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Abstract In this paper we analyze the vibrations of nonlin-
ear structures by means of the novel approach of isogeomet-
ric finite elements. The fundamental idea of isogeometric
finite elements is to apply the same functions, namely B-
Splines and NURBS (Non-Uniform Rational B-Splines), for
describing the geometry and for representing the numerical
solution. In case of linear vibrational analysis, this approach
has already been shown to possess substantial advantages
over classical finite elements, and we extend it here to a non-
linear framework based on the harmonic balance principle.
As application, the straight nonlinear Euler-Bernoulli beam
is used, and overall, it is demonstrated that isogeometric fi-
nite elements with B-Splines in combination with the har-
monic balance method are a powerful means for the analysis
of nonlinear structural vibrations. In particular, the smoother
k-method provides higher accuracy than the p-method for
isogeometric nonlinear vibration analysis.

Keywords Isogeometric analysis · finite element method ·
nonlinear vibration · harmonic balance · nonlinear beam

1 Introduction

The efficient computation of structural vibrations plays an
important role in civil and mechanical engineering. Exam-
ples are freestanding structures like bridges or skyscrapers,
ride comfort analysis in automobiles, and the flapping of air-
plane wings [1]. Today, the development of these structures
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relies heavily on computer-aided design (CAD), and the re-
sulting geometry models serve as technical specification for
the manufacturing process but are also the basis of static
and dynamic calculations using the finite element method
(FEM) [2].

Since the geometry description within the most wide-
spread CAD programs makes use of Non-Uniform Ratio-
nal B-Splines (NURBS) [3–5], it needs to be adapted for
polynomial-based FEM and is approximated by meshes that
usually do not represent the CAD geometries exactly. Iso-
geometric analysis (IGA) is aimed at bridging this gap be-
tween CAD and FEM. Introduced by Hughes et. al. [6] in
2005, IGA uses NURBS instead of polynomials both for the
representation of the geometry and for constructing an ap-
proximate numerical solution in the fashion of a finite ele-
ment discretization.

In this paper, we explore the benefits of IGA in the field
of nonlinear vibrational analysis by combining it with the
method of harmonic balance. Using a well-understood non-
linear Euler-Bernoulli beam model as benchmark problem,
we demonstrate that spline-based discretizations with higher
smoothness lead to an improved accuracy and are thus a
promising approach. Moreover, we also give an introduction
to the topic of IGA and explain the main ideas behind this
new paradigm in computational engineering.

There are several advantages over traditional FEM and
p-FEM [7] when using isogeometric methods. In this way,
it is possible to solve the governing equations of a solid
or fluid mechanics application on the exact CAD geome-
try. Moreover, a solution space with higher smoothness can
be easily generated and leads in many cases to significantly
better approximation properties. So far, isogeometric anal-
ysis has been used for a number of applications [6, 8–11],
and a mathematical theory of convergence and refinement
has been established [12–17]. We refer also to the mono-
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graph by Cottrell et al. [18] for an extensive exposition of
the subject.

If we take a closer look at the topic of linear modal anal-
ysis, i.e., the computation of eigenfrequencies and eigen-
modes, it turns out that IGA leads also here to a better ac-
curacy than polynomial-based FEM, Cottrell et al. [9]. Even
more, the inherent instabilities that are present in the high
frequencies of the so-called optic branch of the spectrum
for the higher order FEM do not appear when using splines
with higher smoothness instead of piecewise polynomials.
These observations inspired our work, but for a nonlinear vi-
brational analysis, we require a different computational ap-
proach to capture the relevant dynamics of the system.

Our choice in the nonlinear case is the harmonic bal-
ance method for the study of steady-state responses of a
structure subject to periodic external forces [19–24]. We in-
troduce here two variants, the Harmonic Balance-Newton
Raphson method (HBNR) [25–29] and the Incremental Har-
monic Balance method (IHB) [30, 31], and test both for the
nonlinear Euler-Bernoulli beam formulation of [32]. Since
the vibrations of thin beams, especially low frequency sub-
and super-harmonic resonances, have already been investi-
gated by a number of researchers using finite element meth-
ods, we now want to apply isogeometric analysis to this
problem. Due to the coupling of high and low modes in non-
linear vibration and the much better approximation of high
frequencies and modes by IGA compared to FEM [9], we
also expect IGA to perform well for the analysis of steady-
state harmonic resonances of the nonlinear beam.

Since beams are the most simple nonlinear solid me-
chanics model, the advantage of preserving the exact geom-
etry is less important in this case, and the focus lies on the
benefit of using a higher continuity of the underlying spline
spaces.

The paper is organized as follows: In Section 2, we give
an introduction to the main concepts of IGA and apply it to
the modal analysis of a linear beam model, reproducing thus
the results of [9]. The method of harmonic balance for the
computation of the nonlinear response dynamics of a struc-
ture is summarized in Section 3. We then combine both ap-
proaches and study the aforementioned nonlinear beam ex-
ample in Section 4. In particular, the method is validated
in comparison to reference results and detailed numerical
convergence studies for isogeometric analysis and B-Spline-
based finite elements, i.e. the k- and p-method, are carried
out. The paper finishes with a short summary and conclu-
sions in Section 5.

2 Isogeometric finite elements

In this section, we give a short overview on the main features
of isogeometric finite elements and apply it to the modal
analysis of a linear beam model.

2.1 B-Splines and NURBS

We start with the definition and properties of B-Splines and
Non-Uniform Rational B-Splines (NURBS), the tools that
are typically used for describing geometries in computer-
aided design and also for representing the numerical solu-
tion in isogeometric analysis [3, 4, 6, 18]. For a detailed in-
troduction, including proofs and computer implementations,
we refer to [4], while [5] also includes an historical perspec-
tive on the topic.

Starting from a knot vector Ξ = {ξ1, . . . ,ξr}, which is
a non-decreasing set of knots ξi ∈ R (i = 1, . . . ,r) , ξi ≤
ξi+1 (i = 1, . . . ,r− 1), the B-Spline basis functions Ni,p(ξ )

of degree p are defined for i = 1, . . . , ` , ` := r− p− 1, by
the following recursion:

Ni,0(ξ ) =

{
1 ξi ≤ ξ < ξi+1

0 else
,

Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1(ξ ).

(1)

In the following, some terminology associated with the knot
vectors will be useful. The half-open interval [ξi,ξi+1) is
called the i-th knot span. If the knots ξi are uniformly dis-
tributed over Ξ , then we call the knot vector uniform, and if
the first and last knot have multiplicity p+1, we speak of an
open knot vector. Last but not least, we use the terms degree
and order of a B-Spline synonymously.

There are many useful properties of B-Spline functions,
and among them we point out:

– The basis functions Ni,p , i= 1, . . . , ` are piecewise poly-
nomials of degree p.

– Compact support:
supp(Ni,p) = [ξi,ξi+p+1) , i = 1, . . . , `.

– Non-negativity:
Ni,p(ξ )≥ 0 ∀ξ ∈ [ξ1,ξr] , i = 1, . . . , `.

– Partition of unity:
For an open knot vector there is
∑
`
i=1 Ni,p(ξ )≡ 1 ∀ξ ∈ [ξ1,ξr].

– Continuity:
The basis functions Ni,p are p-times continuously differ-
entiable (Cp-continuous) inside a knot span and at inner
knots of multiplicity k (k ≤ p) only Cp−k.

As examples for B-Spline functions see Fig. 1 and Fig. 2.
The k-th derivative of a basis function N(k)

i,p (ξ ) is defined
recursively by

N(k)
i,p (ξ ) :=

dk

dξ k Ni,p(ξ ) =

= p

N(k−1)
i,p−1 (ξ )

ξi+p−ξi
−

N(k−1)
i+1,p−1(ξ )

ξi+p+1−ξi+1

 .

(2)
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Fig. 1 B-Spline basis functions of order p = 3 with `= 8 on the open
uniform knot vector Ξ = {0,0,0,0,0.2,0.4,0.6,0.8,1,1,1,1} with in-
ner continuity C2
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Fig. 2 B-Spline basis functions of order p = 3 with `= 8 on the open
uniform knot vector Ξ = {0,0,0,0,0.3̄,0.3̄,0.6̄,0.6̄,1,1,1,1} with in-
ner continuity C1

A B-Spline curve of order p for the open knot vector Ξ

with control points Bi ∈ Rd (i = 1, . . . , `) has the form

C(ξ ) =
`

∑
i=1

Ni,p(ξ ) Bi. (3)

It has the following properties:

– The polygon formed by the control points {Bi} is called
control polygon.

– Convex hull property:
The curve is completely contained in its control polygon.

– Interpolation of start and end points:
C(ξ1) = B1 , C(ξr) = B`.

– Affine invariance:
Affine transformations of the curve can be performed on
its control points.

– Displacing a control point Bi only influences the curve
locally in the knot interval [ξi,ξi+p+1).

– The continuity properties of the curve correspond to the
ones of B-Spline functions.

In this paper, we will only use B-Spline functions and
B-Spline curves for open uniform knot vectors on [0,1] with
inner knots of multiplicity 1≤ k ≤ p.

In analogy to (1), the NURBS basis functions Ri,p of
order p with weights wi ∈R (i = 1, . . . , `) for the open knot

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

B
7

B
6

B
8

B
1B

5

B
2

B
9

B
3

B
4

p = 2, l = 9

Ξ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 
0.75, 0.75, 1, 1, 1}

w
0
 = 1/sqrt(2)

w =  {1, w
0
, 1, w

0
, 1, w

0
, 1, w

0
, 1}

Fig. 3 A circle as a NURBS curve

vector Ξ are defined by

Ri,p(ξ ) =
Ni,p(ξ ) wi

∑
`
j=1 N j,p(ξ ) w j

. (4)

A NURBS curve reads, cf. (3),

C(ξ ) =
`

∑
i=1

Ri,p(ξ )Bi. (5)

Most properties of B-Splines hold for NURBS as well. For
equal weights wi = const. ∀i = 1, . . . , `, NURBS correspond
to B-Spline basis functions. Derivatives of NURBS are more
complicate than those of B-Splines and are described in de-
tail in [4], along with efficient algorithms for their evalua-
tion.

The main advantage of NURBS over B-Splines is the
possibility to represent conic intersections exactly, which is
very important for typical engineering shapes (see for exam-
ple a circle in Fig. 3).

2.2 Isogeometric analysis

As discussed in the Introduction, the main idea behind iso-
geometric analysis (IGA) is to bridge the gap between CAD
and FEM. Based on [6] and [18], we summarize next the
major properties and discuss the relation to classical finite
elements.

The key concept of IGA consists of using the NURBS
curves and basis functions introduced in the previous sec-
tion 2.1 both for representing the geometry and for span-
ning the solution spaces in the finite element method. The
isoparametric concept of classical FEM employs also the
same function spaces for geometry and solution representa-
tion, but there a conversion step is applied where the CAD
geometry is approximated by piecewise polynomials. IGA
with NURBS, on the other hand, makes it possible to bypass
this conversion and mesh generation step, and, moreover, of-
fers higher continuity of the numerical approximation.

Starting from the weak form of a partial differential e-
quation on a domain Ω ⊂ Rd with a bilinear form a(·, ·),
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linear form l(·) and Dirichlet boundary conditions u|δΩ = 0
we seek a solution u in a corresponding function space S
with test functions v in a function space V ,

u ∈S : a(v,u) = l(v) ∀ v ∈ V . (6)

The parameterization of the domain Ω is given in terms of a
geometry function on a parameter domain Ω0

F : Ω0→Ω , x = F(ξ ), (7)

that corresponds to a NURBS curve in the case of one-di-
mensional IGA,

x = F(ξ ) =
`

∑
i=1

Ri,p(ξ )Bi. (8)

The integrals over the physical domain Ω in a(·, ·) and
l(·) are then transformed and computed on the parameter do-
main Ω0. In the same fashion, the derivatives of u(x) with
respect to x can be reduced to derivatives with respect to ξ

using the chain rule. Therefore, it is necessary to compute
the Jacobian DF(ξ ) = (∂Fi/∂ξ j)i j and eventually the Hes-
sian HF(ξ ) = (∂ 2Fi/∂ξ j∂ξk)i jk.

Next, a Galerkin projection is applied, i.e., the infinite-
dimensional function spaces S and V are approximated by
finite-dimensional subspaces Sh ⊂S and Vh ⊂ V . In case
of IGA, the spaces spanned by the NURBS basis of the ge-
ometry function F, eventually restricted by Dirichlet bound-
ary conditions, are chosen for this purpose,

Sh ⊂ span
{

Ri,p ◦F−1} , uh =
`u

∑
i=1

Ri,p(ξ )ui

Vh ⊂ span
{

Ri,p ◦F−1} , vh =
`v

∑
i=1

Ri,p(ξ )vi.

(9)

Substituting uh and vh from (9) into the weak form (6)
yields the stiffness matrix K and the load vector f,

Ki j = a(Ri,p,R j,p) , i = 1, . . . , `v , j = 1, . . . , `u

fi = l(Ri,p) , i = 1, . . . , `v.
(10)

As usual, the displacement vector u= {ui} is then computed
by solving a linear system

K u = f, (11)

which results in the approximate displacement uh in the form
of a NURBS curve.

Typically, the entries of K and f are computed by quadra-
ture rules at the element level and then assembled into the
global stiffness matrix and load vector. This procedure is
very similar to the classical FEM, with knot spans playing
the role of elements, see [2, 15] for more details.

2.3 Isogeometric analysis and p-FEM

As mentioned earlier, an important advantage of isogeomet-
ric analysis with B-Splines or NURBS over classical and
higher order finite elements (p-FEM, [7]) is higher continu-
ity at element boundaries. While the distinguishing mark of
a finite element is its parameterization by means of a refer-
ence element, in IGA the knot spans [ξi,ξi+1) for two suc-
cessive knots ξi 6= ξi+1 are referred to as elements, and all
elements of one parameter domain form a patch [18].

The typical finite element methods used for linear and
nonlinear Euler-Bernoulli beams are C1-continuous over el-
ement boundaries. In contrast to that, IGA with B-Splines
and NURBS offers Cp−1-continuity at the inner knots.

To study the benefits of higher continuity and compare
the isogeometric k- and p-methods, we use B-Splines and
for the p-method we reduce the continuity at element bound-
aries to C1 with inner knots of multiplicity p−1. In this case,
however, not the number of elements s should be taken as a
reference for comparing convergence properties and accu-
racy. Instead, the number of curve control points `= `u = `v
of the B-Spline curve is used since it means the same num-
ber of degrees of freedom (d.o.f.) and a similar cost of com-
puting. Thereby we use the following rules of thumb for the
number `:

– General rule for k-times repeated inner knots (Cp−k):
`= p+1+ k · (s−1).

– IGA ansatz with k = 1 (Cp−1):
`= s+ p.

– FEM ansatz with k = p−1 (C1):
`= s · (p−1)+2.

For the total number of degrees of freedom, which are only
displacement d.o.f., we have n = d · `, with d being the di-
mension of the space that the spline curve lives in (d = 1 in
the linear and d = 2 in the nonlinear case).

Classical finite element methods provide the possibility
of mesh refinement (h-refinement) for increasing the accu-
racy, and sometimes also order elevation (p-refinement, p-
FEM). In isogeometric analysis, we have h-refinement (in-
sertion of additional knots) and p-refinement (elevation of
the order of basis functions) available as well, but there ex-
ists also a k-refinement procedure, which means increasing
the continuity along with the order. Details on these ap-
proaches and algorithms can be found in [4, 6]. For our pur-
poses, we will only make use of knot insertion for linear
parameterizations, cf. Sec. 2.4.

In this paper we adopt the terminology of [9] and use
the expression isogeometric analysis or IGA as synonym for
parameterization and discretization with B-Splines. There is
the k-method with simple inner knots, where we can h-refine
for fixed degree p maintaining Cp−1-continuity and degree-
elevate increasing the continuity, and the p-method with in-
ner knots of multiplicity p− 1, where we can also h-refine
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Fig. 4 Linear beam: comparison of discrete spectra for C1-continuous
p-method (FEM) and Cp−1-continuous k-method (IGA) for different
degrees 2≤ p≤ 7

for fixed p and degree elevate with constant C1-continuity
at element boundaries. We compare these methods with lit-
erature references using standard finite elements or p-FEM
resp. higher order finite elements, which are C1-continuous
over element boundaries, just like the p-method.

2.4 Isogeometric analysis of linear beam vibrations

As a first example to show the advantages of the higher
smoothness of the isogeometric method, we review next the
results obtained by Cottrell et. al. [9] when computing the
natural frequencies of linear Euler-Bernoulli beams. In Sec-
tion 4, we will study the isogeometric approach for nonlin-
ear beams.

We start from the equation for the transverse displace-
ment w of a planar beam, with parameters density per unit
length ρ , Young’s modulus E, cross-section area A and sec-
ond moment of area I according to [33],

EI wIV (x, t)+ρA ẅ(x, t) = p(x, t) ∀x ∈Ω × (0,T ). (12)

The equation for w(x) can be derived by separation of vari-
ables, which leads to the following differential equation for
a simply supported beam with unit parameters [9],

wIV (x)−ω
2w(x) = 0 ∀x ∈ (0,1),

w(0) = w(1) = w′′(0) = w′′(1) = 0.
(13)

Here, it is possible to calculate the natural frequencies ana-
lytically [9, 33] as

ωi = (iπ)2 , i = 1,2,3, . . . . (14)

In order to compute numerical values of the natural fre-
quencies ωn we derive the weak form of (13)

1∫
0

w′′(x) v′′(x) dx+ω
2

1∫
0

w(x) v(x) dx = 0. (15)

For the parameterization of the x-coordinate we now use a
B-Spline curve of degree p with open knot vector Ξ and
control points Bi ∈ R (d = 1⇒ `= n),

x(ξ ) = C(ξ ) =
`

∑
i=1

Ni,p(ξ )Bi. (16)

Following the isoparametric concept, we employ another B-
Spline curve for the deformation w and for the test functions
v,

w(x) =
`

∑
i=1

Ni,p(x)ui. (17)

The weak form (15) of (13) with the isogeometric discretiza-
tion (16) & (17) leads to the well-known discrete eigenvalue
problem for the natural frequencies ωi and natural modes φ i

(K−ω
2
i M) φ i = 0 , i = 1, . . . ,n; (18)

with stiffness and mass matrices

Ki j =

1∫
0

N′′i,p N′′j,p dx,

Mi j =

1∫
0

Ni,p N j,p dx.

(19)

In order to compare the numerical values of the natu-
ral frequencies ωh from (18) by either isogeometric analysis
with B-Splines (or NURBS) or classical polynomial-based
finite elements with the exact values from (14), we com-
pute, as in [9], normalized frequency spectra ωh

i /ωi and plot
them against i/n . Note that in the isogeometric case, it is
even possible to derive these spectra analytically from the
discretized equation of motion [9].

Figure 4 shows the comparison between the k- and p-
method (IGA resp. FEM) for p = 2, . . . ,7 using a linear pa-
rameterization (dx/dξ ≡ 1). While the p-method leads to
optical and acoustical branches in the spectra for p≥ 3 and
a very low accuracy with divergent behavior for i/n→ 1,
the spectra for the isogeometric k-method are smooth with a
much higher accuracy over the whole domain. Only at the
end of the spectrum a few outliers occur, which are dis-
cussed in detail in [9].

However, for the k-method accuracy increases with finer
mesh parameter h and higher degree p, more precisely, the
order of convergence is O(h2(p−1)) [9]. While isogeometric
analysis with higher order and smoothness promises a gain
of accuracy, the p-method with p> 2 is not suitable for anal-
ysis of higher vibration modes. Although in practice higher
linear eigenfrequencies usually are not of interest, they may
have an influence on the nonlinear vibrational behaviour to
be studied later, due to the coupling of high and low modes.
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Since the beam formulation is rotation-free, special tech-
niques have to be applied to enforce rotation boundary con-
ditions like for cantilevers. Therefore we also refer to [9]
where weak boundary condition imposition and the use of
Lagrange multipliers are discussed in detail.

3 Nonlinear vibration analysis with harmonic balance

In contrast to the linear vibration case above, it is no more
possible to simply set up and solve an eigenvalue problem to
obtain the eigenfrequencies which describe the vibrational
behavior of a structure when nonlinear models are used. In-
stead, the response dynamics of the structure are analyzed,
and other techniques have to be applied. Our choice for de-
termining the steady-state response of a structure subject
to periodic excitation is the harmonic balance method [19,
21–24]. The application to our later example, the nonlinear
Euler-Bernoulli beam, can be found in [25–29] and [30,31].

3.1 Nonlinear equation of motion

The basis of vibration analysis is the dynamic equation of
motion of a viscously damped structure after spatial dis-
cretization

Mü(t)+Cu̇(t)+Ku(t) = f(t). (20)

From now on, we assume a geometrical nonlinear model
of the analyzed structure, which means in our case that the
stiffness matrix (and eventually also the damping matrix) are
depending on the deformations,

K = K(u). (21)

In order to analyze the vibrational behavior of a structure
described by (20) with nonlinearity (21), we search for a
periodical solution of (20) and therefore use the harmonic
balance method, which will be described in detail in the fol-
lowing.

3.2 Harmonic Balance-Newton Raphson method

The main idea behind harmonic balance is that in time pe-
riodical excitation forces will lead to a periodical response
behavior of the structure. That means the approximation of
the solution of the equation of motion (20) can be expressed
as a superposition of sine and cosine terms with different
amplitudes [19,21–24,34]. The basic procedure can be sum-
marized as follows:

Given a periodic excitation in the frequency ω that re-
sults in a load vector

f(t) =
m∗

∑
j=1

f j
c cos( jωt)+ f j

s sin( jωt), (22)

we transform the equilibrium equation (20) to the non-dim-
ensional time τ = ωt. With d

dτ
(·) = (·)′, we obtain the dif-

ferential equation system

G(u,u′,u′′, f,ω,τ) :=

ω
2Mu′′(τ)+ωCu′(τ)+K(u)u(τ)− f(τ) = 0.

(23)

Assuming that periodic excitation results in a periodic re-
sponse from the structure, we apply a Galerkin discretiza-
tion to the time domain and take a truncated Fourier series
ansatz with m sine and m+1 cosine terms (harmonics) in τ

for the approximation of displacement or control point dis-
placement degrees of freedom u. This leads to the represen-
tation

u(τ) =
1
2

a0 +
m

∑
j=1

a j cos( jτ)+b j sin( jτ). (24)

This expression with the amplitude vector

A =
(

a0T a1T
. . . amT b1T

. . . bmT
)T

(25)

of length n · (2m+1) is substituted into (23) in order to ob-
tain a residual

ε(τ) = G(A, f,ω,τ)
!
= 0. (26)

Now we apply the method of weighted residuals by multi-
plying the residual ε(τ) with the Galerkin basis functions
cos(kτ) and sin(kτ) and integrating the equations for τ over
[0,2π]. This gives us a new system of n ·(2m+1) equations,
which is equivalent to the first m real Fourier coefficients
c0,c1, . . . ,cm,d1, . . . ,dm of the Fourier series expansion of
the residual ε(τ) vanishing [21, 35]:

ck =

2π∫
0

ε(τ) cos(kτ) dτ
!
= 0 , k = 0, . . . ,m,

dk =

2π∫
0

ε(τ) sin(kτ) dτ
!
= 0 , k = 1, . . . ,m.

(27)

In order to solve this nonlinear system, i.e., to deter-
mine the coefficients A for known ω and f, we use New-
ton’s method, which is why the procedure is called Har-
monic Balance-Newton Raphson Method (HBNR) [19]. The
derivatives of the Fourier coefficient vectors ck and dk are
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found as, compare (24),

δck
i

δa j
l

=

2π∫
0

[
− j2

ω
2Mil cos( jτ)− jωCil sin( jτ)

+ KT,il cos( jτ)
]

cos(kτ) dτ,

δck
i

δb j
l

=

2π∫
0

[
− j2

ω
2Mil sin( jτ)+ jωCil cos( jτ)

+ KT,il sin( jτ)
]

cos(kτ) dτ,

δdk
i

δa j
l

=

2π∫
0

[
− j2

ω
2Mil cos( jτ)− jωCil sin( jτ)

+ KT,il cos( jτ)
]

sin(kτ) dτ,

δdk
i

δb j
l

=

2π∫
0

[
− j2

ω
2Mil sin( jτ)+ jωCil cos( jτ)

+ KT,il sin( jτ)
]

sin(kτ) dτ.

(28)

Here, KT stands for the tangential stiffness matrix, cf. Sec-
tion 4.3.1, and the indices run from k = 0, . . . ,m resp. k =

1, . . . ,m, i = 1, . . . ,n, j = 0, . . . ,m resp. j = 1, . . . ,m and
l = 1, . . . ,n.

The evaluation of the integrals in (27) and (28) corre-
sponds to a Fourier transformation of the integrand ε(τ) and
its derivatives, respectively, and can be done by Fast Fourier
Transformation (FFT) algorithms at low computational cost
and high speed.

3.3 Incremental Harmonic Balance method

A slightly different approach for the solution of (20), also
based on the harmonic balance principle, is the Incremental
Harmonic Balance method (IHB) presented with application
to nonlinear beams in [30, 31].

In this variant, we also start from a periodic excitation
(22) and the equation transformed to the new time τ in (23).
Newton’s method is then already applied in the first step.
This means a linearization of the displacements u and fre-
quency ω for a known state of vibration u0,ω0,

u = u0 +∆u,
ω = ω0 +∆ω.

(29)

Substituting (29) into (23) and neglecting terms of second
order or higher in ∆u and ∆ω results in a second order dif-
ferential equation for ∆u and ∆ω

ω
2
0 M∆u′′+ω0C∆u′+KT (u0)∆u =

R−2ω0
(
ω

2
0 Mu′′0 +Cu′′0

)
∆ω

(30)

with tangential stiffness matrix KT , cf. Section 4.3.1. The
residual reads

R = f(τ)−
(
ω

2
0 Mu′′0 +ω0Cu′0 +K(u0)u0

)
. (31)

Following the harmonic balance principle and the Galerkin
projection, we use again the truncated Fourier series ansatz
with m terms for the representation of u0 and ∆u0 with re-
spect to time τ [31],

u0,i(τ) =
1
2

a0
i +

m

∑
j=1

a j
i cos( jτ)+b j

i sin( jτ)

= CSAi,

∆u0,i(τ) =
1
2

∆a0
i +

m

∑
j=1

∆a j
i cos( jτ)+∆b j

i sin( jτ)

= CS∆Ai

(32)

with

CS = (1 cos(τ) . . . cos(mτ) sin(τ) . . . sin(mτ)) ,

Ai =
(
a0

i a1
i . . . am

i b1
i . . . bm

i
)T

,

∆Ai =
(
∆a0

i ∆a1
i . . . ∆am

i ∆b1
i . . . ∆bm

i
)T

.

(33)

In matrix-vector notation we can wrap this up as

u0(τ) = SA,

∆u(τ) = S∆A
(34)

with

S = diag(CS, . . . ,CS),

A =
(
A1

T . . .An
T )T

,

∆A =
(
∆A1

T . . .∆An
T )T

.

(35)

Finally, substitution of (34) into (30) and application of the
method of weighted residuals, i.e. left-multiplication by ST

and integration over [0,2π], yields the nonlinear equation
system for ∆A and ∆ω

K̄mc∆A = R̄− R̄mc∆ω (36)

of size n · (2m+1) with

K̄mc =

2π∫
0

ω
2
0 ST MS′′+ω0ST CS′+ST KT (u0)S dτ,

R̄ =

2π∫
0

ST f(τ) dτ

−
2π∫
0

ω
2
0 ST MS′′+ω0ST CS′+ST K(u0)S dτ · A,

R̄mc =

2π∫
0

2ω0ST MS′′+ST CS′ dτ · A.

(37)
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In order to determine a solution state (A,ω), (36) is solved
and then A and ω are updated by ∆A and ∆ω as in (29).
This procedure is iterated until ∆A, ∆ω or the residual R of
(31) is considered small enough.

In this case the integrals in (37) have to be evaluated with
numerical quadrature routines that can be more costly than
the FFT applied during HBNR. The advantage of IHB is
its compact formulation in matrix-vector notation, although
the mathematical insight into the method is more involved
compared to HBNR.

Nevertheless, both methods are mathematically equiva-
lent, as it is proven by Ferri [19].

3.4 Response curves and continuation methods

Analysis of nonlinear structural oscillations is usually per-
formed by means of (frequency) response curves that show
the displacement amplitudes A of (24) resp. (32) at a certain
point on the structure over a certain range of the excitation
frequency ω [20, 21].

The simplest way to generate these response curves is to
start from a fixed ω and then incrementing ω in each fre-
quency step by a fixed or variable ∆ω (sequential continu-
ation, [20]). For HBNR this is equivalent to using Newton’s
method to obtain the state of vibration, i.e., the response am-
plitudes A for a fixed ω . During the IHB procedure one has
to choose ∆ω = 0 in (36) and iterate until R and ∆A are
small enough. Then ω is incremented and the process starts
anew.

When studying complex vibrational behavior with bi-
furcations, several branches and turning points, this simple
method may not be sophisticated enough to follow a solu-
tion path and other techniques, so-called continuation meth-
ods have to be applied. A detailed overview and introduc-
tion to continuation methods can be found in [20]. For the
implementation of HBNR we chose an arc-length method as
in [26, 27], with a linear predictor ∆ω and ∆A. For the IHB
method we use an arc-length continuation method with cu-
bic extrapolation as predictor for ∆ω and ∆A on the basis
of [30, 36, 37].

3.5 Further remarks on the implementation

When using isogeometric analysis for the discretization of a
structure, in our later example a beam, one has to be careful
with the amplitudes A used in the truncated Fourier series
expansion for the deformation degrees of freedom, (24) and
(32), since these amplitudes only correspond to the control
points of the B-Spline curve, not to the beam itself. In or-
der to obtain the true amplitudes of the beam, for each har-
monic jτ of (24) resp. (32) the amplitudes have to be seen
as control point displacements and the displaced B-Spline

curve has to be evaluated at the point of interest. For clas-
sical finite elements this is not necessary, because displace-
ment DOFs and hence amplitudes correspond to the actual
deformations. Consequently, in the following plots ai is not
necessarily corresponding to a coefficient a j

i in A, but to the
actual amplitude of the i-th harmonic at the evaluation point
on the beam.

Another important aspect is the convergence of the trun-
cated Fourier series ansatz in (24) and (32), which only in-
cludes a finite number of harmonics m for displacements
u(τ) in both cases HBNR and IHB. On the one hand no solu-
tion may be found because not enough terms are considered,
on the other hand it is possible that several solutions exist
for fixed ω and paths with bifurcations and turning points
occur [20, 21].

4 Application of isogeometric analysis and harmonic
balance to the nonlinear Euler-Bernoulli beam

Having introduced isogeometric finite elements for struc-
tural discretization of a continuous system in Sect. 2 and har-
monic balance as a means for nonlinear vibration analysis in
Sect. 3, we now want to apply these two techniques to the
structural model of a nonlinear Euler-Bernoulli beam [21,
32, 38, 39]. After a summary of the nonlinear beam model
and its isogeometric discretization, we show some computa-
tional examples for the static case in order to verify the im-
plementation and compare the results of the isogeometric fi-
nite elements. Then both harmonic balance methods HBNR
and IHB are applied to the nonlinear vibration analysis of
the beam, as in [25–31], and numerical examples will show
the advantages of the isogeometric finite element k-method
over the p-method.

4.1 Nonlinear Euler-Bernoulli beam model

A nonlinear beam model based on Euler-Bernoulli hypoth-
esis and von Kármán strains is presented in detail in [32].
This theory, which is suitable for transverse deformations
with small strains and moderate rotations, will be briefly
summarized using [32] as a reference.

The displacement field (u1,u2,u3) along coordinate axis
(x,y,z) is expressed by the axial and transversal displace-
ments of the neutral axis u0(x) and w0(x) (Fig. 5),

u1 = u0(x)− z w′0(x) , u2 = 0 , u3 = w0(x). (38)

From the general definition of strains

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
+

1
2

3

∑
k=1

∂uk

∂xi

∂uk

∂x j
(39)
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q(x)

f (x)

x, u1

z, u3

x, u1

z, u3

u0(x) w0(x)

Fig. 5 Unsupported beam under external forces line load q and line-
edge load f with transverse deformation u3 and longitudinal deforma-
tion u1

x

z
∆x

q(x)

dw
dx

Nxx

Nxx +∆NxxMxx

Mxx +∆Mxx

V

V +∆V

Fig. 6 Internal forces and moments on an infinitesimal beam segment

we only consider the xx-component of the moderately non-
linear von Kármán strain

εxx = u′0 +
1
2

w′0
2− z w′′0 = ε

0
xx + z ε

1
xx (40)

with the axial strain ε0
xx and curvature ε1

xx,

ε
0
xx = u′0 +

1
2

w′0
2
,

ε
1
xx =−w′′0 .

(41)

From the linear constitutive law for the stress σxx =Eεxx
of an isotropic beam with Young’s modulus E, cross section
area A and second moment of area I, we obtain the internal
force in x-direction Nxx and the internal bending moment
around y-axis Mxx,

Nxx = EA ε
0
xx,

Mxx = EI ε
1
xx.

(42)

The equilibrium of internal forces and moments with ax-
ial and transversal external forces f (x) and q(x) applied on
an infinitesimal beam segment ∆x (see Fig. 6) and taking the
limit ∆x→ 0 leads to the governing equations

−N′xx = f (x),

−
(
Nxx w′0

)′−M′′xx = q(x).
(43)

Inserting equations (41) and (42) into (43) then results
in the differential equations for the bending of a nonlinear

Euler-Bernoulli beam, depending on axial and transversal
deformations u0 and w0:

−
[

EA
(

u′0 +
1
2

w′0
2
)]′

= f (x),

−
[

EA
(

u′0 +
1
2

w′0
2
)

w′0

]′
−
[
−EI w′′0

]′′
= q(x).

(44)

4.2 Isogeometric finite element discretization

For a finite element discretization of the nonlinear beam
formulation we need the weak forms of governing equa-
tions (43) resp. (44). According to [32] these will be de-
rived directly from the strong form (43) using the method
of weighted residuals, i.e. multiplying the equations with
test functions v1 resp. v2, taking the integral over the length
of the beam L and applying integration by parts once resp.
twice:

L∫
0

Nxx · v′1 dx =
L∫

0

f · v1 dx+[Nxx · v1]
L
0 ,

L∫
0

−Mxx · v′′2 +w′0 ·Nxx · v′2 dx =

L∫
0

q · v2 dx+
[(

M′xx +w′0 ·Nxx
)
· v2
]L

0 +
[
Mxx · v′2

]L
0 .

(45)

Therefore the deformations u0 and w0, as well as test func-
tions v1 and v2 must be included in appropriate function
spaces Su,Sw,Vu,Vw and satisfy prescribed deformation
boundary conditions [2].

To solve the weak equations (45), Galerkin discretiza-
tion is applied, i.e., the problem is solved on a mesh Ωh
with finite-dimensional function spaces S h

u ⊂ Su, S h
w ⊂

Sw, V h
u ⊂ Vu, V h

w ⊂ Vw defined on Ωh. Then u0 and w0 can
be expressed as

u0(x) =
`u

∑
i=1

uiψi(x) , w0(x) =
`w

∑
i=1

wiφi(x) (46)

with {ψi}i=1,...,`u
being a basis of S h

u and {φi}i=1,...,`w
a ba-

sis of S h
w . In the isogeometric case ψi and φi are B-Spline

respectively NURBS basis functions of degree p, and the
discretized deformations are spline curves with `u = `w = `.
Parameterization of x = x(ξ ) is as well done by means of a
spline curve, cf. (16) & (17).

Inserting these representations into (45) leads to the non-
linear system

`

∑
j=1

K11
i j u j +

`

∑
J=1

K12
iJ (w0) wJ = f1

i , i = 1, . . . , `,

`

∑
j=1

K21
I j (w0) u j +

`

∑
J=1

K22
IJ (w0) wJ = f2

I , I = 1, . . . , `
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(47)

with stiffness matrices and force vectors

K11
i j =

L∫
0

EA N′i,p(x) N′j,p(x) dx,

K12
iJ (w0) =

1
2

L∫
0

EA w′0 N′i,p(x) N′J,p(x) dx,

K21
I j (w0) =

L∫
0

EA w′0 N′I,p(x) N′j,p(x) dx = 2 K12
jI ,

K22
IJ (w0) =

L∫
0

EI N′′I,p(x) N′′J,p(x) dx

+
1
2

L∫
0

EA w′′0 N′′I,p(x) N′′J,p(x) dx,

f1
i =

L∫
0

f (x) Ni,p(x) dx + Q̂i,

f2
I =

L∫
0

q(x) NI,p(x) dx + Q̄I

(48)

and Q̂i, Q̄I being boundary terms derived from (45). More
details can be found in [32]. Next, (48) can be condensed
to the following nonlinear equation system for control point
deformations u, with deformation-dependent stiffness ma-
trix K = K(u) and force vector f:

u =

(
ui

wI

)
, K(u) =

(
K11

i j K12
iJ

K21
I j K22

IJ

)
, f =

(
f1
i

f2
I

)
, (49)

K(u) u = f. (50)

4.3 Static displacement of the nonlinear beam

Having derived the nonlinear Euler-Bernoulli beam model
with the resulting nonlinear stiffness matrix in the previous
section, we now want to solve (50) to compute the displace-
ment of the beam subject to a static load. Therefore we use
Newton’s method, which is described in the following, and
then some computational examples are shown.

4.3.1 Solving the nonlinear system

For solving the nonlinear equation system (50) we use a
Newton-Raphson method [18, 32]. The root u∗ of K(u)u−
f = 0 is approximated by a sequence us such that us→ u∗:

– Starting value: u0

– Iteration step s > 0 :
– Residual: rs−1 = K(us−1) ·us−1− f
– Corrector ∆us from:

Ks−1
T ·∆us ≡ drs−1

dus−1 ·∆us =−rs−1

– Update: us = us−1 +∆us

– Convergence criteria:
‖∆us‖< ε ∧

∥∥rs−1
∥∥< ε .

According to [32], the tangential stiffness matrix KT can
be calculated explicitly and is symmetric, independent of the
symmetry of K. The entries of

KT ≡
dr
du

=

(
K11

T,i j K12
T,iJ

K21
T,I j K22

T,IJ

)
(51)

are

K11
T,i j = K11

i j ,

K12
T,iJ = 2 K12

iJ ,

K21
T,I j = K21

I j ,

K22
T,IJ = K22

IJ +

L∫
0

EA
(

u′0 +w′0
2
)

N′′I,p(x) N′′J,p(x) dx.

(52)

4.3.2 Computational results for static examples

In order to validate the isogeometric analysis of static beam
deformations and study the accuracy and convergence of the
method we compare the results for different support types
with the ones given in [32]. There one can find the maximum
deflection of the center line of the beam subject to a constant
distributed load q0. The parameters of the beam used are

L = 100 in. , b = 1 in. , h = 1 in.

E = 30 msi , I = bh3/12 =1/12 in.4.
(53)

The three different types of supports of the beam with
the corresponding boundary conditions applied to (45) and
(48) are (see also Fig. 7):

– hinged:

u0(0) = 0,

w0(0) = w0(L) = 0.
(54)

– pinned:

u0(0) = u0(L) = 0,

w0(0) = w0(L) = 0.
(55)

– clamped:

u0(0) = u0(L) = 0,

w0(0) = w0(L) = w′0(0) = w′0(L) = 0.
(56)
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L,E, I,A,ρ

q0

u0, w0

x

z

L,E, I,A,ρ

q0

w0

x

z

L,E, I,A,ρ

q0

w0

x

z

Fig. 7 hinged, pinned and clamped beam under line load q0

For the hinged configuration the deformation in z-direc-
tion corresponds to the linear case, and it is possible to de-
rive w0 analytically [32],

w0(x) =
q0L4

24EI

(
x
L
−2

x3

L3 +
x4

L4

)
. (57)

It follows that the maximum deformation is at the midspan
of the beam x = L/2 where w0(L/2) = 0.52083333 for q0 =

1.0.
The classical finite element method with cubic Hermite

polynomials for w0 and linear u0 used in [32] shows mem-
brane locking phenomena that can only be resolved by re-
duced integration of the nonlinear parts of the stiffness ma-
trix. Our results obtained with the k- and p-method derived
from the isogeometric formulation do not show these prob-
lems.

A detailed convergence study for different mesh size h=
1/(`− 1) and polynomial resp. spline degree p, compar-
ing the absolute error of maximum deformation |wh

0(L/2)−
w0(L/2)| in Fig. 8, shows that the k-method (IGA) is more
accurate than the p-method (FEM) and that the order of con-
vergence for both cases can be estimated as O(h2(p−1)). This
corresponds to the order achieved for linear eigenfrequency
computations in Sec. 2.4.

For pinned (not displayed) and clamped (Fig. 9, exact
reference solution w0(L/2) = 0.10335910 in.) beam config-
urations the results are basically the same as for the hinged
case: the isogeometric k-method turns out to provide higher
accuracy than the p-method.

We can conclude for the static computations that Cp−1-
continuous isogeometric analysis of nonlinear beams pro-
vides more accurate results than classical C1-continuous fi-
nite elements, resp. the B-Spline-based p-method, for the
same number of degrees of freedom at the same rate of con-
vergence. So we have validated the model and can proceed
to nonlinear vibration analysis using this nonlinear Euler-
Bernoulli beam formulation and its isogeometric discretiza-
tion.
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Fig. 8 Convergence plot for hinged beam: Comparison of absolute
errors of C1-continuous p-method (FEM) and Cp−1-continuous k-
method (IGA) (for visualization purposes an error up to computing
precision is displayed as 10−9)
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Fig. 9 Convergence plot for clamped beam: Comparison of abso-
lute errors of C1-continuous p-method (FEM) and Cp−1-continuous
k-method (IGA) (for visualization purposes an error up to computing
precision is displayed as 10−9)

4.4 Nonlinear beam vibrations

For the study of nonlinear beam vibrations with isogeomet-
ric discretization using the two harmonic balance techniques
HBNR and IHB as discussed in Sec. 3, we are now show-
ing three computational examples, especially focusing on
sub- and super-harmonic resonances. The first one is from
Ribeiro and Petyt [27] resp. Ribeiro [28], the second one
was studied before by Chen et al. [31], while the third one is
a detailed convergence study comparing IGA and p-FEM.

The nonlinear stiffness matrix K = K(u) involved in the
equation of motion (20), which is the basis of vibration anal-
ysis, is given for the nonlinear Euler-Bernoulli beam in (48).
As mass matrix M we chose the consistent one derived from
the variational formulation, since the usage of lumped mass
matrices showed poor results for linear eigenfrequency com-
putations with higher order isogeometric analysis in [9]. Its
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entries are larger or equal to zero due to the non-negativity
of basis functions and, denoting the mass density by ρ , the
mass matrix reads:

M =

(
Mu 0
0 Mw

)
,

Mu,i j = ρA
L∫

0

Ni,p(x)N j,p(x)dx , i, j = 1, . . . , `,

Mw,IJ = ρA
L∫

0

NI,p(x)NJ,p(x)dx , I,J = 1, . . . , `.

(58)

The tangential stiffness matrix KT needed for HBNR and
IHB is given in (51).

4.4.1 Linear eigenfrequencies and internal resonance of
the beam

To validate the isogeometric approach to the nonlinear vi-
bration analysis we start with the comparison of our results
with the works of Ribeiro and Petyt [27] and Ribeiro [28],
where a p-FEM approach, so-called hierarchical finite ele-
ments (HFEM), is used for discretization.

A beam with the following parameters is investigated in
the following:

L = 0.580 m , h = 0.002 m , b = 0.020 m ,

E = 7 ·1010 N/m2 , I = 1.333 ·10−11 m4 ,

r = 5.774 ·10−4 m , ρ = 2778 kg/m3 .

(59)

Before studying the steady-state vibration of the nonlin-
ear beam, we want to take up the results from [27] and [28]
for the linear modal analysis of the simply supported and
clamped beam (see also Section 2.4 about linear beam vi-
brations).

For simple support boundary conditions, in both [27]
and [28] the linear frequency parameter λ = ω2

1 L4m/EI is
computed using different methods and compared to the ex-
act solution λ = π4. The number of degrees of freedom
needed to approximate λ =̇97.409 with 5 digits are shown
in Table 1 for the classical finite element method (FEM), the
HFEM method applied in [27,28] and the exact beam eigen-
functions in [28]. In Table 2 the number of d.o.f. needed us-
ing our B-Spline approach with Cp−1-continuity (k-method)
and C1-continuity (p-method) are displayed for comparison.
It is clear that isogeometric B-Splines cannot keep up with
the use of beam eigenfunctions, but compared to the HFEM
polynomial method, where only one p-element is employed,
and standard FEM the results are satisfactory, since for p≥ 6
one element only is sufficient to achieve the desired accu-
racy as well. Again the benefit of the higher smoothness of
the k-method compared to the p-method is clearly visible
when more than one element has to be used for p≤ 5.

Method FEM HFEM eigenfunctions

d.o.f. 34 6 1

Table 1 Number of degrees of freedom needed to approximate the
exact linear frequency parameter λ =̇97.409 with the methods from
[27, 28]

p 3 4 5 6 7

k-method 15 7 6 5 6

p-method 28 12 8 5 6

Table 2 Number of degrees of freedom needed to approximate the ex-
act linear frequency parameter λ =̇97.409 with the B-Spline k-method
and p-method

p 3 4 5 6 7

k-method 17 10 9 9 8

p-method 30 19 18 13 10

Table 3 Number of degrees of freedom needed to approximate the first
four eigenfrequencies of the clamped beam by B-Spline k-method and
p-method

For the clamped beam it is stated in [27] that the first
four eigenfrequencies ω1, . . . ,ω4 can be approximated on 4
digits already by the use of 5 HFEM basis functions, i.e. 5
d.o.f., taking into account the symmetries. The number of
B-Spline basis functions needed can be seen in Table 3. We
have a minimum of 8 for B-Splines with p = 7 and again
the k-method proves to be advantageous compared to the p-
method.

Now we continue with a comparison of the results for
nonlinear vibration analysis, where Ribeiro and Petyt [27]
use HFEM in combination with harmonic balance and arc-
length continuation to determine periodic steady-state re-
sponses of a clamped beam.

Hysteretic, mass proportional damping is used with C =

0.01ω2
1 M and the beam is excited by a harmonic point force

at x = 0.25L. At this point the vibration amplitudes a1, a3 of
the first resp. third harmonic are computed and the response
curves are plotted. Due to the asymmetric excitation a 1:3
internal resonance will occur.

In Figures 10 and 11 we have generated the response
curves of the first and third harmonic a1 and a3 near the first
eigenfrequency ω1, using the isogeometric B-Spline method
(p = 5,s = 11, ` = 16) with HBNR (m = 3) and arc-length
continuation. Typical harmonic resonance behavior can be
observed and the results correspond very well to the ones
using HFEM with one p-element in [27].

The response curves around the second eigenfrequency
ω2 ≈ 2.76 ·ω1 are shown in Figures 12 and 13. As it is
pointed out in [27], here the 1:3 internal resonance occurs,
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Fig. 10 Response curve of first harmonic around ω1, generated with
HBNR with p = 5,s = 11, `= 16
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Fig. 11 Response curve of third harmonic around ω1, generated with
HBNR with p = 5,s = 11, `= 16

because the fourth mode gets excited, too, since ω4 ≈ 3.24 ·
ω2. This leads to a different behavior for increasing ampli-
tude and shape of the response function compared to the
pure harmonic resonance. Although the shapes of the fre-
quency response curves generated by our HBNR method are
a bit different from the ones in [27] at the point where the
1:3 internal resonance occurs, the general correspondence is
again very well.

Thus we have shown in a first example the correspon-
dence of the qualitative results for the application of isoge-
ometric finite elements compared to hierarchical finite ele-
ments within nonlinear vibration analysis.

4.4.2 Combined resonance of a simply supported beam

In order to perform another comparison with a literature ex-
ample and also validate the IHB method, we want to study
an example from Chen et al. [31]. There the discretization is
done by a classical finite element method with polynomial
degree pw = 3 in z- resp. pu = 1 in x-direction, which is C1 at
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Fig. 12 Response curve of first harmonic around ω2 ≈ 2.76 ·ω1, gen-
erated with HBNR with p = 5,s = 11, `= 16
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Fig. 13 Response curve of third harmonic around ω2 ≈ 2.76 ·ω1, gen-
erated with HBNR with p = 5,s = 11, `= 16

element boundaries, and the incremental harmonic balance
and arc-length continuation are applied to study the forced
vibration of a simply supported beam with the following pa-
rameters:

L = 1.0 , A = 0.1 , E = 2 ·105 , I = 0.00081 ,

r = 0.09 , ρ = 2.0 , µ = 0.0 .
(60)

Excitation is induced by three periodic point loads, Fig. 14,

p1 cosΩ1t

p2 cosΩ2t

p3 cosΩ3t

L/4 L/4 L/4 L/4

Fig. 14 Simply supported beam subject to three periodic point loads
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Fig. 15 Response curves B-Spline degree p = 3 and s = 4,8,16 ele-
ments via IHB with m = 4 harmonic terms
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Fig. 16 Response curves B-Spline degree p= 5 and s= 8 elements via
IHB with m = 12 harmonic terms. Special focus on divergent higher
harmonic amplitudes

with amplitudes

p1 = 0.5 p2 = p3 = 5 EI r/L3 (61)

and frequencies

ω = Ω1 = 0.5 Ω2 = Ω3. (62)

In [31] the range around ω ≈ ω1/4 is examined. There
the amplitudes a1 and a2 corresponding to the excitation fre-
quencies become only slightly smaller with increasing exci-
tation frequency, while the super-harmonic term a4 shows
resonance with fast growing amplitude at ω/ω1 ≈ 0.255.
According to [31] all other coefficients (not shown) remain
constantly around 0. After passing a maximum at ω/ω1 ≈
0.265, there is a turning point in the curves of a1, a2 and a4
and they reach their original levels again.

The results obtained by means of isogeometric analysis
in this paper basically correspond to the ones shown in [31]:
In Fig. 15 we have used Incremental Harmonic Balance with
a B-Spline degree of p = 3, s = 4,8,16 elements. One can
see that the behavior of the absolute amplitudes matches the
one presented in [31] very well and that resonance in the
fourth harmonic term occurs around ω/ω1 ≈ 0.255. Even
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Fig. 17 Response curves B-Spline degree p = 3 and s = 4,8,16 ele-
ments via HBNR with m = 4 harmonic terms

for the low B-Spline degree and coarse discretizations the
response curves are hardly distinguishable.

The results presented so far were all obtained using m =

4 harmonic terms for representation of displacement d.o.f.,
just as in [31], but as mentioned already before in Sec. 3.5
the convergence of the truncated Fourier series ansatz has
to be checked as well in order to judge results. Therefore
in Fig. 16 we have used p = 5,s = 8 and m = 12 and put
special focus on the amplitudes of a3 and ak, 5 ≤ k ≤ 12
in the range of resonance in a3. These coefficients have ris-
ing amplitudes as well, which is not in agreement with [31]
where these amplitudes were considered as neglectable. So
our conclusion is that it is hard to judge the response curves
in this case.

The Harmonic Balance-Newton Raphson method was
tested as well. In Fig. 17 we have again the response curves
for the middle of the beam, now using HBNR with p =

3 , s = 4,8,16 , m = 4. Basically this plot looks identically
to the one obtained with IHB, cf. Fig. 15.

For this example we can conclude that isogeometric fi-
nite elements with both HBNR and IHB qualitatively match
the results from [31] using classical FEM very well and both
methods implemented provide identical results. A detailed
convergence study of the k- and p-method and comparison
between the HBNR and IHB methods will be done with the
next example.

4.4.3 Convergence studies for the k- and p-method

In the previous examples the isogeometric approach to non-
linear vibration analysis with B-Splines of degree p with
Cp−1-continuity (k-method) and C1-continuity (p-method)
were validated and compared to reference work using the hi-
erarchical resp. classical finite element discretization of the
nonlinear Euler-Bernoulli beam. Now we carry out a more
detailed convergence study comparing the isogeometric k-
method with the p-method in order to explore the benefits
of higher continuity.
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p(x)

Fig. 18 Simply supported beam subject to periodic sinusoidal load

The parameters of the simply supported beam are chosen
to be the same ones as in the previous example (60). As load
we have a sinusoidal distributed load which is periodic in
time, see Fig. 18:

p(x,τ) = 20 EI r/L3 sin(πx/L) cos(τ) ,

x ∈ [0,L] , τ ∈ [0,2π].
(63)

For the error calculation and convergence study we fo-
cus on the mid span of the beam, where sub-harmonic reso-
nance in a3 occurs around ω/ω1 ≈ 0.34. Convergence of the
truncated Fourier series expansions for deformations will
be studied as well, but for the beginning we will start with
m = 3 for convergence analysis with respect to p and h =

1/(`−1) since the contribution of higher-frequency ampli-
tudes above a3 is very small.

In Fig. 19 and Fig. 20 we have the response curves for
HBNR and IHB with p = 3 and ` = 8,12 around ω/ω1 ≈
0.34, and one can see the resonance in a3. Only for the p-
method with `= 8, a difference to the other curves is visible,
for the other cases the curves match optically.

For the study of p- and h-convergence of the isogeomet-
ric methods using both HBNR and IHB we have the conver-
gence plots in Fig. 21 and Fig. 22, showing the error in the
amplitude of the third harmonic |ah

3− a3| at ω/ω1 = 0.338
for p = 3,4,5. As reference solution a3 we take the numer-
ical one obtained from p = 5 and a sufficient number of
DOF with an accuracy of 8 digits (error 10−9 equal to ex-
act solution). For HBNR we have a3 = 0.20568197 and for
IHB a3 = 0.20555643, so both methods do not exactly con-
verge to the same value. Nevertheless we can see conver-
gence for both methods. The order of convergence is again
O(h2(p−1)), at least for p = 3, but in general the error for
the Cp−1 k-method is much smaller than for C1-continuous
p-method. This matches exactly the results we have already
observed for linear modal analysis in Sec. 2.4 and the static
deformation computation of the nonlinear beam in Sec. 4.3.

So far we have only analyzed IHB and HBNR regard-
ing p- and h-convergence with the result that both methods
converge with rate O(h2(p−1)), but towards different values.
One reason for this might be the influence of the number of
terms m used for the expression of deformations as a trun-
cated Fourier series. So now we take a deeper look at the
m-convergence.

In Tab. 4 we have the amplitudes a3 at ω/ω1 = 0.336
for different number of terms m with p = 5, ` = 18. Here,
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Fig. 19 Comparison of response curves for C2- (IGA) and C1-
continuous (FEM) cubic B-Splines using HBNR
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Fig. 20 Comparison of response curves for C2- (IGA) and C1-
continuous (FEM) cubic B-Splines using IHB

ε is the error in a3 compared to the value for m ≥ 10. ∆ is
the difference between IHB and HBNR with an accuracy of
10−8. The m-convergence of both methods is clearly visi-
ble, i.e. the error is decreasing with increasing m and is 0
for m≥ 10. For IHB and HBNR the error is of the same or-
der of magnitude for a constant m, even nearly equal. How-
ever, also the difference of both methods stays practically
the same; independent of m the value of ∆ is of magnitude
10−5.

The reason for IHB and HBNR having the same con-
vergence behavior in p, h and m, but converging towards
slightly different values, is not clear yet. However, the use of
m = 3 for the analysis of p- and h-convergence is justified,
since the number of terms m does not affect the convergence
behavior in p and h.

Furthermore, due to the cosinusoidal temporal excitation
used in these examples the sinusoidal terms with the ampli-
tudes b j in (24) resp. (32) can be neglected without influ-
encing the results. Thereby the total number of harmonic
coefficients used in both harmonic balance methods can be
reduced from 2m+1 to m+1.
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Fig. 21 Convergence plot of the error in third harmonic amplitude a3
at ω/ω1 = 0.338 using HBNR and the k- (IGA) and p-method (FEM)
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Fig. 22 Convergence plot of the error in third harmonic amplitude a3
at ω/ω1 = 0.338 using IHB and the k- (IGA) and p-method (FEM)

m
IHB HBNR

∆

a3 ε a3 ε

3 0.08756419 2.773E-01 0.08762534 2.774E-01 6.115E-05

4 0.11645563 3.886E-02 0.11654205 3.892E-02 8.642E-05

5 0.11649878 3.850E-02 0.11658537 3.856E-02 8.659E-05

6 0.12128710 1.017E-03 0.12138500 1.018E-03 9.790E-05

7 0.12116643 2.072E-05 0.12126404 2.078E-05 9.761E-05

8 0.12116678 2.360E-05 0.12126439 2.367E-05 9.761E-05

9 0.12116386 4.952E-07 0.12126145 5.773E-07 9.759E-05

10 0.12116392 0.000E+00 0.12126152 0.000E+00 9.760E-05

11 0.12116392 0.000E+00 0.12126152 0.000E+00 9.760E-05

Table 4 Comparison table of a3 at ω/ω1 = 0.336 using IHB and
HBNR, p = 5, `= 18 with varying m

5 Summary and conclusions

The goal of this paper was the study of isogeometric finite
elements within the framework of nonlinear structural vibra-
tions using the harmonic balance method.

As an example for the application of these methods we
selected a nonlinear Euler-Bernoulli beam model and vali-
dated it by computing the static deformation using isogeo-
metric analysis. The numerical examples showed a higher
accuracy of the isogeometric B-Spline k-method compared
to the p-method.

Then both nonlinear vibration analysis methods HBNR
and IHB were examined using the k-method and p-method
by comparison with the results of reference work in litera-
ture using standard FEM and p-FEM. Detailed convergence
studies for another computational example showed that vi-
bration analysis with HBNR and IHB using IGA is more ac-
curate for the k-method than for the p-method, which means
that higher smoothness of solution basis functions within the
isogeometric approach is very beneficial for numerical re-
sults.

We can conclude that the methods, implementations and
computational examples introduced and examined in this
paper show a promising perspective for the use of isoge-
ometric finite elements within the framework of nonlinear
structural vibration analysis. For the analysis of large-scale
industrial problems the application of modal reduction tech-
niques seems very useful to lower the number of degrees of
freedom in the computation, which increases rapidly using
the harmonic balance method. In the future, further stud-
ies on other nonlinear structural models like plates, shells or
solids and nonlinear materials will be carried out.
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