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Abstract

A large class of estimators including maximum likelihood, least squares and M -
estimators are based on estimating functions. In sequential change point detection
related monitoring functions can be used to monitor new incoming observations
based on an initial estimator, which is computationally efficient because possible
numeric optimization is restricted to the initial estimation. In this work, we give
general regularity conditions under which we derive the asymptotic null behavior
of the corresponding tests in addition to their behavior under alternatives, where
conditions become particularly simple for sufficiently smooth estimating and moni-
toring functions. These regularity conditions unify and even extend a large amount
of existing procedures in the literature, while they also allow us to derive moni-
toring schemes in time series that have not yet been considered in the literature
including non-linear autoregressive time series and certain count time series such
as binary or Poisson autoregressive models. We do not assume that the estimat-
ing and monitoring function are equal or even of the same dimension, allowing for
example to combine a non-robust but more precise initial estimator with a robust
monitoring scheme. Some simulations and data examples illustrate the usefulness
of the described procedures.
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1 Introduction

1 Introduction

In recent years an increasing number of data sets are collected automatically or without
significant costs in such a way that the observations arrive steadily. Examples include
financial data sets, e.g., in risk management (Andreou and Ghysels [1]) or CAPM models
(Aue et al. [3]) as well as medical data sets, e.g., monitoring intensive care patients (Fried
and Imhoff [14]). More applications can be found in different areas of applied statistics.
The consideration of such data sets leads to sequential statistical analysis, which is also
called online monitoring.

With each new observation the question arises whether the model is still capable of
explaining the data. If this is not the case an alarm needs to be raised, for example the
financial models might not be anymore appropriate or the condition of the patient in
intensive medical care might have changed.

Chu et al. [7] introduced a new way of sequential testing, which allows to control the
asymptotic α-error if no changes occur while having asymptotic power one under alterna-
tives, which has then be pursued by others (confer Section 6 below for many examples).
This is in contrast to classical sequential change-point procedures which usually solve an
optimization problem under restrictions in a fully parametric setup such as minimizing
the average delay time of the alarm under restrictions on the lower bound of the average
time until alarm if no change occurs. This latter approach has a different ideology behind
it and usually leads to tests that will reject eventually even if nothing occurs but with
the merit of having a small detection delay.

In the approach of Chu et al. [7] the existence of a historic data set without change is
assumed. In applications such a data set almost always exists as at least some data needs
to be collected before any reasonable statistical inference can take place. In the context
of sequential change-point tests, this data set is also used to estimate the parameter of
interest which is the parameter that we want to monitor for changes as well as some
additional parameters which influence the asymptotics such as the variance. Asymptotic
theory can then be derived even for a possibly infinite monitoring horizon by letting the
length of this historic data set grow to infinity. Due to the asymptotic framework it is
not necessary to make any additional parametric assumptions for example on the error
distribution of an autoregressive time series and one can even deal with misspecification
confer Section 6.3 below.

Using this same idea, we will then extend the existing literature by deriving a general
construction principle for such sequential change-point tests based on estimating func-
tions in Section 2. In Sections 3 and 4 we will then give regularity conditions under
which we can derive the asymptotic distribution under the null hypothesis as well as the
asymptotic power under alternatives. This is very general and does not require any partic-
ular parametric setup. For sufficiently smooth estimating and monitoring functions these
regularity conditions essentially reduce to certain moment conditions and an appropriate
weakly dependent structure as illustrated in Section 5. In Section 6 we will then give
relevant examples of time series and estimating functions which fulfill these regularity
conditions. This includes examples already discussed in the literature, for which the class
of applicable tests is somewhat extended by the very general framework considered in this
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2 Sequential testing based on estimating functions

paper. Relevant new examples include tests for nonlinear autoregressive time series in ad-
dition to tests for certain count time series. In Section ?? we give some simulations for
the new examples considered in this paper as well as a new application to data. Finally,
the proofs are given in Section 7.

2 Sequential testing based on estimating functions
sec_test

In this section, we explain the general construction principles of sequential change-point
tests, whose asymptotics will then be derived in the following sections. For readers, who
are not already familiar with this methodology it may be helpful to have the following
two examples in mind:

mean Change Model: Xt = µ+ et,

where {et} is a short-range dependent time series, or

non-linear autoregressive time series of order 1: Xt = fθ(Xt−1) + et,

where {fθ : θ ∈ Θ} is a suitable function class leading to well defined stationary time
series and {et} is either i.i.d./g or allows for some additional time series structure. In
this situation, i.i.d. errors correspond to the correctly specified case, which is usually
considered in the literature. An additional time series structure of {et} arises for example
in the misspecified case, where we merely use the parametric model fθ to approximate a
nonparametric function f in order to construct change-point tests. Such a semi-parametric
approach will then only be able to detect changes for which the best approximating
parameters before and after the change are different. A similar idea in the a posteriori
setup has been considered by Kirch and Tadjuidje Kamgaing [23].

The following derivation is not restricted to the above two examples but it may be
helpful to keep them in mind. Before we can start monitoring, we need to have some
historic data which is stationary and does not contain a change. This is called the ’non-
contamination assumption’ by Chu et al. [7]. This assumption is usually fulfilled in
applications, since statistical inference, such as prediction amongst other, is typically
only carried out after a model has been constructed which describes existing data well
enough. In this same spirit, we will use this historic data set to estimate the unknown
parameter of interest, before starting to monitor future incoming observations deciding
whether this same parameter still describes the new observations well enough. Because we
allow this monitoring to continue for ever (in the open end procedure below) if no alarm is
raised, it is important to understand that the asymptotic considerations in the following
two section are obtained with respect to the length of the historic data set increasing
to infinity, which means that the estimator used in the monitoring becomes increasingly
accurate.

A large class of estimation procedures are based on estimating functions sometimes
also called objective function in the generalized method of moments framework, where an
estimator is obtained as the solution of the following system of equations:

m∑
t=1

G
(
Xt, θ̂m

)
!

= 0, (2.1) eq_est
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2 Sequential testing based on estimating functions

where Xt, t = 1, . . . ,m, are the historic observations and G is a suitable estimating func-
tion with values in Rd, where d is the number of unknown parameters in the parametric
representation of interest. The observations Xt are allowed to be multivariate, which is
not only of importance in a truly multivariate setup but also e.g. in a regression situation
with exogenous variables or even for an autoregressive setup of order p, where typically Xt

consists of the past p elements of the autoregressive time series (confer Section 6 below).
For reasonable estimating functions and under suitable regularity conditions, these esti-
mators are consistent (as m→∞) for the true parameter θ0, which fulfills EG(X1, θ0) = 0
in the correctly speci.i.d./gcase and for the best approximating parameter θ0 in the sense
of EG(X1, θ0) = 0 under misspecification. Standard examples include (weighted) least-
squares, ML- or M-estimation.

After having estimated the unknown parameters in the model, we start monitoring new
incoming observations for a change in those parameters. To this end we use a monitoring
function H, for which EH(X, θ0) = 0 with θ0 defined by EG(X, θ0) = 0. This monitoring
function can be the same or a different estimating function but can also be of lower
dimension d′. In the latter case restriction apply which alternatives are detectable by the
corresponding sequential tests with the merit of increased power for some alternatives.
The tests discussed in the literature so far, either use H = G or the function that gives
the estimated residuals in the respective model. The latter is often, but not always, part
of the estimating equations given by G.

The monitoring statistic is based on

S(m, k) =
m+k∑
t=m+1

H(Xt, θ̂m),

where θ̂m is the estimator from (2.1) based only on the historic data set X1, . . . , Xm. If

no change occurs EH(Xt, θ̂m) ≈ EH(Xt, θ0) = 0 for all t showing that, S(m, k) should be
small. On the other hand if a change (in the best approximating parameter) occurs, then

EH(Xt, θ̂m) ≈ EH(Xt, θ0) 6= 0 for t > k∗, where k∗ denotes the change point. Hence,
under alternatives, S(m, k) will eventually have a trend away from 0. We will formalize
these rather vague statements by deriving exact asymptotics in Sections 3 and 4. Since
S(m, k) is possibly a vector, the corresponding monitoring scheme will be based on a
quadratic form, hence we reject as soon as

w2(m, k)S(m, k)AS(m, k) > c, (2.2) eq_reject

whereA is a suitable symmetric positive (semi-)definite matrix, which can also be replaced
by a consistent estimator. Here, c is a critical value, which can be derived from the
asymptotics as discussed in Section 3, and w(m, k) is a suitable weight function. As soon
as (2.2) holds, we stop monitoring and reject the null hypothesis. Otherwise we continue
monitoring.

We distinguish between open-end procedures, where we continue monitoring possibly
to infinity, and closed-end procedures where we stop monitoring after a fixed number
of observations N(m) if the null hypothesis has not been rejected by then.
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3 Null Asymptotics for sequential change-point tests

The statistical properties of this monitoring scheme can be described by the following
stopping rule:

τ(m) =

inf{1 6 k < N(m) : w2(m, k) S(m, k)AS(m, k) > c},

∞, if w2(m, k)S(m, k)AS(m, k) < c, for all 1 6 k < N(m),

where N(m) = ∞ in case of an open-end procedure and N(m) = Nm + 1, N > 0, for
the closed-end procedure. If τ(m) = ∞ we did not reject the null hypothesis during the
observation period. Otherwise, it tells us at what time the null hypothesis was rejected
and the procedure stopped.

Unlike in classical statistics the sample size is random and possibly infinite so that it
is not suitable for asymptotics. As already mentioned the solution proposed by Chu et
al. [7] is to use asymptotics with respect to the length m of the historic data set. Since
the historic data set is used for the parameter estimation of our model, this means in

particular that this parameter estimation becomes better and better as θ̂m
P−→ θ0.

As in classical statistics our aim is to choose c such that we control the (asymptotic)
α-error, i.e.

lim
m→∞

PH0 (τ(m) <∞) = α. (2.3) eq_stop_null

Theorem 3.1 shows how to choose the critical value c such that (2.3) holds, i.e. such that
the procedure has asymptotic size α. Theorem 4.1 proves that this monitoring procedure
detects a large class of alternatives with probability 1 asymptotically, i.e.

lim
m→∞

PH (τ(m) <∞) = 1. (2.4) eq_stop_alt

The choice of w(m, k) influences the detection delay in dependence of the location of the
change.

The detection power in such procedures will largely be influenced by the choice of es-
timating and monitoring function. The more precise the estimators are obtained from
the estimating functions respectively the clearer the monitoring function can distinguish
between different parameter values, the better the detection power of the correspond-
ing procedure will be. In this sense, using maximum likelihood scores will typically be
preferably to using least squares scores. On the other hand, different properties such as
robustness properties will also carry over to the corresponding monitoring scheme leading
to situations, where a more robust but less precise estimator can be preferable.

3 Null Asymptotics for sequential change-point tests
sec_null

In this section, we derive the null asymptotics of the above sequential test statistics under
certain regularity conditions on the estimating function and the observed process. In
Section 6, we will then give examples where those regularity conditions are fulfilled.

First, we need to have certain regularity conditions of the weight function w(m, k).
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3 Null Asymptotics for sequential change-point tests

ass_weights A. 1. a) The weight function is in the following class

w(m, k) = m−1/2w̃ (m, k) , (3.1) eq_bound_closed

where w̃(m, k) = ρ(k/m) for k > am with am/m → 0 and w̃(m, k) = 0 for k < am.
The function ρ is continuous,

lim
t→0

tγρ(t) <∞ for some 0 6 γ <
1

2
.

b) For the open end procedure we additionally need

lim
t→∞

tρ(t) <∞.

In particular, the conditions are fulfilled for

w(m, k) = m−1/2

(
1 +

k

m

)−1(
k

m+ k

)−γ
(3.2) eq_standard_weights

with 0 6 γ < 1/2, which is the standard weight function proposed in the literature,
because it leads to a nice asymptotic distribution for the open-end procedure (see Theo-
rem 3.2 below).

Condition A.1 a) allows for w(m, k) = 0 if k 6 logm without changing the asymptotic
distribution. This may be useful as otherwise it can happen, that the false alarm rate
right after monitoring starts is too high due to too few observations in S(m, k).

The choice of weight function essentially determines the detection delay of the proposed
procedure in dependence of the location of the change point. This is due to the fact
that we stop if the partial sum process S(m, k)AS(m, k) crosses the boundary function
cw(m, k)−1 (for w(m, k) 6= 0) for the first time. If a second boundary function is e.g.
below the first one in the region after the change point, detection will be quicker. Since
two different boundary functions controlling the size at the same level in the sense of
(2.3) cannot be such that one is always below the other, this quicker detection for certain
change locations leads to longer detection delay for other change locations.

ass_1 A. 2. The following approximation holds under H0, where N(m) is the possibly infinite
observation horizon:

sup
16k<N(m)

w(m, k)
∥∥∥ m+k∑
i=m+1

H(Xi, θ̂m)

−

(
m+k∑
j=m+1

H(Xj, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj, θ0)

)∥∥∥ = oP (1)

for some θ0, where B(θ0) depends on the distribution of X1 as well as θ0. The dimension
of the matrix B(θ0) guarantees that H and B(θ)G are of the same dimension.
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3 Null Asymptotics for sequential change-point tests

The additive term 1
m
B(θ0)

∑m
j=1 G(Xj, θ0) accounts for the additional fluctuation of

the first sum caused by the use of the estimator θ̂m rather than the best approximating
parameter θ0. For sufficiently smooth estimating and monitoring functions, this condition
can be derived by a Taylor expansion under weak moment conditions with

B(θ0) = E∇H(X0, θ0) (E∇G(X0, θ0))−1 ,

where ∇ is the gradient for a vector-valued function F = (F1, . . . , Fd)
T : Rd → Rd defined

by ∇F = (∇F1, . . . ,∇Fd) and ∇F1 denotes the standard gradient. Details are given
in Section 5 below. In particular, whenever H is a linear combination of G1, . . . , Gd,
then B(θ0)G(X, θ0) = H(X, θ0). This includes the standard situations that the same
estimating functions are used or a projection onto one particular component of the esti-
mating functions (such as estimated residuals for many but not all estimating functions).
Examples will be discussed in detail in Section 6.

Many robust estimating functions are not differentiable, so that more involved consid-
erations are necessary to show that the above condition is fulfilled (confer Example 6.2
below). On the other hand, for practical purposes those functions can be approximated
to any degree of accuracy by sufficiently smooth functions.

ass_fzgws A. 3. a) (i) The partial sum process
{

1√
m

∑bmsc
t=1 (H(Xt, θ0),B(θ0)G(Xt, θ0)) : 1 6 s 6 T

}
fulfills for any T > 0 a functional central limit towards a Wiener process {W(s) :
1 6 s 6 T}, W(s) = (W1(s),W2(s)) with covariance matrix

Σ =

(
Σ1 C
CT Σ2

)
. (3.3) eq_sigma

(ii) The following Hájék-Rényi-type inequalities holds uniformly in m for all 0 < α <
1/2

max
16k6m

1

m1/2−αkα

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1).

(iii) For the open-end procedure the following Hájék-Rényi-type inequality is needed
uniformly in m

max
k>km

√
km
k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1).

b) The partial sum process
∑k

t=1(H(Xt, θ0),B(θ0)G(Xt, θ0)) fulfills a strong invariance
principle, i.e. (possibly after changing the probability space) there exists a Wiener
process W with covariance matrix Σ as in (3.3) such that

k∑
t=1

(H(Xt, θ0),B(θ0)G(Xt, θ0))−W (k) = oP (k1/2) as k →∞.
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3 Null Asymptotics for sequential change-point tests

c) To obtain the below extreme-value asymptotics in Theorem 3.1 c), we need that
B(θ)G = H and additionally that two independent Wiener processes {W1(·)} and
{W2(·)} exists each with covariance matrix Σ1 such that for some ν > 2 it holds

sup
k>1

1

k1/ν

(
m+k∑
t=m+1

H(Xt, θ0)−W2(k)

)
= OP (1),

1

m1/ν

(
m∑
t=1

H(Xt, θ0)−W1(m)

)
= OP (1).

This reduces to the corresponding assumptions on H(X, θ0) in the standard situation,
where B(θ0)G(X, θ0) = H(X, θ0). Typically, a) and even b) are obtained relatively easily,
but c) is much harder in a dependent setting as it requires an argument leading to the
asymptotic independence of the sums. Such an argument typically involves some kind
of cutting or big-block-small-block argument. Details on how to prove it for augmented
GARCH time series can be found in Aue et al. [2].

Note that the invariance principle in (b) implies (a). To see this for (ii) and (iii) one
needs to use the fact that by the stationarity of Xt it holds{

m+k∑
t=m+1

H(Xt, θ0) : k > 1

}
D
=

{
k∑
t=1

H(Xt, θ0) : k > 1

}
,

so that the invariance principle in addition to a standard Hájék-Rényi-inequality for
i.i.d./g normal data (applied to the increments of the Wiener process) yield the assertions.
For the Darling-Erdős-type result the stronger rate of oP ((log logm)−1/2) is needed.

Based on these regularity conditions, we can now prove the following null asymptotics:

theorem_null Theorem 3.1. Let Assumption A.2 and the null hypothesis hold.

a) If Assumption A.1 (a) hold with w̃(m, k) = ρ(k/m) for bounded ρ as well as A.3 a) (i),
then for any symmetric positive semi-definite A, we get for the closed-end procedure

lim
m→∞

P

(
sup

16k<Nm
w2(m, k)S(m, k)T AS(m, k) 6 c

)
= P

(
sup

0<t6N
ρ2(t)(W 1(t)− tW 2(1))TA(W 1(t)− tW 2(1)) 6 c

)
,

where {W1(t) : t > 0} and {W2(t) : t > 0} are independent Wiener processes with
covariance matrices Σ1 and Σ2 respectively. For more general weight functions w̃(m, k)
as in A.1 the assertion remains true if additionally A.3 a) (ii) holds.

b) If Assumption A.1 (a) and (b) hold as well as A.3 a) (i) - (iii), then we get for the
open-end procedure

lim
m→∞

P

(
sup

16k<∞
w2(m, k)S(m, k) AS(m, k) 6 c

)
= P

(
sup
t>0

ρ2(t)(W 1(t)− tW 2(1))TA(W 1(t)− tW 2(1)) 6 c

)
,
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4 Consistency under alternatives

where {W1(t) : t > 0} and {W2(t) : t > 0} are independent Wiener processes with
covariance matrices Σ1 and Σ2 respectively. The supremum is well defined due to A.1.

c) If Assumptions A.2 with B(θ)G = H with the stronger rate oP ((log logm)−1/2) and
A.3 (c) hold for w(m, k) as in (3.2) but with γ = 1/2, then the following Darling-Erdős
theorem holds

lim
m→∞

P

(
a(logm) sup

16k<∞

√
S(m, k)Σ−1

1 S(m, k)
√
m
(
1 + k

m

) (
k

m+k

)1/2
− bd′(logm) 6 t

)
= exp(−e−t),

where a(x) =
√

2 log x, bd′(x) = 2 log x+
d′

2
log log x− log Γ(d′/2),

Γ(·) is the Gamma-function and d′ the dimension of the estimating function H i.e. of
the vector S(m, 1).

The assertions remain true if A is replaced by a consistent estimator for a) and b) and

by an estimator fulfilling ‖Σ̂−1/2
1 − Σ

−1/2
1 ‖ = oP ((log logm)−1) in c).

If Σ1 = Σ2, e.g. for B(θ0)G(X, θ0) = H(X, θ0), then often A = Σ−1
1 is chosen leading

to a pivotal limit.
The following theorem shows that for particular weight functions, the limit in the open-

end procedure can be simpli.i.d./g Part a) is well known and is the main reason why the
weight functions in (3.2) are so popular for the open-end procedure.

th_null_distr Theorem 3.2. a) If Σ1 = Σ2, then for any 0 6 γ < 1/2

sup
t>0

(W 1(t)− tW 2(1))TA(W 1(t)− tW 2(1))

(1 + t)2
(

t
1+t

)2γ

D
= sup

0<t<1

W (t)TAW (t)

t2γ
,

where {W (·)} is a Wiener process with covariance matrix Σ1.

b) If Σ1 = (σ2
1) 6= (σ2

2) = Σ2, then

sup
t>0

(σ2
2)1−2γ (W1(t)− tW2(1))2

(σ2
1 + σ2

2t)
2
(

t
σ2
1+σ2

2t

)2γ

D
= sup

06t61

W 2(t)

t2γ
,

where {W (·)} is a univariate standard Wiener process.

4 Consistency under alternatives
sec_alt

In this section, we state some regularity conditions under which changes are asymptoti-
cally detected with power one meaning that the procedure will eventually stop if a change
does occurs. As discussed below Condition A.1 the detection delay time is influenced
mainly by the weight function that is used in combination to the location of the change.

ass_alt A. 4. a) The time series before the change fulfills the assumptions under the null hy-
pothesis.
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5 Regularity conditions for sufficiently smooth functions

b) The change-point is of the form k∗ = bmϑc for some 0 < ϑ < N (where N = ∞ in
case of the open-end procedure). Furthermore, there exists a ball U(x0) around x0

with x0 > ϑ and ρ(x) > c > 0 for x ∈ U(x0) as well as

1

m

∥∥∥∥∥∥
bx0mc∑

j=m+k∗+1

(
H(Xj, θ̂m)− EH

)∥∥∥∥∥∥ = oP (1). (4.1) eq_alt_1

c) In the open-end procedure we can allow for an arbitrarily late change k∗ if lim infx→∞ xρ(x) >
0 as well as if for l→∞ it holds

1

l

∥∥∥∥∥
m+k∗+l∑

j=m+k∗+1

(
H(Xj, θ̂m)− EH

)∥∥∥∥∥ = oP (1). (4.2) eq_alt_2

Condition A1/2EH 6= 0 is the key to which alternatives are detectable. If the time
series {X∗(t)} after the change is stationary and ergodic (or sufficiently close to it),
then typically EH = EH(X∗1, θ0). If the monitoring function is an estimating function,
then this holds true if the time series before and after the change have different best
approximating parameters (in the sense of G and H respectively). However, if only a
subset of estimating equations is used in the detection procedure, this is a restriction
which can lead to increased power for particular alternatives. Assumptions (4.1) and
(4.2) can be obtained for sufficiently smooth estimating functions under weak moment
conditions, see Section 5.2 below.

theorem_alt Theorem 4.1. Under Assumptions A.4 a) and b) and A1/2EH 6= 0, the closed-end pro-
cedure has asymptotic power one, hence will eventually stop. The open-end procedure has
asymptotic power one under A.4 a) and either b) or c) as well as A1/2EH 6= 0. This
remains true if a consistent estimator for A is used.

In offline procedures the estimator for A is typically contaminated under alternatives
exhibiting a different limit behavior than under the null hypothesis. In the sequential
setting, however, such an estimator is based on the historic data set only, so that it will
have the same behavior under both the null hypothesis as well as alternatives.

5 Regularity conditions for sufficiently smooth functions
sec_smooth

5.1 Conditions under the null hypothesis

If the estimating and monitoring functions are sufficiently smooth and under some mild
regularity conditions on the underlying null time series, we get Assumption A.2 above.
Some robust estimating functions of interest (such as L1-minimizer) are not smooth so a
different approach is needed in order to obtain A.2 (confer Section 6.2 below). Alterna-
tively, they can often be approximated to any degree of accuracy by estimating functions
fulfilling the smoothness conditions stated here.

ass_B1 B. 1. Let {Xt} be stationary and ergodic under the null hypothesis.
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5 Regularity conditions for sufficiently smooth functions

ass_B2 B. 2. a) E supθ∈Θ ‖G(X1, θ)‖ <∞.

b) θ0 is the unique zero of EG(X1, θ) in the strict sense, i.e. for every ε > 0 there exists
a δ > 0 such that ‖EG(X1, θ)‖ > δ whenever ‖θ − θ1‖ > ε.

c) G is continuously differentiable with respect to θ in a convex environment Uθ0 of θ0

(for θ0 as in b)) such that

E sup
θ∈Uθ0

∇G(X1, θ) <∞

and E∇G(X1, θ0) is positive definite.

d)
∑m

j=1G(Xt, θ0) = OP (
√
m).

The first assertions are regularity conditions, the last follows from a central limit the-
orem for G(Xt, θ0) under weak moment conditions in addition to weak dependence as-
sumptions.

prop_ex_1 Proposition 5.1. a) Under Assumptions B.1 and B.2 a) and b) it holds θ̂m
P−→ θ0.

b) Under Assumptions B.1 and B.2 it holds θ̂m = θ0 +OP (m−1/2).

In order to get Assumption A.2 we need the assertion of Proposition 5.1 b) in addition
to some additional regularity conditions on both H and G.

ass_B3 B. 3. Denote for F = (F1, . . . , Fd) the gradient matrix ∇F = (∇F1, . . . ,∇Fd)T , where ∇
is the gradient (with respect to θ). Then we assume

E∇H(X1, θ0) <∞.

Furthermore, for j = 1, . . . , d′, it holds for some convex environment Uθ0 of θ0

E sup
ξ∈Uθ0

‖∇2Hj(X1, ξ)‖∞ <∞, E sup
ξ∈Uθ0

‖∇2(B(θ0)G)j(X1, ξ)‖∞ <∞.

prop_ex_2 Proposition 5.2. Under Assumptions B.1, B.2 and B.3 with

B(θ0) = E∇H(X0, θ0) (E∇G(X0, θ0))−1 , (5.1) eq_Btheta

Assumption A.2 follows for weight functions fulfilling A. 1 a) for the closed-end in addition
to b) for the open-end procedure.

5.2 Conditions under alternatives
sec_smooth_alt

Assume that at point m + k∗ a change occurs. In many situations such as regression
situations, the following conditions are fulfilled:

11



5 Regularity conditions for sufficiently smooth functions

ass_B4 B. 4. It holds X t = X∗t for t > m + k∗ for a stationary and ergodic time series {X∗t}
such that for some convex environment Uθ0 of θ0 it holds

E∇H(X∗1, θ0) <∞, E sup
ξ∈Uθ0

‖∇2Hj(X
∗
1, ξ)‖∞ <∞.

Consequently, the moment conditions required for the time series after the change are
much weaker than the ones required for the time series before the change as given in B.2
and B.3

prop_ex_3 Proposition 5.3. Under Assumptions B.4 we get (4.1) and (4.2)with EH = EH(X∗1, θ0).

In particular in autoregressive models the stationarity assumption of B.4 is often too
strong as starting values from the time series before the change are to be expected. In
this case, the following assumptions can help:

ass_B5 B. 5. a) The time series after the change point m+ k∗ can be written as X t = X∗t +Rt,
where X∗t fulfills B.3 and as l→∞

1

l

m+k∗+l∑
t=m+k∗+1

‖Rt‖2 = oP (1).

b) For j > m+ k∗ it holds ‖H(Xj, θ̂m)−H(X∗j , θ̂m)‖ 6 ‖RtF (X∗t )‖+ C‖Rt‖2 for some
measurable function F such that E‖F (X∗t )‖2 <∞.

Assumption a) allows for example for starting values from a different distribution as long
as the difference to the time series with starting values from the stationary distribution
is small enough. A similar idea has also been used in Horváth et al. [18]. For linear
autoregressive models this is naturally fulfilled and can easily be checked, for non-linear
autoregressive settings, some work need to be done.

prop_ex_4 Proposition 5.4. Under Assumption B.5 we get (4.1) and (4.2) with EH = EH(X∗1, θ0).

The following proposition gives some conditions under which Assumption B.5 holds.

prop_neu_joseph Proposition 5.5. For a homogenous geometric ergodic Markov chain {X t} which starts
in X0 = x0 (not necessarily from the stationary distribution) there exists a stationary
process {X∗t} and a random process {Rt}, such that X t = X∗t +Rt and as l→∞

1

l

l∑
t=1

||Rt|2 = oP (1).

12



6 Examples and Simulation Studies

6 Examples and Simulation Studies
sec_ex

In the following subsections we will both give a survey of existing results where the above
kind of monitoring scheme has been proposed and the regularity conditions proven as
well as give new examples, that have not yet been discussed in the literature. Because
of the great generality of the considered weight functions in this paper, we automatically
extend existing results that have often only been obtained for weight functions as in
(3.2). To illustrate the asymptotic behavior of theory developped in this paper, for some
of the examples, some simulation studies and data analysis are also included. Allover this
section, for the simulation study, we will always consider 1000 repetition of the experiment.

6.1 Linear regression

Consider the classical linear regression model

Yi = ZTi β0 + εt,

where β is the unknown regression parameter, and {Zt} are random regressors with
Zt = (1, Zt,2, . . . , Zt,p)

T independent of {εt} and fulfilling for some positive definite matrix
C and τ > 0 that

1

n

n∑
i=1

ZiZTi −C = O(n−τ ) a.s. (6.1) eq_tau

The papers of Chu et al. [7] and Horváth et al. [17] on this example with independent
errors {εi} has triggered the development of the above methodology. They propose to use
the ordinary least squares estimator as estimating function, i.e.

G((Yt,ZTt ),β) = Zt(Yt − βTZt).

The monitoring function is given by the estimated residuals, i.e.

H((Yt,ZTt ),β) = Yt − βTZt.

Since by assumption Zt,1 = 1, the monitoring function H is the first line of G, hence
we get B(β0)G = H, Horváth et al. [17] then prove Assumption A.2 with θ0 = β0 in
their Lemma 5.2 for weight functions as in (3.2) with 0 6 γ < min(τ, 1/2), but their
proof remains true for weight functions as in A.1 as long as γ < τ in A.1 a). Since
H((Yt,ZTt ),β0) = εt under H0, Condition A. 3 simplifies to the corresponding assumptions
on the error terms. In the case of i.i.d./g errors A.3 c) follows from the invariance principles
by Komlós et al. [26, 27]. Extensions to the non-i.i.d. case have been proposed by Aue et
al. [4] for certain martingale difference sequences including augmented GARCH processes
as well as by Schmitz and Steinebach [35] for certain weak dependent processes. Horváth
et al.[19] prove the corresponding Darling-Erdősz-result as given in Theorem 3.1 c) above.

Due to the fact that the monitoring function H is not a full estimating function, re-
strictions apply which alternatives are detectable. In fact, the proof of Theorem 2.2. in

13
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Horváth et al. [19] shows (4.2) with EH = cT1 (β1−β0) if Yt = ZTt β1 +εt after the change,
where c1 is the first column of the matrix C as in (6.1). Consequently, only changes are
detectable for which EH 6= 0 which essentially means that the change goes along with a
mean change.

Because of the above power restriction Hušková and Koubková [20] proposed to use the
monitoring function

H((Yt,ZTt ),β) = Zt(Yt − βTZt) (6.2) eq_lr_1

proving the above assumptions. For this choice, all alternatives have asymptotic power
one because EH = (β1 − β0)TEZk∗+1, which is under alternatives always different from
zero.

6.2 Mean changes
sec_mean

Obviously, monitoring schemes for mean changes are already included in the linear regres-
sion setup from the section before with Zt = 1, leading to monitoring procedures based
on the sample mean.

Because that statistic is not particularly robust, extensions to more robustM -estimators
have been considered in the dissertations of Koubková [28] as well as Chochola [6].
Koubkova [28] (Lemmas 5.1 and 5.3) shows in particular that A.2 holds for the L1-
procedure where G(Xi, µ) = H(Xi, µ) = sgn(Xi−µ) (leading to the median as estimator).
Additionally, she considers more general M -estimating equations, where she proves A.2
in (6.14). Assumptions A.3 can then be obtained by standard methods on the i.i.d./g
errors sgn(Xi − µ0) respectively ψ(Xi − µ0). Koubková [28] also extends her results to
the linear regression situation of the previous subsection. Chochola [6] also considers M -
estimating equations for monitoring and proves A.2 in his Lemma 2.6. Additionally, he
gives extensions to the multivariate location model.

Since both Koubková [28] and Chochola [6] consider general M -estimators, which are
not necessarily differentiable (or even continuous) as the important example of the median
with the estimating function sgn(Xi − µ) shows, the methodology provided by Proposi-
tion 5.2 cannot be applied and a different approach is necessary to obtain A.2. How-
ever, for M -estimators with sufficiently smooth ψ-functions, the methodology provided
by Proposition 5.2 can easily be used to provide the asymptotic theory for corresponding
monitoring schemes.

In particular, the theory derived in this paper allows to use less robust but more precise
estimators such as the sample mean to get a parameter estimator based on the historic
data set, while using a more robust monitoring function. Such a procedure can be im-
portant in practice if the historic data set is nice with no outliers but the newly arriving
observations are likely to obtain outliers. Since typically, the historic data set is relatively
small in comparison to the possible length of the observation horizon, getting a more
precise estimator from the historic data set may be crucial. If the regularity assumptions
of Proposition 5.2 are not fulfilled (as e.g. for the sign-function and the median), it is
again difficult to derive A.2 and B(θ0), otherwise this is an easy consequence.

14
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Simulation study

For illustrational purposes we will simulate data according to Xt = µ+εt for i.i.d./g errors
εt (possibly contaminated by outliers after monitoring starts). We will initially use the
(non-robust) sample mean based on the historic data set, i.e. G(X,µ) = X −µ, but then
use the more robust monitoring function, which also estimates the mean for symmetric
data:

H(X,µ) = tanh(X − µ)

tanh(u) =
eu − e−u

eu + e−u
,

∂ tanh(u)

∂u
= 1− tanh2(u) u ∈ R

By Proposition 5.2 it follows B(µ0) = E tanh2(X − µ0) − 1, so that by Theorem 3.1 b)
and Theorem 3.2 b) we get

sup
1≤k<∞

1√
m

m+k∑
j=m+1

σ2

σ2
1 + σ2

2t
|
m+k∑
j=m+1

tanh(Xj − X̄m)‖ D−→ sup
06t61

‖W (t)‖,

where σ2
1 = var tanh(X1 − µ0), σ2

2 = (B(µ0))2 var(X1 − µ0).

In the simulations, we replace σj by σ̂j by consistent estimators given by

σ̂2
1 =

1

m

m∑
j=1

tanh2(Xj − X̄m)−

(
1

m

m∑
j=1

tanh(Xj − X̄m)

)2

,

σ̂2
2 =

(
1

m

m∑
j=1

tanh2(Xj − X̄m)− 1

)2(
1

m

m∑
j=1

(Xj − X̄m)2

)
.

We now apply the monitoring scheme to the null data set with standard normal errors
H0, standard normal errors with no change in the mean but outliers Hc (1% of the random
variables have been randomly replaced by Γ(5, 10) observations), and two time series with
changes in the mean. In Figure 6.1 a sample path for each of the latter three time series
is given.

(a) Data with outliers (b) µ1 = 1 (c) µ1 = −0.5

Figure 6.1: Sample Monitoring data: m=100S_data

15



6 Examples and Simulation Studies

In the simulations, we stop the monitoring after 10m observations. The empirical size
and power for the above setting based on 1 000 repetitions1 are reported in Table 6.1 and
Figure ?? shows a density estimator for the run-length, i.e. the time until the procedure
stopps, which is scaled to integrate to the empirical level. The vertical line indicates the
change point.

Table 6.1: Empirical size and power: Mean changeESP_Mean_Change

H0 : µ1 = 0 Hc H1 : µ2 = 1 H1 : µ2 = −0.5

m 20 50 100 20 50 100 20 50 100 20 50 100

0.027 0.034 0.040 0.031 0.039 0.037 0.996 1.00 1 0.406 0.823 0.991

(a) m = 20 (b) m = 50 (c) m = 100

Figure 6.2: Scaled density estimate of the run lengthMC_Fig_1

Obviously, the procedure works quite well: It is conservative with the respect so size
for both situations with and without outliers but detects changes in the mean quite well,
where for smaller changes a longer historic data set is needed in order to get a good
detection rate.

6.3 Non-linear models
section_NN

Several applications to non-linear time series have already been discussed in the literature.
Berkes et al. [5] use the log likelihood score function as estimating as well as monitoring
function. Lemma 6.4 proves Assumption 2, the proof of Lemma 6.6 shows A.3 (i) – (iii).

Ciuperca [8] considers a nonlinear regression model Yi = f(Zi,β0) + εi with known
regression function f and i.i.d./g errors {εi}. For her initial estimation of the parameter
β0 she uses the ordinary least squares estimator with estimating function

G((Yt,Zt),β) = ∇f(Zt,β)(Yt − f(Zt,β)).

1Joseph: right?
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Her monitoring function is then based on estimated residuals, i.e.

H((Yt,Zt),β) = Yt − f(Zt,β).

Since this is not an estimating function, we cannot expect to detect all changes even in the
correctly speci.i.d./gmodel, where the parameter β0 changes to β1 after the change. In fact
the proof of her Theorem 3.2 essentially shows that (4.2) holds with EH = Ef(Z1,β0)−
Ef(Z1,β1). Thus only changes can be detected that go along with a mean change.
She uses an open-end as well as closed-end procedure with the standard weight function
in (3.2). Unlike in the linear regression situation H is no longer necessarily a linear
combination of the components of G resulting in a situation, where B(θ0)G 6= H. In
this situation the weight function (3.2) does no longer lead to a pivotal limit with all the
problems this entails. However, a weight function as is implicit in Theorem 3.2 can solve
that problem leading to a pivotal limit. Since the regularity conditions of Ciuperca [8] are
similar to the ones given in Section 5, B(θ0) is given by (5.1). Condition A.2 is proven
in her Lemma A.1, Conditions A.3 then follows by the standard invariance principle of
Komlos et al. [26, 27].

Kirch and Tadjuidje Kamgaing [22] use a similar monitoring scheme for autoregressive
time series, where the nonlinear function g is given by a neural network taking possible
misspecification into account. This is the equivalent of the offline procedure considered
in Kirch and Tadjuidje Kamgaing [23]. Their idea is to construct a test that is able to
detect a large class of alternatives in general non-linear nonparametric autoregressive time
series. Since neural network functions can approximate a large class of functions to any
degree of accuracy (confer e.g. White [40] or Franke et al. [13] and some of the refer-
ences therein,) this amounts to choosing a parametric approximation of a nonparametric
regression function to be used in the tests. Since we cannot and do not expect the time
series to actually follow that precise model, we need to take misspecification into account.
This is very similar to the idea of using sieve estimators in nonparametric statistics. Con-
sequently, changes can be detected that result in different best approximating parameters
for the time series before and after the change with possible restrictions if the monitoring
function is no estimating function.

To elaborate, we assume that the data are realization of an autoregressive process Yt
with

Yt = g(Yt−1, . . . , Yt−p) + εt, (6.3) Eq_nar

which is stationary and ergodic with existing fourth moments and also strong mixing with
exponential rate.

Under these assumptions Condition B.1 is fulfilled. For estimating and monitoring
functions as given below, Conditions B.2 and B.3 are also fulfilled, which by Proposi-
tion 5.2 yields A.2. Since for the below estimating and monitoring functions G and H
it holds B(θ0)G = H, Condition A.3 b) follows from the invariance principle of Kuelbs
and Philipp [29] for mixing random variables, while c) can be obtained from the mixing
assumption in addition to a big block small block argument.

The mixing assumption is only used to keep the arguments simple, however the use of
other weak dependency concepts implying Conditions A.3 is also possible. Nevertheless,
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for the nonlinear autoregressive model, assuming for example that the εt are realizations
from a random variable with density that is strictly positive on the real line, one could
make use of the standard Markov chain stability theory (see e.g. Meyn and Tweedie [31]
or Tong [38] ) to derive the key property of geometric ergodicity for the process Xt. The
latter property implies the existence of a unique (asymptotic) stationary solution for Xt

which satisfies the absolute regularity property as well, i.e. β-mixing with exponential
rate. The proof of the geometric ergodicity is then based on φ-irreducibility, aperiodicity
and the drift condition for Markov chain, that need to be guaranteed (see Chapter 15
of Meyn and Tweedie [31]). Such application can be found in Stockis et al. [37], in
a broader framework, they use autoregressive in time series based on neural network
functions as building blocks in a regime-switching model, so called CHARME-models, in
the context of financial time series. However, We are interested in monitoring for changes
in the autoregression function g. In order to construct a monitoring scheme, we use the
estimating functions for a parametric approximation based on a one layer feedforward
neural network with nH hidden neurons

f(x, θ) = ν0 +

nH∑
h=1

νhψ(< αh,x > +βh), (6.4) eq_incontrol

where θ = (ν0, . . . , νnH ,α1, . . . ,αnH , β1, . . . , βnH ) ∈ Θ and we assume Θ to be convex and
compact, αj = (αj1, . . . , αjp) and <,> is the classical scalar product on Rp. Furthermore,
we assume that ψ is twice continuously differentiable with bounded first and second
derivatives and belongs to the class of sigmoid activation functions that satisfy

lim
x→−∞

ψ(x) = 0, lim
x→∞

ψ(x) = 1, ψ(x) + ψ(−x) = 1. (6.5) Sigeq

A popular example is the logistic function ψ(x) = (1 + e−x)−1. Since neural network
functions can approximate a large class of functions to any degree of accuracy, see, e.g.,
White [40] or Franke et al. [13]. To this end, define the estimating function (for ordinary
least squares estimation) as

G((Yt,Yt−1), θ) = (Yt − f(Yt−1, θ)) ∇f(Yt−1, θ), Yt−1 = (Yt−1, . . . , Yt−p)
T .

The dimension of the estimating function G is then given by d = nH(p+ 2) + 1. Since f
is twice continuous differentiable by assumption, G is at least continuously differentiable
with respect to θ. By the boundedness of ψ and its first derivative and the compactness of
Θ, Condition B.2 a) follows if {Yt} is square-integrable, while the existence of the moment
in c) follows if at least the third moments exist. The latter also implies Assumption
B.2 d) by the mixing assumption. It remains to assume B.2 b), which is essentially
an identifiability condition, saying that the best approximating parameter θ0 given by
EG((Yt,Yt−1, θ0) = 0 is identifiable unique. The positive definiteness condition in c) is
another regularity condition which is standard in the literature, see for example Hall [15].

By Proposition 5.1 we get
√
m-consistency of the least squares estimator to the best ap-

proximating parameter. Kirch and Tadjuidje Kamgaing [22] consider monitoring schemes
based on the estimated residuals, i.e. they use as monitoring function

H((Yt,Yt−1), θ) = Yt − f(Yt−1, θ).
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Hence B(θ0)G = H, which fulfills the assumptions in B.3 due to the existence of second
moments and the boundedness of the first and second derivatives of the activation function
ψ in addition to the compactness assumption of Θ.

Alternatively, we can use the full estimating function in the monitoring procedure,
i.e. H̃ = G (and B(θ0) = Id). In this case, B.3 follows if the activation function ψ is
additionally three times continuous differentiable with bounded third derivative due to
the existence of fourth moments.

To summarize, under the above assumptions, Theorem 3.1 is applicable based on both
monitoring functions H as well as H̃, so that a large class of test statistics are at hand.
If one chooses A as the inverse of the long-run covariance matrix of H((Yt,Yt−1), θ0)
respectively H̃((Yt,Yt−1), θ0) one get pivotal limits where the components of the Wiener
processes are independent. In the correctly speci.i.d./gcausal model with independent
errors, this long-run variance reduces to the error variance σ2 in case of H and to

σ2 E∇f((Yt,Yt−1), θ)∇f((Yt,Yt−1), θ)T

in case of H̃. Because one will usually only apply the procedure if the fit by the neu-
ral network is relatively good on the one hand and because estimators for the long-run
variance are not very precise on the other hand, it is often better to estimate the above
covariance matrix rather than the long-run covariance matrix. Essentially, this trades a
large estimation error for a small model error. This is confirmed by the simulations in
Kirch and Tadjuidje Kamgaing [23]. Consequently, we propose to use

ÂH = σ̂−2, σ̂2 =
1

m− nH(p+ 2) + 1

m∑
j=p+1

(Yj − f((Yj,Yj−1), θ̂m))2,

resp. ÂH̃ = σ̂−2

(
1

m− nH(p+ 2) + 1

m∑
j=p+1

∇f((Yj,Yj−1), θ̂m)∇f((Yj,Yj−1), θ̂m)T

)−1

.

In order to understand the behavior of the two statistics under alternatives better, note
that by the mean value theorem, the boundedness of the first derivative of ψ and the
compactness of Θ, it holds

sup
θ∈Θ
‖H(x, θ)−H(y, θ)‖ 6 D‖x− y‖

for a suitable constant D.
Furthermore, since the first derivative of ψ is bounded and Θ is compact, we get

sup
θ∈Θ
‖∇f(x, θ)−∇f(y, θ)‖ 6 D(‖y‖+ ‖x− y‖).

This implies B.5 b) for both H (with F = D) as well as H̃ (with F = D id) if {Y ∗t } has
second moments. In this case EH = E(X∗t ) − Ef(X∗t , θ0) showing that essentially mean
changes will be detected. On the other hand EH̃ = EG(X∗t , θ0) which will be different
from 0 as soon as the best approximating parameters exist and differ for both time series.
Consequently, only the procedure based on H̃ has asymptotic power one for all changes
leading to a different best approximating parameter in the neural network approximation.
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Simulation study

2 In this section we consider a first order linear autoregressive AR(1) process as special
case of the model defined in (6.3),

Yt = ω + αYt−1 + εt

with the restriction that |α| < 1 and εt i.i.d./g standard Gaussian. Obviously this
model satisfies all the desired properties. However, the estimation is carried out un-
der misspecification and using single layer feedforward neural network as defined in (6.4),
with nH = 2 hidden neurons. The monitoring scheme is based on estimated residuals
H(Yt, Yt−1, θ̂m) = Yt − f(Yt−1, θ̂m), where θ̂m is obtained by solving a nonlinear least
squares problem. In this case,

S(m, k) =
m+k∑
j=m+1

(Yj − f(Yj−1, θ̂m)),

we then stop the monitoring if

log(logm) max
16k≤10m

|S(m, k)|
σ̂
√
m
(
1 + k

m

) (
k

m+k

)1/2
−(2 log(logm)+

1

2
log log(logm)−log Γ(1/2)) ≥ C1−α,

where 10m is a number, large enough, for the asymptotic in Theorem 3.1 c) to still be
valid.

σ̂2 =
1

m− nH(p+ 2) + 1

m∑
j=p+1

(Yj − f((Yj,Yj−1), θ̂m))2

In this paper, using the extreme value type asymptotic statistic in Theorem 3.1 c), for
our simulation study we always consider a nominal level α = 0.05, what leads us to a
95%-quantile of the asymptotic distribution C0.95 = 2.9702.

Table 6.2: Empirical size and power using the extreme value type statistic: Switching
AR(1)

ESP_AR

H0 : θ1 = (1, 0.2) H1 : θ2 = (3, 0.75) H1 : θ2 = (1, 0.75) H1 : θ2 = (3, 0.2)

m 100 200 300 100 200 300 100 200 300 100 200 300

0.045 0.041 0.037 0.978 0.995 0.994 0772 0.988 0.993 0.989 0.998 0.999

The empirical size is decreasing and becoming conservative, though for m = 100 we
are pretty much close to the nominal 5% level. However, we have to point out that the

2TO DO: Ueberarbeiten
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performance of the empirical power depend on the choice of the parameter, which fits
inline with the expectation. Indeed, this type of asymptotic is expected to perform well
if the change in the mean is significantly large.

Figure 6.3: RL density estimate, m=100AR_FIG_1

Figure 6.4: RL density estimate, m=200AR_FIG_2
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Figure 6.6: SAP stock returns and suitable transformations (January 2007 to April 2011) fig_SAP

Figure 6.5: RL density estimate, m=300AR_FIG_3

Figure 6.3, 6.4 and 6.5 show that the shape of the of the run length density estimate also
varies with the choice of the model parameter as expected. This shape further indicates
that for all the choice of the parameter under the alternative hypothesis, the change is
detected with a delay, what is also expected, nevertheless we have to note that in general
we do not need to wait too long until an alarm for the change point is raised. Moreover,
the relative time delay to the detection of the change is getting smaller as m increases.

Data Example

After a suitable data transformation β-ARCH-models can also be considered within this
framework, which is why we also propose to use the above methodology for suitably
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Figure 6.7: Detector for SAP datafig_sap_2

transformed Log-Returns of financial assets. More details on this can be found in Kirch
and Tadjuidje Kamgaing [23]. Here, we apply the methodology to S& P-Log-Returns from
January 2007 to April 2011. Figure 6.6 shows the stock price, the log returns, squared
log-returns and finally suitably transformed log return. Using the offline procedure of
Kirch and Tadjuidje Kamgaing [23] yields two possible break points probably associated
with the financial crises at 2.9.2008 as well as 15.05.2009, which are obtaned using a
binary segmentation procedure. In Figure 6.7 the transformed log-returns as well as the
monitoring chart are given, where the solid line indicates where the historic data ends and
the monitoring starts and the dotted lines give the two possible change points. Obviously,
the sequential procedure also raises an alarm quickly after the first possible change point
agreeing with the offline procedure.

6.4 Binary models

Binary time series are important in applications, where one is observing whether a certain
event has or has not occurred within a given time frame. Wilks and Wilby [41] for example
observe, whether it has been raining on a specific day, Kauppi and Saikkonen [21] and
Startz [36] observe whether or not a recession has occurred in a given month. A common
binary time series model is given by

Yt | Yt−1, Yt−2, . . . , Zt−1, Zt−2, . . . ∼ Bern(πt(β)), with g(πt(β)) = βTZt−1,
(6.6) BAR

for a regressor Zt−1 = (Zt−1, . . . , Zt−p)
T , which can be purely exogenous, purely autore-

gressive or a mixture of both. Typically, the canonical link function g(x) = log (x/(1− x))
is used and statistical inference is based on the partial likelihood scores, which are defined
by the following estimation function

G((Yt,Zt−1),β) = Zt−1(Yt − πt(β)) (6.7) BAR_SCORE

for the canonical link function above.
The moment conditions in Assumptions B.2 and B.3 (for H = G) are fulfilled if Zt

has third moments, B.2 d) and A.3 follow immediately if (Yt,Zt−1) is strong mixing with
exponential rates. For Zt−1 = (Yt−1, . . . , Yt−p)

T , Yt is the standard binary autoregressive
model (BAR(p)), Wang and Li [39] showed the geometric ergodicity property which in
turn implies strong mixing with exponential rates. However, considering some regularity
assumptions on the exogenous process, one can prove that (Yt, . . . , Yt−p+1, Zt, . . . , Zt−q) is
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6 Examples and Simulation Studies

a Feller chain, for which Theorem 1 of Feigin and Tweedie [10] can be applied to derive
its geometric ergodic property (see Kirch and Tadjuidje Kamgaing [24] for details on this
issue). Alternatively, invariance principles based on results of Eberlein [9] can be used
(for details we refer to Fokianos et al. [11], Proposition 1.

For more general alternatives of the type considered in B.3 the moment conditions
reduce to the existence of third moments of the regressor after the change by the bound-
edness of Y ∗t and πt(β), while the same arguments as in the proof of Theorem 1.3.2 in
Kirch and Tajduidje Kamgaing [25] give B.5 b). If both Yt and Y ∗t follow BAR-models,
all parameter changes are thus detected by the identifiability of the parameter via the
partial score function.

Simulation study

We will now illustrate the monitoring for binary data by using a first order binary au-
toregressive process as in (6.6) with Zt−1 = (1, Yt−1). We use the closed-end monitoring

statistic with G = H as above with N = 5 and w(m, k) = m−1/2
(
1 + k

m

)−1
and N = 5.

We can then consistently estimate S1 = S2 = EZt−1ZTt−1πt(β̂0)(1− πt(β̂0)) by

Σ̂ =
1

m

m∑
t=1

Zt−1ZTt−1πt(β̂m)(1− πt(β̂m)),

where β̂ is estimated based on the estimation function G and the historic data set only.
Theorem 3.1 gives the null asymptotics in this situation.

ESP_BAR
H0 : β1 = (2,−2) H1 : β2 = (−2, 2) H1 : β2 = (−3,−2) H1 : β2 = (2, 1)

m 100 200 300 100 200 300 100 200 300 100 200 300

0.034 0.037 0.053 1 1 1 1 1 1 1 1 1

Table 6.3: Empirical size and power for BAR(1) monitoring

(a) m = 100 (b) m = 200 (c) m = 300

Figure 6.8: Scaled density estimate of the run length for BAR(1)-modelBAR_Fig_1
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6 Examples and Simulation Studies

(a) Data (b) m =??? (c) m =???

Figure 6.9: Monthly US Recession data (1855-2013) and its detectorsfigure_US_REC

Table 6.4 reports the empirical size and power (based on 1000 repetitions) for the
nominal 5% level and various alternatives, where a change always occurred at time m

2
after

the monitoring started. Figure 6.8 gives the scaled density estimator of the run length.
The monitoring is conservative under the null hypothesis and detects the considered
changes with empirical power one and relatively quickly after they occur.

Data Example

We now apply the above test statistic to the monthly USA recession data (see left panel
in Figure 6.9) for the period 1855–2012.3 The quaterly version of this data set had been
analyzed by Kirch and Tadjuidje Kamgaing [25] or Hudeková [34] in the context of offline
change point detection. Their findings indicate the existence of at least one change point.
Entsprechend aender, je spaeter die aenderung, desto laenger dauert es bis erkannt4

We use several historical data sets, where we check the non contamination assumption
using an offline testing procedure (see, e.g. Kirch and Tadjuidje Kamgaing [25]). The
corresponding detectors can be found in Figure 6.9. The alarm for a potential change
point is raised in January 1990 for m = 300, in July 1985 for m = 305 and in April 1985
for m = 315. The results presented here serve as illustration that the procedure might be
useful in the binary autoregressive framework. Indeed, let us mention that a first order
BAR model, we consider for the data analysis, might not be realistic. A more realistic
analysis might either consider a higher order BAR model or include some key economical
indicators as exogenous components into the model.

3This data set can be downloaded from the National Bureau of Economic Research at
http://research.stlouisfed.org/fred2/series/USREC

4todo
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6.5 Poisson autoregressive time series

Another popular model for time series of counts is given by the Poisson autoregression,
where we observe Y1, . . . , Yn with

Yt | Yt−1, Yt−2, . . . , Yt−p ∼ Pois(λt), λt = fθ(Yt−1), Yt−1 = (Yt−1, . . . , Yt−p)
T .

(6.8) eq_model_poisson

If fθ(x) is Lipschitz-continuous in x for all γ ∈ Θ with Lipschitz constant strictly smaller
than 1, then there exists a stationary ergodic solution of the (6.8) which is β-mixing with
exponential rate (confer Neumann [32]). From this we obtain Assumption A.3.

Under suitable smoothness assumptions on fθ in connection with suitable moment
assumptions, one can derive the regularity conditions B.1 – B.5 for the least squares
estimating functions in an analogous fashion as in Section 6.3 for the neural network
function above. This is the approach taken by Franke et al. [12] in an offline setting.

We will now take a closer look at the INARCH(1)-model given by λt = ω+αXt−1 with
0 < δ, 0 < δ ≤ ω ≤ ∆, 0 ≤ α ≤ 1− δ < 1 and the estimating function obtained from the
partial log likelihood scores, i.e.

n∑
t=1

(
1

Yt−1

)
(Yt − λt)

λt
=

n∑
t=1

G((Yt, Yt−1), θ).

Considering the Euclidean norm on R2 and using the compactness assumption on Θ, it
follows,

‖G((Xt, Xt−1), θ)‖2 = (Xt − λt)2

(
1

λ2
t

+
X2
t−1

λ2
t

)
6 (Xt − λt)2

(
1 +X2

t−1

δ2

)
6

1

δ2
(Xt +Xt−1 + ∆)2(1 +X2

t−1)

for all θ ∈ Θ. Therefore,

E sup
θ∈Θ
‖G((Xt, Xt−1), θ)‖ ≤ 1

δ
E(Xt +Xt−1 + ∆)(1 +Xt−1),

which is finite if the second moment of the process Xt exists, implying B.2a).
The gradient of the estimating function is given by

∇G((Xt, Xt−1), θ) =

( −Xt
λ2t

−XtXt−1

λ2t
−XtXt−1

λ2t

−XtX2
t−1

λ2t

)

Similarly, using the Euclidean norm on R2×2, it follows,

‖∇G((Xt, Xt−1), θ)‖2 =
1

λ2
t

√
X2
t + 2X2

tX
2
t−1 +X2

tX
4
t−1 =

X2
t

λ2
t

(1 +X2
t−1)2

6
X2
t

δ2
(1 +X2

t−1)2
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6 Examples and Simulation Studies

ESP_INARCH
H0 : θ1 = (1, 0.5) H1 : θ2 = (3, 0.75) H1 : θ2 = (3, 0.5) H1 : θ2 = (1, 0.75)

m 100 200 300 100 200 300 100 200 300 100 200 300

0.022 0.033 0.036 1 1 1 1 1 1 0.999 1 1

Table 6.4: Empirical size and power for the INARCH(1) model (at nominal 5% level)

for all θ ∈ Θ. Therefore,

E sup
θ∈Θ
‖∇G((Xt, Xt−1), θ)‖ ≤ 1

δ
EXt(1 +X2

t−1),

which is finite if third moments exist. Similarly,

E sup
θ∈Θ
‖∇2G((Xt, Xt−1), θ)‖ <∞

if fourth moments exist, yielding B.3 for H = G.

Simulation study

In the simulations we consider a Poisson autoregressive model as in (6.8) with λt =
θ1 +θ2Yt−1. We use the closed-end monitoring procedure with G = H as above, w(m, k) =

m−1/2
(
1 + k

m

)−1
andN = 5. We can then consistently estimate S1 = S2 = EZt−1ZTt−1

(Yt−λt)2
λ2t

by the empirical covariance matrix of {G((Xt, Xt−1), θ̂)}. Theorem 3.1 gives the null
asymptotics in this situation.

(a) m = 100 (b) m = 200 (c) m = 300

Figure 6.10: Scaled density estimate of the run length for BAR(1)-modelINARCH_Fig_1

Table 6.5 shows the empirical size and power at the nominal 5% level for various
alternatives, while Figure 6.10 show the scaled density. The tests are conservative and
detect all considered alternatives (with one single exception), however, detection delay
depends a lot on the alternative with the smallest change having the longest detection
delay.
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6 Examples and Simulation Studies

Figure 6.11: Stock Ericsson B: July 3rd 2002 and possible change points (by binary
segmentation)

ERICSSON_NEU

Data Analysis

(a) m = 65 (b) m = 70 (c) m = 75

Figure 6.12: Value of the detector of change for the number of transaction per minute of
the Ericson B stock data with different start dates for the monitoring

Ericson_data

We will demonstrate the above methodology using the number of transactions per minute
for the stock Ericsson B during July 3rd 2002 (confer Figure 6.11), where we do not take
the first 5 and last 15 minutes of transaction time into account. Kirch and Tadjuidje [25]
have analyzed this data set in an offline change setup. Their analysis indicates three
possible change points using binary segmentation, which are given by the vertical lines in
the plot. In Figure 6.12 the detectors are given for various choices of m (all before the
first change point indicated by the a posteriori analysis).
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7 Proofs

7 Proofs
sec_proofs

Proof of Theorem 3.1. Introduce the notation ‖Z‖2
A = |ZTAZ|, then by Assumption

A.2 it holds for general weight functions w(m, k)

sup
16k<N(m)

w2(m, k) ‖S(m, k)‖2
A

= sup
16k<N(m)

w2(m, k)

∥∥∥∥∥
m+k∑
j=m+1

H(Xj, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj, θ0)

∥∥∥∥∥
2

A

+ oP (1),

For w̃(m, k) = ρ(k/m) with ρ bounded, we conclude from the functional central limit
theorem in A.3 (i), that for any N > 0

sup
16k<Nm

w̃2(m, k) ‖S(m, k)‖2
A

= sup
j=1,...,p+1

sup
t∈Ij

ρ2(t)

∥∥∥∥∥∥ 1√
m

m+bmtc∑
j=m+1

H(Xj, θ0)− bmtc
m

1√
m
B(θ0)

m∑
j=1

G(Xj, θ0)

∥∥∥∥∥∥
2

A

+ oP (1)

D−→ sup
06t6N

ρ2(t) ‖W1(1 + t)−W1(1)− tW2(1)‖2
A .

Noting that {W1(1+t)−W1(t) : t > 0} is again a Wiener process with covariance matrix
Σ1 independent of W2(1) yields the first assertion in a). For the more general weight
functions w̃(m, k) as in Assumption A.1 (a), analogous arguments show the convergence
for k > τm towards the supτ6t6N ρ

2(t) ‖W1(1 + t)−W1(1)− tW2(1)‖2
A for any τ > 0.

By Assumptions A.1 (a) as well as A.3 (a) (i) and (ii) it holds for some generic constant
C > 0 and γ < α < 1/2

sup
16k<τm

w2(m, k)

∥∥∥∥∥
m+k∑
j=m+1

H(Xj, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj, θ0)

∥∥∥∥∥
2

A

6 C sup
16t<τ

t2αρ2(t)

·

 sup
16t6τ

1

m1−2αk2α

∥∥∥∥∥∥
m+bmtc∑
j=m+1

H(Xj, θ0)

∥∥∥∥∥∥
2

+ τ 1−2α

∥∥∥∥∥ 1√
m
B(θ0)

m∑
j=1

G(Xj, θ0)

∥∥∥∥∥
2


P−→ 0 (7.1) eq_proof1

as τ → 0 uniformly in m. An analogous assertion can be obtained for the limiting Wiener
processes concluding a).

Analogously, we get by Assumption A.1 (b) and A.3 (a)(ii) that

sup
k>Tm

w2(m, k)

∥∥∥∥∥
m+k∑
j=m+1

H(Xj, θ0)

∥∥∥∥∥
2

A

P−→ 0 (7.2) eq_proof1a

29
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as T → ∞ uniformly in m as well as an analogous expression for the limiting Wiener
process. From the functional central limit theorem in A.3 (a) (i) and A.1 (b) it follows
for any 0 < τ < T <∞ that

sup
k>τm

∥∥∥∥∥∥w(m,min(k, Tm))

m+min(k,mT )∑
j=m+1

H(Xj, θ0)− w(m, k)
k

m
B(θ0)

m∑
j=1

G(Xj, θ0)

∥∥∥∥∥∥
2

A

D−→ sup
t>τ
‖ρ(min(t, T ))(W1(1 + t)−W1(1))− tρ(t)W2(1)‖A . (7.3) eq_proof3

Carefully combining (7.1) –(7.3) yields b).
The proof of c) is analogous to Horváth et al. [18], proof of Theorem 1.1, but in the

multivariate setting. The only difference occurs in (3.12), where we prove instead that
(with the notation of that paper)

lim
m→∞

P

a(logm) sup
a(m)

m+a(m)
6s6 c

1+c

√∑d
j=1W

2
j (s)

√
s

− bd(logm) 6 t

 = exp(−e−t),

(7.4) eq_de_1

for independent Wiener processes {Wj(·)}. First note, that

sup
a(m)/(m+a(m))6s61

√∑d
j=1W

2
j (s)

√
s

= sup
16t6(m+a(m))/a(m)

√∑d
j=1 W

2
j (1/t)√

1/t

D
= sup

16t6(m+a(m))/a(m)

√∑d
j=1W

2
j (t)

√
t

.

By the proof of Lemma 2.2 in Horváth [16] we get (7.4) with a(logm) replaced by
a(log((m+ a(m))/a(m))) and bd(logm) by bd(log((m+ a(m))/a(m))). Since

a(logm)|a(logm)− a(log((m+ a(m))/a(m)))| → 0,

bd(logm)− bd(log((m+ a(m))/a(m)))→ 0,

assertion (7.4) follows, completing the proof of c).
Proof of Theorem 3.2. Part a) can be found in Hušková and Koubkova [20], proof

of Theorem 2.1, confer also Horváth et al. [17] for the univariate case. Part b) proceeds
analogously with the only difference being that for the Wiener processes here, we have

{σ2
2(W1(t)− tW2(1)) : 0 6 t <∞} D=

{
(σ2

1 + σ2
2t)W

(
σ2

2 t

σ2
1 + σ2

2t

)
: 0 6 t <∞

}
for a standard Wiener process {W (·)}.

Proof of Theorem 4.1. For k̃ > k∗ it holds

m+k̃∑
t=m+1

H(Xt, θ̂m) =
m+k∗∑
t=m+1

H(Xt, θ̂m) +
m+k̃∑

t=m+k∗

H(Xt, θ̂m)

=: SH0(m, k
∗) + SH1(m+ k∗, k̃).
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Under Assumption A.4 a) and b) an application of Theorem 3.1 implies

1

m
SH0(m, k

∗) = oP (1),

while (4.1) implies for k̃ = bmx0c

1

m
SH1(m+ k∗, k̃) = (x0 − ϑ) EH + oP (1).

Together this yields by an application of the Cauchy-Schwarz inequality for ET
HAEH 6= 0

max
k>1

w2(m, k)|S(m, k)TAS(m, k)| > mρ2 (x0 + o(1)) (x0 − ϑ)2
(
ET
HAEH + oP (1)

) P−→∞,

showing that the corresponding test has asymptotic power one.
For the open-end procedure with k∗ = O(m) analogous arguments give the assertion,

for k∗/m→∞ consider k̃ = 2k∗ and note that by Theorem 3.1

1

k∗
SH0(m, k

∗) = oP (1)

and by (4.2)

1

k∗
SH1(m+ k∗, k̃) = EH + oP (1),

which implies

max
k>1

w2(m, k)|S(m, k)TAS(m, k)| > k̃2

4m
ρ2

(
k̃

m

) (
ET
HAEH + oP (1)

) P−→∞,

proving that the open-end procedure as in Theorem 3.1 b) has asymptotic power one.
Similarly, one can show for the statistic in Theorem 3.1 c) that

1√
log logm

sup
16k<∞

√
|S(m, k)TAS(m, k)|
√
m
(
1 + k

m

) (
k

m+k

)1/2

P−→∞,

implying that the corresponding statistic has asymptotic power one.
Proof of Proposition 5.1. The proof of a) follows analogously to the proof of

Proposition 1.2.1 in Kirch and Tajduidje Kamgaing [25], the proof of b) is analogous to
Theorem 3 in Kirch and Tadjuidje Kamgaing [23].

Proof of Proposition 5.2. By definition of θ̂m it holds

m∑
t=1

G
(
Xt, θ̂m

)
= 0. (7.5) eqsumres
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From this we can conclude

m+k∑
t=m+1

H
(
Xt, θ̂m

)
−

(
m+k∑
i=m+1

H (Xt, θ0)− k

m
B(θ0)

m∑
t=1

G (X t, θ0)

)

=
m+k∑
t=m+1

(
H
(
Xt, θ̂m

)
−H (Xt, θ0)

)
− k

m

m∑
t=1

(
B(θ0)G

(
Xt, θ̂m

)
−B(θ0)G (Xt, θ0)

)
=: D1(m, k)−D2(m, k).

Let Hj denote the j-th component function of H, then a Taylor expansion yields

Hj(Xt, θ̂m)−Hj(Xt, θ0)

= ∇Hj(Xt, θ0)T (θ̂m − θ0) +
1

2
(θ̂m − θ0)T∇2Hj(Xt, ξj)(θ̂m − θ0), (7.6) eq_lemsub_2

where∇Hj(X t, θ) is the gradient with respect to θ and∇2Hj(X t, θ) is the Hessian matrix,

ξj is between θ0 and θ̂m element wise. By assumption B.1 and B.3 and a uniform law of
large numbers for stationary and ergodic processes (cf. Ranga Rao [33], Theorem 6.5) it
holds

sup
k>1

sup
ξ∈Θ

1

k

m+k∑
t=m+1

‖∇2Hj(Xt, ξ)‖∞ = OP (1),

where ‖(αi,j)‖∞ = maxi,j |αi,j|. Together with (7.6) this yields uniformly in k

m+k∑
t=m+1

(Hj(Xt, θ̂m)−Hj(Xt, θ0))

=
m+k∑
t=m+1

∇Hj(Xt, θ0)T (θ̂m − θ0) +OP

(
k‖θ̂m − θ0‖2

)
. (7.7) eq_lemsub_3

An application of the ergodic theorem yields

1

l

l∑
t=1

(∇Hj(Xt, θ0)T − E∇Hj(Xt, θ0)T ) = o(1) a.s. (l→∞). (7.8) eq_lln_ood

Conditions A.1 imply that for some C > 0 and some 0 6 γ < 1/2

w(m, k) 6

{
Cmγ−1/2k−γ, k 6 m,

Cm1/2 k−1, k > m.
(7.9) eq_g
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Proposition 5.1 b) together with (7.6) – (7.9) yields (as m→∞)

sup
k≥1

w(m, k) ‖D1(m, k)− kE∇H(X1, θ0)T (θ̂m − θ0)‖

= OP (1) sup
k6
√
m

(
k

m

)1−γ

+ oP (1) sup√
m<k6m

(
k

m

)1−γ

+ oP (1) = oP (1). (7.10) eq_D1

Analogously

sup
k>1

w(m, k) ‖D2(m, k)− kE∇B(θ0)G(X1, θ0)T (θ̂m − θ0)‖ = oP (1). (7.11) eq_D2

Since by definition of B(θ0) it holds

E∇H = B(θ0)E∇G = E∇B(θ0)G,

the assertion follows.
Proof of Proposition 5.3. The assertions follows similarly to the proof of Proposi-

tion 5.2 by a Taylor expansion in connection with a (uniform) ergodic theorem.
Proof of Proposition 5.4. By the assumption and an application of the Cauchy-

Schwarz inequality it holds

1

l

m+k∗+l∑
j=m+k∗+1

‖H(Xj, θ̂m)−H(X∗j , θ̂m)‖

6 C
1

l

m+k∗+l∑
j=m+k∗+1

‖Rj‖2 +

√√√√1

l

m+k∗+l∑
j=m+k∗+1

‖Rj‖2
1

l

m+k∗+l∑
j=m+k∗+1

‖F (X∗j)‖2 = oP (1)

by an application of the ergodic theorem. The assertion then follows from Proposition 5.3.

Proof of Proposition 5.5. Let {X∗t} be a stationary Markov chain with the same
transition kernels as {X t} with starting value x∗0 from the stationary distribution. Then,
there exists 0 < ρ < 1 such that, with respect to the total variation distance dTV (X, Y ) =
2 supB∈B |P (X ∈ B)− P (Y ∈ B)|, see for example (13.8) of Meyn and Tweedie [31],

dTV (X t,X
∗
t ) = ‖P (X t ∈ . |x0)− P (X∗t ∈ . |x∗0)‖TV = O(ρt), t→∞.

Since geometric ergodicity implies α-mixing with geometric rate, Theorem 21.12 of Lind-
vall [30] yields Xt = X∗t for all t > T , where T is an almost surely finite random time.5
6

Xt =

{
X∗t +R′t t ≤ T

X∗t t > T

5ich habe das jetzt nicht berprft, weil ich nur die alte Version gefunden habe, wo es kein Tehorem 21.12
gegeben hat

6das noch umschreiben, sobald ich es verstanden habe, wobei mir nur der allerletztes Schritt nicht klar
ist
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for some random process R′t. This allows us to write,

Xt = X∗t +Rt, Rt = 1{t<T}R
′
t,

in which case, equation (??) can be rewritten as

T∑
t=1

‖Rt‖TV =
∑
t≥1

‖Rt‖TV <∞

which finally implies

1

l

l∑
t=1

|Rt|2 = oP (1).

as l→∞.
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