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Abstract

An algorithm for constructing Grobner bases for right and for two-sided ideals
in nilpotent group rings is presented.

1 Introduction

In 1965 Buchberger introduced the theory of Grobner bases for polynomial ideals in
commutative polynomial rings over fields (see [Bu65]). It established a rewriting ap-
proach to the theory of polynomial ideals. Polynomials can be used as rules by giving
an admissible term ordering on the terms and using the largest monomial according to
this ordering as a left hand side of a rule. “Reduction” as defined by Buchberger then
can be compared to division of one polynomial by a set of finitely many polynomials. A
Grobner basis (G is a set of polynomials such that every polynomial in the polynomial
ring has a unique normal form with respect to reduction using the polynomials in G as
rules (especially the polynomials in the ideal generated by G reduce to zero using (7).
Buchberger developed a terminating procedure to transform a finite generating set of
a polynomial ideal into a finite Grobner basis of the same ideal.

Since the theory of Grobner bases turned out to be of outstanding importance for
polynomial rings, extensions of Buchberger’s ideas to other algebras followed, for ex-
ample to free algebras ([Mo85, M094]), Weyl algebras ([La85]), enveloping fields of Lie
algebras ([ApLa88]), solvable rings ([KaWe90, Kr93]), skew polynomial rings ([We92]),
free group rings ([R093]) and monoid and group rings ([MaRe93b]).

In [MaRe93a] we have combined the ideas of string rewriting and polynomial rewriting
in the field of monoid rings and generalized the concept of Grobner bases to these rings.
We assumed that our monoids were presented by finite convergent semi-Thue systems
and ordered with the completion ordering of the presentation. This approach is of
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course valid for groups, but it makes no use of the additional structural information we
have for groups. Group rings have been studied for special classes of groups, and e.g.
for free, Abelian, nilpotent or polycyclic groups the congruence problem for right ideals
is known to be solvable (see e.g. [R093, BaCaMi81, Si94]). In [Re95] we have enclosed
how using group presentations, which make use of the structural composition of the
respective groups, lead to algorithms to construct finite Grobner bases for right ideals
for special classes of groups: the class of finite groups, the class of free groups, the
class of plain groups, the class of context-free groups, and the class of nilpotent groups.
In this report we want to present our results on nilpotent groups and how they can
be extended to solve the membership problem in two-sided ideals. It is a well-known
fact that every finitely generated nilpotent group G is an extension of a torsion-free
nilpotent group N by a finite group €. Therefore it can be presented by confluent
semi-Thue systems of a special form. Due to this presentation we can define a concept
of “commutative prefixes” on the group elements which captures the known fact that
in the commutative polynomial ring a divisor of a term is also a commutative prefix of
this term. This concept can be used to define a Noetherian reduction in the group ring.
Since our structure is no longer commutative we study a special form of right reduction
called quasi-commutative (qc-)reduction and at first right ideals. Later on we then show
how Grobner bases of two-sided ideals can be characterized by right Grobner bases
additionally requiring that the right ideal generated coincides with the ideal generated.
For Abelian groups the latter is obvious and for nilpotent groups we can give additional
conditions when this holds. Since we have no admissible ordering, reduction steps
are not preserved under multiplication with group elements, i.e., if a polynomial p is
reducible using a polynomial f, a multiple pxw for some group element w need no longer
be reducible using f. Remember that this was essential in Buchberger’s approach as it
implies that in case p——;0 we can conclude p * w ——5 0. Furthermore, qc-reduction
does not express the right ideal congruence. We introduce different techniques to repair
these defects. For a set of polynomials F' the set {f xe | f € F,e € £} is called the
E-closure of F', and F is called NV-saturated, if for all f € F', w € N we have that the
right multiple f * w is in one step qc-reducible to zero using F. Using these concepts
we give a characterization of a right Grobner basis by s-polynomials and present an
algorithm to compute finite right Grobner bases. This approach then is extended to
compute Grobner bases of two-sided ideals.

2 Basic Definitions

Let G be a group with binary operation o and identity A. The elements of a group
ring K[G] over a field K can be presented as polynomials f = > s o, - ¢ where only
finitely many coefficients are non-zero. Addition and multiplication for two polynomials
[ =240y -gand h =3 5B, g are defined as f+h = 3 cg(ay + 3,) - g and
Txh=3,c07 -9 with vy =3 0yyec 0 - By. For a subset F' of K[G] we call the set
ideal (F) = {7 - fixw; | n € N, € K, f; € Fw; € G} the right ideal and
ideal(F) = {7, a;-u;* fixw; | n € Ny € K, fi € F,u;,w; € G} the two-sided
ideal generated by F. Notice that we have three different multiplications which will



be denoted in different ways: - denotes multiplication with elements in K, o denotes
multiplication in G and * stands for the multiplication of polynomials in the group
ring.

As we are interested in constructing Grobner bases for ideals in K[G], we need a pre-
sentation of the group G in order to do computations. Since G is a finitely generated
nilpotent group, we can apply knowledge on its structure'. Our approach makes use
of the well-known fact that a finitely generated nilpotent group G is an extension
of a torsion-free nilpotent group N by a finite group £. Now torsion-free nilpotent
groups and finite groups have special group presentations by finite convergent semi-
Thue systems? and these can be combined to group presentations of extensions. Next
we give the technical details of such presentations for nilpotent groups which are neces-
sary to understand the proofs of the lemmata and theorems. It is important that these
presentations allow to treat the elements of G as special ordered group words and to de-
fine a tuple ordering on these representatives which can be used to define a Noetherian
reduction. Let us start by giving a presentation of a torsion-free nilpotent group N. Let
Y = {ay,a7’,...,a,,a;'} be a finite alphabet where a7 is called the formal inverse of
the letter a;. For 1 < k < n we define the subsets X3 = {a;,a;' | k <i <n}, ¥, = 0.
Using the precedence ai' > a; > ...a;l = a; = ... = a ' = a, we can define the
set of ordered group words ORD(X) = ORD(X;) recursively by ORD(X,41) = {A},
and ORD(Y;) = {w € X7 | w = wv for some v € {a;}* U {a;'}*,v € ORD(X;41)}°.
The semi-Thue system Tyc U T7 over ¥ where Tho = {a?af/ — af/aﬁz |7 >1,6,6 €
{1,-1},2 € ORD(X;41)}, 17 = {a;a]' — Ma;'a; — M| 1 < i < n} is a presen-
tation of a torsion-free nilpotent group A. By [Wi89] there exist such presentations
which are convergent with respect to the syllable ordering induced by the precedence
on ¥ as defined below. Multiplication of two elements u,v € ORD(Y), i.e., u o v,
corresponds to computing the normal form of the word wuwv.

Definition 1 Let ¥ be an alphabet and = a partial ordering on X*. We define an
ordering =% on m-tuples over ¥* as follows: (ug,...,un) = (vo,...,vn) if and
only if there exists 0 < k < m such that u; = v; for all 0 < ¢ < k and vy, = vyg.
Let a € ¥. Then every w € ¥X* can be uniquely decomposed with respect to a as
W = woaw; .. .awy, where |wl, =k >0 and w; € (X\{a})*. Given a total precedence
= on X we can then define u >gsy v if and only if |ul, > |v]s or |uls = |v|, and
(Uoy vy ) >£‘;§1(E\{a}) (vo, ..., Um) where a is the largest letter in ¥ according to =
and (ug, ..., Unm), (Vo,...,0y) are the decompositions of u and v with respect to a in
case |ul, = |v], = m. o

The irreducible elements representing the elements in N are ordered group words.
Restricting the syllable ordering to ordered group words we find that ai' ...a;" <qm

n

a{l...aj" if and only if for some 1 < d < n we have 1y = j; for all 1 <1 <d—1 and

n

'E.g. see [KaMeT9] for more information on this subject.
2E.g. see [BoOt93] and [Wi89] for more information on this subject.
3Note that = will be used to denote identity of elements as words.



1t <7 Jd with*
a>0and <0
a<z il { a>0,>0and a<f
a<0,f<0and a> g

where < is the usual ordering on Z. We then will call the letter a4 the distinguish-
ing letter of the two elements. Now the following lemma from [Wi89] gives some
insight how special multiples influence the representation of the element representing
the product. It will be used extensively in the proofs later on.

Lemma 1 Let G have a convergent presentation (X, Tyc U Tr). Further for some
1 <j<i<nletw € ORD(E\Y;), wy € ORD(X;41). Then we have a; 0 wy; = wya;z
and ws © a; = a;z9 for some z1,z9 € ORD(X;41). In particular the occurrence of the
letter a; is not affected by these multiplications. a

Let us proceed to give a presentation of G in terms of N and & by assuming that &£ is
presented by its multiplication table® and N is presented by (X, Tyc UT)) as described
above. For all e € € let ¢, : ¥ — N be a function such that ¢, is the inclusion
and for all @ € ¥, ¢.(a) = inv(e) og a og e. For all e1,e5 € & let z,,., € N such
that z., » = 2x., = X and for all e, e3,e3 € € with e; og €3 =¢ €3, €1 0g €2 = €32, ,-
Assuming (E\{A})NE =0, let T = (E\{)}) U X and let T consist of the sets of rules
Tne and Ty, and the following additional rules:

€162 — €326, for all e,e9 € E\{A}, e5 € € such that e og €3 =¢ e,

ae — eg.(a) forall e € E\{A},a € X.

Then (T, T') is a convergent presentation of G as an extension of N by €. Every element
in G has a representative of the form eu where ¢ € £ and u € N'. We can specify a
total well-founded ordering > on our group by combining a total well-founded ordering
=¢ on & and the syllable ordering >y on N: For equq, equy € G we define equq > ey
if and only if e; ¢ ey or (e1 = ey and uy; >qn uz). Furthermore, we can define a
tuple ordering on G as follows: For two elements w = eal! ... ain,v = eall ... aln, we
define w >4y, v if for each 1 < 1 < n we have either j; = 0 or sgn(#;) = sgn(j;) and
27| > |7i] where sgn(z) is the sign of the non-zero integer ¢. Further we define w >y, v
if w > v and || > || for some 1 <1 < n and we define w >y, A for all w € G.
According to this ordering we call v a (commutative) prefix of w if v <, w. Notice
that this ordering captures the fact that a divisor of a term in the ordinary polynomial
ring is also a commutative prefix of the term. The tuple ordering is not total on G but
we find that v <y, w implies v < w. Now using such presentations we can state the
following lemma which later on will enable a Noetherian definition of reduction.

Lemma 2 Lel w,v,0 € G with w >¢p v and v = 0. Then for v € G such that
w=vou, we get w = vou. Notice that since G is a group, u always exists and is
unique, namely u = inv(v) o w. Moreover, if v # A, then u € N.

4This ordering corresponds to 0 < 1 <2< ... < -1 < -2 < ....
Similar approaches are possible for other presentations of £ by convergent semi-Thue systems,
e.g. nilpotent presentations of the finite group.



Proof : Without loss of generality® let us assume that the &-part of w,v and o is X,
ie., w,v,0 € ORD(Y). Let w,v,0,u € G be presented by ordered group words, i.e.,

w=ay' . oaf v =alt a0 =alt . oayr, and u = aft Ll with wg, v, O, u; €

Z.

Further let a; be the distinguishing letter between v and v, i.e., vy >7 v4. Since
’ ) Z

the commutation system only includes rules of the form a?af' — af'aﬁz, ] >,z €

ORD(X;41),6,6" € {1,—1} and we have no P-rules, we can conclude

U1 Vd—1 Ul Ud—1 1 Vg_1 Uy Ud—1 __ _wy Wd—1 5S4 S
a'..cay g oalt Loiayty =at o iay S oalt ooiayy =at ooiata) L La)
for some s; € Z. Moreover, a;? o ajf o aj® = ay?, i.e., vg+ sq + ug = wy. To prove

wq >z g+ 54+ ug and hence w >¢y 0 0 u, we have to take a closer look at vy and 0.

1. In case vy > 0 this implies wy > 0 as w >, v. Therefore, vy + 54 + ug = wy
and wg > vy > 0 give us s4 + ug > 0. Now v >qp v and vy > 0 imply that
vy > vg > 0, as otherwise vy >7 vy would contradict our assumption. Hence we
get 04+ 54+ ug < wq, implying w >qn 0 0 u.

2. In case vy < 0 this implies wy < 0, |wy| > |vg| and thus vy + s4 + ug = wy yields
$4 4 ug < 0. Further we know |vg| + [s4 4 ug| = |wg|. We have to distinguish two

cases:

(a) In case vy < 0, then v >4 © implies |vg| > |04]. Therefore, we get |94] +
|sq + ua| < |wg| and w >qm 0 0 u.

(b) In case 94 > 0, as s4 + ug < 0 we have to take a closer look at 04+ sq + ug.
In case 04 + s4 + uqg > 0 we are done as this implies w >y © o u. In case
Vgt sqa+uqg <0 we get that v < |sg+ug| implying |04+ s4+ug| < [sqatuq| <
|wq| and hence w >g 0 0 u. O

Notice that assuming £ is presented by a convergent semi-Thue system (A, R) in the
definition of the tuple ordering we might be able to use additional information we have
on the representatives of the elements in £ or the rules in R to refine this ordering in
order to allow more multiples for reduction later on. When doing so one has to ensure
that the refinements only allow multiplications which are compatible in the sense of
the previous lemma.

3 Reduction in Nilpotent Group Rings

Given a non-zero polynomial p in K[G], the so-called head term HT(p) is the largest
term in p with respect to =, HC(p) is the coefficient of this term and the head monomial

®This assumption can be made as for w = ejw’,v = ev’, ¥ = e3d’ with w',v',’ € ORD(X),
W >tup v implies e; = ez and v > ¥ either implies e; > e3 and we are done as u € N or e = e3.



is HM(p) = HC(p) - HT(p). T(p) is the set of terms occurring in p. The ordering on G
can be lifted to a partial ordering on K[G] by setting p > ¢ if and only it HT(p) > HT(q)
or (HM(p) = HM(q) and p — HM(p) > ¢ — HM(g¢)). Now using the head monomial of
a polynomial as a left hand side of a rule, we can define reduction. Frequently in
polynomial rings reduction is defined in case the head term of the polynomial is a
divisor of the term of the monomial to be reduced. Now in groups every element ¢ is a
divisor of every other element s since ¢ o (inv(t) 0 s) = s holds. But defining reduction
requiring only divisibility would not be Noetherian as the following example shows.

Example 1 Let ¥ = {a,a” '} and T = {aa™" — X\,a""a — A} be a presentation of
a nilpotent group G. Suppose we simply require divisibility of the head term to allow
reduction. Then we could reduce the polynomial a* + 1 € Q[G] al the monomial a* by

the polynomial a™' + a as a* = a=' o a®>. This would give

a2—|—1—>a_1+aa2—|—1—(a_1+a)*a3:—a4—|—1

and the polynomial —a* + 1 likewise would be reducible by a=' +a at the monomial —a*
causing an infinite reduction sequence. o

Hence we will give additional restrictions on the divisibility property required to allow
reduction. Since G in general is not commutative, we will restrict ourselves to right
multiples to define reduction.

Definition 2 Lel p, [ be two non-zero polynomials in K[G].
We say [ quasi-commutatively (qc-)reduces p to ¢ at @ monomial a1 of p in one
step, denoted by p—7°q, if

(a) t >wup HT(f), and
(b) g=p—a-HC(f)™" - [+ (inv(HT(f)) o?).

Quasi-commutative reduction by a set F' C K[G] is denoted by p—'% q and abbreviates
p——% q for some f € F. o

Notice that if f qc-reduces p at a -t to ¢, then ¢ no longer is a term in ¢ and by lemma
2 p > g holds. This reduction is effective, as it is possible to decide, whether we have
t >tup HT(f). Further it is Noetherian and the translation lemma holds.

Lemma 3
Let F be a set of polynomials in K[G] and p,q, h € K[G] some polynomials.

1. Let p— q—% h. Then there are p',q' € K[G] such that p—=%p', ¢ =% ¢ and
h=yp —4¢q.

2. Let 0 be a normal form of p — q with respect to —3 . Then there exists a
polynomial g € K[G] such that p—=% g and ¢ —¥ ¢.



Proof :

l. Let p—g—pF h=p—q—a- f+w, wherea € K*, f € F,w € G and HT(f)ow =
t >up HT(f), i.e. a- HC(f) is the coefficient of ¢ in p — g. We have to distinguish
three cases:

(a) t € T(p) and t € T(q): Then we can eliminate the term ¢ in the polynomials
p respectively ¢ by qc-reduction. We then get p—%"p—ay - f+w = p’ and
¢—F q—ay fxw = ¢, with oy —ay = o, where a; - HC(f) and a, - HC(f)
are the coefficients of ¢ in p respectively gq.

(b) t € T(p) and ¢ € T(q): Then we can eliminate the term ¢ in the polynomial
p by qc-reduction and get p—>}cp —a-f*w=yp and ¢ = ¢

(¢c) t€T(¢q)and t & T(p): Then we can eliminate the term ¢ in the polynomial
g by qc-reduction and get ¢ —f}c g+a-frxw=q and p=p.

In all cases we have p' — ¢ =p—qg—a- f*xw=h.

2. We show our claim by induction on k, where p— ¢ i)ch 0. In the base case k = 0
there is nothing to show. Hence, let p — ¢ —'% i)ch 0. Then by (1) there are
polynomials p', ¢’ € K[G] such that p—=¥p',qg =% ¢ and b = p' — ¢. Now
the induction hypothesis for p’ — ¢’ i}cho yields the existence of a polynomial
g € K[G] such that p =% p' =% g and ¢ —F ¢ ¥ g.

O

But qgc-reduction does not capture the right ideal congruence. One reason is that a
reduction step is not preserved under right multiplication with elements of G.

Example 2 Let G be the group given in example 1. Then for the polynomials p = a*+a
and [ = a+ X we find that p is qc-reducible by f. This is no longer true for the multiple
pra? = (a*+a)xa? = X+ a'. Notice that, since a=' + X € ideal (p) we have
a4+ ) =ideal (p) 0, but a4+ <L>p 0 does not hold. o

As we have seen in this example, different terms of a polynomial can come to head
position by right multiplication with group elements. This is due to the fact that the
well-founded ordering on G is not compatible with right multiplication”. The next
lemma states that A -right-multiples which bring other terms to head position can be

constructed in case they exist.

Lemma 4 Let p be a non-zero polynomial in K[G]. In case there exists an element
w € N such that HT(p x w) = t o w for some t € T(p), let aq be the distinguishing
letter between t and HT(p). Then one can construct an element v € ORD(X4) such
that HT(p*v) =t owv.

"No total, well-founded ordering with this property can exist for a group due to the existence of
inverses.



Proof : We show that for all polynomials ¢ € {p * ulu € G} the following holds:
In case HT(q * w) = t; o w for some w € G, t; € T(q) then one can construct an
element v € ORD(X;) where a4 is the distinguishing letter between ¢; and HT(gq), and
HT(g*v) =1t 0w0.

This will be done by induction on k& where d = n — k. Without loss of generality® let us
assume that the E-part of the terms in pis A, i.e., for all ¢t € T(p) we have t € ORD(Y).
In the base case let k = 0, i.e., a, is the distinguishing letter between HT(q) = ¢, =

a%l...a}f and tiza?...af{‘. Hence 1; =¢jforalll1 <3 <n-—1and 1, >z ¢,.

!, Wn

By our assumption there exists w € G such that HT (¢ * w) = ¢; o w, with w = w'a;,
w'" € ORD(X\X,), and there exist ki,..., k,—1,2 € Z such that ¢, ow = ay'...am o

n

1 1po 1 1 1o 1 _ k Bpno1 1p4z
w = a;'...a,”3 owoa" = (a'...a,"3 ow)oa " = af a7 6, T and
1 1n— ; 1 1, _ ; 1 1. . -
tiow=ua...a, 7 ar ow=ay"...a,"7 owoa, = (a;'...a,"7 ow’)oa;“‘*“’“ =

a]fl .. ak"__l1 a** . Thus 1, + z <z 1, +  must hold. Let us set v = a;l“. We show

c'n n

that for all t; € T(q)\{t;} we have t; 0 v = t; o v. Note that for all ¢{; with prefix
al ... aZL”__f < al'.. . a3 we have tjov < t;0v, as right multiplication with v = a; '~
only changes the exponent of a, in the respective term. It remains to look at those
terms ¢; with a{l e aZL”__f =ay'.. .a}f‘_‘ll . Hence, let us assume that there exists a term
tj such that t;ov > {;0v,1.e., 3, — 1, >7 1, — 1,.

Since HT (¢ * w) = t; 0w we know j, + & <z i, + ¢ and 1, + z <z i, + . Furthermore,
as t; = HT(q) we have 1,, >z 1, and 1,, >z j,. We prove that t; ov > ¢; o v yields
Jn+x >7 1, + = contradicting our assumption by analysing the possible cases for these
exponents.

First suppose that 1, < 0 and thus 1, + <z 7, + = implies z > |1,,| > 0°. Then in
case 1, < 0 this gives us |1,,| > |2,]. Now j, — 1, >z i, — 1, > 0 and 7, — 1,, > 0 yield
either j, > 0 or (j, <0 and |j,| < |tn]), both implying j, +y > i, +y for all y > |1,
especially for y = .

In case ¢, > 0 as before y, — 1, >z ¢, — 1, > 0 and 3, — 1, > 0 imply 3, > ¢, and for
all y > |1, we get 7, + y > 1, + y, especially for y = =.

Hence let us assume that 1,, > 0 and thus 1, + z <z ¢, + x implies z < 0 and |z| > 7,
since 1, >, >0 and 1, > 5, > 0.

Now j, — 1, >z 4, — 1, and ¢, — 1, < 0 imply 5, — 1, < 0 and |2, — 1,,| < |7, — 1.]-
Hence we get 7, < i, and for all y < 0 with |y| > j, we have j, +y >z 7, +y, especially
for y =z as || > 1, > Ju.

In the induction step let us assume that for all polynomials ¢ € {p*u|u € G} and w € G
with HT (¢ * w) = ; o w, if the distinguishing letter a; between HT(¢) and ¢; has index
d > n — (k — 1) there exists an element v’ € ORD(X,) such that HT(¢g % v') = t; 0 v'.
Now for ¢ € {p*ulu € G}, w € G with HT(¢ * w) = ¢, o w let us assume that the
distinguishing letter between HT(¢) and ¢; has index d = n — k.

Since HT (g * w) = t; o w, for w = w'a}?w” with v’ € ORD(X\Y,), w” € ORD(X441),

8This can be done as N-right-multiples do not change the £-part of a term.
92 < 0 would imply 1, + < i, + 2 and 1, + 2 < 0, hence In+tz>7 i, +2

8



we know that there exist ki,...,ks_1,2 € Z and z1,z;,21 € ORD(X441) such that

1 1 1 la_ g~ _ Kk ka1 1 .
how=a'...a70ow=uay"...a"5 ow' oay o =a'...a,"5 a)* "z and similarly
k ka1 4 . .
tiow = a...a," 5 a2, As 14 # 14 then 144+ x <z iy + = must hold and we can
_ 1y
set vg = a,, °.

We have to show that for all t; € T'(¢)\{t;} there exists v € ORD(X;) such that we
have t; 0o v > {; o v. Note that for all {; with prefix P .aéfl__ll <ay.. .aifi—f we have
ljovg < t;ovy, as right multiplication with vy = a;'? has no influence on the prefix in
ORD(X\X,).

Therefore, it remains to look at those terms ¢; with a{l e azld__f =a'.. .a}fi‘ll . Let us
assume that there exists a term ¢; such that {;0v, > t,0v4, 1., ja— 14 >7 14— 14. We
will show that then j; = 75 and hence our induction hypothesis can be applied since
for the polynomial ¢ * vy the distinguishing letter between HT (g * v4) and ¢; o vy is of
index d > d = n — k and by our assumption there exists inv(vy) o w € G such that
HT((g * vq) * (inv(vg) ow)) = HT (g * w) = t; 0w = t; o (inv(vg) o w). Hence there exists
v € ORD(X4) such that HT (¢ * vy % 0) = t; 0vg00 and we set v = v,0 € ORD(X,) and
are done.

It remains to show that j; = ¢4 must hold. We know 55+ <7z i4+x and 13+ <z 15+
since HT (¢ *w) = ¢; 0 w. Next we prove that ¢; ov = ¢, 0v implies j; = 74 by analysing
the possible cases.

First suppose that 1; < 0 and thus 15 + = <z iq + = implies z > |14] > 0 as before.
Then in case 14 < 0 this gives us |14] > |i4]. Now ju—14 >z 44— 1;>0and j;—1,> 0
yield either j; > 0 or (j4 < 0 and |jq| < |¢4]), both implying jq + y > iq + y for all
y > |14]. Thus as z > |14] we get j4 + x > 15+ z yielding j; = 4g4.

In case 14 > 0 as before 75— 13 >z 14— 14 > 0 and 55— 14 > 0 yield 34 > 24, and for all
y > |1, we get ju+y >ig+y. Thus as x > |14, jo + = > 14 + @ again yields j; = 4.
Therefore, let us assume that 1; > 0 and thus 1; + * <z 75 + = implies * < 0 and
|z| > 44, since 1; > i3 >0and 1, > j; > 0. Now jy— 13 >z 44— lgand ¢y — 14, <0
imply j; — 14 < 0 and |ig — 14| < |j4 — 14| Hence we get j; < i4 and for all y < 0 with
ly| > ja, we have j; +y >z 14+ y. Thus as |z| > ¢5 > jg, then j3+ 2 >7 15+  yields
Jd =t m

Notice that the proof of this lemma shows that there is an algorithm which computes
some v € ORD(X,) as desired in case it exists and that the element w need not be
known for this computation.

Remark 1 The element v constructed in the proof of the previous lemma can be
made “minimal” among all elements having this property by modifying the construction
slightly. In case for the distinguishing letter ag we have 150 > 0 > 145 or 0 > 15 > 1y
we still use vy = agld in the construction. For the other case 14 > 14 > 0 we then use
vg = a;id_l. o
For a polynomial p and a term ¢ € T(p) we call a term s in a multiple p*xw a t-term if
s = tow. The following lemma states that if in two N -right-multiples of a polynomial



the head terms result from the same term ¢, then there is also a right multiple of the
polynomial with a {-term as head term which is in some sense a common commutative
prefix of the head terms of the original two multiples. In example 2 for px A = a® + a
and p*a~! = a + A, both head terms result from the term a? and the head term a of
p*a~! is a commutative prefix of the head term a? of p * ).

Lemma 5 For u,v € N, let pxu and p * v be two right multiples of a non-zero
polynomial p € K[G] such that for some term t € T(p) the head terms are t-terms, i.e.,
HT(pxu) =tou=eal...a» and HT(pxv) =towv = eal' ...al». Then there exists a
term {gmp eay' ...af" where

= { sgn(¢;) - min{ |z, 51|} sgn(i;) = sgn(Ji)

0 otherwise

and an element 2 € N such that HT(p x 2) = t o 2 = 1. In particular, we have
qc

ez 0 and px v —0: 0.

pru— o

Proof : Let p, p*x u and p * v be as described in the lemma and let the letters
corresponding to our presentation be ¥ = {ay,...,a,,a7",...,a;'}. Without loss of

generality'® let us assume that the &-part of the terms in p and ¢ is A, i.e., for all
t € T({p,q}) we have t € ORD(Y).

We show the existence of z by constructing a sequence zy,...,z, € G, such that for
1 <1 < n wehave HT(p* z) = t oz = af'...a]'r; with r; € ORD(¥;41) and
ai' ...al' <up ay'...a]'. Then for z = z, our claim holds.

Let us start by constructing an element z; € G such that HT(p* z1) = t o z; = aj'ry,
r1 € ORD(Y,) and af' <iup af'.

In case 11 = j; or j; = 0 we can set zy = v and 51 = j; = py since HT(pxv) =tov =
a{l ...aﬁ[‘. Similarly in case 14 = 0 we can set zy = u and sy = 23 = 0 = p; since
HT(pxu) =tou = ag" ...a'" € ORD(X,). Hence let us assume ; # j; and both are
non-zero.

First suppose that sgn(é;) = sgn(y1). Then if |¢1] > |j1| we again set z; = v since for
$1 = j1 = pp our claim holds. In case [71| > |i1| we set z; = u because for s; = 1; = py
our claim holds.

Now let us proceed with the case sgn(i1) # sgn(j1), i.e., we construct z; € G such that
HT(p* z1) = toz € ORD(X;) as py = 0. We claim that the letter a; has the same
exponent for all terms in T(p), say b. In case this holds, no term in the polynomial
p* a7’ will contain the letter a; and the distinguishing letter between HT(p * a7") and
the term ¢ 0 a7 is at least of index 2. Furthermore we know HT((p * a7®) * (a} 0 v)) =
HT(p * v) = t ov. Thus by lemma 4 there exists an element r € ORD(X;) such
that HT((p * a7®) * 7) = t 0 a7’ o € ORD(Y;) and thus we can set z; = a7’r and
s1=0=ps.

Hence it remains to prove our initial claim. Suppose we have the representatives

10As before this can be done as N -right-multiples do not change the £-part of a term.
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s = ais'l‘s/, by € Z, s € ORD(X,) for the terms s’ € T(p) and HT(p) = s = al°z,.
Then we know bs >z b; since t € T(p).

Hence in showing that the case b; >z b; is not possible we find that the exponents of
ay in s and ¢ are equal. To see this, let us study the possible cases. If b, > 0 we have
bs > b; > 0 and hence there exists no € Z such that b +x > b, + 2 > 0. On the
other hand b; < 0 either implies b; > 0 or (b; < 0 and |bs| > |b4]). In both cases there
exists no x € Z such that b; + z < 0 and |b; + x| > |bs + z|. Hence b; = b; must hold
as we know that ¢ can be brought to head position by u respectively v such that the
exponents of a; in HT(p * u) respectively HT (p % v) have different sign.

It remains to show that there cannot exist a term s’ € T(p) with by <z bs = b;. Let

us assume such an s’ exists. Since HT(p*u) = tou = al' ... air and HT(p*v) =

tov=aj... aZL“ there then must exist 1, xy € Z such that by + 1 <z b;+ 121 = 17 and
by + 22 <z b + x93 = j1. Without loss of generality let us assume ¢; > 0 and j; < 0
(the other case is symmetric). In case b < 0 we get that b, + 1 = ;3 > 0 implies
x1 > |b] > 0. Now, as by <z b; either implies by > 0 or (by < 0 and |by| < |by]), we
find by + 1 > b; + 1 contradicting by + 1 <z b; + x1. On the other hand, in case
by > 0 we know b; > by > 0. Furthermore, b;+z5 = 53 < 0 implies 3 < 0 and |23 > b;.
Hence we get by + xo < 0 and |by 4 22| > |by + 23| contradicting by + x5 <z by + 5.
Thus let us assume that for the letter ai_; we have constructed z;_; € G such that
HT(p* 2zz1) = tozpy = al'...a ' rey = ai' . ..azk__llaifr' with r,_1 € ORD(X}),
r" € ORD(Zg41) and a3 ...a* ) <ewp @i ...a)'3'. We now show that we can find
2k, = zkp—1 0w € G such that HT(p* z;) =t oz, = a7’ ...a}ry with 1, € ORD(Z41)
and aj' ...} <pup af' ... alk.

This will be done in two steps. First we show that for the polynomials p*xu and p* zp_y

. ; ; . S i
with head terms af' ...a"" respectively aj'...a,"7 afr’ we can find an element w; € G

n

such that HT(p % 21 * wq1) = t 0 21 0wy = a’ ...azk__llaikf, 7 € ORD(X)41) and

Sk Pk
ay <iup ap” with

i = { sgn(ix) - min{|ix], [x[} sgn(ix) = sgn(lx)

0 otherwise.

Then in case af* <iup ai* we are done and set z; = z;_1 0wy and s; = ;. Else we can
similarly proceed for the polynomials p v and p* z;_y * w; with head terms af' ... a/”

respectively a3’ .. .azk__fa;’“f and find an element wy € G such that for z;, = z1_1 0w, 0wy

we have HT(p* zp) =t oz, = a7’ ... a rg, 15 € ORD(E41) and a3F <iup aik with

M _{ sgn(7x) - min{|jel, e[} sgn(5x) = sgn(sk)

- 0 otherwise.

Then we can conclude a;* <i,, a;* as in case sy = 0 we are immediately done and
otherwise we get sgn(jr) = sgn(3x) = sgn(pr) = sgn(ix) and min{|igl, [k, 7]} <

min{|zg|, |7x|}-

11



Let us hence show how to construct w;. Remember that HT(p*u) =tou = ait .. .at

and HT(p % zp_1) = t o 251 = ail...azk__llai’“r' for some ' € ORD(Xj41). In case

ik = Il or [y =0 we can set wy = X and 3 = [ = pp as HT(p* zp1) = to zpq =
ai' ...azk__fai’“r'. Hence let ¢ # [, and [ # 0.

First let us assume that sgn(ix) = sgn(lx). Then in case |1x| > |lx| we are done by setting

wy; = A as again HT(p* zz_1) =t 0 25—y = a}’ ...azk__fai’“r’ will do with $; = I = py.

Therefore, let us assume that |I;| > |iz|. Then we consider the multiple p*z,_y *ag * 1,
i.e., the exponent of the letter a; in the term toz,_; 0 a;l’“ﬂ’“ will be i, If HT (p* z_q *

—lp+ig lp+ig —lpt+ig — 51 Sk—1 ik
a ) we are done because then toz;_j0a, =ai...a. 7 afry

for some 7, € ORD(Xj41) and we can set wy = a;l’“"'““

show that the ¢-term toz;_4 o a];lk‘”k

=10zp_10a,
and 3 = 13 = pi. Otherwise we

in this multiple can be brought to head position

using an element r € ORD(X;41) thus allowing to set §; = 1, = pp and wy = a;l’“'”’“r

1l i
as then we have HT(p * zp_1 * wy) = Loz owy = aj'...a) 7T a1 o ap Rty =

T i~ I I 4 P . . . .
ai' . ..a 7 alF7 where afr’ o a T r = al#''. This follows immediately if we can

prove that the exponent of aj in the term HT (p* zp_q * a;l”i’“) is also 7. Then we can

apply lemma 4 to the polynomial p* z;_; * a;l”i’“ and the term toz,_; 0 a;l”ik. Note

that HT(p * 251 * a;¥ %) and t o Zp_1 O az ¥t have then distinguishing letter of at
p k k g g

least index k4 1 and further HT((p* zj_; * a;l’““’“) * a;l”i’“) = HT(p*z4_1) = L0 zp_1.

Therefore, we show that the exponent of a; in the term HT(p % z,_q * a;l”i’“) is also

ir. Let af'. ..azk__fazkr” with 77 € ORD(Xj4+1) be the term in p % z;_; that became

. S _ b - 1 Sk _ c Sp— 3
head term'?, ie., ai'...a; a0 ap ¥t = o .. 0Tl = 6l .. 4T Aty =
4 .
t 0 zp_1 0 ay *T* for some z,y € ORD(Xk41) and therefore ¢; >z ¢;. Then by lemma

1 there exist z; € ORD(¥\X;_1) and z; € ORD(X}) such that af* ...qik__lla;’“y 0z =

all ...aik__llazﬁf’“z for some z € ORD(X41) and ai’“"’f’“z 02y = ai’“azk_:f co.alh e,
2 = a;’* 2} for some 2, € ORD(Z441). Note that the i{-term is brought to head
position by this multiplication. Now multiplying HT (p * z;_1 * a;l’“—m) by 2122 we find
al' .. a) a0 2z, = alt L ai’“_‘faiﬁf’“_f’“ij for some & € ORD(X41). This gives us

¢y <gz 1 and thus 1, <z ¢; yields ¢, = 1.
Finally, we have to check the case that sgn(ix) # sgn(lx) and [, # 0. Let us take a

look at the polynomial p * z,_q * a,;l’“, i.e., the exponent of the letter a; in the term

Lo zp_y 0a;® will be 0. Suppose HT(p* zj_y * az™*) = ai' ... a;*7 aF z, for some term
s = aj ...azk__llazsxs € T(p*zp_1), v,xs € ORD(Xg41), ice., ¢x = by — lx. In case this

. . _1
head term is already the corresponding {-term ¢ o z;_y o a; *, we are done and we set

_Zk

wy = a * and 5, = 0 = pr. Now if we can show ¢; = 0, by lemma 4 the {-term

Ly

tozg_10ay * can be brought to head position using an element in ORD(X441) since the

distinguishing letter between HT (p* z;_1 * a,;l’“) and the term toz,_q 0 a,:l’“ then has at
1y

least index k+1 and we know HT ((p* 21 *a;l’“)*ak ) = HT(p*zp_1) = tozz_1. Hence,
in showing that ¢, = 0 we are done. As before there exist z; € ORD(X\X;-1) and

Note that the product of two elements in ORD(X;) is again an element in ORD(Y;).

I2Note that a candidate in T(p * zx—1) for the head term in p * zp_1 * alzl"'H" must have prefix

s Sk—1 _: _ s Sk—1 s 12 : - —l+ix :
ay'...a, | since HT(p*zp_1) = ai* .. .a, "~ 'ry_1 and multiplication with a; only involves rg_1.
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Z9 € ORD(Ek) such that tozk_loa,;l 0z = azf ) akk fai’“z for some z € ORD(X41) and
ai’“zo,@ =a)...a" e, 2 = aj LY 5 for some 2, € ORD(Xj4+1). Remember that this
multiplication brmgs the t-term to head position. Hence multiplying HT(p*zp-1 *a;l’“)
by 212, we find @i ...a  ax 0 2129 = azf ) a;f fa“” *z for some ¥ € ORD(Xj41).
Thus we know ¢; + 21 <7z ;. To see that this implies ¢, = 0 we have to distinguish
three cases. Remember that ¢, = b, — [, and since our head term is an s-term so a;l’“
for some s € T(p* zp_1) we know by <z l. In case i;, = 0, we have ¢; <z 0 implying
¢y = 0. In case 7, > 0 then ¢ + 1, = by — [ + 15 <7z 1 implies 0 < by — [ + 15 < 1.
Furthermore, as [ < 0 we have —Ij, 413 > ¢ implying b, < 0 and hence |bs| < |lx|. But
then b, — I > 0 and 0 < by — I + 2. < 2. yields ¢ = by — [, = 0. On the other hand,
ir < 0and [y > 0imply 0 < b, <[ and hence by — 415 < 0 yielding |bs—lp +ix| < |ix]-

Since b, — [ < 0 this inequation can only hold in case ¢, = b, — [ = 0. O

These two lemmata now state that given a polynomial, we can construct additional
polynomials, which are in fact A -right-multiples of the original polynomial, such that
every N -right-multiple of the polynomial is qc-reducible to zero in one step by one of
them. This property is called V-saturation. In example 2 the multiples pxa™! = a+ A
and pxa?=a"14 ) give us a N—saturating set for p = a* + a.

Definition 3 A set S C {p*w | w € N} is called an N'-saturating set for a non-zero
polynomial p in K[G], if for all w € N, px w—E0. A set of polynommls F CK[]]
is called N'-saturated, if for all f € F and for allw € N, f x w—F0. o

A further consequence of the previous lemmata is that finite N -saturating sets exist
and that they can be computed.

Procedure SATURATION

Given: A non-zero polynomial p € K[G].
Find: SAT(p), an N-saturating set for p.

for all t € T(p) do
Sy =0,
if ¢ can be brought to head position
then compute ¢ = p*w with HT(p*w) =tow
Hy:={s € G|HT(q) Zeup s};
% These are candidates for “smaller” polynomials with ¢-head terms
q :=min{p* (inv(t)os) |s € H,HT(p* (inv(t)os)) = s};
= {q};

13

endif

endfor
SAT(p) := UeT() St % 9 contains at most |T(p)| polynomials

13More structural information can be used to rule out unnecessary candidates from the set Hy to
make this procedure more efficient.
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Grobner bases as defined by Buchberger can now be specified for right ideals in this
setting as follows.

Definition 4 A set G C K[G] is said to be a right Grobner basis, if «——¢
=ideal, (c), and for all g € ideal (&) we have g LY BT .

We can now characterize such bases by so-called s-polynomials corresponding to qc-
reduction.

Definition 5 For pi, p € K[G] such that HT( D=eal...ar and HT(py)=eal ... alr

with either yy = 0 or 53 = 0 or sgn(i) = sgn(y) for 1 < [ < n we can define an
s-polynomial, and setting

P { sgn(Ji) u=0

sgn () otherwise

the situation ea’fl'max{“ll"jl'} . .azn'max{liﬂ’lj"'} = HT(p1) o wy = HT(p2) 0 wy for some

wy,wy €N gives us
spol(p1,p2) = HC(p1)™" - pr # wy — HC(p2)™" - p2 * wo.
O

Notice that HT(p;) <tup eafl'max{“l"'jl'} ) ..aﬁ"'maxﬂi""'j"'} for ¢ € {1,2} holds in case
such an s-polynomial exists. Furthermore, if there exists a term ¢ such that ¢ >,
HT(p1) = eaj' ...a'" and t >, HT(py) = eaj' ... a/" an s-polynomial always exists'®

and we even have { >, ea!’' max{ia] ]} Lal max{linhlinl} g, every ¢ € & let the

mapping . : K[G] — K][G] be defined by Y.(f) = fxefor f € K[G]. We now can
give a characterization of a right Grobner basis in a familiar way after transforming a
generating set for the right ideal using these mappings.

Theorem 1 Let F,G C K[G] such that
(1) ideal (F') = ideal .(G)

(ii) {(f)|If € Fec E} CG
(iit) G is N - saturated.

Then the following statements are equivalent:

1. For all polynomials g € ideal (F) we have g ——& 0.

Notice that on first sight this is the definition of a weak Grobner basis. Since the translation
lemma holds for qc-reduction it also defines a strong Grobner basis.

15Notice that the condition for the existence of an s-polynomial is fulfilled as the tupel-ordering
requires that the exponent of a letter a; in the smaller term is either zero or has the same sign as the
exponent of a; in the tupel-larger term.
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2. For all polynomials fy, fi € G we have spol( fx, fi) ——& 0.

Proof :
1 = 2: By definition 5 in case for fi, f; € GG the s-polynomial exists we get

spol (fx, f1) = HC(fx) ™"+ fr * wy — HC(f1)) ™' fi * wy € ideal (G) = ideal (F),

and then spol( fz, fi) —& 0.

2 = 1 : We have to show that every non-zero element ¢ € ideal (F')is —& -reducible
to zero. Without loss of generality we assume that (G contains no constant polynomials,
as then we are done at once. Remember that for & € ideal (F) = ideal (G), h —¢& B/
implies &' € ideal (G) = ideal, (F). Thus as —¢ is Noetherian it suffices to show
that every g € ideal (F)\{0} is ——¢ -reducible. Let g = 37, a; - f; * w; be a
representation of a non-zero polynomial ¢ such that «; € K*, f; € F,w; € G. Further
for all 1 < j < m, let w; = ejuj, with e; € & u; € N. Then, we can modify
our representation of g to g = Y7, a; - ¥ (f;) * u;. Since G is N-saturated and
Ye,(fj) € G by definition 3 there exists g; € G such that . (f;) * u; —4°0 and
hence we can assume g = 377, a; - g; * v;, where a; € K*,g; € G,v; € N and
HT(g; *v;) = HT(g;) o v; >tup HT(g;). Depending on this representation of g and
our well-founded total ordering on G we define t = max{HT(g;)ov; | j € {1,...m}}
and K is the number of polynomials g; * v; containing ¢ as a term. Then ¢ = HT(g)
and in case HT(g) = ¢ this immediately implies that g is —¢ -reducible. Otherwise
we show that ¢ has a special representation (a standard representation corresponding
to qc-reduction) where all terms are bounded by HT(g), as this implies that g is top-
reducible using (. This will be done by induction on (¢, K'), where (t', K') < (¢, K)
if and only if ¢/ < ¢t or (¢ = ¢ and K’ < K)'. In case t = HT(g) there are two
polynomials gx, ¢, in the corresponding representation'” such that ¢ = HT(gx) o vy =
HT(g:) ov; and we have ¢ >, HT(g1),t >tup HT(g1). Hence by definition 5 there exists
an s-polynomial spol(gx, 1) = HC(gx)™ - gx * 21 — HC(g1) ™" - g1 % 22 and HT (gx) 0 vg =
HT(g)) ovy = HT(gx) 0o z1 0w = HT(g1) 0 29 0 w >¢up HT(gx) 0 21 = HT(g1) 0 29 for
some 27, 29, w € N. Let us assume spol(gx, g1) # 0'®. Hence, spol(gz, g1) ——& 0 implies
spol(gr, q1) = S0 6 - hy x v, 6 € K* h; € G,vl € N, where the h; are due to
the gc-reduction of the s-polynomial and all terms occurring in the sum are bounded
by HT(spol(gx,¢:)). By lemma 2, since t = HT(gx) 0 21 0 w >tup HT(gx) 0 21 and
HT(gx) o z1 > HT(spol(gx, g1)), we can conclude that ¢ is a proper bound for all terms
occurring in the sum 7, §; - h; * vl % w. Since w € N and G is N-saturated, without

loss of generality we can assume that the representation has the the required form. We

16Note that this ordering is well-founded since >sy11 is and K € N.

1"Not necessarily g; # gx.

'8In case spol(gg, g1) = 0, just substitute 0 for Y7, & - h; * v} in the equations below.

9Note that the case v} € £ cannot occur as it implies that h; is a constant polynomial and we
assumed that G does not contain constant polynomials.
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now have:

Q- g * Uk + Qp - gk vy

! ! !
= ap-gr*vr+ap Bregr ¥ vk — - B grx v Fap Breogr kv

=0

= (ar+a;-B) grxve—op (Br-ge* v — B gr*vp)

=spol (gr.g)*w

= (ozk—l—a;-ﬂk)-gk*vk—oz;-(Z(Si-hi*v;*w) (1)
=1

where 8, = HC(gx)™", 5 = HC(g;,)™" and o] - 31 = a;. By substituting (1) in our
representation of g either ¢ disappears or in case ¢ remains maximal among the terms

occurring in the new representation of g, K is decreased. a

On first sight this characterization might seem artificial. The crucial point is that in
losing the property “admissible” for our ordering, an essential lemma in Buchberger’s
context, namely that p ——,0 implies p * w —5 0 for any term w no longer holds.
Defining reduction by restricting ourselves to commutative prefixes we gain enough
structural information to weaken this lemma, but we have to do additional work to
still describe the right ideal congruence. One step is to close the set of polynomials
generating the right ideal with respect to the finite group &£: For a set of polynomials
F using the E-closure Fe = {¢.(f) | f € F,e € £} we can characterize the right ideal
generated by F as a set of A-right-multiples since ideal (F) = {XF, ;- fi*u; | o; €
K, f; € Fe,u; € N'}. If we additionally incorporate the concept of N -saturation, qc-
reduction can be used to express the right ideal congruence and then a right Grobner
basis can be characterized as usual by s-polynomials. Now, using the characterization
given in theorem 1 we can state a procedure which enumerates right Grobner bases in
nilpotent group rings:

Procedure RIGHT GROBNER BASES IN NILPOTENT GROUP RINGS

Given: F C K[G] and a presentation of G by & and N as specified above
Find: GB,(F), a right Grobner basis of ideal (F).

G:={Y(f)| feF,e€&}; % G contains Fg
G := Uyee SAT(g); % G is N-saturated and ideal, (F') = ideal,(G)
B:={(¢1:9) | 1,92 € G, 1 # ¢}
while B # () do % Test if statement 2 of theorem 1 is valid
(¢1,42) := remove(B); % Remove an element using a fair strategy
if & := spol(qi,q2) exists
then &' := normalform(h, —¢); % Compute a normal form
if A" #0 % The s-polynomial does not reduce to zero

then G :=GU{g|ge€ SaT(h')};
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% G is N-saturated and ideal .(F) = ideal .(G)
Bi= BU{(f.g) | [ € G\g € SAT(i)};
endif
endif
endwhile

GB,(F) =G

The set G enumerated by this procedure fulfills the requirements of theorem 1, i.e., we
have Fe C (G and the set (@ at each stage generates the right ideal ideal, (F') and is V-
saturated. Using a fair strategy to remove elements from the test set B ensures that for
all polynomials entered into G the s-polynomial is considered in case it exists. Hence,
in case the procedure terminates, it computes a right Grobner basis. Later on we will
see that every right Grobner basis contains a finite one and hence this procedure must
terminate. Let us first continue to show how similar to the case of solvable polynomial
rings or skew polynomial rings ([Kr93, We92]), Grobner bases of two-sided ideals can
be characterized by right Grobner bases which have additional properties. We will call
a set of polynomials a Grobner basis of the two-sided ideal it generates, if it fulfills
one of the equivalent statements in the next theorem.

Theorem 2 For a sel of polynomials G C KI[G], assuming thal G is presented by
(I, T) as described above, the following properties are equivalent:

1. G is a right Grébner basis and ideal (G) = ideal (G).
2. For all g € ideal (G) we have g ——& 0.
3. G is a right Grébner basis and for all w € G, g € G we have w x g € ideal .(G).

4. G is a right Grobner basis and for all a € T', g € G we have a * g € ideal (G).

Proof :
1 = 2: Since g € ideal () = ideal (G) and G is a right Grobner basis, we are done.

2 = 3 : To show that (i is a right Grobner basis we have to prove «—g& = =ideal, (@)
and for all ¢ € ideal (G), g —=& 0. The latter follows immediately since ideal (G) C
ideal () and hence for all g € ideal (G) we have g ——& 0. The inclusion « =& C
=ideal, () 18 obvious. Hence let [ =igeal () 95 i-6., [ — g € ideal (G). But then we
have f — g —& 0 and hence by lemma 3 there exists a polynomial h € K[G] such that
f-—=Eh and g & h, yielding f « =& ¢. Finally, w * f € ideal (G) and w * f &0
implies w * f € ideal (G).

3 = 4 : This follows immediately.

4 =1 : Since it is obvious that ideal .(G) C ideal(() it remains to show that ideal (G) C
ideal (G) holds. Let g € ideal((), ie., g = Y7y o - u; % g; * w; for some o; € K,
g; € G and u;,w; € G. We will show by induction on |u;| that for uv; € G, ¢; € G,
u;xg; € ideal (G) holds. Then g also has a representation in terms of right multiples and
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hence lies in the right ideal generated by GG as well. In case |u;| = 0 we are immediately
done. Hence let us assume u; = ua for some a € I' and by our assumption we know
axg; € ideal (G). Let axg; = 7., B;-g'+v; for some 3; € K, ¢; € G'and v; € G. Then
we get ui*x gi =ua*g; = u*(axg;) =u*x (YT, Bi-gi*xv;) =", B+ (uxgf)*v; and
by our induction hypothesis u x g} € ideal,(G) holds for every 1 < 7 < m. Therefore,
we can conclude u; % g; € ideal (G). O

Statement 4 enables a constructive approach to use procedure RIGHT GROBNER BASES
IN NILPOTENT GROUP RINGS in order to compute Grobner bases of two-sided ideals
and item 2 states that such bases can be used to decide the membership problem for
the two-sided ideal by using qc-reduction. The following corollary of the previous two
theorems will be the foundation of a procedure to compute two-sided Grobner bases.

Corollary 1 Let F,G C K|[G] such that
(i) ideal (F) = ideal ()

(ii) {(f)|If € Fec €} CG
(iii) G is N- salurated.

Then the following statements are equivalent:

1. For all polynomials g € ideal (F) we have g —=% 0.

2. (a) For all polynomials fy, fi € G we have spol(fy, fi) ——& 0.
(b) Foralla €T, g € G we have a x g ——& 0.

Proof :
1 = 2: By definition 5 we find that in case for fi, f; € G an s-polynomial exists,

spol(fr, fi) = HC(fi) ™" fe * wy — HC(fi) ™' fi ¥ wy € ideal(G) = ideal (F),

and then spol(f, fi) —& 0. Similarly, since ¢ € G implies a * g € ideal (&) = ideal (F)

for all a € T, we have a * g ——%& 0.

2 = 1 : We have to show that every non-zero element ¢ € ideal (F') is —¢& -reducible
to zero. Without loss of generality we assume that (G contains no constant polynomials,
as then we are done at once. Let g = 37, a; - u; * f; *w; be a representation of such a
non-zero polynomial g such that o; € K*, f; € F,u;,w; € G and suppose for 1 <3 <m
we have w; = e;v; with e¢; € £ and v; € N. Then we can modify this representation to
g =Gy aj-ui ke (f;) *v; as e, (f;) € G by our assumption. Next we will show that
every multiple u 1. (f;) has a representation uj*i. (f;) = 312 B;-gixv! with ; € K=,
g; € G and v! € N. More general, we will show that this is true for every multiple
u*g,u €G, g€ G Asin the previous theorem this will be done by induction on |ul.
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The case |u| = 0 is obvious. Hence let v = v'a for some a € I'. By our assumption
we know a * g ——@ 0 and as we assume that G does not contain constant polynomials,
this reduction sequence results in a representation a* g = S5, ;- ¢/ # v/ with v; € K*,
¢ € Gandv! € N. Hence, uxg = u'x(axg) = u'*(XF5, yi-gi*v!) = S5 vi-(u'*gl)*0!
and now our induction hypothesis can be applied to each multiple v’ * ¢/, and since
products of elements in A/ are again in V', we are done. Therefore, we find that ¢ has
a representation g = Y-7_; o - 1 * w! where o, € K*, f/ € G,w} € N and now we can

proceed as in theorem 1 to prove our claim. a

Procedure GROBNER BASES IN NILPOTENT GROUP RINGS

Given: F C K[G] and a presentation (I',T) of G by € and N as specified above.
Find: GB(F), a Grébner basis of ideal (F).

G:={Y(f)| fe€F,ec&}; % G contains Fr and ideal(F) = ideal (G)
G := Uyeq SAT(9); % G is N-saturated
B :={(q1,9) | 1,92 € G,q1 # q2};
Mo={a+f|f€Gael}
while M # () or B # () do
it M0
then & :=remove(M); % Remove an element using a fair strategy
k' := normalform(h, —& );
if A#0
then G := G USAT(R);
% G is N-saturated and ideal(F') = ideal (&)
B= BU{(f.g) | ] € G.g € SAT(H));
M :={axg|a€el,gec SAaT(h)};

endif
endif
it B0
then (q¢i1,¢2) := remove(B); % Remove an element using a fair strategy
if A :=spol(q,q2) exists
then A’ := normalform(h, —¢&);
if h"#0 % The s-polynomial does not reduce to zero
then G := G USAT(R);
% G is N-saturated and ideal (F') = ideal (&)
B:=BU{(f,9) | f€G,g¢cSaT(h)};
M:={axg|acT,gec SAT(R)};
endif
endif
endif
endwhile
GB(F):=G
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Correctness of this procedure follows from corollary 1. For the set (G enumerated by this
procedure we have Fg C (G and the set G at each stage generates the ideal ideal (F')
and is N -saturated. Using a fair strategy to remove elements from the test sets B
and M ensures that for all polynomials entered into G the existing s-polynomials and
the critical left multiples are considered. To show termination we need the following
theorem which makes use of Dickson’s lemma due to the special representatives of the
group elements.

Theorem 3 Fuvery (right) Grobner basis contains a finite one.

Proof: Let F be asubset of K[G] and G a Grobner basis?® of ideal (F'), i.e., ideal (F) =
ideal ((7) = ideal (G) and for all g € ideal(F) we have ¢ ——& 0. We can assume that
(¢ is infinite as otherwise we are done. Further let H = {HT(g) | ¢ € G} C G. Then
for every polynomial f € ideal(F) there exists a term ¢t € H such that HT(f) >¢up t.
H can be decomposed into H = J.c¢ H. where H, contains those terms in H starting
with e. For each element of eu € H. the element u then can be viewed as an n-
tuple over Z as it is presented by an ordered group word. But we can also view it
as a 2n-tuple over N by representing each element v € AN by an extended ordered
group word u = a7™ a{l ...a;mal", where i;,5; € N and the representing 2n-tuple is
(41,71, -+ tn,Jn). Notice that at most one of the two exponents ¢; and j; is non-zero.
Now only considering the ordered group word parts of the terms, each set H. can
be seen as a (possibly infinite) subset of a free commutative monoid 73, with 2 -n
generators. Thus by Dickson’s lemma there exists a finite subset B. of H. such that
for every w € H, there is a b € B. with w >,, b. Now we can use the sets B, to
distinguish a finite Grobner basis in G as follows. To each term ¢ € B. we can assign
a polynomial g; € G such that HT(g;) = ¢. Then the set Gg = {¢g: | t € Be.,e € £}
is again a Grobner basis since for every polynomial f € ideal(F') there still exists a
polynomial ¢; now in G such that HT(f) >¢p HT(g:) = t. Hence all polynomials in
ideal (F') are qc-reducible to zero using G'p. O

Since both procedures enumerate respective Grobner bases and the sets enumerated
contain finite Grobner bases, the procedures terminate as soon as all polynomials of
the contained bases are entered into G. Therefore we now are able to solve problems
related to right and two-sided ideals in nilpotent group rings using reduction similar
to Buchberger’s approach to commutative polynomial rings.

4 Concluding Remarks

One problem of this approach is that computing the £-closure of a set involves |€|
multiplications in case & is presented by its multiplication table. Many finite groups
allow more compact convergent presentations. We close this paper by sketching how

20The proof for the existence of a finite right Grobner basis for ideal,.(F') is similar.
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information on such a presentation can be used. Let (A, R) be a convergent presenta-
tion of & and (¥, Tne U Tr) a presentation of N as described before. Then assuming
ANY =, we get a convergent presentation of G by setting ' = AU Y and T besides
the rules in T7 and T¢ includes the following additional rules

U — vw for all (u,v) € R, w € ORD(Y), [u]g = vw,
ae — ep.(a) foralle € Aja € X,

Now we can refine the definition of the tuple ordering to allow further multiplications
for reduction which are compatible on the representative of the £ part of the group
element. Further, information on the representatives and the rules can be used to
reduce the number of the polynomials needed. For example if we assume that & is
presented by a convergent PC'NI-presentation A = {by,b7",.. . by, 7', R = {b) —
wi, b7 — w! | w; € ORD(X\Y;),w! € ORD(X\X;_1),s; € N} U Ry (compare
[Wi89]), then we can combine prefix and quasi-comutative reduction to improve the
results given here.

Notice that we require a presentation of a finitely generated nilpotent group as an
extension of a torsion-free nilpotent group by a finite group. A related question is, how
we can compute such a presentation when given an arbitray presentation of a nilpotent

group.
The approach given in this paper describes and computes Grobner bases of two-sided
ideals using qc-reduction. Another way to describe them is in terms of two-sided

reduction, but then one again has to find suitable restrictions on the multiples allowed
for reduction in order to keep the number of s-polynomials small.

In [Re95] we have shown how the theory of Grébner bases in monoid and group rings
over fields can be lifted to monoid and group rings over reduction rings fulfilling special
axioms, e.g., allowing to compute finite Grobner bases for ideals in the coefficient do-
main. Hence the results of this paper also hold for nilpotent group rings over reduction
rings, e.g., the integers Z.
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