

AN ASYNCHRONOUS CONTROLLER FOR A DAISY-
CHAINABLE VME BUS INTERRUPTER

Jochen Beister, Matthias Kuhn, Ralf Wollowski

Department of Electrical Engineering
University of Kaiserslautern, D-67653 Kaiserslautern, Germany

Abstract

An interrupter for use in a daisy-chained VME bus interrupt system has been
designed and implemented as an asynchronous sequential circuit. The concur-
rency of the processes posed a design problem that was solved by means of a
systematic design procedure that uses Petri nets for specifying system and in-
terrupter behaviour, and for deriving a primitive flow table. Classical design
and additional measures to cope with non-fundamental mode operation yielded
a coded state-machine representation. This was implemented on a GAL 22V10,
chosen for its hazard-preventing structure and for rapid prototyping in student
laboratories.

INTRODUCTION

Teaching interrupt and priorization techniques is one of the aims of our microcomputer labora-
tory. We use an M68000-based VME bus interrupt system (Figure 1) that consists of a single
handler and several peripheral units on the daisy chain of their interrupters. The peripheral de-
vices are either the four end switches of a solar cell panel with limited rotation about a horizon-
tal and a vertical axis, or - for preliminary experiments - special circuitry allowing concurrent
interrupt requests by hand (Kuhn 1991). Interrupts can be requested on seven priority levels via
the request lines IRQ1 to IRQ7. If concurrent requests are on different levels, the unit with the
higher level takes precedence regardless of its position in the daisy chain, but requests on the
same level, e.g. level 2 for units 1 and 2 in Figure 1, are priorized according to position.

The processes in the system feature concurrency, conflicts that require arbitration, and more
or less implicit timing conditions.

Asynchronous circuits are a natural solution for controlling
such processes, and also offer high speed and low power consumption. But they are notoriously
difficult to design, especially since concurrent processes lead to non-fundamental mode opera-

tion. Much of our research effort, however, has gone into a systematic procedure and tools for
designing assemblages of communicating asynchronous sequential circuits for the distributed
control of concurrent processes from a Petri net specification of required behaviour (Beister and
Wollowski 1993). Therefore we rejected an artificially clocked synchronous solution for the in-
terrupters in favour of an asynchronous design.

BEHAVIOURAL SPECIFICATION

An interrupter in the system shown in Figure 1 interfaces with an environment consisting of its
own peripheral unit, the interrupt handler (via the bus), and the neighbouring interrupters in the
daisy chain. Its only activities are interactions with this environment. Hence it would be very
difficult and error-prone to try to design an isolated interrupter without sufficiently precise
knowledge of the overall system processes. The first design step, therefore, was to construct a
high-level Petri net description of required system behaviour. This net is shown in Figure 2. The
transitions represent actions of system components, and the participating signals across the

in-
terface to and from the interrupters

 are listed in the transition boxes. Some explanations follow:

- An interrupt request is modelled by letting one of the transitions labeled
"Interrupter i requests…" put a token on place P in the handler section of Figure 2. The
number of tokens on P is the number of pending requests.

- The peripheral units we use (but not their interrupters) withdraw their request signal
IRQPi only upon being serviced. Figure 2 models the necessary - but not sufficient - con-
dition, namely that the interrupt service routine has been initiated.

- An interrupter has to decide whether to absorb an incoming acknowledgement (IACK-
INi) or to pass it on to the next in line (IACKOUTi). It will pass it through either if it has
not requested an interrupt (Pi empty, ti´ enabled, ti´´ not enabled), or if it has issued a
request (token on Pi, ti´ inhibited, ti´´ enabled) but the acknowledged priority on A1 - A3
does not match its own.

The interrupters in the system are all of the same type. To simplify the design, we partitioned
the interrupter into data path and controller as shown in Figure 3. Only the data path interfaces
with the bus. It serves to personalize the interrupter: By means of a jumper, the request signal
IRQC issued by the controller is switched to one of the seven VME bus lines IRQ1 to

IRQ7;
and by setting three switches in the "choice…" block, one of eight previously defined status/ID
bytes can be selected. The data path also compares the acknowledged priority level on A1 - A3
with its own request priority as selected by the jumper, and sends a match/no match signal M
to the controller. Since personalization is done in the data path, the controllers are exactly alike
in all interrupters.

The next step was to derive a complete signal-level specification of the required processes
observable at

the interface of the controllers and their common environment.

 The result, shown
in Figure 4, is stated in terms of causal dependencies between binary interface signal transitions
(edges) and takes the form of a labeled and interpreted Petri net: a signal transition Petri net.
This type of net, first proposed by Wendt (1977) for the present purpose, is similar to the signal
transition graph (STG) of Chu (1987), but is much less restricted than the STG concept. Each

transition is labeled with the leading or trailing edge of a binary signal, and the firing of a tran-
sition represents an occurence of this particular edge. Note that Figure 4 does not contain any
references to internal states or state changes: the introduction of internal states is a matter of
design, not of specification. The only exception is the unlabeled, shaded transition in the middle
of each interrupter section. It signifies an irrevocable decision to be made by the controller re-
gardless of its implementation, but not observable at its output. Some important features:

- A controller´s decision to absorb or pass through an acknowledgement must now be mo-
deled as a three-way arbitration of the race between IRQPi

 and IACKINi

 ("IRQPi

wins", "IACKINi

 wins", and "tie"). The need for arbitration occurs when the acknow-
ledgement of a request made a number of machine cycles ago from further down the dai-
sy chain is intercepted by a new request. The tie (a matter of nanoseconds of delay
between the racing edges) is now decided (fairly!) in favour of passing through. In this
minor detail, the more precise signal-level specification now differs from the high-level
one of Figure 2.

- A timing condition hidden in Figure 2, but necessary for correct operation and always
fullfilled in the real system, is now explicitly stated in Figure 4: The IACK

 signal from
the handler will always have propagated down the daisy chain and been absorbed at its
true destination

before

 the handler begins to process another pending request. This is mo-
deled by the arcs with the additional dots from the IACKOUTi

 / IACKIN (i+1)

 transi-
tions near the bottom of Figure 4 to the pre place of the "compare priorities" transition of
the handler.

- The matching of acknowledged and requested priority, performed by the data path, is
now reflected on the signal level by the changes of controller input Mi (transitions Mi

and Mi

 in the interrupter sections of Figure 4).

In a final specification step, the Petri net of Figure 4 was

formally

 decomposed by extraction
(Beister and Wollowski 1993), yielding the signal transition Petri net specification of a single
controller´s interaction with its environment (Figure 5). A number of dependencies that are cau-
sal in the overall system now appear as timing constraints (dotted arcs) from the point of view
of the individual controller. It also becomes apparent that the controller must regard IACKIN

and DSO

 as concurrent even though the handler generates IACKIN

 before DSO

. But since
DSO

is fed directly to all controllers while

IACK must propagate along the daisy chain, a con-
troller may see their changes in any temporal sequence depending on its position in the chain.

Figure 5 is a precise and complete specification of the interface behaviour required of a con-
troller communicating with its environment, and the formal basis for designing the controller.

STATE MACHINE DESIGN

It is now possible to derive a primitive flow table for the controller as an asynchronous circuit.
The construction is

algorithmic

 (Beister and Wollowski 1993), and tools for performing it have
been created (Simeth 1990). Essentially, the Petri net of Figure 5 is put through its evolutions
by playing the token game, and the primitive flow table is generated by letting the primitive
state change with the markings. The primitive states and their number - 52 for the controller -
are thus found automatically, and the flow table returns to the same primitive state only if the
net returns to the same marking.

At this stage of the design, concurrent input changes that always imply non-fundamental
mode operation were treated first as single and then as multiple-input changes in fundamental
mode. The primitive flow table was then subjected to classical state reduction, resulting in a ful-
ly reduced flow table of only 10 states, named A to K in the state diagramm of Figure 6, and
with MOC and MTT behaviour. Note that the arbitration discussed above is implicitly contai-
ned in the flow table, and that we do not use a separate arbiter in the implementation.

A state assignment designed to avoid critical races and also to cope with the hazards of non-
fundamental mode (nFM) operation was now constructed using only four state variables. This
required the flow table to be expanded by the states

L, M, and N. State transitions that had to
be added in order to deal with nFM operation have been drawn as broken-line arcs in Figure 6.

GAL

IMPLEMENTATION

An FPGA or standard cell implementation being beyond our financial reach, we decided on a
GAL implementation. It is a cheap yet compact solution that offers an essentially two-level
structure for the combinational circuits, wide fan-in of the gates, a direct feedback option, short
delays and small differences of path delays: features favourable for dealing with hazard pro-
blems. The next-state and output circuits were designed in complete sum form to avoid logic
hazards. Because of the large number of product terms in the complete sums we had to choose
a GAL 22V10. Four of its output logic macro cells (OLMCs) driven in combinational mode
were used for the outputs, and four more in direct feedback mode for the next-state circuit. The
remaining two OLMCs could fortunately be used for an asynchronous JK flip-flop needed as
part of every peripheral unit for generating the IRQP signal. This raised the overall utilization
of the GAL to 53%.

The circuits were built and tested directly in the VME bus system and found to operate
correctly - both singly and in a daisy chain. Seven interrupters have been operating reliably for
over two years under heavy workloads in our student microcomputer laboratory.

CONCLUSIONS

We hope to have shown that assemblages of asynchronous circuits can be adequately imple-
mented on FPL devices, and that the use of FPLs for this purpose requires a systematic high-
level design procedure if it is to be efficient. Furthermore, correctness by construction due to a
systematic and - where possible - algorithmic procedure justifies the laborious task of setting
up the initial overall Petri net specifications (Figures 2 and 4 in the present example) and ex-
tracting the circuit´s signal transition Petri net (Figure 5) by decomposition. Finally, FPL im-
plementation as a means of rapid prototyping makes it possible for students to experiment with
and apply asynchronous circuits in laboratory work and projects.

REFERENCES

Beister, J., and Wollowski, R., "Controller Implementation by Communicating Asynchronous
Sequential Circuits Generated from a Petri Net Specification of Required Behavior",
in

Synthesis for Control Dominated Circuits,

G. Saucier and J. Trilhe, Eds.,
Amsterdam: Elsevier, pp. 103 - 115, 1993.

Chu, T. A., Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications",

Proc.
of the Int. Conf. on Computer Design

, pp. 20 ff., 1987
Kuhn, M., "Verbesserung des mathematischen Modells einer Nachführeinrichtung und Ent-

wicklung einer Versuchsreihe zur mikrorechnergesteuerten Nachführung eines Solarzellen-
paneels", Diploma thesis, Dept. of Elec. Engineering, University of Kaiserslautern,
Germany, 1991.

Simeth, M., "Ein Programm zur Konstruktion des Elemetarautomaten aus der ¸Kommunikati-
onsregel eines asynchronen Schaltwerkes", Diploma thesis, Dept. of Elec. Engineering, Uni-
versity of Kaiserslautern, Germany, 1990

Wendt, S., "Using Petri Nets in the Design Process for Interacting Asynchronous Sequential
Circuits",

Proc. of the IFAC Symposium on Discrete Systems

, Dresden, GDR, vol. 2, pp. 130
- 138, 1977.

1

8 3 2

V
M

E
 b

us

sy
st

em

P
er

ip
he

ry

7

D
0

-
D

7

A
S

1
-

A
S

3

D
T

B
R

E
Q

U
E

S
T

E
R

IN
T

E
R

R
U

P
T

H
A

N
D

LE
R

. .
 .

P
E

R
IP

H
E

R
A

L
U

N
IT 2

K
E

R
N

E
L

P
O

R
T

. .
 .

. .
 .

IR
Q

P2

V
M

E
 B

U
S

. .
 .

...

IN
T

E
R

R
U

P
T

E
R

2

IN
T

E
R

R
U

P
T

E
R

1

P
E

R
IP

H
E

R
A

L
U

N
IT

1

IR
Q

P1

2

1

1

2

...

F
ig

ur
e

1
T

he
 in

te
rr

up
t s

ys
te

m

Pass through
acknowledge

signal
(2/

1)

Pass through
acknowledge

signal
(3 /

2)

Peripheral
unit 1

removes
interrupt
request
(IRQP1)

Peripheral
unit 2

removes
interrupt
request
(IRQP2)

Peripheral unit 1/I N T E R R U P T E R 2 / Peripheral unit 2

Peripheral unit 2 requests
an interrupt (IRQP2)

Interrupter 2 requests an
interrupt with priority 2

via VME bus (2)

Check whether acknowledged
priority matches own

ackn. level ≠
own level ackn. level = own level

Release data lines and
signalize release ()

P2

t1´t2´´t2´

Figure 2 (left part) High-level specification

Remove request (2), place
status/ID byte on data bus and

signalize validity (D0-D7,)

ackn. level = own level

I N T E R R U P T H A N D L E R /
Kernel

 I N T E R R U P T E R 1

Check whether acknowledged
priority matches own

Acknowledge
interrupt to
daisy chain
(1/

)

t4

Kernel activities

BusanforderungGet bus

current prio. ≥
request prio.

Compare priorities

current prio.<
request prio.

Read status/ID byte and
acknowledge receipt ()

Initiate interrupt service routine

Peripheral unit 1 requests
an interrupt (IRQP1)

Interrupter 1 requests an
interrupt with priority 2

via VME bus (2)

ackn. level ≠
own level

Release data lines and
signalize release ()

Place level code on
address bus (A1-A3,).

Request status/ID byte
()

Check whether acknowledged
priority matches own

t1´´

P

P1

Figure 2 (right part) High-level specification

Remove request (2), place
status/ID byte on data bus and

signalize validity (D0-D7,)

C O N T R O L L E R
(to be designed)

D A T A
P A T H

IRQP

M DTACKC EN

Comparator

3

IRQC

...

...
Encoder

3

...

Choice of
status/ID

byte

8

2 3

D0-D7AS1-AS3

I N T E R R U P T E R

...
8

721

Figure 3 An interrupter: data path and controller

..

2 /
1

2 /
1

2 /
1

2 /
1

2 /
1

IRQP2

IRQC2

M2

M2

IRQP2

IRQC2 .
EN2

DTACKC2

EN2

DTACKC2

3 /
2

3 /
2

3 /
2

3 /
2

3 /
2

I N T E R R U P T E R 2 / Peripheral unit 2 Peripheral unit 1 /

=

(side condition)

=

Figure 4 (left part) Signal-level specification

..

I N T E R R U P T E R 1

IRQP1

IRQC1

M1

M1

IRQC1 .
EN1

DTACKC1

EN1

DTACKC1

BusanforderungGet bus

Place level code on
address bus (A1-A3)

1 /

Read status/ID byte

Release
address
lines1

1

Initiate interrupt
service routine

Kernel activities

current prio. ≥
request prio.

Compare priorities

current prio.<
request prio.

I N T E R R U P T H A N D L E R / Kernel

IRQP1

........................

timing constraint
decision
transition

formal
transition

Figure 4 (right part) Signal-level specification

..

IRQP

IRQC

M

M

IRQP

IRQC .
EN

DTACKC

EN

DTACKC

...

..................

.......................

Figure 5 Signal transition Petri net specification of a single controller

output
transition

input
transition

 -
 -

 1
 0

1
-

1
0

 -
 -

 1
 1

N
0

1
1

1

1
0

1
1

1
-

1
0

na
m

e
st

at
e

co
de

ou
tp

ut

in
pu

t:
, M

, I
R

Q
P

,
st

at
e

co
de

: Q
1,

 Q
2,

 Q
3,

 Q
4

ou
tp

ut
: E

N
, I

R
Q

C
, D

T
A

C
K

C
,

A
0

0
0

0

1
1

1
1

K
1

0
0

1

1
1

1
0

D
0

0
1

0

1
0

1
1

M
0

1
1

0

1
0

1
1

C
0

0
0

1

1
1

1
0

I
1

0
0

0

1
1

1
1

E
0

0
1

1

1
0

1
0

B
0

1
0

0

1
0

1
1

H
1

0
1

0

1
1

0
1

L
0

1
0

1

1
0

1
1

F
1

1
0

0

0
1

1
1

G
1

1
1

0

0
1

0
1

 -
 -

 0
 1

1
-

0
0

1
-

1
0

0
-

1
0

0
-

0
0

-
-

0
1

-
-

1
1

-
-

1
0

-
-

1
1

-
-

0
0

0
-

1
0

-
-

1
1

1
-

1
0

0
0

1
0

-
-

1
1

-
-

1
1

-
-

1
0

0
1

1
0

0
0

1
0

0
1

1
0

0
0

1
0

-
-

1
1

0
0

1
0

-
-

1
1

1
-

1
0

 -
 -

 1
 1

0
1

1
0

0
1

1
0

0
-

1
-

1
-

1
-

1
-

1
-

0
-

1
0

-
-

1
1

1
-

0
1

F
ig

ur
e

6
 R

ed
uc

ed
 s

ta
te

 m
ac

hi
ne

 o
f t

he
 c

on
tr

ol
le

r
w

ith
 n

on
-f

un
da

m
en

ta
l m

od
e

st
at

e
as

si
gn

m
en

t

