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Abstract

We propose a model for acid-mediated tumor invasion involving two different scales:
the microscopic one, for the dynamics of intracellular protons and their exchange with
their extracellular counterparts, and the macroscopic scale of interactions between tu-
mor cell and normal cell populations, along with the evolution of extracellular protons.
We also account for the tactic behavior of cancer cells, the latter being assumed to
biase their motion according to a gradient of extracellular protons (following [2, 31]
we call this pH taxis). A time dependent (and also time delayed) carrying capacity for
the tumor cells in response to the effects of acidity is considered as well. The global
well posedness of the resulting multiscale model is proved with a regularization and
fixed point argument. Numerical simulations are performed in order to illustrate the
behavior of the model.
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1 Introduction

A recent approach to cancer invasion is based on the role of the peritumoral environment
in determining cancer malignancy. Gatenby & Gillies [12] suggested that biochemical
events therein may drive the selection of the cancerous phenotype, and such informations
can be used to conceive new therapies. Hypoxia and acidity, for instance, are factors
that can trigger the progression from benign to malignant growth [10, 42]. Cancer cells
upregulate certain mechanisms which allow for extrusion of excessive protons and hence
acidify their surroundings. This triggers apoptosis of normal cells and thus allows the
neoplastic tissue to extend into the space becoming available. Moreover, the pH was found
to directly influence the metastatic potential of tumor cells [1, 28]. The mathematical
modeling of acid-mediated tumor invasion seems to have begun some decades ago with
the work by Gatenby & Gawlinski [9], who proposed a model involving reaction-diffusion
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equations to describe the interaction between the density of normal cells, tumor cells,
and the concentration of H+ ions produced by the latter. The well posedness of that
model was investigated in [26], thereby also explicitly allowing for crowding effects (due
to competition with cancer cells) in the growth of normal cells. Still in the framework
of [9], traveling waves were used to characterize the aggressive action of cancer cells on
their surroundings [7]. Further developments of Gatenby & Gawlinski’s model involve
both vascular and avascular growth of multicellular tumor spheroids, assuming rotational
symmetry, for which existence and qualitative properties of the solutions were investigated
[35].
The mentioned models all have a monoscale character and describe the interaction of
cancer and normal cell populations, coupled with the evolution of extracellular H+ con-
centration and possibly also with the concentration of matrix degrading enzymes [27].
However, this macroscale dynamics is regulated by and influences the intracellular proton
dynamics [22, 37, 42]. Webb et al. [43, 44] proposed some mathematical settings for the
interdependence between the activity of several membrane ion transport systems and the
changes in the peritumoral space. The models involve even more biological details, like
intracellular proton buffering, effects on the expression/activation of matrix metallopro-
teinases (MMPs) and proton removal by vasculature. Webb, Sherratt, and Fish [43] also
account for the influence of alkaline intracellular pH on the growth of tumor cells, hence
their model can be seen as a first step towards multiscale settings. However, the spatial
dependence is essential for assessing the actual invasive behavior. This leads to more
complex models, coupling the subcellular level with the macroscopic scale of populations.
Some models of this new class involving both the subcellular and the population levels
have been recently proposed and analyzed [29, 30, 36, 39]. A multiscale setting addressing
acid-mediated tumor invasion has been presented in [17]; it also accounts for stochasticity,
which is a relevant feature inherent to many biological processes occurring on all modeling
levels and in particular, it seems to greatly influence subcellular dynamics and individual
cell behavior [8, 14, 38]. Further multiscale settings concerning tumor cell migration -so
far, however, not necessarily in connection with acidosis- take into account more model-
ing levels and allow for a relatively detailed description of processes taking place on the
mesoscale, i.e., on the rank of individual cells and their interactions with their environment
[3, 6, 19, 24].
Here we propose a multiscale model for acid-mediated cancer invasion, to be developed
in Section 2 and analyzed w.r.t. global well posedness in Section 3. We present some
numerical simulations in Section 4 to illustrate its performance and eventually give in
Section 5 a short discussion of the results.

2 The model

We denote by c(x, t) the density of cancer cells, by n(x, t) the density of normal cells,
and by h(x, t) and y(x, t) the concentrations of extracellular and intracellular protons,
respectively.

2.1 Subcellular dynamics

Glycolysis is a metabolic pathway for rather inefficient energy production and normally
used by cells under hypoxic conditions. Nevertheless, cancer cells consistently rely on the
glucose metabolism even in normoxic conditions. The high glycolytic rate of neoplastic
tissues is clinically used to diagnose and assess (via positron emission tomography, shortly
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PET) tumor responses to treatment [11]. Cancer cells seem to use this aerobic glycolytic
phenotype for invasion and metastasis, as -unlike normal cells- they are able to develop
resistance against acid-induced toxicity. Environmental acidosis has been found to be
directly related to enhanced tumor proliferation [25] and regulating angiogenesis [18]. The
proton dynamics inside and outside tumor cells is controlled by a plethora of processes.
Relying on the facts in [4, 44] and following [17], we describe the intracellular proton
dynamics with the aid of the equation

dy

dt
= −R(y, h)− αy + g(c), (2.1)

where R(y, h) denotes the decay term for intracellular H+ due to membrane transporters
(e.g., NDCBE, NHE, and AE) 1, production by aerobic glycolysis (possibly depending on
microenvironmental vascularization), and buffering by organelles. It describes a (satu-
rated) growth with respect to the concentration y of intracellular protons and decay with
respect to the extracellular proton concentration h and takes in the nondimensionalized
model the form given in (2.6) below. The coefficient α in (2.1) denotes some decay con-
stant, and g(c) represents a source term due to the production (with saturation) by cancer
cells. Observe that (2.1) is an ordinary differential equation (ODE), the variable x denot-
ing the position of a cell having the intracellular proton concentration y(x, t) and being
seen as a parameter in that ODE.

2.2 Extracellular proton concentration

In order to maintain an advantageous intracellular pH, cancer cells upregulate proton
extrusion through membrane transporters, leading to acidosis of the tumor environment.
The concentration of extracellular protons h is a macroscopic quantity explicitly depending
on time and position. It is produced the same way the intracellular protons decay by
transport through the cell membrane and it diffuses through the extracellular space with
a diffusion constant Dh:

∂th = Dh∆h+R(y, h) (2.2)

2.3 Cell dynamics on the macroscale

On the population level we are interested in the dynamics of tumor cells in interdependence
with the normal cells and under the influence of proton concentrations. The evolution of
cancer cell density is characterized by nonlinear diffusion, with the diffusion coefficient de-
pending on the solution, more precisely inversely proportional to the interactions between
cancer and normal cells, as these are slowing down the diffusivity. Furthermore, we assume
the tumor cells to biase their motion in response to a gradient of extracellular protons and
call this behavior pH-taxis. The notion has been firstly proposed in the context of bac-
teria avoiding acidic regions (hence the protons playing the role of a chemorepellent) [20]
and more recently also in reference to motility of cancer cells, the latter being enhanced
in the direction of extracellular pH gradient [2, 31]. The pH-tactic sensitivity function
f(h, c) (a concrete choice of which is proposed in (2.6) below) is nonlinearly depending on
the tumor cell density and the interaction of cancer cells with extracellular protons. The
tumor cell proliferation is modeled with a logistic growth with crowding. Thereby, the
carrying capacity Kc of cancer cells depends on the extracellular proton concentration to

1NDCBE (Na+ dependent Cl−-HCO−3 exchanger), NHE (Na+ and H+ exchanger) and AE (Cl−-HCO−3
or anion exchanger) are specific transporters present on the cell membrane.
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stress out that the cancer cells are allowed to infer an enhanced growth due to more space
becoming available through normal cell killing by acidity. However, at the same time the
tumor cell density cannot exceed a certain threshold, according to the acidity level: a too
acidic environment is baneful even for cancer cells. The time delay expresses the fact that
their adaptation of the carrying capacity to the acidosis in the peritumoral region is not
instantaneous. The proliferation rate µc(y) depends on the intracellular proton concen-
tration. Indeed, malignant cells whose intracellular medium gets alkalinized were found
to exhibit enhanced proliferation [5, 16, 46], which motivates the choice of µc in (2.6).
The normal cell dynamics is much easier to describe: normal tissue is not diffusing, it is
only degraded by the environmental acidity (i.e., by the action of extracellular protons) and
normal cell proliferation is supposed to be well enough described by logistic growth with
crowding, also against tumor cells. The carrying capacity of the latter is still depending on
the acidity, but now no longer needs to infer a time lag, as the focus is on the proliferation
of normal cells.
Altogether, our multiscale model for acid-mediated tumor invasion takes the following
form: 

∂tc = ∇ · (ϕ(c, n)∇c)−∇ · (f(h, c)∇h)

+µc(y)c
(

1− c
Kc(h(·,t−τ)) − η1

n
Kn

)
in Ω× (0, T ),

∂tn = −δnhn+ µnn
(

1− η2
c

Kc(h(·,t)) −
n
Kn

)
in Ω× (0, T ),

∂th = Dh∆h+R(y, h) in Ω× (0, T ),

∂ty = −R(y, h)− αy + g(c) in Ω× (0, T ),

(2.3)

where Ω ⊂ RN is a bounded domain with smooth boundary and N ≤ 3. Denoting by ν
the outward unit normal on ∂Ω, we further endow (2.3) with the boundary conditions

∂νc = ∂νh = 0 on ∂Ω× (0, T ) (2.4)

and initial conditions

c(x, 0) = c0(x), n(x, 0) = n0(x), y(x, 0) = y0(x) for x ∈ Ω,
h(x, t) = h0(x, t) for x ∈ Ω, t ∈ [−τ, 0].

(2.5)

For the coefficient functions involved in (2.3), we propose

ϕ(c, n) := Dc
1+ cn

C0Kn

, f(h, c) := Mc
1+ ch

C0H0

, µc(y) := κ1
1+ y

Y0

,

Kc(h) := C0+bh
1+dh2

, g(c) := ρc
1+ c

C0

, R(y, h) := γhy

1+ y2

Y 2
0

+αhh2
− βhh

1+ y2

Y 2
0

(2.6)

and assume that all the constants in (2.3) and (2.6) are positive along with η1, η2 ∈ (0, 1).

3 Global existence

In order to prove the existence of a global weak solution to (2.3), let

ϕ, f,R ∈ C1([0,∞)2), µc,Kc, g ∈ C1([0,∞)) such that g ∈ L∞((0,∞))

and g ≥ 0, µc > 0, Kc > 0 on [0,∞).
(3.1)

Moreover, we assume that there exist H0, Y0 ∈ (0,∞) such that

R(y, 0) ≥ 0, R(y,H0) ≤ 0 for all y ∈ [0, Y0], R(0, h) ≤ 0 for all h ∈ [0, H0],

−R(Y0, h)− αY0 + ‖g‖L∞((0,∞)) ≤ 0 for all h ∈ [0, H0].
(3.2)
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H0 and Y0 are upper bounds for the concentrations of the extra- and intracellular protons,
respectively. As R describes the effect of the proton exchange between the interior of the
cancer cell and its environment, e.g. the first two conditions in (3.2) mean that there is no
proton transport into the tumor cell if there are no extracellular protons, while protons
cannot leave the cell if the extracellular proton concentration is at its maximal value.
With H0 and Y0 as defined above, we further assume that there exist positive constants
C1 and C2 such that

0 ≤ f(h, c) ≤ C1(1+c),
C2

1 + c
≤ ϕ(c, n) ≤ C1 ∀(c, n, h) ∈ [0,∞)×[0,Kn]×[0, H0], (3.3)

and that for any a ∈ (0, H0) there is Ca > 0 such that

f(h, c) ≤ Ca for all (c, h) ∈ [0,∞)× [a,H0]. (3.4)

Observe that the functions given in (2.6) satisfy (3.1)-(3.4). Concerning the initial data
suppose that

c0, n0, y0 ∈ C0(Ω̄), h0 ∈ C0([−τ, 0];W 1,q(Ω)),

c0 ≥ 0, 0 ≤ n0 ≤ Kn, 0 ≤ y0 ≤ Y0 in Ω̄, δ ≤ h0 ≤ H0 in Ω̄× [−τ, 0].
(3.5)

with some q ∈ (N + 2,∞) and δ > 0. The following solution concept will be appropriate.

Definition 3.1 Let T ∈ (0,∞). A weak solution to (2.3)-(2.5) consists of nonnegative
functions

c ∈ L∞(Ω× (0, T )) ∩ L2((0, T );W 1,2(Ω)), n, y ∈ L∞(Ω× (0, T )),
h ∈ L∞(Ω× (−τ, T )) ∩ L2((0, T );W 1,2(Ω))

which satisfy for all ψ ∈ C∞0 (Ω̄× [0, T )) the equations

−
∫ T

0

∫
Ω
c∂tψ −

∫
Ω
c0ψ(·, 0) = −

∫ T

0

∫
Ω
ϕ(c, n)∇c · ∇ψ +

∫ T

0

∫
Ω
f(h, c)∇h · ∇ψ

+

∫ T

0

∫
Ω
µc(y)c

(
1− c

Kc(h(·, t− τ))
− η1

n

Kn

)
ψ, (3.6)

−
∫ T

0

∫
Ω
n∂tψ −

∫
Ω
n0ψ(·, 0) =

∫ T

0

∫
Ω

(
−δnhn+ µnn

(
1− η2c

Kc(h)
− n

Kn

))
ψ, (3.7)

−
∫ T

0

∫
Ω
h∂tψ −

∫
Ω
h0ψ(·, 0) = −Dh

∫ T

0

∫
Ω
∇h · ∇ψ +

∫ T

0

∫
Ω
R(y, h)ψ, (3.8)

−
∫ T

0

∫
Ω
y∂tψ −

∫
Ω
y0ψ(·, 0) =

∫ T

0

∫
Ω

(−R(y, h)− αy + g(c))ψ. (3.9)

If (c, n, h, y) is a weak solution to (2.3)-(2.5) for all T ∈ (0,∞), then we call it a global
weak solution to (2.3)-(2.5).

Now we state the main result of this section which establishes the existence of a global
weak solution.

Theorem 3.2 Let Ω ⊂ RN be a bounded domain with smooth boundary and N ∈ N and
assume that (3.1)-(3.5) are fulfilled. Then there exists a global weak solution to (2.3)-(2.5)
in the sense of Definition 3.1 satisfying

c ∈ L∞loc(Ω̄× [0,∞)), 0 ≤ n ≤ Kn and 0 ≤ y ≤ Y0 in Ω× (0,∞),

h ∈ L∞((0,∞);W 1,q(Ω)), 0 ≤ h ≤ H0 in Ω× (−τ,∞).
(3.10)
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If in addition c0 ∈ Cβ(Ω̄) is satisfied with some β ∈ ( 1
N+2 , 1), then there is a unique global

weak solution within the class of functions satisfying the conditions of Definition 3.1 and
h ∈ Lrloc([0,∞);W 1,r(Ω)) for some r > N + 2.

In order to prove this result, we use the following regularized problems for ε ∈ (0, 1):

∂tcε = ∇ · (ϕε(cε, nε)∇cε)−∇ · (fε(hε, cε)∇hε)

+µc(yε)cε

(
1− cε

Kc(hε(·,t−τ)) − η1
nε
Kn

)
in Ω× (0, Tε),

∂tnε = −δnhεnε + µnnε

(
1− η2

cε
Kcε(hε(·,t)) −

nε
Kn

)
in Ω× (0, Tε),

∂thε = Dh∆hε +R(yε, hε) in Ω× (0, Tε),

∂tyε = −R(yε, hε)− αyε + g(cε) in Ω× (0, Tε),

∂νcε = ∂νhε = 0 on ∂Ω× (0, Tε),

cε(x, 0) = c0ε(x), nε(x, 0) = n0ε(x), yε(x, 0) = y0ε(x) for x ∈ Ω,
hε(x, t) = h0ε(x, t) for x ∈ Ω, t ∈ [−τ, 0].

(3.11)

Here, we choose families of functions c0ε, n0ε, h0ε, y0ε, ϕε and fε, ε ∈ (0, 1), satisfying

c0ε, n0ε, y0ε ∈ C3(Ω̄), h0ε ∈ C3(Ω̄× [−τ, 0]), δ
2 ≤ h0ε ≤ H0 in Ω̄× [−τ, 0],

c0ε ≥ 0, 0 ≤ n0ε ≤ Kn, 0 ≤ y0ε ≤ Y0 in Ω̄,

∂νc0ε = ∂νh0ε = 0 on ∂Ω,

ϕε ∈ C3([0,∞)2) ∩W 2,∞([0,∞)× [0,Kn]), max{ε, C̃2
1+c} ≤ ϕε(c, n) ≤ C̃1

fε ∈ C3([0,∞)2) ∩W 2,∞([0, H0]× [0,∞)), 0 ≤ fε(h, c) ≤ C̃1(1 + c),

Kcε ∈ C3([0,∞)), 0 < a2 ≤ Kcε(h) ≤ a1

(3.12)

with positive constants C̃1, C̃2, a1, a2 for all (c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0] and any
ε ∈ (0, 1) as well as

c0ε → c0 and n0ε → n0 and y0ε → y0 in C0(Ω̄)

h0ε → h0 in C0([−τ, 0];W 1,q(Ω)), ϕε → ϕ in C1([0, r0]× [0,Kn]),

fε → f in C1([0, H0]× [0, r0]), Kcε → Kc in C1([0, H0])

(3.13)

as ε↘ 0 for all r0 > 0. Furthermore, we assume that for any a ∈ (0, H0) there is C̃a > 0
such that

fε(h, c) ≤ C̃a for all (c, h) ∈ [0,∞)× [a,H0] (3.14)

and all ε ∈ (0, 1).

3.1 Global existence for the regularized problems

We first state the local existence of classical solutions for (3.11) along with an extensibility
criterion and prove this result like in [36, Lemma 3.1].

Lemma 3.3 Let ε ∈ (0, 1) and assume that (3.1), (3.2) and (3.12) are fulfilled. Then there
exist a maximal existence time Tε ∈ (0,∞] and functions cε, nε, hε ∈ C2,1(Ω̄× [0, Tε)) and
yε ∈ C1([0, Tε);C

0(Ω̄)) which solve (3.11) in the classical sense and satisfy

cε ≥ 0, 0 ≤ nε ≤ Kn, 0 ≤ yε ≤ Y0 in Ω̄× [0, Tε),

0 ≤ hε ≤ H0 in Ω̄× [−τ, Tε).
(3.15)

6



If moreover Tε <∞ holds, then

lim sup
t↗Tε

(
‖cε(·, t)‖C0(Ω̄) + ‖hε(·, t)‖W 1,q(Ω)

)
=∞ (3.16)

is fulfilled, where q ∈ (N + 2,∞) is defined in (3.5).

Proof. We fix β ∈ (0, 1), T := 1 and set

A := ‖c0ε‖C2+β(Ω̄) + ‖n0ε‖C2+β(Ω̄) + ‖h0ε‖C2+β(Ω̄) + ‖h0ε‖
Cβ,

β
2 (Ω̄×[−τ,0])

+ ‖y0ε‖Cβ(Ω̄) <∞.

Moreover, let c0εt(x), n0εt(x) and h0εt(x) denote the right-hand side of the first, second
and third equation of (3.11) evaluated at (x, t) = (x, 0), respectively, so that

B := ‖c0ε‖Cβ(Ω̄) + ‖c0εt‖C0(Ω̄) + ‖h0ε‖Cβ(Ω̄) + ‖h0εt‖C0(Ω̄)

+‖n0ε‖C1+β(Ω̄) + ‖n0εt‖C1(Ω̄) ≤ C3(A) <∞ (3.17)

holds with some constant C3(A) depending on A. Then we define

X :=
{

(cε, hε, nε) ∈ (Cβ,
β
2 (Ω̄× [0, T ]))2 × C1+β, 1+β

2 (Ω̄× [0, T ]) :

cε ≥ 0, 0 ≤ hε ≤ H0, 0 ≤ nε ≤ Kn,

‖cε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖hε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖nε‖
C1+β,

1+β
2 (Ω̄×[0,T ])

≤ B + 3
}
.

Given fixed (cε, hε, nε) ∈ X, by (3.1), (3.2), (3.12), the theory of ODEs (see, e.g., [33]) and
the comparison principle, there is a solution yε ∈ C1((0, T );C0(Ω̄)) to the fourth equation
of (3.11) with initial data y0ε such that

0 ≤ yε ≤ Y0 in Ω̄× [0, T ], ‖yε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖∂tyε‖C0(Ω̄×[0,T ]) ≤ C4(A), (3.18)

where the latter Hölder estimate with repect to x follows from the regularity properties
(3.1) and an application of Gronwall’s inequality to yε(x1, t)− yε(x2, t). Next, (3.1), (3.2),
(3.12), (3.18) along with [21, Theorems V.7.4 and IV.5.3] and the parabolic comparison

principle imply the existence of a solution h̃ε ∈ C2+β,1+β
2 (Ω̄×[0, T ]) to the third equation of

(3.11) with the homogeneous Neumann boundary condition and initial data h0ε, satisfying

0 ≤ h̃ε ≤ H0 in Ω̄× [−τ, T ],

‖h̃ε‖
Cβ,

β
2 (Ω̄×[−τ,T ])

+ ‖h̃ε‖
C2+β,1+

β
2 (Ω̄×[0,T ])

≤ C5(A)
(3.19)

with some constant C5(A) > 0. Using next (3.1), (3.12), (3.18) and (3.19), by the com-
parison principle, [21, Theorem III.5.1] and [23, Theorem 1.1] there exists a weak solution

c̃ε ∈ C1+β1,
1+β1

2 (Ω̄×[0, T ])∩W 1, 1
2

2 (Ω̄×[0, T ]) to the first equation of (3.11) (with h̃ε instead
of hε) satisfying the respective boundary and initial conditions, where β1 ∈ (0, β]. By the

last reference and [21, Theorem IV.5.3], we further obtain that c̃ε ∈ C2+β1,1+
β1
2 (Ω̄× [0, T ])

is a classical solution satisfying

c̃ε ≥ 0 in Ω̄× [0, T ], ‖c̃ε‖
C2+β1,1+

β1
2 (Ω̄×[0,T ])

≤ C6(A) (3.20)

with a positive constant C6(A). Combining this with (3.12) and (3.19), we apply the
theory of ODEs (see e.g. Theorem 2 in [33, Section 2.3]) and the comparison principle to
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get a solution ñε ∈ C2+β1,1+
β1
2 (Ω̄ × [0, T ]) to the second equation of (3.11) (with c̃ε, h̃ε

instead of cε, hε) with initial data n0ε, such that

0 ≤ ñε ≤ Kn in Ω̄× [0, T ],

‖ñε‖
C2+β1,1+

β1
2 (Ω̄×[0,T ])

+ ‖∂tñε‖
C1+β1,

1+β1
2 (Ω̄×[0,T ])

≤ C7(A),
(3.21)

with some positive constant C7(A), where the Hölder estimate with respect to x is done
as described above for yε. In particular, recalling the definitions of c0εt, h0εt and n0εt

before (3.17), from (3.19)-(3.21) we obtain c0εt(x) = ∂tc̃ε(x, 0), h0εt(x) = ∂th̃ε(x, 0) and
n0εt(x) = ∂tñε(x, 0) for x ∈ Ω̄ so that there is T0 ∈ (0, T ] only depending on A such that

‖c̃ε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖h̃ε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖nε‖
C1+β,

1+β
2 (Ω̄×[0,T ])

≤ B + 3. (3.22)

Here we used that ‖ψ‖
C
β
2 ([0,T0])

≤ ‖ψ‖C1([0,T0]) holds for ψ ∈ C1([0, T0]) due to T0 ≤ 1.

Hence, setting T := T0, the map F : X → X, F (cε, hε, nε) := (c̃ε, h̃ε, ñε) is well-defined
and compact due to (3.19)-(3.22) so that F has a fixed point (cε, hε, nε) by Schauder’s
fixed point theorem. The above reasoning thus ensures the existence of a classical solution
to (3.11) in Ω× (0, T ) which has the claimed regularity properties and satisfies (3.15).

Next, let Tε < ∞ and assume for contradiction that (3.16) does not hold. Then there is
C8 > 0 such that

‖cε‖L∞(Ω×(0,Tε)) + ‖hε‖L∞((0,Tε);W 1,q(Ω)) ≤ C8. (3.23)

Combining this estimate with (3.1), (3.12), (3.15) and (3.11), we have

∂tcε = ∇ · (aε(x, t,∇cε)) + bε(x, t) in Ω× (0, Tε),

where

aε(x, t, ξ) · ξ ≥
C̃2

2(1 + C8)
|ξ|2 − ψ0(x, t), |aε(x, t, ξ)| ≤ C̃1|ξ|+ ψ1(x, t)

holds for all (x, t, ξ) ∈ Ω× (0, Tε)×RN with ψ0, ψ
2
1 ∈ L∞((0, Tε);L

q
2 (Ω)) and bε ∈ L∞(Ω×

(0, Tε)). Hence, in view of q
2 >

N
2 , [34, Theorem 1.3 and Remark 1.4] and (3.1) imply that

‖cε‖
Cβ2,

β2
2 (Ω̄×[0,Tε])

≤ C9 (3.24)

with some C9 > 0 and β2 ∈ (0, 1). By using the same results and possibly diminishing β2,
we also have

‖hε‖
Cβ2,

β2
2 (Ω̄×[0,Tε])

≤ C10,

where C10 > 0 and β2 ∈ (0, 1). Hence, (3.18) and (3.19) are valid with T = Tε and β = β2

so that a combination with (3.24) yields

‖nε‖
Cβ2,

β2
2 (Ω̄×[0,Tε])

≤ C11

with some C11 > 0. Thus, we are able to apply [23, Theorem 1.1] to obtain

‖cε‖
C1+β3,

1+β3
2 (Ω̄×[0,Tε])

≤ C12

8



with constants C12 > 0 and β3 ∈ (0, β2]. Now this implies

‖nε‖
C1+β3,

1+β3
2 (Ω̄×[0,Tε])

≤ C13

with some C13 > 0 due to (3.19) and [33, Theorem 2 in Section 2.3]. Finally, as A with
β = β3 is finite, (3.18)-(3.21) yield

A1 := ‖cε‖
C2+β4,1+

β4
2 (Ω̄×[0,Tε])

+ ‖nε‖
C2+β4,1+

β4
2 (Ω̄×[0,Tε])

+ ‖hε‖
C2+β4,1+

β4
2 (Ω̄×[0,Tε])

+‖hε‖
Cβ4,

β4
2 (Ω̄×[−τ,Tε])

+ ‖y0ε‖
Cβ4,

β4
2 (Ω̄×[0,Tε])

<∞

with some β4 ∈ (0, β3]. Therefore, by the first part of this proof the solution can be
extended to a classical solution of (3.11) in Ω × (0, Tε + T0

2 ) with some T0 = T0(A1) > 0
which contradicts the maximality of Tε and proves (3.16). �

In order to prove the global existence for the solution to (3.11), we will show appropriate
bounds on cε and ∇hε which are independent of ε. To this end, we remark that (3.1),
(3.12) and (3.13) imply

0 < a2 ≤ Kc(h) ≤ a1, 0 < b2 ≤ µc(y) ≤ b1, |R(y, h)| ≤MR

for all h ∈ [0, H0], y ∈ [0, Y0]
(3.25)

with positive constants b1, b2,MR. Moreover, we denote by (et∆)t≥0 the heat semigroup
in Ω with homogeneous Neumann boundary conditions and define λ1 > 0 to be the first
nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions. It is well-known
(see e.g. [45, Lemma 1.3]) that there exists C3 > 0 such that

‖∇et∆v‖Lρ(Ω) ≤ C3

(
1 + t

− 1
2
−N

2
( 1
r
− 1
ρ

)
)
e−λ1t‖v‖Lr(Ω) for all t > 0

‖∇et∆w‖Lp(Ω) ≤ C3e
−λ1t‖∇w‖Lp(Ω) for all t > 0

(3.26)

holds for any v ∈ Lr(Ω), w ∈ W 1,p(Ω), 1 ≤ r ≤ ρ ≤ ∞ and p ∈ [2,∞). Using these
estimates, we prove the following elementary bounds for cε and hε.

Lemma 3.4 Let q ∈ (N + 2,∞) be as defined in (3.5). There exists C > 0 such that for
all ε ∈ (0, 1) we have∫

Ω
cε(x, t) dx ≤ m := max

{
sup
ε∈(0,1)

∫
Ω
c0ε dx,

a1b1|Ω|
b2

}
<∞ for all t ∈ (0, Tε), (3.27)

‖hε(·, t)‖W 1,q(Ω) ≤ C for all t ∈ (0, Tε). (3.28)

Proof. Integrating the first equation of (3.11) and using (3.15), (3.25) along with the
Cauchy-Schwarz inequality, we have

d

dt

∫
Ω
cε ≤ b1

∫
Ω
cε −

b2
a1

∫
Ω
c2
ε ≤ b1

∫
Ω
cε −

b2
a1|Ω|

(∫
Ω
cε

)2

for all t ∈ (0, Tε),

so that (3.27) follows by an ODE comparison and (3.13).
Next, we use the Neumann heat semigroup and Lemma 3.3 to obtain from (3.11)

hε(·, t) = etDh∆h0ε(·, 0) +

∫ t

0
e(t−s)Dh∆R(yε(·, s), hε(·, s)) ds, t ∈ (0, Tε).
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In view of q ≥ 2, (3.15), (3.25) and (3.26), this implies

‖∇hε(·, t)‖Lq(Ω)

≤ ‖∇etDh∆h0ε(·, 0)‖Lq(Ω) +

∫ t

0
‖∇e(t−s)Dh∆R(yε(·, s), hε(·, s))‖Lq(Ω) ds

≤ C3‖h0ε(·, 0)‖W 1,q(Ω)

+ C3

∫ t

0

(
1 + (Dh(t− s))−

1
2

)
e−λ1Dh(t−s)‖R(yε(·, s), hε(·, s))‖Lq(Ω) ds

≤ C3 sup
ε∈(0,1)

‖h0ε(·, 0)‖W 1,q(Ω) + C3MR|Ω|
1
q

∫ ∞
0

(
1 + (Dhσ)−

1
2

)
e−λ1Dhσ dσ

for all t ∈ (0, Tε), which proves (3.28) due to (3.13) and (3.15). �

The next lemma is the main step towards the global existence. It uses Lemma 3.4 as a
starting point to obtain bounds in L∞((0, T );Lp(Ω)) for any finite p. We adapt ideas from
[40, Lemma 3.3] for its proof.

Lemma 3.5 Let T ∈ (0,∞) such that T ≤ Tε. Then there are C(T ) > 0 and C̃(T ) > 0
such that

hε(x, t) ≥ C(T ) for all (x, t) ∈ Ω̄× [0, T ), (3.29)∫ T

0

∫
Ω
|∇cε|2(x, t) dxdt ≤ C̃(T ) (3.30)

are fulfilled for every ε ∈ (0, 1). Moreover, for any p ∈ [1,∞) there exists Cp(T ) > 0 such
that for all ε ∈ (0, 1) we have

‖cε(·, t)‖Lp(Ω) ≤ Cp(T ) for all t ∈ (0, T ). (3.31)

Proof. In view of (3.1), (3.2) and (3.15), there exists CR > 0 such that the third
equation in (3.11) implies

∂thε ≥ Dh∆hε +R(yε, 0)− CRhε ≥ Dh∆hε − CRhε in Ω× (0, Tε)

for all ε ∈ (0, 1). Hence, by (3.12) and the comparison principle, we have

hε(x, t) ≥
δ

2
e−CRt for all (x, t) ∈ Ω̄× [0, Tε) (3.32)

and all ε ∈ (0, 1), which proves (3.29).
Next, we fix p ∈ [2,∞) and T ∈ (0,∞) such that T ≤ Tε. Defining a := C(T ) > 0
with C(T ) from (3.29), testing the first equation in (3.11) by (1 + cε)

p−1 and using (3.12),
(3.14), (3.15), (3.25) as well as the inequalities of Young and Hölder, we obtain

1

p

d

dt

∫
Ω

(1 + cε)
p =

∫
Ω

(1 + cε)
p−1∂tcε

≤ −(p− 1)

∫
Ω
ϕε(cε, nε)(1 + cε)

p−2|∇cε|2

+(p− 1)

∫
Ω
fε(hε, cε)(1 + cε)

p−2∇cε · ∇hε

+b1

∫
Ω
cε(1 + cε)

p−1 − b2
a1

∫
Ω
c2
ε(1 + cε)

p−1

10



≤ − C̃2(p− 1)

2

∫
Ω

(1 + cε)
p−3|∇cε|2 +

C̃2
a(p− 1)

2C̃2

∫
Ω

(1 + cε)
p−1|∇hε|2

+

(
b1 +

2b2
a1

)∫
Ω

(1 + cε)
p − b2

a1

∫
Ω

(1 + cε)
p+1

≤ − 2C̃2

p− 1

∫
Ω
|∇(1 + cε)

p−1
2 |2

+
C̃2
a(p− 1)

2C̃2

(∫
Ω

(1 + cε)
(p−1)q
q−2

) q−2
q
(∫

Ω
|∇hε|q

) 2
q

+

(
b1 +

2b2
a1

)∫
Ω

(1 + cε)
p − b2

a1|Ω|
1
p

(∫
Ω

(1 + cε)
p

) p+1
p

(3.33)

for all t ∈ (0, T ) in view of q > 2. Abbreviating θ := q
q−2 ∈ (1, N+2

N ), the Gagliardo-
Nirenberg inequality and (3.27) yield(∫

Ω
(1 + cε)

(p−1)θ

) 1
θ

=
∥∥∥(1 + cε)

p−1
2

∥∥∥2

L2θ(Ω)

≤ CGN

∥∥∥∇(1 + cε)
p−1
2

∥∥∥2d

L2(Ω)

∥∥∥(1 + cε)
p−1
2

∥∥∥2(1−d)

L
2
p−1 (Ω)

+CGN

∥∥∥(1 + cε)
p−1
2

∥∥∥2

L
2
p−1 (Ω)

≤ CGN

(
(m+ |Ω|)(p−1)(1−d)

∥∥∥∇(1 + cε)
p−1
2

∥∥∥2d

L2(Ω)

+(m+ |Ω|)p−1
)

(3.34)

for all t ∈ (0, Tε), since

d :=
p−1

2 −
1
2θ

1
N −

1
2 + p−1

2

∈ (0, 1)

is satisfied due to θ ∈ (1, N+2
N ) and p ≥ 2. In view of (3.28) and d < 1, by inserting (3.34)

into (3.33) and applying Young’s inequality we arrive at

1

p

d

dt

∫
Ω

(1 + cε)
p +

C̃2

p− 1

∫
Ω
|∇(1 + cε)

p−1
2 |2

≤
(
b1 +

2b2
a1

)∫
Ω

(1 + cε)
p − b2

a1|Ω|
1
p

(∫
Ω

(1 + cε)
p

) p+1
p

+ C4(a, p) (3.35)

for all t ∈ (0, T ) and ε ∈ (0, 1) with some positive constant C4(a, p). This proves (3.31)
upon an ODE comparison due to (3.13) and (3.27). Then, integrating (3.35) for p = 3
with respect to t ∈ (0, T ) and using (3.31), we conclude that (3.30) is valid. �

Now we are in the position to obtain the global existence for the regularized problem
(3.11) by using a result from [40].

Lemma 3.6 For any ε ∈ (0, 1), the solution to (3.11) obtained in Lemma 3.3 exists
globally in time, which means that Tε =∞. Furthermore, for any T ∈ (0,∞) there exists
C∞(T ) > 0 such that

0 ≤ cε ≤ C∞(T ) in Ω̄× [0, T ] (3.36)

holds for any ε ∈ (0, 1).
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Proof. We fix T ∈ (0,∞) with T ≤ Tε. Keeping the notation from [40, Appendix A],
by (3.11), (3.12), (3.14) and Lemmas 3.3-3.5, we have

∂tcε ≤ ∇ · (Dε(x, t, cε)∇cε) +∇ · (Fε(x, t)) +Gε(x, t), (x, t) ∈ Ω× (0, T ),

where cε and Fε satisfy the homogeneous Neumann boundary condition, Dε and Fε are C1-
functions andGε is continuous such that Fε ∈ L∞((0, T );Lq1(Ω)), Gε ∈ L∞((0, T );Lq2(Ω)),
cε ∈ L∞((0, T );Lp0(Ω)) and Dε(x, t, cε) ≥ C̃2(1 + cε)

m̃−1 for m̃ = 0, q1 = q > N + 2 and
all p0 ∈ (1,∞) and q2 ∈ (N+2

2 ,∞]. In view of m̃ = 0, we may apply [40, Lemma A.1] with
some p0 > max{1, N2 } and obtain a constant C∞(T ) > 0 such that

‖cε‖L∞(Ω×(0,T )) ≤ C∞(T ).

As C∞(T ) depends on C̃2, supε∈(0,1) ‖c0ε‖L∞(Ω) and the norms of cε, Fε and Gε in the
spaces mentioned above, we conclude that C∞(T ) does not depend on ε ∈ (0, 1) and just
depends on T via (3.29) and (3.31). Hence, in view of (3.28), the criterion (3.16) proves
the lemma. �

Let us finalize this subsection with the following remark.

Remark 3.7 The conditions imposed on ϕ and f in (3.3) and (3.4) are motivated by
biological considerations and are in particular satisfied for the example given in (2.6).
If we assume instead

0 ≤ f(h, c) ≤ C1,
C2

1 + c
≤ ϕ(c, n) ≤ C1 ∀(c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0]

and corresponding estimates for ϕε and fε, then ‖cε‖L∞(Ω×(0,∞)) ≤ C∞ holds for some
C∞ > 0 which does not depend on ε ∈ (0, 1), as the constants Cp and C∞ do not depend
on T any more. This result remains true if we only assume the nonnegativity of h0 and
h0ε instead of their strict positivity as we do not need (3.29) in this setting.
With appropriately adapted proofs of Lemmas 3.5 and 3.6, the result ‖cε‖L∞(Ω×(0,∞)) ≤ C∞
holds for some C∞ > 0 which does not depend on ε ∈ (0, 1), if we assume

0 ≤ f(h, c) ≤ C1(1 + c)m1 , C2(1 + c)−m2 ≤ ϕ(c, n) ≤ C1(1 + c)m3

for all (c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0] with some real numbers mj, j = 1, 2, 3, satisfying
2m1 +m2 < 3 as well as h0 ∈ C0([−τ, 0];W 1,∞(Ω)) and the nonnegativity of h0.

3.2 Existence of a global weak solution to the original problem

In order to obtain a global weak solution to (2.3), we next prove appropriate precompact-
ness properties of the solutions to (3.11) which are based on the results of the preceding
subsection.

Lemma 3.8 Let T ∈ (0,∞) be arbitrary. For the global solutions to (3.11) from Lemma 3.3
we have that (cε)ε∈(0,1), (nε)ε∈(0,1), (hε)ε∈(0,1) and (yε)ε∈(0,1) are strongly precompact in
L2(Ω× (0, T )).

Proof. Throughout this proof we will frequently make use of (3.12), (3.15), (3.25),
(3.28), (3.30) and (3.36) without explicitly mentioning this every time. Using these prop-
erties, there exists a constant C4(T ) > 0 such that for all ψ ∈ C∞0 (Ω) and all ε ∈ (0, 1) we
obtain from (3.11) and the Hölder inequality that∫

Ω
∂tcεψ = −

∫
Ω
ϕε(cε, nε)∇cε · ∇ψ +

∫
Ω
fε(hε, cε)∇hε · ∇ψ
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+

∫
Ω
µc(yε)cε

(
1− cε

Kc(hε(·, t− τ))
− η1

nε
Kn

)
ψ

≤

[
C4(T ) +

(∫
Ω
|∇cε|2

) 1
2

]
‖ψ‖

W 1,2
0 (Ω)

for all t ∈ (0, T ).

Hence, (∂tcε)ε∈(0,1) is uniformly bounded in L2((0, T ); (W 1,2
0 )∗) by (3.30). As furthermore

(cε)ε∈(0,1) is uniformly bounded in L2((0, T );W 1,2(Ω)), W 1,2(Ω) is compactly embedded

into L2(Ω) and L2(Ω) ⊂ (W 1,2
0 )∗, the Aubin-Lions lemma (see [41, Theorem 2.1 in Chap-

ter III]) implies the strong precompactness of (cε)ε∈(0,1) in L2((0, T );L2(Ω)).

Similarly, (∂thε)ε∈(0,1) and (hε)ε∈(0,1) are uniformly bounded in L2((0, T ); (W 1,2
0 )∗) and

L2((0, T );W 1,2(Ω)), respectively, in view of q ≥ 2, so that (hε)ε∈(0,1) is strongly precom-
pact in L2((0, T );L2(Ω)).

In order to prove the claimed results for (nε)ε∈(0,1), we recall that by Kolmogorov-Riesz
for a bounded domain D ⊂ Rs with s ∈ N a set M ⊂ L2(D) is strongly precompact in
L2(D) if and only if

sup
F∈M

‖F‖L2(D) <∞ and lim
z→0

(
sup
F∈M

‖F z − F‖L2(D)

)
= 0,

where z ∈ Rs and F z(ζ) := F (ζ + z) for ζ ∈ D such that ζ + z ∈ D and F z(ζ) = 0 if
ζ + z 6∈ D. Setting D := Ω× (0, T ) and ζ := (x, t) ∈ D, for z ∈ RN+1 we obtain from an
integration of the second equation of (3.11) and the regularity and boundedness properties
of its right-hand side that∫

Ω
(nzε − nε)2(·, t) dx

≤
∫

Ω
(nz0ε − n0ε)

2 dx+ C5(T )

∫ t

0

∫
Ω

(|nzε − nε|+ |czε − cε|+ |hzε − hε|) |nzε − nε| dxds

≤
∫

Ω
(nz0ε − n0ε)

2 dx+ C6(T )

∫ t

0

∫
Ω

(
(nzε − nε)2 + (czε − cε)2 + (hzε − hε)2

)
dxds (3.37)

with some positive constants C5(T ) and C6(T ) for all t ∈ (0, T ) and all ε ∈ (0, 1). Hence,
by Gronwall’s inequality there exists C7(T ) > 0 such that

sup
ε∈(0,1)

‖nzε − nε‖L2(Ω×(0,T ))

≤ C7(T ) sup
ε∈(0,1)

(
‖nz0ε − n0ε‖L2(Ω) + ‖czε − cε‖L2(Ω×(0,T )) + ‖hzε − hε‖L2(Ω×(0,T ))

)
. (3.38)

As (cε)ε∈(0,1), (hε)ε∈(0,1) are strongly precompact in L2(Ω × (0, T )) and (n0ε)ε∈(0,1) is
strongly precompact in L2(Ω) due to (3.13), the right-hand side of (3.38) converges to
zero as z → 0 by Kolmogorov-Riesz. Since furthermore (nε)ε∈(0,1) is uniformly bounded
in L2(Ω× (0, T )), the mentioned criterion yields the strong precompactness of (nε)ε∈(0,1)

in L2(Ω× (0, T )).

Similar arguments also show that (yε)ε∈(0,1) is strongly precompact in L2(Ω× (0, T )). �

With these compactness properties at hand, we are able to prove the existence of a global
weak solution to the original problem (2.3).

Proof of Theorem 3.2. By Lemma 3.8, (3.13), (3.15), (3.28), (3.30), (3.36) as well
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as a standard extraction argument involving diagonal sequences, there are a sequence
(εj)j∈N ⊂ (0, 1) such that εj ↘ 0 as j →∞ and functions

c ∈ L∞loc(Ω̄× [0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω)), n, y ∈ L∞(Ω× (0,∞)),

h ∈ L∞(Ω× (−τ,∞)) ∩ L∞((0,∞);W 1,q(Ω))

satisfying (3.10) such that

cε → c, nε → n, yε → y strongly in L2
loc([0,∞);L2(Ω)) and a.e. in Ω× (0,∞),

hε → h strongly in L2
loc([−τ,∞);L2(Ω)) and a.e. in Ω× (−τ,∞),

∇cε ⇀ ∇c, ∇hε ⇀ ∇h weakly in L2
loc([0,∞);L2(Ω))

as ε = εj ↘ 0. Combining these properties with (3.1), (3.12) and (3.13), for any fixed
T ∈ (0,∞) we may then pass to the limit as εj ↘ 0 in the weak formulation of (3.11)
corresponding to (3.6)-(3.9) and use the dominated convergence theorem to conclude that
(c, n, h, y) is a global weak solution to (2.3)-(2.5).
In order to prove the uniqueness claim, let in addition c0 ∈ Cβ(Ω̄) be fulfilled with some
β ∈ ( 1

N+2 , 1) and assume that (cj , nj , hj , yj), j = 1, 2, are global weak solutions to (2.3)-
(2.5) such that for all T ∈ (0,∞) there is C4(T ) > 0 with

‖cj‖L∞(Ω×(0,T )) + ‖∇cj‖L2(Ω×(0,T )) + ‖nj‖L∞(Ω×(0,T ))

+‖hj‖L∞(Ω×(0,T )) + ‖∇hj‖Lr(Ω×(0,T )) + ‖yj‖L∞(Ω×(0,T )) ≤ C4(T ) (3.39)

for j = 1, 2 and some r > N + 2 which is independent of T ∈ (0,∞) and satisfies
1− N+1

r < β. Observe that the global weak solution constructed above satisfies (3.39) in
view of q > N + 2.
We next fix an arbitrary T ∈ (0,∞). Then, similarly to (3.37) and (3.38), we obtain from
(3.7), (3.9), (3.1), (3.39) and Gronwall’s inequality that there is C5(T ) > 0 such that

|n1 − n2|(x, t) ≤ C5(T )

∫ t

0
(|c1 − c2|+ |h1 − h2|)(x, s) ds (3.40)

|y1 − y2|(x, t) ≤ C5(T )

∫ t

0
(|c1 − c2|+ |h1 − h2|)(x, s) ds (3.41)

are fulfilled for a.e. (x, t) ∈ Ω× (0, T ). Furthermore, (3.8), (3.1) and (3.39) imply∫
Ω
|h1 − h2|2(x, t) dx ≤ −Dh

∫ t

0

∫
Ω
|∇(h1 − h2)|2 dxds

+C6(T )

∫ t

0
(|h1 − h2|2 + |c1 − c2|2 + |n1 − n2|2) dxds

for a.e. t ∈ (0, T ) with some C6(T ) > 0. Hence, using (3.40) along with Gronwall’s
inequality we conclude that there is C7(T ) > 0 such that∫

Ω
|h1 − h2|2(x, t) dx ≤ C7(T )

∫ t

0
|c1 − c2|2(x, s) dxds, (3.42)∫ t

0

∫
Ω
|∇(h1 − h2)|2 dxds ≤ C7(T )

∫ t

0
|c1 − c2|2(x, s) dxds (3.43)

for a.e. t ∈ (0, T ). Next, in view of (3.1), (3.39) and c0 ∈ Cβ(Ω̄), we may apply [34,
Theorem 1.3 and Remark 1.4] to obtain that cj , hj ∈ Cγ,

γ
2 (Ω̄× [0, T ]) for some γ ∈ (0, β)
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(like in the proof of (3.24)) which also implies nj , yj ∈ C0(Ω̄×[0, T ]), j = 1, 2, due to (3.40),
(3.41). Therefore, the closed operator Bj(t) with Bj(t)u := −∇· (ϕ(cj(·, t), nj(·, t))∇u) for
u ∈W 1,r(Ω), defines a continuous map Bj : [0, T ]→ L(W 1,r(Ω),W−1,r(Ω)) by [15, (6.3)].
As furthermore −Bj is uniformly elliptic on [0, T ], cj solves

∂tu(t) + Bj(t)u(t) = fj(t), t ∈ [0, T ], u(0) = c0

with fj ∈ Lr((0, T );W−1,r(Ω)) and c0 ∈ W 1− 1
r
,r(Ω) due to (3.1), (3.6), (3.39), β >

1 − N+1
r and the smoothness of ∂Ω, we may apply the result of maximal parabolic

regularity from [15, Theorem 5.4, Remark 5.5, Proposition 6.1] to conclude that cj ∈
W 1,r((0, T );W−1,r(Ω)) ∩ Lr((0, T );W 1,r(Ω)). Here, the regularity of c0 and [15, Theo-
rem 6.14] shows that we can apply the maximal regularity result also to u(0) = c0 6≡ 0.
Hence,

‖∇cj‖Lr(Ω×(0,T )) ≤ C8(T ) (3.44)

is satisfied for j = 1, 2 with some C8(T ) > 0. Finally, using (3.39)-(3.44), we can apply
the method from the uniqueness proof in [30, Theorem 3.1] (starting at [30, (3.37)] and
setting ψ ≡ 0, l := h and 2p := r > N + 2) to conclude that there is t0 ∈ (0, T ) sufficiently
small (just depending on T ) such that

‖c1 − c2‖2L∞((0,t);L2(Ω)) ≤ C9(T )

∫ t

0
‖c1 − c2‖2L∞((0,s);L2(Ω)) ds

holds for all t ∈ (0, t0) with some C9(T ) > 0. Hence, an application of Gronwall’s inequal-
ity yields c1 = c2 a.e. in Ω× (0, t0) so that (3.40)-(3.42) and an iteration of this argument
show that the two global weak solutions coincide a.e. in Ω× (0, T ). �

4 Numerical simulations

For the numerical simulations we first introduce the dimensionless variables

c̃ =
c

C0
, ñ =

n

Kn
, h̃ =

h

H0
, ỹ =

y

Y0
, x̃ =

x

L
, t̃ =

t

T
, θ =

t

χT
,

where Kn is the carrying capacity of the normal cells, C0 is the reference carrying capacity
of the cancer cells, H0 and Y0 are the reference concentrations of extracellular and intra-
cellular protons, L is the reference length scale and T is the reference time unit. As the
processes on the subcellular scale are much faster than those on the macroscale, θ = t̃

χ
with some χ ∈ (0, 1) represents the time on the microscale.
Using these variables and (2.6), we transform (2.3) to the nondimensionalized system

∂tc = ∇ ·
(

Dc
1+cn∇c

)
−∇ · ( Mc

1+ch∇h) + κ1
1+y c

(
1− c

Kc(h(·,t−τ)) − η1n
)
,

∂tn = −δnhn+ µnn
(

1− η2
c

Kc(h(·,t)) − n
)
,

∂th = Dh∆h+ γhy
1+y2+αhh2

− βhh
1+y2

,

∂θy = − γyy
1+y2+αhh2

+
βyh

1+y2
− αy + ρc

1+c ,

(4.1)

in Ω× (0, T ) with Ω := (0, 1) ⊂ R, where we omit the tildes in variables and constants for
the ease of notation.
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We endow (4.1) with the boundary and initial conditions (2.4)-(2.5) and set

c0(x) := exp
(
−x2

ε

)
, n0(x) := 1− exp

(
−x2

ε

)
, y0(x) := ξyc0(x),

h0(x, t) := ξhc0((x− x0)+)

for x ∈ [0, 1] and t ∈ [−τ, 0], where (s)+ := max{s, 0} for s ∈ R. Here the choice of h0

accounts for an already elevated intratumoral acidosis, which decays towards the tumor
border. This is done to include the fact that a too acidic environment is harmful also for
cancer cells.

We perform numerical simulations by using an implicit-explicit finite difference scheme as
in [30] and choosing the parameters τ = 8, χ = 0.01, Dc = 2 · 10−6, M = 10−3, Dh = 0.1,
η1 = 0.35, η2 = 0.05, ξy = 0.3, ξh = 0.5 and x0 = 0.1.

We provide some time snapshots for two different choices of the carrying capacity Kc of the
cancer cells. First, we choose Kc(h) = 1+bh

1+dh2
with d > 0 so that a too acidic environment

of the tumor causes a smaller carrying capacity, which leads to a decrease in the original
tumor (see Figure 1). In contrast to this, for Kc(h) = 1 + bh the original tumor infers
enhanced growth, but does not seem to affect the invasion speed (see Figure 2). The
classical choice of a constant carrying capacity (see Figure 3) does not allow the tumor to
adapt its growth to the environmental acidity.
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Figure 1: Evolution of tumor cell (blue) and normal cell densities (red), concentrations of
extracellular (green) and intracellular protons (black), and carrying capacity Kc(h(t− τ))
of cancer cells (purple) with Kc(h) = 1+h

1+3h2
for model (4.1).

5 Discussion

In this work we proposed a multiscale model for acid-mediated tumor invasion which as-
signs more importance to the intracellular proton dynamics on the microscale leading to
the behavior of the interacting normal and cancer cell populations on the macroscale. The
coupling between the two scales is realized through the spatio-temporal evolution of the
extracellular protons, which are controlled by and influence the dynamics of the processes
taking place both on the microscale and on the macroscale. Moreover, we account for pH-
taxis, which characterizes the tactic behavior of tumor cells in response to an extracellular
pH gradient, a feature which was only lately proposed in the context of cancer invasion
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Figure 2: Evolution of tumor cell (blue) and normal cell densities (red), concentrations of
extracellular (green) and intracellular protons (black) and carrying capacity Kc(h(t− τ))
of cancer cells (purple) with Kc(h) = 1 + h

2 for model (4.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

t=5

c
n

K
c

h

y

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

t=20

c n

K
c

h

y

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

t=50

c n

K
c

h
y

(c)

Figure 3: Evolution of tumor cell (blue) and normal cell densities (red), concentrations of
extracellular (green) and intracellular protons (black) and carrying capacity Kc of cancer
cells (purple) with Kc = 1 for model (4.1).

[2, 31]. The model was shown to be well posed in the weak sense; the result holds even for
a more general case than the concrete situation described in Section 2. The global bound-
edness of the solution remains, however, open (unless for supplementary assumptions, see
Remark 3.7). Numerical simulations illustrate the behavior of the solution as predicted
by our model. Thereby, the choice of the carrying capacity as a (delayed) function of
the extracellular proton concentration was shown to be relevant: as expected, a larger
carrying capacity will enhance tumor growth (though it seems to hardly have an effect on
the invasion speed, but proving this mathematically is still an open issue). This would
endorse the therapeutical approach aiming to reduce the acidity in the tumor environment
to control the neoplasm development [13, 32].
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