Proot Lengths for Equational Completion *

David A. Plaisted

Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

e-mail: plaisted@cs.unc.edu

Andrea Sattler-Klein

Universitat Kaiserslautern
Fachbereich Informatik
D-67663 Kaiserslautern

e-mail: sattler@informatik.uni-kl.de

SR-95-06

Abstract

We first show that ground term-rewriting systems can be completed in a
polynomial number of rewriting steps, if the appropriate data structure for terms
is used. We then apply this result to study the lengths of critical pair proofs in
non-ground systems, and obtain bounds on the lengths of critical pair proofs
in the non-ground case. We show how these bounds depend on the types of
inference steps that are allowed in the proofs.

1 Introduction

We are interested in developing theoretical techniques for evaluating the efficiency of
automated inference methods. This includes bounding proof sizes, as well as bounding
the size of the total search space generated. Such investigations can provide insights
into the comparative strengths of various inference systems, insights that might other-
wise be missed. This can also aid in the development of new methods and new inference
rules, as we will show.

We first consider equational deduction for systems of ground equations. We note that
in general, a system of ground equations can be converted to a ground term-rewriting

*This research was partially supported by the National Science Foundation under grant CCR-
9108904

system by orienting the equations relative to a total termination ordering. Completion
of such term-rewriting systems is basic to equational deduction, since we can test if a set
E of equations logically implies an equation s = ¢ by regarding F as a term-rewriting
system and completing £ U {s = a,t = b}, where a and b are small new constant
symbols, and testing whether the equation @ = b is in the completed system. We
present two polynomial time methods for completing a ground term-rewriting system.
This is significant because of the wide use of critical-pair methods in theorem proving
and term-rewriting. Since an already-completed version of a ground system can be
found in polynomial time using congruence closure, one would expect that completion
itself by rewriting operations should be possible in polynomial time for ground systems.
However, the proof of this turned out to be surprisingly difficult to find, though the final
algorithms are reasonably simple. It is also surprising that no polynomial time method
for critical pair completion of ground systems has been found until now, because this
is such a basic problem in term-rewriting systems. Furthermore, the algorithms with
polynomial behavior seem to have some unexpected features and implications for the
efficiency of ground completion. One interesting feature of these algorithms is that
a certain kind of data structure for terms needs to be used to obtain the polynomial
behavior. We are not aware of any work prior to this which derives any time bound
for ground completion, except for methods based on congruence closure.

We then apply these results on ground systems to obtain bounds on proof length for
non-ground equational systems. Undecidability considerations make this more difficult,
but we obtain some results in spite of this. In particular, we derive bounds on the
number of steps needed in general to derive equational consequences of non-ground
(first-order) equational systems using completion. This is possible because “unfailing
completion” [BDP89] is a complete theorem proving method for first-order equational
systems, even those that cannot be completed in a finite number of steps. We show how
the derived bounds on proof length depend on the operations used in completion, and
show that non-standard operations are needed to obtain good bounds. Furthermore, a
certain kind of data structure for terms is needed to obtain these bounds. We also give
a special case in which a better bound is satisfied. Along the way, some advantages of
the rigid (matings) approach to theorem proving are revealed. In addition, we prove
some properties of the needed ground instances, showing that “small” instances always
exist, in a certain sense. It is interesting in this regard that [Lyn95] has recently given
an extension of congruence closure to the first-order case, which may turn out to be
useful for deductive purposes.

We consider that these results are important for a theoretical understanding of the
efficiency of term-rewriting based theorem provers. As in first-order theorem proving,
there have been many studies of the correctness or completeness of term-rewriting
deductive systems, but little theoretical study of their efficiency. Such a study is
invaluable for gaining a deeper machine-independent insight into the behavior of term-
rewriting inference, and helping to develop more efficient inference strategies. The
results presented here are a beginning in this endeavor, and help to prepare the way
for a more thorough study of the efficiencies of various approaches to the non-ground
case. For previous work in the length of derivations in string-rewriting systems, see

[BO84], where it is shown that systems exist whose word problem is decidable, but
deciding the word problem by any canonical system can be arbitrarily more complex
than deciding it by a Turing machine. The lengths of proofs in non-canonical systems
in this same framework was studied in [MO85]. For a more recent paper on the same
topic, see [CMO93]. Our work differs from these in that we consider proofs involving
completion steps, and we relate the length of the proof to the size of an “amplification”
needed to obtain the proof, rather than to the complexity of the word problem per se.
Thus our results are concerned with the relationship between the complexity of the
proof and the number of instances of each equation that are needed to obtain the
proof. The existence of small canonical systems that take a very long time to obtain
by completion was shown in [MSKQO93]. Such systems would require a very large
amplification, and so our bounds would still apply to them.

We begin with some definitions. A term is said to be a ground term if it contains no
variables; thus, f(g(a),b) is a ground term. We can also speak of ground equations, et
cetera. We use the equivalence relation = for the identity relation on terms, and also
for logical equivalence of first-order formulas. A term-rewriting system R is a finite set
{r; — s; :1 € I} of rules, where r; and s; are terms and every variable in s; must also
appear in r;. For surveys of term-rewriting, see [D.J90, Pla93, Klo92]. A substilution is
a mapping from variables to terms, extended to terms and clauses homomorphically.
We assume all substitutions are the identity on all but finitely many variables. We
write {zq « ty,--+,z, « {,} for the substitution replacing the variables z; by the
terms ¢;, respectively. If © is a substitution and ¢ is a term, then we call {© an instance
of ¢; similar terminology applies to instances of equations, rewrite rules, and clauses.
We use the notation t[w] to indicate one occurrence (or, sometimes, all occurrences)
of the subterm w in the term {. We define the rewrite relation —pr on general terms
by t[r;0] —g t[s;0] where O is a substitution; that is, instances of r; may be replaced
by the corresponding instances of s;. The reflexive transitive closure of this relation is
indicated by —%5. A term { is reducible if there is a term u such that { — g u; otherwise,
1 is irreducible. We say a term u is a normal form of t if { —} u and u is irreducible.
We say R is terminating if there are no infinite sequences tg —g t; —gr ty... and R is
confluent if for all terms ¢, ¢1, and t,, if t =% ¢; and ¢ —7 t5 then there exists a term u
such that ¢ty =% v and t; =% u. Wesay R is convergenl or canonical if R is terminating
and confluent. Such systems are especially interesting, because they can be used to
decide the equational theory of R. If R is the term-rewriting system {r; — s, : ¢ € I}
then we define R= to be the set {r; = s; :7 € I} of equations. It turns out that if R is
canonical, then R= [= t; = t5 iff ¢; and ¢, have the same normal form with respect to
R-rewriting. Thus we can use R for theorem proving in the equational theory R=. If R
is not canonical, we may want to complete it, that is, find another system R; such that
R= = RT and such that R; is canonical; then Ry may be used to decide the equational
theory R~ of R. In practice, critical pair approaches to completion are generally used.
These methods essentially modify the rules of R incrementally in an attempt to make
it confluent, while preserving termination.

Definition 1.1 Suppose ry — s; and r9 — sy are lwo rules in R. Suppose ry has a
subterm t that unifies with ry; thus, r1 = r1[t]. Lel o be a most general unifier of t and

ry. Then we call the pair (r1[sz]a, s1a) of terms a critical pair; we view the equation
r[ssla = sya as being derived from the two equations ry = s; and roy = sy by one
critical pair operation.

We note that a critical pair constructed from two rules in R is a logical consequence of
R=. It is known that if R is not confluent, then there must be a critical pair (uy, us)
between two rules of R such that uy and uy have different R-normal forms v} and u.
Then the equation uj = u}, can often be oriented into a rewrite rule and added to R.
Critical pair methods perform this operation repeatedly, attempting to complete R to
an equivalent canonical system. For ground systems, if there is a critical pair between
rules 11 — sy and ry — so, then one of the left-hand sides (say, 1) must be reducible by
the other rule r, — s,. Then we have the critical pair (rf, s;), where r} is ry with this
rewrite performed. This can be oriented into the rule rj — sy or sy — rj, depending
on the ordering, and for ground systems the original rule r; — s; can be deleted from
the system. If R is a ground system, then we can complete it by repeatedly performing
such rewrites of rules with respect to other rules, until no more reductions are possible.
This must terminate if a suitable termination ordering is used for orienting rules of R
and the critical pairs. Also, when no more critical pairs exist, then R is canonical. In
addition, even if R is canonical, some right-hand sides of rules may be reducible with
respect to other rules of R; we usually want to rewrite such right-hand sides of rules
to normal form. The question arises how efficiently this completion and rewriting of
R may be done. It is possible to construct examples in which an unskilful choice of
rewrites can lead to an exponential time process; for example, consider rules for binary

— g(c)
— g(f(c))
— g

(f(f(e)))

counting of the form

f(e)
fg(e))
fla(g(c)))

fg"(e)) = g(f"(c))
Although this system is canonical, the right-hand sides can be further rewritten. The
straightforward reduction of the term g(f"(c)) can take a number of rewrites exponen-
tial in n. However, if we apply the rules in order of size, smallest first, to all other
rules, the whole system can be rewritten to a reduced system in a polynomial number
of steps. In [GNP*93, Sny89], a general, polynomial time method was presented for
obtaining completed ground systems. This method was based on congruence closure,
and therefore did not give direct insight into the speed of completion by traditional
critical pair-based methods. The question remained whether a good choice of critical
pair and rewriting operations could always complete and rewrite a ground system in
polynomial time, relative to an arbitrary total termination ordering. In this paper,
we give two polynomial time methods for doing this. The first method constructs a
subset D of the terms appearing in the ground system R. Initially, D is equal to all
the subterms appearing in rules of R. As rewrite rules are applied to R, they are also
applied to D. This is done in such a way as to decrease the cardinality of D. This

4

decrease in cardinality guarantees the polynomial running time of this method. The
second method considers the set of all the subterms appearing in rules of R. Rewrites
are performed in such a way as to reduce the cardinality of this set. Both methods
have the unexpected feature that they give priority to rewrite rules whose right-hand
sides are small.

2 Ground systems

We now discuss the general features of our first ground completion method. This
method performs a sequence of rewrite operations on a ground system, and permits
some nondeterministic choice in the rewrites that are performed. The rewrite rules are
oriented using an arbitrary termination ordering > on ground terms. This ordering
must be well-founded and satisfy the monotonicity property r > s implies f(...r...) >
f(...s...). We also assume that this ordering is total. We write s > ¢ to indicate s > ¢
or s =t Also, s >tiff t < s, and s > tiff £ < s. Given an arbitrary ground term-
rewriting system R, our algorithm constructs an equivalent canonical system S such
that all rules in .S are oriented with respect to >, that is, their left-hand sides are larger
than their right-hand sides. Also, all rules of S are fully rewritten with respect to other
rules in S. These two properties are sufficient to guarantee canonicity of 5, that is, .S
is confluent and terminating. Moreover, a system S satisfying these two properties is
unique, given R and the ordering >.

The idea of our completion method is to choose a rule r — s of R such that r > s and
process 1t, that is, replace all other occurrences of r by s. If r < s, then we need to
re-orient this rule to s — r before processing. Note that processing this rule may cause
other rules ' — s’ to be created in which the left-hand side r’ is smaller than the right-
hand side ', that is, v’ < s’. This can happen when r’ has been rewritten, for example.
In our method, we assume that such rules are immediately re-oriented to s* — r’ so that
the left-hand side is larger than the right-hand side. Also, if " and s" are identical, then
the rule r’ — §" is simply deleted. The problem is to choose a sequence of rules r — s
to process so that completion can be done in polynomial time. To do this, we choose
a positive integer function ¢(R) of R as a termination function. That is, this function
initially has a (positive) value that is polynomial in the size of R, and each time a rule
is processed, the value of the function ¢(R) decreases by at least one. It follows that the
completion procedure terminates in a polynomial number of processing steps. Since we
re-orient rules often, we need to choose a termination measure ¢(R) that is unaffected
by this reorientation of rules. If each processing step can be done in polynomial time,
then the entire completion process will require time at worst polynomial in the size of
R. In order to be able to process a rule r — s in polynomial time, we need to be able to
replace all occurrences of r by s quickly. There may be exponentially many occurrences
of r; for example, we can have a system containing rules like ¢; — f(¢iy1,c¢ip1). We
need to be able to rewrite all the occurrences of r at the same time. For this reason, we
assume that terms are represented by directed acyclic graphs, so that all occurrences
of a given subterm are represented in one location, and all can be rewritten with

an amount of work proportional to the work required to rewrite a single occurrence,
and independent of the number of occurrences. Such data structures are well known.
Assuming that such a directed acyclic graph representation is used for terms, each
processing step is polynomial. However, if terms are represented in a conventional way,
these processing steps can take an exponential number of rewrite operations. Still,
we feel that the directed acyclic graph representation is natural enough so that it is
justifiable to speak of this as a polynomial time completion method.

Our termination function is based on the concept of dominating sets. The idea is
to count the number of distinct right-hand sides of rules that appear in R. FEach
right-hand side can be considered as a name of an equivalence class of terms that has
been detected so far. However, as rules are rewritten and reoriented, the distinction
between left and right-hand sides becomes somewhat arbitrary. So instead of counting
the number of right-hand sides, we just choose some arbitrary set D containing for
each rule s — t of R, either s or . We also want to take into account the subterms of
R that do not appear on the left or right-hand side of any rewrite rule. Therefore, for
each subterm v in R, if there is no rewrite rule s — ¢ with u = s or v = ¢, then v is in
D. The elements of D can be seen as labels of equivalence classes of terms.

Definition 2.1 A dominating set D for R is a set of terms such that for every rule
s —tin R, either s € D ort € D. Also, for each subterm u in R, either u is in D
or there is a rewrite rule s — t having u on the left or right-hand side. We assume
that at the beginning D is chosen as the set of all the subterms appearing in R, and D
s then updated during processing. That is, when a rule is processed, the elements of
D are also rewritten, if possible. It will turn out thatl this processing will maintain the
property that D is a dominating set. One goal of the processing will be to reduce the
cardinality of D. We use |A| to indicate the cardinality (number of elements) of a set
A.

Lemma 2.2 The processing of a rule r — s always rewrites a dominating set D of R
inlto another dominating set D' of R'.

Proof. 1If r € D then s € D', so the dominating property is preserved for the rule
r — s. If u — v is another rule that is rewritten to v’ — v’ by processing, then v’ € D’
orv' € D', since u € Dorv € D. If tis a term that does not appear on the left or
right-hand side of a rule of R, then ¢t € D. If ¢ is rewritten to ¢’ in R’, then t' € D'. If
there is a rewrite rule v — v in R having ¢ on the left or right-hand side, and this is
rewritten to v’ — v’ in R', then ¢’ is either v’ or v'. If the rule v’ — v’ is deleted from
R’ because u' = o', then v’ € D', so t' € D', too, as required for terms that do not
appear in rewrite rules. O

Definition 2.3 A rule is a bridging rule if it is of the form s — { where both s and
t are in the dominating set D. A rule is a linking rule if it is of the form s — t (or
t — s) where there is some other rule with s as its left or right-hand side, and where s
15 not in D.

Lemma 2.4 The processing of a bridging rule s — t always reduces the cardinality of
D (since all occurrences of s are replaced by t, including in D). Also, processing any
rule never increases the cardinality of D (obviously). Re-orienting the rules does not

affect D, too.
Lemma 2.5 The processing of a linking rule always creates a bridging rule.

Definition 2.6 Given a ground system R, we define its partition number to be the
cardinality of D.

We use the partition number of R as ¢(R), approximately. (It will be necessary to mod-
ify this measure later.) The processing of linking or bridging rules will always reduce
the partition number, either immediately or on the next processing step, assuming that
bridging rules are processed as soon as possible. We say that linking and bridging rules
are productive, since they either reduce the partition number, or enable another rule to
do so. We say that a rule is unproductive if it is not a bridging rule or a linking rule.

Now, it can happen that the processing of an unproductive rule may reduce the parti-
tion number by identifying terms of D. However, it is also possible that the processing
of such unproductive rules does not change the partition number. This is so because a
dominating set need only contain one of the sides of a rewrite rule. Thus the processing
of a rule r — s may leave the cardinality of D unchanged, if r € D and s ¢ D, for
example.

Definition 2.7 A rule r — s of R is processable if there are occurrences of r elsewhere
in R. A rule is potentially unproductive if it’s right-hand side is larger than or equal
to the right-hand side of a processable unproductive rule.

Definition 2.8 We define top(R) to be the set of left and right-hand sides of rules in
R. We say that a term v appears at the top (level) of a rule r — s if uw isr or s.

We observe that if a subterm u of R is not in top(R), then u € D.

Definition 2.9 A redex of R is an occurrence of a subterm r of R which also appears
on the left-hand side of some rule r — s of R; however, the occurrence of r in the
rule r — s is nol considered as a redex. If there is some other rule r — t, then the
occurrence of r in r — s is a redex.

The idea is that an unprocessable potentially unproductive rule r — s can be made
processable by processing an unproductive rule, since the orientation of the rule r — s
may change. This rule can be rewritten to ' — s’ with v’ < s’; then we orient the
rule to s — r/, and processing this rule may leave the partition number unchanged.
On the other hand, if ' > s" and the rule ' — s’ can still be processed, then there
must be a new redex, or an existing redex can be rewritten in a new way, which will
eventually reduce the partition number. Therefore, the main problem as far as reducing
the partition number, is dealing with rules that need re-orientation.

Lemma 2.10 Processing a rule r — s can only change the orientation of a rule u — v
in which v > s. It can only cause a rule w — v to be deleted if v > s.

Proof. Suppose r — s is a rule in R. Let u — v be another rule, which is rewritten
to u’ — v’ by the processing of r — s. If v < s, then v’ < s also (since v’ < v). If
u' = u, then v’ > v > v’ (since u > v). If v’ < u, then u’ contains an occurrence of s, so
u' > s > v'. In either case, u’ > v’, and so the rule v" — v’ will not need reorientation.
By similar reasoning, we can only have v’ = v’ if v > s. a

Definition 2.11 Suppose thal a rule r — s of R is processed, producing a system R'.
Suppose u is a subterm of R, and during the processing of r — s, u is rewriltlen to u'
(or else u is not rewritten, and then u' is u). Suppose that u is not a redex of R, bul
u' is a redex of R'. Then we call v’ a new redex in R'.

Theorem 2.12 Suppose that in the processing of a rule r — s of R, with dominating
set D, creating the system R', with dominating set D', the two distinct subterms u and
v of R are rewritlen to the same term u’ of R'. Suppose that |D| = |D'|. Then either
a) there is a rule w — v or v — u in R, and u' € D', or b) there are rules u — w and
v — w (possibly with different orientations) in R, and w € D, or ¢) u € top(R) and
v € top(R) and R' has a linking rule or a bridging rule, or d) exactly one of u and v
is in top(R), and R' has a bridging rule.

Proof. Note that if u € D and v € D then D' has fewer elements than D. By the
hypothesis |D| = |D’|, we know that there are no two elements of D that map to the
same element of D’. For case a), if there is a rule u — v or v — w in R, then either u
orvisin D, sou’ € D'. For case b), if there are rules u — w and v — w (possibly with
different orientations) and w € D, then both of these rules will rewrite to v’ — w’,
and one (copy) of these rules will be deleted in R'. For case ¢), if both u and v are
in top(R), then they must appear at the top of two different rules of R, since we have
already considered the case where there is a rule u — v or v — u. Therefore, these
two rules of R have between them at least two elements of D at the top level (since
in case b) we have eliminated the case where there is a common element). These two
rules may have a single successor in R’, which is then a bridging rule. Otherwise, we
obtain two rules of R’ which have among them two distinct elements of D’ (since the
hypothesis |D| = |D’| excludes the case in which two elements of D map to the same
element). However, these two rules of R share a top-level element (left or right-hand
side). So there must be a linking rule or a bridging rule in R’. Now, a) covers the
case where u and v appear at the top of the same rule. Case b) covers the case where
they appear at the top of different rules with a common top element. Case c¢) covers
the case where they appear at the top of different rules with no common elements. If
neither u nor v appears at the top of a rule of R, then they are both in D, which implies
|D'| < |D|, excluded by the hypothesis |D| = |D’|. The only other case is where one
of u and v appears at the top level of a rule and the other does not. Suppose without

loss of generality that u is not in top(R) but there is a rule v — w (or w — v) in R.
We already excluded the case where u and v are both in D, so we know v is not in D,
so w is in D. Therefore in R’ we have a rule v’ — w’ or w’ — u’ in which both u' and
w’ are in D'; this is a bridging rule, as claimed. a

We note that in all cases except case a) and b) of this theorem, if the cardinality of D’
is not less than the cardinality of D, then R’ has a linking or a bridging rule, which
permits the cardinality of D’ to be reduced in one or two more processing steps.

Corollary 2.13 Suppose u — v is a rule of R thal is not processable. Suppose that
some other rule of R is processed, yielding the system R', and the rule u — v is
processed to the rule u' — v' (that is, u rewrites to u' and v rewrites to v'). Suppose
that v' > v', and the rule u' — v’ is processable in R'. Then the partition number of R’
is less than that of R, or else R' has a linking rule or a bridging rule, or else there is
some other rule t — v (or v — t) of R that is processable in R and rewrites to u' — v’
under processing.

Proof. Since u — v was not processable, there were no other occurrences of u in R.
Since u’ — v’ is processable, there is some other occurrence of v’ in R'. Therefore there
is some other term ¢ in R that rewrites to some other occurrence of v’ under processing.
By the preceding theorem, either there was a rule t — u or v — ¢ in R, or else rules
of the form t — w and u — w, et cetera, or R’ has a linking or a bridging rule, or else
D' has fewer elements than D. However, there were no other occurrences of u in R,
so there could be no rule t — u or u — ¢ in R. The only possibility is that there were
rules t — w and v — w in R (possibly with different orientations), for some term w.
But since there is no other occurrence of u in R, we must have that the rules u — w
and v — v are identical, that is, w = v. Thus there were rules t — v (or v — t) and
u — v in R. For v’ — v’ to be processable in R, there must be some other occurrence
of t in R, not at the top level of a rule, that rewrites to another occurrence of v’ in R'.
This implies that the rule ¢ — v was processable in R. Or, if this rule was oriented
v — 1, then it was processable on the rule v — v. Note that the rule t — v (or v — 1)
rewrites to u’ — v" under processing. This completes the proof of the corollary. O

Corollary 2.14 If the processing of an unproductive rule r — s with a minimal right-
hand side (s) enables the processing (or reprocessing) of a rule u' — v’ with v’ < s, then
the partition number was decreased, or else a bridging or a linking rule was created, or
else the number of potentially unproductive rules in R’ is smaller than in R.

Proof. We are assuming that the rule v’ — v’ comes from a rule u — v of R that
was not processable before, or was just processed (i.e., it is the rule r — s). Suppose
v’ < s. Then the rule u — v was not just processed. In this case, the rule v’ — v’ does
not require re-orientation, by lemma 2.10. By corollary 2.13, the partition number of
R’ is less than that of R, or else R’ has a linking rule or a bridging rule, or else there is

some other rule t — v (or v — t) of R that is processable in R and rewrites to v’ — v’
under processing. Suppose this rule was oriented ¢ — v; since it was processable in
R, v > s (by the hypotheses of the corollary). Therefore v’ > s, and we are assuming
v’ < s. This is a contradiction. Suppose now that this rule was oriented v — ¢. Since
u — v was a rule in R, v — ¢t was processable. This again implies that ¢ > s, so v > s,
hence v’ > s, contradiction.

Suppose now that v’ = s and that the rule v — v was not just processed. Then, by
lemma 2.10, u’ > v’ also. Reasoning as above, either the partition number of R’ is less
than that of R, or else R’ has a linking rule or a bridging rule, or else there is some
other rule t — v (or v — 1) of R that is processable in R and rewrites to u’ — v" under
processing. If this rule is oriented { — v, then since v > s, this rule is potentially
unproductive, and the number of potentially unproductive rules of R’ is reduced. If
this rule is oriented v — ¢, the same is true, by the hypotheses to the corollary (since
we process a rule with a minimal right-hand side).

"= s, since a

If this rule v’ — v’ was just processed, then v = v/ = r and v = v
rule cannot rewrite itself. If this rule is still processable, then there must be a term ¢
other than w in R that rewrites to u under processing, since all other occurrences of
v in R were eliminated. Furthermore, the rule v’ — v’ must still be processable on
an occurrence of u obtained from ¢. If there are no occurrences of the rules ¢ — wu or
v — tin R, or for some term w in D the rules t — w and v — w (possibly with other

orientations), then the result follows by theorem 2.12.

Otherwise, (that is, v’ — v' was just processed, and at least one of the rules { — u
etc. exist in R), we note that ¢ contains one or more occurrences of u, since ¢ rewrites
under the rule v — v. Therefore we write ¢ as t[u]. Now, ¢ rewrites to u, hence u is ¢[v],
and ¢ is t[t[v]]. We consider all of the rules t — u, u — ¢, 1 — w (w — t), or u = w
(w — u) that might have been in R. Note that the first two of these rewrite to u — v,
and thus duplicate another rule of R’, and will be deleted. For example, consider the
rule ¢ — w; this is [t[v]] — t[v] and rewrites to t[v] — v, that is, to u — v. Thus this
occurrence of t[u] does not satisfy our hypothesis about rewriting to an occurrence of
t[v] that enables a reprocessing of the rule v’ — v'.

Consider the rules t — w and v — w (possibly with other orientations), with w in D.
These rewrite to u — w’ and s — w’ (possibly with other orientations) if w # v, with
w’' in D'. We must have s € D, since the rule r — s was just processed. Therefore
the rule v’ — s is a bridging rule. Or it can happen that w = v(= s), in which
case w' = s. In this case, the rule u — w’ becomes u — s, that is, u — v, and will
be deleted, since there is already a copy of this rule in R’. Therefore, the number of
potentially unproductive rules decreases. This completes the proof of corollary 2.14.

O

Lemma 2.15 If the processing of all of the k processable unproductive rules r — s
with minimal right-hand side s does not reduce the partition number and does not
create bridging or linking rules, then the number of potentially unproductive rules has
been reduced by k. Here k includes the rules that rewrite during this processing so

10

that their right-hand side is s, as well as rules that have s as a right-hand side at the
beginning.

Proof. By the proof of the preceding corollary, this means that no rules with right-
hand sides smaller than or equal to s, can be processed. Also, after all such rules r — s
have been processed, then the smallest processable unproductive rule has a right-hand
side larger than s. Therefore, all of the & rules v — v with v = s now cease to be
potentially unproductive. This processing is done by processing all the rules with s on
the right-hand side, one by one, until all (at most k) of these processable rules have been
processed. If during this processing, some formerly unprocessable rule or previously
processed rule becomes again processable, then by corollary 2.14, the partition number
is decreased, or else a linking or a bridging rule is created, or the number of potentially
unproductive rules is reduced. Otherwise, after at most k& processing steps, all rules
with right-hand side s can be processed, and the number of potentially unproductive
rules is reduced by k. a

We note that the processing of all such rules with minimal right-hand side, can be
done in polynomial time. Each rule can be processed in polynomial time, and there
are a linear number of such rules. It is possible for a rule r — s to need processing
more than once, if s is a proper subterm of r, but this can only happen a finite number
of times, since each such step reduces the size of R. Furthermore, in this case, the
processing of this rule is creating new occurrences of r, that is, new redexes, so the
partition number decreases, or else linking or bridging rules are created, or the number
of potentially unproductive rules decreases. An example is the rule f(¢) — ¢ applied
to a term f(f(c)), which we assume is not a redex. After one application, we have
f(f(e)) rewritten to f(c), which is a redex, so a new redex has been created, and the
partition number is reduced, or else new linking or bridging rules are created, or the
number of potentially unproductive rules is reduced.

Our method, then, is as follows.

2.1 Method A (Polynomial Ground Completion)

1. Whenever a rule is rewritten, it is oriented so that its left-hand side is larger than
its right-hand side. This orientation is not counted as a separate step. Whenever
a rule is oriented, it need not be processed.

2. We always prefer to process a bridging rule (since it reduces the cardinality of
D), then, if there are no bridging rules, a linking rule (since it creates a bridging
rule), then any processable rule with a minimal right-hand side.

2.2 The Time Required by Method A

Lemma 2.16 The partition number will never increase in this scheme.

11

It 1s clear that processing of bridging rules and linking rules will reduce the partition
number. When we process a rule with the smallest right-hand side, we may leave the
partition number unchanged. However, whenever we process all rules with the smallest
right-hand side, we reduce the number of potentially unproductive rules, as we showed
in lemma 2.15. Thus the unproductive rule applications are limited in this way; after
a linear number of such processing steps, either the method terminates, or we have
created a new bridging rule or linking rule.

Definition 2.17 We let ¢(R) be (p — 1)(n + 2) + u, where p is the partition number
of R, n is the number of rules of R, and u ts the number of potentially unproductive

rules of R.

Theorem 2.18 This measure ¢(R) is quadratic in the size of the system, non-negative,
and decreases by al least k whenever the (k) processable unproductive rules with the
smallest right-hand side are processed assuming no linking or bridging rules are created,
decreases by at least two when a bridging rule is processed, and decreases by at least
two when a linking rule and then a bridging rule are processed.

Proof. The measure ¢(R) is quadratic in the size of R because p and n are linear in the
size of R. Also, ¢(R) > 0 because p > 1. When all (k) processable unproductive rules
with the smallest right-hand side are processed, the number of potentially unproductive
rules decreases by k, or else the partition number is reduced by at least one, or else
a linking or a bridging rule is created, by lemma 2.15. Reducing the number u of
potentially unproductive rules reduces ¢(R) immediately. Suppose R’ has a smaller
partition number p'; then ¢(R') = (p' — 1)(n' +2) + v’ and ¢(R) = (p—1)(n + 2) + u.
Thus ¢(R)—¢(R') > (n+2)+ (u—u'). Since u—u’ > —n, ¢(R) —c(R') > 2. Processing
a bridging rule reduces the partition number, and thus reduces ¢(R) by at least 2, as
just shown. Similary, processing a linking rule and then a bridging rule reduces ¢(R)
by at least two, since the partition number is reduced. a

Corollary 2.19 Method A has a quadratic worst-case bound on the number of rule
applications required to complete a ground system, and a linear bound on the number
of applications of linking and bridging rules.

Proof. Each processing of the (k) processable unproductive rules with smallest right-
hand side reduces ¢(R) by at least k, unless a linking or a bridging rule is created;
processing a bridging rule reduces ¢(R) by at least two; and the pair of processing
steps resulting when a linking rule is created and then a bridging rule, reduces ¢(R) by
at least two. Processing the k rules with smallest right-hand side and then processing
a bridging rule, possibly processing a linking rule in between, reduces ¢(R) by at least
k+2. This follows because we have ¢(R)—c¢(R') = (p—1)(n+2)+u—((p'—1)(n'+2)+u)
and p’ < pand n’ < n,so ¢(R) —c¢(R') > (n+2)+ (u—u'). However, v’ < n’ <n
and v > k, sou —u'" >k —n, and ¢(R) — ¢(R') > 2 4+ k. Thus each processing

12

step reduces ¢(R) by an average of at least one. Since ¢(R) is non-negative, the total
number of processing steps is bounded by ¢(R), which is quadratic in the size of the
initially given system R. We can also see this in another way. Processing all rules
with a minimal right-hand side requires only one processing step per rule, so after a
number of processing steps bounded by the number of rules in R, either the partition
number is decreased, or a new linking or bridging rule is created, or else the method
terminates. Let’s define a phase to be a step in which all the processable unproductive
rules with minimal right-hand sides are processed; a phase ends when the partition
number decreases or a new linking or bridging rule is created. Fach phase has at most
n steps, and the number of phases is at most p — 1, since p > 1 always. Also, in
each phase, there may be some number of additional processing steps, to deal with the
linking or bridging rules that may have been created. The total number of steps for
unproductive rules is at most (p — 1) * n. We note that p is bounded by the number of
distinct subterms in R, irrespective of how many times they occur. The total number
of steps processing bridging rules is at most p — 1, since each such step reduces the
partition number by one. Also, the total number of steps processing linking rules is at
most p — 1, since each such step creates a bridging rule. Therefore the total number of
steps is bounded by (p—1)*n+(p—1)+(p—1),0r, (p—1)* (n+2), and is quadratic
in the size of R. We note that ¢(R) > (p — 1) * (n + 2). Thus after at most ¢(R)
processing steps, R will be completed. We also note that the number of steps involving
the processing of bridging and linking rules is at most linear in the size of R, so that
if there are few unproductive steps, then the bound is linear instead of quadratic. We
don’t know whether the quadratic bound can be achieved, that is, whether an example
exists with quadratic behavior, or if in fact a linear bound holds in general. a

This quadratic bound is not as efficient as congruence closure, but not too bad, es-
pecially if the number of applications of unproductive rules is small and the data
structures are efficient. The moral seems to be that top-level rewrites are good, since
linking rules are often top-level rewrites, and after that, applications with small right-
hand sides are good. Bridging rules are good, but they are hard to detect unless one
explicitly keeps track of D. Also, a rule should be applied to all possible redexes at
the same time. In addition, it is important to use an efficient directed acyclic graph
representation, in order to be able to process terms efficiently.

We now present another method which is simpler and also has polynomial behavior.

2.3 Method B (Polynomial Ground Completion)

1. Whenever a rule is rewritten, it is oriented so that its left-hand side is larger than
its right-hand side. This orientation is not counted as a separate step. Whenever
a rule is oriented, it need not be processed.

2. We always process a rule (any processable rule) with a minimal right-hand side.

13

2.4 The Time Required by Method B

To show that this is quadratic, we introduce some lemmas and definitions.
Definition 2.20 St(R) is the set of sublerms appearing in rules of R.

Lemma 2.21 Suppose processing a rule r — s of R produces R'. Then |St(R')| <
|St(R)|.

Proof. Let us express subterms of R as t[r], indicating all the occurrences of r, if
any. Then St(R) = {r} U {t[r] € St(R) : t[r] # r} and St(R') = {r} U {t[s] : t[r] €
St(R),t[r] # r}. The term r remains in R’, since the rule r — s is still present in R'.
We note that St(R’) is obtained by a mapping of St(R), therefore, |St(R')| < |St(R)|.

O

Lemma 2.22 Suppose u and v are two distinct subterms of R and both rewrile to u’
when the rule r — s is processed. Suppose at least one of these terms is rewritten bul
not at the top level, that is, at least one of u and v has r as a proper subterm. Then

SH(R| < |SUR)].

Proof. Recall that St(R) = {r} U {t[r] € St(R): t[r] Zr} and St(R') = {r} U {t[s]:
t[r] € St(R),t[r] # r}. Suppose u has r as a proper subterm; then u is in {¢[r] € St(R) :
t[r] #Z r}. If v also has r as a proper subterm, or is distinct from r, then, since u and
v rewrite to the same term, [{t[s] : t[r] € St(R),t[r] £ r}| < |{t[r] € St(R) t[r] £ r}.
Thus |St(R')| < |St(R)|. If v is r, then a similar argument applies, since r will be an
element of {t[s] : t[r] € St(R),t[r] # r}. 0

Lemma 2.23 Suppose the rule r — s of R is a processable rule with a minimal right-
hand side s. Suppose thal some other rule u — v of R with v < s, rewrites to u' — v’,

which is processable in R'. Then |St(R')| < |St(R)|.

Proof. Note that »" = v. Since u — v is not processable in R, there are no other
occurrences of u in R. But there are other occurrences of v’ in R’. Therefore, there
must be some other term w in R that rewrites to v’ under processing. Now, we cannot
have u = r, for this would imply that the rule v — v (i.e., r — v) was processable in
R, on the rule r — s. If w =r, then v’ = s, implying that u = r or u = s. As already
shown we cannot have u = r. Moreover, u cannot be s, since this would imply that
the rule u — v was processable in R on the rule r — s. Therefore neither rewrite 1s at
the top level, so by lemma 2.22, |St(R')| < |St(R)|. 0

14

Lemma 2.24 Suppose the rule r — s of R is a processable rule with a minimal right-
hand side s. Suppose that some other rule u — v of R with v > s, is not processable
in R, and rewrites to u' — v', which is processable in R'. Suppose u' > v’ and v’ = s.

Then |St(R)| < |St(R)|.

Proof. Since u — v is not processable in R, there is no other occurrence of u in R.
However, there is another occurrence of v’ in R’. Therefore, there is some other term
w in R that rewrites to v’ in R’. Now, w cannot be r, since that would imply that ’
is s. But v’ is s, which means that the rule v’ — v" would be s’ — s’, which would be
deleted, and not processable. Also, u cannot be r, since this would imply that v’ is s,
which we have just excluded. Therefore neither rewrite of u nor w is at the top level,
and both rewrite to the same term u'. By lemma 2.22, |St(R’)| < |St(R)|. 0

Theorem 2.25 Method B completes a ground system R in a quadratic number of
processing sleps.

Proof. Consider the measure ¢/(R) = u + |St(R)| * (n + 1). Recall that u is the
number of potentially unproductive rules, and n is the number of rules altogether.
Now, suppose that we process a rule r — s of R, obtaining R’. We claim that each
processing step reduces ¢/(R) by an average of at least one. Also, we note that ¢/(R) is
quadratic in the size of R.

If |St(R")] < |St(R)|, then ¢(R') < ¢(R), since u < n. If |[St(R')| = |St(R)| (which is
the only other possibility, by lemma 2.21), then the processing of r — s cannot make
any rule uv — v with a smaller right-hand side v, processable, by lemma 2.23. Also,
it cannot make any formerly unprocessable rule u — v processable, with v’ = s, by
lemma 2.24. Tt can be that the rule r — s is still processable again after it is processed
once; this can happen if s is a proper subterm of r. We can express r as r[s]; then there
must be some term r[r[s]] that rewrites to r[s]. By lemma 2.22, since r also occurs on

the left-hand side of the rule r — s, |St(R'")| < [St(R)| if this happens.

Now, assume that all the processable rules with s on the right-hand side are processed,
one by one, and none of these can be processed more than once. Here we also include
rules that are rewritten so that their right-hand side i1s s, and process these, too,
where possible. If |St(R)| does not decrease, this means that none of these rules are
processable more than once. Therefore, when all of these (k) processable rules with
minimal right-hand side s are processed, if |St(R)| does not decrease, then u decreases
by at least k. Thus, on the average, ¢’(R) decreases by at least one with every processing
step. Therefore, after at most ¢/(R) steps, the system R will be completed. Also, ¢/(R)
is quadratic in the size of R, since u, |St(R)|, and n are linear in the size of R. O

We note that this method and proof are substantially simpler than Method A and
its proof. But we still think that Method A is interesting. Since Method A always
processes bridging and linking rules when they exist, it may tend to terminate faster.
We could also modify Method B to prefer to process rules that reduce |St(R)|, but it’s
not clear that such rules are easy to detect rapidly.

15

3 Non-Ground Systems

In the non-ground case, we consider eritical pair proofs; these are sequences of equations
and inequations in which each equation or inequation is either given or is a critical pair
obtained from earlier equations in the proof. For this, it is also necessary to generalize
the concept of a critical pair operation to inequations, as we will do below. Also, we
allow these proofs to contain a fairly powerful rewriting operation on equations, as in
the ground case. We want to say something about the lengths of these critical pair
proofs, that is, the number of critical pair operations needed to derive contradictions,
which in this context are equations of the form u # u for some term u. The methods
already described for completing ground systems have some implications for non-ground
systems, too. That is, we can say something about the lengths of critical pair proofs
from sets of equations and inequations possibly containing variables. In particular, we
obtain a polynomial bound on proof length in terms of the number ¢ of distinct ground
instances of equations and inequations (as in Herbrand’s theorem) that are actually
used in a proof. This result is somewhat surprising, because it only depends on the
number ¢ of ground instances needed for the proof, and not on their size, which can be
exponential in g. Furthermore, these ground instances are not given initially, but must
be constructed incrementally in some manner during the critical pair proof. For non-
ground systems, as for ground systems, it is necessary to use a rewriting operation that
applies to all occurrences of a subterm at the same time in order to obtain a polynomial
bound on proof length. As in the ground case, one must use a directed acyclic graph
representation in order to implement this kind of rewriting efficiently. Also, we cannot
allow arbitrary rewriting (reduction) operations, since these can complicate the proof.
Instead, reduction must be carefully controlled, as in the polynomial ground completion
method.

In the non-ground case, we consider the problem of theorem proving, rather than com-
pletion per se. This permits our results to apply to arbitrary sets of equations, including
those that cannot be completed. For discussions of mechanical theorem proving, see
[Lov78, CL73, WOLB84]. We first make some general comments about refutational
theorem proving. Theorem proving is often expressed in terms of unsatisfiability of sets
of formulae. We know by Herbrand’s theorem that if A is an unsatisfiable set of clauses,
then there is a finite unsatisfiable set T' of ground instances of A. For our purposes,
the only clauses we will consider are equations, inequations, and equality axioms. If A
is {C1,Cq,---,C,}, then T may be expressed as {C;,01,C;,04,---,C; O} where all
C;,0; are ground clauses. We say that two clauses are variants if they are instances
of each other, that is, one is obtained from the other by a renaming of variables. We
can then let {C], (5, -, CL} be clauses where each C? is a variant of C;;, and where
no variable appears in more than one clause C7; such a set {C7,C5,---,Cp} is called
an amplification of A. It follows that there is a © such that {C],C}, .-, CL}0 =T
we can choose © so that C}0© = (; ©;. In this way, we can show in general that if A is
unsatisfiable, then there is an amplification A’ of A and a substitution © such that A’Q
is ground and unsatisfiable. Such amplifications are essential to our construction. We
note that there is no recursive way to construct this amplification from A, because of

16

the undecidability of first-order logic. However, this approach still gives a convenient
basis for complexity arguments and for the comparison of different methods.

In this paper, we are interested in unsatisfiability relative to equality. For a general
set A of formulas, we say that A is unsatisfiable relative to the equality axioms if
AU FEq is unsatisfiable, where Fq are the usual equality axioms (reflexivity, symmetry,
transitivity, and functional replacement). We note that the axiom s = ¢ D s© = 10
follows implicitly from the rules of first-order logic. By Herbrand’s theorem, if A is
unsatisfiable relative to the equality axioms, then there is a finite set of ground instances
of A that is also unsatisfiable relative to the equality axioms. The problem we consider
is to determine whether R = s = {, or equivalently, whether RU{s # ¢} is unsatisfiable
relative to the equality axioms. If RU {s # t} is unsatisfiable relative to the equality
axioms, then there is a set T' of ground instances of formulae in R U {s # {} such
that 7' is unsatisfiable relative to the equality axioms. Then g (mentioned above) may
be taken as the cardinality of T. Note that it is possible for more than one ground
instance of a rule to be used. That is, the cardinality ¢ of T' can be larger than the
cardinality of RU{s # t}. However, since the equality axioms are Horn clauses (that is,
they contain at most one positive literal), it turns out that we need only one instance
s" # t' of the inequation s # t. This also follows from Birkhoff’s theorem, mentioned
below. We define an amplification of R to be a finite set Ry of copies of the elements
of R such that the variables in different copies have been renamed, so that no two
equations in R; share a variable. From the existence of 7" and above comments, it
follows that there exists an amplification Ry of R and a ground substitution © such
that (R U {s # t})O is unsatisfiable; this exists because there is a finite set Ry and a
ground substitution © such that (R; U {s # t})© = T". Thus we have something of the
flavor of rigid E-unification [GNRS92, GNPS90]. In general we use the term rigid to
refer to the fact that variables cannot be renamed at will, but are global to R;. We use
the term non-rigid to indicate that free variables are local to each equation or clause,
and may be renamed within each equation or clause. We process this amplification R,
of Rin a rigid manner to obtain a proof whose size is polynomial in g. Then we convert
the proofs obtained into non-rigid proofs from R U {s # t}. Of course, in practice we
do not know T, but its existence enables us to obtain a bound on proof size. In the
following discussion we let S be Ry U {s # t}. We assume here that > is an arbitrary
but fixed total ordering on ground terms, as in the discussion of ground systems; thus
> must be well-founded and monotonic.

Definition 3.1 If O is a substitution, then a O-term is a term x© for some x such

that z© # x.

Definition 3.2 A substitution © is ground if for each variable x, either x® = x or
x0Q is a ground term, that is, a term containing no variables.

Definition 3.3 Suppose E is a set of ground equations. Let R be the lerm-rewriling
system {r — s:r>s,r=s€ Fors=r¢cE}. Wesayaterml is E-reducible if t is
R-reducible. A ground substitution © is E-reducible if there is a variable x such that

17

the term O is E-reducible, that s, v© has a sublerm r and there s some equation
r=sors=rin FE withr>s. Such an equation can be used as a reduction to replace
r by s. We say O is E-irreducible if it is not FE-reducible. If S is a sel of ground
equations and inequations, we say that © is S-reducible iff it is E-reducible, where F
is the set of equations in S. We define the rewrite relation —g and —g to be identical
to —gR.

Definition 3.4 Recall that < is a total termination ordering on ground lerms. Recall
that r < s if r < s orr =s. We order ground substitutions ©,0" by © < O if for all
variables x, O < 20'. We say © < O if @ < O’ and © # O'. We note that this is a

well-founded ordering on substitutions.

Theorem 3.5 Suppose S is a set of equations and inequations and for some ground
substitution ©, SO s ground and unsatisfiable relative to the equality axioms. Then
either S contains an equation of the formy =1t ort = y where t is a term not containing
y, or there exists a ground substilution ©' such that ©' is SO'-irreducible and SO’ is
ground and unsatisfiable relative to the equality axioms.

Proof. By induction on © in the well-founded ordering on substitutions given earlier.
Suppose that S contains no equation of the form y =t or t = y where ¢ is a term not
containing y. Suppose SO is ground and unsatisfiable relative to equality and © is
not SO-irreducible. Let ©; be obtained by reducing © one reduction step using —ge.
That is, for some variable z, t@® — g9 0. Suppose the equation r@ = sO was used
to perform this reduction, with r® > sO and the equation r = s or s = r in 5. Now,
r cannot be a variable, since r® > sO then implies that this variable does not occur
in s, and we excluded equations of the form y = ¢ or { = y, where y does not appear
in . We claim that r©®; = r0 and s0; = s0O. The first part follows because r0; is
only different from r© if the rule r® — sO applied to a proper subterm of r0, and r©
cannot be a proper subterm of itself. The second part follows because the ordering >
is well-founded; if s© had a subterm r®, then —gseo would not terminate. Therefore
the equation r® = s@ is still present in the system S®;. This implies that S©; = SO.
Since SO is unsatisfiable relative to the equality axioms, so is S©;. Since ©; < 0,
we can assume by induction that there is a © as in the theorem. This completes the
proof. a

Example 3.6 Suppose S = {f(z) = g(z), f(y) = g(y)} and © = {z «— g(b),y « b}
and the ordering > is the length-lexicographical ordering induced by ¢ > f > b. Then
O is SO-reducible, since SO = {f(g(b)) = ¢g(g(b)), f(b) = g(b)}, so the term g(b) in O
can be reduced using the equation f(b) = ¢(b), noting that g(b) > f(b). Then we can let
0O be © with this occurrence of g(b) replaced by f(b); thus, ©; = {z «— f(b),y « b}.
Note that ©; < 0O, and in this case ©; is SO;-irreducible. Also, S0, is logically
equivalent to SO, since SO still contains the equation f(b) = ¢(b) which, by applying
it in the forward direction, can be used to derive SO from S0;.

18

Definition 3.7 We say that a set S of equations and inequations is rigid reducible
relative to a ground substitution © if there is an equation r = s or s = r in S with
r® > sO and there is another occurrence of the subterm r in S. In the following we will
also say that the term r is rigid reducible in this case. A rigid reduction (or rewrite) is
then a replacement of some other occurrence of r by s. Nole that this other occurrence
of r must have exactly the same variables as r does.

Lemma 3.8 Suppose S is rigid reducible relative to ©. Let r = s be an equation in
S with r® > sO, and let S’ be S with all other occurrences of v replaced by s. Thal
is, S" is obtained by a sequence of rigid reductions on S. Then S and S’ are logically
equivalent, and also SO and S'O are logically equivalent.

Proof. The equation r = s is still present in S, since the top-level occurrence of r in
it was not replaced, and there can be no other occurrences of r in it because r® > s0.
Therefore, using this equation in the reverse direction, S can be derived again from
S’ by reversing all rewrites performed. Thus S’ logically implies S. The fact that 5
was derived from S by rewriting shows that S logically implies S’. Thus S and S’ are
logically equivalent. This implies that SO and S’© are logically equivalent. O

Definition 3.9 A critical substitution for S and a ground substitution © is a most
general unifier of the left or right-hand side of some equation r = s of S, wilth some
other subterm in S. We assume that the side used is the larger of r® and sO in the
termination ordering >.

Definition 3.10 The subterm size of a sel S of clauses is the cardinality of the sel of
subterms of S, that is, |St(S)|. Thus we only count the subterms, and not how often
they occur.

Lemma 3.11 Suppose a is a critical substitution for S and ©. Then |St(Sa)| <
|St(S)].

Proof. By examining a unification algorithm, we can express « as a composition of
substitutions of the form x « ¢, where the variable x does not appear in the term ¢,
and z and t are subterms of S/, and 3 is the composition of the previous substitutions
applied to S. It suffices then to show that |St(Sp{x «— t})| < |St(SB)| for t € St(SP).
We note that St(Sg{x « t}) = {u{z « t} : v € St(SB)} U St(t). However, since ¢
appears in S, and z does not appear in ¢, t{z « t} =t and St(t) C St(SB{zx « t}).
Thus St(Sp{z — t}) = {u{z — t} : v € St(SH)}, and the lemma follows. 0

Definition 3.12 Suppose r1 = s1 (or s1 = r1) and ry = sy (or s3 = ra) are lwo
equalions in S. Suppose r1 has a sublerm t that unifies with ry; thus, r1 = ri[t]. Let
a be a most general unifier of t and ro. Then we call the pair (r1[sz]a, s1a) of terms a

19

critical pair; we view the equation r[s;]a = sy« as being derived from the lwo equalions
r1 = s1 and ro = Sy by one critical pair operation. If r1 # sy ts an inequation with such
a subterm t, then we consider that the inequation r[s;]a # sia can be derived from
the inequation ry # s1 and the equation ro = sy by one critical pair operation, also.

We note that the critical pair (r1[s2]a, s1a) can be derived by applying the substitution
a to both equations, and then performing a rigid reduction. So we will often just apply
substitutions in our proofs, and perform the rigid reductions separately.

Theorem 3.13 Suppose that S is a set of equations and one inequation. Suppose © is
an SO-irreducible ground substitution such that SO is ground and unsatisfiable (relative
to equality). Then either

1. There exist unifiable terms u and v such that S contains an inequation u # v, or
2.5 is rigid reducible relative to ©, or

3. S has a critical substitution o (for ©) which binds at least one variable of S to a
term not containing that variable, and such that SO is an instance of Sa.

Proof. Let R be the set of rewrite rules {r® — s® :r® > sO,r=s€ Sors=r €
S}. If R is not confluent, it must have a critical pair. The overlap cannot be within a
O-term, since these terms are SO-irreducible (and hence R-irreducible). Suppose the
overlap is between rules r1 — s; and ry — s3. Suppose ry is a subterm of ry. (Recall
that R is a ground system.) These rules are instances of equations rj = s} (or s§ = r})
and 1, = s, (or s, = ry) of 9, respectively; that is, (r] = s1)0® = (r1 = s1), and
(ry, = s5)O = (ry = s3). The position 5 of ry in 4 must be a non-variable position of
ri, since O-terms are SO-irreducible. Let a be the unifier of), and the v subterm of
ri. This is a critical substitution for S and ©. If this unifier « is trivial, then r} and
hence S is rigid reducible relative to © (case 2 of the theorem). Otherwise, this unifier
« binds a variable of S to a term not containing this variable, and S© is an instance

of Sa (case 3 of the theorem).

Now, suppose R is confluent. Let s; # sy be the inequation in S. Then ;0 and s,0
have a common R-normal form. If ;0 = 5,0, then s; and s, are (rigid) unifiable, and
case 1 of the theorem is satisfied. Otherwise, at least one of 510 and s,0 is R-reducible.
If either s; is rigid reducible relative to O, then case 2 of the theorem is satisfied.
Otherwise, we can reduce s; and sy to a common term by “narrowing,” since their
instances s;0 reduce to a common term under K. Such a narrowing step corresponds
to an overlap between s; # s and R, and this produces a unifying substitution « as
above that satisfies the conditions of case 3 of the theorem. This completes the proof.
Note that we permit critical pairs involving an equation and an inequation. O

Corollary 3.14 Suppose that S is a set of equations and an inequation and © is a
ground substitution such that SO is ground and unsatisfiable relative to the equality

20

aztoms. Suppose we consider proofs consisting of sequences S; of sets, where S;1 = S
and the S;y1 are oblained by applying a critical substitution to S; or applying a single
rewrite rule from S;. Then one can derive a set Sy containing either an equation of
the form y =t or i = y where the variable y does not appear in t, or an inequation
u # v where u and v are rigid unifiable, from S using a number of critical substitution
applications and rewriting steps that is at most cubic in the subterm size of S. For
this, we allow rigid rewrite operations as above, that may apply a rewrite rule r — s
from S; simultaneously to replace all occurrences of r in S; — {r — s} by s.

Proof. We construct a sequence (S1,04),(S2,03),--+,(Sk, Of) where S; = S and
07 = 0 and for all ¢, S;0; is ground and logically equivalent to SO (and is therefore
unsatisfiable relative to the equality axioms). Furthermore, S; contains an inequation
u # v for rigid unifiable u and v, or an equation of the form y = ¢ or ¢ = y where
the variable y does not appear in ¢. Also, each S;;; is obtained from S; by a critical
substitution application or a rigid rewriting operation, and & is cubic in the subterm
size of S. By theorem 3.5, if S; does not already contain an equation of the form y = ¢
or t = y where y does not appear in ¢, we can assume that 0, is 5;0;-irreducible.
If S; does not already contain an inequation u # v for v and v rigid unifiable, then
either case 2 or 3 of theorem 3.13 holds. Whenever case 2 holds, we can perform all
possible rigid rewriting steps by regarding the variables of S; as constant symbols and
using Method A or B above. For this, we order terms using the ordering >¢, defined
by t >e, u iff t0; > u0,. It is straightforward to verify that this is a termination
ordering. Thus we initially have the set R of rules defined by {r — s: r®; > s0,,r =
s € S;or s =r € S;}. These rules may, however, have variables in s that do not
appear in r. Processing this R using Method A or B, and also rewriting the inequation
when possible, produces S;41, and we can let ©;1; be ©;. This processing takes a
number of steps quadratic in the subterm size of 5;. This processing preserves logical
equivalence of S; and S;11, by repeated application of lemma 3.8. After this is done,
case 3 of the theorem must hold. When this occurs, we can let S;;1 be S;a where
« is the critical substitution binding a variable, and let ©;41 be a substitution such
that S;(a - ©,41) = 5;0;, and continue. This is possible because S;0; is an instance
of S;a. Now, logical equivalence is preserved because S;110;11 = 5;0;. We note that
S;a contains at least one fewer variable than S;. Therefore, the number of such critical
substitution applications is at most linear in the subterm size of S, since the number of
variables altogether is linear in the subterm size of S. Between the critical substitution
applications, we may perform a quadratic number of rigid rewrite operations; the total
number of steps 1s then cubic in the subterm size of S. It is also necessary to note that
none of the rewriting or critical substitution applications increase the subterm size of
Si, that is, |St(Si11)| < [St(S;)|. This follows for the critical substitutions by lemma
3.11 and for the rewriting operations by lemma 2.21. a

We note that if 5; does contain such an equation y = ¢ or t = y, then from any
inequation, we can derive an instance of # z in two (non-rigid) inference steps. For
this, note that for an arbitrary inequation s; # sy we can replace y by s; and sy,
respectively, to obtain the instances s; = ¢ and s, = ¢, which contradict the inequation

21

$1 # s9; a two-step critical pair proof of some instance of * # = can always be found.
Since two different instances of y are used, this part of the proof is non-rigid. Therefore,
we do not include it in the above corollary.

Definition 3.15 We define Stq:(S) to be the maximal sublerm size of any element
of S.

We note that g = |S| (the cardinality of), and the subterm size of S is bounded by
|S| * Stpmaz(S). Thus we have a cubic bound on proof length (number of critical pair
or rewrite operations) in terms of |S| * St,,4.(5). Each rewrite operation of course is
fairly powerful, but can be done efficiently if the proper data structures are used. The
ground instances SO can be exponentially large in g and the size of S. However, since
their subterm size is small, they can be represented by polynomial size directed acyclic
graphs. We cannot give a polynomial time method of finding such proofs, because of
complexity considerations. But we can show that such a proof exists, and of course if
the ground instances are known, it can be constructed. It is somewhat surprising that
the length of this proof does not depend on the ground instances T' at all, just on the
amplification S.

One may object that the proof “constructed” is short, but each operation may be
very costly. This is because we may be performing critical pair operations on terms
that are very large (exponential in the size of S). However, it follows from the above
corollary that the subterm size of all terms generated in the proof will be bounded by
St(S), since St(S;) < St(S) for all . Also, it is possible to unify two terms in time
proportional to their subterm size. Therefore, each unification operation involved in
the computation of needed critical pairs can be done in a time proportional to St(5).

The proof operations are costly in another sense, as well. Namely, each rigid rewrite
operation may apply to each element of S;, and each critical pair operation may apply
a substitution to each element of 5;. Therefore, we represent the proof as a sequence
S1, 57,93, -+ of sets of equations and inequations, where each S; is obtained from 5;_4
by applying a rigid rewrite rule everywhere possible, or by applying a critical substitu-
tion. Then the length of this proof is cubic in g % St,,,,(5). This is a reasonable way
to represent the proof, since these operations on S; may efficiently be done. However,
when represented in a conventional way as a sequence of equations and inequations,
each derived by a critical pair operation or a rewrite operation, then the length of
the proof may be O(g*St,..-(S5)?), since S has ¢ elements. But in this conventional
non-rigid representation, substitutions no longer are applied to every element of S si-
multaneously. This can lead to exponentially long proofs, as the following example
shows.

Example 3.16 Let A be the following (non-rigid) set of equations and one inequation.
filz1,z2) # 91(y1,2)
filla(z1,22), fo(y1,92)) = ha(fa(@1, 22), fa(y1,92))

22

/

91(95(71,22), 95 (y1, y2)) = ha(ga2(21, 22), 92(y1,y2))
Fo(f3(zr,22), f5(y1,92)) = ha(fa(zr, 22), f3(v1,92))

/

92(95(21, 2), 95 (Y1, ¥2)) = ha(gs(21, 22), 93(y1, ¥2))

fn(fﬁla 352)

gn(xlv 3;2)

= hn(l’l, l’g)

= hn(l’l, l’g)

We first consider a rewriting proof of unsatisfiability from this example using the non-
rigid framework, that is, variables in different equations can be renamed at will. As-
suming a termination ordering > so that all equations can be oriented left-to-right
into rewrite rules, the only way to derive a contradiction using critical pair oper-
ations is to instantiate the left-hand side fi(z1,22) to fi(f5(z1,z2), fo(y1,y2)) and
then rewrite it to hy(f2(x1,22), f2(y1,¥2)), and similarly for the right-hand side, ob-
taining the inequation hy(f2(z1,22), fo(y1,y2)) # hi(g2(z1, 22), g2(wr,we). With
more critical pair operations, this becomes hy(ha(fs(21, 22), f3(xs,x4)), ha(f3(y1,y2),
J3(y3,4))) # hi(ha(gs(21, 22), g3(23, 24)), ha(ga(wr,wz), g3(ws,wy))). Eventually we
construct terms of exponential size, and these are made unifiable by the equations
(1, 22) = hy(x1,22) and ¢, (21, 22) = hy(21,29). Thus this proof requires an expo-
nential number of critical pair operations.

We now consider the rigid framework applied to this same example. Let S be an ampli-
fication of A in which each equation and inequation appears exactly once, but with dis-
tinct variables. This suffices, because in this example we only need one instance of each
equation, for 2n+1 instances in all, including an instance of the inequation. This makes
g small. In this framework, the variables in all copies of the same equation are kept the
same, so that instead of the equation given above we obtain hq(ho(f3(21, 22), f3(xs, 24)),
ho(fa(1, 22), fa(w3, 24))) # ha(h2(g3(y1, y2), 93(y3, ya)), h2(ga(y1, y2), 93(ya, ya))) by crit-
ical pair operations. Thus the number of distinct subterms created in the rigid frame-
work 1s small, and the terms can all be represented by polynomial size directed acyclic
graphs. Furthermore, the proof can be found in a polynomial number of steps.

Since a realistic inference system may not use rigid operations, one might ask how
to obtain polynomial proofs in cases such as this. One possibility of course is to add
some rigid operations; indeed, this may be an advantage of using rigid operations as
in Andrews’ system [And81]. Another possibility is to allow critical pair operations
that permit the overlap to occur on the small side of the equation; thus, in an equation
t = u, if for all ©® such that u® and tO are ground, u® < {0, we could still unify a
subterm of u with the left or right-hand side of some other equation. This permits a
polynomial length proof of the above example to be found, but the equations derived
have exponential subterm size; possibly there is some way to represent these terms
efficiently, despite this. Still another possibility is to retain the restriction that critical
pairs can only be done on the large side of an equation, but add the operation of
unifying two subterms of a term, and saving the resulting instance of an equation or
inequation. Thus we have the following proposed operation:

23

Definition 3.17 The subterm unification operation on an equation or inequation e[t, u]
having unifiable subterms t and u, with t # u, infers from e the instance ea of e, where
« is a most general unifier of t and u.

We note that the consideration of such specialized operations motivated by our com-
plexity analysis is one of the benefits of this approach, since such techniques can con-
ceivably improve the performance of term-rewriting based theorem provers. The sound-
ness of this subterm unification operation follows from the fact that free variables are
assumed to be universally quantified, so in fact any instance of e can be inferred. Thus
we could unify the two subterms ho(f5(x1, x2), f3(2s, x4)) and hao(f5(y1,y2), f3(ys, ya))
of the term hq(ha(f3(x1,22), f3(23,24)), ha(fs (¥1,y2), f3(ys,ya))). However, this op-
eration creates instances of more general equations, and such instances are usually
deleted. Therefore, we propose to modify instance deletion as follows:

Definition 3.18 The large instance deletion operation deletes a (non-trivial) instance
el of an inferred equation or inequation e if |St(eB)| > |St(e)| and e # e.

If ear is inferred from e by subterm unification, then |St(ea)| < |St(e)|, so ea would
not be deleted. This unification of subterms operation is analogous to merging (uni-
fication) of literals in clauses in first-order theorem proving, and this large instance
deletion operation is in fact analogous to the way the subsumption deletion in first-
order resolution is often implemented, whereby a clause D can be deleted if there is a
clause C' and a substitution © such that CO® C D and such that |C| < |D|. As pointed
out by Christopher Lynch, it may also be useful to restrict rewriting. Otherwise, the
instance ea may be deleted right away: if an equation r = s with r > s is instantiated
to ra = sa, then ra will immediately rewrite to sa, so this instance will rewrite to
sa = sa and be deleted. Therefore, we may disallow rewriting an equation e by a
rewrite rule r — s if |St(e)| < |St(r — s)|.

This subterm unification operation does permit a polynomial size proof to be found
for example 3.16, and in general, as we now show.

Definition 3.19 We say that the term, equation or inequation €' is a coherent instance
of e if there is a substilution © such that e® is identical to €' and such that for any
two subterms t and u of e, if tO = uO then t = u.

Lemma 3.20 Suppose t' is a coherent instance of t and u' is a coherent instance of u.
Suppose t' and u' are (rigidly) unifiable with most general unifier o. Lelt o be a most
general (non-rigid) unifier of t and u. Then there exists a term v obtainable from to
by a sequence of at most |St(t) + St(u)| subterm unification steps such that t'a’ is a
coherent instance of v.

Proof. We know that |St(ta)| < |St(t) U St(u)| by lemma 3.11, essentially. Now,
each subterm unification operation on a term reduces its subterm size by one or more.

24

Also, if t'a’ is not already a coherent instance of ta, then it is possible to perform a
subterm unification on ta. Therefore, after a number of subterm unifications bounded
by |St(ta)|, either no more such unifications are possible, or else t’a’ is a coherent
instance of the term v obtained from ta. We note that if no more subterm unifications
are possible, then automatically ¢'a’ is a coherent instance of the term v obtained from
to. O

Theorem 3.21 Suppose that A is a set of equations and an inequation such that A is
unsatisfiable relative to the equality axioms. Let S be an amplification of A and let © be
a ground substitution such that SO s ground and unsatisfiable relative to the equality
azioms. (These must exist, by Herbrand’s theorem.) Let us consider proofs as non-rigid
sequences ey, eq, -+, e of equations and inequations, where each e; is either in A or is
derived from previous e; by a critical pair operation, a rewriting operation, or a sublerm
untfication operation. Then one can derive an inequation u # v for rigid unifiable u
and v from A using a number of (non-rigid) critical pair operations, rewriting steps,
and subterm unification operations thal is O(g°Stmaz(S)*). For this, we allow parallel
rewrite operations as above, that may apply a rewrite rule r — s simultaneously to
replace all occurrences of ra in e; by sa, for arbitrary «. Also, we allow arbitrary
renamings of variables in equations and inequations.

Proof. Recall that the proof obtained in corollary 3.14 has a length cubic in |St(5)],
that is, in g* St,,.:(5). We can simulate the rigid proof of corollary 3.14 by a non-rigid
proof from A, with an extra factor of g coming from the fact that the elements of S; have
to be listed separately. We simulate the proof of corollary 3.14 by constructing a se-
quence of equations and inequations e; having the elements of S; as coherent instances;
this permits corresponding rewrite or critical pair operations to be performed on the
e;. Also, extra subterm unification operations are needed to insure that subterms in
the non-rigid e; derivation from A are equal when the corresponding subterms in the
rigid S; derivation from S are. The number of these subterm unifications is bounded
by the subterm size of S, by lemma 3.20. This adds another factor of ¢5,,,.(5). The
proof from corollary 3.14 may derive an equation of the form y = ¢ or ¢t = y where the
variable y does not appear in ¢; if so, then in two more non-rigid critical pair operations

we can derive an inequation of the form u # u. This is noted after the proof of corollary
3.14. O

As in corollary 3.14, this bound on proof length does not depend on the ground in-
stances T', but only on the amplification S. The following result helps to explain this
lack of dependence on T, by showing that ground instances exist that are small in
a certain sense. This result, and the one following it, seem to be related to results
presented in [Gou94].

Theorem 3.22 Suppose S is an unsatisfiable set of equations and inequations and © is
a substitution such that SO is ground and unsatisfiable relative to the equality azioms.
Then there is a substitution ©' such that SO’ is ground and unsatisfiable relative to
equality and such that |St(SO")| < |St(9)].

25

Proof. Consider the proof constructed in corollary 3.14. This involves a sequence
of critical pair operations and rigid rewriting steps. Let «; be the critical substitution
applied to S;, or, the identity if a rigid rewriting step was applied to S; to obtain S;,4.
Consider the set Sajag -+ - ai_1. A similar proof of unsatisfiability can be constructed
from this set; however, since the critical substitutions have all been applied at the start,
the proof can be found purely by rigid rewriting steps. Let ©' be ayay - -+ ap_1 3 where
3 replaces all remaining variables by a fixed constant symbol; then SO’ is ground and
unsatisfiable relative to the equality axioms. Also, it follows by repeated application

of lemma 3.11 that |[St(SO")| < |St(S5)]. 0
In fact, there is an analogous result for first-order logic without equality:

Theorem 3.23 Suppose S is a set of clauses and O is a substitution such that SO is
ground and unsatisfiable (not relative to equalily). Then there is a substitution ©" such

that SO is ground and unsatisfiable and such that |St(SO")| < |St(S)].

Proof. We can obtain ©" as the composition of a sequence of matching substitutions
«;, where a matching substitution is a most general unifier of literals . and M for
literals . and M such that [appears in some clause of S and the complement of
M appears in some clause in S. This follows from the completeness proof of clause
linking, given in [LP92]. That proof was given in a non-rigid framework, but the idea
directly transfers to a rigid framework as well. Reasoning as above, each such matching
substitution «; does not increase the subterm size of S. Also, it is necessary to apply
some [at the end, replacing remaining variables by a constant symbol, in order to
ensure that SO’ is a set of ground clauses. O

However, we cannot obtain polynomial bounds on proof lengths for the general first-
order case, even in terms of |St(5)|, at least not using known proof systems. We can
obtain a bound that is exponential in |St(S)| for the first-order case using instantia-
tion by matching as in the theorem, followed by a propositional decision procedure.
The number of matching steps needed to generate © is linear in |St(.5)|, since each
such matching substitution eliminates a variable from S; also, propositional decision
procedures often run fast in practice. For Horn clauses, this procedure would gener-
ate proofs of length polynomial in |St(S5)|, since Horn sets can be decided quickly in
the propositional case. Theoretically, we can obtain similar bounds using an equal-
ity transformation as in [Bra75] to eliminate the equality axioms and then apply the
above theorem. This gives a general way to combine equality and first-order logic, al-
beit without traditional rewriting techniques. But it is still not clear from a theoretical
standpoint what the proper way to combine equality reasoning with general first-order
logic is. For some additional discussion of this problem, see [Pla94].

In general, we have the following bound on proof length, using a more powerful critical
pair operation:

Definition 3.24 We define the parallel critical pair operation which performs many
disjoint critical pairs at the same time, that is, it unifies one side r of an equation

26

r = s with an arbitrary number of disjoint subterms of an equation or inequation e;
and then replaces all these subterms of e; by corresponding instances of s.

Theorem 3.25 Suppose that A is a set of equations and an inequation such that A
is unsatisfiable relative to the equality axioms. Let S be an amplification of A and ©
a ground substitution such that SO is ground and unsatisfiable relative to the equality
axioms. Let us consider proofs as (non-rigid) sequences ey, e, -, e; of equations and
inequations, where each e; is either in A or is derived from previous e; by a non-rigid
critical pair operation or a non-rigid rewriting operation. Suppose that we permil these
proofs to contain the parallel critical pair operation just defined, but not the subterm
untfication operation. Then one can derive an inequation u # v for rigid unifiable
terms u and v, from A using a number of critical pair operations and rewriting steps
that is O(g*Stmaz(S)?). For this, we allow rewrite operations as above, that may apply
a rewrite rule r — s simultaneously to replace all occurrences of v in e; by s.

Proof. We can obtain this by lifting the proof obtained in corollary 3.14. Corre-
sponding to each element €’ of a set \5; in the rigid proof from S there constructed, we
have equations and inequations e; having e’ as an instance in a non-rigid proof from A.
We then can perform non-rigid rewriting operations and critical pair operations similar
to those of the proof of corollary 3.14, on the more general terms. The equations e; may
be more general than e’, because critical substitutions are only applied to the involved
equation, and not to other elements of S;. We need the parallel critical pair operation
to be able to lift the rewriting operation of corollary 3.14, since the rewriting operation
of corollary 3.14 can replace an arbitrary number of terms at the same time. These
terms are all identical in the rigid proof from S constructed in 3.14, but in the more
general non-rigid proof from A constructed here, they may be distinct, so one may
need many critical pair operations. The length of the proof is O(¢g*St,4.(5)?), because
S has g elements. We note that in the proof of 3.14, we may derive an equation of the
form y = ¢ or t = y where the variable y does not appear in ¢. If so, we can in two
critical pair steps derive an inequation of the form u # u, as noted in the comments
after corollary 3.14. O

Corollary 3.26 Suppose that A is a sel of equations and an inequation such that A is
unsatisfiable relative to equality. Let S be an amplification of A and let © be a ground
substitution such that SO is ground and unsatisfiable relative to the equality axioms.
Let us consider proofs from A as non-rigid sequences ey, eq, -+, er of equations and
inequations, where each e; is either in A or is deriwed from previous e; by a non-
rigid critical pair operation or a non-rigid rewriting operation. For this, we only allow
the usual rewrite operation, which may apply a rewrite rule r — s to replace one
occurrence of ra in e; by sa. Suppose also that we permit these proofs to contain
ordinary critical pair operations, but not the parallel critical pair operation nor the
subterm wunification operation. Then one can derive an inequation u # v for rigid
unifiable u and v from A using a number of non-rigid critical pair operations and
rewriling sleps that is O(g*Stpas(S)® * a!5*) where a is the mazimum arity of any
function symbol in S.

27

Proof. Let n be |St(S)|. Then the depth of any term ¢ in S is at most n. Therefore
the size (number of subterm occurrences) of ¢ is at most a”, where a is the maximum
arity of any function symbol in S. To each operation in the non-rigid proof from A
constructed in theorem 3.25, we may have a™ operations in the non-rigid proof from
A constructed with less powerful rewriting and critical pair operations. This is true
because |St(.5;)| < [St(S)| for all ¢ in corollary 3.14, and because for all equations e; in
the proof from A constructed in theorem 3.25, there exists an 7 such that e; has some
element of S; as an instance. This implies that the depth of e; is at most |St(S;)|. O

Though this bound is exponential, it does at least depend only on S and not on the
ground instances 7. This result also gives us some evidence that the more powerful
operations make a significant difference. We now consider a restricted case in which a
smaller bound on proof length can be derived.

Definition 3.27 If E is a sel of equations, we write ry < ro if there is some equation
l1 =1y or ity = 11 in E and r1 may be expressed as r1[t10] and ro may be expressed
as r1[t,0] for some substitulion ©. Thus ry can be obtlained from r by using some
equation of F in a forwards or backwards direction.

Definition 3.28 An equational proof of an equation sy = sy from a set E of equations
1S a sequence ro,T1,...,T, of terms, where rq is s; and r, is sy and for each v, r; g
riv1. The length of this proof is n.

Birkhoff showed that £ = s1 = sy (for ground sy, s5) iff there is an equational proof of
51 = 89 from F.

Theorem 3.29 Suppose there is an equational proof of some instance sy = sy of the
equation s1 = sy from a sel F of equations, and this proof has length n. Then there is
a proof of some inequation u # v where u and v are rigid unifiable from FE U {s; # s}
using a number of non-rigid critical pair and rewriting operations which has at most

O(n* * Stpar(E U {s1 # s9})?) steps.

Proof. The number g of ground instances of equations used in the equational proof
is bounded by n + 1. By corollary 3.14, there is a critical pair-rewriting proof of some
inequation u # v where u and v are rigid unifiable, whose length is O(n* * St,,..(E U

{s1 # s2})°). o

It is possible to derive a tighter bound in case K is left and right-linear.

Definition 3.30 A lerm is linear if il has al mosl one occurrence of each variable.
An equation r = s is linear tf both r and s are linear. We also call such an equation
left and right-linear, for emphasis.

28

Theorem 3.31 Suppose there is an equational proof of some ground instance s;a =
sqax of the linear equation sy = sy from a sel F of linear equations, and this proof has
length n. Then there is a non-rigid critical pair proof of some inequation u # v where
u and v are rigid unifiable from E U {s; # sy} which involves at most n critical pair
operations. (Note that no rewriting operations are needed.)

Proof. Let A be E U {s1 # s3}. It is clear that A is unsatisfiable relative to
equality. Let rqg,r1,...,7, be an equational proof of s;a = sya, where rq,rq,...,7,
are ground terms. Let {; = u; be the rewrite rule used to obtain r; from r;_y, and let
1;0; = u;0; be the instance of this rule that is used to obtain r; from r;_;. Let ¢; be the
equation t; = u;. We transform the equational proof of s;a = sy by a series of proof
transformation steps. Let r; be the maximal (with respect to >) term in this derivation.
We assume that this term r; is larger than its two neighboring terms; if not, it must
be an endpoint of the derivation, or else two adjacent terms r; and r;.; are identical.
In the latter case, one of these terms can be omitted, shortening the derivation. If
this term appears somewhere in the middle of the sequence, and is larger than r;_
and 7,41, it is called a peak. Then we may be able to form a (non-rigid) critical pair
between the equations e; and e; 41, obtaining an equation that can be used to obtain r;1,
from r;_y by one replacement step. This reduces the length of the equational proof by
one. Otherwise, it can be that these successive replacement steps occur at independent
positions, in which case we can reorder them, obtaining one or two (or perhaps no)
smaller peaks. We call this a rearrangement of the proof. Otherwise, one replacement
step 1s performed on a term that occurs within a subterm z0; or z0,,; for some
variable z in e; or e€;41. Suppose the equation ¢; = u; used to obtain r; from r;_; can be
expressed as t;[x] = u;[z], where we indicate the occurrences of one of the variables z in
this manner. Let us express r;_y as r;[t;0;[w[t;110;41]]] and r; as r;[u;O;[w[t;110;11]]]

and ;41 as ri[u;0;[wu410,44]]]. Since r; > r;_y and r; > 11, we have 1,0; < u;0;
and t;110;41 > u;410;11. Then we can interchange these steps so that the replacement
using ;41 = u;41 is done first, obtaining r! as r;[t;0;[w[u;+10,41]]]. Now rl < r;_y

and ! < r;31. We can then consider the new derivation in which r; is replaced by r..
We also call this proof transformation a rearrangement. This rearrangement reduces
the size of r;, and therefore of the multiset of r;, relative to the ordering <. This
corresponds to changing the order of application of e; and e;41, and will not increase
the length of the equational proof. If £ were not linear, such a transformation could
still be done, but it might increase the length of the equational proof, since may have
more than one occurrence on one or both sides of the equation ¢; = u;. The situation
if r; occurs at an endpoint of the sequence is similar, but may involve a critical pair
or rearrangement operation involving the inequation s; # s3. Such a critical pair or
rearrangement operation will be possible as long as this maximal term is larger than
one of its neighboring terms. The only other possibility is that the derivation is of the
form rg, ™ where ro = rq, in which case we have already derived an inequation u # v
where u and v are rigid unifiable. By continuing this process, eventually we obtain a
critical pair proof having length n or less. The base case is a proof of the form rq,
where rg # rq; from this we can derive an inequation u # v for u and v rigid unifiable
in one critical pair operation involving the inequation sy # ss. a

29

Unfortunately, these proof length bounds may be difficult to achieve in practice. This
is because other rewrite rules may be derived in an implementation of completion, and
these unnecessary rules may cause reductions to occur that are not part of the desired
proof. The implication of this is that in order to guarantee that a polynomial size proof
can be found, as stated in the above results, it may be necessary to restrict the rewriting
operation in ways that may be hard to determine in advance. Of course, one possibility
is to always save both the original form of every clause as well as its rewritten form.
This guarantees that a short (polynomial in g etc.) proof will eventually be found, if
the search strategy is fair. But this has obvious disadvantages in terms of the search
space size. Another possibility is to show that applying rewrite rules of a certain form
can never eliminate all polynomial size proofs. For example, rewrites of the form r — s,
where s is a proper subterm of r, or where s is a constant symbol, cannot eliminate
short proofs, assuming the search strategy is fair, and assuming that these rewriting
steps are not counted in the proof length. Such rewrites never increase |St(.5)| by more
than the number of constant symbols, and so a polynomial bound on proof length is
maintained.

4 Acknowledgements

The comments of Christopher Lynch were very helpful in the writing of this paper.

References

[And81] P. B. Andrews. Theorem proving via general matings. Journal of the
Assoctation for Computing Machinery, 28:193-214, 1981.

[BDP89] Leo Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure.
In Hassan Ait-Kaci and Maurice Nivat, editors, Resolution of Fquations in
Algebraic Structures 2: Rewriting Techniques, pages 1-30, New York, 1989.
Academic Press.

[BO84] G. Bauer and F. Otto. Finite complete rewriting systems and the complex-
ity of the word problem. Acta Informatica, 21:521-540, 1984.

[Bra7s] D. Brand. Proving theorems with the modification method. SIAM J.
Comput., 4:412-430, 1975.

[CL73] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

[CMO93] D.E. Cohen, K. Madlener, and F. Otto. Separating the intrinsic complexity

and the derivational complexity of the word problem for finitely presented
groups. Mathematical Logic Quarterly, 39:143-157, 1993.

30

[DJ90]

[GNP+93]

[GNPS90]

[GNRS92]

[Gou94]

[K1092]

[LovT8]

[LP92]

[Lyn95]

[MOS5]

[MSKO93]

[P1a93]

[Pla94]

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science. North-Holland, Ams-
terdam, 1990.

Jean Gallier, P. Narendran, D. Plaisted, S. Raatz, and W. Snyder. An
algorithm for finding canonical sets of ground rewrite rules in polynomial

time. J. ACM, 40:1:1 — 16, 1993.

J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-
unification is NP-complete. Information and Computation, 87(1/2):129-
195, July/August 1990. Special issue devoted to LICS ’88.

J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using
equational matings and rigid E-unification. J. ACM, 39(2):377-429, 1992.

Jean Goubault. The complexity of resource-bounded first-order classical
logic. In P. Enjalbert, E.W. Mayr, and K.W. Wagner, editors, 11th Sym-
posium on Theoretical Aspects of Computer Science, pages 59-70, Caen,
France, February 1994. Springer Verlag LNCS 775.

Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, chapter 1, pages 1 — 117. Oxford University Press, Oxford, 1992.

D. Loveland. Awutomated Theorem Proving: A Logical Basis. North-
Holland, New York, 1978.

S.-J. Lee and D. Plaisted. Eliminating duplication with the hyper-linking
strategy. Journal of Automated Reasoning, 9(1):25-42, 1992.

C. A. Lynch. Paramodulation without duplication. In Proceedings 10th
IEEFE Symposium on Logic in Computer Science, San Diego, June 1995.

K. Madlener and F. Otto. Pseudo-natural algorithms for the word problem
for finitely presented monoids and groups. Journal of Symbolic Computa-

tion, 1:383-418, 1985.

K. Madlener, A. Sattler-Klein, and F. Otto. On the problem of generating
small convergent systems. Journal of Symbolic Computation, 16(2), 1993.

D. Plaisted. Equational reasoning and term rewriting systems. In D. Gab-
bay, C. Hogger, J. A. Robinson, and J. Siekmann, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 1, pages

273-364. Oxford University Press, 1993.

D. Plaisted. The search efficiency of theorem proving strategies: an ana-
lytical comparison. Technical Report MPI-1-94-233, Max-Planck Institut
fuer Informatik, Saarbruecken, Germany, 1994.

31

[Sny89] W. Snyder. Efficient ground completion: an O(nlogn) algorithm for gen-
erating reduced sets of ground rewrite rules equivalent to a set of ground
equations E. In Proceedings of the 3rd International Conference on rewrit-

ing techniques and applications, pages 419-433, 1989. Lecture Notes in
Computer Science, Vol. 355.

[WOLB84] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Intro-
duction and Applications. Prentice Hall, Englewood Cliffs, N.J., 1984.

32

