General Algorithms for Permutations in
Equational Inference *

Jurgen Avenhaus
Universitat Kaiserslautern
Fachbereich Informatik
D-67663 Kaiserslautern

e-mail: avenhaus@informatik.uni-kl.de

David A. Plaisted
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

e-mail: plaisted@cs.unc.edu

Abstract

We study some general algorithms for processing permutations and permu-
tation groups and consider their application to equational reasoning and term-
rewriting systems. We also present some complexity results for particular equa-
tional consequence problems related to permutations.

1 Introduction

A common problem in applications of mechanized reasoning is to determine if an equa-
tion s = t is a logical consequence of a set F of equations, that is, to determine whether
E | s = t. Even in the more general context of first-order theorem proving, deduc-
tion using equations plays an important role. A problem that frequently arises in such
theorem-proving applications of term-rewriting systems and equational reasoning is
that many permutations of a given term or equation are often produced. For example,
we may obtain many equations like f(z, f(y, f(z,w))) = f(w, f(z, f(y,x))), where the
left and right hand sides are the same except for a renaming of the variables. We can
view such equations as permutations of the variables z,y, z,w. The number of such

*This research was partially supported by the National Science Foundation under grant CCR-
9108904

equations can be very large, and they can substantially slow down the search process,
since many inferences must be performed over and over again that differ only in a per-
mutation of variables. Using such permutations, we can also derive many equations of
the form s = t; where the ¢; are identical except for a renaming of the variables, and s is
an arbitrary term. For example, we may derive equations like g(z,y,z,w) = f(z, f(y,
f(z,w))), g(z,y,z,w) = f(w, f(z, f(y,z))), and so on. This is therefore another kind
of set of equations that can arise and cause problems for equational inference. The
equations s = t; themselves do not involve permutations of the variables, but the equa-
tions are in some sense permutations of each other. We would like to develop methods
to handle them efficiently, as well. In addition, we can obtain terms in which subterms
are permuted, rather than variables, as above. For example, we might obtain many
equations of the form f(uq,u2,u3) = f(uq,us,u1), and similar equations where the
non-variable subterms uy, uy, and uz are permuted. Even one fairly large equation can
produce thousands of other equations through these various kinds of permutations of
subterms. For example, consider an equation

.Z'l*$2*[E3+$2*LE3*LE4—|—$3*$4*$5:1

where the infix operators * and + are associative and commutative. There are three
products of three terms; each product can independently be permuted in 6 ways, leading
to 216 combinations. One example would be

ZE3>|<ZE2*£L’1—|—£L’2*J}3*ZL’4—|—LE4*LL’3*CL’5:1

In addition, the three products can be permuted among themselves in 6 ways, for
example as follows:

$2*$3*$4—|—$3*.’E4*.’L‘5—|—l‘1*.1'2*173:1

leading to a total of 1296 ways of writing essentially the same polynomial equation.
Of course, for polynomials having many more terms and products, this number can
easily become astronomical. This is unsatisfactory, because there are simple ways to
deal with large polynomials that are efficient in practice. This problem can be dealt
with using constraints or AC-unification, but we have found these to be inefficient in
practice in some cases, and it would be desirable to develop additional approaches.

Such permutations arise in the presence of associative and commutative operators.
They may also arise in other contexts. We may obtain rotations from an equation
of the form f(z1,...,2,) = f(x2,23,...,2n,21). Or, a function symbol may have two
disjoint sets of arguments, each of which can be permuted independently in an arbitrary
manner.

One of the most common methods to deal with this problem is to use specialized
unification algorithms for various equational theories, such as AC-theories. This has
led to a large number of specialized unification algorithms for various theories, and a

large number of results concerning how these unification algorithms can be combined.
However, we would like to develop general methods for dealing directly with subterm
permutations in term-rewriting theorem proving, regardless of which set of equations
produce them, instead of separately treating various equational theories that tend to
produce subterm permutations. We would like to find efficient methods for repre-
senting and processing terms that are permutations of one another, to avoid storing
and processing them separately. Also, we hope in this way to avoid the large (dou-
ble exponential) number of unifiers that can be produced by associative-commutative
unification [Dom92]. Another approach to AC theories and other equational theories
is to use constraints, but we have found this to be inefficient in practice. Yet another
approach that we have not tried would be to develop a general E-unification theory
for equations that produce subterm permutations. For discussions of the general area

of equational reasoning, see [DJ90, Pla93, Klo92].

Our goal, then, is to handle E-equivalent terms efficiently, where E is a set of equations.
The idea of our approach is not to deal with entire F-equivalence classes of terms, as
is done in classical E-unification, but rather to deal with a finer partition (i.e., smaller
classes) that have convenient properties permitting efficient algorithms to be applied.
This may mean that more equations/clauses need to be retained, but their processing
may be faster. Also, our method is general, and so may be able to exploit algorithmic
efficiencies not covered in known equational unification algorithms.

We now give a general outline of our approach. Suppose we are given a set E of
equations and a set A of first-order formulas (typically clauses), and wish to determine
if AU FE is satisfiable relative to equality. Our approach is to construct pairs (¢, &),
where ¢ is a term and G is a group of mappings from terms to terms. We denote
by S(¢,G) the set of terms that can be obtained by the action of G on the term
t. The group G satisfies the property that if v € S(¢,G), then £ E t = u, that
is, S(¢,) is a subset of the KE-equivalence class of {. Our goal is to use S(¢,G) to
approximate the FE-equivalence class of ¢, and deal with S(¢, &) instead of with the
FE-equivalence class. The advantage of this is that we can choose G so that processing
the class S(t,G) can take advantage of efficient algorithms that have been developed
for processing permutations. We try to find groups G that will approximate the FE-
equivalence classes as closely as possible, while still permitting such efficient algorithms
to be applied. We also try to maintain disjointness, which means that if we have
pairs (11,Gq) and (f3,Gy), then S(t1,Gh) N S(tz,G2) = ¢. This helps to reduce the
number of pairs needed. One possible application of this idea is to simulate unfailing
completion [BDP89]. Instead of dealing with single equations and formulas, we propose
to deal with the sets S(¢, &) directly, thereby avoiding the necessity of handling all of
the elements of S(¢,G) one by one. For this purpose, we need a way to extend the
S(t,) notation to describe sets of equations or clauses. To this end, we propose
to represent the set {v; = vy @ vy € S(t1,G1),v2 € S(t2,G2)} of equations by the
pair (t1 = ta, {(t1,G1), ({2, G2)}). We note that all such equations v; = vy are logical
consequences of £ and the equation ¢; = ¢5. Similary, if C' is a clause and ¢y, --,1, are
its maximal subterms, then we can represent by (C[t1,---,t.], {(t1,G1), -, (tn, Gn)})
the set of clauses {Clvq,---,v,] 1 v1 € S(t1,G1), -+, v, € S(t,,Gr)}. We propose to

perform operations on these sets of equations or clauses corresponding to the operations
that would have been done by unfailing completion on AU F, but gaining efficiency by
taking advantages of the regularity in the structure of the sets S(¢,G). We develop this
general framework, and also look for special cases where even more efficient algorithms
can be applied.

We now suggest the kinds of efficiencies that may be gained by known algorithms
for permutations. We know by results of [Fro89] that certain equivalence problems
relative to a set of permutations, can be solved in polynomial time. For example, we
say that an equation of the form f(zy,...,2,) = f(y1,...,y,) where the variables z;
are all distinct and the y; are a permutation of the z;, is a flat permutative equation
or a flal permutation. If E is a set of flat permutative equations then we call £ a
flat permutative theory. Consider the problem of deciding whether £ |= s =t where
F is a flat permutative theory and s = ¢ is a flat permutation. We call this the flat
permutative consequence problem.

Theorem 1.1 The flal permutative consequence problem has a polynomial time solu-
tion.

Proof. See [Fro89]. O

Corollary 1.2 If F is a flat permutative theory and s is a ground term of the form
flar,aq,...,a,) and t is of the form f(by, by, ..., b,) where the a; are distinct constant
symbols and the b; are a permutation of the a;, then the problem of deciding whether
E |E s =1 has a polynomial time solution.

We note that if one uses traditional equational reasoning methods on the flat permuta-
tive consequence problem, the solution may take exponential time, since a permutation
group over n elements can have a number of elements exponential in n. This motivates
the search for other efficient algorithms relating to subterm permutations and term
rewriting. We will show later that one advantage of the present approach is that it can
sometimes detect the existence of long rewriting proofs without actually constructing
them, thereby possibly gaining efficiency. The algorithm for theorem 1.1 is based on
the following result, from [FHLS0]:

Theorem 1.3 Suppose g1,92,...,9, are permutations and g is a permulation. Then
the problem of deciding whether g is in the group generated by g1, qa, ..., g, is solvable
in polynomial time.

We call this problem, the permutation group membership problem.

4

1.1 Terminology

We first develop some terminology. A term is a well-formed expression composed
of function symbols, constant symbols, and variables, for example f(a,g(z,y)). We
specify positions of terms as usual as sequences of integers. If a and 3 are positions,
then we say a < fif « is a prefix of , and o < § if « is a proper prefix of 4. If
neither of a or 3 is a prefix of the other, then we say that « and 3 are independent
or disjoint. We write r = s to indicate that the terms r and s are identical. If « is a
position and t is a term, we write t|, or «(t) for the subterm of ¢ at position «, defined
by a(t) =t if « is the empty sequence, otherwise i f(t1,...,tn)) = a(t;). Often it
is easier to speak in terms of contexts instead of positions. A context is a term with
occurrences of O in it. For example, f(O, g(a,0)) is a context. A O by itself is also a
context. If n i1s an integer then an n-context is a term with n occurrences of O. If { is
an n-context and m < n then {[ty,...,1,,] represents ¢ with the leftmost m occurrences
of O replaced by the terms ty,...,,, respectively. We call such a term t[ty, ..., 1,,] an
instance or context instance of the context t. Note that the #; may also be contexts.
We write v > ¢ if v is a context instance of context t. We write u > ¢t if v > ¢ and
u Z t. If ris a l-context and s is an n-context for n > 1, then r[s|[t] = r[s[t]], by a
simple argument (both replace the leftmost box in r[s] by t). Also, if r is an n-context
and m < n and the terms s; are 0-contexts, then r[s1,...,s,] = r[s1][s2]...[sn]. If tis
a 0-context, then we define t* for a position « to be ¢ with the term at the a position
replaced by O. Thus #* has O for the :** subterm and #'[u] is ¢ with the ** subterm
replaced by u. If P is a set of n independent positions and # is an 0-context, then ¢”
is the n-context in which ¢¥|, = O for all o in P, and ¢ is identical to ¢ otherwise.

Two terms r and s are variants if they are instances of each other; that is, r may be
expressed as r[zy,...,z,] and s may be expressed as r[yi,...,y,] where the z; and
y; are variables, z; = z; ifl y; = y;, and all occurrences of the variables z; and y;
are explicitly listed. Thus the terms f(z, f(y,z)) and f(u, f(z,w)) are variants. If
FE is a set of equations, O is a substitution, and u is a 1-context, then we say that
u[r®] — g u[sO] if r = s is a member of F such that all variables in s appear also in r.
Wesay r <> sif s =g rorr —g s. As usual, a superscript of * indicates reflexive and
transitive closure. An equation r = s is a leaf permutation or leaf permutative if r and
s are linear terms that have the same set of variables and are variants of each other.
Thus f(z, f(y,z)) = fy, f(x, 2)) is leaf permutative, but f(z, f(y,z)) = f(w, f(z,y))
is not. A set {r; = s1,...,7r, = 8, } of leal permutative equations is uniform if for all ¢
and j, r; and r; are variants. Thus the set of three equations

[, [y, [(z,w))) = [y, [(z, f(z,w)))

f(xvf(%f(Z?w))) = f(:l:,f(z,f(y,w)))
f(xvf(%f(Z?w))) = f(:z:,f(y,f(w,z)))

is uniform, and all elements of this set are logical consequences of the associative
and commutative equations for f. However, the following set of two equations is not
uniform:

f(a:,f(y,f(z,w))) = f(y,f(z,f(w,:t;)))

f(uvv) = f(vvu>
This set is not uniform because the terms f(z, f(y, f(z,w))) and f(u,v) are not vari-
ants; f(z, f(y, f(z,w))) is an instance of f(u,v), but f(u,v) is not an instance of
flz, fly, f(z,w))). Ifaset {ry = s1,...,7r, = s, } is uniform, then we call a term s that
is a variant of r; (or s;) a redex for {ry = sy,...,r, = s,}. The term f(z, f(w, f(y,z)))
is a redex for the uniform set given above.

2 Subterm Permutation Groups

We first discuss subterm permutation groups, and then show how more than one sub-
term permutation group can be combined into a stratified subterm permutation group.
Subterm permutation group are a particular class of groups of mappings from terms to
terms which generate subsets of the F-equivalence class of a term. Formally, we define
a subterm permulation group G as a l-context u[| together with a uniform set Fg of
leaf permutative equations. We denote (¢ by the ordered pair (u[], Es). The equations
r = s in Fg are converted into term mappings according to the following definition,
which will often be referred to in the sequel:

Definition 2.1 Suppose that r and s are lerms and v is a 1-context. Suppose all
vartables in s appear also in r. Then the mapping ¢, s, from terms to terms is defined
by

(VO{(t = u[rB]) > (¢rsu(t) = u[sO])}

{(=30)(t = u[rO)} D (¢rsu(l) = 1)

Often we write ¢, 5, as ¢, when v is apparent from conlexl, or even as ¢.

The domain of the subterm permutation group (u[], Eg) consists of terms of the form
u[r®] for various substutions ©, where r is an Fg-redex. Each mapping ¢, ; for r = s in
FE¢ maps terms u[r®] in the domain of G to terms u[sO], for all substitutions ©. Terms
not of the form u[r®] map to themselves; this is not relevant here, but will be convenient
later. We let ®(() be the set of such ¢, s, for equations r = s in Eg, and refer to ®(G)
as the generators of GG. We also write ®(G) as ®(u[|, E¢). Note that u[sO] is also in
the domain of (G, because the terms r and s are variants. Thus the mappings ¢ can be
composed. These mappings ¢, ; then generate a group under the operation of function
composition. Thus the term “subterm permutation group.” We define the composition
operator - on functions so that (¢ - ¢')(1) = ¢(¢'(1)). We let ®*(() denote the group
generated by ®((G) under the operation of function composition. For computational
purposes, it is easier to store just the generators ®((G) rather than the whole group
O*((). We define S(t,G) to be the set of terms that may be obtained from ¢ by a
composition of such mappings ¢ in ®(G). Thus S(t,G) = {¢(t) : 6 € ®*(G)}. Note
that if ¢ € S(t,G), then S(t',G) = S(t,G). Also, S(t,) is finite since its cardinality
is bounded by that of a finite permutation group.

We also require that each equation r = s be a logical consequence of F, that is,
E E r = s. An example was given earlier of a set of three uniform equations, all

consequences of an associative and commutative axiom for f. This implies that if
t' € S(t,G), then E =t = t', by a simple proof. However, it is possible that there
exists a term u such that £ =1 =u but u ¢ S(t, ().

Example 2.2 As an example of a subterm permutation group G, let Eg be the set of
three equations given above, and let us denote them as ry = sy, ro = s2, and r3 = s3,
respectively. Let u be the context ¢(O). Then (u, Fg) is a subterm permutation
group, and any term ¢ that is an instance of g(f(vy, f(va, f(v3,v4)))) is in the domain

of (u, Eg). In particular, the term ¢ = g(f(a, f(b, f(¢,d)))) is in the domain of (u, Fg).
From FEg we obtain the mappings

7’1781 : (f(vla f(v27 f(’l)3,1)4))))
(vi, f(v2, [(v3,04))))
¢7’3783: ((vla (())))

Thus ¢, (9(f(a, F(b, f(c,d))))) = ([(b, f(a,f(ad
9(f(a, f(e, [(b, d)))), and ¢ry s, (9(f(a 1(b, Jle,d)

that these terms are again in the domain , Fa
the mapping

¢7-2,52 : ¢’r1,51 : g(f(vl, f(UQ, f(vs, 04)))) = g(f(UQ, f(US, f(vl, 04))))

and also other compositions, such as ¢,, s, - ¢, 5, We also obtain inverses, and the
group ®*(() is then the set of all mappings of the form

¢ g(f(v1, f(va, f(vs,v4)))) = g(f (w1, fws, flws, ws))))

where the w; are a permutation of the v;.

T2752 * (

)s brasa(9(f(a f(b, f(c, d))))) =
g(f(a, f(b, f(d,c)))). Note

, so we can obtain by composition

2.1 Stratified Subterm Permutation Groups

We would now like to consider terms ¢ having more than one subterm permutation
group, where these groups may be applied simultaneously at different positions of .
We construct a group structure which includes all of these subterm permutation groups
together. We want to restrict these groups, however, so that they do not overlap, that
is, the action of one of these groups does not destroy the term structure of any other
group. For this, we need a finite set u; of contexts indicating the positions where each
subterm permutation group applies. We therefore define a labeled term (t,uq, ..., u,)
to be a term t together with a sequence uy, ..., u, of 1-contexts having ¢ as a context
instance. Fach context u; can be thought of as a position of ¢, namely, the position of O
in u;. The subterms of ¢ at the positions uq, ..., u, can be thought of as labeled with the
integers 1 through n, respectively. Sometimes we just refer to ¢ as a labeled term, with
the u; not explicitly mentioned. A stratified permutation group G is a (possibly empty)
sequence Fq, s, ..., F, of uniform sets of leaf permutative equations. Each F; must
be uniform, but there may be equations r; = s; in £; and r; = s; in F; such that r; and

7

r; are not variants. Thus, £; U E; need not be uniform. As before, we obtain mappings
from the F;, and the contexts wu; specify where the equations F; may be applied. A
labeled term (¢, uy, ..., u,) is in the domain of (¢ if for every ¢, ¢ is in the domain of the
subterm permutation group (u;, £;), that is, for some 0, t = u;[r;0], where r; is a redex
for E;. Also, we require that ¢ satisfy an independence condition, namely, if u; > u,,
that is, there exists a term w;; such that u; = w;[w;;], then there is a © such that
u; = u;[r;®]. Thus the labeled positions must be chosen so that the various redexes do
not overlap. We also require that for all 2 and for every equationr = sin E;, £ Er = s.
This insures that S((¢,u1,...,u,),) is a subset of the E-equivalence class of . We
can consider the stratified permutation group G = (Fy,..., E,) and the labeled term
(t,u1,...,u,) as obtained from the (non-stratified groups) G; = (u;, F;) and the term
t; thus, in a sense the pair ((¢,uy,...,u,),) is obtained from the groups G; and the
term ¢. We will informally speak of the group G and the labeling (¢,uy,...,u,) as
constructed from the groups Gj.

Recall that ®(u;, F;) is a set of generators of the subterm permutation group (u;, F;).
Then each ¢, 5., in ®(u;, £;) maps terms u;[r0] to u,;[sO], and terms not of the form
u;[rO] for some © map to themselves. We want to extend ¢, s ,, to a mapping of labeled
terms, by mapping the “positions” wu; in the obvious manner. We extend ¢, ,,, to a
mapping qu,s from labeled terms (¢, uy,...,u,) in the domain of GG to labeled terms
(t',ul,...,ul) in the following way:

Gra((t i, - 1n)) = (rss (1) Gross(n) - b (1)

The idea is to keep track of how the permutation ¢, s,, maps the labeled subterms of
t, and to put the labels in their proper places in ¢, ., (t).

We now show that the mappings qu,s map terms in the domain of GG to terms in the
domain of (G and thus can be composed, forming a group structure under function
composition.

Theorem 2.3 Suppose G = (Fy,...,E,) is a stratified subterm permutation group
and (t,uy,...,uy,) is a labeled term in the domain of G. Let r; = s; be an equation in

E;. Then qbf,hsl,((t,ul, vy Uy)) is also in the domain of G.

Proof. Let (¢ u},...,ul)be qbf,hsz,((t, Uy ..., Uy)). Let r; bearedex for £;,1 < j < n.
We show that (¢/,uf,...,u}) is also in the domain of GG. First we show that for all j,
there is a ©; such that ¢’ = u;[er)j]. This involves three cases, u; < uj, u; > uj, and
u; and u; are independent.

Suppose u; < u;. Then there is a ©; such that u; = u;[r;0,] and there is a ©; such
that ¢t = u;[r;0;] since (¢,uy,...,u,) is in the domain of G. Thus ¢ = w;[r;0,][r;0,].
Then ' = u;[5,0,][r;0;] and v, = u;[s;0;]. Hence ' = u/[r;0;].

Suppose u; > u;. Then there is a ©; such that u; = u;[r;0;] and there is a ©; such
that ¢ = w;[r;0;], since ({,uq,...,u,) is in the domain of G. Hence t = u;[r;0,;][r;0;].
Then &' = u;[r;0,][s:0;]. Also, v’ = u;. Thus t' = u}[r;0;][s;0;].

8

Suppose u; and u; are independent. Let u;; be a context such that ¢ = w;;[r;0;,r;0;]
and u; = ui[0,7;0;] and w; = wuy[r;©;, 0. Then ui = wu;;[s;0;, O] and ' =
ui;[8i0;,7;0;]. Hence t' = u'[r;0;].

We also need to check the independence conditions, that is, if uj > u’ then there
is a ©; such that vy = u}[r;0;]. With a little work, we can show that wuj > u’ iff
ur > uj. That is, the mappings ¢;. . do not change the relative order of the contexts
uj. Therefore, we only need to consider the case u; > u; and check that there is a ©;
such that uj = v'[r;0;].

Suppose then that u; < u; < ug. Then there is a ©; such that u; = wu;[r;0,] and
there is a ©; such that uy = u;[r;0;]. Also, there is a Oy such that t = wuy[r,0].
Therefore uy, = u;[r;0;][r;0;]. Also, t = u;[r;0,][r;0,][rxOr]. Then we have that ¢’ =
u;[8:0;][r;0;][re O], ui = u[5:0;:], and uy = u;[s;0;][r;0;]. Therefore uj, = u’[r;0;] as

required.

Suppose that u; > u; and u; < ug. Then we have to consider three cases corresponding
to the three possible ordering relationships between u; and u;. We omit the arguments,
since they are similar to others given here.

Suppose finally that u; and u; are independent and that u; < wg. Let u;; be as
before. Then ¢ = ug[ryOk] and vy = u;[r;0;] and uv; = u;;[r;0,,0]. It follows that
t = uy[ri©;,r;0;[r:Ok]]. We want u; to be the context that has a O in the r,0;
position of ¢, so u; = u;;[0,7r;0,[r,0;]]. Note also that up = u;j[r;0;,7;0;]. Then
1 = u[8i0:,1;0;[rrO]], v = wij[5:0;, 0], and uy = w;j[5,0;,7;0;]. Therefore uj, =
u’[r;©;] as required by the independence condition. a

Let ®,(F;) be {qu,s D Grsu; € P(uiy, i)} Let ®(G) be &4(F)U---U D, (F,). We
call ®(G) as before the generators of the stratified permutation group GG. We then
obtain a group of mappings generated by ®(() under the operation of function com-
position. We call this group ®*((). For computational purposes, it is more conve-
nient to represent this group of mappings by ®(G) rather than by ®*(G). Let ®X(F;)
be the group generated by ®;(F;) under the operation of function composition. It
turns out that the group ®*(() is a direct product of the groups ®¥(E;), as we will
show later. This is not obvious, since the mappings interact with each other. In par-
ticular, some mappings <bj,s change the positions u; at which other mappings ¢>i,75,
apply. As before, S((¢,uy,...,u,),G) = {o((t,u1,...,u,)) : ¢ € O*(G)}. We some-
times abbreviate (¢,u1,...,u,) as ¢, with the labels u; being implicit. Also, assum-
ing that £ = r = s for all ¢, in ®(u;, F;), we can show that for all ¢’ € S(¢,H),
FE =t =1 (ignoring the labels). However, there may be terms ¢’ that are not members
of S(t,) such that £ |t =1t'. Furthermore, S(¢, () is finite, since all of its elements
have the same length (number of symbol occurrences) as t. Let @ be a notation for
(ur,ug,...,u,). We often write (¢,uy,...,u,) as (t,uw). If (¢',@) € S((t,u), "), then
S((t',a'),G) = S((t,u),), since the functions ®*(G) are closed under the group op-
eration (function composition). We are sometimes not interested in the labels, so we
define S'((t,w),G) as {t' : (@) (t',w) € S((t,w),H)}, that is, S’((¢,w),) consists of
the elements of S((¢,),) with the labels removed.

One can easily construct subterm permutation groups &, but finding a labeled term in
the domain of (¢ is nontrivial — more precisely, given a t, finding u; (if they exist) so that
(t,u1,...,uy,) is in the domain of (7 is not trivial, though it can be done by exhaustive
search. Thus we typically work with pairs ((¢,%),), where (¢,%) is a labeled term in
the domain of (&, rather than working with stratified permutation groups G alone. We
call such a pair ((¢,7), (), a pointed group.

Example 2.4 We now give an example of a stratified subterm permutation group. Let
G be (Ey, E3), where Ej is the single equation {f(z,y) = f(y,z)} and E; is the single
equation {g(z,y) = g(y,z)}. Let ¢ be the labeled term (f(a, g(b,¢c)),0, f(a,D)). Then
t is in the domain of G. In fact, ¢ is a transitional term for GG, since one of the contexts
is O, as we shall see later when “transitional” is defined. The first context, O, signifies
that the equations F; apply at the top of ¢, and the second context, f(a,O), indicates
that the equations Fy apply to the second argument of f. We give some mappings. The
mapping ¢}(I7y)7f(y7x) applied to ¢ yields (f(g(b,¢),a), 0, f(O,a)). Note that the second
context has changed. The new context f(O,a) indicates that Fy now applies to the first
argument of f. Thus it is possible to apply some ¢ for Fy to this term if desired; that is,
the resulting term is in the domain of the (non-stratified) subterm permutation group
(f(O,a), E;). Let us now consider the original labeled term t again. The mapping
gbz(r_’y)’g(%z) applied to t yields (f(a, g(c,b)),0, f(a,0)). Note that none of the contexts
have changed, since the context f(a,0) for FEy has its occurrence of O “inside” the
occurrence of O in the context O for F;. Also, S(t,G) = {(f(a,g(b,¢)),0, f(a,D)),

(f(a,9(c, b)), 0, f(a,0)), (f(g(b,c).a). 0, [(D,a)), (f(g(c, b), a),0, f(O,a))}.

Example 2.5 We now show how the conditions on non-overlapping of the various
subterm permutation groups can be violated. Suppose t is f(z, f(y, f(z,w))) and u; is
O and uy is f(z,0). Suppose Fy = Fy = {f(z, f(y,2)) = [(y, f(x,2)), [(z, [(y,2)) =
f(z, f(z,y))}. Then the non-overlapping condition is violated, because the action of F;
can destroy the term structure for Fy. That is, applying the equation f(z, f(y,z)) =
f(z, f(z,y)) as specified by uy, that is, at the top level of ¢, we obtain the term
flz, f(f(z,w),y)) from t; the subterm f(y, f(z,w)) of t needed by F; has been changed,
so that the equations in Fy can no longer apply at the position specified by usy. For
this reason, we impose the condition that the terms correspoding to the various sub-
term permutation groups cannot overlap at non-variable positions, which excludes this
example from being a stratified subterm permutation group.

2.2 Marked Terms

There is another approach to the definition of stratified subterm permutation groups
that is in some ways simpler. The idea is to specify the positions «; in ¢ at which the
equations F; apply by “marking” the function symbols at positions «; in ¢, that is,
replacing them by new function symbols that appear nowhere else in ¢. It is possible
that the same function symbol f may appear in more than one location in ¢ and be
marked in two different ways. Other occurrences of f in ¢t may be left unmarked. We

10

also need to mark the equations F; so that the marked term ¢ will still have a redex for
E;. The technique of using marked terms considerably simplifies the formalism. Let
the symbols f*, f3*, f&*,--- be a fixed alphabet of marked function symbols that do
not appear in unmarked terms. A marked term t is a term that may contain marked
function symbols as well as unmarked function symbols, but each marked function
symbol has at most one occurrence in {. A marked equation is an equation r = s
where the topmost function symbols in r and s are marked and identical. A marked
stratified subterm permutation group G’ is a sequence ((E], ¢1), (F}, g2), ..., (E, gn))
where each F! is a uniform set of marked equations and g¢; is an unmarked function
symbol. Note that all the equations in £/ must be marked with the same marked
function symbol (since E! is uniform). The g¢; are included to recall what the top-level
symbol of the E! was before it was marked. The symbols g; need not all be distinct.
However, we require that if 7 and j are distinct, then the (marked) top-level function
symbols of £ and E} are distinct. A marked term #' is in the domain of G" if for all z,
' contains a redex for E!, that is, a subterm that is an instance of the left-hand side
of an equation in E!. As before, we call a pair (¢, ') where t' is a labeled term in the
domain of G, a pointed (marked) group. We note that if the equation r = s is in F!
and there is a substitution © such that ¢’ = ¢'[r©], then ¢'[s0] is also a marked term
in the domain of G’.

We now specify correspondences between labeled groups and marked groups. Sup-
pose G = (K1, By, ..., E,) is a stratified subterm permutation group, and the labeled
term (¢, uy,...,u,) is in the domain of (G. Suppose «; are the positions of O in w;,
respectively. Let @ be a notation for (uq,uz,...,u,). We often write (¢,uy,...,u,) as
(t,u). We define the function m from labeled terms to marked terms by m((¢,w)) = t/,
where ¢ is the term ¢ with the function symbol f at position «; replaced by f".
We also define the function m from labeled groups to marked groups by m(G) =
((Ey,91), (Y g2), ..., (Bl gn)), where E! are the equations in F; with their topmost
function symbol occurrences replaced by f7, and g; is the top-level function symbol of
the equations F;. Thus if an equation ¢;(r1,---,r%) = ¢i(s1,- -+, sk) is in E;, then the
equation f/*(ry,---,rr) = f7(s1,---,sk) is in E!. Note that the f/* are all distinct, but
the ¢g; need not all be distinct. There is a one-to-one correspondence between pointed
labeled groups and (a subset of the) pointed marked groups, because the extra symbols
g: give enough information to reconstruct the pointed labeled group ((¢,@),) from the
marked term/group (m((¢,@)), m(G)). We define the inverse function um (unmark)
by um : (m((t,u)),m(G)) — (t,G). We also define this function um on groups by
um(m(G)) = G. However, the marked term m((¢,%)) does not have enough informa-
tion to reconstruct ¢, since the original symbols g; have been lost. Therefore, we define
um@ (') to be the first component of um(#,G'). Thus um® removes the markings
from a term; in other words, the top-level symbol f™ of E! is replaced again by g;.
Also, the contexts u; are reconstructed. It follows that um™ @ (m((t,7))) = (¢,7) if
(t,u) is in the domain of G.

We now define S(t',G") where ¢’ is a marked term and G' = ((F],q1), (F},92), - ..,
(E!,g.)). Given a set £’ of marked equations, let ®(F’) be the set of mappings ¢,
for equations r = s in F’, where ¢, ; is defined as before by ¢, s : u[rO] — u[sO], for all

11

contexts u and all substitutions ©. Thus w —g ¢, s(w) if w has a redex for £’. Let
O(G") be ®(E)U---UD(E]). We call ®(G") the generators of G, as before. Let &*(G)
be the group generated by ®(G’). Finally, S(¢,G") = {¢(t') : ¢ € ®*(G")}. As before,
if we S(t',G"), then S(w,G') = S(t',G"). We now give an alternative definition which
is interesting because it is stated purely in terms of the equational theory; that is, it
is a semantic definition, not a syntactic one. The equational theory FjU---U E! here
considered consists of marked equations, so it is not the same as £ and not even the
same as Fy U ---U F,. Furthermore, we are considering equivalence classes of marked
terms, so the result does not directly transfer to equivalence classes of unmarked terms.

Theorem 2.6 Suppose t' is a marked term in the domain of a marked stratified sub-
term permutation group G' = ((Ej,¢1), -+, (E!,g,)). Then S, G") ={w: E;U---U
E'Et =w}.

Proof. Let £ be EFjU---U E!. Suppose £’ |E ' = w. Then by Birkhofl’s theorem,
t" % w. We want to show that w € S(¢',G"). By the definition of ®(G"), if v1 — g vs
then there exists ¢ € ®(G") such that vy = ¢(v1). Since groups contain inverses, there
exists ¢ € ®*(G') such that v1 = ¢(vq); thus, if v1 <35 vy then there exists ¢ € ®(G")
such that vy = ¢(vy). Since ®*(G’) is closed under composition of ¢, we have that if
v1 7% vg then there exists ¢ € ®(G") such that vy = ¢(vy). Since ¢’ <73, w, there
exists ¢ € ®*(G') such that ¢(t') = w. By definition of S(t',G"), w € S(t',G"). The

other direction is similar. O

The property that makes possible this agreement between E’-equivalence classes and
subterm permutation groups is that the E! are non-overlapping, which we formalize in
the following definition.

Definition 2.7 A set {Ey, Fy, -+, FE,} of uniform sets of equations is orthogonal if
no left-hand side of an equation in E} can unify with a non-variable subterm of an
equation in E!, for 1 # j, and if no left-hand side of an equation in F! unifies with a
proper non-variable subterm of any other left-hand side of an equation in E!, for any
..

Theorem 2.8 Suppose {Ey, FEy,---, E,} is orthogonal. Then for every term t there
is a labeling u and a stratified subterm permutation group G such that S'((t,u),)
:{tlEluEQUUEn |:t:tl}

Proof. Let {uy,us,...,u,} be the set of contexts u such that there exists a substitu-
tion ® and an ¢ and an E;-redex r such that { = u[r@]. Then these contexts u; satisfy
the independence condition of section 2.1 for stratified subterm permutation groups.
Let @ be (u1,uq,...,uy,), and let (E1, K, ..., E!) be a listing of the FE; such that if
t = u;[r0©] and r is an Fj-redex, then E! is Fy. It follows that (¢,%) is in the do-
main of the stratified subterm permutation group G = (E7, EY, ..., E!). Furthermore,
reasoning as theorem 2.6, the conclusion of the theorem holds. O

12

We note that this result deals with unmarked terms and equations, in contrast to
theorem 2.6. Returning to the relationship between marked and unmarked subterm
permutation groups, we now define S((¢,%),) in terms of S(m((¢,w)), m(G)).

Lemma 2.9 Suppose G = (Ey,---, E,) is a labeled group. Suppose G' = ((Ef, ¢1),
- (ElL,gn)) is the corresponding marked sublerm permutation group, thatl is, G' =
m(G), and w is in the domain of G'. Let r; = s; be an equation in F;, and let v} = s
be the corresponding equation in E!. Then

(s (w)) = ¢y, ., (um(w))

Proof. Let (t,u1,...,u,) be um(¢, o (w)) and let (¢',uf, ..., u;) be ¢>j,lsz(um (w)).
We want to show that ¢ = 1’ and for all j, u; = u}. Let o; be the position of f" in
u;. Both ¢ and ¢’ have an instance r® of r at position «; replaced by s©, since all
marks were removed. It remains to consider each f7. We note that u; = u since
both are unchanged by the mappings; both end up with a O in position «;. We then
consider the other u;. There are three cases — fI" appears at a position below [/, [T
appears at a position above f, and they appear at independent positions. Each such
J7" becomes an occurrence of O in u; and u; by the unmarking operations, and we need
to check that these occurrences are in the same position. In the first case, the marked
function symbol is mapped the same way by the two operations; in the second case,
the positions do not change; and in the third case, the positions do not change, but the
rest of the context is rewritten in the same way. By fairly straightforward arguments,
the details can be filled in and the result follows. a

Theorem 2.10 Suppose that G is a stratified subterm permutation group (using la-
bels) and (t,uy,---,u,) is a labeled term in the domain of G'. Suppose that m(G) is
the corresponding marked stratified subterm permutation group and m((t,w) is a la-
beled term in the domain of m(G). Then S((t,u1,---,u,),G) = {um™D(w) : w €
S(m((t,), m(G))}.

Proof. By repeated application of the lemma, using the fact that the qbf,hsl, generate
®*((7) and the ¢, , generate ®*(G"). O

Example 2.11 We now give an example of a stratified subterm permutation group
using marked terms, corresponding to example 2.4. Let G’ be ((F1,¢1), (E), ¢2)),
where F7 is the single equation {f]"(z,y) = f"(y,z)} and FEj is the single equation
{7 (x,y) = fi"(y,z)} and the symbols g; are not relevant here. Let ¢ be the marked
term fi*(a, f3*(b,¢)). Then t' is in the domain of G’. Note that the equations F; apply
at the top of ¢/, and the equations F} apply to one of the proper subterms of ¢'. We
give some terms in S(#',G"). The term f*(f;*(b,¢),a) is in S(t',G"), since £ U E} |
T a, fi7(b,c)) = fI(fF(b,c),a). Note that the term f7"(fJ(b,c),a) is also in the
domain of G'. Finally, S(¢',G") = {f{"(a, f3*(b,¢)), fI"(a, f3*(c, b)), fi*(f3*(b,c),a),
F 5 (e,),).

13

2.3 Properties of Subterm Permutation Groups

We first consider commutativity properties of stratified subterm permutation groups.

Definition 2.12 A term transposition is an equalion of the form tlz,y| = tly,z],
where t is a 2-context. If the equation r = s is a term transposition, then we also call
ors and qu,s term transpositions.

We note that if r = s is a leaf permutation, then ¢, s can be expressed as a composition
of term transpositions, that is, a composition of mappings ¢,/ », where the equations
r’ = s' are term transpositions.

Theorem 2.13 Suppose G = (Ey,..., E,) is a stratified subterm permutalion group
andr; =3, € E; and r; = s; € E; fort # 5. Then for any labeled term t in the domain

OfG ¢7’,,sz(T],s](t)) = g‘j,s](¢;‘“sl(t))‘

Proof. Let us express the labeled term ¢ more fully as (¢, uy, ..., u,), where the uj are
I-contexts. We recall that in general, there exists @’ such that qb%s(t,ﬂ) = (¢ s(t),).
We first consider how the unlabeled term ¢ maps, and then briefly comment on the
mapping of the contexts w. Since ¢j’¢,s¢ and (/b{;]’sj can be expressed as products of
term transpositions, it suffices to prove the theorem for the case when both qbf,hsz, and

1]75] are term transpositions. Let us write the equation r; = s; as {;[z,y] = [y, 7]
and the equation r; = s; as tj[x,y] = t;[y, x|, where ¢; and t; are 2-contexts. Sup-
pose that u; and u; are independent. Then there is a 2-context u;; and terms v; such
that ¢ is u;[Li[v1, va], 1;[vs, v4]]. In this case, ¢r, 5 (Dr, s, (1)) = wij[li[va, v1], 1;[ve, v3]] and
Grj s, (Drisi (1)) = wis[ti[va, v1], L5[va, vs]] also, since both term transpositions act on in-
dependent positions. Suppose that one of u; and u; is a context instance of the other;
without loss of generality, assume that u; is a context instance of u;. Thus { can be writ-
ten as u,[t;[w[t;[v1, va]], vs]] where w is a 1-context. That is to say, the occurrence of O
in u; is “within” the occurrence of = in u,[t;[x, y]]. Then ¢, ;. (1) = w;lti[w[t;[ve, v1]], v3]]
and Gy (6, (1)) = wilifos, wlts o, r]l Now, @y (1) = wilsfos, wltfon, va]J] and
Grj s, (Drisi (1)) = wi[ti[vs, w(t;[va, v1]]]]. These two terms are the same. The idea is that
since the redexes are independent and the rules are linear, they can be done in either
order.

We also need to check that the contexts uy are mapped the same way by ¢m N (¢7~J 5, (t,@))
and 457,] Sj(qbrusl(t w)). This is somewhat laborious, but follows the same general out-
line as the argument for ¢ just given. Let (¢, uf,...,ul) be ¢7‘“sl((t u)), and let
(t" uy,...,u") be qbrwsj(qbr“sz(t,ﬂ)). We just showed that ¢ = ¢”. \Ve want to show
that for all k£, u}, = u}. Recall that u} = qu”Sl(T],s](uk)) and uf = ij,s](@-i,si(uk))-
Thus u?c = ¢7’i75i7¢r],s],u] (Uz) (¢T]7’S]7u] (Uk)) a’nd uk - ¢7’]75]7¢Ti,si,ui(u]) (¢Tivsivui (Uk)) For
uy such that u; > vy and w; > g, uj, = ull = uy, since such contexts are unchanged by
these mappings ¢. For uy such that neither u; > uy nor u; > up, uj = ¢r, 5, (dr;,s;(Ur))

and uy = ¢r, s, (fr,s; (ur)). These are equal, reasoning exactly as above for ¢ and 1",

14

since u can be considered as just another term. The only case that remains is when
u; > ug but not u; > ug, or when u; > uy but not w; > ug. If u; > uy but not u; > uy,
then uj, = uf = ¢, s, (ug), and if u; > wuy but not u; > uy, then uj, = vy = é,, 4 (ug).
Of course, using marked terms, this argument about the contexts is immediate. This

completes the proof. a

Corollary 2.14 Suppose G = (Ey,..., E,) is a stratified subterm permutation group
and ¢ € ©*(G). Then there are functions ¢; € ®F(E;) such that for any labeled term t

in the domain of G, ¢(t) = ¢1 - ¢g - ...~ ¢u(t).

Proof. By the theorem, mappings from different F; commute with one another, so
we can always interchange them until all the mappings from a given set E; of equations
are adjacent to one another. a

We now develop some results to show that ®*((G) is a direct product of the groups
Definition 2.15 The frontier fr(t) of a term t is the set of variable and constant
symbols that occur in t. Thus, the frontier of f(x, f(y,z)) is {z,y}.

Lemma 2.16 Suppose G = (Fy,..., E,) is a stratified subterm permutation group and
(t,u) is in the domain of G'. Then for all terms t' in S'((t,u), &), fr(t") = fr(t).

Proof. It suffices to show that for all 2 and all equations r = s in F; and all terms v,
fr(é,s(v)) = fr(v). This follows because ¢, s permutes the terms appearing at certain
positions in v, or else ¢, 5(v) = v. O

Lemma 2.17 Let t be a term having at most one occurrence of each subterm. Then for
distinct subterms vy and vy of t, fr(vi)Nfr(ve) = {}. Furthermore, if G = (Fy,..., E,)
is a stratified subterm permutation group and ¢ and ¢' are distincl elements of ®*((),
and (t,uy,...,u,) is a term in the domain of G, then ¢(t) £ ¢'(t) (ignoring the con-
texts).

Proof. The part about fr(vy) N fr(vy) follows since ¢ has at most one occurrence
of each variable and constant symbol. Suppose ¢ and ¢’ are as in the lemma. Let
us express ¢ as ¢1 - ¢z - ... ¢, where the functions ¢; are in ®F(FE;). Let us express
¢ as @) - ¢4 - ... - ¢! where the functions ¢} are in ®(FE;). Let u; be a minimal
context (in the ordering on contexts) from the set {uq,...,u,} such that ¢;(t) # ¢i(t).
Ignoring the labels, we can express ¢ as u;[rO] where r is a redex for K;. Let us write
r as r[t1,...,T,] where all variables are listed. Then ¢;(t) = w;[r[10,...,y,0]] and
Ai(t) = ui[r[=10, ..., 2,0]] where the y; and z; are permutations of the z;, and for some

15

7, y; Z zj. It follows that y;0 # z;0, and in fact, fr(y;0) and fr(z;0) are disjoint. Let
v be the position of the O in u;. Then ¢(t)|, = r[v1,..., v, and ¢'(¢)|, = rlvy,..., v]

where fr(vy) = fr(yz©) for all k and fr(vy) = fr(z:©) for all k. This implies that
Fr(es) # Jr(v!). 50 6(1)]s £ #(1)], and thus 6(1) £ (1) (ignoring the labels). O

Theorem 2.18 Suppose G = (F1,..., E,) is a stratified subterm permutation group.
Then ®*((G) is a direct product of the groups ®F(E;).

Proof. By the preceding results, if ¢; and ¢! are elements of ®*(FE;), then ¢1-¢a-.. . ¢,
Ayl = (1B (P - @), Therefore ®*((F) is a homomorphic image of
the direct product, hence is a quotient group of this direct product. To show that it
is a direct product, we need to show that if ¢; and ¢! are distinct elements of ®F(F;),

then ¢1-¢g-... ¢, and @) - ¢ ... ¢! are distinct, that is, there exists a term ¢ such
that ¢1-¢a-...-¢,(t) and @ - @4 -...- ¢! (1) are distinct. This can be shown by letting
t be a term with at most one occurrence of each subterm, using lemma 2.17. O

We now consider the effect of subterm permutation groups on subterms of ¢. If
f(t1,...,t,) is a term then we call ¢; the i-th subterm (or the i-th top-level subterm)
of t. We also denote this by ¢|;.

Definition 2.19 If (G is a sublerm permutation group with 1-context v and v = O,
then we say (G is a transitional subterm permutation group. This is because the action
of G on terms t in its domain cannot be obltained directly from its action on the proper
subterms of t.

Suppose that G is a subterm permutation group with 1-context u| | and the uniform
set Fg of leaf permutative equations. Suppose that u is not O and that the occurrence
of O in u is in the k-th subterm of u. Let u’ be the k-th subterm of u. Then we define
(|1 to be the subterm permutation group with 1-context v’ and the uniform set Eg of
equations. Thus (u, Fg)|i = (u]i, Eg). If uis O or the occurrence of O in u is not in the
k-th subterm of u, then G| is undefined. For general sequences a and f3 of integers,
we define G|,5 as (G|,)|s, and for the empty sequence A, G|, = G.

Definition 2.20 If G = (Fy,..., E,) is a stratified subterm permutation group and
labeled term (t,uy, ..., uy,) is in the domain of G, then we say (t,uq,...,u,) is a tran-
sitional term for GG if at least one of the groups (u;, F;) is transitional, that is, some u;
is O. We note that al most one of the groups (u;, E;) can be transitional.

Let G = (F1,..., F,) be a stratified permutation group. Suppose (t,uy,..., u,) is a
labeled term in the domain of . Suppose that ¢ is not a transitional term for GG. Let
tr be the k-th subterm of ¢, and let (u;,,...,u;,) be the contexts whose occurrence of
O falls within ¢, that is, the k-th subterm of u;, contains the occurrence of O. Then

., E;). Also, the labeled

iy

(|, is defined to be the subterm permutation group (F

16

!/

term (¢, u; ,...,u;)isin the domain of G|, where u; is the k-th subterm of u;, . If ¢
is a transitional term for ¢, then G|y is not defined. As before, for general sequences o

and 3 of integers, we define Gi|,5 as ((G|,)|g, and for the empty sequence X, G|, = G.

From now on, we will often deal with marked groups instead of labeled groups, since
this avoids the necessity of specifically treating the contexts. Of course, it is easy to
interchange between the two formalisms. For a marked group G, G| is defined as
above, but we need only say that a marked term ¢|; is in the domain of G| if ¢ is in the
domain of G. Note that a marked term ¢ is transitional if its topmost function symbol
is marked.

Theorem 2.21 Suppose G is a subterm permutation group for term t, with term
of the form f(ti,...,t,). Suppose G is not a transitional group. Then S(t,G) =
{f(s1, 0 y8m) 18 € S(t;,Gli), 1 <ev<m}.

Proof. Since ¢ is not transitional for (G, only one of the GG; will be different from the
identity, and this G; will permute subterms of ¢; the same way as G did. a

Theorem 2.22 Suppose G is a (marked) stratified subterm permutation group and the

marked term t is in the domain of G, where t is of the form f(t1,..., t,). Suppose i
is not a transitional term for G. Then S(t,G) = {f(t}, ..., t.): t: € S(t;,G|;),1 <
it <m}.

Proof. Each mapping ¢ in ®(G) only influences one of the subterms ¢|; of t. The
effect on t|; of such a ¢ is the same as the effect of a mapping in G|;. Therefore any
composition of mappings in G can be split up into the mappings that influence different
subterms, as required by the theorem. Also, these mappings from different subterms
commute, by theorem 2.13. O

Corollary 2.23 Suppose GG is a (marked) stratified subterm permutation group and
the marked term t is in the domain of G. Suppose t is not a transitional term for G.
Let u be a context not containing any marked symbols, such that t is a context instance
of u. That is, there are terms 6; such thalt t = uléy, ..., 0. Let a; be the position of the
t-th occurrence of O in w. Then S(t,G) = {u[ty,... 1}] : t: € S(6;,Gla,), 1 <0 <k}

Proof. By repeated application of the theorem, using induction on term depth. O

We now apply previous results to say more about the structure of S(¢,) for a stratified
group (5, in case t is a transitional term for G.

17

Corollary 2.24 Suppose G = ((E1,¢1),.. ., (Fn,9n)) s a (marked) stratified subterm
permutation group and the marked term t is in the domain of G. Suppose t is a
transitional term for the marked group ((E1,¢1)), that is, the top-level function symbol
of t is the top-level symbol of Ey. Recall that ®(Ey) is the set of generators of ((E1,¢1)).
Let u be a context having occurrences of O at all the (k) variable positions of r, where r
is a redex for Ey. Let a; be these positions of variables in r. Suppose t = uléy,. .., L.

Then S(t,G) = {[u(ty, ..., 1)+ 6 € ®*(En), 1 € S(6:, Glay), 1 < 0 <k}

Proof. We know by theorem 2.13 that we can commute the ¢ in ®(G) so that those
from F; will be done last. Thus we can express any mapping from ®*((7) as «- 3 where
B is in ©*(((F2,92),...,(Fn,gs))) and « is in ®*(F£y). Then ((F2,92),...,(FEn,gn))
is a subterm permutation group having ¢ in its domain and ¢ is not transitional for
this group. Also, 8 € ®*(((F2,92)....(Fn,9,))). Recall that ¢ is u[éy,...,6;]. The
mapping [will act only within the terms é;, since u is essentially a redex of Fy, and the
redexes of the various £; in G do not overlap. This implies that u contains no marked
symbols. Therefore, we can apply corollary 2.23 to the group ((E2,92),....(En, gn))
and the context u to show the effect of 5 on t. Finally, the mappings o from ®*(E)
(called ¢ in corollary 2.24) will apply by permuting the images ¢/ of the terms §;, giving
the desired result. O

3 Testing for Membership using Stratified Sets

We now consider how efficiently one can test set membership on sets of stratified
terms, that is, given a term s and a pointed labeled group ((¢,%), &), to test whether
s € S'((t,u),). This will be useful for lifting typical inferences to stratified sets, for
example, rewriting all elements of a stratified set, or deleting equations that are already
members of an existing pointed set. The membership algorithm will decompose this
membership problem into simpler membership problems, whose solutions can then be
obtained recursively and combined to obtain a solution to the original problem. By
recording which subproblems have already been seen along with their solutions, this
can be done in such a way as to avoid backtracking, that is, no subproblem needs to be
considered more than once. We give a general algorithm, and also some special cases
in which the problem may be solved faster.

For this problem, it is more convenient to work with marked terms rather than labeled
terms. Let (¢',G') be m(((¢,w),H)), that is, the corresponding pointed marked group.
Suppose G' = ((F1,¢1),...,(E!,g.)). The problem becomes to test whether there
exists a labeling @ such that the labeled term (s, @) is in um® (S(t', G")), where (', G")
is a pointed marked group. The function um® returns a labeled term; we are here
interested in the term, but not the labels. So we define um§" so that if um® (w) = (¢,7),
then um§'(w) = t. We then have the problem of testing whether s is in um& (S(#, G")).
We give a reasonable membership algorithm, using the following facts:

18

1. If the marked term f(t1,...,1x) is not transitional, then the term ¢(s1,...,s,) €
um& (S(f(ty,...,1:),G")) iff g = f and p = k and for all i, s; € umf/“(S(ti,

Q')

2. Ifr[zy,...,z,]is aredex for E’, the positions of the variables z; in r[zy, ..., z,] are
g, and s[zy, ..., z,] is um$ (r[zy,..., z,]), that is, a term like r except that the
top-level symbol of s is unmarked, then the term s[si,...,s,] €

um$ (S(r[ty, ..., 1,],G)) iff there is a permutation v of {1,2,...,p} such that
for all 7, s; € umf lai(S(t,Y(i),G’hi)) and if there exists ¢ € ®*(F!) such that

p(rlze, ..., xp]) = [y, - Ty

These two rules are all that is needed to compute the membership predicate. Both
rules provide means for expressing the given membership problem in terms of simpler
problems. The correctness of this algorithm follows from corollary 2.24. Some of the
tests s € um& (S(#',G")) may be performed many times; if the results of these tests are
cached to avoid repeated work, the work for the algorithm is at most proportional to
the number of permutations in ®*(E}) times the size (number of distinct subterms) of s
and is often faster, because the test (3¢ € ®*(E%))(o(r[z1,..., 7)) = r[zy1)s - -5 Typ)])
can be done in polynomial time. This follows from the fact that the flat permutative
consequence problem of theorem 1.1 has a polynomial time solution in that case. Thus
if the number of 7 is small, this problem has a polynomial time solution. In particular,
we only need to consider v such that fr(s;) = fr(t,)) for all 2. If s or ¢ has no repeated
subterms, then all the fr(s;) or fr(t;) will be disjoint (and hence distinct). This is
related to the discussion in lemma 2.17. This means that there will be at most one ~v
such that fr(s;) = fr(t,u) for all 2. Only this one ¥ needs to be considered, which
means that the membership problem can be solved in polynomial time if s or ¢ has no
repeated subterms. Also, if the sizes of the ®*(F;) are bounded, that is, the number of
variables in the equations are bounded, then by examining all elements of ®*(F£;) and
all subterms of ¢ and s, the algorithm can be executed in polynomial time. Otherwise,
we can have the situation in which many terms ¢|, for positions a in ¢ can map onto the
same subterm of s or the same subterm of s appears many places in s, and we then can
obtain a problem at least as hard as graph isomorphism. (This will be shown later.)
So there are still some difficult cases for this algorithm, but also some easy cases, and
even the difficult cases can be done more efficiently than by explicitly generating all of
the elements of S. One interesting case is when the contexts u; of a labeled term (¢, u)
are all independent, that is, no u; is a context instance of any u;, for ¢ # j. In that
case, all labeled terms (s,@’) € S((¢,%),) will have the same independence property,
in fact W' = w, and it is possible to perform the membership test and other operations
faster.

3.1 Other operations

We can obtain an algorithm to test if s has an instance in S’(¢,) in much the same
way, by returning for each such s and ¢ a set of such instances. Also, we can test if

19

s unifies with some term in S'(¢,G) by returning for each such s and ¢ a set of most
general unifiers. We can also test whether there is a term ' in S’(¢,) having a subterm
that unifies with s, et cetera. Then we can perform term rewriting, paramodulation,
and critical pairs between a single equation r = s and a set S'(¢, &) of terms. The
details of these algorithms are relatively straightforward and not especially interesting;
also, since we are really interested in operating on two sets S(¢1,G') and S(t,, G?) of
terms, these algorithms involving a single equation and a set S(t, () of terms are of
limited usefulness. Algorithms for operating on two stratified sets will be presented
elsewhere.

4 Applications to Deduction

4.1 Lifting Operations to Stratified Sets

In order to apply stratified subterm groups to deduction, it will be necessary to operate
directly on stratified sets rather than on individual clauses or equations. We now give
some general comments about lifting operations from specific terms to stratified sets,
and then consider a number of specific operations and how they may be performed
efficiently on stratified sets. If ¢ is a term and F a set of equations, let S};(¢) be
S'((t,ury .y un), (E1, ..., E,)) for a particular stratified set Fy, ..., F, and a particular
labeling w; such that (¢,us,...,u,) is in the domain of (Fy,..., F,). We assume that
E E E; for all 7 and that this stratified set and labeling are obtained in some systematic
manner from ¢ and K.

We propose to lift operations in the following manner. Let us consider some operation
F on pairs (11,12) of individual terms; for example, in order to find critical pairs, we
may want to find subterms of ¢, that unify with ¢;. Thus F(ty,1;) represents a set
of objects (such as terms, substitutions, positions) produced from the terms ¢; and i,
via F'. Then we want to lift this operation to stratified sets. We will not store all
terms explicitly, but only stratified sets of terms. That is, we want to compute the
union Fyr(t1,1q) of the sets F'(uy,uz) for all terms uq in Sy (1) and ug in S%(t2). Then
we want to find stratified sets to represent Fis(1,12), that is, we want to find a set
Fs(ty,1q) of terms such that Fy(t1,12) is the union over all ¢ in Fs(t1,1,), of Si().

We can estimate the size of Fs(t1,%2) in the worst case. Let M be the maximum
cardinality of a set F'(uq,usz) for uy in S5(¢1) and uy in S%(t2). Suppose the terms ¢q
and ?5 both have length less than n, that is, they contain at most n occurrences of
function and constant symbols. There are at most n™ (or possibly n!) terms in S5 (¢)
and S%(t2), because all such terms involve at most the n symbols in #; or t5. (There
can be (n) distinct symbols, because there can be arbitrarily many distinct variables.)
Therefore the cardinality of Fy(t,13) is at most M *n"™xn™ or M *n** which, for small
M, is O(c*°8™). For common operations such as rewriting or forming critical pairs,
M will be polynomial in n. Therefore the cardinality of Fs(t1,%;) will be O(c"!8"),
and can be much smaller, since a large set of terms can be represented by a single
stratified set. This is better than the situation for AC-unification, where the number

20

of AC-unifiers can be double exponential [Dom92]. This is evidence that this use of
stratified sets gives a better granularity of operation than AC-unification. It is known
that AC-unification can be done in worst case double exponential time [KN92], which
is at least an upper bound, if not a very small one.

We would like to compute Fs(t1,12) efficiently, that is, without computing the inter-
mediates F'(uq,uz) explicitly. We pose this as an interesting problem, without making
an attempt to present an efficient algorithm for it. However, we have developed such
algorithms, and plan to present them elsewhere.

We note that this approach differs from specialized E-unification algorithms in that
we do not apply any additional substitutions to the terms; the operations performed
correspond exactly to those that would have been performed on the original set of
clauses or equations. This means that our granularity of operations is finer than for K-
unification, in a sense. However, it is also coarser, since our approach can incorporate
arbitrary leaf permutations into the algorithms. Since AC-unification can produce a
double exponential number of unifiers [Dom92], it may be that AC-unification has too
coarse a granularity, that is, the inference steps are too large.

4.2 Stratified clause sets

So far, we have mainly considered sets of terms. However, when performing deduction,
we also need to consider equations and clauses. We now sketch how stratified subterm
permutations can be applied to clauses. Suppose that Clt,...,1,] is an equation or
clause and the ¢; are its maximal subterms. Suppose G is a set of pointed groups of
the form {((¢1,%"),G1),. .., ((tm, @™), Gy)}. Then we can define S'(Clty, ..., 1], G)
to be {Clvi,...,vm] = v; € S'((4;,7),G;)}. We call this a stratified clause set. We
note that for an arbitrary clause D € S'(C[t1,...,t],G), £ E (Clt1,...,tn] = D),
so if C[ty,..., 1] has been derived, then all such clauses D are in principle derivable,
also. We represent this stratified clause set by the pair (C[ty,...,t,],G), which we
call a pointed stratified clause set, or just a pointed set. We propose to process the
stratified clause sets S'(C[ty,...,t,],G) of equations or clauses directly rather than
processing their individual elements separately. At any time, we will have a set S of
clauses and a set Pairs of pointed clause sets. The pointed sets (C,G) are considered
as compact representations for all of the elements S/(C,G). Initially, each clause C
has the trivial pointed set G, so that S’(C,G) = {C'}. Then, we perform inferences to
generate new clauses, and also look for new stratifications of existing clauses relative
to the set F of equations that have been derived so far. Each inference needs to be
performed between two sets S'(C7,G') and S’(C3, G?) rather than between two clauses.
This therefore involves lifting operations (such as resolution or paramodulation) from
individual clauses to stratified clause sets. We have not presented the details of how
this can be done, but the techniques presented in section 4.1 are relevant here.

We also need a deletion criterion, to know when a pointed clause set is redundant,
and can be removed. For this, suppose that we have the two pointed groups (Cy,G"')
and (Cy,G?*). Let S; be S'(Cy,G') and let Sy be S(C2,G?). We present a simple,

21

partial test for the subset relation S; C S3. Let us make the top-level subterms of 4
and Cy explicit, as, Ci[vy,...,v,] and Cylwy,...,w,]. We will not deal with clause
subsumption here, so we only need to consider the case in which m = p. First, we
test whether Cy € S(Cy,G?). For this, we look for a permutation y1,...,y, of the
variables zy,..., 2, so that Cy[z1,...,2,]| and Cyfy1,...,ym] are identical. This can
be nontrivial to find, because the literals in clauses can be permuted; in fact, there may
be more than one such permutation. For example, suppose that Cy is P(sy)V P(sz) and
Cy is P(t1) V P(t2). Then the maximal subterms of C; are s; and sz, and the maximal
subterms of 'y are ¢; and #3. There are two possible permutations that permit the s;
to correspond to the ¢;.

Let us fix our attention on one such permutation, and for simplicity and without
loss of generality suppose that it is the identity. This means that Ci[zq,...,2z,] and
Calx1,. .., 2, are identical. Let G' be {((v1,u'),G]), ..., ((vm, w™),GL)} and let G?
be {((w1,7"),G?),.... (w0, q™), G%)}. Then S; C Sy if for all 4, S'((v;, @), G}) C
S'((w;, @), G?). This is an instance of the general problem of testing if one stratified
set of terms is a subset of another stratified set of terms. Therefore, we now consider
this problem separately; this also permits us to simplify the notation.

Suppose therefore that v and w are two terms and @ and g are two labelings of them,
and that G' and G* are two subterm permutation groups such that (v, %) is in the
domain of G' and (w,q) is in the domain of G*. We do not present a complete test
for S'((v,u),G") C S'((w,q),G*), but we give a sufficient condition for this. Let T}
be S'((v,u),G") and let Ty be S'((w,q),G?). To test whether Ty C Ty, we first test
whether v € T;. This can be done by the membership algorithm just presented. If
this fails, we know that 7; is not a subset of T,. If this succeeds, then there is a u?
such that (v,u?) € Ty, which can be obtained from the computation of the membership
algorithm. We note then that S'((v,u?),G*) = Ty and S'((v,u),G') = Ty. Therefore

we have two pointed subterm groups with a common head term.

We now compare the pointed groups ((v,u),G') and ((v,u?),G?). Let G' be
(FEi,E;3,...,E}) and let G* be (E}, E3,...,E}). We now test whether for all i there
exists j such that u; = uf and ®*(G}) C ®*(G?), where G} is the subterm permutation
group (u}, F}) and G7 is the subterm permutation group (uj, £7); in this case, it fol-
lows easily that Ty C Tj. The test ®*(G}) C ®*(G%) can be done in polynomial time,
by testing whether the redexes of E} and E? are variants and ®(Gy) € ®*(G?); this in
turn can be done by testing each generator of ¢} for membership in ®*(G%). To test
whether ¢, , € ®*(G?), it suffices to test whether s € S’((r, 0), E?). This test for each

generator can be done in polynomial time, by theorem 1.3.

4.3 Choosing a Stratification

In order to apply stratified subterm permutation groups to deduction, we need a
method for choosing one of the many possible groups. Suppose that we have derived a
set {C4,...,C,,} of clauses. The object is to find stratified clause sets including as many
of these clauses as possible, to achieve the greatest possible saving of work. Suppose C;

22

is Ci[vl, ..., v;], where the v; are the maximal subterms of C;, and for simplicity we only
consider clauses having the same number of maximal subterms (since each number can
be treated separately). We want to find a set G of pointed stratified subterm groups and
aclause C' € {C1,...,C,,} such that S’(C, G) includes as many as possible of the clauses
C;. For this purpose, we want to find pointed stratified subterm groups ((v;, %), ;)
where v; is one of the terms v; which include as many elements as possible from the set
{v},v3,...,v™} of terms. Then we can let G be the set ((vy,@'),G1),. .., ((v,, "), G,),

j) s Y
W}iich] will injclude many of the clauses C4,...,C,,. For example, if the C; are equa-
tions, then we may have a set {ry = s1,...,7, = S} of equations. Then we
want to find groups ((vy,u'),Gy) and ((v2,u*),G2) so that vy € {ry,rq,..., 7} and
vy € {51,82,...,8,} and S'((vy,u'),Gy) contains as many elements as possible from
the set {ry,ra,...,rm} and S’((vs,W?), G2) contains as many elements as possible from
the set {s1,52,...,8,}. Then S'(vi = va, {((v1,u"), Gh), ((v2,u?), G2)}) should include
many of the equations r; = s;. In general, the relevant problem becomes the following:
Given a set 7T of terms, to find a stratified subterm permutation group including as

many of the elements of 7 as possible.

The goal is to approximate the F-equivalence classes as closely as possible by stratified
sets, where F is the set of equations. For deductive purposes, we only need to consider
terms that are in normal form with respect to ordered rewriting; thus, we need only
be concerned with E-equivalence classes of terms in normal form. This means, for
example, that we need not consider terms having subterms of the form (r * s) * ¢,
assuming that this subterm can be rewritten to r * (s * t) under ordered rewriting.
Also, we prefer to avoid creating two stratified sets with a non-empty intersection, in
order to minimize the number of stratified sets considered. We know that the stratified
sets are always subsets of the F-equivalence classes. Therefore, in order to approximate
FE-equivalence, we want to make the stratified sets as large as possible. Of course, it is
not always possible to completely capture the FE-equivalence classes by stratified sets.
In addition, computational limitations restrict what can feasibly be attained in this
direction.

We first give an idealized approach to this problem, and then make it more practical.
Suppose that ¢ is a term; we want to find subterm permutation groups with ¢ in their
domains. Then we can combine a number of such groups to obtain a stratified subterm
permutation group with ¢ in its domain. The general idea for finding individual subterm
permutation groups for ¢ is to choose a linear term r and a 1-context u such that for
some O, { = u[r0], that is, some subterm of ¢ is an instance of r. Then we find the
set {s1, S2,..., 5} of variants of r such that r = s; is a leaf permutation and such that
EEr=s;forl<:<k Let E" be this set of equations {r = s1,r = s9,...,7 = s };
then (u, £7) is a subterm permutation group with ¢ in its domain.

We note that determining £E” from r can be very difficult, because it requires equational
theorem proving. Therefore, we present a more practical approach. We define £° to
be the set of equations {r = s : s is a variant of r,r —g s}. Then E™° is essentially a
set of equations from F, possibly instantiated, and possibly with context added. Also,
E™° may easily be computed from E and r. Furthermore, with u a 1-context and r a
linear term such that for some ©, ¢ = u[r®], (u, E™°) is a subterm permutation group

23

for t. Let Ky be F together with some equations that are logical consequences of E,
possibly generated by superpositions or other kinds of inferences. Then (u, EI’O) is also
a subterm permutation group for ¢, and may include more equations. Using F; instead
of F is therefore desirable.

We still have the problem of finding likely u and r. The goal is to find expressions of the
form {Clvy, -+, v,] 1 v1 € S'(t1,G), -+ v, € S'(t,, Gr) } or of the form {v; = vy : vy €
S'(t1,G1),v9 € S'(t2,G3)} that include as many equations or clauses as possible that
have been generated so far in a proof attempt. Therefore it makes sense to examine
the equations produced during an attempted proof, and look for regularities among
them. Typically in the running of a completion procedure, uniform sets of equations
will be generated. Suppose r = s is one member of a uniform set of equations. Let u
be a 1-context such that for some ©, t = u[r®]. Then the subterm permutation group
(u, E™?) is nontrivial and is a likely candidate to be considered. For example, we may
generate the following set K5 of uniform equations as logical consequences of F:

f(, [y, [(z,w))) = f(y, f(z, fw, 2)))

(
f(xaf(yvf(sz))) = f(zaf yvf(
f($7f(y7f(27w))) = f(w,f(Z,f(y,x)))

Consider the term ¢ =
9([f(a, f(b, [(g(a),g(b)))))

which may be the maximal term in an equation or clause. This term has the subterm
fla, f(b, f(g(a),g(b)))) which is an instance of the left (or right)-hand sides of the
above uniform set of equations. Thus we can choose r as the term f(z, f(y, f(z,w)))
and the context u as g(0). Then for some O, t = u[f(z, f(y, f(z,w)))O], that is,
t=g(f(z, fly, f(z,w))))0. Therefore (u,Eg’O) is a subterm permutation group for ¢,
and F, is a subset of E5°. In this way we obtain the subterm permutation group G
generated by the elements that interchange the subterms a,b,g(a), g(b) of ¢ according
to the uniform equations given above. Such uniform sets of equations frequently arise,
especially with associative-commutative operators. Also, we note that any set of flat
permutations is uniform.

The subterm permutation groups constructed in this way may actually include more
equations than those they were constructed from. That is, F; may be a proper subset
of E5°. This means that these groups will be even better approximations to the F-
equivalence relation. This can happen because there may be non-uniform equations
that act on u as if they were uniform. For example, the equation

f($7f(y,z)) = f(y,f(x,z))

can be used to rewrite the term ¢, producing the term

g(f (b, [(a, [(g(a), 9(D)))))

In this way we obtain a ¢; mapping terms of the form g(f(u1, f(uz, f(us,u4)))) onto
terms of the form g(f(us, f(u1, f(us,us)))). We can also apply this equation elsewhere

24

to obtain the mapping ¢, from terms of the form ¢(f(u1, f(uq, f(us,u4)))) to terms of
the form g(f(u1, f(us, f(uz,u4)))). The equation f(z, f(y, z)) = f(y, f(z, z)) together
with F, is not uniform; that is, Fy U {f(z, f(y, z)) = f(y, f(z, z))} is not uniform.
However, these mappings ¢; and ¢, correspond to the equations

[, [y, [(z,w))) = [y, [(2, f(z,w)))
[, [y, f(z,0))) = [z, (2, f(y,w)))

which, together with E,, are uniform. These equations are included in E3°. Also, if f
is an associative operator, then we can associate f to the right in a term ¢, obtaining
subterms of ¢ of the form f(t4, f(t2,..., f(ts=1,%,)...)). Then the subterm r given by
flza, f(xe, ..o, f(2no1, Ta)...)) is a good candidate redex for a subterm permutation
group, especially if f is also commutative.

We have just seen how a subterm permutation group for ¢ may be obtained from F.
To obtain a stratified subterm permutation group, we look for a set of such subterm
permutation groups (u;, E7°) for various u; and r; such that their occurrences r; of
redexes do not overlap. Then we obtain the labeled term (¢, uq,...,u,) in the domain
of the stratified subterm permutation group (E™°, E™° ... E™9°).

We now give a simple algorithm for this. Suppose ¢ is a term and G, Gy, ..., G, are
subterm permutation groups on t. We want to find a subset of the (G; that can be
made into a stratified set of permutation groups and a labeling for {. One algorithm
is to exhaustively consider all subsets and select one of them (or all of them) that are
stratified. It is possible to do a little better than this, by noting that if a set of groups
is not stratified, then no superset will be either. So one can begin with one element
subsets of G'1,Gy,. .., Gy, then construct two element subsets, etc., discarding those
that are not stratified and continuing to add elements one by one to those that remain.

More formally, we first consider all pairs (G;, G;) of groups and for each one we de-
termine whether GG; and G; are compatible. We say that two (non-stratified) subterm
permutation groups (u1, F1) and (ugy, Fy) are compatible if the occurrences of O in wuy
and uy are in independent positions, or if the redexes do not overlap, that is, u; may
be expressed as ui[r10] or u; may be expressed as uy[r,0], where © is a substitu-
tion and r; are redexes for F;. Note that the terms u; each contain one occurrence of
O. Then the algorithm is as follows, where choose indicates a nondeterministic choice:

H {Gl,GQ,. . ,Gn},
G —{};
while (H is not empty) do
choose G' in H;
remove G’ from G
if G’ is compatible with all elements of G then
add G' to G fi
od;

?

The result of this algorithm is a set of compatible (non-stratified) subterm permu-
tation groups for ¢. These can then be combined into a labeling for ¢ and a stratified

25

subterm permutation group . This algorithm can be used to find a “good” stratifi-
cation by choosing GG’ in some heuristic manner, say, choosing GG’ having the largest
number of generators. It can also be used exhaustively to generate all stratifications
of a term ¢. It is possible to refine this algorithm so that the disjointness condition is
satisfied, that is, if Gy is the stratified group generated for term t; and t, € S(t1, G),
then the group (5 generated for ¢, will satisfy S(t,,G3) = S(t1,G4). This is possible
because ¢ will contain essentially the same redexes as ¢;, but in different positions.
Such a group (3 can then be deleted, since it contributes nothing new. We plan to
give the details elsewhere.

We note that if G and G’ are two stratified subterm permutation groups, and ¢ is a
labeled term in their domains, and S(¢,G) C S(¢,G"), then typically we will choose
to consider the pair (¢,G’) and ignore (t,G). Thus, if one group has strictly more
redexes than another or sets F; with strictly more equations, then it is preferable to
the other group. These observations have the consequence that if £ is a set of flat
permutations, then we only need to consider essentially one stratification; for a term
t, for each 1-context u and each m-context w = f(O,...,0), the group (u, E™?) will
be included in the stratified set if for some ©, t = u[f(z1,...,2,)0]. That is, all
subterm permutation groups may be used together in this case, since they will all
be compatible because E is a flat permutative theory. A similar case occurs when ¢
contains associative-commutative operators; such operators can be “flattened,” which
essentially makes the associative-commutative equations flat permutations.

Now, there may be various ways to stratify a term, and one of them must be chosen
in some way. There is nothing to prevent us from using more than one stratification of
the same term, too. However, in common cases, the stratification will be obvious; for
example, if we have a polynomial written as a sum of products, where the summation
and product operator are associative and commutative, then the lowest groups would
permute variables within the products (e.g., x * y + z * w is mapped to y * x + z * w)
and the highest group would permute the products with one another (e.g., z*y+z*w
is mapped to z * w + x * y). We note that none of the kinds of permutations defined in
[Fro89] directly include stratified subterm permutation groups except for the symbol-
preserving class which is more general even than stratifications and is not extensively
treated in [Fro89]. There may also be permutations that apply to ¢ but that do not
fit into the chosen stratification. These might have to be dealt with explicitly, that
is, used as arbitrary equations or rewrite rules would be. However, permutations that
are incorporated into the stratification are implicit and need not be handled explicitly.
After each application of an explicit rewrite rule, a stratification of the new resulting
term can be done after reducing the term to normal form.

5 Specific Results

We now present a variety of results about the complexity of various problems involving
permutative equations. Of course, there are also many problems that we have not
considered. We say a term (or clause) is ground if it contains no variables.

26

5.1 Flat Permutative Equations

We first state a general result that will be useful a number of times later.

Definition 5.1 A term s is flat if it is of the form f(s1,...,8,) for some f and the
s; are variables or constant symbols. If n = 0, then we obtain as a special case that a
constant symbol is a flat term. An equation s =t is flat if s and t are flat terms.

Theorem 5.2 If E = s =t for a set E of flal permutalive equations and a flat
equalion s = L, then there is a flat permutalion v = v such that K Eu=v and s =1
is an instance of u = v.

Proof. Given a set £ of equations, let R be a term-rewriting system containing
the rule r;y — ry for each equation r; = ry in K. By Birkhofl’s theorem, £ = s = ¢ iff
s <pp . If s and ¢ are flat, then this implies that all the applications of rewrite rules
in this derivation between s and ¢ are at the top level. By combining them together,
we obtain a flat permutation v = v as in the theorem. a

Corollary 5.3 If £ = s =1 for a flat permutative theory E and a flat equation s =1,
then this can be verified in nondeterministic polynomial time.

Proof. Such a logical consequence u = v must exist, by the theorem. However, the
problem whether £ = u = v for such a flat permutative equation uv = v and a flat
permutative theory K is solvable in polynomial time, by theorem 1.1. This is done
by nondeterministically generating a flat permutative logical consequence v = v and
verifying that s = ¢ is an instance of v = v and that F = u = v. O

For non-flat equations we have a similar result.

Theorem 5.4 Suppose s and t are terms of the form f(s1,...,s,) and f(ty, ..., 1),
respectively. Suppose E is a flal permutative theory. If E = s = 1, then there is a
permutation ¢ such that E |= s; = gy for all @ and such that E = f(xq,...,2,) =

T, yn) where youy = .

Proof. By Birkhoff’s theorem, again. We consider the structure of the derivation
s «* t. We note that the order of applications of rules at the top level and to proper
subterms can be interchanged, so that all the rewrite rules are applied to subterms first.
This essentially divides the derivation into an initial part, involving proper subterms,
and a final part, involving the top level. The final part determines ¢ as shown in
theorem 5.2, and the initial part involves demonstrations that F = s; = {4 for all 7.

O

27

Corollary 5.5 If £ |=s =1 for a flal permulative theory K, then this can be verified
in nondeterministic polynomial time.

Proof. By induction, one can construct nondeterministic polynomial length demon-
strations that F |= s; = Ly for all 7. As in corollary 5.3, one can also verify that F |=
T(Ws@ys -3 Ysm)) = f(y1,---,Ym) in nondeterministic polynomial time by exhibiting
the flat permutative logical consequence u = v and verifying that f(ysa),. .-, Ysm)) =
f(y1,-..,Ym) is an instance of u = v and that £ = u = v. O

Corollary 5.6 Suppose E is a flat permutative theory and t is a term. Then there is
a stratification {G1,...,G,} of t such that for all terms u, v € S(t,Gy, ..., G,) iff
EEt=u.

Proof. Suppose t|, is of the form f(¢1,...,1,,) for some f and m. Then let P, be the
set of positions al,...,am. Consider the subterm permutation group Gp, g(t) which
permutes the subterms ¢;. Let {G;,...,G,} include all such groups Gp, g(t) for all
positions « of function symbols in ¢. By theorem 5.4, such permutations are enough
to prove any logical consequence of F. Since we can apply them innermost first, the
corollary follows. O

The implication of this corollary is that it is only necessary to consider this one strat-
ification of ¢, since it captures the F equivalence class of ¢ by itself.

Theorem 5.7 Consider the problem of deciding whether E = s = t, where F is a flat
permutative theory and s = t is a flal ground equation. This problem is as hard as
graph isomorphism. However, this problem is still in NP. For this il suffices to have
at most two equations in E.

Proof. We show this result by reduction from graph isomorphism, as follows: Sup-
pose Hy and Hy are two directed graphs over n vertices. Consider a term of the form
fle1,¢a,. .., c,2) where each ¢; is either 0 or 1, according to whether a particular edge is
in Hy or not. Thus we have some bijection h(z,y) of the n? possible edges (7, j) onto the
integers (7, 7) between 1 and n®. For example, we may take h(z,7) to be i +n* (5 —1).
We then consider two permutations of the set {1,2,...,n?}; p; exchanges 1 and 2,
and p, totates the integers, that is, p2(i) = ¢ + 1 if ¢ < n?, and py(n®) = 1. Then
all other permutations of this set of integers can be obtained as compositions of these
two. Now, we have induced permutations p) and p, on the set {1,2,...,n*} defined
so that pj(h(a,b)) = h(pi(a),pi(b)) and p4(h(a,b)) = h(pz(a),ps(b)). We then have
the two flat permutations f(z1,...,2.2) = f(2p), Tp(n2)) and f(z1,...,2,2) =
J(@prays - :L’pé(nz)). We consider the equation s; = s, where s; are obtained by en-
coding the graphs H; as indicated above, that is, the h(z,) argument of s; is 1 if the
edge (7,7) is present in Hy, and 0 otherwise. Then, this equation s; = s; is a logical

28

consequence of the two flat permutations given above, iff H; and H, are isomorphic.
This is so because of the correspondence between permutations of the arguments of
f and permutations of the nodes of the graphs, and because of the fact that all per-
mutations of the set {1,2,...,n*} are generated by p; and p,. Therefore, testing if a
given equation is a logical consequence of two flat permutations is as hard as graph
isomorphism, which is not known to be polynomial. Membership in NP follows from
corollary 5.3. O

This result is unexpected, because of the result from theorem 1.1 that there is a poly-
nomial time algorithm to decide if £ | s = {, where F is a flat permutative theory
and s =t is a flat permutation. Also, the same problem in which all the arguments of
f are distinct, is polynomial, as shown in corollary 1.2. Theorem 5.7 depends on the
existence of function symbols of large arity. If the arity is bounded but we have leaf
permutations, then we can still get the preceding result by encoding larger terms using
trees.

Theorem 5.8 The equational theory of a set of two (or more) leaf permutative equa-
tions is as hard as graph isomorphism. This is still true when the arity of all function
symbols are bound to two.

Proof. We use the same result as for the preceding theorem, encoding the graph per-
mutations using leaf permutations. For example, we can encode a term f(cq,¢a,. .., ¢p2)
using the term k(ci, k(ca,. .., k(cp2_1,¢,2)...)) where k is a binary function symbol.
Then the equational theory for a theory of only two leaf permutations can still be as
hard as graph isomorphism, by the same reduction as above, adapted to this encoding
using k. However, we do not know whether this problem is in NP; it is clearly in
polynomial space becaues the sizes of the terms does not grow. a

5.2 Limiting Repetitions

We note that the result above concerning two permutations, depends on the fact that
the same constant symbol may appear in many positions. It is natural to ask if one
can get a better result if one restricts the number of repetitions of constant symbols
among the arguments of terms. Indeed, this is possible.

Theorem 5.9 Suppose E is a flat permutative theory and s = t is a flat equation.
Suppose that s is f(s1,...,8,) and t is f(t1,...,t,). Suppose thal there are at most
k repetitions of arguments in s and t. That is, the set of v such that for some j # ,
s; = sj, has at most k elements, and similarly for the sublermst;. Then we can decide
whether = s =1 in lime exponential in k. Also, this problem is in NP. For fived k,
the time bound is polynomial.

29

Proof. We note as before that it suffices to consider the case in which s and ¢ are
ground terms. Let ® be the set of permutations ¢ such that ¢ maps the arguments of s
to the arguments of ¢. Thus #,;) = s; for all 2. We note that the number of elements in
® is at most k¥, since there are at most k repetitions of arguments in s and ¢. Therefore
each of the (at most k) arguments of s that are repeated, can map via ¢ onto one of
the (at most k) arguments of ¢ that are repeated. This permits at most k* choices.
Let GG be the permutation group corresponding to K. Each equation in E corresponds
to a permutation, and G is the group generated by these permutations. For each ¢ in
&, we can test if ¢ is in (&, and this can be done in polynomial time by theorem 1.3.
Also, we essentially showed in theorem 5.2 that F |= s = t iff there exists ¢ € ® such
that ¢ € G. Membership of this problem in NP follows from the membership of the
problem of theorem 5.7 in N P. O

The implication of this result is that even though the equational theory of E is as
hard as graph isomorphism, there are still some easily decidable parts of this theory,
namely, equations with few repetitions. This gives us a smooth transition between the
polynomial time algorithm for the flat permutative consequence problem of theorem
1.1 and theorem 5.7 above.

The same result extends to non-flat terms s and ¢ and a flat permutative theory E.

Theorem 5.10 Suppose E is a flat permutative theory and s and t are arbitrary (not
necessarily flat) terms. Suppose the number of repetitions of subterms in s and t is at
most k. Then one can decide if £ |= s =1 in lime exponential in k.

Proof. The argument is essentially the same as above, namely, one constructs a
set ® of permutations having a number of elements exponential in k, and one shows
that £ | s = t iff some element of ® is in (. However, it is necessary to process
the subterms first recursively. Suppose E is a flat permutative theory and s and ¢ are
terms with only a finite number of repetitions among their subterms. Suppose s is
f(s1,...,8,) and tis f(ty,...,t,). Suppose E |=s; = t;; then it must be that s; and
t; have a common subterm (in fact, a variable or a constant symbol), since £ consists
only of permutations. Therefore, the number of j such that £ |= s, = {; is at most k.
We can therefore solve this problem in time exponential in & by recursively computing
for the subterms s; and ¢; whether £ = s; = t; and then looking for a permutation
¢ such that for all i, B = s; = ty) and E = f(ysa)-- - Yoim) = J(W15- 0 Ym)-
This suffices by theorem 5.4. The number of such ¢ is exponential in k, as mentioned
before, and the test whether F |= f(ys(1),---,¥s(m)) = f(¥1,--.,Ym) can also be done
in polynomial time, since this is the flat permutative consequence problem of section
1. O

5.3 Bounded Arity Function Symbols

We now consider what happens if we only allow bounded arity function symbols and
only flat permutative equations. Recall from theorem 5.7 that deciding if a flat equation

30

follows from a flat permutative theory is as hard as graph isomorphism, if there is no
bound on the arities. For bounded arities, the problem is easier, as the following
theorem shows.

Theorem 5.11 Suppose all function symbols have bounded arity and F is a flat per-
mutative theory. Then the equational theory of E is decidable in polynomial time.

Proof. The idea is to decide E-equivalence from the bottom up, using theorem 5.4.
That is, to determine if an equation s = ¢ is a logical consequence of E, we can replace
the variables in s and ¢ by new constant symbols, obtaining ground terms s’ and .
Then E | s =1tiff £ | s = 1. We therefore give a method for solving this latter
problem. Suppose s" is f(s1,...,8,) and ' is ¢g(t1,...,1,). If f # g or m # n then
E [~ s = 1. Otherwise, we recursively test for all ¢ and j whether F |= s; = t;. Also,
we test for all ¢ and j whether F |= s; = s; and whether F |= {; = ¢;. This latter
information suffices to divide the subterms s; and {; into E-equivalence classes. We
replace each equivalence class by a distinct new constant symbol ¢;. Notice that it is
possible that s; and ¢; are in the same equivalence class. We thus obtain two terms

5" = f(Cayy-v-sCa,) and 1" = f(ey,,...,c,) Where ¢o, = ¢, il B |= 5 = 55, &, = @,
iff £ =1 =1;, and ¢,;, = &, iff £ |= s; = 1;. Then we have that £ |= s" = " iff
E = s = t; this follows because the theory is flat, and all terms s, and ¢; can be

replaced by unique representatives of their equivalence classes. Finally, the problem of
whether E |= s” = 1" is solvable in polynomial time, by theorem 5.2 and by the fact
that there are only a bounded number of permutations to consider, since the arity is
bounded. Since s” and " are flat, and of bounded arity, we can exhaustively enumerate
all terms v such that £ = s” = v in polynomial time, and test whether ¢” is included
in this list of terms. The cost is still exponential in the arity, however, and this seems
inevitable because of theorem 5.7 concerning graph isomorphism. The correctness of
this algorithm follows from theorem 5.4. The polynomial time bound follows from the
fact that the recursive calls will all be of the form £ = s; = t; where s is a subterm
of s or t and ¢ 1s a subterm of s or ¢; the number of such calls is quadratic, and each
such recursive call will be executed at most once. O

5.4 A Single Flat Permutation

We have still not settled the case of an equational theory E with flat permutative
rules of unbounded arity but only one permutation. For this case, it turns out that
the equational theory can be decided in polynomial time, but the proof is somewhat
complicated.

Theorem 5.12 Suppose E is an equational theory consisting of a single flat permuta-
tive equation. Then the equational theory of E can be decided in polynomial time.

31

Proof. We first consider the problem whether £ |= s =t where s and ¢ are flat.
Suppose that E contains just the one equation f(z1,z2,...,2,) = f(y1,92,..-,Yn)
where the x; are all distinct and the y; are a permutation ¢ of the x;. Then this
permutation can be expressed as a product of disjoint cycles. Since the order of the
arguments to f is immaterial (as long as the order of the z; and y; is changed in
the same way), we might as well assume that the cycles are all of the form C; =
(Zas, Tagt1, - - -, xp,) for various a; and b;. That is, y,,41 = 24;, Ya,42 = Ta,41, and so on,
and y,, = xp,. We are also given an equation s = ¢ and wish to determine if £ | s = ¢.
For this it suffices to consider the case in which s and ¢ are ground terms, and we first
consider the case in which they are flat ground terms, that is, s = ¢ is of the form
fleryeayooiyen) = f(dy,da, ..., d,) where the ¢; and d; are (not necessarily distinct)
constant symbols. The application of the equation f(z1,22,...,2,) = f(y1,¥2, -, Yn)
to s permutes the ¢;. Since there is only one equation, F |= s = tiff the sequence d; can
be obtained from the sequence ¢; by some number of applications of the permutation ¢.
For this, we can consider separately the action of each cycle C'; on the ¢;, and determine
for which integers m we have that C']m Maps Cq;,Ca;41s-++5Ch; ONO do,ydo,q1,. .., ds,.
Let M; be the set of such integers m. Then FE |= s = ¢ iff all M; are non-empty and
have a common element, for the cycles M; appearing in ¢. It is not hard to show that
if z; and z; are in M; and z; > 23 then z1 + ¢(z1 — 23) is also in M; for all ¢ > 0.
This is because applying C; z; or z; times has the same result, therefore applying C
21—z times is the identity. It follows by a simple number theoretic argument that M; is
cyclic, that is, for some integers m; and n;, M; contains exactly the integers of the form
m; 4+ c¢xn; for all ¢ > 0. One way to see this is to note that n; is the smallest positive
integer such that n; applications of the cycle C; map the string (do,, da,41, . - ., ds,) onto
itself. These values m; and c*n; can be obtained in polynomial time just by examining
integers up to n, because they are bounded by b; —a;. Also, we can determine if the M;
for the cycles C; in ¢ have a common element by an application of standard methods
in number theory, and this can be done in polynomial time.

In particular, the equations z = m; (mod n;) have a common solution iff for all
distinct ¢ and j, ged(n;, n;) divides m; — —m; ([NZ72], page 32). The greatest common
divisor and the division test can be performed in polynomial time. But z = m;

(mod n;) iff z € M;, hence we can determine in polynomial time whether the M;
have a common element.

We now show that this result can be extended to the case in which s and ¢ may not be
flat. Suppose s is of the form f(sq,...,s,) and tis f(t1,...,1,). As before, it suffices
to consider the case in which s and ¢ are ground terms. We want to determine whether
E = s =t for a set F of equations containing a single flat permutation. For this,
we recursively test whether F |= s, = t; for all ¢ and j. Using this information, we
then partition the arguments s; and {; into equivalence classes, depending on whether
they are E-equal. Then we can replace each equivalence class by a unique represen-
tative, obtaining terms s’ and ¢’ in which the arguments s; and ¢; have been replaced
by constant symbols, each equivalence class being represented by a unique constant
symbol. Then E |z s=1if £ s =1. Since s’ =t is a flat equation, this problem
E | s =1’ can be solved in polynomial time, as shown above. The completeness of

32

this algorithm follows from theorem 5.4. O

Corollary 5.13 Suppose F is an equational theory consisting of flat permutative equa-
tions, each with a different function symbol. Then the equational theory of F can be
decided in polynomial time.

Proof. The algorithm is in fact exactly the same as in the theorem. O

We do not know if the result can be extended to a single leaf permutation.

We note that this result may involve very long proofs. The length of the minimal proof
of s = ¢ from F may be exponential. However, this proof (or the existence of the
proof) is decided in polynomial time. This shows an advantage of this permutation-
based approach, namely, it can decide the existence of long proofs without actually
constructing them. This is in contrast to the traditional term-rewriting approaches,
where the proofs have to be constructed step by step. Of course, one might consider
that F-unification algorithms for various theories F also shorten the proofs by making
some steps implicit.

5.5 Matching and Flat Permutations

Theorem 5.14 The problem of whether there exists a substitution © such thal £ |
s$1 = (820), where E is a flat permutative theory and s1 and sy are flat terms, is
N P-complete, even for a theory F containing at most two equations.

Proof. The construction is almost the same as for theorem 5.7. The set F of
permutations is the same, and the encoding of the directed graphs H; and H, by the
terms s; and sy is almost the same. The difference is that the edges not present in
H, are encoded in the term s, by arguments ¢; that are distinct new variables, rather
than zeroes. Then a © as in the theorem exists iff H, is (isomorphic to) a subgraph
of Hy, since these variables can be replaced arbitrarily by zeroes or ones and because
F permits any permutation of the vertices to be simulated. However, the problem of
whether one graph contains a subgraph isomorphic to another graph, is N P-complete.
Membership of the given problem in N P follows from corollary 5.3. O

As before, this result depends on the fact that & has a large number of arguments, and
this may not be realistic in practice. The question arises whether such a result can be
preserved in the context of a bounded number of arguments.

Theorem 5.15 The matching problem relative to a sel of two leaf permutations is
N P-complete. This is still true when the arity is bounded.

Proof. Asbefore in theorem 5.8, this is done by encoding the term f(cy, ¢a, ..., ¢,2) by

the term j(c1,5(cay ..., 7(¢a2_1,¢n2)...)). The rest of the argument is straightforward.
However, we do not know whether this problem is in N P. a

33

5.6 Matching for Flat Permutations of Bounded Arity

We also are interested in the complexity of the matching problem for a group of flat
permutations of bounded arity. The following result is actually a trivial consequence
of the N P-completeness of commutative matching, shown in [BKN87]. However, we
present a proof for purposes of comparison.

Theorem 5.16 The problem of matching relative to a flat permutative theory E is
N P-complete, even for bounded arities. This is true even for a theory FE containing a
single flat permutation.

Proof. First we show this reslt for £ containing several flat permutations,
and then modify the result for £ containing a single flat permutation. The idea
is to construct a term s of the form f(...h(X1,Y1), ..., A(Xy, Y0), .., k(C1, -, 2),
oy k(Chy oy 0),...) and a term ¢ of the form f(...h(false,true), ... h(false,true),
cook(ur,ug,us), oo k(ur, ug, us), .. .) where the ... indicate extra term structure in-
volving enough applications of functions of bounded arity to make a big enough term
to have this many subterms. The _ indicate distinct new variables and the wu; are
terms defined below. The theory E involves the equation h(z,y) = h(y, z); this means
that in matching s with ¢, we choose independently whether X; will be true and
Y; will be false or the reverse. The C; encode three-literal clauses, that is, they
are subterms of the form k(Z;, Z,y, Z3) where the Z; are chosen from the variables
X; and Y;. In ¢ we include many clauses having at least one of the three vari-
ables Z; true, enough to permit a match whenever at least one of the Z; are true.
We define the term uy as k(true, false, false), uy as k(true,true, false), and us as
k(true,true,true). The equational theory allows k to permute its arguments in all pos-
sible ways, and then we can have a choice whether to match the clause k(71, Z2, Z3)
with k(true, false, false), k(true,true, false), or k(true,true,true). Such a match
is possible iff at least one of the Z; is bound to true. We have a subterm of the
form k(k(true, false, false), k(true,true, false), k(true,true,true)) in ¢ at the same
position in ¢ as a subterm of the form k(C;,Y,7) in s. Then a match of s with ¢
corresponds to a satisfying truth assignment to a set of clauses encoded by s and t.
Since this problem is N P-complete, the matching problem is N P-hard. To show mem-
bership in NP, we note that if the matching substitution © is exhibited, then we can
determine if £ |= r; = ry in nondeterministic polynomial time as shown in corollary
5.5. Thus this problem is N P-complete.

To obtain the result for a single flat permutation, we simulate the terms of the form
k(X,Y,7Z) by a term of the form h(h(X,Y),h(Z,W)) where W is a new variable.
Then we have to modify the structure of the terms k(uq, uz, us) and the corresponding
terms k(C;, -, -) to h(h(u1, uz), h(us, us)) and h(h(C;,), h(-,-)), respectively, where uy is
h(h(true, false), h(true, false)). Then if C; is satisfied, the true literal can be placed
in front, and there are enough possibilities from the permutation h(z,y) = h(y,z) to
make the clause C; match one of the u;. O

34

Another interesting question is that of matching relative to a single leaf permutation;
since flat permutations are leaf permutations, this is also N P-hard. However, we do
not know if this problem is in N P.

5.7 Harder Questions

In [Fro89], the class of symbol permutative equations was also defined. These are
equations that do not change the variables but only the interior symbols. That is, an
equation s = t is symbol permutative if each variable appears once in s and ¢ and
the sequence of variables is the same. Also, each function symbol appears the same
number of times in s as in . For example, the equation f(z, f(y,z)) = f(f(z,y),2) is
symbol permutative. The question arises as to the complexity of symbol permutative
theories.

Theorem 5.17 Suppose E is a symbol permutative equational theory. Then the deci-
sion problem for the equational theory of E is complete for polynomial space.

Proof. One can see that the decision problem for such a theory is in polynomial
space, since the sizes of the terms never grow in an equational derivation between s and
t, and one can nondeterministically look for such a derivation. This uses the fact that
nondeterministic polynomial space is equal to deterministic polynomial space. We can
show that this problem is hard for polynomial space, by reduction from the acceptance
problem for a linear bounded automaton. We can simulate the action of a linear
bounded automaton on a term of the form fi(fa2(... f.(c)...)) where the sequence of
f; corresponds to the sequence of tape symbols in a linear bounded automaton, and
one of the f; encodes the state of the automaton. Then one can encode the moves of
the automaton in a straightforward way in an equational theory F. The problem is
that this encoding is not symbol permutative. However, by another encoding, this can
be achieved. It suffices to encode each symbol f; as a sequence h'kh™ 'k where h and
k are unary function symbols and there are m different symbols altogether. With this
encoding, every f; is a permutation of every other f;, so the theory F, so represented, is
symbol permutative. It follows by this argument that the decision problem for symbol
permutative equational theories is complete for polynomial space. a

Of course, we can make the problem still harder by removing all restrictions and per-
mitting F to have any form whatever. In this case, we can easily simulate a Turing
machine using standard techniques and obtain problems that are at best partially de-

cidable.

References

[BDP89] Leo Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure.
In Hassan Ait-Kaci and Maurice Nivat, editors, Resolution of Equations in

35

[BKNS7]

[DJ90]

[Dom92]

[FHLS0]

[Fro89]

[K1092]

[KN92]

[NZ72]

[Pla93]

Algebraic Structures 2: Rewriting Techniques, pages 1-30, New York, 1989.
Academic Press.

D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems.
Journal of Symbolic Computation, 3(1,2):203-216, 1987.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science. North-Holland, Amsterdam,
1990.

E. Domenjoud. Number of minimal unifiers of the equation axq1+... 4oz, =4¢

Byr + ... + By,. Journal of Automated Reasoning, 8:39-44, 1992.

M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permu-
tation groups. In Proceedings of the 21st IEEE Symposium on Foundations
of Computer Science, pages 36—41, Syracuse, New York, 1980.

I. Frobenius. Effiziente behandlung von aquivalenzklassen von termen. Tech-
nical Report Projektarbeit, Universitat Kaiserslautern, Kaiserslautern, Ger-
many, 1989.

Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, chapter 1, pages 1 — 117. Oxford University Press, Oxford, 1992.

D. Kapur and P. Narendran. Double-exponential complexity of computing a
complete set of AC-unifiers. In Proceedings Tth IEEE Symposium on Logic
in Computer Science, pages 11-21, Santa Cruz, California, 1992.

I. Niven and H. Zuckerman. An Introduction to the Theory of Numbers.
Wiley and Sons, New York, 1972.

D. Plaisted. Equational reasoning and term rewriting systems. In D. Gabbay,
C. Hogger, J. A. Robinson, and J. Siekmann, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 1, pages 273-364.
Oxford University Press, 1993.

36

