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Abstract

The work presented in this thesis discusses the thermal and power management of multi-

core processors (MCPs) with both two dimensional (2D) package and there dimensional

(3D) package chips. The power and thermal management/balancing is of increasing

concern and is a technological challenge to the MCP development and will be a main

performance bottleneck for the development of MCPs. This thesis develops optimal ther-

mal and power management policies for MCPs. The system thermal behavior for both

2D package and 3D package chips is analyzed and mathematical models are developed.

Thereafter, the optimal thermal and power management methods are introduced.

Nowadays, the chips are generally packed in 2D technique, which means that there is

only one layer of dies in the chip. The chip thermal behavior can be described by a

3D heat conduction partial differential equation (PDE). As the target is to balance the

thermal behavior and power consumption among the cores, a group of one dimensional

(1D) PDEs, which is derived from the developed 3D PDE heat conduction equation, is

proposed to describe the thermal behavior of each core. Therefore, the thermal behavior

of the MCP is described by a group of 1D PDEs. An optimal controller is designed to

manage the power consumption and balance the temperature among the cores based on

the proposed 1D model.

3D package is an advanced package technology, which contains at least 2 layers of dies

stacked in one chip. Different from 2D package, the cooling system should be installed

among the layers to reduce the internal temperature of the chip. In this thesis, the

micro-channel liquid cooling system is considered, and the heat transfer character of the

micro-channel is analyzed and modeled as an ordinary differential equation (ODE). The

dies are discretized to blocks based on the chip layout with each block modeled as a

thermal resistance and capacitance (R-C) circuit. Thereafter, the micro-channels are

discretized. The thermal behavior of the whole system is modeled as an ODE system.

The micro-channel liquid velocity is set according to the workload and the temperature

of the dies. Under each velocity, the system can be described as a linear ODE model

system and the whole system is a switched linear system. An H∞-observer is designed to

estimate the states. The model predictive control (MPC) method is employed to design

III
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the thermal and power management/balancing controller for each submodel.

The models and controllers developed in this thesis are verified by simulation experiments

via MATLAB. The IBM cell 8 cores processor and water micro-channel cooling system

developed by IBM Research in collaboration with EPFL and ETHZ are employed as the

experiment objects.



Contents

Acknowledgements I

Abstract III

List of Tables IX

List of Figures XI

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Multi-core processors . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Package technologies of chips . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Thermal model techniques . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Power and thermal management methods . . . . . . . . . . . . . . 6

1.2 Objectives and structure of the dissertation . . . . . . . . . . . . . . . . 8

1.2.1 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . 9

2 Modeling of the thermal behavior of the die 11

2.1 Power consumption analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Heat transfer analysis of multi-core processors . . . . . . . . . . . . . . . 14

2.3 Solution of the unsteady-state heat conduction . . . . . . . . . . . . . . . 18

2.4 Example for the 3D PDE heat transfer model . . . . . . . . . . . . . . . 23

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Thermal and power balancing/management policy design for 2D MCP 29

3.1 Transformation from the 3D model to the 1D model . . . . . . . . . . . . 30

3.2 Optimal thermal balance policy . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

V



VI Contents

4 Thermal model of 3D stacked package MCP 43

4.1 Modeling of the 3D micro-channel liquid cooling system . . . . . . . . . . 44

4.1.1 Modeling the heat and mass flow in the micro-channels . . . . . . 44

4.1.2 Modeling of the pump and the liquid flow velocity . . . . . . . . . 58

4.2 R-C heat transfer model of the dies . . . . . . . . . . . . . . . . . . . . . 59

4.3 Model integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Example of the thermal modeling . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Thermal and power balancing/management policy design for 3D MCP 77

5.1 Policy for adjusting the liquid velocity . . . . . . . . . . . . . . . . . . . 78

5.2 Control design for balancing . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Robust H∞ observer design . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 MPC controller design . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Summary and outlook 101

7 Summary in German 103

Appendix 109

A Mathematical Background 109

A.1 Gauss Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2 Sturm-Liouville eigenvalue system . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Verification of the orthogonality of the eigenfunctions . . . . . . . . . . . 110
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1 Introduction

In the talk of ’There’s Plenty of Room at the Bottom’, the American theoretical physicist

Feynman said ’Why cannot we write the entire 24 volumes of the Encyclopedia Britan-

nica on the head of a pin?’ which started the world of ’smaller’ [Fey60]. From the first

Intel CPU 4004 with 2000 transistors to Intel Pentium 8400EE with 2.3 billions tran-

sistors which was developed in 2010, the integration increased 100 thousand times but

the size of the transistors is much smaller. However, in recent years the increase of the

chip performance is slowing as transistors cannot shrink forever [Gee05]. Meanwhile, the

rapid increase of information data needs higher performance processors. However, with

the same power consumption, the performance of multi-core processors is much better

compared with single-core processors as shown in Figure 1.11. Therefore, the multi-core

processor becomes the new trend of CPU development [Gee05, GK06].

Figure 1.1: Performance improvement of multi-core processors [Gee05]

1The performance shown in Figure 1.1 is based on Intel tests using the SPECint2000 and SPECfp2000

benchmarks. Besides, Intel predicts that the advantages of multi-core chips will be increasing in the

coming years [Gee05].
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2 1 Introduction

1.1 Background and motivation

1.1.1 Multi-core processors

A multi-core processor is an advanced type of processor which contains two or more

cores. Each core can read and execute the program instructions independently. The

multi-core processor dose not have a fixed structure, and the manufacturers design the

chip differently from one another. However, the basic configuration of the multi-core

processor is shown in Figure 1.2 . Each core contains a processing unit and a level

1 (L1) cache. Some MCPs additionally contain a level 2 (L2) cache. All these inside

components are linked to each other by an internal element interconnect bus [GK06].

Figure 1.2: General multi-core processor structure

In comparison with single-core processors (SCP), multi-core processors have many ad-

vantages. First, the processor can handle tasks in parallel which can improve the whole

process speed prodigiously. Besides, as all the cores are packed in the same chip, the com-

munication lines are much shorter, and the communication efficiency is highly improved.

Under the same power consumption, multi-core processors can have a significantly better

performance than single-core processor. As shown in [Rat06], for a core, if the supply
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voltage is reduced by 20%, and the frequency is also reduced by 20%, the power can be

reduced by about 50%. However, the core performance is only reduced by about 13%.

Figure 1.3 compares the one core processor with a two cores processor. The result shows

that the MCP can have much higher work efficiency with significant better performance

comparing with the SCP.

Figure 1.3: Comparison of SCP and MCP [Rat06]

From the first multi-core processor POWER4 developed by IBM in 1999 [Kah99] with

two cores to Tilera’s Tile-Gx8072TM processor [Til13] with 72 cores, significant progress

has been made in the multi-core processor technology. Up to date, many multi-core

processors are developed and are applied successfully in commercial applications, for

example the IBM’s CELL [PBB+05], Intel coreTM i7 [Int10a, Int10b] and Tilera’s Tile-

Gx8072TM [Til13]. The IBM CELL processor is an 8-core MCP which was developed

by IBM in collaboration with Sony and Toshiba. It consists of a dual-threaded Power

Processor Element (PPE) with L2 cache and 8 Synergistic Processor Elements (SPE)

with its own local cache. Intel coreTM i7, which is widely used in business and high-end

consumer market computers, is the name of several families of Intel desktop and laptop

64bit processors and may contain between two and six cores. Tile-Gx8072TM is a 72-core

MCP which incorporates a two-dimensional array of processing elements. The cores are

connected via a multiple two-dimensional mesh network.

As discussed above, multi-core processors have good performance and are widely applied.

However, the power and thermal management/balancing is of increasing concerns, as it

is a technological challenge to the multi-core processor development. The temperature

has a significant impact on the operation reliability and chip lifespan [VWWL00, SVS06,

VS06]. Thus, developing valid thermal and power management techniques for the multi-

core processor becomes an urgent task currently.



4 1 Introduction

1.1.2 Package technologies of chips

Nowadays, the chips are normally packed with only one layer of dies, which is called 2D

package chip. However, with the development of the micro electronic techniques, the

multi-core processor structure becomes more complicated. The traditional 2D package

technology suffers from the fact that the complex interconnect network consumes a lot of

energy and is accompanied with a significant amount of heat, which may be fatal to the

chip. Therefore, in recently years multi-die stacking technology (3D stacked package)

emerges due to the requirement.

Figure 1.4: 2D package and 3D package

The 3D package is a technology which stacks at least two dies together, which means

a chip contains at least 2 layers of dies as shown in Figure 1.4. Every two layers are

directly connected using through-Silicon via (TSV) [Mot09]. Compared with the 2D

package, this technology has many advantages [AAF98]. The size, the weight and the

footprint of the chip can be highly reduced. Besides, as a result of the reduction of

the interconnect length, the signal delay, the noise, and the power consumption can

be decreased. Meanwhile, the chip can run at a faster rate under the same power

consumption, and the interconnect bus bandwidth can be increased. However, because

of the stacking, much more heat will be gathered inside the dies as the power density

has a linear relationship with the number of the stacked layers. This is one of the main

challenges of the power and thermal management techniques in the 3D chips.



1.1 Background and motivation 5

1.1.3 Thermal model techniques

Two types of heat transfer are considered, namely heat conduction and heat convection,

while the radiation heat transfer is negligible [WLC03]. The basis of heat conduction is

Fourier’s law [Kre00]. According to the Fourier’s law, the rate of heat transfer through

a material is proportional to the negative temperature gradient in any direction [Kre00].

The heat convection rate between the multi-core processor and the environment or the

liquid cooling system can be described by Newton’s law of cooling [AB10], i.e. the heat

transfer rate of two different media is proportional to the thermal difference between the

two media.

Based on the above two theories, the thermal behavior normally can be modeled in

two types. A simple solution is to generate the equivalent thermal resistance-capacity

(R-C) circuit, and describe the heat transfer process as an R-C network as proposed in

[SAS02] and [SSH+03a]. This model is inspired by the fact that the heat transfer and the

electrical phenomena are dual [Kre00]. Figure 1.5 shows the heat conduction between

two blocks of an object which is insulated and dose not contain internal heat source. As

shown in the Figure, the heat transfer model between the blocks can be approached by

the heat resistance R and heat capacity C. The transfer rate between the two blocks

depends on the temperature difference T1 − T2 between the two blocks.

Figure 1.5: An insulated heat transfer between two blocks

Therefore, by modeling each block with thermal resistances and a capacity, and by
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connecting different blocks with thermal resistances, the whole thermal behavior of the

multi-core processor can be approached by an R-C network. Afterwards, an ordinary

differential equation (ODE) based thermal model can be achieved. A linear state space

model based on the ordinary differential equation is given in [MMA+08] and [ZAD09],

and the state vector is defined as the temperatures of the cores [MMA+08] or the divided

blocks of the chip [ZAD09].

Another solution is to model the system by the partial differential equation (PDE). Ac-

cording to Fourier’s heat conduction law, the dynamical heat transfer process of the

multi-core processor is described as a three dimensional (3D) PDE model with bound-

ary conditions. Therefore, a PDE based modeling technique can describe the thermal

behavior more precisely. In [MSS+05], a 3D PDE with two different layers is introduced

to present the analytical thermal model of the processor and then the model is trans-

formed to an infinite ODE system via Duhamel’s Theorem and Laplace transformation.

In [CRT98], a 3D/1D mixed model strategy is introduced. The thermal behavior of the

die is modeled as a 3D PDE while the two heat diffusion paths are treated as 1D thermal

resistances in order to reduce the model complexity. With the 3D PDE model the whole

die temperature distribution can be achieved.

Under the R-C network modeling method, the whole block has a uniform temperature.

Hence, the temperature distribution of each point can not be obtained, and the precision

is lower than under the PDE model. However, for a system with irregular volume, the

PDE model is overly complex, which leads to the difficulties in the control design. For

this kind of systems, the ODE R-C model is more suitable.

1.1.4 Power and thermal management methods

There are two possible ways at present to optimize the power/thermal behavior, which

are employed in different stages. One is in the earlier processor hardware design stage.

The thermal and power optimization can be developed with designing the lower power

CMOS circuit [DMNH10] and optimizing the on chip layout [CCC12, CRAI13]. Another

way is the real time online dynamic thermal/power management technique. After the dy-

namic voltage and frequency scaling (DVFS) technology introduced in 90’s [MDVPO90],

the real time power and thermal control becomes a new trend of thermal and power man-

agement technology. The DVFS technology can be implemented with the phase locked

loop shown in Figure 1.6.

Nowadays, due to the developed techniques the DVFS can support very small voltage
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Figure 1.6: Phase locked loop

adjustment within extremely short time compared with the heat transfer process. For

instance, the MC13783 power management chip can adjust the voltage with a step of

25mV in some µs [Fre09]. This technology is widely applied in the multi-core processor

design. The technique can be approached by two different schemes, namely distributed

(per core) DVFS and global DVFS . The power consumption and thermal balancing can

be controlled via appointing the optimized supply voltage and frequency online.

Some DVFS based ways for power and thermal management have been developed. The

structure of the temperature and power management policy is shown in Figure 1.7.

Generally, the real time task assignment and the temperature of the cores are both

included in the control design.

Figure 1.7: Closed loop control structure

In [WB12], a practical DVFS thermal management policy is proposed and the temper-

ature is controlled by a logic algorithm. A proportional controller with saturation is

proposed in [FKLK12] to ensure that the maximum temperature of the cores follows

the thermal set-point under utilization constraints. In [LFQ12], a predictive dynamic

thermal management algorithm is designed, and the control aim is to maximize the

system throughput, meanwhile, guaranteeing that the temperature of the core will not

exceed the constraints. In [MMA+08] and [ZAD09], an ODE linear state space model
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is proposed and an optimal control technique is introduced to decrease the temperature

gradients and hot-spots, and to keep the cores under the maximum temperature lim-

itation. A hybrid local-global thermal management technique is proposed in [JM09a]

and [JM09b]. The thermal and power management policy contains a neural network

classifier to filter the thermally unsafe configurations, a high speed model to predict the

system performance and an intelligent search algorithm to get the control decision.

As mentioned before, much more heat will be gathered inside the dies of 3D stacked

package multi-core processor compared with the 2D package MCP. The cooling prob-

lem can be solved by a micro-channel liquid cooling system which is installed between

every two layers [CAAR09, Kin12]. Because of the complexity of the forced convection

heat transfer and the micro size of the channel, the modeling of thermal behavior is

approached by an R-C model [CAAR09, MYL09, CAR+10, ASP+09]. An R-C model

of the dies with a multi-pump is developed in [ZAD13]. However, in this model, the

thermal behavior of the liquid cooling system is not considered. The thermal manage-

ment of the 3D ICs is a new developing area. An adaptive dynamic frequency scaling

technique for the 3D MCPs can be found in [CPLK12]. Some operation policies based

on task scheduling and DVFS technology can be found in [CAA+09, LY09, ZXD+08].

In [ZAD13], an optimal thermal management policy is given by optimizing the power

consumption under a thermal R-C model.

1.2 Objectives and structure of the dissertation

1.2.1 Objectives and contributions

Objectives

The objective of this dissertation is to develop feasible modeling and control techniques

to manage the thermal behavior and power consumption of multi-core systems. The

main tasks in this dissertation are:

1. Modeling the thermal behavior of 2D package MCP systems

2. Optimal thermal and power management policy design for 2D package MCP sys-

tems

3. Modeling the thermal behavior of 3D stacked package MCP systems with a micro-

channel liquid cooling system



1.2 Objectives and structure of the dissertation 9

4. Optimal thermal and power management policy design for 3D stacked package

MCP systems

Contributions

As shown in Section 1.1.3 literature proposes an R-C network as well as a 3D PDE

modeling approach for modeling the thermal behavior of multi-core processors. As the

3D PDE model is not suitable for the control design, the thermal behavior of the multi-

core processor is modeled by a group of 1D PDEs where each 1D PDE models the

thermal behavior of one core. Previous control approaches to manage the power and

temperature of the cores are based on an R-C network modeling approach [MMA+08,

ZAD09]. However, this thesis proposes an optimal control policy based on the 1D PDEs

model.

Further, the thesis considers the 3D stacked package MCP with a micro-channel liquid

cooling system. All existing modeling approaches use the R-C network modeling ap-

proach. In this dissertation the 3D stacked package MCP including the micro-channel

liquid cooling system is modeled in a similar way as in [MYL09]. However, the model

of micro-channel liquid cooling system is simplified compared to [MYL09] in order to

design a controller which is suitable for implementation. A novel two step controller is

designed to manage the temperature and the power of the system. Besides, a robust

observer is designed to estimate the system states and a stability condition for the whole

system is given.

1.2.2 Structure of the dissertation

The rest of the dissertation is structured as follows.

In Chapter 2, the power dissipation of the die is modeled, the heat conduction in the die

and heat convection between the chip and the environment are modeled. The Fourier’s

law of heat conduction and Newton’s law of cooling are employed to get a 3D PDE

model of the chip. The Sturm-Liouville theory is proposed to solve the 3D PDE and

obtain the temperature distribution. Besides, a simulation example is presented in this

chapter to test the model. Chapter 2 is the foundation of Chapter 3 for the 2D package

system.

In Chapter 3, the 3D PDE model is transformed to a group of 1D PDEs. The thermal

behavior of each core is described by a 1D PDE. The heat influence among the cores is

obtained with the core boundary temperature gradient. A cost function is introduced
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which weights the difference of the temperature among the cores and the power con-

sumption. A PDE based optimal control policy is proposed to manage the power and

temperature of the cores. The system input vector is the power consumption of the cores,

which can be applied to obtain the supply voltage and operation frequency assigned to

each core via the DVFS technology.

The advanced 3D stacked package chip is introduced in Chapter 4. The micro-channel

liquid cooling system is considered to cool the chip inside. Different from normal size

channel, the micro-channel has some special features. The 3D PDE based micro-channel

fluid dynamic and heat transfer model is presented in this thesis. The liquid flow and

thermal characteristics are analyzed. The liquid in the channel is divided into blocks

and modeled by ODEs. The heat transfer of the dies is modeled by an R-C network. A

simple pump model is also given in this chapter. Further, integrating the model of the

dies, the channels and the pump, the system is modeled as a nonlinear ODE system.

Based on the model developed in Chapter 4, a thermal and power management policy is

proposed in Chapter 5. The control design of the system contains two steps. The liquid

velocity is chosen from a set of constant velocities and a logic algorithm is developed

to determine the liquid velocity. Based on this control policy, the system is modeled

as a linear switched system where each subsystem refers to the model under one liquid

velocity. In the second step a model predictive controller is designed to balance the

temperature among the cores. To reach the control object, a cost function is introduced

to weight the difference of the temperature between the cores and the control input.

As not all necessary states can be assumed to be measurable and the system contains

unknown inputs like the unknown parts of the power consumption of the dies, a robust

H∞-observer is employed to limit the influence of the unknown inputs to the estimated

state vector. Further, a theorem is proposed to prove the stability of the controlled

switched system under the separate control and observer design. Finally, the results are

verified by simulation.
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of the die

As discussed in Section 1.1.3, both an R-C network and a PDE modeling approach can

be employed to describe the thermal behavior of the die. In case of the R-C network

modeling approach a numerical method is applied to discretize the die into finite elements

and then describe each element as an R-C element. Thus, the whole system can be

described as an R-C network [Kre00]. The other method models the thermal behavior

by a PDE and corresponding boundary conditions based on the Fourier’s heat transfer

theory and Newton’s law of cooling [Geb71]. The PDE model can be solved based on the

eigenvalue and eigenfunction system [MÖ94]. The PDE is projected to a group of infinite

number ordinary differential equations based on the eigenfunctions to get the thermal

behavior on a particular eigenvalue and eigenfunction direction. With a superposition

of these signal behaviors, the thermal behavior of the whole die can be obtained.

In this chapter, the power consumption of the die is analyzed, then a PDE based ana-

lytical heat transfer model is presented, and the model is solved by the Sturm-Liouville

theory. An illustrative example based on MATLAB simulation completes this chapter.

2.1 Power consumption analysis

At the circuit level a core, also called microprocessor, consists of a logic circuit which

is made up by the three basic gates, namely AND, OR and NOT gates. These gates

are built up by transistors, see Figure 2.1. Each transistor has two states, which is on

and off, to represent the two binary value 1 and 0 respectively. For a more detailed

description of the design of microprocessors see [Hwa06].

In a gate, the power consumption contains different parts. Generally, the instantaneous

power consumption of a gate contains two parts, namely dynamical power consumption

and leakage power consumption. The dynamical power consumption happens during

11
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the process that the transistor switches on/off. The leakage power consumption is the

static power consumption, which happens when the chip power supply is on. The power

consumption of a gate depends on the supply voltage Vddi and working frequency fi of

the core i.

As shown in Figure 2.1, the dynamical power consumption consists of two parts. One

part is caused by the load charging/discharging when the PMOS and/or NMOS transis-

tor switch on/off. PMOS is a p-type MOSFET (metal-oxide-semiconductor field-effect

transistor) and NMOS is an n-type MOSFET. The switching current Iswitch leads to the

switching power consumption Pi,switch. The other part happens at the moment that both

the PMOS and the NMOS are on, a short current Ici occurs between the supply voltage

Vddi and the ground, causing a power consumption, which is the second part Pi,short circuit

of the dynamical power consumption. The leakage power consumption Pi,leakage is caused

by the leakage current. Therefore, the power consumption of each core is divided in three

parts [CB95, VS06]

Pi

(
fi(t), Vddi(t)

)
= Pi,switch + Pi,short circuit + Pi,leakage. (2.1)

Figure 2.1: Power consumption of a logic gate

The first term of the right hand side Pi,switch describes the switching component of the

power consumption. This power dissipation is produced when the capacitance CLi of
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the gate is loaded, i.e. the input voltage Vini of the transistor switches from 0 to Vddi,

therefore, half of the energy 0.5CLiV
2
ddi is stored in the capacitance and the other half

dissipates in the logic cell as heat and the output voltage is Vouti = Vddi. When the

voltage Vini switches from Vddi to 0, the energy stored in the capacitance dissipates in

the logic cell and Vouti = 0 [Har06]. Summing up the switching power of all gates results

in the switching power of the core given by

Pi,switch = α0→1,iCLiV
2
ddifi, (2.2)

where fi is the operation frequency of core i, α0→1,i is defined as the average number

of power consuming transition in the core within a clock cycle with the capacitance CLi

[CB95].

The second term Pi,short circuit in (2.1) represents the short circuit component of the

power. When both the PMOS and NMOS transistors are active during the input voltage

switching as shown in Figure 2.2 a short current Ishort flows from the power supply to

the ground. Defining the short current Ici of the whole core i as the sum of the short

currents of all gates the resulting power consumption caused by the short current is given

by [CB95]

Pi,short circuit = IciVddi. (2.3)

Figure 2.2: Input voltage switching

The third term in (2.1) is the leakage power consumption Pi,leakage. It contains the gate

leakage, source/drain junction leakage and subthreshold leakage [AFP04]. The leakage

power consumption has the form

Pi,leakage = IliVddi, (2.4)
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where Ili is leakage current of the whole core i, i.e. the sum of the leakage currents of

all gates.

In the last two decades, dynamical voltage and frequency scaling (DVFS) technology

has been developed to manage the dynamical power and temperature of the processor.

According to [Bak10], the supply voltage and the maximum core frequency have the

following relationship

fmaxi ∝ Vddi, (2.5)

where fmaxi is the maximum frequency that can be applied on the core i under the supply

voltage Vddi. Therefore, the voltage can be changed according to the reference frequency

as shown in Figure 1.6.

2.2 Heat transfer analysis of multi-core processors

The multi-core processor cross-sectional view is shown in Figure 2.3. There are two heat

Figure 2.3: Cross-sectional view of a Multi-core processor

escaping paths [CRT98, WLC03]. The first path is from the top of the chip, which is

composed of the thermal interface material, heat spreader and heat sink. The second

path is from the bottom of the chip, which contains the input/output pads and the print
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circuit board. The heat which spreads from the four sides is ignored as the area of these

sides is very small compared with the area of the top and bottom [CRT98, HL09]. The

heat source is on the bottom of the die where the integrated circuit is printed.

A mixed 3D/1D strategy is introduced to model the heat transfer of the chip [CRT98]

in two steps.

1. A 3D model is employed for the die to achieve a high degree of accuracy.

2. Two heat spreading paths are treated as 1D thermal resistances to reduce the

computational complexity.

Figure 2.4 shows the die of the multi-core processor in Figure 2.3. According to Fourier’s

heat conduction law [Fou09], the heat transferred per time unit dQ/dt [J/s] through an

oriented infinitesimal surface area element dS [m2] of a material is proportional to the

negative gradient of the temperature T (x, y, z, t) [K] along the surface outward normal

direction, i.e.
dQ

dt
= −K

∂T (x, y, z, t)

∂n
dS, (2.6)

where ∂T (x, y, z, t)/∂n [K/m] is the temperature gradient along the surface outward

normal direction n and K [W/(m ·K)] is the thermal conductivity of the die. Since the

heat is always flowing from the higher temperature side to the lower temperature side,

dQ/dt and ∂T (x, y, z, t)/∂n should be with opposite signs.

Figure 2.4: Heat conduction of the die

Selecting the total closed surface ς [m2] as shown in Figure 2.4 1, the whole heat variation

1In Figure 2.4 for instance the total closed surface ς is the surface of the cube, i.e. here the surface

area is six times the area of the square, the side of the cube.
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Q [J] (caused by conduction and internal heat sources) in the closed volume in the time

interval t1 to t2 is

Q =

ˆ t2

t1

¨

ς

K
∂T (x, y, z, t)

∂n
dSdt+

N∑

i=1

ˆ t2

t1

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

qi(x, y, z, t)dxdydzdt,

(2.7)

where qi(x, y, z, t) [W/m3] is the internal heat generation function per time unit and per

volume unit of core i and N is the number of cores in the processor. The first term

of the right hand side of equation (2.7) indicates the overall heat which goes inside the

closed volume (e.g. the cube in Figure 2.4) from t1 to t2 while the second term expresses

the internal heat source in the closed volume. If qi(x, y, z, t) is in the heat source area

of a running core i, qi(x, y, z, t) is nonzero, otherwise qi(x, y, z, t) = 0.

Remark 2.1. In equation (2.7), only the heat source of the cores is included. For some

MCPs which contain some other parts, e.g. L2 cache, the heat source of these parts also

need to be considered as internal heat sources.

To increase/reduce the temperature of the material in a closed volume from T (x, y, z, t1)

to T (x, y, z, t2), the energy

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

σρ

(
T (x, y, z, t2)− T (x, y, z, t1)

)
dxdydz (2.8)

is required, where σ [J/(kg ·K)] is the specific heat capacity of the die and ρ [kg/m3]

is the density of the die. According to the energy conservation law, the value of (2.8)

should equal to Q in (2.7). Applying the Gaussian theory (see A.1) on (2.7), and setting

the result equal to (2.8) results in

ˆ t2

t1

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

[
K(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
)+

N∑

i=1

qi(x, y, z, t)−σρ
∂T

∂t

]
dxdydzdt = 0.

(2.9)

In equation (2.9) the integral of the first summand indicates the energy variation caused

by conduction and the integral of the second summand indicates the energy variation

caused by heat sources. The sum of those two integrals is equivalent to the internal

energy variation.

As t1, t2 and the closed volume with the surface ς are arbitrarily defined, we get the

PDE

σρ
∂T

∂t
= K

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
+

N∑

i=1

qi(x, y, z, t) (2.10)
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with respect to the coordinate system defined in Figure 2.4, see also Figure 2.3.

According to Newton’s law of cooling [AB10], the heat transferred per time unit between

the material of a closed volume and the environment through an infinitesimal surface

area element dS is proportional to the temperature difference between the closed volume

and the environment which surrounds it, i.e.

dQ

dt
= hk

(
T (x, y, z, t)− T∞(x, y, z, t)

)
dS, (2.11)

where T∞(x, y, z, t) is the ambient temperature on the boundary and hk [W/(m2 ·K)] is

the convective heat transfer coefficient of the kth surface area element.

In this thesis, an ashlar-formed closed volume as in Figure 2.4 is considered. The con-

vective heat transfer coefficient at the upper surface is given by hup and at the lower

surface by hdown. As mentioned before, it is assumed that there is no heat escaping from

the four sides, i.e. hk = 0.

Substituting (2.6) into (2.11), the general boundary condition is given by

−K
∂T (x, y, z, t)

∂n
= hk

(
T (x, y, z, t)− T∞(x, y, z, t)

)
. (2.12)

Therefore, the boundary conditions in x- and y-direction can be described as

K
∂T (0, y, z, t)

∂x
= 0, K

∂T (Lx, y, z, t)

∂x
= 0 (2.13)

in x-direction where Lx is the die size in x-direction, see Figure 2.4, and

K
∂T (x, 0, z, t)

∂y
= 0, K

∂T (x, Ly, z, t)

∂y
= 0 (2.14)

in y-direction where Ly is the die size in y-direction, see Figure 2.4.

The boundary condition of the primary heat transfer path is

K
∂T (x, y, Lz, t)

∂z
= −hup

(
T (x, y, Lz, t)− T∞(x, y, Lz, t)

)
, (2.15)

where Lz is the die size in z-direction, see Figure 2.4 and also Figure 2.3, and the

boundary condition of the second heat spreading path is

K
∂T (x, y, 0, t)

∂z
= hdown

(
T (x, y, 0, t)− T∞(x, y, 0, t)

)
. (2.16)

The right hand sides of (2.15) and (2.16) have opposite signs, as the heat convection of

these sides are to opposite directions.

Thus, the thermal behavior of the die is described by the PDE (2.10) with the boundary

conditions (2.13)-(2.16).
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2.3 Solution of the unsteady-state heat conduction

The transient thermal behavior2 of the die can be obtained by solving the 3D heat

conduction PDE presented in the previous section by the Sturm-Liouville eigenvalue

system, the separation-of-variables method and the integral transform [Hol86, Ölç64].

First a Sturm-Liouville eigenvalue system is employed based on the homogeneous func-

tion of the heat conduction equation (2.10) and the boundary conditions (2.13)-(2.16).

The eigenvalue system can be solved by the separation-of-variables method. With each

eigenfunction as the kernel, a three-dimensional finite integral transform of the heat dis-

tribution T (x, y, z, t) is applied and it transforms the 3D PDE to an ODE. By solving the

ODE and then transforming back to the 3D system, the unsteady-state heat distribution

can be achieved.

The Sturm-Liouville eigenvalue system [Ölç64, MÖ94, Ch. 3] (see A.2 for details) is

introduced as

∇2φabc(x, y, z) + λ2
abcφabc(x, y, z) = 0, (2.17)

with the boundary conditions

K
∂φabc(x, y, z)

∂n
+ hkφabc(x, y, z) = 0, (2.18)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator. Equation (2.18) is the

summary of the six boundary conditions. The solution of the eigenvalue problem has

the general form

φabc(x, y, z) = φxa(x)φyb(y)φzc(z) (2.19)

and

λ2
abc = λ2

xa + λ2
yb + λ2

zc. (2.20)

by separating the variables, see [MÖ94, Sec. 3.1]. The eigenfunction φzc(z) with respect

to z is given by

φzc(z) = K cos(λzcz) +
hdown

λzc

sin(λzcz), (2.21)

see [MÖ94, Sec. 3.1] for the detailed derivation. For the eigenfunctions φxa(x) and φyb(y)

with respect to x and y, respectively, the convective heat transfer coefficient hk is zero.

This results in

φxa(x) = K cos(λxax), (2.22)

2In the research area of heat transfer the term unsteady-state conduction is used to describe the

transient heating or cooling process before an equilibrium is established [Hol86, Ch. 4] and [Geb71,

Ch. 3].
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φyb(y) = K cos(λyby). (2.23)

Thus the eigenfunction φabc(x, y, z) is given by

φabc(x, y, z) = K2 cos(λxax) cos(λyby)

(
K cos(λzcz) +

hdown

λzc

sin(λzcz)

)
. (2.24)

As derived in [MÖ94, Sec. 3.1] λzc is a positive scalar which satisfies

K2λ2
zc − huphdown

Kλzc(hup + hdown)
= cot(λzcLz), (2.25)

The Newton-Raphson method can then be applied to calculate each λzc, see A.5 for the

details. For calculating the eigenvalues λxa and λyb the analogous equation of (2.25) is

applied. By taking the inverse of (2.25) and taking into account that the convective heat

transfer coefficient is zero in x- and y-direction, we have

tan(λxaLx) = 0 (2.26)

tan(λybLy) = 0. (2.27)

The solution is then given by

λxa =
aπ

Lx

, (2.28)

λyb =
bπ

Ly

, (2.29)

where a, b, c are non-negative integers which are the indices of the eigenvalues and

eigenfunctions in x-, y- and z-direction, respectively. λ2
xa, λ

2
yb, λ

2
zc are eigenvalues in x-,

y- and z-direction, respectively.

In the physical sense φabc(x, y, z) represents the abcth eigenmode with respect to the

3D heat transfer system of the die. Its frequencies λxa, λyb, λzc are represented by the

eigenvalues in x-, y- and z-direction, respectively. λ2
abc presents the spectral magnitude

of φabc(x, y, z).

Remark 2.2. As the x-, y-, z-directions are orthogonal, the eigenvalues of the system

satisfy the equations (2.17) and (2.18). Please refer to A.3 for the proof of orthogonality

of the eigenfunctions.

Since the generated bases {φabc(x, y, z)} are completely orthogonal in the spatial domain

of the die, we introduce the three dimensional finite integral transform with a kernel as

φabc(x, y, z) [Ölç64], and define the transform ( · )abc on a function f(x, y, z, t) as

(f)abc(t) =

˚

Ω

φabc(x, y, z)f(x, y, z, t)dxdydz (2.30)
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where Ω is the whole volume of the die. In the following, the application of the integral

transform on a function is indicated by a bar and an index abc. Applying this integral

transform (2.30) on T (x, y, z, t) results in

(T )abc(t) =

˚

Ω

φabc(x, y, z)T (x, y, z, t)dxdydz. (2.31)

Applying it on ∇2T (x, y, z, t), i.e. f := ∇2T , results in

(∇2T )abc(t) =

˚

Ω

φabc(x, y, z)∇
2T (x, y, z, t)dxdydz. (2.32)

According to (2.17), one has
(
∇2φabc(x, y, z) + λ2φabc(x, y, z)

)
T (x, y, z, t) = 0 (2.33)

Therefore, (2.32) can be rewritten as

(∇2T )abc(t) =

˚

Ω

(
φabc(x, y, z)∇

2T (x, y, z, t)−
(
∇2φabc(x, y, z)

+ λ2
abcφabc(x, y, z)

)
T (x, y, z, t)

)
dxdydz

=

˚

Ω

(
φabc(x, y, z)∇

2T (x, y, z, t)−∇2φabc(x, y, z)T (x, y, z, t)

)
dxdydz

−

˚

Ω

λ2
abcφabc(x, y, z)T (x, y, z, t)dxdydz

=

˚

Ω

(
φabc(x, y, z)∇

2T (x, y, z, t)−∇2φabc(x, y, z)T (x, y, z, t)

)
dxdydz

− λ2
abc(T )abc(t). (2.34)

Applying the Gauss Theorem (see Section A.1) in the die region on equation (2.34) (see

also [Ölç64]) we get

(∇2T )abc(t) =
6∑

k=1

¨

Sk

(
φabc(x, y, z)

∂T (x, y, z, t)

∂nk

− T (x, y, z, t)
∂φabc(x, y, z)

∂nk

)
dS

− λ2
abc(T )(λabc, t) (2.35)

where the point (x, y, z) is on the surface Sk on the boundary of the die, Sk is k
th surface

of the die and nk is the normal vector on the surface Sk, see also [Ölç64]. Substituting

(2.12) and (2.18) into (2.35) results in

(∇2T )abc(t) =
6∑

k=1

¨

Sk

hkφabc(x, y, z)

K
T∞(x, y, z, t)dS − λ2

abc(T )abc(t). (2.36)
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Applying the integral transform (2.30) on both sides of (2.10) we have

σρ

(
∂T

∂t

)

abc

= K(∇2T )abc(t) +
N∑

i=1

(qi)abc(t) (2.37)

where

(qi)abc(t) =

˚

Ω

φabc(x, y, z)qi(x, y, z, t)dxdydz. (2.38)

Substituting (2.36) multiplied by K into (2.37) divided by σρ results in

d(T )abc(t)

dt
+λ2

abc

K

σρ
(T )abc(t)=

1

σρ

N∑

i=1

(qi)abc(t)+
K

σρ

6∑

k=1

¨

Sk

hkφabc(x, y, z)

K
T∞(x, y, z, t)dS,

(2.39)

As the integral transform (2.30) is time independent we have
(
∂T
∂t

)
abc

=
d(T )abc(t)

dt
. There-

fore, the original system given by (2.10) is transformed to a set of ODEs. The solution

of the above equation is

(T )abc(t) =e−
K
σρ

λ2
abct(T0)abc +

ˆ t

0

e
K
σρ

λ2
abc(t−τ)

(
1

σρ

N∑

i=1

(qi)abc(τ)

+
K

σρ

6∑

k=1

¨

Sk

hkφabc(x, y, z)

K
T∞(x, y, z, τ)dS

)
dτ, (2.40)

where

(T0)abc =

˚

Ω

φabc(x, y, z)T0(x, y, z)dxdydz, (2.41)

and T0(x, y, z) is the initial temperature of the die at time instant t = 0.

By applying the inverse integral transform of (2.30) on (2.40), we have the solution

T (x, y, z, t) =
∞∑

a=0

∞∑

b=0

∞∑

c=0

Gabcφabc(x, y, z)(T )abc(t), (2.42)

where

Gabc =
1

˝

Ω
φ2
abc(x, y, z)dxdydz

=
1

´ Lx

0
φ2
xa(x)dx

´ Ly

0
φ2
yb(y)dy

´ Lz

0
φ2
zc(z)dz

. (2.43)

According to [MÖ94, Sec. 3.1],

ˆ Lz

0

φ2
zc(z)dz =

1

2

(h2
down +K2λ2

zc)(
Khup

hup+K2λ2
zc
+ Lz) +Khdown

λ2
zc

. (2.44)
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For the value of
´ Lx

0
φ2
xa(x)dx and

´ Ly

0
φ2
yb(y)dy with respect to x and y respectively the

convective heat transfer coefficient hk is zero. This result in
ˆ Lx

0

φ2
xa(x)dx =

1

2
K2Lx (2.45)

and
ˆ Ly

0

φ2
yb(y)dy =

1

2
K2Ly (2.46)

However, when a = 0, φxa = K cos( aπ
Lx
x) = K, which results in

ˆ Lx

0

φ2
xa(x)dx = K2Lx. (2.47)

When b = 0, φyb = K cos( bπ
Ly
y) = K, which results in

ˆ Ly

0

φ2
yb(y)dy = K2Ly (2.48)

Remark 2.3. The solution given in (2.42) requires an infinite summation. However,

in practical application we only need to sum up the terms with dominating eigenvalues,

see for example [HL09] and the references therein.

Remark 2.4. In equations (2.21) and (2.44), hup and hdown appear asymmetrical. This

is caused by the way of solving the eigenvalue system [MÖ94]. In the given derivation

the eigenfunction is (2.21), and the normalized eigenfunction is

1

Zc

(
K cos(λzcz) +

hdown

λzc

sin(λzcz)
)

with the norm Zc =
√
´ Lz

0
φ2
zc(z)dz. If the coordinated system is defined with an opposed

Figure 2.5: Coordiate system with opposed z-direction

z-direction, see Figure 2.5, the hup and hdown will be exchanged in the derivations. How-

ever, the solution of the eigenvalues, the normalized eigenfunctions, and the temperature

distribution is equivalent.
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2.4 Example for the 3D PDE heat transfer model

To verify the proposed 3D thermal behavior model, we consider the 8-core IBM Cell

Processor as an example. The floorplan of the architecture is shown in Figure 2.6. It

consists of the Power Processor Element (PPE) and eight Synergistic Processor Elements

(SPEs) each with its own local memory (LS). The processor has a 500M L2 cache, a

high bandwidth internal Element Interconnect Bus (EIB), two configurable non-coherent

I/O interfaces and a Memory Interface Controller (MIC). It is produced with a 90 nm

technology node.

Figure 2.6: The floorplan and side view of the IBM Cell

Remark 2.5. Technology node is defined by the smallest printed feature, which is the

measurement of the technological advancement of the microelectronic chips. For micro

processing units, this value refers to the half-pitch of the polysilicon lines, or to the

printed gate length [DW04].

In this simulation, it is assumed that the voltage can be adjusted continuously. The

parameters are chosen as σ = 707 J/(kg ·K), ρ = 2330 kg/m3, K = 100W/(m ·K),

hup = 1000W/(m2 ·K) and hdown = 100W/(m2 ·K) [Geb71, Hol86, BILD90, MSS+05].

Assume that the environment temperature is 298K and the chip initial temperature is
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T0(x, y, z) = 298K. Suppose that the heat source has a uniform distribution in the

printed circuit volume, i.e.

qi(x, y, z, t) =
Pi(t)

VP,i

, (2.49)

where VP,i is the printed circuit volume of the core i, (x, y, z) is a point in the area of

the printed circuit in core i and Pi(t) is the consumed power of the core i.

A constant steplike power Pi(t) is applied to each core and the PPE. In this simulation

qi(x, y, z, t) = 1.55·1012 W
m3 for all points (x, y, z) in the printed circuit volume of the cores

and the PPE. As explained in Remark 2.3 we only sum up the terms with eigenvalues to

obtain the temperature distribution by applying equation (2.42). The stationary value

of the step response on a fixed z-plane at z = 0.5mm for a given number of eigenvalues

are shown in Figure 2.7 - 2.9. The Figures 2.7 - 2.9 show the temperature distribution

with different calculation accuracy. The distribution in Figure 2.7 with 50 eigenvalues

differs from Figure 2.8 and 2.9. Figure 2.8 and 2.9 show a highly similar distribution.

The number of eigenvalues to solve the PDE equation needs to be chosen large enough to

achieve an accurate solution, see Remark 2.6 for finding a suitable number eigenvalues.

In this example, a highly precise solution can be achieved with 800 eigenvalues. Besides,

two points in core 2 and core 3 are selected under the condition that all the cores work

equally. Figure 2.10 shows the dynamical step response of the two selected points of the

die.
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Figure 2.7: Temperature distribution with 50 eigenvalues
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Figure 2.9: Temperature distribution with 1800 eigenvalues
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Figure 2.10: The step dynamical response of two points

Remark 2.6. As discussed above, the computational accuracy of the temperature distri-

bution can be controlled by choosing the number of the eigenvalues. An error function

can be chosen to measure the computational accuracy. A possible form of the error func-

tion is the 2-Norm of the distribution difference between the eigenvalue number n and

n+1. A threshold can be set, such that when the error is smaller than the threshold, the

computation can be stopped.
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Figure 2.11: Comparison of the simulation result from Figure 2.8 (left) and the one from

[PBB+05] (right)
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Figure 2.11 shows the presented simulation result under 800 eigenvalues in comparison

with the simulation results presented in [PBB+05] both for an 8-core IBM CELL proces-

sor. In principle the heat distribution is in both cases similar. However, unfortunately

[PBB+05] does not present any information on how the simulation is conducted and un-

der which operation conditions. Therefore, some differences between the two simulation

results appear.

In order to show the cross thermal effect among the cores, the same step input is given

to core 2, core 5 and the PPE. The other cores are set as idle, i.e. qi(x, y, z, t) = 0. The

simulation result given in Figure 2.12 shows that core 2, core 5 and the PPE have a

higher temperature than the other parts. Meanwhile, the whole die is heated because of

the heat conduction in the die.
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Figure 2.12: Temperature distribution with partial load

2.5 Summary

In this chapter, the multi core processor is introduced and the power consumption is

analyzed. The general 3D heat conduction PDE model is given. The eigenfunction and



28 2 Modeling of the thermal behavior of the die

eigenvalue system based PDE solution algorithm is employed to solve the proposed PDE.

An IBM CELL based example is presented. In the following chapter, the thermal and

power balancing/management policy is developed based on the derived mode.



3 Thermal and power

balancing/management policy

design for 2D MCP

As mentioned in the first chapter, the temperature of the die has significant influence

on the chip’s operation reliability and lifespan. According to [VWWL00], an increase

of the average operating temperature of 10-15K can cause a two times reduction of the

chip lifespan. In the model of the chip thermal behavior presented in Chapter 2 the

die is considered as an integral system, i.e. the dynamics of the cores are not modeled

individually. However, the objective is to balance the temperature and the power dissi-

pation of each core. As each core performs an individual temperature distribution, we

need to define a criterion to measure the temperature variation among the cores. Hence,

we consider each core as an individual system and investigate the heat exchange among

the cores. Based on this, a 1D PDE can be introduced for each cores and the average

temperature of each core on a fixed plane is defined as the new state. Within this model,

the thermal cross influence among the cores can be described clearly.

The following assumptions are introduced for this chapter. First, we assume that at least

one digital thermal sensor is placed at each core and there is a thermal management

center to monitor the temperature of each core. Furthermore, the initial temperature of

the whole die satisfies T0(x, y, z, 0) ≡ T∞.

In this Chapter, based on the energy conservation law, the 3D model is transformed into

a model described by a group of 1D PDEs. A quadratic cost function which contains

the control input and the temperature difference among the cores is introduced. The

Riccati equation approach is employed to obtain the controller.

29
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3.1 Transformation from the 3D model to the 1D

model

Definition 3.1. Define Ta,i(z, t) [K] as the average over-temperature on a fixed z plane

Ta,i(z, t) =

´ xi2

xi1

´ yi2

yi1
(T (x, y, z, t)− T∞)dxdy

Si

∀i ∈ {1, 2, ..., N}, (3.1)

where Si = (xi2 − xi1)(yi2 − yi1) and xi1, xi2, yi1 and yi2 are the boundary coordinate

values in x- and y-direction of core i.

Suppose the thermal sensors are located on top of the die and sample the average tem-

perature of each core. Thus, the measured output of core i is

ξ1,i(t) = Ta,i(Lz, t), (3.2)

where Lz is the size of the die in z-direction as shown in Figure 3.1.

Figure 3.1: Transformation from 3D PDE to 1D PDEs

In order to transform the 3D PDE to a group of 1D PDEs, we consider the heat con-

duction schematic diagram shown in Figure 3.2.
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Figure 3.2: 1D heat conduction schematic diagram

Considering an infinitesimal volume between z and z+∆z, see Figure 3.2, the time rate

of the heat transfer in this volume is

dQi(z, t)

dt
= σρSi∆z

∂Ta,i(z, t)

∂t
. (3.3)

where σ [J/(kg ·K)] represents the specific heat capacity of the die and ρ [kg/m3] re-

presents the density of the die as explained in Chapter 2.

According to the energy conservation law, the heat variation in the volume Si∆z consists

of three parts, the heat conduction inside the core (this represents the heat transfer in

z-direction), the heat exchanged with the outside (i.e. in x- and y-direction), and the

internal heat source

dQi(z, t)

dt
=

dQcon,i(z, t)

dt
+

dQex,i(z, t)

dt
+

dQin,i(z, t)

dt
. (3.4)

In the right hand side of equation (3.4), the first term is the time rate of the heat

conduction in this core inside, the second term is the heat exchange rate between this

core and its outside, while the third term is the heat variation due to the internal heat

source. The first term can be calculated by

dQcon,i(z, t)

dt
= Φi(z, t)Si − Φi(z +∆z, t)Si, (3.5)

where Φi(z, t) [W/m2] is the heat flux in z-direction of core i with the same positive

direction as the z-axis. The heat flux represents the heat energy transfer rate through a

surface. According to the Fourier heat conduction law [Fou09], one has

Φi(z, t) = −K
∂Ta,i(z, t)

∂z
. (3.6)
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with the thermal conductivity K [W/(m ·K)] of the core. Equation (3.6) follows from

(2.6) by setting n = (0 0 1)T with respect to coordinate system defined in Figure 3.1.

As ∆z is infinitesimal we have

Φi(z, t)− Φi(z +∆z, t) =K
∂Ta,i(z +∆z, t)

∂z
−K

∂Ta,i(z, t)

∂z

=K
∂2Ta,i(z, t)

∂z2
∆z. (3.7)

Substituting (3.7) in (3.5) yields

dQcon,i(z, t)

dt
= Si∆zK

∂2Ta,i(z, t)

∂z2
. (3.8)

The heat exchange rate of (3.4) is

dQex,i(z, t)

dt
=

(
ˆ xi2

xi1

Φex(x, y, z, t)dx

∣∣∣∣
y=yi1

+

ˆ xi2

xi1

Φex(x, y, z, t)dx

∣∣∣∣
y=yi2

+

ˆ yi2

yi1

Φex(x, y, z, t)dy

∣∣∣∣
x=xi1

+

ˆ yi2

yi1

Φex(x, y, z, t)dy

∣∣∣∣
x=xi2

)
∆z, (3.9)

where Φex(x, y, z, t) [W/m2] is the heat flux through the boundaries of the core in x- and

y-direction. According to Fourier’s heat conduction law [Fou09]

Φex(x, y, z, t) = −K
∂T (x, y, z, t)

∂n
(3.10)

where n is normal vector on the boundary areas of the core, i.e. in the positive and

negative x- and y-direction respectively, see also Figure 3.1.

In the following, the exchanged heat through the boundaries which is caused by the

power consumption of the cores will be interpreted as an energy generation function per

time and volume unit resulting in

dQex,i(z, t)

dt
= Si∆z

N∑

j=1

qex,ij(z, Pj , t). (3.11)

where Pj [W] is the power consumption of core j and qex,ij(z, Pj , t) [W/m3] is the energy

generation function due to the heat exchange of core i with the outside caused by the

power consumption of core j. Setting (3.9) and (3.11) equal and substituting (3.10) into

it yields

N∑

j=1

qex,ij(z, Pj , t) =
K

Si

(
−

ˆ xi2

xi1

∂T (x, y, z, t)

∂y
dx

∣∣∣∣
y=yi1

+

ˆ xi2

xi1

∂T (x, y, z, t)

∂y
dx

∣∣∣∣
y=yi2

−

ˆ yi2

yi1

∂T (x, y, z, t)

∂x
dy

∣∣∣∣
x=xi1

+

ˆ yi2

yi1

∂T (x, y, z, t)

∂x
dy

∣∣∣∣
x=xi2

)
. (3.12)
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Substituting (2.42), which is the solution of the PDE introduced in Section 2.2 (i.e. a

temperature distribution [K]) into (3.12), results in

qex,ij(z, Pj , t) =
K

Si

(
−

ˆ xi2

xi1

∞∑

a=0

∞∑

b=0

∞∑

c=0

Gabc

∂φabc

∂y
(T )abc,j(t)dx

∣∣∣∣∣
y=yi1

+

ˆ xi2

xi1

∞∑

a=0

∞∑

b=0

∞∑

c=0

Gabc

∂φabc

∂y
(T )abc,j(t)dx

∣∣∣∣∣
y=yi2

−

ˆ yi2

yi1

∞∑

a=0

∞∑

b=0

∞∑

c=0

Gabc

∂φabc

∂x
(T )abc,j(t)dy

∣∣∣∣∣
x=xi1

(3.13)

+

ˆ yi2

yi1

∞∑

a=0

∞∑

b=0

∞∑

c=0

Gabc

∂φabc

∂x
(T )abc,j(t)dy

∣∣∣∣∣
x=xi2

)
,

with

(T )abc,j(t) =

ˆ t

0

e
K
σρ

λ2
abc(t−τ) 1

σρ
qabc,j(τ)dτ. (3.14)

The heat variation due to the internal heat source is

dQin,i(z, t)

dt
= Si∆zqi(z, t) (3.15)

with

qi(z, t) =

´ xi2

xi1

´ yi2

yi1
qi(x, y, z, t)dxdy

Si

(3.16)

where qi(x, y, z, t) [W/m3] is the internal heat generation function per time unit and per

volume unit of core i, see also Section 2.2.

Substituting (3.3), (3.8), (3.11) and (3.15) into (3.4) and dividing it by Si∆z results in

σρ
∂Ta,i(z, t)

∂t
= K

∂2Ta,i(z, t)

∂z2
+

N∑

j=1

qex,ij(z, Pj , t) + qi(z, t), (3.17)

with the boundary conditions

K
∂Ta,i(Lz, t)

∂z
=− hupTa,i(Lz, t), (3.18a)

K
∂Ta,i(0, t)

∂z
=hdownTa,i(0, t). (3.18b)

The equations (3.17)-(3.18) represent the 1D PDE describing the average over-temperature

dynamics.
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For controlling the temperature balance the separation of variables is applied on the heat

generation function qex,ij(z, Pj , t). It can be approximated by considering its influence

within the range of the time constant tc

qex,ij(z, Pj , t) ≈

Ld∑

l=1

κilj(z)Pj(t− l · td) (3.19)

td = tc/Ld (3.20)

where Ld ∈ N is a constant relative to the calculation accuracy. The variable κl can be

obtained from (3.13) by replacing (T )abc,j(t) by

(T )abc,j,l(t) =

ˆ t

t−l·td

e
K
σρ

λ2
abc(t−τ) 1

σρ
dτ(q)abc,i(t− l · td). (3.21)

Remark 3.1. The time constant tc is derived from the system (2.10) with the boundary

conditions (2.13)-(2.16) of the 1D model proposed in this chapter. The constant tc can

be gotten from the first eigenvalue, which is λ000, as this is the eigenvalue relative to the

slowest dynamical response.

Based on (3.19) we have

N∑

j=1

qex,ij(z, Pj , t) ≈

Ld∑

l=1

κil(z)P (t− l · td) (3.22)

with

κil(z) =
[
κil1, ... , κilN

]
(3.23)

P (t− l · td) =
[
P1(t− l · td), ... , PN (t− l · td)

]T
(3.24)

Further, the internal heat generation function is given by

qi(z, t) = κi0iPi(t) (3.25)

with κi0i according to (2.49). Setting κi0j = 0 for all j 6= i the system (3.17)-(3.18) can

be written in a symbolic way in the state space. The state is the trajectory segment

Ta,i(·, t) = {Ta,i(z, t), 0 ≤ z ≤ Lz} [CZ95, Sec. 2.1]. Define the operators Ai and Bi,l as

the linear continuous mappings



Ṫa,i(0, t)

Ṫa,i(z, t)

Ṫa,i(Lz, t)




︸ ︷︷ ︸
Ṫ a,i(t)

=




h2

K
∂
∂z

0 0

0 K
σρ

∂2

∂z2
0

0 0 −h1

K
∂
∂z




︸ ︷︷ ︸
Ai




Ta,i(0, t)

Ta,i(z, t)

Ta,i(Lz, t)




︸ ︷︷ ︸
T a,i(t)

+

Ld∑

l=0




0

κil(z)
σρ

0




︸ ︷︷ ︸
Bi,l

P (t− l · td)

(3.26)
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Therefore, the system can be described as

Ṫ a,i(t) = AiT a,i(t) +

Ld∑

l=0

Bi,lP (t− l · td) (3.27)

Here Ai is an infinitesimal operator (as defined in [CZ95, Sec. 2.1], for details see

A.6), which describes the state operator of the core i, and Ai describes the temperature

variety according to internal heat conduction and heat convection with the environment.

Bi,l ∈ L (U ,T a) is the input operator, which represents the temperature influence by

the power consumption of the cores, where U ,T a are Hilbert spaces which indicate the

input and state space and L (U ,T a) is the bounded linear operator from Hilbert space

U to the Hilbert space T a.

3.2 Optimal thermal balance policy

To balance the temperature difference among the cores, we define the regulated output

as

ξ2(z, t) =
[
ξ2,1(z, t), ξ2,2(z, t), ... , ξ2,N (z, t)

]T
, (3.28)

with

ξ2,i(z, t) = Ta,i(z, t)−
1

N

N∑

j=1

Ta,j(z, t), (3.29)

which is the temperature difference between the average temperature of all cores and

the temperature of core i on a fixed z-plane.

Defining

T a(t) =




T a,1(t)

...

T a,N(t)



, A =




A1

. . .

AN



, Bl =




Bl,1

...

Bl,N



, (3.30)

the infinite-dimensional system is given by

Ṫ a(t) =AT a +

Ld∑

l=0

BlP (t− l · td) (3.31a)

ξ1(t) =C 1T a(t) (3.31b)

ξ2(t) =C 2T a(t) (3.31c)
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with C 1 ∈ L (T a,Ξ1) and C 2 ∈ L (T a,Ξ2) where Ξ1 is the measurement output space

and Ξ2 is regulated output space.

As shown in (3.22), we employ the numeral approximation to calculate the temperature

distribution. To get higher calculation accuracy, larger Ld should be adopted. For the

control design the system (3.31a) is transformed into a system without input delay, see

[ZTH09]. The solution of (3.31a) is given by

T a(t) = T a(t0)e
A(t−t0) +

Ld∑

l=0

ˆ t

t0

eA(t−τ)BlP (τ − l · td)dτ. (3.32)

Substituting τ ′ = τ − l · td we have

T a(t) = T a(t0)e
A(t−t0) +

Ld∑

l=0

ˆ t−l·td

t0−l·td

eA(t−τ ′−l·td)BlP (τ ′)dτ ′ (3.33)

which can equivalently be written as

T a(t) = T a(t0)e
A(t−t0) +

Ld∑

l=0

ˆ t0

t0−l·td

eA(t−τ ′−l·td)BlP (τ ′)dτ ′

+

Ld∑

l=0

ˆ t−l·td

t0

eA(t−τ ′−l·td)BlP (τ ′)dτ ′ (3.34)

where the first integral on the right hand side represents the influence of the past input

before the initial time t0. Equation (3.34) can also be written as

T a(t) =

(
T a(t0) +

Ld∑

l=0

ˆ t0

t0−l·td

eA(t0−τ ′−l·td)BlP (τ ′)dτ ′

)
eA(t−t0)

+

Ld∑

l=0

ˆ t

t0

eA(t−τ ′)e−A(l·td)BlP (τ ′)dτ ′ −

Ld∑

l=0

ˆ t

t−l·td

eA(t−τ ′)e−A(l·td)BlP (τ ′)dτ ′

(3.35)

Defining

T̂ a(t) = T a(t) +

Ld∑

l=0

ˆ t

t−l·td

eA(t−τ)e−A(l·td)BlP (τ)dτ. (3.36)

with

T̂ a(t0) = T a(t0) +

Ld∑

l=0

ˆ t0

t0−l·td

eA(t0−τ−l·td)BlP (τ)dτ (3.37)



3.2 Optimal thermal balance policy 37

the dynamics of T̂ a(t) are given by

˙̂
T a(t) = AT̂a(t) + B̂P (t), (3.38)

where B̂ =
Ld∑
l=0

e−A(l·td)Bl. Thus the original system (3.31a) is transformed into a non-

delayed 1D PDE system. Systems (3.27) and (3.38) have the same eigenvalues and

eigenfunctions. To meet the intended workload target of the processor, the target average

frequency is set as ft(t) [ZAD09], the corresponding supply voltage is Vddt(t) for each

core, and suppose P t(t) = P (ft(t), Vddt(t)), which has the form

P t(t) =
[
Pt,1(t), Pt,2(t), ..., Pt,N

]T
. (3.39)

The power input P (t) consists of the target power P t(t) and the control input P c(t),

i.e. P (t) = P t(t) + P c(t). Therefore we have an affine system

˙̂
T a(t) = AT̂ a(t) + B̂P c(t) + B̂P t(t). (3.40)

In order to reach the task target, the target input P t(t) is not considered in the control

design, i.e. we consider the system

˙̂
T a(t) = AT̂ a(t) + B̂P c(t). (3.41)

Further, the regulated output is substituted according to

ξ̂2(t) = C 2T̂ a(t). (3.42)

The thermal balance controller structure is shown in Figure 3.3. Define the cost function

J =

ˆ ∞

0

[
< P c(t),RP c(t) > + < ξ̂2(t),Qξ̂2(t) >

]
dt, (3.43)

where R ∈ R
N×N is symmetric and positive definite and Q is the self adjoint coercive

operator in L (Ξ2) [CZ95, Ch. 6]. The cost function (3.43) can be interpreted equiv-

alently as the standard quadratic cost function for linear time-invariant ODE systems.

The weighting matrix R is a design parameter which specifies how many tasks should

be moved among the cores to balance the temperature distribution. The second term of

the right hand side equals

< ξ̂2(t),Qξ̂2(t) > =< ξ2(t),Qξ2(t) > +2 < ξ2(t),QC 2

Ld∑

l=1

ˆ t

t−l·td

eA(t−τ−l·td)BlP (τ)dτ >

+ < C 2

Ld∑

l=1

ˆ

t

t−l·td

eA(t−τ−l·td)BlP (τ)dτ,QC 2

Ld∑

l=1

ˆ

t

t−l·td

eA(t−τ−l·td)Bl(τ)P (τ)dτ > .
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Figure 3.3: Thermal balance controller structure

As all three terms on the right hand side of the above equation are non-negative the real

time temperature difference is considered in the given cost function.

In the following, an output feedback controller is applied to manage the power con-

sumption and balance the temperature. The control design is presented in the following

theorem.

Theorem 3.1. Consider the dynamical system (3.40) with the cost function (3.43). If

there exist a self-adjoint operator Ψ ∈ L (Ta) and a matrix F ∈ R
N×N such that

< ΨT a,m, (A− B̂FC 1)T a,n > + < (A− B̂FC 1)T a,m,ΨT a,n >

+ < C 2T a,m,QC 2T a,n > + < (FC 1T a,m,RFC 1T a,n > = 0, (3.44)

where T a,m and T a,n ∈ D(A), where D(A) indicates the domain of A (see A.6), then

the controller can be constructed by

P c(t) = FC 1

(
T a(t) +

Ld∑

l=1

ˆ t

t−l·td

eA(t−τ−l·td)BlP (τ)dτ
)
, (3.45)

which minimizes the cost function (3.43) under the output feedback control policy.

Proof. Define the output feedback controller as

P c(t) = FC 1T̂ a(t), (3.46)
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and rewrite the cost function J as

J =

ˆ ∞

0

[
< P c(t),RP c(t) > +

ˆ Lz

0

< ξ̂2(z, t),Qξ̂2(z, t) > dz

]
dt

=

ˆ ∞

0

[
< FC 1T̂ a(t),RFC 1T̂ a(t) > + < C 2T̂ a(t),QC 2T̂ a(t) > dz

]
dt

=

ˆ ∞

0

< T̂ a(t), (C
T
1 F TRFC 1 + C T

2 QC 2)T̂ a(t) > dt

=

ˆ ∞

0

< T̂ a(t), Q̂T̂ a(t) > dt.

Defining Ψ as a self adjoint, nonnegative operator, according to the infinite-dimensional

quadratic optimal control shown in [CZ95, Ch. 6], one has

< ΨT̂ a,m, (A− B̂FC 1)T̂ a,n > + < (A− B̂FC 1)T̂ a,m,ΨT̂ a,n > + < T̂ a,m, Q̂T̂ a,n >= 0

From (3.27) and (3.40), it is obvious that Ta and the space of the transformed state

vector T̂a share the same orthogonal basement, therefore T̂ a,m, T̂a,n ∈ D(A). Then it

follows

< ΨT a,m, (A− B̂FC 1)T a,n > + < (A− B̂FC 1)T a,m,ΨT a,n >

+ < C 2T a,m,QC 2T a,n > + < (FC 1T a,m,RFC 1T a,n > = 0, (3.47)

which completes the proof.

The definition of D(A) is given in Appendix A.6. The details of solving the Riccati

equation (3.44) in Theorem 3.1 are shown in Appendix A.7.

Remark 3.2. In the controller shown in equation (3.45), the actual measured output

ξ1(t) = C 1T a(t) as well as previous power vectors P (t− l · td) are considered. For real

implementation the variables are measured only at the sampling instants. Therefore, the

integral in equation (3.45) is then calculated by the sum

P c(tk) = FC 1︸ ︷︷ ︸
F̂ 0

T a(tk) +

Ld∑

l=1

FC 1

ˆ 0

−l·td

eA(τ)dτBl

︸ ︷︷ ︸
F̂ l

P (tk−l), (3.48)

such that a small overhead can be achieved. The matrices F̂ l, l = {1, 2, ..., Ld} can be

computed offline.
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3.3 Simulation results

For the simulation, the 8-core IBM Cell Processor, which is described in Section 2.4 is

employed. Assume that the frequency range of the processor is from 2GHz to 4.8GHz,

and the power supply is between 0.9V and 1.3V [PBB+05]. Then the thermal behavior

is modeled as a group of eight 1D PDEs ((3.17) and (3.18)) with 40 delayed input terms.

The parameter Ld = 40 is chosen based on the time constant tc = 1 s of the system (3.17)

and the variable td, see equation (3.20). A suitable choice for td is setting it equal to the

sampling period, see also (3.48) for realization of the controller in this simulation. Hence,

an 8×8 optimal thermal balancing controller matrix can be obtained from Theorem 3.1.

During the simulation, the workload is set as time varying (see the target power in Figure

3.6), and two different tasks are set based on [Lov10, Ch. 4]. One type of task is an

urgent task with a deadline, and its frequency cannot be changed while the other type

is a non-urgent task where its frequency can be changed online. Under the proposed

control policy, the temperature difference among the cores is shown by the 2-Norm of

the output vector ‖ξ(t)‖2 in Figure 3.4.

The temperature difference under the power based temperature management policy in

[MMA+08] is also shown in Figure 3.4. The method proposed in [MMA+08] has the aim

to manage the temperature by optimizing the power consumption. A cost function is

introduced which takes only the power consumption into account but not the temper-

ature difference among the cores. Therefore, the method proposed in this Chapter can

obtain a better performance compared with the power based management technique in

[MMA+08].

The comparison of the steady-state temperature distribution between the proposed

method and the average task allocation policy under same power consumption is shown

is Figure 3.5. The figure shows that the proposed method has a smoother temperature

distribution. The original target power P t(t) and the actual power P (t) = P t(t)+P c(t)

are shown for the cores 3 and 8 in Figure 3.6. Figure 3.5 shows that core 8 has a lower

temperature compared with the other cores under a constant workload without a balanc-

ing controller while core 3 has a higher temperature. Under the proposed control policy,

core 8 works on a higher workload than the target workload. On the other hand core 3 is

assigned with a lower workload. Besides, some cores run with fewer assigned tasks than

the original target workload while other cores run with more assigned tasks. Therefore,

the system still can finish the assigned tasks while the temperature distribution is more

balanced.
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Figure 3.4: Temperature difference among cores
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3.4 Summary

In this chapter, a new model based on a group of 1D PDEs derived from the 3D model

developed in Chapter 2 is presented. Thereafter, an optimal control approach is pro-

posed based on the 1D model to balance the temperature and to manage the power

consumption among the cores. A Riccati equation approach is introduced to design the

output feedback controller. An IBM CELL 8-core processor is employed to demonstrate

the effectiveness and efficiency of the proposed control design technique.



4 Thermal model of 3D stacked

package MCP

As mentioned in Chapter 1, because of the stacking, much more heat will be gathered

inside the dies as the power density has a linear relationship with the number of the

stacked layers. This is one of the main challenges of the power and thermal management

techniques in the 3D chips. Therefore, a cooling system among the layers is a feasible

solution to cool the stacked dies inside. A simple structure of a 3D stacked package MCP

with micro-channel liquid cooling system (MCLCS) is shown in Figure 4.1 and 4.2.

Figure 4.1: 3D package structure

43
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Figure 4.2: The cross-sectional view of the 3D package structure

The integrated micro-channel liquid cooling system (shown in Figure 4.1 and 4.2) de-

veloped at EPFL in collaboration with ETHZ and IBM Research has proved to be a

feasible solution to cool the 3D ICs [CAAR09, CAR+10, MYL09, QM03, WJ02]. In

this chapter, an integrated thermal model, which contains dies, a heat spreader, a micro

channel liquid cooling system with a pump, is presented.

4.1 Modeling of the 3D micro-channel liquid cooling

system

As mentioned before, the micro-channel liquid cooling system is an effective cooling

device for multi-layer MCPs. MCLCS is a circular system driven by a pump. The pump

runs to deliver the cool liquid into the stacked layers through a micro-channel. The

warmed liquid flows out of the micro-channel, and then is cooled in a condensator. The

cool liquid will be brought by the pump again into the micro-channel for another circle.

In this thesis, we assume that each system contains one pump for the whole MCLCS

and the liquid is delivered through one channel from the pump and then divided into

the micro-channels.

4.1.1 Modeling the heat and mass flow in the micro-channels

Compared with the normal size fluid, the micro size fluid has its special characteristics.

The micro-channel cooling system causes a phenomenon named thermal wake [ORCP93,
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MYL09]. For normal size, according to the boundary layer theory, the liquid viscosity

only plays a role for a very thin layer near the liquid channel boundary [Sch10, Ch. 11].

Therefore, the upper layer and lower layer do not have cross influence. However, for the

micro size flow, the boundary thickness cannot be neglected compared with the channel

size. The heat transfer from the upper (lower) layer of the liquid flow upstream may

have influence on the heat transfer process of the lower (upper) layer of the liquid flow

downstream, which represents the so-called thermal wake, as shown in Figure 4.3.

Figure 4.3: Thermal wake

One of the challenges of modeling the thermal behavior in the micro-channel lies in the

modeling of the thermal wake phenomena. To model this, it is necessary to obtain the

3D thermal distribution in the micro-channel. Based on the physical facts, the following

conditions can be assumed for the liquid fluid.

1. The liquid is an incompressible fluid.

2. The heat radiation is negligible.

3. The flow is a laminar flow.

4. The liquid is a Newtonian fluid.

5. The fluid properties are considered as constant except for the fluid viscosity.

Further explanations are demanded for the assumptions 4 and 5. In assumption 4, the

liquid is assumed as Newtonian fluid. Newtonian fluid is a kind of liquid for which the

stress versus strain rate curve is linear and passes through the origin [Bat00]. Newto-

nian fluid can flow under an arbitrarily small external force. Water and air are both

Newtonian fluids. In assumption 5, the fluid properties are considered as constant.

Normally, water is selected as the cooling liquid. The variations of density, heat con-
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ductivity and specific heat capacitance of water are very small and can be neglected.

However, the water viscosity strongly depends on the temperature, see Figure 4.4. Ac-

cording to Helmholtz’s result, the relationship of water viscosity and temperature can

be approached by

µ =
0.001779

1 + 0.03368(Tf − 273) + 0.00022099(Tf − 273)2
. (4.1)

where Tf is the water temperature measured in Kelvin and µ [Pa · s] is the water viscosity

[Hol12].
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Figure 4.4: Water viscosity along varying temperature

Remark 4.1. Equation (4.1) is a regression result based on the experiment results. The

viscosity of water depends both on the temperature and pressure. However, the relation

with pressure is very small and can be neglected. Meanwhile, the temperature has a

significant influence on the viscosity. Therefore, in equation (4.1), only temperature is

considered [Hol12, Ch. 11].

As mentioned in the above assumption, the liquid is incompressible. Therefore, the

conservation of mass can be described as

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (4.2)
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where u, v and w are defined as the velocity components (each with the unit [m/s]) of

the liquid flow V s = (u v w)T in x-, y- and z-direction [Bat00, Sec. 2.3]. The coordinate

system is defined in Figure 4.5.

Figure 4.5: The velocity and force analysis of MCLCS

As described in [KIJG05], the channel size is about 102 - 103 µm. Therefore, according

to the results shown in [QM03, Gad99], the fluid is continuous and the Navier-Stokes

equations3 are still valid to describe the liquid flow behavior. Considering a closed

volume in the fluid as shown in Figure 4.5, there are two forces acting on the closed

volume, the body force vector ι = (ιx ιy ιz)
T with the unit [N/kg] for each component

acting on the mass center (see Figure 4.5) and the stress tensor Γ − p defined in (4.4)

acting on the surfaces [Geb71, Sec. 6.2] (see Figure 4.5 and Appendix B.2 for details).

Therefore, the momentum conservation has the form

ρf
DV s

Dt
= ∇Γ−∇p+ ρfι, (4.3)

where ρf [kg/m
3] is the density of the liquid, and

DV s

Dt
is the material derivative with

the unit [N/kg] for each component defined by
DV s

Dt
=

dV s

dt
+ V s∇V s.

3The Navier-Stokes equations are usually applied for Newtonian fluids. In Newtonian fluids the viscous

stresses are proportional to the local strain rate, e.g. water [Bat00]. In this thesis water is considered

for the cooling system.
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For each surface of the closed volume, the stress tensor contains one normal stress τii−p

[N/m2] and two shear stresses τij [N/m
2] see Figure 4.5, Γ− p has the form

Γ− p =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz



−




p 0 0

0 p 0

0 0 p




(4.4)

where p [N/m2] is the average pressure in the closed volume. As the liquid is Newtonian

fluid, according to the Newtonian law of viscosity, see e.g. [Mor13, Sec. 5.2], one has

τxx =2µ
∂u

∂x
, (4.5a)

τyy =2µ
∂v

∂y
, (4.5b)

τzz =2µ
∂w

∂z
, (4.5c)

and

τxy = τyx =µ

(
∂v

∂x
+

∂u

∂y

)
, (4.6a)

τxz = τzx =µ

(
∂w

∂x
+

∂u

∂z

)
, (4.6b)

τyz = τyz =µ

(
∂w

∂y
+

∂v

∂z

)
, (4.6c)

where µ [Pa · s] is the viscosity of the liquid. Substituting (4.4) - (4.6) into (4.3), one

has the momentum conservation equations for the Newtonian fluid

ρf

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=ρfιx −

∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
, (4.7a)

ρf

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=ρfιy −

∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
, (4.7b)

ρf

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=ρfιz −

∂p

∂x
+ µ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
. (4.7c)

Equation (4.7) describes the liquid flow dynamics which is based on the conservation

of momentum.

The heat exchange between the liquid in the micro-channel and the die represents the

forced heat convection. The thermal behavior can be modeled based on the Fourier’s law
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of heat and energy conservation. Different from the heat conduction in the die, it needs

to be considered that the energy crosses though a fixed space volume via the liquid flow.

Figure 4.6: Heat transfer in the liquid channel

Selecting a closed small volume in the channel, as shown in Figure 4.6, it is called

control volume with fixed coordinates and it is an open system. Based on the first law

of thermodynamics [BILD90, Ch. 1 & 6] and [HRW11, Ch. 18], one has

dQ

dt
= Pf +mf,in

(
H +

1

2
v2s + gz

)
in
−mf,out

(
H +

1

2
v2s + gz

)
out

− Pnet, (4.8)

where dQ/dt [J/s] is the internal heat variation per time unit of this volume, Pf [J/s] is the

heat flow by conduction heat transfer, that goes from the outside into the closed volume,

mf [kg/s] is the mass flow. The subscript ’in’ means that the flow goes inside the area

and ’out’ means the mass flow goes outside the area. H [J/kg] is the specific enthalpy

of the liquid. gz [J/kg] is related to the potential energy (g [N/kg] is gravitational

acceleration and z [m] is the position z-direction) and 1
2
v2s [J/kg] to the kinetic energy,

where vs = ‖V s‖2 [m/s]. Pnet [J/s] is the work done by the flow per time unit.

In this case we consider a laminar flow, i.e. the liquid velocity vs and the position z

in (4.8) are constant, see also the assumptions given in the beginning of this section.

Therefore, the variation of the potential energy and kinetic energy can be neglected. As

the flow does not do work the equation (4.8) can be simplified

dQ

dt
= Pf +mf,inHin −mf,outHout. (4.9)
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As explained in Section 2.2 the heat conduction rate on a specific point is given by

K∇2T , see equation (2.9). As the variable Pf indicates the heat flow by conduction, it

is equivalently given by

Pfdt =

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

Kf∇
2Tfdxdydzdt (4.10)

where Kf [W/(m ·K)] is the thermal conductivity and Tf [K] is the temperature of the

liquid.

The variation of the interval heat dQ in a closed volume with respect to the variation of

the temperature dTf is given equivalently as in (2.8) by

dQ =

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

σfρf
∂Tf

∂t
dxdydzdt. (4.11)

where σf [J/(kg ·K)] is the specific heat capacity of the liquid and ρf [kg/m
3] is the

density of the liquid.

The energy variation in this control volume caused by the mass flow, i.e. mf,inHin −

mf,outHout, can be described as the variation of the enthalpy dH/dt [J/s] caused by

the mass flow that goes inside the volume and goes out of the volume. Thereby we

distinguish between the mass flow in x-, y- and z-direction. The mass flow in x-direction

goes into the closed volume at the point x and goes out of the volume at the point x+dx.

This is analogously defined for the mass flow in y- and z-direction. Thus, we have

mf,inHin =
dHx

dt
+

dHy

dt
+

dHz

dt
(4.12a)

mf,outHout =
dHx+dx

dt
+

dHy+dy

dt
+

dHz+dz

dt
(4.12b)

For determining dHx/dt we need to consider the mass flow in x-direction into the closed

volume which is given by

mx,f,in =

ˆ y+dy

y

ˆ z+dz

z

uf,inρfdydz (4.13)

where uf,in [m/s] is the liquid velocity in x-direction at the point x. The specific enthalpy

Hin at the point x is given by

Hin = σfTf,in (4.14)

such that
dHx

dt
=

ˆ y+dy

y

ˆ z+dz

z

ρfσfuTfdydz (4.15)
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setting u = uf,in and Tf = Tf,in. Analogously we obtain for dHx+dx/dt

dHx+dx

dt
=

ˆ y+dy

y

ˆ z+dz

z

ρfσf

(
Tf +

ˆ x+dx

x

∂Tf

∂x
dx

)(
u+

ˆ x+dx

x

∂u

∂x
dx
)
dydz (4.16)

where (u +
´ x+dx

x
∂u
∂x
dx) = uout and (Tf +

´ x+dx

x
∂Tf

∂x
dx) = Tf,out. For determining the

energy variation mf,inHin − mf,outHout we separately determine the energy variation in

x-, y- and z-direction first. In x-direction we have

dHx

dt
−

dHx+dx

dt
= −

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

σfρf

(
u
∂Tf

∂x
+ Tf

∂u

∂x

)
dxdydz, (4.17)

The term
´ x+dx

x
∂u
∂x
dx ·
´ x+dx

x
∂Tf

∂x
dx is neglected in (4.17) as dx is infinitesimal. Following

the same derivation we have

dHy

dt
−

dHy+dy

dt
= −

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

σfρf

(
v
∂Tf

∂y
+ Tf

∂v

∂y

)
dxdydz (4.18)

in y-direction and

dHz

dt
−

dHz+dz

dt
= −

ˆ x+dx

x

ˆ y+dy

y

ˆ z+dz

z

σfρf

(
w
∂Tf

∂z
+ Tf

∂w

∂z

)
dxdydz (4.19)

Substituting (4.17), (4.18) and (4.19) into (4.9) taking (4.12) into account and further

substituting (4.10) and (4.11) into (4.9), one has the conservation of energy equation

σfρf

(
∂Tf

∂t
+ u

∂Tf

∂x
+ v

∂Tf

∂y
+ w

∂Tf

∂z

)
= Kf∇

2Tf. (4.20)

Thereby, also the conservation of mass is used, see equation (4.2). The first term of the

left hand side is the temperature change with time. The following three terms are the

heat variation due to the mass flow. The right hand side is the energy change based on

the heat conduction. In summary, the equations (4.2), (4.7) and (4.20) are the model

of the liquid flow dynamic and thermal behavior. The boundary conditions of these

equations are given in the following. For the hydraulic boundaries except the channel

inlet and outlet, the velocity is always zero [QM02, QM03, Sch10, Ch. 11], i.e. for a

general liquid flow in x-direction, see Figure 4.5, we have

u(x, y, 0, t) = u(x, y,Hch, t) = 0, u(x, 0, z, t) = u(x,Wch, z, t) = 0 (4.21a)

v(x, y, 0, t) = v(x, y,Hch, t) = 0, v(x, 0, z, t) = v(x,Wch, z, t) = 0 (4.21b)

w(x, y, 0, t) = w(x, y,Hch, t) = 0, w(x, 0, z, t) = w(x,Wch, z, t) = 0 (4.21c)
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where Hch [m] is the height of the channel and Wch [m] is the width of the channel. For

the inlet, it has

u(0, y, z, t) = uin, v(0, y, z, t) = 0, w(0, y, z, t) = 0. (4.22)

Supposing the flow is fully developed at the channel outlet, see Figure 4.7, the boundary

conditions are

∂u(Lx, y, z, t)

∂x
= 0,

∂v(Lx, y, z, t)

∂x
= 0,

∂w(Lx, y, z, t)

∂x
= 0 (4.23)

where Lx is the length of the channel. For the thermal boundary conditions of the four

walls, it is compliant with Newton’s laws of cooling, i.e.

K
∂Tf(x, y, 0, t)

∂z
= −hf

(
Td(x, y, 0, t)− Tf(x, y, 0, t)

)
(4.24a)

K
∂Tf(x, y,Hch, t)

∂z
= hf

(
Td(x, y,Hch, t)− Tf(x, y,Hch, t)

)
(4.24b)

K
∂Tf(x, 0, z, t)

∂y
= −hf

(
Tw(x, 0, z, t)− Tf(x, 0, z, t)

)
(4.24c)

K
∂Tf(x,Wch, z, t)

∂y
= hf

(
Tw(x,Wch, z, t)− Tf(x,Wch, z, t)

)
(4.24d)

where Td(x, y, z, t) is the temperature of the die, Tw(x, y, z, t) is the temperature of the

wall between the channels and Tf(x, y, z, t) is the temperature of the liquid. At the

channel inlet, the liquid temperature is equal to a fixed constant, i.e. T (0, y, z, t) = Tin.

Suppose the thermal is fully developed at the channel outlet, we have

∂2Tf(Lx, y, z, t)

∂x2
= 0. (4.25)

To get the thermal and dynamical behavior of the liquid flow in the micro-channel,

the governing differential equations (4.2), (4.7) and (4.20) with the boundary conditions

(4.21a) to (4.25) can be discretized along the x-, y- and z-direction and the Semi-Implicit

Method for Pressure Linked Equations (SIMPLE) algorithm [Pat80] can be used to

solve the 3D pressure, velocity and temperature distribution. SIMPLE is an iterative

algorithm based on ’Guess-Correct’, see Appendix C for the details.

Remark 4.2. The boundary conditions shown in (4.23) and (4.25) may not be satisfied,

if the channel is very short. However, as the local heat convection coefficient hf, the

boundary layer, and the length of the liquid fluid and thermal developing region are not

influenced by the length of the channel, these boundary conditions can still be used to

investigate the fluid and thermal dynamic behavior of the liquid in the micro-channel, by

assuming the channel is long enough that the liquid can reach the fluid developed region

and the thermal developed region.
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The heat convection coefficient hf is a time-varying coefficient, and depends on the liquid

viscosity, the Reynolds number, the Prandtl number and the micro-channel position.

Further, the fluid needs some length to develop the velocity profile and thermal profile

after entering the micro-channel, which are called fluid entrance region and thermal

entrance region [BILD90, Ch. 9]. In the fluid entrance region, the fluid flow is developing,

and the fluid boundary layer is developing and growing thicker. When the boundary layer

is as thick as the radius, the boundary meets at a point and the fluid status becomes

stable. From this point the fully developed region starts. The fluid flow characteristic

is shown in Figure 4.7, where the length of the arrows represents the liquid velocity in

x-direction.

Figure 4.7: Fluid and thermal entrance region

The thermal entrance region is a region where the thermal boundary layer is developing.

In the thermal entrance region, the heat transfer coefficient hf is mutative, but in the

thermal developed region, hf is constant. The fluid and thermal entrance region length

are affected by the channel size, the Reynolds number (Re) and the Prandtl number
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(Pr). The fluid entrance length is equal to the thermal entrance length only if Pr = 1.

In this thesis we consider water as the cooling liquid for which the Prandtl number is

Pr = 7. Thus, the fluid entrance length and the thermal entrance length are not equal.

The heat convection coefficient hf can be obtained from

hf(x) =
Nu(x)Kf

Dh

, (4.26)

where Nu is the Nusselt number, Dh is the channel hydraulic diameter [HKG99]. Ac-

cording to [HKG99] it can be calculated by Dh = 2HchWch/(Hch +Wch). In order to

determine the Nusselt number practical experiments are required which is discussed in

[QM03]. The concepts of Reynolds number, Prandtl number and Nusselt number are

given in Appendix B.1.

Remark 4.3. According to [SB87, KC05] the length of the fluid entrance region Lf [m]

can be approached by

Lf ≈ 0.05ReDh (4.27)

while the length of the thermal entrance region Lt [m] can be approached by

Lt ≈ 0.05RePrDh. (4.28)

Those approximations are valid for laminar fluids.

Remark 4.4. As here the fluid is assumed as laminar, the convection heat transfer

coefficient is increasing with liquid velocity. According to [KMS13, Sec. 6.3], enhancing

the fluid velocity has a positive influence on the heat convection process from the die to

the liquid.

Assume that the chip is installed in the horizontal plane. Figure 4.8 shows the fluid

velocity and temperature characteristics in a micro-channel. Figure 4.8(a) shows a draft

of the distribution of the fluid velocity at x = x1 and y = Wch

2
indicated by the dashed line

in the channel assuming there is a fluid entrance flow. Additionally the distribution of the

fluid velocity is given for a fully developed flow at x = x2 and y = Wch

2
[KZYW09, QM02].

The fluid velocity in y- and z- direction is very small compared with the velocity u in

x-direction, and can be neglected. Therefore, the average value of fluid velocity in

x-direction is approximately u = uin [KZYW09, QM02]. In normal-size channels, the

temperature has a sudden change in the boundary layer, but in the middle of the channel,

the temperature changes barely [KMS13], which is shown in Figure 4.8(c). However, in

a micro-channel the heat spreads in the whole channel as shown in Figure 4.8(b), the

temperature distribution on a micro-channel cross has similar values, such that the
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Figure 4.8: Fluid velocity and temperature distribution in a micro-channel

temperature of the water can be considered equally distributed, and it only changes in

x-direction [HKG99, QM02, KIJG05].

Therefore, for the following derivation the conservation of energy (4.20) can be simplified

to

σfρfSc

(
∂Tf(x, t)

∂t
+ uin

∂Tf(x, t)

∂x

)
= ScKf∇

2Tf(x, t). (4.29)

where Sc = WchHch is the cross-section area of the channel. Equation (4.29) with the unit

[J/(s ·m] describes the heat variation dynamics with respect to time and the position x.

However equation (4.29) does not consider the heat exchange of the channel with the

dies and the wall along the channel boundaries. In order to include the heat exchange

along the boundaries the conditions (4.24) are employed. The heat increase due to the

heat exchange with the bottom die, i.e. z = 0, at the given point x in x-direction is
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given by

ˆ Wch

0

−K
∂Tf(x, t)

∂z
dy =

ˆ Wch

0

hf

(
Td,down(x, t)−Tf(x, t)

)
dy=−hfWch

(
Tf(x, t)−Td,down(x, t)

)
.

(4.30)

according to (4.24a). The temperature of the liquid Tf(x, t) is constant with respect to y

and z as explained in the above paragraph. Along the boundary line at one cross section

of the micro-channel the temperature of the die and the wall is assumed to be constant

with respect to y and z, see Figure 4.9. In the later derivation die and the liquid channel

is divided into blocks such that this assumption is still valid. Based on (4.24b) at the

level z = Hch the heat increase due to the heat exchange with upper die is given by

ˆ Wch

0

K
∂Tf(x, t)

∂z
dy = −hfWch

(
Tf(x, t)− Td,up(x, t)

)
(4.31)

In an analogous way the heat exchange with the walls can be determined based on

(4.24c)-(4.24d). In the following it needs to be considered that the convective heat

transfer coefficient hf varies with respect to x, uin and Tf as well as the temperature of

the boundary blocks, i.e. Td and Tw.

Thus, the heat variation dynamics with respect to time and the position x are given by

σfρfSc

(
∂Tf

∂t
+ uin

∂Tf

∂x

)
= ScKf

∂2Tf

∂x2

− hf

(
Wch(Tf − Td,up) +Wch(Tf − Td,down) +Hch(Tf − Tw1) +Hch(T − Tw2)

)
(4.32)

Figure 4.9: Cross section of the channel at a position x
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Considering the physical fact that the heat transfer in the liquid is mainly caused by the

heat convection and the fluid flow, the heat conduction term of the liquid in the right

hand side can be omitted. The energy conservation equation can then be written as

hf

(
Wch(Tf − Td,up) +Wch(Tf − Td,down) +Hch(Tf − Tw1) +Hch(T − Tw2)

)

+ σfρfSc

(
∂Tf

∂t
+ uin

∂Tf

∂x

)
= 0 (4.33)

In equation (4.33) all temperatures are assumed constant with respect to y and z and

vary with respect to x and t. In order to derive an ODE system a discretization in x-

direction is conducted for both the micro-channel and the dies, see Figure 4.10. Thereby

the channel and the die is divided to several blocks. The size of the blocks is not

uniform, as the convective heat transfer coefficient varies in the channel significantly,

especially in the heat entrance region. To get a more precise model, in the heat entrance

region, the channel should be divided in a smaller size in the heat developed region.

Additionally the die blocks need to be considered while discretizing the micro-channel

such that above/under one micro-channel block the temperature of the die is constant

with respect to x, see Figure 4.10. The discretization of the dies is discussed in Section

4.2.

Figure 4.10: Discretization of the micro-channel and the die

For each discrete block, the energy variation is caused by the heat convection from the

channel walls to the channel and the fluid flow from the upstream as the heat conduction

term is ignored. Assuming the temperature of the block i is Tf,i(t), and each grid length
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is ∆Li, see Figure 4.10, one has

dTf,i(t) =
uin(t)Tf,i−1(t)− uin(t)Tf,i(t)

∆Li

dt+
∆Li

Vf,iρfσf

(
hf,i(t)Wch(Td,jup(t)− Tf,i(t))

+ hf,i(t)Wch(Td,jdown
(t)− Tf,i(t)) + hf,i(t)Hch(Tw,j1(t)− Tf,i(t)) (4.34)

+ hf,i(t)Hch(Tw,j2(t)− Tf,i(t))

)
dt

where Vf,i is the volume of block i, Td,jup , Td,jdown
, Tw,j1 and Tw,j2 are the temperatures

of the die and wall blocks which are corresponding to channel block i respectively. In

equation (4.34) the convective heat transfer coefficient hf,i(t) is constant with respect to

the position in each block i but varies with respect to time due to its dependency on the

temperatures and the liquid speed.

Therefore, the system model is given by the differential equation

Ṫf,i(t) =−

(
uin(t)

∆Li

+ 2
∆LiWchhf,i(t)

Vf,iρfσf

+ 2
∆LiHchhf,i(t)

Vf,iρfσf

)
Tf,i(t)

+
uin(t)

∆Li

Tf,i−1(t) +
∆LiWchhf,i(t)

Vf,iρfσf

Td,jup(t) +
∆LiWchhf,i(t)

Vf,iρfσf

Td,jdown
(t) (4.35)

+
∆LiHchhf,i(t)

Vf,iρfσf

Tw,j1(t) +
∆LiHchhf,i(t)

Vf,iρfσf

Tw,j2(t)

which is the space discrete MCLCS model.

4.1.2 Modeling of the pump and the liquid flow velocity

As shown in Figure 4.1, the liquid cooling system is driven by an pump. We assume

that the Laing 12V DC pump is a suitable choice for the liquid cooling system of the 3D

package systems [Lai10]. The cool liquid from the pump flows to each micro-channel, and

then goes into the chip under the same flow rate [CAR+10]. Assume the micro-channels

have the same size. According to the pump curve shown in [Lai10], the pump flow rate

Vpump [m3/s] and the pump output power Ppump [W] can be approximated by the linear

equation Vpump = Kpump · Ppump with the constant Kpump [m3/J] which can be obtained

by the pump curve. According to the mass conservation law, the flow rate of the pump

output and the micro-channel has the relationship

Spumpupump = NcScuin (4.36)

where Spump [m2] is the cross-sectional area of the pump output channel, upump [m/s] is

the velocity of pump output fluid, Nc is the number of channels and Sc = Wch · Hch is

the cross-sectional area of the micro-channel.
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4.2 R-C heat transfer model of the dies

As described in [Kre00], the thermal transfer and the electrical phenomena are dual,

see Table 4.1. The heat flow can be considered as the ’current’ while the temperature

difference is considered as the ’voltage’. Therefore, a heat flow, that goes through a

thermal resistance R, leads to a ’voltage’. Meanwhile, in order to describe the setting

time before the temperature reaching a steady state in the thermal transfer phenomena,

a thermal capacitance C is also introduced. By dividing the die in blocks, each block

can be described as an R-C model while the whole system can be described as an R-C

network, see Figure 4.11. The blocks may have different volumes, and suppose a block

i has the size Lxi × Lyi × Lzi. The relative thermal resistance and thermal capacitance

can be calculated as

Rwi = Rei =
0.5Lxi

KLyiLzi

, (4.37a)

Rni = Rsi =
0.5Lyi

KLxiLzi

, (4.37b)

Rui = Rdi =
0.5Lzi

KLxiLyi

, (4.37c)

Cti =ρσLxiLyiLzi. (4.37d)

Therefore, the whole die can be divided into a finite number of blocks, and each block is

approached by a single thermal R-C model. By connecting these R-C models together,

an R-C network is achieved to describe thermal behavior of the whole die.

An example of the R-C network is shown in Figure 4.12. The die is divided to two blocks

Thermal quantity unit Electrical quantity unit

P , power W I, Current A

T , Temperature difference K V , Voltage V

R, Thermal resistance K/W R, Electrical resistance Ω = V/A

C, Thermal mass, capacitance J/K C, Electrical capacitance F = A/V

RC, Thermal RC constant s RC, Electrical RC constant s

Table 4.1: Duality between thermal and electrical quantities [SSH+03b]
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Figure 4.11: Modeling of the die as an R-C network

and the channel divided to 3 blocks. The mathematical description is given by

Ct1
dTd,1

dt
+

Td,1 − Td,2

Re1 +Rw2

+
Td,1 − Tf,1

Rd1 +Rf1

+
Td,1 − Tf,2

Rd1 +Rf2

+
Td,1 − T∞

Ru1 +Ra1

= P1 (4.38)

Ct2
dTd,2

dt
+

Td,2 − Td,1

Re1 +Rw2

+
Td,2 − Tf,3

Rd2 +Rf3

+
Td,2 − T∞

Ru2 +Ra2

= P2 (4.39)

In equation (4.38), the first term Ct1
dTd,1

dt
describes the temperature variation, the second

term
Td,1−Td,2

Re1+Rw2
describes the heat flow between die block 1 and die block 2,

Td,1−Tf,1

Rd1+Rf1

describes the heat flow between the die block 1 and the channel block 1,
Td,1−Tf,2

Rd1+Rf2
is the

heat flow between the die block 1 and the channel block 2,
Td,1−T∞

Ru1+Ra1
is the heat flow

between the die block 1 and the environment while P1 is the internal heat source. Rf1

and Rf2 are time varying and can be gotten as [KB95]

Rfk =
1

Sdkhf,k(t)
. (4.40)
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In equation (4.39), P2 is the internal heat source and Rf3 can be also determined based

on (4.40). Equation (4.38) and (4.39) can be written as

Ṫd,1 =
1

Ct1

(
1

Re1 +Rw2

+
1

Rd1 +Rf1

+
1

Rd1 +Rf2

+
1

Ru1 +Ra1

)
Td,1

+
1

Ct1(Re1 +Rw2)
Td,2 +

1

Ct1(Rd1 +Rf1)
Tf,1 +

1

Ct1(Rd1 +Rf2)
Tf,2

+
1

Ct1(Ru1 +Ra1)
T∞ +

1

Ct1

P1, (4.41a)

Ṫd,2 =−
1

Ct2

(
1

Re1 +Rw2

+
1

Rd2 +Rf3

+
1

Ru2 +Ra2

)
Td,2 +

1

Ct2(Re1 +Rw2)
Td,1

+
1

Ct2(Rd2 +Rf3)
Tf,3 +

1

Ct2(Ru2 +Ra2)
T∞ +

1

Ct2

P2. (4.41b)

Figure 4.12: R-C equivalent network example for 2 blocks
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In summary, for each block, the thermal behavior is described by the equation

Ṫd,i =−
1

CtiRi

Td,i +
1

Cti

J∑

j=1

1

Rj

Td,j +
1

Cti

K∑

k=1

1

Rk

Tf,k

+
1

CtiRi∞

T∞ +
1

Cti

Pi (4.42)

where

1

Ri

=

J∑

j=1

1

Rj

+
K∑

k=1

1

Rk

+
1

Ri∞

, (4.43)

Rj =





Rei +Rwj block j is in the east of block i,

Rwi +Rej block j is in the west of block i,

Rsi +Rnj block j is in the south of block i,

Rni +Rsj block j is in the north of block i,

(4.44)

and J ∈ N is the number of neighbors of block i. Besides,

Rk = Rui +Rfk (4.45)

and K ∈ N is the number of channel blocks on the top and bottom of the ith die block.

The heat transfer coefficient to the ambient air is

Ri∞ = Rai +Rui (4.46)

and Rai = ∞, if upper and lower of block i sides both convect the heat to the micro-

channel.

4.3 Model integration

By integrating the model of the dies and the channels, thermal behavior model of the

whole system can be achieved. The number of channels is normally 10 - 100. If we

consider each divided block in every channel as an independent state, the number of the

states of the whole system will be a very large, which will result in a complex online

control algorithm, and not suitable for the real time control. Therefore, the channels

with similar thermal behavior, i.e. the channels with the same upper die block and

lower die block can be grouped as shown in Figure 4.13. Basically a trade-off between
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model complexity and preciseness of the model needs to be found. Meanwhile, the wall

influence is ignored as compared with the channel, the heat transfer via the wall is very

small such that the influence on the die and channel temperature can be neglected.

Figure 4.13: The grouped channels

Therefore, define the system state vector as

T =




T d

T f


 (4.47)

where

T d = [Td,1, Td,2, ...., Td,M1 ]
T

is the state vector of the blocks in the die and M1 is the number of blocks of the dies.

T f = [Tf,1, Tf,2, ...., Tf,M2 ]
T

is the state vector of the micro-channel and M2 is the number of blocks of the channels.

Thereafter, based on (4.35) and (4.42), the system describing the whole network is given

by

Ṫ (t) = A
(
T (t), uin(t)

)
T (t) +B1P (t) +B2d(t) +B3T∞ +B4Tin (4.48)

where the vector P (t) = [P1(t), P2(t), ..., PN (t)]
T is considered as the power consump-

tion of the cores and N is the number of cores. The power can be controlled by the

supply voltage and frequency of the cores see Section 2.1. T∞ is the environment tem-

perature, while Tin is the liquid inlet temperature. The time varying system matrix is

A ∈ R
(M1+M2)×(M1+M2), the control input matrix is B1 ∈ R

(M1+M2)×N , the disturbance

input matrix is B2 ∈ R
(M1+M2)×(M1+M2), B3 ∈ R

(M1+M2) and B4 ∈ R
(M1+M2) are the

input matrices of the constant temperature of the ambient temperature T∞ and the liq-

uid inlet temperature Tin. d(t) is considered as an unknown input vector, which contains

the power consumption of non-core blocks, for instance the L2 cache and I/O controller

in Figure 2.6. d(t) is an unknown but bounded vector, which satisfies

d(t) ≥ 0 and

ˆ ∞

0

dT (t)d(t) < ∞. (4.49)
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4.4 Example of the thermal modeling

The IBM CELL processor shown in Chapter 2 is employed as the simulation object to

verify the model. Suppose the system has 3 layers, the first and second layers contain 8

cores, which is the same as the IBM CELL processor. The L2 cache, the power processor

element and the I/O are in the third layers as shown in Figure 4.14. The numbers in

Figure 4.14 and 4.15 indicate the state vector index for the simulation.

Figure 4.14: Die layout plan in the simulation

The channel size and other parameters are shown in the Table 4.2, while the parameters

relative to the micro-channel cooling system are designed based on [MYL09]. The three

layers are divided in 20 blocks as shown in Figure 4.14. Each micro-channel cooling

layer contains 10 micro-channels. We consider them as two groups, see Figure 4.15.

Each micro-channel cooling layer is divided in 10 blocks. Therefore, a state vector with

40 states is defined.
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number of layers 3

die size (same of three layers) 10mm× 9.1mm

micro-channel width (Wch) 700µm

micro-channel height (Hch) 300µm

wall width 100µm

overall number of micro-channels 20

number of blocks in the first and second layers 8

number of blocks in the third layer 4

Table 4.2: Parameters of the 3D IC example test structure

Figure 4.15: Die layout plan in the simulation

The Reynolds number, the Nusselt number and heat convection coefficient are influenced

by the water temperature as shown in Figure 4.16 - 4.18. The Nusselt number and the
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convective heat transfer coefficient additionally vary with respect to the position x in

the cooling micro-channel and the liquid velocity. Figure 4.17 - 4.18 show the Nusselt

number and the convective heat transfer coefficient under a constant liquid velocity

uin = 0.5m/s.
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Figure 4.16: Reynolds number along varying liquid temperature

The results show that the temperature affects the Nusselt number and the convective

heat transfer coefficient. This is explained by the influence of the liquid temperature on

the water viscosity as mentioned before. Further the water viscosity influences the Nus-

selt number and the convective heat transfer coefficient. The convective heat transfer

coefficient is larger in the thermal entrance region, i.e. for small x, than in the thermal

developed region. When the liquid reaches the thermal developed region, the heat con-

vection coefficient can be considered as constant. For the micro-channel of the MCLCS

the length of the fluid entrance region is Lf ≈ 10mm and the length of the thermal

entrance region Lt ≈ 70mm for a liquid with the temperature Tf ≈ 298K. As the

length of the micro-channel (Lx = 10mm) is approximately equal to the fluid entrance

region and smaller than the thermal entrance region the regions are not fully developed.

Therefore, the heat convection coefficient must be considered as varying with respect to

the position.
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Figure 4.17: Nusselt number along varying liquid temperature and position
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Figure 4.18: Convective heat transfer coefficient along varying liquid temperature and

position
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Figure 4.19 - 4.21 show the variation of the Nusselt number and the convective heat

transfer coefficient with respect to the position and the liquid velocity under a constant

temperature of 298K. A quicker liquid velocity indicates better heat transfer ability.
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Figure 4.19: Reynolds number along varying liquid velocity

0.5
0.6

0.7
0.8

0.9
1

0

0.005

0.01
5

10

15

20

liquid velocity [m/s]x [m]

N
us

se
lt 

nu
m

be
r 

Figure 4.20: Nusselt number along varying liquid velocity and position
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Figure 4.21: Convective heat transfer coefficient along varying liquid velocity and

position

Remark 4.5. As explained in Section 4.1.1 the channel is discretized into blocks. In that

model the heat transfer coefficient is assumed constant within one block. For achieving

an accurate simulation the blocks need to be assigned appropriately, see the discussion

in Section 4.1.1.

To obtain the system response, a step power input is set. Each block of the dies has

the same power density, which means that all the cores run with the same voltage and

frequency. Besides, the input of the blocks in the bottom layer is the double of the one

in the first and second layer. The other disturbance inputs are also set as constant power

consumptions. The environment temperature is set 298K, the input water temperature

is assumed 293K, and the cooling channel water velocity is uin = 0.5m/s. Under this

power consumption, the cores with symmetrical position, for instance, core 1 and core

2, should have the same thermal behavior.

As shown in Figure 4.22, under the same power consumption, the lowest temperature

is in the channel inlet side of the middle layer die and the highest temperature is in

the channel outlet side of the bottom layer, because the water forced heat convection

has a better heat exchanging ability than the air heat convection. As the water forced
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heat convection coefficient is very large (104) compared with the air heat convection

coefficient (102 - 103), the main heat escapes in the liquid cooling system.

The thermal behavior of the cooling channel inside is shown in Figure 4.23. From this

figure we see that the liquid blocks 21 and 22 have the lowest temperature while the

blocks 39 and 40 have the highest temperature. This is because the blocks 21 and 22

are next to the inlet, blocks 39 and 40 are next to the outlet. Further more the top die

has a better heat escaping condition than the bottom die.
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Figure 4.22: Step input thermal behavior of the dies under uin = 0.5m/s
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Figure 4.23: Step input thermal behavior of the fluid under uin = 0.5m/s

In the following simulation results are shown for varying tasks, i.e. a time varying target

power, which is defined equivalently for each core, see Figure 4.24.
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Figure 4.24: Time-varying target power set equal for each core
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Figure 4.25: Real time thermal behavior of the dies under uin = 0.5m/s
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Figure 4.26: Real time thermal behavior of the fluid under uin = 0.5m/s

In Figure 4.25 and 4.26, the real time thermal response with varying tasks is presented.

The operation condition of the multi-core processor is defined equivalent to Section 3.3
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with two different kind of tasks. Under this condition, core 8 has the highest temperature,

and the cores in the second die have a lower temperature, which shows an equivalent

trend of the distribution of the heat as in Figure 4.22.

Figure 4.27 shows the thermal behavior of the dies under the channel liquid velocity

uin = 1m/s, and the power consumption and operation condition are set the same as in

the Figure 4.22. Under this velocity, the water temperature is lower as shown in Figure

4.28 and the convective heat transfer coefficients are higher as shown in Figure 4.21.

Therefore, the whole dies temperature is lower than under uin = 0.5m/s. The real time

dynamical thermal behavior of the dies and fluid with varying tasks (with the target

power given in Figure 4.24) is shown in Figure 4.29 and Figure 4.30, and the power

consumption and operation condition are set the same as in Figure 4.25 and Figure 4.26.

The temperature shown in these figures is also lower than in the thermal response with

uin = 0.5m/s. Therefore, adjusting the fluid velocity is also a possible method to control

the temperature.
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Figure 4.27: Step input thermal behavior of the fluid under uin = 1.0m/s
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Figure 4.28: Step input thermal behavior of the fluid under uin = 1.0m/s
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Figure 4.29: Real time thermal behavior of the dies under uin = 1.0m/s
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Figure 4.30: Real time thermal behavior of the fluid under uin = 1.0m/s

4.5 Summary

This chapter presents the thermal model of the 3D stacked package MCPs. The model

of the dies is described as an R-C network. The cooling channels are discretized based on

the micro-channel thermal and liquid dynamic feature. The integrated thermal model

of the dies, the cooling channels, the channel walls (containing TSV) and the pump is

developed. The simulation results illustrate that the proposed model is consistent with

the reality and can be employed for the control design which is discussed in the next

chapter.





5 Thermal and power

balancing/management policy

design for 3D MCP

The control objective for the system described in equation (4.48) is to manage and

balance the temperature and power consumption among the different cores. There are

two possible ways to manage the temperature and power consumption. One is to adjust

the cores supply voltage and frequency via DVFS technology. Another is to adjust the

fluid flow velocity, whereas the fluid flow velocity is equal in all micro-channels. As

discussed in Chapter 4, in a certain fluid velocity region, the convective heat transfer

coefficient increases with the velocity as shown in Figure 4.21. Besides, the temperature

difference between the liquid and the dies is larger as shown in the simulation results in

Chapter 4, which has positive impact on the forced heat convection.

However, as shown in the system model (4.48), the liquid velocity has a nonlinear influ-

ence, which leads to a high complexity for both the control design and the online voltage

and frequency adjustment. Therefore, in order to reduce the complexity, the controller

is designed in two parts. The cooling liquid input velocity is adjusted under a simple

logic algorithm, which is based on the real time work tasks and the highest temperature

of the die. Thus, the adjustment of liquid velocity focuses on keeping the temperature

of the dies in a temperature range appropriate for the chip’s operation reliability and

lifespan. The cooling liquid velocity is then not contained in the online optimal control

policy, which focuses on balancing the temperature and the power consumption among

the cores.

Based on the velocity adjustment policy, the system can be described as a set of inde-

pendent models corresponding to each possible liquid velocity, i.e. the system is modeled

as a switched linear system and the switching law is given by the logic algorithm. The

control structure is shown in Figure 5.1. In this figure, ξ1 is the measurement output

vector. Based on ξ1, all states can be observed by the H∞ observer, and T̂ is the esti-

77
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mated state vector. Then based on the estimated state vector T̂ and the target power

P t defined in (3.39), a switched controller is applied to select the input liquid velocity

and the controller, where δ is the switching law. The switching law δ decides which con-

troller and which observer gain matrix to select. The controller output is the adjusting

power vector P c, which can be used to vary the core supply voltage and frequency as

described in Chapter 2.

Figure 5.1: The Control structure

5.1 Policy for adjusting the liquid velocity

The basic idea of this algorithm is that the velocity should be increased if the temperature

of the dies is too high or more tasks are assigned to the cores, while the velocity should be

reduced if the temperature of the dies is too low or fewer tasks are assigned to the cores.

Further, the algorithm needs to be designed in a way such that effects as oscillation of

the temperature and sticking of the temperature to an undesired temperature region are

avoided. The fluid velocity uin(t) can be set to a finite number of constants

uin(t) ∈ Uin, Uin = {uin,1, uin,2, ..., uin,Ma} (5.1)
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where uin,1, uin,2, ..., uin,Ma are constants, and uin,1 < uin,2 < ... < uin,i < ... < uin,Ma . uin,i

can be decided by the pump characteristic and the possible chip load. The difference

between each adjacent uin,i can be set as constant but not necessarily.

Define an average target input power

Pt(t) =
1

N

N∑

i=1

Pt,i(t). (5.2)

where Pt,i(t) is the target power of core i. Corresponding to the velocity set (5.1), the

target input power Pt(t) is also divided in Ma sets as

Pt,1 = {Pt(t)|Pt(t) < Ps,1}

Pt,i = {Pt(t)|Ps,i−1 ≤ Pt(t) < Ps,i} (5.3)

Pt,Ma = {Pt(t)|Ps,Ma−1 ≤ Pt(t)}

where Ps,1 < Ps,2 < ... < Ps,i < ... < Ps,Ma−1 and all Ps,i are constants for i ∈

[1, 2, ...,Ma − 1].

In order to achieve good operation reliability and a long lifespan the temperature should

be controlled to keep it in an appropriate temperature range. As emphasized in [VWWL00]

a temperature increase can strongly degrade the chip lifespan. The appropriate temper-

ature range for a chip depends on the design of the MCP and is independent of the target

power. A common way to control the temperature of a MCP is to ensure that maximum

temperature of the dies does not exceed a boundary temperature, see [FKLK12].

Based on this idea the maximum temperature among all die blocks is considered for the

velocity adjustment policy. The maximum temperature among all die blocks is given by

Tm(t) = max
j={1,2,...,M1}

Td,j(t), (5.4)

where M1 is the number of blocks in the die, see Section 4.3. Further, we define possible

regions for maximum temperature Tm(t) given by Mb sets

Tm,1 = {Tm(t)|Tm(t) < Tm,1}

Tm,i = {Tm(t)|Tm,i−1 ≤ Tm(t) < Tm,i} (5.5)

Tm,Mb
= {Tm(t)|Tm,Mb−1 ≤ Tm(t)}

where Tm,1 < Tm,2 < ... < Tm,i < ... < Tm,Mb−1. The aim of the micro-channel cooling

system is to reduce the temperature, where basically a further temperature decrease can

be achieved by a liquid velocity increase. However, in this approach we also take the
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energy consumption of the cooling system into account. Therefore we define Tm,1 as the

’too low’ temperature area, i.e. if Tm(t) ∈ Tm,1, the pump can adjust to a lower fluid

velocity which can save energy. The second set Tm,2 is then defined as the deserved

temperature area. The aim is to keep the temperature of dies in this area under the

control policy proposed in Section 5.2.2. Similar to uin,i, the difference between each

adjacent Tm,i can be set as a constant but not necessarily for 3 ≤ i ≤ Mb. As the

deserved temperature area does not depend on the target power the sets Tm,i are fixed

independent of the target power. By this fluid velocity adjustment policy, a trade-off

between energy consumption and chip lifespan is achieved (mainly by the definition of

Tm,1 and Tm,2).

Remark 5.1. The domain of each set Pt,i and the fluid velocity uin,i should be designed

jointly such that under an equivalent target power of each core the control policy proposed

in Section 5.2.2 keeps the maximum temperature in the deserved area Tm(t) ∈ Tm,2.

However, it is also possible to define a varying deserved temperature area with respect to

the workload. Therefore, the following logic algorithm 5.1 needs to be slightly adapted.

The liquid velocity adjustment logic algorithm is described in the Algorithm 5.1 . Here

we consider the system is digitally controlled with the sampling period ts, and set the

initial time t0 = 0 and k is the kth sampling instant. The basic ideal of the algorithm

is to adjust the fluid velocity uin(k) based on the target power consumption and the

maximum temperature of the dies. The variable ls measures the amount of sampling

periods that Tm is kept in the set Tm,i with i 6= 2. Further, we define the constant

lc =
⌊
tc
ts

⌋
, where tc is the largest time constant of all the subsystems defined in Section

5.2.1.

Remark 5.2. In the algorithm 5.1 Tm(k) and Tm(k − 1) are compared. If Tm(k − 1)

is higher then Tm(k), that indicates that the temperature is already decreasing under the

velocity uin(k), therefore uin(k) should keep the value of the previous step. Otherwise, it

will cause oscillation of the velocity input uin(k) and Tm(k) on the two set boundary. If

Tm(k) stays for a longer time than τ in Tm,i with i > 2, it demonstrates that the fluid

velocity is not big enough to set Tm(k) back to Tm,2, therefore, uin(k) should be increased.
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Algorithm 5.1 The switching law

Input: ξ1(k), Pt(k)

Output: δ(k)

Set P t(−1) = 0.

while 1 do

Get Pt(k) and ξ1(k)

if Pt(k) 6= Pt(k − 1) then

δ(k) = i, if Pt ∈ Pt,i

uin(k) = uin,δ

end if

Get T̂ (k), get Tm // T̂ (k) is the estimated state shown in 5.2.1

if Tm /∈ Tm,2 then

ls = ls + 1

if Tm ∈ Tm,1 then

if
(
δ(k − 1) > 1 and ls = 0

)
or (ls > lc) then

δ(k) = δ(k − 1)− 1

ls = ls + 1

else

δ(k) = δ(k − 1)

end if

else

find out i for Tm(k) ∈ Tm,i

if
(
(Tm(k − 1) ∈ Tt,i) or (Tm(k) < Tm(k − 1))

)
and (ls < lc) then

δ(k) = δ(k − 1)

ls = ls + 1

else

δ(k) = δ(k − 1) + i− 2 // −2 is because of optimal set has the index 2

ls = 0

end if

end if

else

δ(k) = δ(k − 1)

ls = 0

end if

update P c(t) // P c(t) is the controller output shown in 5.2.2

end while
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5.2 Control design for balancing

Based on logic fluid velocity adjusting law developed in the last section, for the fluid

velocity uin,δ(k), the system (4.48) can be rewritten as

Ṫ (t) = A(T (t), uin,δ(k))T (t) +B1P (t) +B2d(t) +B3T∞ +B4Tin (5.6)

In this model, the system state matrix A(T (t), uin,δ(k)) is affected by the fluid flow uin(t)

and the temperature T (t). According to the simulation result shown in Figure 4.18, the

variation of T f(t) will lead to a minor variation of the forced convective heat transfer

coefficients. Consequently, under the variation range of the liquid temperature T f(t),

the variation of the convective heat transfer coefficient hf in a given block and under a

given liquid velocity uin,δ(k) is very small. Therefore, we define an average value of the

convective heat transfer coefficient

h̄f,δ(k),n =
max(hf,δ(k),n) + min(hf,δ(k),n)

2
, (5.7)

where max(hf,δ(k),n) and min(hf,δ(k),n) is the largest and smallest heat convection coef-

ficient in a given channel block n and under a given liquid velocity. We know that in

different blocks the convective heat transfer coefficient differs, which is considered in

the elements of the system matrix, see Chapter 4. With this approximation, the time-

varying influence on the system matrix is eliminated such that Aδ(k) is constant for a

given switching index δ(k).

The measurement output is defined as

ξ1(t) = CoT (t) (5.8)

Co is the measurement matrix andCo ∈ R
Mc×(M1+M2), whereMc is the number of digital

thermal sensors (DTS). Assume each core block contains one DTS, and some other die

blocks may also contain DTSs. The DTS planning depends on the layout of the dies

[ZAD13].

The regulated output is defined as the temperature difference among cores, i.e.

ξ2(t) = CrT (t) (5.9)

where

ξ2,i(t) = Td,i(t)−
N∑

j=1

Td,j(t) i = 1, 2, ...., N, (5.10)
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and Cr ∈ R
N×(M1+M2) is the regulated output matrix.

Discretize the system (5.6) as

T (k + 1) = Ad,δ(k)T (k) +Bd1,δ(k)P (k) +Bd3,δ(k)T∞ +Bd4,δ(k)Tin + d(k), (5.11)

where

Ad,δ(k) =eAδ(k)ts ,

Bd1,δ(k) =

ˆ ts

0

eAδ(k)tdtB1,

Bd3,δ(k) =

ˆ ts

0

eAδ(k)tdtB3,

Bd4,δ(k) =

ˆ ts

0

eAδ(k)tdtB4,

d(k) =

ˆ (k+1)·ts

k·ts

eAδ(k)tB2d(t)dt.

The system measurement output and regulated output are

ξ1(k) =CoT (k) (5.12)

ξ2(k) =CrT (k). (5.13)

5.2.1 Robust H∞ observer design

In Section 5.2.2 an MPC controller is designed for the balancing for which all states

T (t) are required. However, only ξ1(t) is measurable. The other states, for instance the

temperature of the liquid T f(t) and of some of the die blocks Td,i(t) are not measurable

depending on the DTS planing. Therefore an observer is required to estimate the states.
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In the observer design it needs to be considered that the states are affected by a bounded

nonnegative disturbance vector, see equation (5.11).

The disturbance is generally not constant and its dynamics can usually not be deter-

mined as the disturbance is affected by many parts of the MCP as for instance the I/O

controller, the L2 cache and the interconnect bus which work independently. Further,

the boundedness of the disturbance is small considering the influence on the estimation.

For some die blocks the influence of the disturbance is negligible due to their position in

the MCP with respect to the disturbing parts.

Therefore, a robust H∞ current state observer is introduced to limit the influence of the

unknown disturbance on the estimation. The observer consists of two parts.

1. The prediction of the state vector is

T (k) =Ad,δ(k−1)T̂ (k − 1) +Bd1,δ(k−1)(k − 1)P (k − 1) (5.14)

+Bd3,δ(k−1)(k − 1)T∞ +Bd4,δ(k−1)Tin.

2. The correction of the predicted state vector based on the actual measurements is

T̂ (k) = T (k) +Lδ(k−1)

(
ξ1(k)− ξ1(k)

)
(5.15)

where T (k) ∈ R
M1+M2 is predicted state vector

ξ1(k) = CoT (k). (5.16)

T̂ (k) ∈ R
M1+M2 is the corrected state vector

ξ̂1(k) = CoT̂ (k), (5.17)

and Lδ(k−1) ∈ R
(M1+M2)×N is the observer gain matrix.

Define the estimation error as

e(k) = T (k)− T̂ (k). (5.18)

Therefore, the error dynamics can be gotten by subtracting (5.15) from (5.11)

e(k) =T (k)− T̂ (k) (5.19)

=Ad,δ(k−1)e(k − 1) + d(k − 1)−Lδ(k−1)Co

(
T (k)− T (k)

)
.
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Consider that

T (k)− T (k) = Ad,δ(k−1)

(
T (k − 1)− T̂ (k − 1)

)
+ d(k − 1), (5.20)

one has

e(k) =Ad,δ(k−1)(T (k − 1)− T̂ (k − 1)) + d(k − 1)

−Lδ(k−1)Co(Ad,δ(k−1)(T (k − 1)− T̂ (k − 1)) + d(k − 1)) (5.21)

=Ad,δ(k−1)e(k − 1)−Lδ(k−1)CoAd,δ(k−1)e(k − 1) + (I −Lδ(k−1)Co)d(k − 1)

=(Ad,δ(k−1) −Lδ(k−1)CoAd,δ(k−1))e(k − 1) + (I −Lδ(k−1)Co)d(k − 1)

To minimize the influence of the disturbance vector d(k) on the estimation error e(k),

an H∞ observer is designed. The L2-gain between the disturbance and the estimation

error is defined as

γ = sup
‖d(k)‖2 6=0

‖e(k)‖2
‖d(k)‖2

(5.22)

where γ is a positive scalar. By the definition in [ZDG06], (5.22) can be rewritten as

k∑

j=0

eT (j)e(j)− γ2

k∑

j=0

dT (j)d(j) ≤ 0. (5.23)

In the following, the L2-gain which is defined by the H∞ norm of the transfer function

of a linear time-invariant system (LTI) is be minimized. The H∞ robust observer (5.14)

can be achieved by the following theorem.

Theorem 5.1. For the system (5.11) with the observer (5.14) and (5.15), the robust

H∞ observer gain Lδ can be achieved by solving the LMI optimiztion problem

min γ2 (5.24a)

subject to P = PT > 0, γ > 0 (5.24b)



P − I ∗ ∗

PAd,δ −W δCoAd,δ P ∗

0 (P −W δCo)
T γ2I



> 0. (5.24c)

for all δ ∈ {1, ...,Ma}, where ∗ denotes the entries induced by symmetry. Thus, the

observer is constructed by

Lδ = P−1W δ. (5.25)
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Proof. Consider the Lyapunov function candidate for the error dynamics system (5.19)

V (e(k)) = eT (k)Pe(k) (5.26)

where P ∈ R
(M1+M2)×(M1+M2) is symmetric and positive definite. Further, we suppose

the follow inequality is satisfied

V (e(k + 1))− V (e(k)) + eT (k)e(k)− γ2dT (k)d(k) < 0 (5.27)

for all the e(k) and d(k). According to (5.21)

V (e(k + 1)) =eT (k)
(
Ad,δ(k) −Lδ(k)CoAd,δ(k)

)T
P
(
Ad,δ(k) −Lδ(k)CoAd,δ(k)

)
e(k)

+ eT (k)
(
Ad,δ(k) −Lδ(k)CoAd,δ(k)

)T
P
(
I −Lδ(k)Co

)
d(k)

dT (k)
(
I −Lδ(k)Co

)T
P
(
Ad,δ(k) −Lδ(k)CoAd,δ(k)

)
e(k) (5.28)

dT (k)
(
I −Lδ(k)Co

)T
P
(
I −Lδ(k)Co

)
d(k)

=




e(k)

d(k)




T 


Ã
T

δ(k)PÃδ(k) ∗

HT
δ(k)PÃδ(k) HT

δ(k)PHδ(k)







e(k)

d(k)


 ,

where Ãδ(k) = Ad,δ(k) −Lδ(k)CoAd,δ(k) and Hδ(k) = I −Lδ(k)Co. Therefore, (5.27) can

equivalently be written as




e(k)

d(k)




T 


Ã
T

δ(k)PÃδ(k) − P + I ∗

HT
δ(k)PÃδ(k) HT

δ(k)PHδ(k) − γ2I







e(k)

d(k)


 < 0, (5.29)

which is satisfied if



P − I − Ã
T

δ PÃδ ∗

−HT
δ PÃδ γ2I −HT

δ PHδ


 > 0 (5.30)

for all δ ∈ {1, ...,Ma}. For simplicity, the time dependency of the switching index is

omitted in the remaining part of the proof. By applying the Schur complement A.8,

(5.30) equals to the following two conditions

P − I − Ã
T

δ PÃδ − Ã
T

δ PHδ

(
γ2I −HT

δ PHδ)
−1HT

δ PÃδ > 0, (5.31a)

γ2I −HT
δ PHδ > 0. (5.31b)
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According to the matrix inversion Lemma A.9, (5.31a) can be rewritten as

P − I − Ã
T

δ PÃδ − Ã
T

δ

(
P−1 −

1

γ2
HδH

T
δ

)−1

Ãδ + Ã
T

δ PÃδ > 0. (5.32)

As P is positive definite the Schur complement is applied again to condition (5.31b)

resulting in 


γ2I HT
δ

Hδ P−1


 > 0. (5.33)

This shows that (5.31) is equivalent to

P−1 −
1

γ2
HδH

T
δ > 0 (5.34a)

P − I − Ã
T

δ

(
P−1 −

1

γ2
HδH

T
δ

)−1

Ãδ > 0 (5.34b)

Applying the Schur complement, one has



P − I ∗

Ãδ P−1 − 1
γ2HδH

T
δ


 > 0, (5.35)

and (5.35) can be written as




P − I ∗

Ãδ P−1


−




0

Hδ


 1

γ2
I

[
0 HT

δ

]
> 0. (5.36)

Applying the Schur complement, (5.36) is transformed to




P − I ∗ ∗

Ãδ P−1 ∗

0 HT
δ γ2I



> 0. (5.37)

Pre- and post-multiplying (5.37) by block-diagonal matrix diag(I,P, I), we have




P − I ∗ ∗

PÃδ P ∗

0 HT
δ P γ2I



> 0. (5.38)
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Defining PLδ = W δ, (5.38) can be rewritten as




P − I ∗ ∗

PAd,δ −W δCoAd,δ P ∗

0 (P −W δCo)
T γ2I



> 0. (5.39)

This completes the proof.

As a common Lyapunov function is utilized for the observer design and the disturbance

is bounded (4.49), L2-gain stability is guaranteed under an arbitrary switching sequence

given by Algorithm 5.1.

5.2.2 MPC controller design

As mentioned in Chapter 3, in order to reach the processor task target, the power is

divided into two parts, i.e.

P (k) = P c(k) + P t(k) (5.40)

where P t(k) is the core power based on the target tasks, and P c(k) is the controller

output.

Suppose l1 and l2 are the control horizon and prediction horizon and define l1 ≤ l2. Then

the prediction of system states under the switching index δ is

T (k + l|k) =Ad,δT (k + l − 1|k) +Bd1,δP (k + l − 1) +Bd3,δT∞ +Bd4,δTin

=A2
d,δT (k + l − 2|k) +Ad,δBd1,δP (k + l − 2) +Ad,δBd3,δT∞

+Ad,δBd4,δTin +Bd1,δP (k + l − 1) +Bd3,δT∞ +Bd4,δTin

=... (5.41)

=Al
d,δT (k) +

l∑

j=1

A
j−1
d,δ Bd1,δP (k + l − j) +

l∑

j=1

A
j−1
di Bd3,δT∞

+
l∑

j=1

A
j−1
d,δ Bd4,δTin
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and the regulated output is

ξ2(k + l|k) =CrT (k + l|k)

=CrA
l
diT (k) +Cr

l∑

j=1

A
j−1
di B1dP (k + l − j) (5.42)

×Cr

l∑

j=1

A
j−1
di B3dT∞ +Cr

l∑

j=1

A
j−1
di B4dTin

Therefore, the whole prediction regulated output from k + 1 to k + l2 is

ξ̂2 = Âd,δT (k) + B̂d1,δP̂ + B̂d3,δT∞ + B̂d4,δTin (5.43)

where

ξ̂2 =




ξ2(k + 1|k)

ξ2(k + 2|k)

...

ξ2(k + l1|k)

...

ξ2(k + l2|k)




P̂ =




P (k)

P (k + 1)

...

P (k + l1 − 1)



, (5.44)

and

Âd,δ =

[
CrAd,δ CrA

2
di ... CrA

l1
di ... CrA

l2
di

]T
, (5.45)

B̂d1,δ =




CrBd1,δ 0 0 ... 0

CrAd,δBd1,δ CrBd1,δ 0 ... 0

...

CrA
l1−1
d,δ Bd1,δ CrA

l1−2
d,δ Bd1,δ CrA

l1−3
d,δ Bd1,δ ... CrBd1,δ

...

CrA
l2−1
d,δ Bd1,δ CrA

l2−2
d,δ Bd1,δ CrA

l2−3
d,δ Bd1,δ ... CrA

l2−l1
d,δ Bd1,δ




,
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B̂d3,δ =




CrBd3,δ 0 0 ... 0

CrAd,δBd3,δ CrBd3,δ 0 ... 0

...

CrA
l1−1
d,δ Bd3,δ CrA

l1−2
d,δ Bd3,δ CrA

l1−3
d,δ Bd3,δ ... CrBd3,δ

...

CrA
l2−1
d,δ Bd3,δ CrA

l2−2
d,δ Bd3,δ CrA

l2−3
d,δ Bd3,δ ... CrA

l2−l1
d,δ Bd3,δ







1

1

...

1

...

1




,

B̂d4,δ =




CrBd4,δ 0 0 ... 0

CrAd,δBd4,δ CrBd4,δ 0 ... 0

...

CrA
l1−1
d,δ Bd4,δ CrA

l1−2
d,δ Bd4,δ CrA

l1−3
d,δ Bd4,δ ... CrBd4,δ

...

CrA
l2−1
d,δ Bd4,δ CrA

l2−2
d,δ Bd4,δ CrA

l2−3
d,δ Bd4,δ ... CrA

l2−l1
d,δ Bd4,δ







1

1

...

1

...

1




.

The control objective is to minimize the cost function defined by

J = ξ̂
T

2 Qξ̂2 + P̂
T

c RP̂ c, (5.46)

where Q ∈ R
(Mc·l2)×(Mc·l2) and R ∈ R

(N ·l1)×(N ·l1) are symmetric and positive definite.

The first term of the right hand side is linked to the state objective, which is to balance

the temperature among the cores, while the second term is related to the management

of the power consumption of the cores. To minimize the cost function J , one has

∂J

∂P̂ c

= 0. (5.47)

By substituting (5.43) into (5.46), the optimal solution for the control signal P̂ c is

P̂ c = −(B̂
T

d1,δQB̂d1,δ + R)−1B̂
T

d1,δ(Âd,δT̂ (k) + B̂d3,δT∞ + B̂d4,δTin), (5.48)

and the control input at the time instant k is

P c(k) =
[
I,0,0, ...,0

]
︸ ︷︷ ︸

Ic

P̂ c, (5.49)



5.2 Control design for balancing 91

where I is an N ×N identity matrix. The controller contains three parts, however the

parts with T∞ and Tin are constants. Therefore, these two parts will be updated only if

the fluid velocity is changed. The controller can equivalently be written as

P c(k) = F δ(k)T (k) + F∞,δ(k)T∞ + F in,δ(k)Tin (5.50)

where

F δ = Ic(B̂
T

d1,δQB̂d1,δ + R)−1B̂
T

d1,δÂd,δ (5.51a)

F∞,δ = Ic(B̂
T

d1,δQB̂d1,δ + R)−1B̂
T

d1,δB̂d3,δ (5.51b)

F in,δ = Ic(B̂
T

d1,δQB̂d1,δ + R)−1B̂
T

d1,δB̂d4,δ. (5.51c)

As stability is not given inherently for an MPC controller stability needs to be verified.

However, the control gains F δ, F∞,δ and F in,δ are constant for a given switching index

δ as input and state constraints have not been considered. Further, it is necessary to

verify the stability under switching, which is not covered by the control design.

5.2.3 Stability analysis

Based on the given approach a constant controller is designed for each subsystem. Fur-

ther an H∞ observer is designed separately from the control design. As we deal with

a switched system, also the validity of the separation principle needs to be analyzed.

Therefore, we give the whole switched system model consisting of the closed loop system

dynamics and the observation error dynamics, for investigating the stability. As the

system is influenced by the unknown input d(k), the target power consumption P t(k),

the fluid inlet temperature Tin and the environment temperature T∞ we consider the

L2-gain stability. Define a new disturbance input as

ds(k) =d(k) +Bd1,δ(k)P t(k) +Bd3,δ(k)T∞ +Bd4,δ(k)Tin (5.52)

+ Ic(B̂
T

d1,δ(k)QB̂d1,δ(k) + R)−1B̂
T

d1,δ(k)(B̂d3,δ(k)T∞ + B̂d4,δ(k)Tin),

with substituting all inputs that are not influenced by the online control input update.

ds(k) is bounded as d(k), P t(k), T∞ and Tin are all bounded.

Defining a new state vector

Ť (k) =
[
T T (k), eT (k)

]T
, (5.53)
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a new system combining the system and the observer error dynamic is given by



T (k + 1)

e(k + 1)




︸ ︷︷ ︸
Ť (k+1)

=




Ad,δ(k) −Bd1,δ(k)F δ(k) Bd1,δ(k)F δ(k)

0 Ad,δ(k) −LiCoAd,δ(k)




︸ ︷︷ ︸
Ǎδ(k)




T (k)

e(k)




︸ ︷︷ ︸
Ť (k)

+




I 0

0 I −LiCo




︸ ︷︷ ︸
Ȟδ(k)




ds(k)

d(k)




︸ ︷︷ ︸
ď(k)

, (5.54)

Therefore, the new system is given by

Ť (k + 1) = Ǎδ(k)Ť (k) + Ȟδ(k)(k)ď(k) (5.55)

Define a L2-gain between the unknown input vector ď and the state vector Ť

γs = sup
‖ď(k)‖

2
6=0

∥∥Ť (k)
∥∥
2∥∥ď(k)
∥∥
2

. (5.56)

The L2-gain stability of the whole system can be tested by the following theorem.

Theorem 5.2. The switched system (5.11) with the proposed observer (5.15) and con-

troller (5.49) is L2 stable, if there exits a scalar γs > 0 and a matrix Ps symmetric and

positive definite, ∀δ ∈
{
1, ...,Ma

}
such that




Ps − Ǎ
T

δ PsǍδ − I −Ǎ
T

δ PsȞδ

∗ γ2
s I − Ȟ

T

δ PsȞδ


 > 0. (5.57)

Proof. Define a Lyapunov function candidate for the switched system (5.54)

V (Ť (k)) = Ť
T
(k)PsŤ (k), (5.58)

where Ps is symmetric and positive definite. We suppose the follow inequality is satisfied

V (k + 1)− V (k) + Ť
T
(k)Ť (k)− γ2

s ď
T
(k)ď(k) < 0 (5.59)

for all Ť (k) and ď(k). Substituting (5.55) into (5.58), one has

V (k + 1) =

(
Ǎδ(k)T̄ (k) + Ȟδ(k)(k)ď(k)

)T

Ps

(
Ǎδ(k)T̄ (k) + Ȟδ(k)(k)ď(k)

)
. (5.60)
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Therefore, inequality (5.59) can be written as




Ť (k)

ď(k)




T 


Ǎ
T

δ(k)PsǍδ(k) + I − Ps Ǎ
T

δ(k)PsȞδ(k)

∗ Ȟ
T

δ(k)PsȞδ(k) − γ2
s I







Ť (k)

ď(k)


 < 0, (5.61)

which is satisfied if




Ps − Ǎ
T

δ PsǍδ − I −Ǎ
T

δ PsȞδ

∗ γ2
s I − Ȟ

T

δ PsȞδ


 > 0. (5.62)

is fulfilled for all δ ∈
{
1, ...,Ma

}
. This completes the proof.

Remark 5.3. In the physical system, the supply voltage and frequency, which is the input

of the system, and the temperature of the cores, which is the state of the system, both

have constraints. Here the constraints are not considered in the MPC controller design.

The computational complexity is the reason why the constraints are not considered, as

such an online optimal control policy is not implementable [LK99, LK01].

5.3 Example

Here the 3D package multi-core system described in Section 4.4 is employed to verify

the proposed H∞ observer and MPC controller. The MCP layout is given in Figure 4.14

and Figure 4.15. The operation condition and the types of tasks are defined equivalently

as in Section 3.3.

Assume the fluid is chosen from a set of three different velocities

Uin =
{
uin,1, uin,2, uin,3

}
(5.63)

where uin,1 = 0.5m/s, uin,2 = 0.75m/s and uin,3 = 1m/s. The possible target power

zone is also divided in three intervals

Pt,1 =
{
Pt|Pt < 4W

}

Pt,2 =
{
Pt|4W ≤ Pt < 5W

}
(5.64)

Pt,3 =
{
Pt|5W ≤ Pt

}



94 5 Thermal and power balancing/management policy design for 3D MCP

while the possible area of the maximal temperature of dies Tm is divided in four intervals

Tm,1 =
{
Tm|Tm < 313K

}

Tm,2 =
{
Tm|313K ≤ Tm < 323K

}
(5.65)

Tm,3 =
{
Tm|323K ≤ Tm < 328K

}

Tm,4 =
{
Tm|328K ≤ Tm

}
.

Based on the MCP layout (Figure 4.14-4.15) and the possible fluid velocities (5.63)

the switched system (5.11) with three subsystems is deduced with the sampling period

ts = 10ms. The system output vector which contains the measurable states is set as the

temperature of the 16 cores, the PPE and the L2 cache. The disturbance vector d(k)

consists of the unknown power of the PPE, the L2 cache, the input/output controller

and other heat generated by the interconnect bus. As the amount of tasks is usually

randomly time-varying and as the unknown power is also varying with the type of tasks

the disturbance vector can be assumed randomly time-varying and bounded which is

simulated using a MATLAB function creating a random signal.

First theH∞ observer is designed. By applying Theorem 5.1 using the MATLAB toolbox

YALMIP [Löf04] and SeDuMi [Stu99], the LMI optimization gives the L2-gain γ = 6.88.

Further the MPC controller is designed with two different cost functions. The first cost

function is chosen as

J1 =
3∑

i=1

[
300ξT2 (k + i)ξ2(k + i) + 2000P T

c (k + i− 1)P c(k + i− 1)

]
(5.66)

and the second cost function is chosen as

J2 =
3∑

i=1

[
500ξT2 (k + i)ξ2(k + i) + 2000P T

c (k + i− 1)P c(k + i− 1)

]
. (5.67)

The two cost functions have the same weighting matrix of control input but a different

weighting matrix of the regulated output. After computing the controller and observer

gains, the stability is proved by applying Theorem 5.2. Under the cost function J1
the L2-gain γs1 = 12 is obtained, while under the cost function J2 the L2-gain is also

γs2 = 12.

Simulation results for the core blocks

The simulation results under the cost function J1 for the core block 7 (see Figure 4.14)

are shown in Figure 5.2. The first plot in Figure 5.2 shows the resulting temperature

of the die block with the deserved temperature region [313K, 323K] indicated by the
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dashed lines in the first plot Figure 5.2. The seconds plot shows the target power as

well as the actual power resulting from the controller. It can be seen that the actual

power is mostly reduced compared to the target power for the temperature balancing,

i.e. Pc,7 > 0. Therefore, for some other blocks the power is increased compared to the

target power as can be seen Figure 5.3 for the core block 12. This shows that the tasks

are moved to other cores based on the balancing controller.
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Figure 5.2: Simulation result for core block 7 under the cost function J1

In the third plot the switching index is shown which represents the fluid velocity uin. The

switching index δ = 1 indicates the fluid velocity uin = 0.5m/s, the index δ = 2 indicates

uin = 0.75m/s and δ = 3 represents uin = 1m/s. It can be clearly seen that the fluid

velocity is increased from uin = 0.5m/s to uin = 0.75m/s when the temperature exceeds

the boundary 323K at the time instant t = 10.3 s. At this time instant the maximum

temperature of the die is the temperature of block 7. This shows the functionality the

velocity adjustment policy. In the remaining simulation time the velocity is adjusted

due to the varying target power and temperature of all blocks which is not shown in

detail for the other blocks.
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Figure 5.3: Power consumption for core block 12 under the cost function J1

The third plot in Figure 5.2 also shows that during the time zone 10-18 s, the pump works

for only 6.3% of the time under the highest liquid velocity uin = 1m/s (i.e. δ = 3). For

24.3% of the time the controller works with uin = 0.5m/s (i.e. δ = 1) while for the left

69.4% it works with uin = 0.75m/s (i.e. δ = 2). Therefore, the proposed method can

let the pump work slower in most time, which leads to energy savings with respect to

the pump energy.

Comparison of the simulation results for the core blocks
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Figure 5.4: Comparison of the control input under the cost function J1 and J2
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The comparison of the performance under the two different cost functions is shown in

Figure 5.4 and 5.5. As shown in the two figures, cost function J1 leads to lower 2-Norm

of the control input while cost function J2 results in lower temperature difference. This

means under J2 a better temperature balance can be achieved. However the power

consumption needs to be adjusted more. For physical implementation, the aim is to

reduce the temperature difference among the cores as small as possible. However, as

shown in the simulation, a smaller temperature difference is accompanied by bigger

power consumption adjustment, and causes more task adjustment among the cores.
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Figure 5.5: Comparison of the regulated output under cost the function J1 and J2

In this example, due to the temperature balancing core 1, core 2, core 9, core 10 work at

much higher speeds as these cores have better cooling condition, meanwhile, core 7, core

8 work at low speeds. This causes an unbalanced task assignment, which also affects the

chip lifespan and working reliability. Besides, in an operation system, when the core’s

supply voltage and working frequency is adjusted, some tasks need to be moved from the

lower frequency cores to the higher frequency cores. A higher power adjustment often

causes more task movement, and this action results in additional time and energy.

In summary, the pursuit of very small temperature difference among cores is not always

practical in a physical system. To implement the proposed MPC controller in a 3D

MCP system, the temperature balance, power management should be considered jointly.
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The aim should be to balance the temperature, the power consumption and the task

assignment.

Simulation results for the die blocks (non-core)
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Figure 5.6: Real and estimated state of T20

For the non-core die blocks only the state estimation is relevant, as this estimation is

required for the control of the temperature of the core blocks. The temperature of those

blocks is not controlled. Figure 5.6 shows the state estimation of the die block T20, which

is an I/O controller. For this block the power consumption is not known and thus acts

as a disturbance on the state estimation. Therefore, the estimation error is comparingly

large. However, as an H∞ observer is applied the influence of the disturbance on the

estimation can be bounded.

Simulation results for the fluid blocks

The estimated liquid temperature and the simulated liquid temperature is shown in

Figure 5.7 - 5.8. The indices indicate the blocks according to Figure 4.15. The simulation

time is 20 s whereas in the following figures only the time interval 10-18 s is shown.
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Figure 5.7: Real and estimated state of T30
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Figure 5.8: Real and estimated state of T39
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Figure 5.8 shows the state estimation of T39 in the cooling layer 2 between the second

layer and third layer of dies. This state and the state T40 have the biggest estimation

error from the cooling layer states. The estimation error is only little affected by the

disturbance. However, as it is a neighboring block of the I/O controller the estimation is

strongly influenced by the estimation error of T20. Additionally the disturbed estimations

of the other blocks in the third die layer have some influence on the estimation of T39.

On the other hand the state estimation of T30 shown in Figure 5.7 is almost equivalent

to the simulated value. As the shown state T30 is on the cooling layer 1 between the first

layer and second layer of the dies and as the majority of the disturbance is caused by the

power of parts in the third die layer those states are very little affected by the disturbance,

see Figure 4.15. Thus the estimation error is negligible for the state estimations in the

cooling layer 1.

5.4 Summary

The thermal and power management policy for 3D stacked package MCPs is designed

in this chapter based on the model shown in the previous chapter. The management

policy contains two steps. The first step is to control the liquid velocity based on the

temperature of the dies and the real time workload. Under this policy, the system

is described as a linear switched system. An MPC controller and an H∞ observer is

developed for the switched linear system in the second step. The simulation results

under different conditions support the proposed control policy.
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In this thesis, the modeling and control technologies for the thermal and power bal-

ancing/management of the multi core processor are developed. The thermal and power

management is a technological challenge in MCP developing, as it has considerable in-

fluence on the chip lifespan and the operation reliability. Therefore, a feasible thermal

and power management policy for the MCP system is a necessary and urgent task.

The heat transfer in the die is described as a 3D partial differential equation according

to the Fourier’s heat conduction law. However, the 3D PDE model is not suitable to be

applied in the controller design as our target is to balance the temperature and manage

the power among the cores. Hence, the 3D PDE is transformed to a group of 1D PDEs,

which is applied for the control design. In this thesis, the 3D PDE heat transfer model

is solved by the eigenvalue and eigenfunction system according to the Sturm-Liouville

theory. The 3D to 1D transformation is applied based on the analytical solution.

A PDE based optimal controller is designed to manage and balance the temperature and

the power consumption of the MCPs. A cost function is introduced which weights the

difference of the temperature among the cores and the power consumption. The Riccati

function is applied to optimize the cost function.

The advanced 3D stacked package chip technology is also considered in the thesis. The

PDE based model is very complex as it contains the fluid dynamical model and heat

transfer model. Therefore, an ODE model is proposed, which models the dies as an R-C

network. Meanwhile the cooling channel is discretized based on the discrete block of

the dies. The micro-channel liquid velocity and the convective heat transfer coefficient

have a non-linear influence on the model. In view of this, the liquid velocity is chosen

from a set of constant velocities which need to be defined in the control design. The

definition of this set and the switching between the possible velocities is based on the

real time tasks and the temperature of the dies. As the variation of the convective heat

transfer coefficient is small, a simplification is realized by the taking an average value.

By these specifications the non-linear terms can be eliminated and the system is modeled

as a linear switched system where each subsystem refers to the model under one liquid

101
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velocity.

The control design for the thermal and power management is realized in two steps. In

the first step a logic algorithm for determining the liquid velocity, i.e. the switching law

is developed. In the second step a model predictive controller is designed to balance the

temperature among the cores. Therefore a cost function weighting the difference of the

temperature between the cores and the control input is introduced. Thereby the control

input refers to the adjustment of the target power consumption of the cores. As not

all necessary states can be assumed to be measurable a robust H∞ observer is designed

to estimate the states. The robust H∞ observer is chosen to decrease the influence of

unknown inputs like the unknown parts of the power consumption of the dies. Further

a theorem is proposed to prove the stability of the controlled switched system under the

separate control and observer design. Finally the results are verified by simulation.

For future work it is interesting to validate the modeling approaches of the 2D package

chip and 3D package chip by practical experiments. In this context the exact iden-

tification of the parameters needs to be investigated. After the model validation the

proposed control approaches can be implemented and verified. For the implementation

of the proposed controllers in a physical MCP, the operating system task allocation

policy should be considered. It is helpful to develop a method which can combine the

proposed controllers and the operating system task allocation policies.
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In der berühmten Rede ’There’s Plenty of Room at the Bottom’ (dt. Ganz unten ist

eine Menge Platz oder Viel Spielraum nach unten) stellte Richard Feynman die Frage

’Warum können wir nicht die gesamten 24 Bände der Encyclopaedia Britannica auf

dem Kopf einer Stecknadel speichern?’. Dies wird häufig als die Gründungsschrift der

Nanotechnologie angesehen. Vom ersten Intel Prozessor 4004 mit 2000 Transistoren

zum Intel Pentium 8400EE mit 2,3 Milliarden Transistoren aus dem Jahre 2010 hat

der Integrationsgrad um das hunderttausend-fache zugenommen wobei Größe des Dies

abgenommen hat. Nach dem Mooreschen Gesetz verdoppelt sich die Komplexität in-

tegrierter Schaltkreise mit minimalen Komponentenkosten regelmäßig alle zwei Jahre.

Jedoch hat die Leistungssteigerung der Chips abgenommen, da Transistoren nicht gren-

zenlos kleiner werden können. Unterdessen erfordert die ständige Zunahme an Daten eine

höhere Prozessorleistungen. Dies führte zur Entwicklung des Mehrkernprozessors, der

mehrere Rechenkerne enthält. Jeder Kern besteht aus einer Recheneinheit und einem

L1 Cache-Speicher. Manche Mehrkernprozessoren enthalten zusätzlich noch einen L2

Cache-Speicher. All diese Komponenten sind zur Kommunikation über ein schnelles

Bussystem, dem sogenannten Element Interconnect Bus, miteinander verbunden.

Der Mehrkernprozessor weist die Vorteile der parallelen Ausführung mehrerer Task, einer

höheren Prozessorgeschwindigkeit und einer besseren Energieeffizienz auf. Aufgrund

der sich ergebenden deultichen Leistungssteigerung von Mehrkernprozessoren gegenüber

Einkernprozessoren sind Mehrkernprozessoren der neue Trend in der Prozessorentwick-

lung.

Vom ersten Mehrkernprozessor Power4 mit zwei Kernen, der 1999 von IBM entwickelt

wurde, bis zum TilePro 64 Prozessor mit 64 Kernen wurden signifikante Fortschritte im

Bereich der Mehrkernprozessortechnology erzielt. Mehrere Entwicklungen, zum Beispiel

der IBM cell oder der Sun Niagara, werden bereits erfolgreich in kommerziellen Anwen-

dungen eingesetzt. Diese Mehrkernprozessoren sind in einer 2D Architektur aufgebaut,

das heißt in dem Chip liegt nur eine Die-Schicht vor. Beim 2D-Packaging verbraucht

das Netzwerk innerhalb des Dies viel Energie und es gibt eine hohe Wärmeentwicklung,

was die Entwicklung der Mehrkernprozessortechnology einschränkt. Daher ist die 3D-

103
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Integration von großem Interesse. Beim 3D-Packaging enthält der Chip mindestens zwei

Die-Schichten, welche vertikal verbunden sind durch Silikon-Durchkontaktierung (engl.

through-silicon via, TSV) . Mit Hilfe der TSV-Technologie können Daten schneller zwis-

chen den Kernen übertragen werden bei geringerem Energieverbrauch und geringerer

Wärmeentwicklung. Um die Temperatur innerhalb der Chips zu reduzieren, wird ein

Mikrokanal-Kühlsystem zwischen den Schichten eingesetzt.

Sowohl in der 2D- wie auch in der 3D-Technologie ist das Temperatur- und Leistungs-

management von zunehmender Bedeutung. In der Entwicklung von Mehrkernprozes-

soren stellt das Temperatur- und Leistungsmanagement eine zentrale technologische Her-

ausforderung dar, da es einen signifikanten Einfluss auf die Betriebssicherheit und die

Chiplebensdauer hat.

Motiviert durch die ausgeführten Aspekte hat diese Dissertation das Ziel, ein geeignetes

Temperatur- und Leistungsmanagement zu entwickeln, um das thermische Verhalten

und den Energieverbrauch von Mehrkernprozessoren zu regeln. Dadurch ergeben sich

die folgenden Aufgabenstellungen. In einem ersten Schritt wird das thermische Verhal-

ten eines 2D-Packaging Mehrkernprozessors modelliert. Anschließend wird dafür eine

optimale Regelungsstrategie für das Temperatur- und Leistungsmanagement entwickelt.

In einem weiteren Schritt werden Mehrkernprozessoren mit 3D-Technologie und einem

Flüssigkeitskühlsystem untersucht. Nach der Modellierung des thermischen Verhaltens

wird eine entsprechende Regelungsstrategie entworfen.

In Kapitel 2 wird die Wärmekonduktion im Die sowie die Wärmekonvektion zwischen

dem Die und der Umgebung analysiert, siehe Figure 7.1. Die Temperatur des Kerns

hängt von der Leistungsabgabe des Kerns ab, wobei sich die Leistungsabgabe aus der

Versorgungsspannung und der Arbeitsfrequenz ergibt. Sowohl die Versorgungsspannung

als auch die Arbeitsfrequenz können durch Dynamic Voltage und Frequency Scaling

(DVFS) angepasst werden. Die Wärmeübertragung innerhalb des Dies erfolgt durch

Konduktion und kann basierend auf dem Fourieschen Wärmeleitungsgesetz als partielle

Differentialgleichung (engl. partial differential equation, PDE) modelliert werden. Der

Wärmeaustausch zwischen dem Die und der Umgebung erfolgt durch Konvektion und

kann mit Hilfe des Newton’schen Abkühlungsgesetz (engl. Newton’s law of cooling)

beschrieben werden. Dadurch ergeben sich Randbedingungen für die dreidimension-

ale partielle Differentialgleichung. Die Sturm-Liouville-Theorie wird anschließend ange-

wandt, um die dreidimensionale partielle Differentialgleichung zu lösen und eine Tem-

peraturverteilung über das Volumen zu erhalten. Dies bedeutet, dass basierend auf

den Eigenwerten und Eigenfunktionen die partielle Differentialgleichung auf ein System

gewöhnlicher Differentialgleichungen (engl. ordinary differential equation, ODE) un-
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endlicher Ordnung abgebildet wird. Nach dem Lösen des ODE Systems ergibt sich nach

der inversen Transformation die dreidimensionale Wärmeverteilung innerhalb des Dies.

Kapitel 2 bildet die Grundlage für den Reglerentwurf des 2D-Package Systems.

Figure 7.1: Die Querschnittsansicht der Mehrkernprozessor

Kapitel 3 behandelt den optimal Reglerentwurf, wofür das 3D PDE Modell in ein System

eindimensionaler PDEs transformiert wird. Während in Kapitel 2 das dreidimensionale

Gesamtsystem des Dies modelliert wird, ist es nun von Interesse die Temperatur und die

Leistungsabgabe zwischen den Kernen zu balancieren. Da in jedem Kern ein individuelle

Temperaturverteilung vorliegt, muss festgelegt werden, wie der Temperaturunterschied

zwischen den Kernen definiert wird. Daher wird jeder Kern individuell betrachtet und

die anderen Kerne wirken als externe Wärmequellen, zu denen ein Wärmeaustausch er-

folgt. Jeder Kern wird dabei durch eine eindimensionale partielle Differentialgleichung

beschrieben. Die Ortsdimensionen der partiellen Differentialgleichungen der Kerne ver-

laufen dabei parallel zueinander. Die anderen beiden Dimensionen werden dadurch eli-

miniert, indem die Durchschnittstemperatur in Bezug auf die Ebene betrachtet wird.

Der Temperaturunterschied zweier Kerne ist somit ortsabhängig durch die Differenz der

Durchschnittstemperaturen gegeben. Zur Gesamtmodellierung ist noch die Beschrei-
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bung des gegenseitige thermischen Einflusses zwischen den Kernen erforderlich. Nach

dem Fourieschen Wärmeleitungsgesetz hängen die Wärmeflüsse an den Rändern jedes

Kerns vom Temperaturgradient an dem Rand ab, welcher basierend auf der in Kapitel

2 erhaltenen Lösung der dreidimensionalen PDE bestimmt wird. Es wird angenom-

men, dass an jedem Kern mindestens ein thermischer Sensor angebracht ist. Um die

Leistungsabgabe und den Temperaturunterschied zwischen den Kernen zu regeln wird

im weiteren ein optimaler Regler entworfen. In Abhängigkeit der auszuführenden Tasks

wird zuerst eine äquivalente initiale Leistungsabgabe für jeden Kern definiert. Diese wird

durch den optimalen Regler angepasst um die Temperaturdifferenz zwischen den Ker-

nen zu reduzieren unter Berücksichtigung der Leistungsabgabe der Kerne. Dafür wird

eine quadratische Kostenfunktion definiert, die sowohl die Temperaturdifferenz zwischen

den Kernen als auch die Abweichung der Leistungsabgabe zur initialen Leistungsabgabe

gewichtet. Mit Hilfe der Riccati Gleichung wird das optimale Regelungsproblem gelöst.

Der Ausgang des optimalen Reglers ist die Anpassung der initialen Leistungsabgabe.

Basierend auf der DVFS Technologie wird die Versorgungsspannung und die Arbeits-

frequenz entsprechend angepasst für jeden Kern. Kapitel 3 wird durch eine Simulation

abgeschlossen, die die Ergebnisse verifiziert.

Figure 7.2: 3D-Package-Struktur
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Die Modellierung des thermischen Verhaltens der fortgeschrittenen 3D-Packaging Chips

wird in Kapitel 4 diskutiert. Wie bereits erwähnt wird ein Mikrokanal-Kühlsystem ver-

wendet um die Temperatur zu reduzieren, siehe Figure 7.2. Das thermische Verhalten

der Flüssigkeit des Kühlsystems hat dabei entscheidenden Einfluss auf die Temperatur

der Dies. Außerdem tritt in Mikrokanälen das ’Thermal Wake’ Phänomen auf, was

die Beschreibung des Wärmeaustauschs komplex macht. Zur Beschreibung der Flu-

iddynamik der Flüssigkeit werden die Navier-Stokes Gleichungen verwendet. Durch

zusätzliche Anwendung der Wärmeleitungsgleichung von Fluiden wird das dynamische

thermische Modell hergeleitet, welches durch eine eindimensionale partielle Differential-

gleichung beschrieben wird. Um dieses System zu lösen wird ein einfacher Algorith-

mus angewandt. Basierend auf der thermischen dynamischen Charakteristik des Fluids

kann der Mikrokanal in Blöcke unterteilt werden, so dass das thermische Verhalten des

Mikrokanals durch ein System gewöhnlicher Differentialgleichungen beschrieben werden

kann. Genauso werden auch die Dies in Blöcke unterteilt wobei das thermische Verhal-

ten eines Blocks durch eine Wärmekapazität und thermische Widerstände approximiert

wird. Durch Zusammenfassung aller Blocks wird der gesamte Die durch ein R-C Net-

zwerk modelliert. Durch Kombination der Modelle des Dies und des Mikrokanals kann

das gesamte thermische Verhalten beschrieben werden. Im weiteren werden der Ein-

fluss von Geschwindigkeit und Temperatur der Kühlflüssigkeit auf die Performance des

Kühlsystems diskutiert.

Die Regelungsstrategie für das in Kapitel 4 beschriebene 3D-Packaging System wird in

Kapitel 5 entworfen. Es gibt zwei Ansätze um die Leistungsabgabe und Temperaturdif-

ferenz zwischen den Kernen zu regeln. Ein Ansatz ist die Anpassung der Versorgungs-

spannung und der Arbeitsfrequenz der Kerne mittels DVFS Technologie. Ein weiterer

Ansatz ist die Anpassung der Fluidgeschwindigkeit. Dabei wird berücksichtigt, dass mit

steigender Geschwindigkeit der konvektive Wärmeübergangskoeffizient zunimmt. Außer-

dem führt eine höhere Geschwindigkeit zu größeren Temperaturunterschieden zwischen

dem Fluid und den Dies, was einen positiven Einfluss auf die gewünschte Wärmekonvek-

tion hat. Jedoch tritt die Geschwindigkeit nichtlinear in dem Modell auf, was zu hoher

Komplexität sowohl für den Reglerentwurf als auch für die online Anpassung von Ver-

sorgungsspannung und Arbeitsfrequenz führt. Um die Komplexität zu reduzieren, wird

der Regler in einem zweistufigen Verfahren entworfen. Zuerst wird die Fluidgeschwindig-

keit durch einen einfachen logischen Algorithmus bestimmt. Dabei wird die Menge

der Tasks und die größte auftretende Temperatur der Dies berücksichtigt. Die Flu-

idgeschwindigkeit ist somit für die zweite Stufe der Regelung bereits festgelegt. Basierend

auf der Geschwindigkeitsanpassungsstrategie kann für jede mögliche Fluidgeschwindigkeit

das System durch ein lineares Modell beschrieben werden. Durch die Definition einer be-
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grenzten Anzahl möglicher Fluidgeschwindigkeiten wird das Gesamtsystem somit durch

ein geschaltetes System modelliert, wobei jedes Subsystem die Dynamik unter einer be-

stimmten Fluidgeschwindigkeit beschreibt. Durch den Algorithmus zur Bestimmung der

Fluidgeschwindigkeit ist somit auch das Schaltgesetz gegeben und somit bekannt. Als

Systemausgang wird der Temperaturvektor der Blöcke, die die Temperatur der Kerne

abbilden, und weiterer Blöcke (z.B. L2 Cache) gewählt. Die Auswahl der weiteren

Blöcke geschieht in Abhängigkeit des Die-Layouts, um die Schätzung der nicht gemesse-

nen Zustände mit ausreichender Genauigkeit sicherzustellen. Zu den nicht gemesse-

nen Zuständen gehören insbesondere die Fluidtemperaturen der Blöcke, die durch einen

geschaltetenH∞ Beobachter geschätzt werden. Zur Regelung basierend auf den geschätz-

ten Zuständen wird schließlich ein geschalteter modellprädiktiver Regler (engl. Model

Predictive Control, MPC) entworfen, um die Leistungsabgabe und Temperatur zwischen

den Kernen zu balancieren. Das entwickelte Modell und die vorgestellte Regelungsstrate-

gie mit einem geschalteten modellprädiktiven Regler sowie einem H∞ Beobachter wer-

den abschließend durch Simulation verifiziert. Dafür wird der 8 Kernprozessor IBM

Cell und das von IBM Research in Zusammenarbeit mit EPFL und ETHZ entwickelte

Mikrokanal-Kühlsystem als Beispiel genutzt. Die Simulationen zeigen die Eignung der

Methodik zum Temperatur- und Leistungsmanagement.



A Mathematical Background

A.1 Gauss Theorem

Define Ω is a subset of Rr (in the case of this work, r = 3 and Ω represents a volume in 3D

space), which is compact and has a piecewise smooth boundary S. If f is a continuously

differentiable vector field defined on a neighborhood of Ω, according to the Divergence

Theorem of Gauss shown in [SLS09, Ch. 6], one has

˚

Ω

∇fdΩ =

‹

S

(f · n)dS (A.1)

and equivalently
˚

Ω

∇2fdΩ =

‹

S

∂f

∂n
dS. (A.2)

A.2 Sturm-Liouville eigenvalue system

In the PDE equation (2.10) with the boundary conditions (2.13) - (2.16), the eigenvalue

and eigenfunction problem can be solved by the Sturm-Liouville theory. A regular Sturm-

Liouville problem has the form

(
p(x)y′(x)

)
y′(x) +

(
q(x) + λ2r(x)

)
y(x) = 0, a < x < b

c1y(a) + c2y
′(a) = 0 (A.3)

d1y(b) + d2y
′(b) = 0

where p(x), q(x) and r(x) are specific function and λ is a parameter. (c1, c2) 6= (0, 0)

and (d1, d2) 6= (0, 0). p(x), p′(x), q(x) and r(x) are continuous on [a, b]. p(x) and r(x)

are positive on [a, b]. A nonzero solution of y(x) is called an eigenfunction while the

corresponding value of λ is eigenvalue. The eigenvalues and eigenfunctions have the

following characteristics,
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1. There exists infinite number of eigenfunctions and eigenvalues, and

0 ≤ λ0 < λ1 < λ2... (A.4)

2. Every pair of eigenfunctions (ym(x), yn(x)) are orthogonal with respect to the

weight function r(x), i.e.
ˆ b

a

ym(x)yn(x)r(x)dx = 0. (A.5)

According to the theory of separation of variables [Pol01, Sup. B], a 3D PDE

system shown in (2.10) with boundary conditions (2.12) can be sperated to x, y,

z and t, four independent parts, which is

T (x, y, z, t) = Tx(x)Ty(y)Tz(z)Tt(t) (A.6)

The eigenvalue system shown in (2.17) with boundary condition (2.18) is the eigen-

value system of the 3D system, which can also be separated in x-, y- and z-direction

independently. In this case, p(x), q(x) and r(x) are equal to 1, c1, d1 is related to

hk while c2 and d2 are equal to K.

A.3 Verification of the orthogonality of the

eigenfunctions

Here we define the scalar product of two 3D functions as

(f1, f2) ≡

˚

Ω

f1(x, y, z)f2(x, y, z)dxdydz (A.7)

Suppose the a pair of eigenfunctions are φa1b1c1(x, y, z) and φa2b2c2(x, y, z), where a1b1c1
and a2b2c2 are two indices of the eigenvalues and eigenfunctions satisfy the equation

∇2φabc(x, y, z) + λ2
abcφabc(z, y, z) = 0, (A.8)

with boundary condition

K
∂φabc(x, y, z)

∂n
+ hkφabc(x, y, z) = 0. (A.9)

We can get

(λ2
a1b1c1

− λ2
a2b2c2

)

˚

Ω

φa1b1c1(x, y, z)φa2b2c2(x, y, z)dxdydz

=

˚

Ω

[∇2φa1b1c1(x, y, z)−∇2φa2b2c2(x, y, z)]dxdydz. (A.10)
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Then, according to the Gauss theorem A.1, one has
˚

Ω

φa1b1c1(x, y, z)φa2b2c2(x, y, z)dxdydz (A.11)

=
1

(λ2
a1b1c1

− λ2
a2b2c2

)

6∑

k=1

¨

Sk

[φa1b1c1

∂φa2b2c2(x, y, z)

∂nl

− φa2b2c2

∂φa1b1c1(x, y, z)

∂nk

]dsk.

According to (A.9), we can get that if m 6= p, one has
˚

Ω

φm(x, y, z)φp(x, y, z)dxdydz = 0. (A.12)

If m = q, then applied the L’Hôspital’s rule on (A.11), we have
˚

Ω

φa1b1c1(x, y, z)φp(x, y, z)dxdydz

=
1

2λa1b1c1

6∑

k=1

¨

Sk

∣∣∣∣∣∣∣

(∂φ(x,y,z)
∂λ

)λ=λa1b1c1
(∂

2φ(x,y,z)
∂nk∂λ

)λ=λa1b1c1

φa1b1c1(x, y, z)
∂φa1b1c1

(x,y,z)

∂nk

∣∣∣∣∣∣∣
dsk

=
1

Ga1b1c1

6= 0, (A.13)

which shows that each possible pair of eigenfunctions are orthogonal[CZ95, App. A].

A.4 L’Hôspital’s rule

According to [Tay52], for two functions f(x) and g(x), which are differentiable on an

open interval I, and a ∈ I. If

lim
x→a

f(x) = lim
x→a

g(x) = 0 or ±∞, (A.14)

f ′(x)

g′(x)
exits and g′(x) 6= 0, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. (A.15)

A.5 Newton-Raphson method

The aim of applying the Newton-Raphson method [MÖ94] is to solve the equation

K2λ2
zc − h1h2

Kλzc(h1 + h2)
= cot(λzcLz). (A.16)
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The curves of the left hand side and right hand side are shown in Figure A.1. As

the period of the right hand side is equal to π/z1, the equation has one root in each

period. Apply the Newton-Raphson method, with the initial guess of each root being

πc/z1 + 0.4π/z1, and the interactive is given by

λzcn+1 = λzcn −
f(λzcn)

f ′(λzcn)
, (A.17)

where

f(λzcn) =
K2λ2

zc − h1h2

Kλzc(h1 + h2)
− cot(λzcz1). (A.18)

Figure A.1: Solution of eigenvalue

A.6 Definition of a domain

According to the physical fact, temperature variation is continuous and the heat con-

duction process is also continuous in the system shown in Chapter 2. Based on the
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semigroup theory in [CZ95, Sec. 2.1], the operator A and the domain of A are defined

as follows.

ATa,i(z, t) =
d2Ta,i(z, t)

dz2

D(A) =

{
Ta,i(z, t) ∈ L 2(0, Tam)

∣∣∣∣ Ta,i(z, t),
dTa,i(z, t)

dz
are absolutely continuous

d2Ta,i(z, t)

dz2
∈ L 2(0, Tam) and (A.19)

dTa,i(Lz, t)

dz
= −h1Ta,i(Lz, t).

dTa,i(0, t)

dz
= h2Ta,i(0, t)

}

In the set L 2(0, Tam), Tam is a constant defined at least as big as the maximum over-

temperature of the cores. As in the MCP system, the power is bounded and the system

is not adiabatic, there exists an upper bound of the over-temperature.

A.7 Solve the Riccati equation (3.44)

As described in Chapter 2, the PDE equation can be approached by a group of ODEs.

The number of the ODE equation depends on the eigenvalue and eigenfunction system

and the requirement of computing accuracy. Therefore, the Riccati equation (3.44) can

be solved by applied the ODEs to approach this equation.

The PDE model (2.10) with the boundary conditions (2.13)-(2.16) can be approached

by a group of ODEs with the following form

dT abc(t)

dt
+ λ2

abc

K

σρ
T abc(t) =

1

σρ

N∑

i=1

qabc,i(t) +
K

σρ

6∑

k=1

¨

Sk

φabc(sk)

K
T∞(sk, t)dsk. (A.20)

Likewise, the system model (3.30) can be approached by a group of ODEs with the form

Ṫ a,c(t) = AzcT a,c(t) +

Ld∑

l=1

Bzc,lP (t− l · td) (A.21)

where, Ṫ a,c ∈ R
N×1 is the integral transform of Ṫ a,c with the transform is defined as

f zc(t) =

ˆ Lz

0

φzc(z)f(z, t)dz (A.22)
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and

Azc =diag

(
λ2
zc

K

σρ
, λ2

zc

K

σρ
, ..., λ2

zc

K

σρ

)

︸ ︷︷ ︸
N

, (A.23)

Bzc,l =diag

(
1

σρ

Ld∑

l=1

γ1l(z),
1

σρ

Ld∑

l=1

γil(z), ...,
1

σρ

Ld∑

l=1

γNl(z)

)

︸ ︷︷ ︸
N

, (A.24)

with γ l(z) is the integral transform of γ l(z) defined by (A.22).

Assume the system is approached by n eigenvalues and eigenfunctions, i.e. c ∈ [0, ..., n−

1], then the system can be approached as




Ṫ a,0(t)

...

Ṫ a,n−1(t)



=




Az0

. . .

Az(n−1)







T a,0(t)

...

T a,l−1(t)



+

Ld∑

l=0




Bz0,l

...

Bz(n−1),l



P (t− l · td),

(A.25)

with the measurement output and the regulated output are

ξ1(t) = Co

[
Ṫ a,0(t), ..., Ṫ a,n−1(t)

]T
(A.26)

ξ2(t) = Cr

[
Ṫ a,0(t), ..., Ṫ a,n−1(t)

]T
(A.27)

where Co and Cr can be obtained from the inverse transform as described in Chapter 2.

Based on the approached system (A.25) and (A.26), the PDE Riccati equation (3.44)

can be solved as an ODE Riccati equation.

A.8 Schur complement

For a symmetrical matrix S, and

S =




S11 S12

ST
12 S22


 (A.28)

where S11 ∈ R
r×r, the following inequations are equivalent,
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1. S < 0;

2. S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

3. S22 < 0, S11 − S12S
−1
22 S

T
12 < 0,

see [BEFB94, Sec. 2.1].

A.9 Matrix inversion Lemma

The Matrix inversion Lemma has a form [Dun44] that

(A+USV )−1 =A−1 −A−1US(S + SV A−1US)−1SV A−1, (A.29a)

(A−US−1V )−1 =A−1 +A−1U (S − V A−1U )−1V A−1, (A.29b)

where A ∈ R
n×n, U ∈ R

n×r, S ∈ R
r×r and V ∈ R

r×n are matrices.



B Fluid dynamical and thermal

physical background

B.1 Introduction to fluid parameters

The following introduction to the three parameters is from [Geb71].

Reynolds number is a dimensionless number that gives a measure of the ratio of

inertial forces to viscous forces and consequently quantifies, the ratio, i.e.

Re =
ρV Dh

µ
, (B.1)

where V [m/s] is the mean velocity, Dh [m] is the hydraulic diameter, and

Dh = 2WchHch/(Wch +Hch). (B.2)

Prandtl number is a dimensionless number, which is defined as the ratio of momentum

diffusivity (kinematic viscosity) to thermal diffusivity, i.e.

Pr =
Cfµ

Kf

. (B.3)

The Prandtl number is about 7 at 20℃.

Nusselt number is the ratio of heat convection to heat conduction across the boundary

in the heat transfer processor at a boundary with fluid, i.e.

Nu =
hfLf

Kf

(B.4)

where hf is the convective heat transfer coefficient, Lf is the channel characteristic length,

and Kf is the thermal conductivity of the fluid. In practical systems, Nu can be used to

get hf, and the possible methods to get Nu can be found in [SL78, HKG99, QM02].
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B.2 Body forces and surface forces

According to the description in [SB01], for a fluid element, two types of forces act on

it, which are called body force and surface force. Body forces (see Figure B.1) act

throughout the body of the fluid element. These forces are non-contact forces and

distributed over the entire mass or volume of the element. Gravity, inertial force and

electromagnetic force are body forces. Body forces (dF b) which act on the fluid element

is proportional to the volume of the element (dV ).

Figure B.1: Body force

Surface forces (see Figure B.2) are the forces which exert on the fluid element surface.

These forces are contact forces and only appear on the surface of a fluid element. The

normal force and shear force are surface force. The normal force is along the normal of

an area while the shear force is along the plane of the area. Surface forces dF s which

act on element dS depend on the position of the volume and the area.

Stress tensor is a kind of surface force which contains both normal force and shear force.

In Figure 4.5, τxy, τxz, τyx, τyz, τzx and τzy are shear force while τxx, τyy and τzz are

normal force.
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Figure B.2: Surface force



C SIMPLE alogirthm

The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm [Pat80]

can be used to solve the 3D pressure, velocity and temperature distribution. To employ

this algorithm, first a grid should be designed and the system should be discretized

based on the grid network. Taken a 1D static state PDE for example, the homogeneous

equation of the momentum conservation is

ρfu
∂u

∂x
= µ

∂2u

∂x2
(C.1)

Figure C.1: The grid-point for a one-dimensional problem [Pat80]

Setting the grid as shown in Figure C.1 and integrating (C.1) from the point w to e, one

has

(ρfu)eue − (ρfu)wuw = µ

(
du

dx

)

e

− µ

(
du

dx

)

w

. (C.2)

Considering ue and uw can be achieved based on the value of u(i− 1), u(i) and u(i+1),

then one has

apu(i) = aeu(i+ 1) + awu(i− 1), (C.3)

to get ae and aw. An interpolation algorithm needs to be employed. Meanwhile, in order

to get a convergent result, ae and aw must be non-negative. The power-law scheme
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introduced in [Pat80] has been proved to be a feasible solution. Defining

F = ρfu, D =
µ

∆x
,

the power-law expressions for ae is

ae = Demax

(
0,
(
1−

0.1 |Fe|

De

)5
)
+max(0,−Fe), (C.4)

where Fe and De are F and D in the positive x-direction. This solution is the upstream

difference scheme, which considers the flow direction and the negative ae and aw can be

avoided. The details can be found in [Pat80].

Figure C.2: The staggered grid network (top view)

A difficulty of the SIMPLE algorithm is that the pressure distribution in (4.7) is un-

known. If we calculate the velocity and pressure distribution with the same grid, it will

not contain the composition of forces on each point. The momentum equations are not

effected by the pressure distribution, and this may lead to an undesirable solution. To

avoid this problem, a staggered grid is a possible solution, which means that the pressure



121

and velocity are not calculated at the same grid points as shown in Figure C.2 [Pat80].

Figure C.2 is the vertical view of the grid (in a fixed z-plane) and Figure C.3 is one

calculation block of the 3D grid. In this grid network, the velocity u is calculated at the

plane which is normal to the x-direction while v at the plane normal to the y-direction

and w at the plane normal to the z-direction.

Figure C.3: The staggered grid network (3D)

Before giving out the algorithm, for a general distribution ϕ, define the w,e,s,n,b and t

direction as shown in Figure C.4.

Figure C.4: The define of directions

The SIMPLE algorithm can be summarized in the following steps from [Pat80].
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1. Guess a pressure field p∗.

2. Solve the momentum conservation equation and calculate u∗,v∗,w∗, the main algo-

rithm is as follows

apu
∗(i, j, l, t) = awu

∗(i− 1, j, l, t) + aeu
∗(i+ 1, j, l, t) + asu

∗(i, j − 1, l, t)

+anu
∗(i, j + 1, l, t) + abu

∗(i, j, l − 1, t) + atu
∗(i, j, l + 1, t) + bp

+Sp(p
∗(i− 1, j, l, t)− p∗(i, j, l, t)), (C.5)

where ∗ indates the guessed velocity and pressure. aw, ae, as, an, ab, at are the

coefficients which indicate the relationship between the estimated point and the

adjacent points, with

aw = Dw max

(
0,
(
1−

0.1 |Fw|

Dw

)5
)
+max(0, Fw)

ae = De max

(
0,
(
1−

0.1 |Fe|

De

)5
)
+max(0,−Fe)

as = Ds max

(
0,
(
1−

0.1 |Fs|

Ds

)5
)
+max(0, Fs)

an = Dnmax

(
0,
(
1−

0.1 |Fn|

Dn

)5
)
+max(0,−Fn)

ab = Dbmax

(
0,
(
1−

0.1 |Fb|

Db

)5
)
+max(0, Fb)

at = Dtmax

(
0,
(
1−

0.1 |Ft|

Dt

)5
)
+max(0,−Ft)

The water is considered as an ideal fluid, therefore, ιx, ιy and ιz are assumed to be

0. bp is the term of the influence on the state of the last calculation time instant.

bp =
a0p

u(i, j, l, t−∆t)
(C.6)

where

a0p =
ρ∆x∆y∆z

∆t
,

∆t is the calculation time interval. Sp(p
∗(i − 1, j, l) describes the pressure force

influence on u(i, j, l, t) in the control volume and Sp is the area where the pressure

difference has influence, therefore

Sp = ∆y∆z, (C.7)

and

ap = aw + ae + as + an + ab + at + a0p. (C.8)



123

For the pressure p, only the two points in x-direction between u(i, j, l, t) need to

be considered, as u is the velocity in x-direction.

3. Solve the pressure correction equation, and achieve the pressure correction value.

Suppose the pressure field has the following form

p(i, j, l, t) = p∗(i, j, l, t) + p′(i, j, l, t), (C.9)

where p′ is the pressure correction term. The pressure correction is based on the

mass conservation equation (4.2). Discretizing this equation, one has

ρ
(
u(i+ 1, j, l)− u(i, j, l)

)
∆y∆z + ρ(v(i, j + 1, l)

−v(i, j, l))∆z∆x+ ρ
(
w(i, j, l + 1)− w(i, j, l)

)
∆x∆y = 0. (C.10)

Then the velocity u has the form

u(i, j, l, t) = u∗(i, j, l, t) +
Sp

ap
(p′(i, j, l, t)− p′(i− 1, j, l, t)). (C.11)

Therefore, substituting the velocity in x-, y- and z-direction into the discrete mass

conservation equation (C.10), one has the discretiztion pressure correction term as

appp
′(i, j, l, t) = aqwq

′(i− 1, j, l, t) + aqeq
′(i+ 1, j, l, t) + aqsq

′(i, j − 1, l, t)

+aqnq
′(i, j1, l, t) + aqbq

′(i, j, l − 1, t) + aqtq
′(i, j, l + 1, t)

+bp, (C.12)

where

apw =
Aw

aue
∆y∆z,

ape =
Ae

auw
∆y∆z,

aps =
As

avs
∆z∆x,

apn =
An

avn
∆z∆x,

apb =
Ab

awb

∆x∆y,

apt =
At

awt

∆x∆y,

app = apw + ape + aps + apn + apb + apt,

bp = (u∗(i, j, l, t)− u∗(i+ 1, j, l, t))∆y∆z,

+(v∗(i, j, l, t)− v∗(i, j + 1, l, t))∆z∆x,

+(w∗(i, j, l, t)− w∗(i, j, l + 1, t))∆x∆y,
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and define Sw, Se, Ss, Sn, Sb and St

Sw = Se = ∆y∆z,

Ss = Sn = ∆z∆x,

Sb = St = ∆x∆y.

4. Correct u, v and w based on the correction term of the pressure. u is corrected

according to (C.11), and v, w are corrected according to

u(i, j, l, t) = u∗(i, j, l, t) +
Sw

aw

(
p′(i− 1, j, l, t)− p′(i, j, l, t)

)
, (C.13a)

v(i, j, l, t) = v∗(i, j, l, t) +
Ss

as

(
p′(i, j − 1, l, t)− p′(i, j, l, t)

)
, (C.13b)

w(i, j, l, t) = w∗(i, j, l, t) +
Sb

ab

(
p′(i, j, l − 1, t)− p′(i, j, l, t)

)
. (C.13c)

5. Solve the temperature distribution problem based on equation (4.20), and calculate

the water viscosity.

6. Treat the pressure field p shown in equation (C.12) as the guessed pressure field p∗

and go back to step 2, then repeat the whole procedure, until a converged solution

of p, u, v, w and Tf is achieved.



D Nomenclature

mathematical definitions

n outward normal of a surface

∇ gradient vector
∂

∂x
+

∂

∂y
+

∂

∂z

∇2 Laplace operator
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

t time variable

tc [s] time constant of a system

ts [s] sample period

(x, y, z) triangular rectangular coordinates system

< a, b > inner product aT · b

L (X,Y ) bounded linear operator from Hilbert space X to Hilbert space Y

⌊x⌋ floor i.e. ⌊x⌋ is the largest integer smaller than or equal to x ∈ R

D

Dt
(·) material derivative,

D

Dt
(·) =

d(·)

dt
+ (v)∇(·), with v is the velocity

∂(·)

∂n
gradient

descriptions of the die

N number of cores

Pi [W] power of core i

Vddi [V] supply voltage of core i

fi [Hz] working frequency of core i
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Q [J] heat/energy

qi [W/m3] internal heat generation function of core i

S [m2] total closed surface of a volume

Sk [m2] kth surface of the die

nk normal vector on Sk

Lx, Ly, Lz [m] size of the die in x-, y- and z-direction

Ω [m3] total die volume

T (x, y, z, t) [K] temperature distribution in the die

T0(x, y, z) [K] initial temperature distribution function of the die

T∞ [K] ambient temperature

qi(x, y, z, t) [W/m3] internal heat generation function per unit time and per

unit volume of core i

K [W/(m ·K)] thermal conductivity of the die

σ [J/(kg ·K)] specific heat capacitance of the die

ρ [kg/m3] density of the die

h [kg/(m2 ·K)] convective heat transfer coefficient

hup[kg/(m
2 ·K)] convective heat transfer coefficient of the primary

heat escaping path

hdown[kg/(m
2 ·K)] convective heat transfer coefficient of the second

heat escaping path

descriptions of the eigenvalue and eigenfunction system

a, b, c index of eigenvalue in x-, y- and z-direction

∈ {0, 1, 2, ....}

φxa, φyb, φzc eigenfunctions in x-, y- and z-directions
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φabc(x, y, z) eigenfunctions of die

λxa, λyb, λzc eigenvalues in x-, y- and z-directions

λabc eigenvalues of die

descriptions of the 1D PDEs and controller

Φ [W/m2] heat flux

qex,ij [W/m3] energy generation function of core i due to the heat exchange

with core j

T a [K] die average temperature defined by Definition 3.1

Ta state space, which is Hilbert space

ξ1 measurement output

Ξ1 measurement output space, which is Hilbert space

ξ2 control output

Ξ2 control output space, which is Hilbert space

P system input space, which is Hilbert space

A system operator

B input operator, L (P,Ta)

C1 measurement output operator, L (Ta,Ξ1)

C2 regulated output operator, L (Ta,Ξ2)

P the input vector

Pt target power consumption vector

Pc the control input vector, and P = Pt + Pc
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descriptions of the micro-channel

V s[m/s] liquid velocity

(u, v, w) [m/s] the liquid velocity in x-, y- and z-direction

uin [m/s] channel inlet liquid velocity

p [N/m2] average pressure

ι [N/m2] body force

τii [N/m
2] normal stress

τij [N/m
2] shear stresses

ρf [kg/m
3] density of the liquid

hf [kg/m
3] convective heat transfer coefficient between the liquid and its

surrounding

Kf [W/(M ·K) ] thermal conductivity of the liquid

σf [J/(kg ·K) ] specific heat capacity of the liquid

µ [Pa · s] water viscosity

T f [K] temperature vector of the liquid

Tin [K] channel input liquid temperature

Wch [m] width of the channel

Hch [m] height of the channel

De [m] channel hydraulic diameter

Lf [m] length of the fluid entrance region

Lt [m] length of the thermal entrance region

Pf [W] heat flow

mf [kg/s] mass flow

H [J/kg] specific enthalpy

H [J] enthalpy
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Pnet [W] work per time unit/ power

g [m/s2] gravitational acceleration

∆Li [m] length of the channel block in x-direction

Re Reynolds number

Pr Prandtl number

Nu Nusselt number

descriptions of the R-C model

R [K/W] thermal resistance

C [J/K] thermal capacitance

T d [K] temperature vector of the dies

descriptions of the 3D stacked package model

T (t) system state vector T (t) =
[
T T

d (t),T
T
f (t)

]T

d(t) unknown input vector

A system matrix

B(·) input matrix

C(·) output matrix

Lδ(k) observer gain matrix

δ(k) switching law

(·)d,· matrix with a index ’d’ is for discrete model

(̂·) describe relative to prediction

(̌·) describe relative to the new system combining system

and observer error dynamic
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abbreviation

MCP multi-core processor

1D one dimensional

2D two dimensional

3D three dimensional

I/O input/output

CMOS Complementary metal-oxide-semiconductor

PMOS P-type mental-oxide-semiconductor

NMOS N-type mental-oxide-semiconductor

PDE partial differential equation

ODE ordinary differential equation

R-C thermal resistance and capacitance

TSV through-Silicon via

MCLCS micro-channel liquid cooling system

MPC model prediction control

SIMPLE Semi-implicit method for pressure linked equations
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