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Abstract

The well-known and powerful proof principle by well-founded induction says that
for verifying Vz : P(z) for some property P it suffices to show Vz : [[Vy < z :
P(y)] = P(z)], provided < is a well-founded partial ordering on the domain
of interest. Here we investigate a more general formulation of this proof principle
which allows for a kind of parameterized partial orderings <, which naturally
arises in some cases. More precisely, we develop conditions under which the
parameterized proof principle Vz : [[Vy <, z : P(y)] = P(z)] is sound in the
sense that Vz : [[Vy <, z : P(y)] = P(z)] = Vz : P(z) holds, and give
counterexamples demonstrating that these conditions are indeed essential.

1 Introduction and Motivation

In proofs by well-founded induction (cf. e.g. [Coh65], [Fef77], [MW93]) one usually

tries to verify

Va: Plx) (1)

by showing
Ve: [[Vy<z: Ply)] = P(z)] (2)

where < is a fixed well-founded partial ordering on the domain of interest. In fact, <
need not be a partial ordering. Any well-founded or terminating relation suffices.

*This paper is a revised and extended version of the contribution in Bulletin of the FATCS 52,
pp. 274-277, February 1994.
**This research was supported by the ‘Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)’.



Definition 1.1 (cf. e.g. [Wec92]) Let R be a (binary) relation on a set A.

o Let B be a non-empty subset of A. An element b € B is said to be R-minimal
(or simply minimal) if, for all @ € A, bRa implies a ¢ B.

e R is called well-founded (or Noetherian) if every non-empty subset of A has a
minimal element.!

o Ris called terminating if there is no infinite sequence (an)nEIN such that a, Ra,4+1

for all n € IN.

Well-foundedness and termination are equivalent notions. Well-foundedness obviously
implies termination, and the reverse direction is also easy but requires the Axiom of

(Dependent) Choice (cf. e.g. [JecTT]).

Theorem 1.2 (cf. e.g. [Wec92])

A (binary) relation is well-founded if and only if it is terminating.

In practice, i.e. when trying to apply the general principle of proof by well-founded
induction, it often occurs that an appropiate well-founded partial ordering either is not
available or unknown, or — if some partial ordering seems to be an obvious candidate
— its well-foundedness is not guaranteed or somehow depends on the property to be
proved. To illustrate this situation consider the following simple example.

Example 1.3 Let A = (A, —) be an abstract reduction system (ARS),i.e. - C Ax A
is a binary relation on A. Let us denote the transitive and the transitive-reflexive closure
of — by —% and —*, respectively. Joinability is denoted by |, i.e. if for a,b € A there
exists ¢ € A with a —* ¢ *~ b then this is denoted by a | b. A is said to be confluent
or has the Church-Rosser property (CR) if for all a,b,¢c € A with b*— a —* ¢ we
have b | ¢. A is weakly (or locally) confluent or weakly Church-Rosser (WCR) if for all
a,b,c € Awith b — a — cwe have b | c¢. Ais terminating or strongly normalizing (SN)
if there is no infinite reduction sequence a; — a3 — asz — ... in A. The properties
CR, WCR and SN can also be defined for elements of A in the obvious manner. For
instance, SN(a) (for a € A) means that there is no infinite reduction sequence in A
starting with a, and CR(a), a € A, means that for all b,¢c € A with b *— a —* ¢ we
have b | ¢. A well-known and important basic result for ARSs is Newman’s Lemma

([New/2] which may be formulated as follows:

Every strongly normalizing and locally confluent ARS A = (A, —) is con-
fluent (or more succintly: SN(A) A WCR(A) = CR(A)).

* as the well-

Usual proofs of this lemma proceed by well-founded induction taking —
founded partial ordering needed for the induction principle to be valid. A stronger

local version of Newman’s Lemma may be stated as follows:

'Following common usage, we call a partial ordering relation denoted by < well-founded / termi-
nating if >:=<~1 is well-founded / terminating.



Every strongly normalizing element ¢ € A in a locally confluent ARS A =
(A, —) is confluent (or more succintly: Vs € A : SN(s) A WCR(A) =
CR(s)).

A typical proof of this lemma might looks as follows:

Proof: Let A = (A,—) be an ARS with WCR(A), and let s € A with SN(s) be
given. Let Q(z) (for z € A) be defined by

Q(z):= CR(z).

We proceed by induction over x w.r.t. the ordering >:=>,:= —7 |G(S)Xg(s), where the
reduction graph G(s) of s is given by G(s) := {t € A|s —* t}, showing

Vze Ajz<s:Q(z).?

Observe that we have 2 >y <= s —=*z =T y,andz >y < s =z —=*y
(for the reflexive ordering > corresponding to (the strict partial ordering) >). By the
assumption SN(s) we know that >=—* |G(s)xg(5) is well-founded. Now, assuming
s > x and y *— x —* z, we have several cases. If y or z equals x, we are done. This
includes the case that = is a minimal element w.r.t. >, i.e. irreducible. Otherwise,
there exist y', 2" € A with y *«— ¢y’ « = — 2z’ —=* z. By WCR(z), which follows
from WCR(A),> we know that there exists some u with y’ —* u *— 2’. By induction
hypothesis for y' (z > y’ due to s —=*  — y’) we conclude that there exists some v
with y —* v *— u and the induction hypothesis for 2z’ (z > 2’ due to s —=* = — 2)
yields the existence of some w with ¥y —* u —* v —* w *~ z *~ 2. Summarizing we
get y —=* v =% w "~ z as, hence CR(z) desired. ]

Note that in the above proof the ordering used for showing
Vee B: Q(z)

with B={z € A|z <, s} depends on s and its well-foundedness was assumed before.
A careful inspection of the proof which was done via the instantiated scheme

Vee B: [y <.o: Q)] = Q) )
reveals that in the induction step we could have also used the induction hypotheses

Yy <z z: Q(y)

ZNote that in general the statement Vz € A,z < s : Q(x) (with < reflexive) is stronger than Q(s)
(although here both are equivalent)! In fact, it is well-known that in proofs by induction it is often
easier to prove a stronger statement than the original one since this also provides stronger induction
hypotheses.

30bviously, the assumption WCR(.A) in the local version of Newman’s Lemma can even be weak-
ened to WCR(G(a)) where G(s) = (G(s), — |a(s)xG(s)) 1s the sub-ARS of A determined by the element

S.




instead of

Vy <s7: Q(y)
with <, defined by
US>, v = s—="1r = u—-T0v, (4)

i.e., according to the instantiated scheme
Vee B: [Vy<,z: Qy)] = Q(z) . (5)
Similarly, when defining Q'(x) (for = € A) by
Q'(z) := [SN(z) = CR(z)]

the dependence on well-foundedness of the applied partial ordering is incorporated in
@'(x). Then, proving the local version of Newman’s Lemma above amounts to showing

Vee A: Q'(z)
which one might be tempted to accomplish by showing
Ve A: [We Ay <o Q)] = Q) (6)

with <, defined by (u,v € A):

. (7)

US>, v <— = "u—

Here, the proof of (6) is analogous to the proof of (5).*

2 A Parameterized Principle of Well-Founded In-
duction

Note that proceeding as sketched above presupposes in general correctness of the follow-
ing induction principle which is parameterized by a family of (strict partial) orderings
<gz:

Ve [Vy <, z: Ply)] = P(x) (8)
The correctness of (8) is expressed by
[Va: [[Vy <ez: Ply)] = Px)]] = [Vo: P(z)] (9)

and obviously depends on properties of the involved ordering relations <,. As already
mentioned, a careful inspection of the above proof for the local version of Newman’s
Lemma shows that essentially the same proof can be used for establishing (8) with P
instantiated appropiately (by @) and <, defined by (4). Hence, in this special case the
induction scheme (8) is correct, i.e. (9) holds. So one may ask in general, under what
conditions concerning the applied family of orderings <, and the involved predicate
Q(z) is (8) a correct induction principle as expressed by (9)? That correctness is not
assured in general, can be seen from the following counterexamples.

4From an intuitive point of view one would usually prefer to proceed according to (3) (or (5)) since
there the well-foundedness assumption and the statement to be proved are clearly separated, and thus
easier to understand.



Example 2.1 Let G = {a,b} be a set of two elements and <,, <, be two partial
orderings on G given by <,:= {(b,a)}, <p:= {(a,b)}. Moreover let @ be some unary
predicate on (& such that =Q(a) and —~Q(b) hold, i.e. @ is neither satisfied for a nor
for b. Then the induction principle (8) with P instantiated by ) becomes

VeeG: [VyeGy<,z: Qy)] = Qx) (10)
which is equivalent to

[[Vy <wa: Qly)] = Qa)] A [[Vy<3b: Qy)] = Q(b)]

which in turn is, by definition of <,, <3, equivalent to

Q) = Q) A Qo) = Q). (11)

Note that due to the assumptions =Q(a), =Q(b) we obviously have that (11) holds.
However,

Ve e G: Q(x)

is false, hence the instantiated version of the parameterized induction scheme (8) is
incorrect, i.e.

VoG ([WeGy<o: Q)] = Q)] = [YreG: Q)]  (12)
1s false.

Note that in the above example the parameterized ordering relations <,, <; are clearly
well-founded, but the ordering information of <,, <j; is ‘contradictory’. The latter is
not the case in the following example.

Example 2.2 Let G = {ag,a1,as,...} be a denumerable set with ordering relations
<q4, (for ¢ > 0) defined by

ag >g A1 >gy G2 >4, G3 >4, 04
a1 >q4, G2 >4, A3 >4, 04
Ay >q4, G3 >4, 04

)

i.e. <, is defined by <,,;:= {(ax,a;) |k > j > t}. Moreover, for some unary predicate @)
on G let =Q)(a;) hold for all © > 0. Then the induction principle (8) with P instantiated
by @) becomes

VeeG: [VyeGy<,z: Qy)] = Qx) (13)

which holds since the induction hypothesis [Vy € G,y <, = : Q(y)] is never satisfied
(note that for any a; € G there exists ap € G (choosing e.g. k = j + 1) with a; <, a;
but not Q(ax)).



Note that in this example the ordering information is somehow consistent, but <,, is
clearly not well-founded.

The previous examples motivate the following abstract correctness conditions for the
parameterized induction principle (8):

Ve,y: [y <,z = <, €<, (14)
and
Ve : [-P(x) = <, is well-founded. ] (15)

We shall show now that if both the “compatibility” condition (14) and the “well-
foundedness” condition (15) hold, then the parameterized induction principle (8) is
correct as expressed by (9).

Theorem 2.3 The principle of parameterized (well-founded) induction (8) is cor-
rect, i.e. (9) holds, provided that the “compatibility” condition (14) and the “well-
foundedness” condition (15) are satisfied.

We shall present two alternative proofs for this result. The first one is a more direct one
and works by contradiction, and the second one essentially shows that (8) is equivalent
to the usual principle of well-founded induction using one fixed uniform well-founded
ordering.

Proof: (by contradiction)

Assume that (14) and (15) are satisfied, and assume that (8) holds, but not (9). Hence,
there exists some x with = P(z), let’s say x9. Condition (15) implies that <,, is well-
founded. Now (8) implies in particular

[Vy <wo 20 = Py)] = P(o)

which, due to =@ (), yields the existence of some z; <;, x¢ with =P(2;). Choosing
x = 1 in (8) and using = P(z1) we know that there is some o <,, z; with =P(x),
and so on.” Hence, by (ordinary) induction (on the ordering of the natural numbers)
we can conclude that (for every ¢ > 0) there exists some x; with =P(z;) and

To Zgg T1 Zaq T2 Zpy T3 gy Taenn .
Applying repeatedly condition (14) we get
To Zrg T1 Pz T2 Zag T3 g Laoen -

But this means that <., is not well-founded, contradicting condition (15). |

Proof: (by ordinary well-founded induction)
Assume that (14) and (15) are satisfied. Then we define a binary relation < as follows:

u<v <= —Pl)Au<,v. (16)

®Note that this actually requires the Aziom of Choice.



Next we show that < is a well-founded partial ordering, i.e. it is irreflexive, transitive,
and well-founded. TIrreflexivity of < follows from irreflexivity of <, for all u. For
showing transitivity we have to show that u < v and v < w implies u < w. By
definition of < the assumption yields u <, v <, w. Using (14) we get u <,, v <, w
which, by transitivity of <,, implies u <,, w. From v < w we get =P(w), hence
together this yields u < w. For proving well-foundedness of < (by contradiction)
assume that
Ug > Uy > Uy > Uz > ...

is an infinite decreasing >-chain. This implies
V>0 = P(u;)

and
U g U1 Py U2 Sy U3 Dy Ug oo

which, again by the compatibility condition (14), yields
U Dy U1 Sy U2 Dy U3 Dyy Ugon

But this means that <,, is not well-founded contradicting (15). Hence, we conclude
that < is indeed a well-founded partial ordering, for which the principle of well-founded
induction (2) is correct. Thus, substituting the definition of < into (2) we obtain

Va: [[Vy:=P(x) Ny <.z = Py)] = P(a)]
which is equivalent to
Va: [[Vy: P(z)V-(y <s2)V Ply)] = P(z)]
and to
Va:[[[Vy:y<c2 = Py)] vV P(z)] = P(z)]
hence yielding

Ve: [[Vy,y<sz: Ply)] = P(z)].

Thus, correctness of the ordinary well-founded induction principle (2) implies correct-
ness of the parameterized (well-founded) induction principle (8) under the conditions
(14) and (15) as was to be shown. |

The counterexamples (2.1) and (2.2) above demonstrate that the “compatibility” condi-
tion (14) and the “well-foundedness” condition (15) cannot be dropped without loosing
correctness of the principle of parameterized (well-founded) induction (8) in general. In

7



our introductory Example 1.3 we observe that these two conditions are indeed satisfied.
In fact, with >, defined by

TS,y &= s> u—"z %y,

compatibility means
>,y = >,D>,

or equivalently
>,y = [Vu,v: u>, 0 = u >, 0]

which holds, since z >, y and u >, v imply s =* x =* x =% y, s =* y —* u =T v,
hence s =* ¢ =% y —* u =% v and thus u >, v. The well-foundedness condition (15)
is also satisfied, since every >, is well-founded by the global assumption SN(s).

Although the second proof of Theorem 2.3 reveals that (8) is not more powerful than
ordinary well-founded induction, the parameterized induction principle (8) has the
advantage that one may directly work with (8), i.e. with a family of ordering relations,
which may arise quite naturally in certain cases. The only thing to be verified for
correctness is to ensure that the abstract properties (14) and (15) are satisfied. Working
directly with with (8) may be useful (from a conceptual point of view) for instance in
inductive proofs by some counterexample x which is assumed to be minimal w.r.t. some
well-founded ordering >, in the sense that w.l.o.g. + may be assumed to be minimal
w.r.t. some (naturally defined) >, (instead of minimal w.r.t. >). This may be beneficial
for the sake of better understanding the essence of the involved inductive reasoning,
in particular in cases where the whole inductive proof is very complicated (see [Gra95]
for a non-trivial example).

Finally let us mention that the two conditions (14) and (15) are only one possibility
for guaranteeing correctness of (8). Indeed, let us consider the following modification
of Example 2.2.

Example 2.4 Let GG = {ag, a1, as,...} be a countable set with ordering relations <,,
(for 2 > 0) defined by

>q0={(ai,ai41)} .
Moreover, for some unary predicate @ on G let =Q(a;) hold for all ¢ > 0. Then the
induction principle (8) with P instantiated by @ becomes

VeeG: VyeGy<,z: Qy)] = Q(x) (17)

which holds since the induction hypothesis [Vy € G,y <, x : Q(y)] is never satisfied
(note that for any a; € (¢ we have a;11 <4, a; but not Q(a;41)). Hence,

[Ve: [[Vy<,z: P(y)] = P(z)]] = [Vz: P(x)]
is obviously incorrect in this case.

In this example, the ordering relations (>,,)i>o are all well-founded, and compatible

7

in the sense that combining any two >,,, >,, of them (or even finitely many >,, ) still

8



yields a well-founded relation. However, the problem is, that [J;sq >4, 1s not well-
founded any more. In fact, the crucial point for correctness of (8)_is that an infinite
sequence of the form

To Zpy T1 Zpy T2 gy T3 gy Laenn -

issuing from some counterexample g (i.e. with = P(z)) is impossible (cf. the (first)
proof of Theorem 2.3). To ensure this property, one might require instead of (14), (15)
the following more general condition:

Vag: [~P(xo) = (U >.) is well-founded | (18)

r below zg

where, for some binary relation R, Rjciony 18 given by
Rictowy = RO{(,0) [y R uRv} = Rl ey

Then the proof(s) of the modified version of Theorem 2.3 go through as well,® just as
before.

In order to ensure correctness of (8) as a general scheme — and not only of specific
instances of (8) as considered above and in particular in Theorem 2.3 — one simply has
to require well-foundedness of

U>s -

Acknowledgements: | would like to thank Claus-Peter Wirth for useful comments
on a draft version of this paper.

References

[Coh65] P.M. Cohn. Universal Algebra, volume 6 of Mathematics and Its Applications.
D. Reidel Publishing Company, Dordrecht: Holland, Boston: USA, London:
England, 1965.

[Fef77] S. Feferman. Theories of finite type related to mathematical practice. In
J. Barwise et al., editor, Handbook of Mathematical Logic, volume 90 of Studies
in Logic and The Foundations of Mathematics, chapter D.4., pages 913-971.
North Holland, Amsterdam, New York, Oxford, 1977.

[Gra95] B. Gramlich. On termination and confluence of conditional rewrite systems.
In N. Dershowitz and N. Lindenstrauss, editors, Proc. Jth Int. Workshop on
Conditional (and Typed) Term Rewriting Systems (1994), Lecture Notes in
Computer Science, to appear, 1995.

®Note that any well-founded (binary) relation can be turned into a well-founded (strict partial)
ordering, simply by taking the transitive closure. Thus, for proofs by well-founded induction, it does
not really matter whether the underlying well-founded relation is an ordering or not, since transitivity
can always be enforced.



[JecT7] T.J. Jech. About the Axiom of Choice. In J. Barwise et al., editor, Handbook
of Mathematical Logic, volume 90 of Studies in Logic and The Foundations of
Mathematics, chapter B.2., pages 345-370. North Holland, Amsterdam, New
York, Oxford, 1977.

[MW93] 7Z. Manna and R. Waldinger. The Deductive Foundations of Computer Pro-
gramming. Addison Wesley, 1993.

[New42] M.H.A. Newman. On theories with a combinatorial definition of equivalence.

Annals of Mathematics, 43(2):223-242, 1942.

[Wec92] W. Wechler. Universal Algebra for Computer Scientists, volume 25 of FATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1992.

10



