different when the setup is 

changed, however the evaluation describes an average measure. 

Machine Running speed Description 

DMU  Deckel Maho 70eVolution II 

(CNC milling center) 

18000 rpm Milling 3 mm HSK 63, without 

cooling 

WALTER Helitronic Vision 

(CNC grinding machine) 

idling Active ventilation 

Boehringer NG 200 

(CNC machining center) 

4500 rpm With chuck, without cooling 

Triumph 2000 

(Turning lathe 1) 

1120 rpm With chuck, without cooling 

HARDINGE 

(Turning lathe 2) 

3000 rpm Without cooling 

Table 4-4: Operation status of five machines during measurement 

Figure 34 shows the average SPLs at different positions during operation of the turning lathe 

1 (Triumph 2000) located at position 4. The maximum Leq appears at position 4, which is 

directly facing the running lathe, while at position 9 has the lowest Leq. 

 
Figure 34: Average SPLs at 11 measured positions in the Manufacturing Lab  

The determination of acoustic power is an essential factor for further sound propagation 

simulation. Due to complexity and time, finding out the acoustic power and sound pressure of 

every noise source in a large factory is a challenge. First, there is a large number of sound 

sources including fans, engine powered equipment, turbines, electric pumps, etc. Second, for 

economic reasons, the manufacturing can’t be stopped in order to measure every each single 

sound source.  

One solution is using the detailed technical acoustic information provided by facility 

manufacturer. Various other solutions by different authors exist in the literature. For example, 

GUASCH et al. introduced an inversion modeling method to obtain the sound source power in a 
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large factory. This method is based on a large number of measurements and the support of 

sound propagation software [Guas02]. Another computer aided solution using ray tracing is 

discussed in [Luzz86]. This solution uses geometric acoustic model and acoustic ray method 

to identify the sound source and estimate the sound power in a closed room. However, the 

both solutions are dependent on acoustic measurement results and detailed description of 

geometric features. For a large room with a complex layout and large number of objects, the 

solutions are not practical. 

 

4.3 Modeling 

Based on the acquired data from the manufacturing environment, the modeling step is used to 

bridge the real world and the virtual world. This means the digital or analogue data describing 

from factories, machines, sound sources, etc. are transformed to specific formats, so that the 

information can be used for simulation and visualization in a VR system [Kels98, Souz06]. In 

this section, different software and methods are introduced and the rebuilt virtual world with 

different production objects and a human avatar is represented. 

4.3.1 Modeling of the virtual environment  

To visualize a virtual environment as well as the sound simulation, the geometric data and 

description of a sound source are needed. The measurements from the factory provide the 

basic data for the 3D geometric models. Figure 35 illustrates this process from a (a real 

factory) to b (check list for data collection, also see Appendix 11.4) and then c (a 3D 

geometric model). A geometric model of the environment provides the following information: 

� environment features, such as the building geometries, machine layout, environment 
lighting, etc. 

� shape, size, coordination, position and orientation of the objects in the environment 

� surface features of the objects, such as material, texture, color etc. 

� process-based interrelationships among the objects  

 
Figure 35: Modeling of a virtual environment  

Unlike visible light, audible sound has wave lengths between 0.2 and 17 meters. The 

reflections are primarily specular on large and smooth surfaces. The diffractions often occur 

around big objects (such as lathes), while small objects (such as bottles) have little effect on 
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the sound propagation. Therefore, the 3D geometric models for sound simulation need less 

detail than the models for computer graphics.  

A common method to create a virtual environment and related objects is using Computer 

Aided Design (CAD) software, such as “SolidWorks,” “Solid Edge” and “CATIA,” which 

enables precise 3D description of objects. However, this precision leads to a huge number of 

polygons which decrease the computing performance of both the simulation and visualization. 

Also, the modeling of the environment features, such as the lighting in a factory, and the 

modeling of object features, such as the surface textures, is limited using the CAD software. 

Therefore, the modeling software, such as “3ds Max” or “Blender,” are used to improve the 

visual effect of a virtual environment. Figure 36 shows a comparison between a photo of a 

grinding machine and a virtual model rendered using 3ds Max. The number of polygons is 

optimized to balance the visual effect and computing performance. The surface material 

features and lighting effect are enhanced as well. 

 
Figure 36: 3D modeling of a virtual environment with real lighting effects 

In addition to CAD and modeling software, several computer languages provide libraries and 

tools for direct modeling. VRML, X3D and Java 3D are some examples. These languages 

enable the data to be converted to a VR-compatible file format. The VRML is the specified 

modeling language for VR applications, which was established at 1997 and accepted by ISO 

as standard ISO 14772 [ISO97]. It is widely used for VR applications, e. g. the assembly 

design, machining process simulation, evaluation and visualization of the planned facility or 

the training of employees, all while keep the production running [Oliv07 and Brec09]. The 

advantages of VRML language for engineering applications are significant: 

� The VRML description is a text file format (ASCII or UTF-8). 

� Associations can be structured between URLs and graphical objects, so that the web-based 
uses of VRML models are enabled. 

� The most important feature of VRML is the “Nodes”, which are the basic elements for 
creating a specific function in a scene graph. Each kind of Node has a specific field, 
values and children statements. 
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� The VRML Nodes offer a customized link to different positioning and allocations 
between different objects. The needed user interface with icons and description field can 
be easily adjusted.  

� Program code written with Java or JavaScript can be embedded in VRML using Script-
Node, which allows the implementation of calculations, mathematical results or databases 
into the VRML script as well. 

� The Proto Node enables the user to construct a set of customized Nodes, e.g., building a 
Chip-Geometric Node. Consequently, Proto offers an increasing usability of VRML and 
allows creating different objects, interactions, and Scripts. 

� Using VRML, the integration of multimedia applications in a virtual environment is 
possible, e.g. text, images, audios and movies.  

� VRML Viewer integrated browsers and editing tools for the creation and modification of 
VRML files are widely available for many different platforms (platform independent). 

VRML imports different graphic objects with various geometries from simple polygons all 

the way up to complex CAD files. It provides the ability to use and combine dynamic 3D 

objects within a VRML world and thus allow reusability. Objects in CAD file can also be 

exported as VRML files (.WRL) and visualized in VR. JavaScript enables the implementation 

of mathematical functions, which describe the different manufacturing processes.  

As the successor to VRML, X3D is also standardized by ISO and contains most of the VRML 

features. For current applications X3D has no remarkable advantages compared to VRML. 

VRML, however, has many more users developed Nodes (functions), application 

programming interfaces (APIs) and extension modules. Using plain text description and 

existing Nodes, the development of applications is accelerated and facilitated. Therefore, in 

this thesis, VRML is used as the modeling language and scene graph standard for VR 

application. SolidWorks is used for basic object modeling, 3ds Max is used for virtual 

environment modeling, and “VrmlPad” is used for WRL file modification and modeling. 

Detailed implementation of VRML files using “VrmlPad” will be shown in chapter 5. 

4.3.2 Modeling of sound source 

In this thesis, the phonon tracing algorithm is implemented. To do this, a sound source needs 

to be modeled. The basic idea is to represent the energy emission of a sound source as a 

simplified sphere. Hence, the modeling method developed by DEINES is implemented 

[Dein08]. Figure 37 illustrates a sound source with its energy enveloping surface.  

And the following information is needed during modeling: 

� Position of the sound source 

� Emission distribution of the sound source according to the reference position 

� Number of phonons that will be traced from the sound source 

Sound source modeling is still an essential issue in acoustic and computer science research. In 

this thesis the sound source position and number of phonons are implemented as simulation 

parameters, which are set before simulation start. The emission energy is based on the 

acquired data during measurement and the emission enveloping surface is simplified as a 
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sphere-like shape. This model provides a straightforward and relatively accurate sound source 

model for acoustic simulation. 

 
Figure 37: Representation of a sphere-like sound source  

4.3.3 Modeling of human  

The needs of 3D avatar modeling are various considering the different implementation and 
use scenarios. In [Span10], the most frequently used human models, such as the “Human 
Builder,” “Jack” and “RAMSIS,” are represented in Figure 38a. They are widely used for 
manufacturing operation investigation, ergonomic research and visualization function. For 
example, the software “eM-Human” by TECHNOMATIX allows users to simulate the work 
load in a virtual factory [Tecn03]. However, no human model (avatar) provides an indication 
of noise level through color. For more discuss about human model use in a digital factory, see 
[Zülc05]. 

The sound issue is strongly affects humans. In this thesis, the human model is used to define 
the positions of SPL estimation during simulation, as well as an indicator to show the reached 
limits. Hence, the human model should involve essential information, such as scale, position, 
texture, etc. 

 
Figure 38: Different human models [Span10] (a) and the ergonomic study using software eM-

Human [Tecn03] (b) 

Several companies offer catalogs with human models, at different levels of detail. Compared 

to creating models themselves, it is cheaper and faster for users to buy models directly. The 
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basic geometric model shown in Figure 39a is directly acquired from open source database. 

The model height is set at 1.7 meter and could be modified again considering the real situation 

before simulation. For example, during measurements the microphone is commonly set at 

1.55 meter, which is the ear height of a 1.7 meter high person. 

 
Figure 39: Human model and used color scale 

The position of human model can be defined directly in a virtual environment and also used in 

the SPL visualization step (see section 5.3.2). Based on LärmVibrationsArbSchV of BMAS, 

the lower and upper action values of SPL are at a daily/weekly noise exposure of 80 dB (A) 

and 85 dB (A) respectively (Table 2-1). The material diffuse color of the clothes of this 

human model is set as a SPL-related variable. Considering the lower and upper limit, which 

are regulated by law, the color of clothes change gradually from green (SPL=60 dB) to yellow 

(SPL=80 dB) to red (SPL=85 dB). Figure 39b illustrates the human model and different cloth 

colors. 

 

4.4 Acoustic simulation 

In this thesis, a phonon tracing algorithm is implemented for acoustic simulation, which is 

illustrated and compared to other algorithms in section 2.2.2. The phonon tracing method 

considers sound waves as a particle system involving many fragments (phonons) of the whole 

sound energy. The algorithm consists of two separate steps: phonon tracing and phonon 

collection. In the first step, sound energy propagation is simulated as traced phonons. In the 

next step, the SPLs are estimated at given positions. The implemented approach is described 

in more detail in the following section. 

4.4.1 Simulation of sound propagation 

The phonon tracing is a geometric acoustics method, which needs geometric data as input. 

The geometric data contains the 3D models of factories, facilities, and different machines, etc. 

This data is provided by the modeling step, which was described in the previous chapter. 

Besides the geometric data, the following input data is needed: 

� a triangulated scene with tagged surface material  

� absorption coefficients/functions for different materials 
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� position of one or more sound sources 

� emission distribution of the sound sources 

� sound energy of the sound sources 

� number of phonons to be traced 

� number of reflections to be traced 

� the threshold energy of phonons at the end of simulation 

Using the given sound emission level, the distribution of sound energy is modeled as a sphere 

surface, which was illustrated in Figure 37. From a defined sound source, the phonons are 

sent out and travel as a ray to the surfaces (boundary of medium) they meet. The number of 

phonons is defined by the user. A high number of phonons provide simulation data with 

higher details for visualization and auralization. However, the human ear is not capable to 

locate the origin of a sound source as exactly as the eye locates a light source. Therefore, a 

lower number of phonons are sufficient for auralization and efficient for simulation as well. 

The sound speed in air is considered as constant value 314 meter/second.  

The phonons from sound source intersect with the surfaces and these intersection points 

contribute to the global phonon map. The new phonons reflect with specular with respect to 

the local surface normal and also contribute to the phonon map at the next intersection. This 

simulation process is repeated when listener positions are changed. At the intersection point, 

the absorbed energy is calculated using absorption coefficients.  

To terminate a simulation, either the number of phonons or the number of reflections can be 

used. In the first case, if the energy of a phonon becomes lower than the minimum energy 

threshold and the minimum number of reflections has been computed, a new phonon is 

emitted from the source. After a defined number of phonons have contributed to the global 

phonon map, the simulation is terminated. In the second case, if the threshold of energy is not 

exceeded but a pre-defined number of reflections are computed, the simulation will be 

terminated as well. The process of phonon emission is illustrated in Figure 40.  

 
Figure 40: Flow chat diagram of the phonon tracing step [Dein08] 
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To simplify the simulation parameter setting, a software tool is developed. It provides graphic 

user interface (GUI) and data interface to VR systems, from desktop based non-immersive 

system to CAVE based full immersive system. Using this software, the user can perform the 

simulation straightforwardly. A connection between simulation and VR could improve the 

usability and user experience in an immersive environment. For example, the user would be 

able to replace the sound source or evaluate the noise level at different position directly.  

4.4.2 Evaluation of sound pressure level 

After the phonon tracing step, the phonon map is generated and saved for next step. This step 

is called phonon collection and visualization. The SPL at different listener positions are 

evaluated and visualized. Using a similar principle as the enveloping surfaces method used for 

sound power measuring in section 2.2.2, an enveloping surface for each listener position is 

created for phonon collection (see Figure 41). The phonons that fly through this enveloping 

surface are documented and calculated as a SPL. 

The human ear can distinguish sound frequencies in the spectrum from 20Hz to 20000Hz, but 

cannot sense equal sound pressure at different frequencies equally. Hence, the finite impulse 

response (FIR) filters for each listener position are implemented in phonon collection step. 

The spectrum of the filters is generated by using 214 samples. To limit the non-causal effect, 

the widest filters for 40, 80, 160 and 320 Hz are combined as one. Therefore, there are seven 

pre-defined FIR filters: 320, 640, 1280, 2560, 5120, 10240, and 20480 Hz. The production of 

FIRs is made in advance to reduce the computing time. The collection is cut off after 6.5-3 

second. Afterwards, the energy sum of collected phonons is calculated to estimate the 

corresponding SPL. The method of phonon collection can be found in [Dein08]. 

 
Figure 41: Illustration of phonon collection 

Based on the simulation, the phonon paths are traced and able to be visualized. The phonons 

are shown as small spheres propagating from a sound source and reflecting at surfaces. The 

propagation can also be illustrated as a sound wavefront. In the simulation step, the 

intersections of phonons and surfaces are documented in phonon mapping. It enables the 

visualization of absorbed energy on surfaces. Different visualization methods can be used 

according to the need of applications. The visualization examples are shown in the 

implementation chapter. 
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4.5 VR interfaces 

As an innovative platform, a VR system provides various interfaces for device connections, 

data input/output, function module integration, etc. In other words, this platform is a 

customizable system, able to support various hardware, software and data files. Current 

research shows that data interface issues are often found because of different data file formats, 

programming standards and hardware features. The development of interfaces according to 

user specified applications is needed, since one fixed standard for all users and developers are 

not possible. 

To enable the implementation of sound simulation and visualization tools in VR operated by 

COVISE, the interfaces at the software level are investigated in this section. Based on the 

understanding of the execution process of COVISE basis modules, the interfaces include the 

data interface and user interface. The data interface enables data transfer among more 

modules and simulation and visualization integration. The user interface creates a 

straightforward use of simulation tools and human-computer interactions in VR.  

4.5.1 Data management 

Each software system has its own native file format for data storage and access, which is often 

not compatible with other systems. For example, the binary format “.3ds” can only be viewed 

and modified using 3ds Max software. Hence, a data interface enables data transfer, data 

conversion, and data storage among multiple systems. However, there are issues such as data 

safeties and transfer/conversion time. Figure 42 shows a typical data flow model of COVISE 

within one workstation. The various modules communicate with the central controller named 

“covise” and local data manager named “crb”. The control messages are sent and received 

through TCP/IP sockets. In the case of local application, as in Figure 42, the data is stored in 

local shared memory and accessible from different modules. The data flows according to the 

arrangement made by module mapping.  

 
Figure 42: Data flow of COVISE within one workstation 
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The module mapping and central controller are executed on the master workstation. Whether 

a local executed application or distributed computing, both data and control communication 

are hidden within the COVISE libraries. The distributed processes are illustrated in Figure 43. 

The communications among the central controller, local data management, and COVISE 

modules are via a TCP/IP connection. The data in the master workstation is transferred to the 

shared memory of client computers and accessed by their modules.  

There are three approaches to create the connection between sound simulation and the 

COVISE system. The first approach is to create a COVISE module involving sound 

simulation functions. The second one is to develop a plugin for acoustic simulation and 

visualization using the COVISE development API. The third approach is to develop the sound 

simulation as a separate software tool with a connection port to COVISE. The first approach 

provides considerably better system compatibility and efficiency than the other two. The first 

one, however, needs the longest time, while the third one enables the fastest implementation. 

Furthermore, the third approach provides unlimited connections to different VR systems, but 

the other two can only work with COVISE system. The objective is to develop interfaces 

enabling the implementation of sound simulation and visualization in both desktop and CAVE 

based systems. To achieve this goal, a platform-independent solution makes more sense. 

Hence, the third approach is selected to be implemented.  

 
Figure 43: Data flow of COVISE using a distributed computing 

Figure 44 shows the data flow among simulation and COVISE modules. For example, input 

data, such as the basic geometric data with VRML format, is read by the input port of a 

“Read/Write” module into master workstation directly. At the same time, this data will be 

read by a converter, which converts VRML files to OBJ files and transfers them to a 

simulation server. As the simulation server receives the data from the converter, additional 

data is generated, e.g. VRML or JavaScript code for GUI. The additional data is read by the 
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input port of Read/Write module as well. From the output ports, the simulation server receives 

data from the COVISE modules as feedback or update message. The input and output ports of 

various modules share the data through their local data manager (also refer Figure 43).  

 
Figure 44: Data flow among simulation server and COVISE modules 

4.5.2 User interface 

The user interface using the selected approach enables users to manage the files, to set the 

simulation parameters, to start/stop a simulation, to place one or more listener positions, to 

visualize the simulation, or to analyze the simulation results. Two user interfaces for 

simulation and VR in this thesis are designed. The user interface of the simulation tool allows 

the user to manage the simulation and monitor the simulation processes. Basic functions such 

as file storage, error documentation, or process status view are included and a GUI in virtual 

environment is designed. Some simulation and visualization-specific functions, text 

information, and buttons are added inside the virtual environment. For example, the user is 

able to load a new VRML file, start a new simulation or define listener positions in a virtual 

environment directly, without leaving the CAVE. The user can also view the sound 

propagation and control the propagation speed using virtual slide function. Such 3D GUI is 

defined using VRML Node “Billiboard”, so that all GUI-involved elements are facing the 

user automatically.  

 
Figure 45: User interfaces for both simulation and VR 
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renderer module can be the viewpoint, the camera position, the rendering module, the 

navigation module speed, etc. Such changes are reacted to by the parameter port and call for a 

renewed rendering. The changes of simulation are communicated to the simulation server 

directly and are used for next simulation execution. Hence, the user has a straightforward 

interactive interface for simulation and visualization within a virtual environment.  

 

4.6 CAVE system preparation 

To implement the applications in a VR system, essential preparations of hardware and 

software components are required. This section describes the basic configurations of an 

immersive VR system, namely a CAVE system (e.g. the basic needs of hardware, VR 

operation system, and programming environment of applications, etc.). Due to the various 

system designs of CAVE systems, this description is based on the configuration and author’s 

experience of the Four Walls CAVE system in FBK institute.  

4.6.1 Hardware configuration 

To fulfill the implementation requirements for a CAVE system, first, enough space is needed. 

A typical Four Walls CAVE system, like the one in FBK institute, needs at least 144 m2 

spaces for basic hardware configuration. A design without the use of mirror could extend the 

space to more than 200 m2. Hence, the mirrors are used to reduce the projection distance in 

many CAVE systems. For an overhead placement of the mirror, the room needs to be at least 

10 meters high. Furthermore, the brightness of the entire room should be adjustable by using 

windows and artificial lighting. Thus, the room can be darkened for better projection and also 

illuminated for maintenance work. To integrate a sound system in a CAVE, acoustical 

properties of the room need to be considered. 

 
Figure 46: Illustrated CAVE system from front side (left) and back side (right) 

There are several other infrastructure requirements: a good ventilation system, enough power 

supply for all the projectors and workstations, and network connection. The exact 

specifications, such as the energy need and minimum network speed, are dependent on the 

specific hardware configuration and software application. The CAVE solution is generally not 
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only complex and expensive but also needs more space and maintenance during its operating 

time. Figure 47 shows the layout of FBK CAVE system with a check list of basic hardware. 

 
Figure 47: Layout illustration of a CAVE based immersive VR system 

The FBK CAVE system illustrated in Figure 48 consists of 8 projectors, 2 projecting on each 

of the 4 walls with highest solution of 1280 x 1042 pixels. Three mirrors are used to reduce 

the projection length. This CAVE system offers an immersive virtual environment more than 

17 m3. Passive stereo technology with circular polarization is used for stereoscopic rendering 

of the 3D environment.  

The CAVE is operated by a VR cluster, which contains 1 master and 8 client workstations 

(see Figure 49a). The master workstation is configured with two quad core 2.5 GHz Central 

Processing Units (CPU), graphics card FX 4800 with 1.5 GB memory, and 24 GB main 

memory. The client computers are configured with single quad core 2.5 GHz CPU, the same 

graphics card as the master, and 12 GB main memory. All the workstations communicate with 

each other using TCP/IP protocol. 

The user can interact with the system via different input devices, such as a fly stick (see 

Figure 49) or a wireless keyboard. Four infrared (IR)-cameras (see Figure 49) from A.R.T. 

Company are used for the user tracking [ART12]. Six tracking markers are fixed on the fly 

stick, so that the hand position of the user can also be known by a tracking server. The head 

position is also tracked through tracking markers on the 3D glasses. The absolute positions 
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(the real world position of the fly stick and the glasses) are transferred to the tracking server, 

which is operated on a separate computer. According to calibrated reference coordinates, the 

absolute positions are calculated to relative positions (the virtual world positions of the fly 

stick and the glasses) and are sent through tracking module of COVISE to the VR master. 

Then, the master computer adapts the perspective of the virtual environment according to the 

user’s viewpoint. This mapping between real user position and virtual environment enables 

the most basic interaction (movement) in VR and enhances the immersive experience. 

 
Figure 48: The CAVE system at FBK  

Even if only one user is tracked by the system, several people can work jointly inside the 

CAVE. This allows a team to analyze the processes in a virtual environment and speeds up 

the analysis and decision making process.  

 
Figure 49: The devices contained in CAVE system: a) projectors and VR cluster, b) fly stick 

and 3D glasses with tracking markers, and c) IR-camera  

The A.R.T. Company assisted with the calibration of the IR-camera and fly stick using 

standard software. Usually, when there are no changes or upgrades to the hardware, the 

calibration is done only once. Maintenance of hardware and devices is performed at specified 

time intervals. 

4.6.2 VR software 

In the FBK VR laboratory, both desktop based non-immersive VR systems and full-

immersive CAVE systems are used for various applications. The advantages and 

disadvantages of both systems are discussed in 2.3.3. As a useful complement to CAVE 

system, the desktop based VR system enables users to implement the applications with low 
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costs and short configuration time. For example, the VRML viewer is used to view and 

manipulate WRL file compatible applications. Within Microsoft Windows operating system, 

different software can be used, such as the “Instant Player,” “Cosmo Player,” “GLview,” and 

“Cortona3D Viewer”. In Figure 50, the user interfaces of GLview (a) and Cortona3D Viewer 

(b) are shown. Both of them are implemented as internet browser plugins and can be executed 

online. Using such software, users can check created VR models and make changes from a 

web-based database. However, the file loading speed file and computation speed are limited 

by the computer configuration and network capability. A VRML file with a large number of 

objects could be bigger than 100 Mb, which is not optimal for web browser VRML viewers. 

 
Figure 50: a) user interfaces of GLview and b) Cortona3D Viewer  

For the CAVE system, basic software to run the virtual environment and implement various 

applications is needed. As a platform, the software “COVISE” was selected due to its wide 

range of supported hardware devices and the variety of different functionality modules. The 

software was developed at the High Performance Computing Center (HLRS) in Stuttgart in 

collaboration with the Department of Computer Science at the University of Cologne. It is 

modular constructed software, so that the applications are implemented through the execution 

of one or more modules. For more details about the advantages COVISE and the COVISE 

based application implementations, see [Lang04]. 

The execution process of a single COVISE module is shown in Figure 51. The “Constructor” 

creates the module layout and connects with a COVISE controller. A start message is sent by 

the “Constructor” to COVISE. Next, in order to avoid timeout condition, a time consuming 

initialization “PostInst” is executed before the process goes into main loop. In the “main 

loop”, COVISE can receive and execute different events. Each module has three event 

handlers to control execution processes, namely the parameter handler “param()”, the event 

executer “compute()”, and the data socket “sockData()”. Each change of module parameters is 

submitted to “param” and reacted to by the “param” subroutine. Then, the controller “covise” 

tells the module to read input data or create output data. The data will be shared in a local data 

manager, which will be described later. The data socket “sockData” monitors the data arrival.  

Ports establish the connections of a module to other modules. Three typical ports are usually 

involved in each module: parameter port, input port, and output port. The parameter port reads 
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the values set by the user. The input port receives data and the output port sends data to other 

modules. For more details about ports and execution processes of different modules, refer to 

COVISE documentation [Aumü08a and Aumü08b]. 

 
Figure 51: Illustration of a typical COVISE module 

To organize and combine the different modules, the module mapping tool “MapEditor” is 

implemented. The users are able to choose and connect the necessary modules for their 

applications. Users can also define connections between the modules. Figure 52 shows the 

user interface of this tool and illustrates the approach used to define connections among 

modules. The black lines show the data flow from a data output port to a data input port. The 

required data and allowed data formats of each module are pre-defined. Extended data types 

are usually implemented by using plugins and user-programmed subroutines.  

 
Figure 52: Module browser and mapping tool “MapEditor” of COVISE [Aumü08b] 
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COVISE also provides extension interfaces for normal users and programmers. By using 

read/write plugins, users can make more types of data input and output that COVISE can 

support. Other plugins enable a direct connection between COVISE and different simulation 

software, such as the multi body simulation or FEM simulation.  

Figure 53 shows a visualization example using COVISE in both a desktop-based display (a) 

and a CAVE system (b). The graphical user interface in both systems is the same. The main 

menu includes three different modules of navigation: Walk, Fly and Drive. Other functions 

such as the “Zoom World,” “Scale World,” “View All,” and “Move World” are also involved. 

The extension menu enables users to customize the navigation in the virtual environment. The 

VRML menu provides functions such as scene graph reloading, animation starting, or 

viewpoint changing. By using predefined API, the users can add features to the main menu 

themselves. However, some interactions, such as the distance sensor or touch sensor, are only 

possible by using the fly stick in CAVE. Figure 53 also shows the difference between 

immersions. The visualization in CAVE provides a much bigger projection surface and wider 

field of view. 

 
Figure 53: A scene graph visualized using COVISE in display (a) and in CAVE (b) 

Using COVISE software modules, the connections to a tracking server or a sound system are 

also possible. In FBK laboratory, the tracking software for the IR-camera is connected via 

TCP/IP to COVISE and enables user-movement mapping in a virtual environment. 

Furthermore, the audio output module supports for a 3D sound system to improve the 

immersive experience in CAVE. Further connections with other customized functions, such 

as a tactile simulator, is enabled by using module/plugin extensions.  

 

4.7 Summary of the approach 

Based on the research objectives defined in chapter 3, this chapter explained an approach to 

integrate sound simulation and visualization in VR. Five implementation levels within this 

approach were discussed. The approach starts with the data acquisition from different 

resources in section 4.2. Several types of data acquisition were shown, such as the basic 

geometric data, the data of a sound source and legal regulation data. Table 4-5 listed a short 

summary of acquired data, used symbol, acquisition methods, and used standards/guidelines. 

The data formats of acquired data vary. For example, the geometric data file could be “.3ds” 
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or “.OBJ” files, while the noise exposure level acquired using sound pressure meter could be 

exported as different sheet formats. 

The determined Leq, 8h is considered as Lex, 8h, and together with the index LCpk is used for 

evaluation of noise exposure to employees. Lw is seen as an value to indicate the noise 

emission from the workplaces to environment. This value could also be provided by facility 

manufacturers.  

Data Symbol Acquisition Method Used Standard 

Object geometries   Measurement,  

Data from facility manufacturer 

 

Factory layout  Measurement,  

Building blueprint 

 

Absorption 

coefficient 

αj Measurement,  

Architecture database 

DIN EN ISO 

10534-1, 2 

Sound power level 

(SWL) 

Lw Sound intensity measurement DIN EN ISO  

9614-1, 2, 3 

Machine- and 

position-based SPL 

Leq Sound pressure measurement IEC 60804, 60651 

DIN EN ISO 

61672-1, 9612 

DIN 45645-2 
Peak SPL LCpk 

Noise exposure level 

per working day 

Lex, 8h Lex, 8h = Leq, 8h ArbStättV 

TA Lärm 

Peak SPL of noise 

exposure 

LCpk Measurement and calculation 

Table 4-5: A brief summary of data acquisition 

Based on the collected data, the virtual environment including its objects is created. The 

sound source models and the human models for sound simulation were discussed as well. The 

modeling methods were described in section 4.3. Methods of sound propagation simulation 

and SPL evaluation were also discussed. The phonon tracing and phonon collection 

algorithms were introduced in section 4.4. Section 4.5 showed the need of the VR system 

configurations and preparation work. To combine the both simulation and VR systems, the 

data interface and user interface in VR are constructed considering the current VR hardware 

and software platform. The data interfaces enable file transfer and conversion among multiple 

software modules and the user interfaces allows an interaction using a virtual environment. 

By means of this approach, the user is able to implement a VR-supported software application 

to improve the implementation of sound simulation and visualization for manufacturing 

design. In the next section, the implementation of software tool according to developed 

approach will be discussed. 
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5 Software Implementation 
Section 4.5 described the basic requirements and methods to integrate the simulation and 

visualization in VR. To implement the data and user interfaces for VR, a simulation server is 

created, allowing users to manage the geometric files, to configure and execute the 

simulation, and to interact with VR system. Furthermore, the connection via TCP/IP enables a 

web-based application. 

5.1 Software architecture 

Five main functions modules are included in the software: “WRL2OBJ Convertor,” 

“Simulation Engine,” “Visualization Engine,” “GUI Generator,” and “HTTP Port Controller.” 

The function diagram of this software tool is illustrated in Figure 54, in which the arrows 

show the data flow. The “WRL2OBJ Convertor” transforms WRL files to OBJ files for 

“Simulation Engine.” Based on the generated OBJ file and given surface absorption 

coefficients, the “Simulation Engine” executes and computes the phonon tracing processes. 

The results after the simulation are transferred to the “Visualization Engine” via TCP/IP to the 

VR system directly. In “Visualization Engine”, the SPLs are calculated according to the given 

listener positions and FIR filter files, and then a new WRL file is generated. This file is 

visualized in VR systems as well. The “GUI Generator” provides additional VRML and 

JavaScript code to create a straightforward user interface in virtual environments. All 

communications between the simulation software tool and VR systems are connected through 

HTTP by using the “HTTP Port Controller”. Both simulation and visualization user interfaces 

will be described in the next chapter. 

 
Figure 54: Function diagram of simulation and visualization software tool 

The implementation is completed based on Microsoft Windows system using C++ code and 

Qt programming environment [Qt12]. Qt facilities an easy GUI to start the server on selected 

network ports and generates an initial WRL file which has to be opened by the VRML viewer 

application. Additionally, Qt provides a simple interface for managing network sockets which 
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is a basis for an HTTP connection. Qt implementations are also portable to major operating 

systems. One only has to recompile the source code for Windows, Linux/Unix, or Mac OS. 

MinGW is used as a C++ compiler which is a minimalist development environment for 

Microsoft Windows applications [MinG12]. The software architecture creates a platform 

independent and web-based software tool. Users can run software using different operating 

systems and hardware configurations.  

To compile the source code, several essential Dynamic Link Libraries (DLLs) are needed, 

which are partly provided by Qt and partly by open source libraries. These libraries are all 

free for research and fulfill the minimal requirements of sound simulation and visualization. 

They are listed as follows: 

� QtCore4.dll: contains Qt -core non-GUI functionality (basic Qt-classes and functions). 

� QtGui4.dll: extends the QtCore4 module with GUI functions, which enables users to 
create widgets, windows, buttons, etc. 

� QtNetwork4.dll: contains the most common network protocols, many utilities, and also 
provides classes to make network programming easier and portable. 

� QtOpenGL.dll: enables the connection between programs and the necessary OpenGL 
library, which are essential for visualization.  

� mingwm10.dll: provides header files and imports libraries for the default C runtime 
library, which is required by MinGW compiled programs running on Microsoft Windows 
operating system. 

� fftw.dll: a collection of fast C routines for computing the Discrete Fourier Transform 
(DFT) in one or more dimensions. 

� gcc.dll: provides mostly basic arithmetic operations that the processor cannot perform 
directly and is basis for runtime of MinGW compiled program. 

� CGAL: this C++ library allows users to execute efficient and accurate geometric 
algorithms, such as the triangulations, polygons, or mesh generations [CGAL12].  

� GLUT: a toolkit for user to write OpenGL small and medium sized programs using a 
simple API. The current GLUT API version is 3 [GLUT12]. 

The necessary input data is stored as the required format. The geometric files are exported as 

WRL files using the VRML 2.0 standard. The texture information is saved as PNG or JPG 

files. The FIR filters are saved as ASCII plain text files.  

 

5.2 Data basis  

A specific file format is needed to enable the visualization of geometric data in VR. To 

represent a virtual environment and its objects, the VRML 2.0 standard is implemented. The 

software “3ds Max” supports WRL file imports and exports. To modify the VRML file, the 

software tool “VrmlPad 3.0” from ParallelGraphics is used. This tool allows users to view and 

change a VRML file using several essential functions without special programming 

knowledge (e.g. the illustration of routing mapping, 3D representation of objects, view of 

tree-like data structure, etc.). Position, material features and textures can also be modified. 

JavaScripts can be written directly in a VRML file. The sensor Nodes and interaction routings 
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are allowed to be defined in VrmlPad directly as well [Vrml12]. Figure 55 shows the GUI of 

VrmlPad. The visualized Scene Tree, Routing Map and Resource on the left side make the 

editing straightforward. The single geometric element is also visualized on the right side. The 

program supports a side-by-side view and allows editing of more than one VRML file at the 

same time, so that files can be merged easily. 

 
Figure 55: Modifying VRML file using software tool VrmlPad 

Other software also exists (e.g. “Caligari TrueSpace 3.0” and “Platinum VR Creator 2.0”) to 

edit WRL files. A feature comparison of commonly used VRML editors is shown in Table 

5-1. Geometry modeled using a WRL file, which modeled FBK Manufacturing Lab as a 

virtual environment, is illustrated in Figure 50 and Figure 56.  

 
Figure 56: Geometric modeling as data basis for software implementation  
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Table 5-1: An overview and comparison of VRML software tools 

Caligari

TrueSpace 3.0

Paragraph

Internet

Space Builder

2.1

Platinum VR

Creator 2.0

Learning

Edition

Rendersoft

VRML Editor

1.3

ParallelGraphi

cs VrmlPad

3.0

File Import

VRML 1.0 yes no yes yes Yes

VRML 2.0 no yes yes no Yes

3DStudio .3ds yes yes no no no

AutoCAD .dxf yes no no no no
File Export

VRML 1.0 yes no no yes Yes

VRML 2.0 yes yes yes yes Yes
User Interface

multiple view windows yes yes yes no Yes

real-time shading yes yes yes yes Yes

scene graph no yes yes no Yes

publish tool yes yes yes no Yes

customisable no yes yes no Yes

context-sensitive help no yes no no Yes

tutorials yes yes yes no Yes
Modelling Features

primitive shapes yes yes yes yes yes

polygon editor yes yes no no no

boolean ops yes yes no no no
File Formats

texture image BMP, JPEG,

TGA, TXR

BMP, GIF,

JPEG

BMP, JPEG BMP, JPEG BMP, JPEG

movie AVI animated GIF none none AVI

audio - WAV, MIDI WAV none WAV
VRML 2.0 Support

URL Anchor yes yes yes yes yes

Background yes yes yes yes yes

Billboard no no no no yes

ElevationGrid no no no no yes

Fog yes no no no yes

Inline yes no yes no yes

LOD yes no yes no yes

Sound yes yes yes no yes

Text yes yes yes yes yes

Viewpoint yes yes yes no yes

lights yes no yes yes yes

PROTO no no no no yes
Animation

key-frame editor yes no yes no yes

Sensors and ROUTES - no yes no yes

JavaScript no no yes no yes
Libraries

objects yes yes yes yes yes

materials yes no yes no yes

textures yes yes yes no yes

behaviours no no yes no yes

drag-and-drop no yes yes no yes
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The human model discussed in 4.3.3 is stored as WRL file as well. When the listener 

positions are defined by the user, the model will be added to the scene graph automatically 

(see Figure 39). The modeling of a sound source is based on the description in 4.3.2 and the 

parameter setting of a sound source is based on the measurements described in 4.2.2. A 

texture file is prepared to visualize the phonons. And the filters for phonon collection are 

generated as ASCII files separately according to frequencies. The material absorption 

coefficients are saved according to material type in ASCII files as well. The legal limits to 

evaluate the SPL at different positions are entered as fix values directly in the simulation 

server. All the data is prepared for simulation implementation and stored in a main folder, 

which is accessible by local or remote workstations. A database can be used for large data 

sets. 

 

5.3 User interface 

A well designed user interface ensures the implementation of designed software functions and 

improves the user experiences. GUIs for simulation server and for virtual environment are 

implemented. In the GUIs, basic functions, such as setting the parameters and starting a new 

simulation, are provided. For sound visualization, an interactive navigation menu is 

implemented to enable the user to view and analyze the simulation results. The 3D GUI for 

simulation and visualization has a similar design with a sphere in the middle and six 

connected poles to show the orientation. A touch sensor attached to the sphere allows the user 

to show and hide the main menu.  

5.3.1 Simulation interface 

The implemented GUI for simulation server is shown in Figure 57. Different sub segments on 

the main menu are highlighted and labeled. The output window on the right side can be 

brought up from main menu.  

The simulation setting panel allows users to set the simulation parameters, such as the 

pressure of the sound source, the number of phonons to be traced, the number of phonons to 

be visualized, the type of human model, the evaluation method, default file path, etc. The 

message window shows current server status. Users are also allowed to generate a start file (a 

VRML file to connect the simulation and VRML viewer) or open a new simulation scene. 

The generated VRML file containing the simulation results can be viewed in the VRML 

output window before saving. In the case of distributed computing, the software allows the 

user to store updated simulation data from the simulation server without viewing it in the VR 

system. 

As the start file is read by a VRML viewer, the server loads the VRML file and adds 

additional VRML code for user interface elements for interaction in the scene (see Figure 

58a). Interactive elements like buttons and sliders are implemented using VRML and 

JavaScript. Their visual appearance is modeled using simple VRML geometry, such as 

spheres and boxes. These geometries are connected to TouchSensor Nodes for buttons and to 

PlaneSensor Nodes for sliders. The sensors emit events which are routed to Script nodes 

containing simple interaction code written in JavaScript. Through the “Inline” Node, the 

additional VRML and JavaScript codes are embedded to main VRML files.  
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Figure 57: Main interface (left) and output monitoring (right) of simulation server 

The file navigation menu is constructed with a slider and button combination, which provides 

good handling for both mouse interaction on a desktop PC and fly stick use in the CAVE. The 

main control panel to set the sound source and start the simulation is designed as a sphere 

with six attached sticks oriented along the coordinate axes (shown in Figure 58b). The user 

can conveniently explore the virtual environment interactively without leaving the virtual 

environment. For example, users can place the sound sources within the viewer application, 

start/stop a simulation or load a new geometric file. 

 
Figure 58: a) file navigation and b) simulation start in Cortona3D viewer 

Commands of the user are sent back to the server by loading a special URL which encodes the 

action. Then, the simulation parameters are configured according to the commands and the 
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calculation is executed by the server. Afterwards the simulated data is delivered back to the 

viewer again. The viewer opens a new connection using an HTTP request asking for a file 

encoding commands. The server calculates and answers with a new VRML file delivered by 

this existing HTTP connection. Figure 45 and Figure 54 illustrate the process. The data flow 

behind the processes is depicted in Figure 44. 

5.3.2 Visualization interface 

After the simulation engine has finished the computation, the simulated data will be stored in 

shared memory for further visualization. The geometric model with the simulated data is 

loaded into the viewer application. At the same time, a navigation and control panel is 

generated by a simulation software tool and visualized in the virtual environment. This panel 

follows the user viewpoint by using the “Billboard” Node and can be attached at any defined 

position. Using the Node, the user can investigate the sound propagation inside the room by 

looking at animated phonon paths, which are shown in Figure 59 by using green sphere 

textures. The size and color of illustrated phonons can be changed by the user. The playback 

speed can also be adjusted using the “++” and “--” buttons, and the current simulation time 

interval can be selected using a slider.  

This software tool enables the user to place and remove listeners interactively. The human 

avatar is depicted by two different models, a simplified shape or a concrete human form, 

which can be chosen by the user. Then, a command to calculate the SPL “Collect” at the 

listener positions is issued.  

The color of the listeners are updated according to the SPL: green for an SPL lower than 

80dB, yellow/orange for a critical SPL louder than 80dB and lower than 85dB, and red for 

above 85dB. The detailed description of the color scale and human model is shown in Figure 

39. 

 
Figure 59: Visualization of phonon propagation and SPL at operation position 

The visualization is first implemented in a desktop-based VRML viewer, such as the 

“Cortona3D Viewer”, which enables the user to execute and view the simulation results on 
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any workstation with a VRML viewer plugin. Compared to the CAVE, the experience of 

navigation using the mouse is poor and the view field is very small. However, the time needed 

to start and configure the system is short and the interaction is familiar to the users without 

any experience with an immersive VR system.  

Figure 60 shows the phonons building a wavefront emitted from a machine. The red colored 

cones show the sound particles reflected from the ceiling and floor and the color intensity 

indicates the absorption of the surfaces. The effects of different materials on the spectral 

energy/pressure distribution can be observed. The first few reflections already show whether 

certain frequency bands are rapidly absorbed and how much sound energy is reflected back 

into the scene causing a higher noise level. Scene materials of high reflectance can be 

identified and replaced in the virtual model reducing the SPL in the virtual environment.  

  

Figure 60: Sound particle (phonon) propagation and reelections on surfaces 

Afterwards the visualization is implemented in the CAVE system. The master workstation of 

the COVISE cluster communicates with the simulation server and updates the scene graph for 

all eight clients. The 3D GUI, data flows and the computing processes in the CAVE system 

are identical with those in the desktop environment (see Figure 65). The computation time in 

both desktop-based and CAVE based systems are similar when using same geometric file and 

same simulation settings. However, because of the large projection surface, the rendering time 

for CAVE system is comparably longer. The visualization in CAVE enhances the 

representation quality of simulation data and the understanding of sound propagation 

processes within an immersive environment. 
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5.4 Distributed computing 

The three main functions (data management, sound simulation, and visualization of 

simulation results) are executed in three different workstations at different locations. To 

implement this distributed computing approach, TCP/IP protocol is used to enable the 

communications among HTTP ports.  

The implementation framework is illustrated in Figure 64. Workstation 1 serves as the data 

manager and provides the necessary geometric data for the simulation server. Workstation 2 

executes the sound simulation and sends the simulation results back to workstation 1. 

Workstation 3 obtains the simulated scene graph from workstation 2 and is responsible for 

handling user interactions. When the visualization is displayed in a CAVE system, 

workstation 3 additionally serves as the VR master. This workstation distributes the rendering 

jobs to each VR client, which provides the output for the projection system. Workstation 3 

also receives the user commands and data from the tracking system, which means the 

commands or scene graph updates are sent to the simulation server through workstation 3 for 

renewed simulation.  

 
Figure 61: Distributed application based on TCP/IP protocol 

This distributed computing provides a few benefits for collaborative research and 

development. In typical use scenario, the geometric data is provided by the manufacturing 

enterprises and the simulation and visualization are implemented by a research institute. To 

improve simulation performance, the institute could rent a supercomputer-powered server or a 

cloud computing service from other companies. For example, the native CAD file of a factory 

layout and involved facilitates is sent to the simulation server and converted directly to the 

simulation suitable file, but not sent to the researcher in the institute. This ensures the safety 

of the native data. The use of external computing for simulation enables the user overcoming 

computational bottleneck and reduces the simulation time. 
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5.5 Implementation results 

Through the software implementation, the simulation can be visualized on a desktop-based or 

CAVE-based virtual environment. This subsection summarizes the proposed noise analysis 

system implementation and discusses some results.  

First, the user has a simulation server which not only executes the sound simulation and 

visualizes the simulation result, but also provides the connection to VR systems. Whether 

using a desktop-based display or a CAVE-based full-immersive system, users are able to 

investigate and gain a better understanding of the noise issue in a manufacturing system. 

Second, based on the message communication and data transfer method, the implementation 

is considered a server/client approach. VRML visualization is used as a front-end GUI for the 

user and provides a programming interface for JavaScript coding. Third, using JavaScript, the 

limits of the VRML standard are partly overcome and the functions are extended. Using this 

implementation method, the VRML applications can be generated for different platforms and 

are enabled for further development. 

A few visualization examples are shown in the figures below. Figure 62 shows the modeling 

of a sound source (left) or more sound sources (right). Commonly, there are more sound 

sources that determine the acoustic effect in a factory.  

 
Figure 62: Visualization of single source and multi-sources of sound 

Figure 63 shows the phonon propagation from a lathe in the Manufacturing Lab. A worker is 

standing in front of the lathe and exposed to an SPL of under 85dB. The green spheres 

illustrate the traced paths of sound particles, while the red color shows the legal limit of noise 

level is exceeded and a protection method is needed.  
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Figure 63: Visualization of phonon propagation and SPL at an operation position 

Figure 64 shows the estimated SPLs at more operation positions which are monitored at the 

same time, which gives an overview of the noise levels over the whole Manufacturing Lab. 

The user can easily repeat the simulation using different simulation settings and compare the 

differences among them afterwards. The computation time is relative short compared to FEM 

or BEM simulation methods. Even a common office computer could be used for simulation. 

The navigation and analysis in a visualized scene is straightforward and intuitive. 

 
Figure 64: Visualization of SPL at more operation positions 

Furthermore, the proposed system is implemented in a CAVE environment. Using HTTP 

protocol, the simulation server communicates with COVISE modules. Two necessary 

COVISE modules are “VRML renderer” and “VR” module. The former enables the VRML 

visualization of a scene graph in CAVE and the latter provides basic interaction functions, 

such as navigation and user tracking. Figure 65 shows the basic user interface with added 

interface elements for the simulation software. Using the three button fly stick, the user can 
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navigate and interact with the virtual environment more intuitively, compared to using a 

desktop display and mouse. Navigation and selection are basic interactions in this 

environment. After viewing the factory layout and the machines, the user can set the sound 

source position and the positions which are required to be evaluated positions. After the 

simulation, the user can analyze the results directly in the CAVE. The user can also restart or 

reconfigure a simulation using the file navigation GUI without leaving the CAVE. 

 

 
Figure 65: Simulation and visualization interface in CAVE  

As an additional implementation, sound rendering [Darv95, Rabe97, Sven02, Lenz07 and 

Dein10] is also possible after the simulation. This method enables a realistic 3D audio 

rendering (also known as “Auralization”) for VR applications inside the CAVE. Most of the 

sound files used in current VR systems are sampled sounds. Modeling and simulation based 

sound offers new possibilities to improve the user immersive experience in a VR system, 

especially in a CAVE system. However, this implementation is not included in this thesis. 
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6 Examples of Software Use 
The implemented software tool demonstrates that the proposed approach is effective and 

produces realistic results. In this section, this software is tested using four different situations. 

The first situation shows quick evaluation after layout adaption. The second situation shows 

verification between simulation and measurement data. The third situation shows integration 

effects in the CAVE system by using auto play animation and the software tool. Finally, the 

last situation shows the implementation of the proposed method of distributed simulation and 

visualization. Through these four situations, the usability, system reliability, simulation 

efficiency, and visualization effects are well tested. 

 

Situation 1 – reduce the noise in specified area 

The first use case has a clearly defined objective: to reduce the noise in specified area by 

changing the layout of the factory, in which gears of the agricultural manufacturer are 

produced. To demonstrate the software tool, this use case focuses on the shaft manufacturing 

process chain. The chain consists of three processes: turning, milling and grinding. The 

original layout with machine tools is shown in Figure 66 with process chain being presented 

by A, B, and C. In this initial situation, the lathes have low reliability and are not able to cover 

the increasing production volume. Also, CNC-programming is not supported by these lathes 

and the set-up time is very long. In order to solve this identified bottleneck, the lathes are to 

be replaced by a new CNC turning machine. For the replacement, experts suggest three 

possible solutions. These three solutions are shown in Figure 66 by number 1, 2, and 3. 

In the lower right corner of the layout, a small area with tables and a flip chart is found -the 

area for CIP workshops- in which the noise level has to be considered. Since the CNC turning 

machine can have different positions, the layouts of three implemented solutions are shown in 

Figure 67. The sound simulation tool is then applied in each of the positions. 

 
Figure 66: The initial situation of use case 1 and three reschedule possibilities  

The 3D models of three different solutions are prepared using 3ds Max and the sound source 

parameters are kept unchanged for all three simulations. The preparation for the simulations is 

time consuming, because a direct position change of objects in the software-generated VRML 

scene graph is not possible. Therefore, a further development is considered. 
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Figure 67: Three rescheduled layout solutions  

From manufacturing process point of view, there are no essential differences among solution 

1, 2 and 3. In order to minimize the noise in the CIP workshop area, the SPLs of the three 

positions are simulated and visualized by using a color scale. The results are illustrated in 

Figure 68. According to the simulation results, position 2 is the preferred solution, because 

the employee is exposed to lowest sound level at 72 dB. 

 
Figure 68: Improved noise situation after change 2  

Although modeling the layout for three different solutions is not straightforward, this method 

allows for quick decision making. The quick decision making is essential since users need a 

fast and systematic method to adjust their manufacturing systems. However, this software also 

needs to be further extended to be able to work with other software together. 

 

Situation 2 – compare the simulation with the measurements 

The SPL measurements which are described in section 4.2.2 provide necessary data for 

simulation validation. Figure 69a illustrates the position based measurements in FBK 

Manufacturing Lab. Figure 69b shows the simulation based on 11 positions using the data 
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from Figure 69a. The results comparing measured values and simulation results are shown in 

Table 6-1. 

 
Figure 69: Measurement results (a), defined 11 positions for measuring (b) 

 
Figure 70: Color scaled SPLs 

Position Nr. 1 2 3 4 5 6 7 8 9 10 11 

Measurement 74.9 77.8 79.3 83.2 81.8 79.6 78.1 76.2 72.5 74.5 74.1 

Simulation 62.7 82.1 68.8 85.2 84.3 84.9 81.0 75.8 62.1 67.3 70.0 

Table 6-1: Description of the measurement positions 
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The differences between the simulation and measurement data are most likely caused by three 

reasons. First, the absorption coefficients can only be estimated, not selected from the existing 

database, since the facilities are mostly non-standard and old. Second, compared to the wave-

based methods, the phonon tracing method as well as other geometric methods fails in the low 

frequency range. Due to the limitation of geometric methods, a combined approach could 

provide more ideal and more accurate simulation. For example, DEINES suggested an 

additional wave-based method implementation to simulate the sound wave propagation at low 

and middle frequencies [Dein08]. 

 

Situation 3 – integration in the CAVE system 

To integrate the acoustic simulation into a CAVE system, there are two different methods 

available. The first one is to convert the simulation result and the geometric file used for the 

simulation to a VRML file. The phonon propagation is saved as an animation and embedded 

in VRML for autoplay. Figure 71 shows the animation of sound propagation in a classroom. 

The number of phonons is fixed as the animation is created and the playback speed is 

changeable by COVISE. The animation is repeated automatically from the beginning once it 

is finished. This method is simple and stable and the animation can be presented using almost 

any computer system. However, an interactive user interface and renewed simulation are not 

useable.  

 
Figure 71: An animation auto play of phonon propagation 

The second method is to use software tool introduced the in chapter 5, which enables users to 

execute the simulation and view the results interactively. In other words, after viewing the last 

simulation, the user can configure the simulation parameters results and restart the simulation. 

By using the embedded interactive GUI, the playback speed can be changed and the autoplay 

can be stopped at any step. Furthermore, the simulation result can be stored as a VRML file 

for further viewing and comparison. 
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Figure 72: Interactive animation of phonon propagation 

This situation is based on the use of the VR software COVISE. Using other VR software 

could change the interactions. However, many current VR software tools are implemented 

based on the OpenSceneGraph library, which means the visual effect showed in this section is 

analogous to the effects of other software systems. 

 

Situation 4 – distributed implementation  

Using the web-server, the communications via HTTP enable the distributed sound simulation 

and visualization. A prototypical test is made by using two computers and a shared data base 

within an established Virtual Private Network (VPN). The framework is illustrated in Figure 

73. The database is stored on computer 1 with the geometric files, the texture files and 

necessary libraries. The web server is installed on computer 2 and provides relatively high 

performance computation power when compared to computer 3. Computer 3 is configured 

with an usual internet browser-supported VRML viewer. The users are able to start the 

simulation and view the results, computed by computer 2, without installing the web-server 

software. The original geometric files can also be viewed by using computer 3 without request 

computer 2.  

In the case of complex simulation and visualization jobs, this distributed computing can use 

the full performance of all the computers, which is the main advantage of distributed systems. 

In this case, both computer 2 und 3 are notebook computers with relatively low computational 

power. Therefore, the advantage of distributed computing is not clearly shown. Still, the 

implementation is proven to be successful and efficient. Computer 1 is an institute server, 

which enables a large storage capacity and provides access for other users in the same 

institute or users from outside with access rights. Therefore, the geometric database can be 

maintained by third party, for example by the enterprise which provided the models.  
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Figure 73: Distributed implementation of sound simulation and visualization 

However, this VRML-based method is not the ideal solution for a parallel and distributed 

simulation. Firstly, the VRML script is not efficient enough for data storage and conversion, 

as compared to the native OBJ standard. In the case of a large data set, the file transfer and 

converting time does not to meet the needs of the user. Secondly, the interactive user 

interfaces have to be generated by JavaScript each time as the VRML file is reloaded in the 

viewer program, which takes a lot of storage and CPU power from both the web-server 

computer and visualization client. This problem may be solved by an integrated GUI in the 

VRML viewer or other VR software which improve the application usability. On the other 

hand, the GUI-generator even without improvement could be used in any system with a 

VRML loader. Thirdly, the web-server is not adapted for multi-core CPU processing. For the 

special need of a distributed sound simulation and visualization, a hardware adapted 

implementation is necessary. 
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7 Conclusion and Future Work 
This thesis developed an interactive and straightforward noise investigation using VR 

application. Based on the established concept, a few research issues were addressed and the 

main research question was answered. In this chapter, the development and implementation of 

the approach is briefly summarized. Finally, several extension possibilities for further 

research are described. 

Conclusion 

First, the noise issue in a manufacturing system and the related legal regulations were studied 

to later enable investigation in a virtual environment. Sound simulation and visualization 

methods were described in detail and two main groups of simulation algorithms were 

introduced and compared using pre-defined features. Then, a relative detailed review of VR 

technology and current applications in industry was made, which provided a solid basis for 

concept development and software implementation. However, this review covers only the VR 

applications in fields of industry. 

Based on the study of existing VR applications and their technical solutions, a development 

concept with five detailed implementation steps was demonstrated. The five steps are: data 

acquisition, environment/sound source/human modeling, acoustic simulation and 

visualization, VR interface and VR system preparation. Both non-immersive and full-

immersive VR systems were considered. VRML was considered to be the suitable VR 

language and modeling method for this proposal. A web-server based implementation 

approach was then established as the interface between simulation and VR. This concept 

could be used for other simulation integrations and extended for other industrial applications. 

Using the introduced concept and implementation approaches, a software tool was made. This 

software can be used to facilitate determining noise levels at working positions and test 

different improvement options. The software was specifically adapted for virtual 

manufacturing environments, e.g. machine halls or factories. Essential required tasks were 

accomplished, such as the converter for OBJ file, 3D interactive user interface, web-server for 

simulation and VR connection, and the visualization in a CAVE system. Due to the 

mentioned advantages of VR, the noise simulation and visualization was made better for use 

in factory planning and workplace design. Furthermore, this tool provides a straightforward 

method to check if the noise level is over the limits of legal regulations. 

Four example situations showed typical application scenarios in a manufacturing system. The 

implemented software was used in the different situations to fulfill the planning requirements: 

� Reducing the noise in specified area through layout change  

� Comparing the simulation with the measurements 

� Visualizing the sound propagation in a CAVE system 

� Using application with distributed computing  

The results validated the positive improvement of sound investigation in virtual environment. 

Furthermore, the simulated data is well visualized using VR systems and easy to understand. 

Therefore, this software can be considered a support tool for manufacturing designers and 
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planners. The know-how obtained through implementation can be further used for other 

applications. 

Outlook 

Currently, this software tool provides only basic interactive features for sound investigation. 

For example, a change of factory layout or modification of room acoustic properties can only 

be made in modeling step; a direct change in VR is not allowed. This could be extended to 

provide an interactive adjustment of absorption coefficients and machine positions, e.g. for 

simulation of different noise control solutions. This extension could make the virtual planning 

and rescheduling possible.  

In addition to the visualization of sound propagation in VR, the auditive representation of 

sound simulation results is called auralization. In a VR system, the immersion degree is 

enhanced significantly through integrated auralization. Using simulation generated phonon 

mapping could be converted and exported to stereo audio data file which would enable the 

auralization in a CAVE system. This issue could also be considered in further research. 

Another potential extension is the integration of sound simulation into the VR-based CIP-

workshop. Combined with auditive representation in CAVE, noise in a manufacturing 

environment can be perceived realistically by participants (workers, designers, executives 

etc.). The suggestions and ideas could be tested directly without applying them in reality. 

Hence, this approach would reduce downtime during the conventional CIP-workshops and 

allow the tests of various improving scenarios without high costs and potential risks. 

The noise issue is not only related to working safety and health, but also relates to ergonomics 

and workplace design. The approach developed in this thesis provides the basic know-how to 

integrate noise analysis in a digital factory as well as VR concept. The implemented software 

tool could be considered a prototype for further development involving more essential 

ergonomic issues, such as the lighting quality, air pollution, heat, chemical emission, etc. In 

other words, a comprehensive simulation and evaluation of the quality of the working 

environment, considering the possible negative factors, could be made before the industrial 

facilities are setup. Possible changes, rescheduling and redesigns are then able to be made in a 

virtual world. The solution implementation in a real manufacturing system will only be made 

if the solution completely optimized and validated. 
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11 Appendix 

11.1 IIDB assessment from 2003/04 to 2008/9 

 

 
  

Table IIDB 2003/04-2008/09

Prescribed industrial diseases; non - lung diseases in England, Wales and Scotland by disease
(a)

2005/06
(d)

2006/07
(d)

2007/08
(d)(e)

2008/09
(d)(e)(p)

310 (185) 325 (215) 210 (125) 180 (110) 210 (120) 955 (80)

240 - 205 (5) 155 - 135 - 170 - 170

725 (5) 610 - 470 - 380 (5) 615 - 660 -

570 (60) 495 (35) 370 (35) 335 (30) 385 (40) 350 (25)

70 (5) 65 (5) 35 (5) 35 (10) 30 (5) 35 (5)

140 (30) 125 (40) 105 (30) 100 (30) 80 (15) 60 (20)

65 (10) 55 (5) 50 (10) 55 (15) 55 (10) 45 (5)

2115 1880 1395 1225 1550 2275

2005/06
(d)

2006/07
(d)

2007/08
(d)(e)

2008/09
(d)(e)(p)

20 (10) 20 (10) 10 (10) 15 (10) 30 (5) 135 -

30 25 20 15 5 15

125 105 75 65 280 70

125 (5) 80 (10) 60 - 45 (5) 45 - 30

15 15 10 5 - 5 -

10 (5) 20 (5) 20 (5) 5 - 10 (5) 5 -

5 5 - 5 - 5 - 5 -

330 270 200 160 375 260

2005/06
(d)

2006/07
(d)

2007/08
(d)(e)(p)

2008/09
(d)(e)(p)

20 (5) 20 (5) 20 (5) 20 (10) 15 (5) 175 (5)

60 - 25 35 20 35 - 20

165 150 95 - 70 110 120

125 (20) 100 (20) 90 (20) 55 (15) 100 (20) 85 (10)

5 - 15 (5) 5 - - - 5

20 (5) 20 (5) 20 (5) 10 - 15 - 10 (5)

5 - 5 - 5 - 15 - 10 - 10 -

390 335 280 190 290 420

2005/06
(d)

2006/07
(d)

2007/08
(d)(e)

2008/09
(d)(e)(p)

345 (200) 370 (230) 245 (145) 215 (125) 255 (130) 1265 (85)

330 (5) 255 (5) 210 - 175 - 215 - 205

1015 (5) 865 - 645 - 515 (5) 1005 - 850 -

820 (90) 675 (65) 520 (55) 435 (45) 530 (65) 465 (30)

90 (10) 90 (10) 50 (5) 45 (10) 40 (5) 40 (5)

170 (35) 165 (50) 145 (35) 115 (35) 105 (20) 75 (25)

75 (10) 65 (10) 60 (10) 75 (15) 70 (15) 60 (5)

2845 2490 1880 1575 2215 2960

Notes:

(a)  Figures are for years ending 30 September, except for occupational deafness where calendar years 1996 - 2009 are shown.

   Bracketed figures are for females.  Where not shown, all cases are male (except for occupational deafness before 1998, when the

   gender breakdown was not available).

(b)  New regulations for Prescribed Disease A14 came into force on the 13th July 2009 resulting in an increase in claims and assessments.

(c) Figures for Great Britain include a small number of cases not included in England, Wales and Scotland breakdowns. These individuals

   developed industrial diseases from employment in Great Britain, but subsequently went to live overseas.

(d) From April 2002 the figures include a small number of cases where the claimant has been assessed as suffering but with no loss of

   faculty, or where the percentage disability had not been coded at the time of publication due to the provisional nature of the data.

(e) New regulations for Prescribed Disease A11 came into force on the 1st October 2007 resulting in an increase in claims and assessments.

(n/a)  Not available.

(p) Provisional.

-  Nil or negligible.

To maintain the anonymity of customers all 100% data has been rounded to the nearest 5. Therefore totals may not sum.

SOURCE : DWP

Allergic Rhinitis

Dermatitis

Others

Total

2003/04
(d)

2004/05
(d)

Musculoskeletal
(b)

Occupational deafness

Vibration white finger

Carpal tunnel syndrome

Great Britain
(c)

Disease

Vibration white finger

Carpal tunnel syndrome

Allergic Rhinitis

Dermatitis

Others

Total

2003/04
(d)

2004/05
(d)

Musculoskeletal
(b)

Occupational deafness

Others

Total

Scotland

Disease

Musculoskeletal
(b)

Occupational deafness

Vibration white finger

Carpal tunnel syndrome

Allergic Rhinitis

Dermatitis

2003/04
(d)

2004/05
(d)

Allergic Rhinitis

Dermatitis

Others

Total

Wales

Disease

2003/04
(d)

2004/05
(d)

Musculoskeletal
(b)

Occupational deafness

Vibration white finger

Carpal tunnel syndrome

England

Disease
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11.2 Some features of legislation in various countries [Embl97] 
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11.3 A list of to be modeled objects in FBK Manufacturing Lab 
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11.4 A filled check list of modeling of machine NG 200 
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11.5 Absorption coefficient of common building materials [WSDG11] 

 

 
  

Material Description Thickness Mounting Unit Size 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz

ASCPac Acustadek B Steel deck, perforated webs, absorptive backing 1,50 A 108 x 96 0,23 0,67 1,21 0,82 0,46 0,24

ASCPac Acustadek B Steel deck, total perforated absorptive backing 1,50 A 108 x 96 0,23 0,48 0,92 0,97 0,95 0,76

ASCPac Acustadek BF Steel deck, pan perforated absorptive backing 1,50 A 108 x 96 0,53 0,58 0,75 0,97 0,86 0,57

ASCPac Acustadek N Steel deck, perforated webs, absorptive backing 3,00 A 108 x 96 0,38 0,94 1,18 0,90 0,44 0,24

ASCPac Acustadek N Steel deck, total perforated absorptive backing 3,00 A 108 x 96 0,43 0,61 1,01 1,05 1,00 0,76

ASCPac Acustadek NF Steel deck, pan perforated absorptive backing 3,00 A 108 x 96 0,80 0,78 1,16 0,88 0,69 0,47

AWI Type 2906 Fiberglass panel with perforated vinyl film facing 0,63 E-400 24 x 48 0,68 0,68 0,67 0,84 0,86 0,71

AWI Type 2907 Vinyl-faced fiberglass with vinyl film facing 0,63 E-400 24 x 48 0,53 0,37 0,50 0,82 0,82 0,72

AWI Type 2921 Vinyl membrane facing over fiberglass lay-in panel 1,50 E-400 24 x 48 0,57 0,79 0,77 0,90 0,71 0,47

AWI Type 2925 Vinyl-film-faced, fiberglass lay-in panel 1,00 E-400 24 x 48 0,55 47,00 0,72 0,80 0,74 0,54

AWI Type 2942 Fiberglass lay-in panel with microperforated vinyl facing 1,50 E-400 24 x 48 0,62 0,83 0,90 1,10 1,06 0,94

AWI Type 2946 Microperforated vinyl film-faced fiberglass panel 1,00 E-400 24 x 48 0,77 0,89 0,75 1,01 1,04 0,93

AWI Type 3101 Cloth-faced, fiberglass lay-in panel, painted 0,75 E-400 24 x 48 0,71 0,87 0,62 0,86 0,96 1,07

AWI Type 3103 Woven glass fibers adhered to fiberglass board, painted 1,00 E-400 24 x 48 0,70 0,95 0,75 0,99 1,04 1,01

AWI Type 3105 Cloth-faced fiberglass lay-in panel, factory painted 1,50 E-400 24 x 48 0,74 0,97 0,85 1,03 1,05 1,00

AWI Type 3301 Cloth-faced, fiberglass lay-in panel, painted 0,75 E-400 24 x 48 0,48 0,35 0,71 0,96 1,05 1,04

AWI Type 537 Fissured mineral fiber, fire-resistive lay-in panel 0,63 E-400 24 x 48 0,35 0,34 0,48 0,69 0,88 0,92

AWI Type 584 Mineral fiber lay-in panel with factory-applied paint 0,75 E-400 24 x 48 0,29 0,33 0,53 0,73 0,86 0,92

AWI Type 602 Ceramic and mineral fiber, non-combustible, lay-in panel 0,63 E-400 24 x 48 0,23 0,24 0,50 0,77 0,91 0,86

AWI Type 704 Fissured mineral fiber, "Cortega" lay-in panel 0,63 E-400 24 x 48 0,35 0,27 0,47 0,65 0,74 0,82

AWI Type 737 Surface-textured, mineral, "Minatex" lay in panel 0,63 E-400 24 x 48 0,36 0,28 0,47 0,65 0,76 0,82

AWI Type 769 Fissured mineral fiber, "Cortega" lay in panel 0,63 E-400 24 x 48 0,31 0,32 0,51 0,72 0,74 0,77

AWI Type 775 Surfaced-textured, mineral, "Minatex" lay in panel 0,63 E-400 24 x 48 0,30 0,28 0,43 0,64 0,76 0,68

AWi Type 821 Mineral fiber, lay-in, with polymeric membrane 0,63 E-400 24 x 48 0,29 0,54 0,30 0,79 0,78 0,60

AWI Type 823 Fissured mineral fiber, fire-resistive lay-in panel 0,63 E-400 24 x 48 0,33 0,36 0,50 0,78 0,84 0,84

AWI Type 863 Vinyl-faced aluminum surface mineral fiber, lay-in panel 0,63 E-400 24 x 48 0,35 0,36 0,55 0,90 0,74 0,46

BHS Limpet Spray-on mineral-fiber material 2,50 A NONE 0,05 0,30 0,75 1,00 1,07 1,05

BHS Pyrok Spray-on, medium structure material 2,00 A NONE 0,06 0,14 0,30 0,59 0,92 0,56

BradIns Glasswool building blanket          (50) A 120cm x 15m 0,68 0,75 1,05 1,04 1,05 1,11

BradIns Glasswool building blanket with perforated foil facing          (50) A 120cm x 15m 0,55 0,69 1,07 1,07 0,99 1,00

BradIns Glasswool building blanket with perforated foil facing          (50) A 120cm x 15m 0,56 1,03 0,93 0,41 0,21 0,14

BradIns Glasswool building blanket with perforated foil facing          (75) A 120cm x 15m 0,47 0,87 1,09 1,03 0,97 0,86

BradIns Glasswool building blanket with perforated foil facing        (100) A 120cm x 15m 0,75 0,93 1,14 1,04 1,03 0,97

BradIns Suspended rockwool panels enclosed in polypropylene film          (50) hung 50cm x 120cm 0,18 0,44 0,83 1,25 1,14 0,96

BradIns Glasswool building blanket with perforated foil facing          (75) A 120cm x 15m 0,47 0,96 1,11 1,05 1,01 0,88

BradIns Fibertex 350 Rockwool blanket          (25) A 90cm x 150cm 0,18 0,29 0,69 0,86 1,05 1,20

BradIns Fibertex 350 Rockwool blanket          (50) A 90cm x 150cm 0,29 0,70 1,19 1,04 1,14 1,06

BradIns Fibertex 350 Rockwool blanket          (75) A 90cm x 150cm 0,60 1,03 1,13 0,99 1,07 1,01

BradIns Fibertex R4 Duct liner          (25) A 120cm x 150 cm 0,18 0,29 0,69 0,86 1,05 1,20

BradIns Fibertex R4 Duct liner          (50) A 120cm x 150cm 0,29 0,70 1,20 1,04 1,14 1,06

BradIns Fibertex R4 Duct liner, perforated foil facing          (25) A 120cm x 150cm 0,36 0,21 0,30 0,97 1,06 0,67

BradIns Fibertex R4 Duct liner, perforated foil facing          (50) A 120cm x 150cm 0,31 0,83 1,15 0,99 0,90 0,78

BradIns Fibertex R6 Duct liner          (25) A 120cm x 150cm 0,11 0,20 0,80 1,10 1,02 1,12

BradIns Fibertex R6 Duct liner          (50) A 120cm x 150cm 0,36 0,91 1,19 1,20 1,07 1,05

BradIns Fibertex R6 Duct liner, perforated foil facing          (25) A 120cm x 150cm 0,12 0,27 0,80 1,17 1,16 0,80

BradIns Fibertex R6 Duct liner, perforated foil facing          (50) A 120cm x 150cm 0,26 0,91 1,10 1,00 1,08 0,85

BradIns Flexitel Glasswool building blanket          (25) A 120cm x 15m 0,33 0,28 0,61 0,89 1,01 1,05

BradIns Flexitel Glasswool building blanket          (25) A 120cm x 15m 0,03 0,33 0,68 1,04 1,15 0,95

BradIns Flexitel Glasswool building blanket          (50) A 120cm x 15m 0,42 0,64 0,92 1,07 0,98 1,02

BradIns Flexitel Glasswool building blanket          (50) A 120cm x 15m 0,39 0,84 1,08 1,20 1,06 1,01

BradIns Supertel Glasswool blanket          (25) A 120cm x 240cm 0,12 0,41 0,63 0,90 1,01 0,99

BradIns Supertel Glasswool blanket with perforated foil facing          (25) A 120cm x 240cm 0,08 0,39 0,73 1,02 1,12 0,84

BradIns Supertel Glasswool blanket with perforated foil facing          (25) A 120cm x 240cm 0,13 0,32 0,59 0,83 0,99 0,97

BradIns Supertel Glasswool blanket with 23um Mylar film facing          (25) A 120cm x 240cm 0,15 0,45 0,67 1,07 1,08 0,71

BradIns Supertel Glasswool blanket with 50 um Mylar film facing          (25) A 120cm x 240cm 0,13 0,44 0,92 1,14 0,82 0,45

BradIns Supertel Glasswool blanket with 23um Mylar film facing          (50) A 120cm x 240cm 0,20 0,55 1,20 1,15 1,04 0,83

BradIns Supertel Glasswool blanket with 59um Mylar film facing          (50) A 120cm x 240cm 0,30 0,60 1,16 1,07 0,85 0,59

Conweb Tufflex G-37 Cellulose, nonwoven panel core 1,00 A  NONE 0,12 0,29 0,65 0,94 1,05 0,91

Conweb Tufflex G-37 Cellulose, nonwoven panel core 0,75 A NONE 0,12 0,16 0,55 0,72 0,91 0,89

Conweb Tufflex G-40 Cellulose, nonwoven panel core 0,63 A NONE 0,15 0,13 0,42 0,72 0,93 0,87

CTeed Ib150 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,19 0,62 0,72 0,82 0,88 0,89

CTeed IB150 Unfaced fiberglass board, bonded with thermosetting resin 1,50 A 24 x 48 0,19 0,51 0,82 0,86 0,95 0,97

CTeed IB150 Unfaced fiberglass board, bonded with thermosetting resin 2,50 A 24 x 48 0,41 0,78 0,96 0,94 0,93 0,97

CTeed IB150 Unfaced fiberglass board, bonded with thermosetting resin 2,50 F-25 24 x 48 0,54 0,85 0,97 0,96 0,93 0,97

CTeed IB200 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,15 0,55 0,73 0,86 0,92 0,94

CTeed IB250 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,25 0,52 0,71 0,83 0,89 0,95

CTeed IB250 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,08 0,33 0,69 0,81 0,92 0,97

CTeed IB250 Unfaced fiberglass board, bonded with thermosetting resin 3,00 A 24 x 48 0,44 0,91 1,07 0,99 1,02 0,99

CTeed IB300 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,19 0,49 0,69 0,87 0,92 0,94

CTeed IB420 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,33 0,40 0,70 0,94 1,00 0,98

CTeed IB420 Unfaced fiberglass board, bonded with thermosetting resin 1,50 A 24 x 48 0,09 0,45 0,91 0,99 1,02 0,96

CTeed IB420 Unfaced fiberglass board, bonded with thermosetting resin 3,00 A 24 x 48 0,54 1,01 1,05 0,98 1,01 0,97

CTeed IB600 Unfaced fiberglass board, bonded with thermosetting resin 1,00 A 24 x 48 0,12 0,52 0,68 0,87 0,93 0,99

CTeed IB600 Unfaced fiberglass board, bonded with thermosetting resin 2,50 A 24 x 48 0,53 0,99 1,02 0,84 1,00 0,94

CTeed MBP Fiberglass blanket, flexible, unfaced 3,50 A rolls 0,38 0,90 1,00 0,93 0,94 0,99

CTeed MBP Fiberglass blanket, flexible, unfaced 5,00 A rolls 0,68 1,11 1,06 0,94 1,00 0,97

CTeed MBP Fiberglass blanket, flexible, unfaced 6,00 A rolls 0,88 1,19 1,03 0,96 1,02 1,00

CTeed Ultracoustic Fiberglass blanket with flexible internal septum 3,00 A roll 0,43 0,91 0,99 0,98 0,95 0,93

CTeed Ultralite Fiberglass duct liner with surface coating 1,00 F-25 roll 0,34 0,42 0,47 0,84 0,80 0,79

CTeed Ultralite Fiberglass duct liner with surface coating 1,50 F-25 roll 0,29 0,55 0,72 0,85 0,89 0,89

CTeed Ultralite Fiberglass duct liner with surface coating 2,00 F-25 roll 0,32 0,71 0,83 0,91 0,95 1,01

CTeed Ultralite Fiberglass duct liner with surface coating 1,00 F-25 roll 0,23 0,47 0,57 0,74 0,85 0,87

CTeed Ultralite Fiberglass duct liner with surface coating 1,50 F-25 roll 0,33 0,57 0,79 0,91 0,92 0,89

CTeed Ultralite Fiberglass duct liner with surface coating 2,00 F-25 roll 0,39 0,69 0,92 0,98 0,93 1,00

CTeed Ultralite Fiberglass duct liner with surface coating 1,00 F-25 roll 0,23 0,47 0,61 0,79 0,88 0,91

CTeed Ultralite Fiberglass duct liner with surface coating 1,50 F-25 roll 0,37 0,63 0,80 0,90 0,89 0,90

CTeed Ultralite Fiberglass duct liner with surface coating 2,00 F-25 roll 0,36 0,79 0,96 0,99 0,93 0,97

CTeed Ultralite Fiberglass duct liner with surface coating 1,00 A roll 0,10 0,28 0,50 0,70 0,82 0,83
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