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Planning Mathematical Proofs with Methods'

By Xiaorong Huang, Manfred Kerber, Jorn Richts, and Arthur Sehn

Abstract: In this article we formally describe a declarative approach for encoding plan operators
in proof planning, the so-called methods. The notion of method evolves from the much studied
concept tactic and was first used by Bundy. While significant deductive power has been achieved
with the planning approach towards automated deduction, the procedural character of the tactic
part of methods, however, hinders mechanical modification. Although the strength of a proof
planning system largely depends on powerful general procedures which solve a large class of
problems, mechanical or even automated modification of methods is nevertheless necessary for
at least two reasons. Firstly methods designed for a specific type of problem will never be
general enough. For instance, it is very difficult to encode a general method which solves all
problems a human mathematician might intuitively consider as a case of homomorphy. Secondly
the cognitive ability of adapting existing methods to suit novel situations is a fundamental
part of human mathematical competence. We believe it is extremely valuable to account
computationally for this kind of reasoning.

The main part of this article is devoted to a declarative language for encoding methods,
composed of a tactic and a specification. The major feature of our approach is that the tactic
part of a method is split into a declarative and a procedural part in order to enable a tractable
adaption of methods. The applicability of a method in a planning situation is formulated
in the specification, essentially consisting of an object level formula schema and a meta-level
formula of a declarative constraint language. After setting up our general framework, we
mainly concentrate on this constraint language. Furthermore we illustrate how our methods
can be used in a STRIPS-like planning framework. Finally we briefly illustrate the mechanical
modification of declaratively encoded methods by so-called meta-methods.

1. Introduction

Mathematicians learn during their academic training not only facts like definitions
or theorems, but also problem-solving know-how for proving mathematical theorems.
An important part of this know-how can be described in terms of reasoning methods
like the diagonalization procedure, the application of a definition, or the application of
the homomorphy property. The main aim of this article is to formalize the concept of a
method in order to reflect more closely the informal notion of a mathematical method.

!Revised version of a lecture given at the workshop “Tactical Theorem Proving” held at the 18th
German Annual Conference on Artificial Intelligence, KI’94, Saarbricken, September 21-22, 1994.
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In particular, we try to capture some aspects of plausible reasoning by a proof planning
process built on top of the methods as plan operators. The importance of such kind of
reasoning in proof search has been pointed out by Pélya [16, p. vi].

Such a plan-based approach was first proposed by Bundy et al. in the OYSTER-
CIAM-system [5], where the tactics are extended to methods. Their methods can be
viewed as a unit consisting of a tactic and a specification. While the specification is
declarative, the tactic itself is still procedural. This has, however, a severe drawback,
namely, the mechanical adaption of methods to new situations is almost impossible,
because that would require the transformation of programs — tactics are just programs —
which is known to be a very hard problem in practice. However, the strength of human
reasoning and problem solving depends to a great extent on the ability to adapt existing
problem solving facilities to related, but not directly fitting situations. In order to allow
such a mechanical modification of methods, we have proposed in [12] a separation of
the tactic into a declaratively and a procedurally represented part. As shown there
this separation not only leads to more natural methods, but practically enables the
formulation of general meta-level mechanisms which adapt existing methods to suit
novel situations. In this way, an automated modification needs only to be performed
on the declarative part. While it is desirable to store most of the relevant information
in this part, only the rest should be encoded in the procedural part.

One potential criticism is that we should instead construct more general methods
which cover large classes of problems. Although general methods are definitely needed
for effective proof planning systems, this by no means excludes the need of modific-
ation. It is very difficult, for instance, to come up with a single method covering all
possible cases which a human mathematician would intuitively consider as an example
of homomorphy. A well-known example is the rippling method developed in Bundy’s
group, which has been extended from rippling-out [3] to a method covering a wide
range of related problems [4].

The intention of our work can be compared to Ireland’s approach of proof critics [13].
Although they considerably enhance the flexibility, no new methods are created. Dif-
ficulties arise when new problems exceeding the power of existing methods are en-
countered. The work of Giunchiglia and Traverso [9], where tactics are represented in
a logical meta-language, has a similar motivation as our work, namely to represent tac-
tics in a declarative way. In their approach the whole tactic is represented on a logical
meta-level, what enables a full declarative representation. In our approach only parts
of the tactic are represented declaratively, what should result in easier transformations.

2. Logical Foundations: Calculus and Tactics

Since the technical mathematical language of a typical textbook is essentially a
higher-order logic, in our work we adopt the classical higher-order logic based on
Church’s simple type theory as introduced in [6, 2].

The proof format in our approach is based on the natural deduction (ND) calculus
first proposed by Gentzen in [8]. Concretely, we adopt a linearized version of ND proofs
as introduced in [1]. In this formalism, an ND proof is a sequence of proof lines, each
of them is of the form:

Label A [ Derived- Formula (Rule premise-lines)
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where Rule is restricted to a rule of inference in ND, which justifies the derivation of the
Derived-Formula using the formulae in premise-lines. Rule and premise-lines together
are called the justification of a line. A is a finite set of formulae, being hypotheses the
derived formula depends on. Since a natural deduction proof can also be viewed as a
proof tree, we will talk about proof trees as well.
Below are two typical rules in the ND-calculus:
AFFVG, AFFH AGFH AFF, AFF—G

CASE, — E,
A H ARG

In order to uniformly represent proof plans, we extend the ND proof formalism by
allowing the Rule slot to be replaced by the name of a method or simply the value
“OPEN”. Open lines are still to be justified in the planning process.

In our framework a tactic is a function that generates new proof lines and inserts
them into the current proof. Following the declarative approach proposed in [12], this
function is represented in two parts. One part is a set of proof line schemata, that
is, proof lines with meta-variables. The other part contains a procedure. The whole
tactic can then be seen as a function with parameters. An application of this function
with concrete instances for the meta-variables generates new proof lines by applying
the procedure to the proof line schemata.

Most commonly the procedure is just one standard interpreter, which basically in-
stantiates proof line schemata by binding meta-variables. In other cases, the procedure
can be a sophisticated theorem prover. Hence the range of possible tactics is very
wide, reaching from the application of an ND rule to the call of an incorporated the-
orem prover. Since we allow arbitrary proof lines to be added to the current proof
state, the correctness of the final proof is not ensured a priori, it must be checked by
a verifier [11].

3. A Declarative Approach toward Methods

A central concept of knowledge-based reasoning in mathematics is that of a method.
A method contains a piece of knowledge for solving or simplifying problems or trans-
forming them into a form that is easier to solve. Therefore methods can be quite general,
such as finding proofs by a case analysis or complete induction, or the advice to expand
definitions. On the other hand, domain specific methods are also very common, for
instance a clearly described proof sketch for proving a theorem by diagonalization.

In our framework a method can be divided into a declarative and a procedural part.
By discerning the declarative part of a method, it is now possible to formulate meta-
methods adapting the declarative part of existing methods and thus come up with
novel ones.

Concretely, we define a method as consisting of the following slots:

Declarations Formally the declarations are a set D = {z:s | 2 € VM s € SORTM},
where VM is the set of meta-variables and SORT™ is the set of sort symbols.

Tactic In our model a factic is split into two parts: An ND proof schema with meta-
variables, called the declarative content, and a piece of program, called the procedural
content. This procedural part can be a standard interpreter which creates new proof
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lines by instantiating the declarative content and then inserting them into the current
proof state. It can also be an arbitrary piece of procedural knowledge, for instance, an
automated theorem prover.

Formally a tactic is a pair (T4, T?>¢) where T is a finite list of schematic proof
lines of the form (a;) H;F F; J;,or a meta-variable standing for such a list. Here
the a; are the labels of proof lines. The H; are either a list of proof line labels standing
for the formulae of these lines or a meta-variable representing such a list. The F; are
formula schemata, that is, formulae containing meta-variables. The J; are justifications
or the corresponding meta-variables. T?7°¢ is a program, which generates new proof
lines by interpreting 7.

Premises and Conclusions Intuitively, the premises slot contains a list of proof line
schemata which are used to prove the lines in the conclusions slot. In most cases both
slots are subsets of the proof lines in the declarative content of the tactic. The proof
lines can be marked with an additional sign “@” or “©”. These signs only play a role
in the planning process.

Constraint The more complex applicability condition of a method is formulated in
the constraint. After describing the semantics of a method, we introduce the constraint
language in detail.

The declarations, the premises, the constraint, and the conclusions form together the
so-called specification of the method.

Declarations: A signature that de-
clares.meta—vanables used, . Method
Premises: Schemata of proof lines

which are used by this method as B .

. Declarations |
assumptions,
Conclusions: Schemata of proof Premises
lines which this method is designed S ]
to prove, bec. Constraint Declarative
Constraint: A formula in a con- onstrain Part
straint language to be described Conclusi
later. This is used to formulate ONCIUSIONS ey
further restrictions on the premises -
and the conclusions, which cannot ~
be formulated in terms of proof line ) Decl. Content

Tactic

schemata, Procedural
Tactic: Tt is split into two compon- Proc. Content [~——  Part

ents: the declarative content and
the procedural content.

3. 1. Semantics of a Method

A method consists of two major parts: the specification and the tactic. Since the
specification is used in the planning phase and the tactic in the execution phase of the
plan operator, a method’s semantics can also be divided into two parts: its semantics
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as a plan operator and as a tactic. The semantics as a plan operator is defined in the
section 4., where STRIPS-like plan operators are constructed from the specification.

The semantics of a tactic is defined in terms of its execution: with the meta-variable
bindings resulting from the planning process the procedural content can be applied to
the instantiated declarative content constructing new proof lines.

3. 2. The Constraint Language CL

As described previously, in the first place the applicability of a method is specified
in terms of object level schemata for the premises and the conclusions. Furthermore,
the constraint slot contains additional meta-level application conditions.

First we motivate our definition of the constraint language by discussing some criteria
for an effective specification language in a proof planning environment. Ezpressiveness:
Since we want to check the applicability of methods, in our language it must be possible
to express all relevant properties of the objects in the current proof state. Adaptab-
tlity: The specification language should support automatic modification of methods
(by so-called meta-methods). Tractability: Since the specifications play the role of
plan operators in a proof planning environment and the applicability of an operator
must be effectively computable, the specification language must be decidable. Struc-
tured Representation: The specification language should not only allow the formulation
of decidable application conditions of methods, but it should also be efficiently com-
putable. Therefore the conditions should be structured in order to check the most
important conditions first.

We also have another concepts deviating from the standard definition of logics,
namely we need a binding mechanism. As we have mentioned, the free meta-variables
of the method are bound by the planner via matching. But it is also possible to assign
a value to remaining unbound ones. This can be necessary, for instance, when a new
formula should be constructed by evaluating the constraint. Therefore we include a
binding mechanism “<”, which is interpreted as a combination of a predicate and an
assignment known from procedural languages. We describe it in definition 3.2.

The Syntax of CL Based on the discussion above, the syntax of our constraint
language is a sorted first-order language with fixed function and predicate declarations.
We use the general notions of order-sorted logics with a set of sort symbols SORT™,
subsort declarations SD*, function declarations FD*, predicate declarations PD*,
and terms T2 of the sort s as introduced in [17]. Our definition of a formula differs
from the standard one, however, since we allow only quantification over finite lists of
terms and because of the special binding predicate “<7”.

Definition 3.1 The set of well-formed formulae, WFFM, for a given signature
¥M is inductively defined. The logic connectives and quantifiers are listed in groups
(iii)—~(v) in decreasing order of the binding priority.

(i) If P € PM, P<sq x---Xsp is asort declaration for the predicate symbol P € XM,
and ¢; € Tg‘i” for 1 <7 < n, then P(ty,...,1,) € WFFM_ Also T,1L € WFFM T
stands for truth and L for falsehood.

(ii) If 2 € VM with the sort sand ¢ € Tg*, then (z — t) € WFF* (binding predicate).
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(i) If @ € WFFM, then (~ ®) € WFF* (negation).

(iv) If ®1,®, € WFF*", then (®1 0 ®3) € WFFM for o € {&,|} (conjunction and
disjunction).

(v) If t € Tﬁ/slt(s)7 z:s € VM and ® € WFF™, then (A\'z:s.9) € WFFM and
(Viz:s.®) € WFFM (finite universal and existential quantification).

The Semantics of CL The semantics of CL describes the applicability criterion of
a method. For simplicity we only emphasize the part of the semantics deviating from
the standard sorted logic. In our approach, we define the value of a formula ¥ under
an interpretation function Z and an assignment ¢, denoted by ¥7¢, as a truth-value
assignment pair in {t,f} x F,(VM,Ds), where F,(VM,Ds) is the set of all partial
functions from VM to Ds. Ds is the universe for the sort s (cp. [17]). The second
component of such pairs is needed to keep track of the bindings.

The following definition specifies the semantics of the constraint language. Starting
from an assignment ¢ given by the planner, all bindings are accumulated in the second
component of the truth-value assignment pairs. A method is applicable if the interpret-
ation of the constraint results in t in the first component and no variable specified in
the declaration slot remains unbound, otherwise it is not applicable. In the following
we denote the domain of the partial function ¢ by Dom(). Var(t) denotes the set of
all variables of a term {.

Definition 3.2 Let ¢ be an assignment, which is a partial function mapping
variables of sort s to elements of Dg. We define the value of a formula ¥ under the
assignment o and the interpretation function Z, denoted by ¥+, recursively.

The value of the terms are interpreted as usual in the standard Tarskian model-
theoretic semantics. We only explain the semantics of the binding predicate, the lazy
evaluated connectives, and the universal quantifier:

(1) When ¥ has the form (z < ¢),

[(z=0)]"¢ if 2 € Dom(¢),

gle — <t,go U{z— tI’”}> if # ¢ Var(t),z ¢ Dom(yp)
and Var(¢) C Dom(yp)
{f, ) otherwise.

In the first case the assignment is interpreted as the equality predicate since the variable
is already bound. A binding is given to a variable in the second case, which is the main
goal of this construct. If the variable z recursively occurs in the term ¢, then the
assignment cannot be properly performed.

The value of the logical connectives & and | are determined by lazy evaluation:

(2) When ¥ has the form &4 & &5,

I7l 3 I7
gle _ { %, i @Y = (t, ),

(f,¢'), if 81 = (f,¢').
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The interpretation of the disjunction is similar to that of a conjunction, but when the
second part of a disjunction is interpreted, the bindings are restored to the bindings
used before the first part was interpreted.

The quantifiers range only over terms representing finite lists.

(3) When ¥ has the form A‘z:s.®,

(t, @), if 59 =(dy,...,d,),Var(t) C Dom(¢p),
z ¢ Var(l),{z — d;} € p,1 <1<,
yhe = and for all 7 there is a ¢ such that
@I,(pu{z»—wli} — <t, S0/> ]
(f, ) otherwise.

The fixed interpretation at the meta-level Our meta-language is intended to
specify applicability criteria for methods. First we assume therefore a fixed model
restricted to the domain of object level logical entities, namely terms, types, proof lines,
proof line justifications, inference rules, subterm positions, and substitutions. Second
the different categories of objects at the object level are reflected by different sorts at the
meta-level to avoid unnecessary instantiations through sort restrictions, so we consider
a fixed set of sorts, namely term, abstr, appl, const, var for terms and its subclasses,
type for types, prin for proof lines, just for justifications of proof lines, ir for inference
rules, pos for positions, and sub for substitutions. Moreover we consider finite lists of
these objects, for instance, list(term). Third the functions and the predicates at the
meta-level have a fixed interpretation: they are standard primitives for manipulating
the objects at the object level. For instance, termtype(F') is a function that calculates
the type of a term F' and atom(F') tests whether a term F' is an atomic formula.

3. 3. Decidability of the Constraint Language

A main criterion for the method language is its tractability, which strongly depends
on the decidability of the constraint language.

Theorem. If all variables of the constraints are bound by matching the premises
and conclusions against the proof lines occuring in the actual proof state, then the
interpretation of the constraint terminates with (t, ) or (f,¢) as value, where ¢ is a
partial assignment function.

Proof. The decidability of the constraint language can be derived from two facts,
first from the fixed interpretation of function and predicate symbols, and second from
the finite range of the quantifiers, which can be considered as finite conjunctions or
disjunctions. a

3. 4. Homomorphy Example

We want to illustrate our method language by an example of a method for proving
theorems in the field of algebra. Its proof strategy can be informally described as: If f
is a given function, P a defined predicate and the goal is to prove P(f(c)), then show
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P(c) and use this to show P(f(c)). The idea is that f is a homomorphism for the
property P and that f can be “rippled away” (compare [4]).

Suppose we want to prove the theorem that the converse relation of a binary relation
p is symmetric (formally: symmetric(converse(p))). The method hom1-1 can be ap-
plied by substituting converse, symmeltric, and p for the meta-variables F’, P, and C,
respectively?. The method hom1-1 proposes symmetric(p) as a new line which can be
used to prove symmelric(converse(p)) together with the definitions of symmetric and
converse. The details of using this method in proof planning are discussed in the next
section.

Method : hom1-1
Li,La,La,La, Ls, Lg:prin J1, Ja, J3:just
Declarations X,Y:var P, F,C:const
O, U, Uy, Uy:term
Premises Ly, L2,®Ls
~ termoces(F, @)=() &
. termtype(C)=typerange(termtype(F')) &
Constraint Ty ter(mfploccs(X,%If,(C)& (F))
W, «— termrploces( X, U, F(C))
Conclusions OLe
(L1) {(L1) FVY.® (J1)
(L2) (L1, L)FVXWP(X) =T (J2)
Declarative (L3) (L1,L2)FP(C) (J3)
Content (L4) <L1, L2> = \1’1 (def—e LQ, Lg)
(Ls) {(L1,L2)F W, (OPENL,, L)
(Le) <L1,L2>|_P(F(C)) (def—i L2,L5)
Procedural .
Content schema — interpreter

The constraint of the method states the following: The first line says that F must
occur in @, the second line means that certain types must be equal (otherwise the newly
created formula P(C') is not well-typed). The third line means that ¥y is created by
replacing all free occurences of X in ¥ by €', and the fourth line that ¥, is obtained
by replacing all free occurences of X in ¥ by F(C'). Actually ¥y and V¥, are just the
expanded versions of P(C') and P(F(C')), respectively. Note that Ly and L, contain
essential properties of " and P like their definitions.

4. Planning

In this section we specify a simple proof planning mechanism and the semantics of
our methods from the planning perspective. After giving a motivation and showing an
example, we formally define STRIPS plan operators from our methods and then show
their use in a planning algorithm.

?In the following the capital letters denote meta-variables, while the object level elements are written
in lowercase letters.
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4. 1. Motivation

As a first attempt we adopt a STRIPS-like planning paradigm, where the plan oper-
ators correspond to the methods. Thus from an abstract point of view the planning
process is the process of exploring the search space of planning states that is generated
by the plan operators in order to find a complete plan (a sequence of instantiated plan
operators) from a given initial state to a terminal state.

Concretely a planning state contains a subset of lines in the current partial proof
that correspond to the boundaries of a gap in the proof. This subset can be divided
into open lines (that must be proved to bridge the gap, they are marked by the label
“(7)”) and support lines (that can be used as premises to bridge it, they are marked
by the label “(!)”). The initial planning state consists of all lines in the initial problem;
the assumptions are the support lines and the conclusion is the only open line. The
terminal planning state is reached when there are no more open lines in the planning
state.

In order to demonstrate how the methods are used in the planning process, we show
what the corresponding STRIPS plan operators would look like. We assume the STRIPS
mechanism [7] as already known and only mention that a STRIPS plan operator consists
of three slots: the preconditions slot, the delete slot, and the add slot. A STrIPS plan
operator is applicable in a planning state if the propositions in the preconditions slot
are present in the planning state. When a method is applied, the propositions in the
delete slot are removed from the planning state and the propositions of the add slot
are inserted.

4. 2. Defining STrIPS Plan Operators from Methods

Now we formally specify how the specification of a method corresponds to a STRIPS
plan operator. The required slots of the specification are the premises, the constraint,
and the conclusions. The premises and conclusions contain lines that are labeled with
“@” or “6” or are unlabeled; the constraint contains an additional logical statement
that can be evaluated to true or false. With this information we define a STRIPS plan
operator that has three slots: the precondition list, the delete list, and the add list.

STRIPS-Op name

Method name Pre: (1) p1, ..., () pny
Premises D1y -ees Pny ") prsn () p;;
op1, - @p;_ (?) ey ooey (7) Cmg
e (?) e, () e

Constraint v = v _ _
Conclusions ¢, ..., cp, Del: " e () pn;
ocr, ..., O _ (?) 1, .., (7) c;C_
@ct, ..., @c::_ Add:  (7) pt, . () B,
) () ebo oo () ety

The figure above shows the generation of the STRIPS plan operator from a method.
It represents the most general case, although usually not all possible labelings are used
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in a single method. The unlabeled lines in a method go to the preconditions slot and
the lines with a “@” to the add slot. The lines labeled with “&” are moved to the
precondition slot and to the delete slot. In the preconditions and the delete slot the
premises become support lines and the conclusions become open lines. In the add slot
it is the other way round. The content of the constraint slot ¥ is inserted into the
preconditions slot of a STRIPS operator. Note that ¥ is not a proof line that is present
in the planning state, but a formula specifying an additional applicability condition.

The planning algorithm can be abstractly described as follows:

While there are still open lines in the planning state

1. Find all possibilities of an application of the methods

(a) Select a method M.

(b) Find all possibilities of matching the lines in M’s precondition slot with
lines in the planning state.

(c) Evaluate the constraint of M with the bindings established in 1(b).

2. Select the “best” method A (this is the choice point for the backtracking
mechanism and the point where some heuristic control can take place)

3. Apply the plan operator M to the planning state

(a) Insert the lines in the add slot of M into the planning state.
(b) Remove the lines in the delete slot of M from the planning state.

Note that backward planning is not possible since the terminal state is defined by the
absence of open lines. During the matching of the lines in the preconditions slot and the
evaluation of the constraint all meta-variables should have been bound to object level
terms. Therefore the new lines of step 3.(a) can be constructed by simply instantiating
the meta-variables.

Once a complete proof plan is found, all methods (i.e. their tactics) in the proof plan
are successively executed in order to construct a calculus level proof. The verification
phase, which follows the application of the methods, may result in a recursive call
to the planner or in backtracking. While a recursive call refines a plan and models
hierarchical planning, the backtracking rejects the plan and calls the proof planner in
order to find an alternative one.

4. 3. Homomorphy Example

Having illustrated the basic framework, let us examine an example, related to the
hom1-1 method, shown in section 3. 4. Note that line L5 is an open line that does not
occur in the specification and therefore does not enter the planning state. This leads
to an abstraction in the planning process (i.e. there is less information in the planning
state) and results in a hierarchical proof planning: since line L5 is not considered by
the planner, after completing the plan it will be inserted into the proof tree as an open
line by executing the tactic of hom1-1. This will result in a recursive call of the planner
after the following verification phase.
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Planni M 1. 1; b VouVz,ya(z,y) € converse(o) — (y,z) € o "
3 anning " 2. 2 b Vowsymmetric(o) — Vz,y(z,y) €0 — (y,z) €0 "
tate 1 () 9 21; F  symmetric(converse(p)) (?)
Plann; () L 1; F VouVz,ya(z,y) € converse(o) — (y,z) €E o M
S anning M 2. 2 F Vowsymmetric(o) — Vz,y(z,y) €0 — (y,z) €0 M
tate 2 (?) 8. 2,1; F  symmetric(p) (?)

The figure above shows the transition of the planning state. When the plan is com-
pleted (by proving the remaining open line with some additional information about p)
the proof resulting from the application of the tactic hom1-1 looks as follows:

1. 1; F VouVz,ya(z,y) € converse(o) — (y,z) € o (J1)

2. 2; b Vowsymmetric(o) — Vz,y(z,y) €0 — (y,z) €0 (J2)

3. 1,2; F symmetric(p) (J3)

4. 1,2; F Vz,ylz,y) €p—(y,z) Ep (def-e 3 2)
5. 1,2; F Vz,y(z,y) € converse(p) — (y,z) € converse(p) (OPEN 1 4)
6. 1,2; F symmetric(converse(p)) (def-i 2 5)

Let us have a look at the justifications in this proof fragment. Justifications J1 and
J2 are found via matching when applying the plan operator of homi-1, J3 will be
instantiated by the further proof planning process. The justifications of lines 4 and 6
stand for the subproofs generated by the application of the tactics of these methods,
whereas the justification of line 5 defines a new gap with support lines 1 and 4.

5. Extending the Reasoning Repertoire by Meta-Methods

It is one of the main features contributing to the problem solving competence of
mathematicians that they can extend their current problem solving methods by adapt-
ing them to suit new situations (see [15, 14] for mathematical reasoning and [18] for
general problem solving).

By discerning the declarative part of tactics, it is now feasible in our approach to
formulate meta-methods adapting the declarative part of existing methods and thus
come up with novel ones. In a framework where tactics consist only of procedural
knowledge, we would in effect be confronted with the much more difficult problem of
adapting procedures in order to achieve the above. A more detailed discussion can be
found in [12].

We define a meta-method as consisting of a body and a rating. The body is a proce-
dure which takes as input a method, and possibly further parameters from the planner
(in particular the current state of proof planning) and generates a new method with
the same procedural part. The rating is a procedure which takes as input a method,
the current state of proof planning and the proof history. It estimates the contribution
of the application of the meta-methods to the solution of the current problem.

We illustrate this definition with the method hom1-1 introduced in section 3. 4. The
method hom1-1 simplifies a problem by generating an intermediate goal, where a unary
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function symbol is eliminated. Suppose that we are facing a new but similar problem
of proving that the intersection of symmetric relations is itself a symmetric relation.
What we need is a variant of hom1-1, which is able to handle a binary function symbol
(intersection in this case) in a similar way.

In the following, we illustrate how to use a meta-method called add-argument to
obtain a binary version hom1-2 from the unary version homi-1. homi-1 is suited to
situations with a unary predicate constant P and a unary function constant F, while
hom1-2 can handle situations with a unary predicate constant P and a binary function
constant F’. The meta-method add-argument takes as input a method M and a unary
function or predicate constant F.

The meta-method add-argument is supposed to add an argument to a key constant
symbol F which is a unary predicate or function used in a method, the modified
function or predicate constant is called F’. Essentially add-argument creates a method
M by carrying out the following modification on the declarative part of M: Replace all
occurences of terms F(z) and F(C') by F'(z,y) and F'(C, D), respectively and augment
the corresponding quantifications. (D has to be a new meta-variable standing for a
constant). If C' occurs in a proof line, but not in a term F(C'), a copy of this line will
be inserted into the proof schema, replacing C' by D (in the example hom1-2, line 4 is
copied from 3). Such a copy must be accompanied by a corresponding augmentation
to the specification of the method. The procedural part of M is taken over for the new
method. The method hom1-2 below can be obtained by applying add-argument with
the arguments hom1-1 and F.

Method : hom1-2
L1, Lz, Lg, L4, L5, Le, L7, Lg:prln J1, Jg, Jg, J42jUSt
Declarations X,Y:var P,G,C, D:const
D, W, Uy, Uy, U, Uhiterm
Premises Li,L2,®L3,®Ls
~ termoccs(F' ;@) = () &
termtype(C) = typerange(termtype( F')) &
. termtype(D) = typerange(termtype(F")) &
Constraint Uy «— termrploces(X, ¥, C) &
U’y «— termrplocces(X, ¥, D) &
U, «— termrploces(X, ¥, F'(C, D))
Conclusions oL
(L1) (L1) FVY.D (J1)
(L2) (L1, L2)FVXaP(X) =¥ (J2)
(La) (L1, La)F P(C) (Ja)
Declarative (Ls) (L1,L2)FP(D) (J4)
Content (L5) <L1 y L2> = \1’1 (def—e LQ, Lg)
(Le) <L1,L2>|“I’/ (def—e LQ,L4)
(L7) (L1,L2)F 0y (OPENLy, Ly, L¢)
(Lg) <L1,L2> ( (C,D)) (def—i LQ,L7,L3)
Procedural .
schema — interpreter
Content

Note that the hom1-2 method is indeed useful to solve the intended problem of
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showing that the intersection of two symmetric relations is symmetric too. From the
initial problem the method hom1-2 produces the following partial proof:

1. 1; F Vp,0uVz,ya(z,y) € intersection(p,o) — (z,y) € pA{z,y) €0 (J1)

2. 2; F Vowsymmetric(o) — Vz,y(z,y) €0 — (y,z) €0 (J2)

3. 1,2; F symmetric(p) (J3)

4. 1,2; + symmetric(o) (J4)

5. 1,2, F Ve, y(z,y) €p— (y,z) €p (def-e 2 3)

6. 1,2, F Ve, y(z,y) €0 — (y,z) €0 (def-e 2 4)

7. 1,2; b Vz,y(z,y) € intersection(p, o) — (y, z) € intersection(p, o) (OPEN1 5 6)
8. 1,2; F symmetric(intersection(p,o)) (def-i27)

Analogously a method hom2-1 (for handling a unary function symbol but a binary
predicate symbol) can be obtained by applying add-argument with the arguments
hom1-1 and P.

In an interactive proof development environment like Q-mxrp [11] the user has the
opportunity to choose and apply a meta-method himself. To provide the user with heur-
istic support or even to automatize this meta-level planning, heuristics are necessary.
For a discussion on heuristics and for a preliminary classification of meta-methods, read-
ers are referred to [12]. Another elaborated meta-method connective-to-quantifier
can be found in [10].

6. Conclusion

A good mathematician has to learn a remarkable repertoire of technical knowledge.
On the one hand this includes factual knowledge, namely definitions, theorems, and
proofs. On the other hand he has to learn problem solving know-how as well. This
kind of knowledge consists of standard methods for manipulating proofs, like mathem-
atical induction or diagonalization. Among other important activities of mathematical
reasoning (like defining new concepts and adapting a definition so that new theorems
can be proved) there is one very important feature, namely the ability to adapt existing
problem solving facilities to new, not directly fitting situations.

In order to model such mechanical modification we have presented in this article a
formal definition of a method language. In particular we have defined the notion of a
method with the following components: declarations, premises, constraint, conclusions,
declarative part, and procedural part. The main feature of our approach is the separ-
ation of procedural and declarative knowledge in the tactic part. In this way, all parts
are declarative and subject to automatic modification, except the procedural content
of the tactic. Another technical emphasis of this article is a declarative constraint
language. With this language we can bind free variables and formulate applicability
conditions not expressible in terms of proof line schemata. In order to compromise
between competing requirements, namely expressivity, adaptability, and tractability;
the constraint language is designed as a decidable variant of sorted first-order logic.

The dual semantical characteristics of a method correspond to its two different roles:
a method is a tactic and a plan operator. The semantics of the tactic part specifies the
effect of its execution, while the semantics of the plan operator specifies its behavior
in a planning process. In order to model the latter we have presented how a method
can be translated into a STRIPS plan operator, together with a preliminary version of a
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planning algorithm. In the last section we have shown how the modification of methods
can be performed by so-called meta-methods, producing new methods applicable in new
situations.

To summarize we have proposed a declarative extension to Bundy’s proof planning
framework in order to enable reformulations of methods. Much work remains to be
done. We are currently extending our first implementation, the interpreter for the
constraint language is almost finished. The efficiency of the whole approach depends
largely on the implementation of a planning algorithm, which is more sophisticated
than the naive STRriPS-like planner. We hope to judge the adequacy of our approach
by accumulating experience with more examples.
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