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1 Introduction 1 

1 Introduction 

 

Perceiving objects and interacting with them within our environment 

determines a great part of human behavior. In order to do so, we have to classify such 

objects according to the nature of their properties. Thus, we need to be able to 

identify the values for both qualitative and quantitative parameters of these object 

properties. 

Quantitative measures or magnitudes, respectively, are often unconsciously 

assessed in order to solve problems. For doing so, internal representations of these 

magnitudes are required. In the past it has been suggested that such magnitude 

representations can be imagined as a spatial continuum on which magnitudes are 

ordered by size. This is true for magnitudes that are easy to identify (e.g., the physical 

size of an object), as well as for less commonly assessed magnitudes (e.g., the pitch 

height of a sound) or even abstract magnitudes (e.g., numbers). 

During the last 20 years there has been an increasing amount of research on 

the nature of these internal representations. For instance, to date there is a wide 

range of studies that have examined number representations, because despite their 

abstract nature, numbers are easy to identify and compare. 

However, objects in our environment typically contain information on more 

than one stimulus dimension. For example, when we hear a single sound we can 

identify categorical or qualitative information (e.g., timbre) as well as ordinal or 

quantitative information (e.g., pitch height, loudness, duration). Therefore, it is 

important to consider not only isolated object properties, but also the relations 

between such object or stimulus features and the mechanisms for simultaneous 

processing of multiple stimulus features. 

The present thesis focuses on the question of whether the processing of 

stimulus features that are represented along differing spatial axes is independent or 

not. Particularly, it is investigated whether pitch height as a quantitative measure can 

be viewed independently of other stimulus features. Interferences of pitch processing 

with another typical auditory characteristic that only contains categorical information 

(i.e., timbre) are studied as well as interferences with another quantifiable stimulus 
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feature (i.e., number). Therefore, a joint theoretical background is given which 

provides with details on the isolated and simultaneous processing of such stimulus 

features as well as with underlying concepts with a special focus on pitch and number. 

The thesis then reports two new studies in which the question of independent 

processing of pitch with simultaneously varied stimulus features is examined 

separately. A joint review on results is given in the general discussion and an outlook 

on further research follows in the final summary and conclusion.  
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2 Theoretical Background 

 

This section provides with the theoretical background for the studies that are 

presented in this thesis. The central concept is that of Stimulus-Response Compatibility 

(SRC, Fitts & Deininger, 1954; Fitts & Seeger, 1953). The compatibility of stimuli and 

response options affects performance not only in real life settings, but also in 

experimental choice-reaction tasks (e.g., Fitts & Seeger, 1953; Kornblum, Hasbroucq, & 

Osman, 1990; Proctor & Vu, 2006). As this concept allows for the investigation of 

isolated and simultaneous processing of stimulus features, it forms the ground for 

theoretical considerations in this thesis. 

 In the beginning, the concept of SRC is defined. Then, an overview on 

theoretical accounts to explain SRC effects is provided, followed by a more detailed 

view on the dimensional overlap model (Kornblum et al., 1990) and the principle of 

polarity correspondence (Proctor & Cho, 2006; Proctor & Vu, 2006). The Spatial 

Numerical Associations of Response Codes (SNARC; Dehaene, Bossini, & Giraux, 1993) 

and the Spatial Musical (or Pitch) Associations of Response Codes (SMARC, Rusconi, 

Kwan, Giordano, & Umiltà, 2006; SPARC, Lidji, Kolinsky, Lochy, & Morais, 2007) effects, 

which are examples for isolated SRC effects for numerical and non-numerical 

magnitudes, are then described and accounted for. The section continues with 

introducing the question of independent processing of simultaneously perceived 

stimulus features and underlying concepts. In particular, it is considered whether pitch 

as an isolated stimulus feature can be viewed independently of other, simultaneously 

perceived features that can evoke SRC effects and that can be task-relevant or not. The 

theoretical background concludes with a brief overview and the research interest. 
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2.1 Defining Stimulus-Response Compatibility (SRC) 

 

When stimulus and response in a choice-reaction task share some common 

features, this will result in enhanced performance (e.g., Fitts & Deininger, 1954; Fitts 

& Seeger, 1953; Kornblum et al., 1990; Proctor & Vu, 2006). This phenomenon is 

named the Stimulus-Response Compatibility (SRC, Fitts & Deininger, 1954; Fitts 

& Seeger, 1953). For instance, when a stimulus presented on the left side of a screen 

has to be responded to with a left key press (i.e., in a compatible trial), responses will 

be faster and more accurate than when the response has to be given with a right key 

press. 

A first notion on SRC effects was already made in the 19th century by Donders 

(1868/1969), who observed that the performance for left or right hand responses to 

electrical stimulation of the left or right foot was faster when stimulation and response 

were located on the same side. Almost a hundred years later, the concept of SRC was 

established by Fitts and colleagues (Fitts & Deininger, 1954; Fitts & Seeger, 1953). 

SRC effects have been shown to persist throughout multiple perceptual 

domains (e.g., Tagliabue, Zorzi, & Umiltà, 2002; Vu, Proctor, & Urcuioli, 2003) and are 

only dependent on response location, but not on the responding hand (Wallace, 1971). 

Furthermore, SRC effects are also mostly independent of task. This means that the 

stimulus feature that causes the overlap of stimulus and response does not have to be 

task-relevant (Hommel & Prinz, 1997; Kornblum & Lee, 1995; Lu & Proctor, 1995; 

Proctor & Reeve, 1990; Simon, 1990). Moreover, SRC affects performance even when 

the compatibility is merely implied (e.g., a very small object is associated with the left 

side on a continuum representing physical size; Ren, Nicholls, Ma, Chen, & Dyer, 2011; 

Shaki, Petrusic, & Leth-Steensen, 2012; Shoben, Čech, Schwanenflugel, & Sailor, 1989). 

 

2.2 Mechanisms of Stimulus-Response Compatibility 

 

In the past, a variety of models has been developed in order to account for 

aspects of SRC (Proctor & Vu, 2006). In the following, a chronological overview on the 

development of SRC models is given in which these models are briefly described. The 
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selection of models is based on an overview by Proctor and Cho (2006) and expanded 

by a further theoretical account for SRC. Afterwards, the dimensional overlap model 

(Kornblum et al., 1990; Kornblum & Lee, 1995) and the principle of polarity 

correspondence, as established by Proctor and colleagues (Proctor & Cho, 2006; 

Proctor & Vu, 2006), are introduced and explained in further detail. 

 

2.2.1 Explanatory Approaches for Stimulus-Response Compatibility: An 

Overview 

 

Generally, models accounting for SRC effects can be allocated within two 

groups: The group of conceptual models, which are stated qualitatively, and the group 

of quantitative and computational models, which allow for the specification of effect 

magnitudes in addition (Proctor & Vu, 2006). All the accounts described below assume 

SRC effects to originate on the response selection stage of task solving, rather than on 

the representational or action planning stage. 

The early SRC model of Deininger and Fitts (1956) is a conceptual model which 

is based on the assumption that there are always one or more steps of information 

transformation involved in motor performance. The number of steps and the time 

required for transformations depend on whether a stimulus-response relation “agrees 

closely with the basic habits or expectancies of individuals, i.e., with individual and 

with population stereotypes” (Fitts & Seeger, 1953, p. 208). The required type of 

transformation or recoding determines performance efficiency (Deininger & Fitts, 

1956). Specifically, performance becomes more efficient when the number of 

operations within the transformation decreases (Proctor & Vu, 2006). 

Similar to the conceptual SRC model by Deininger and Fitts (1956), Rosenbloom 

and colleagues (Rosenbloom, 1986; Rosenbloom & Newell, 1987) developed an 

algorithmic model of SRC in which it is proposed that SRC effects depend on the 

number of transformational operations which have to be performed. This model 

presumes that performance in speeded tasks can be viewed as algorithms or 

programs. By estimating the number of operations that are required to respond to a 
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specific combination of stimulus and response set within an algorithm, it is even 

possible to determine a rank ordering of reaction times (RT). 

In 1990, Kornblum, Hasbroucq, and Osman introduced the dimensional overlap 

model. This model extends the above mentioned ones by the addition of an automatic 

activation component. While the earlier models focused on intentional transformation 

processing routes, Kornblum and colleagues (Kornblum et al., 1990; Kornblum & Lee, 

1995) added an automatic response-selection route which produces a response 

associated with a stimulus feature independent of its task-relevance. This response can 

then interfere with the response chosen according to task instructions. Due to its 

importance for the present thesis, further details on this theoretical account will be 

given in the following section (2.2.2). 

Connectionist models are models which emphasize the role of short-term and 

long-term associations instead of a dual-route for response selection (e.g., Barber & 

O'Leary, 1997; Stoffer & Umiltà, 1997). Specifically, associations of stimuli with 

responses can either be introduced by task instructions (i.e., short-term associations) 

or they can be pre-existing and overlearned (i.e., long-term associations). According to 

connectionist models, SRC depends on the automatic activation and the directness of 

the short-term associations of stimuli with responses. Connectionist models, like the 

parallel distributed processing (PDP) model developed by Zhang, Zhang, and Kornblum 

(1999), which is based on the dimensional overlap model, extend the conceptual 

models, as they also allow for quantitative predictions (Proctor & Vu, 2006). 

Hommel, Müsseler, Aschersleben, and Prinz (2001) also brought forth a 

conceptual account for SRC. Their theory of event coding is based on the idea of 

common coding. It is assumed that within a task, perception and actions are coded in a 

joint system (Eimer, Hommel, & Prinz, 1995; Hommel et al., 2001, see Figure 1). Action 

plans and stimulus representations are both composed of feature codes and these 

cognitive codes, the so-called event codes, are related to external events (Proctor 

& Vu, 2006). Thus, instead of a translation from sensory to motor code (lower part, 

unbroken lines), the perception of a stimulus with certain features directly activates 

actions that produce the same features (upper part, broken lines). This, in turn, results 

in enhanced performance in case the primed action is also the one that is correct 

according to task instructions. 
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Another conceptual account is the perspective of salient features coding 

(Proctor & Reeve, 1985; Reeve & Proctor, 1990). This account was initially established 

for intentional stimulus-response translation and is based on the idea that salient 

stimulus and response features are involved in translation processes. Consequently, 

performance is enhanced when salient stimulus and response features systematically 

correspond (Proctor & Vu, 2006). This kind of correspondence includes three kinds of 

stimulus features: features, that are intrinsically spatial (e.g., the side of a screen on 

which a visual stimulus is presented on), features that are represented spatially or 

ordered in a fixed fashion (e.g., numbers), and features that only allow the 

asymmetrical forming of categories within this feature (e.g., the parity of a number). 

Therefore, salient features coding can also account for SRC effects that emerge from a 

mere structural similarity of stimulus and response set. 

The account of salient features coding was further developed by Proctor and 

colleagues (Proctor & Cho, 2006; Proctor & Vu, 2006) into the principle of polarity 

correspondence. As polarity correspondence is a more general principle that is 

event 
code 

response 
code 

direct activation 

sensory code motor code 

translation 
stimulation 

pattern 
excitation 

pattern 

event response 

central 

peripheral 

organism 

environment 

Figure 1: Model of the relationship between perception and action. The lower part 

depicts the separate coding view involving translation; the upper part (ellipsis) 

depicts the common coding view. (Eimer et al., 1995) 
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employed as one of the underlying accounting frameworks in the present thesis, it is 

described separately and in more detail later (see section 2.2.3). 

 

2.2.2 The Dimensional Overlap Model 

 

In their dimensional overlap model (Figure 2), Kornblum and colleagues 

(Kornblum et al., 1990; Kornblum & Lee, 1995) were the first ones to establish a non-

intentional, automatic route of information processing to account for SRC. The 

invention of an automatic route allows for the explanation of SRC effects that derive 

from task-relevant as well as from task-irrelevant stimulus features. The dimensional 

overlap model assumes two determining factors for SRC: the set-level determinant and 

the element-level determinant. The set-level determinant, which is termed as 

dimensional overlap by the authors, forms the representational aspect of the model, 

while the element-level determinant forms the processing aspect. 

Dimensional overlap can be viewed as a consequence of the fact that humans 

“organize the world along various dimensions and into categories of similar, related, 

and/or associated objects” (Kornblum et al., 1990, p. 257). Stimulus sets in 

experimental tasks typically are formed systematically according to specific criteria 

instead of being chosen randomly, resulting in sets of objects that are homogenous 

and highly structured. Therefore, object dimensions and attributes are easy to identify 

which in turn facilitates the transformation of stimuli and responses into classes or 

categories (Kornblum et al., 1990). If the categories within such sets can be mapped 

onto each other with a homomorphism (i.e., a transformation that maintains relations 

and operations within a set, but not necessarily the number of elements), dimensional 

overlap is present. For instance, one might consider a set of squares (set 1) and a set of 

circles (set 2) of different sizes, as well as another set of squares (set 3) varying in 

grayness (from white to black). All three sets contain an order relation (i.e., 

smaller/larger, brighter/darker grey). Thus, there is dimensional overlap between any 

two of these three sets. However, dimensional overlap between set 1 and set 2 is 

greater than for example between set 1 and set 3 due to the greater similarity of the 

order relations of set 1 and 2 (size) compared to set 1 and 3 (size and grayness). 
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When an experimental task is solved, a perceived stimulus is encoded according 

to its features (set level). The type of coding determines whether dimensional overlap 

between stimulus and response is present or not. The element-level determinant 

addresses the processing stage. In any SRC task, the automatic processing route (upper 

branch) is activated: When a stimulus (Sj) is perceived and dimensional overlap is 

present (i.e., stimulus and response set share common features in a perceptual, 

conceptual, or structural manner), the response that is compatible with the stimulus 

(rj) is identified and programmed, regardless of whether this stimulus feature is task-

relevant or not. In addition, the task-relevant response (rk) is identified via the 

intentional route (lower branch), according to task instructions. The time for response 

identification varies depending on the mapping specified by the instructions. When the 

mapping follows a rule, this rule can be employed for quick response identification. If, 

however, no such rule can be applied and stimuli are assigned randomly to responses, 

the correct response has to be identified by a search through the S-R-table. In both 

cases, if automatic and identified responses are the same (rj = rk), the automatically 

programmed response is carried out; if they are not the same, the automatic response 

has to be aborted and the motor program for the identified response has to be 

retrieved and executed. This, in turn, leads to a decrease in performance. 

 

Stimulus 
Element Sj 

Stimulus 
Encoding 

rj Identitiy & 
Program 

Verification 
rj = rk 

 

Execute rj 

 

Abort rj 

Response 
Identification 
 -table lookup 
 -search 
 -rule 
 -etc 

 

rk Identity 
Retrieve 

Program rk 

 

Execute rk 

? 

Yes 

No 

Congruent 

Incongruent 

Figure 2: The dimensional overlap model (Kornblum et al., 1990). Continuous lines 

depict the processing paths when dimensional overlap is present. 
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2.2.3 The Principle of Polarity Correspondence 

 

The principle of polarity correspondence has been established by Proctor and 

colleagues in 2006 (Proctor & Cho, 2006; Proctor & Vu, 2006). It is based on the 

previously presented account of salient features coding (Proctor & Reeve, 1985; Reeve 

& Proctor, 1990). The major point of this account is that structural correspondence of 

stimulus and response sets affects performance in choice reaction tasks. This was for 

example shown in a study of Proctor and Reeve (1985): The authors observed that 

when the stimuli O, o, Z, and z had to be mapped to two left- and two right-hand 

responses that were horizontally aligned, mappings of the type o, O, Z, z produced 

shorter RT than mappings of the type o, Z, O, z. Proctor and Reeve concluded that the 

salient feature of the stimulus set was the name of the letter. This categorization by 

letter name was already sufficient to cause overlap with the salient feature of the 

response set (i.e., whether a response had to be made with the left or the right hand). 

The idea of structural correspondence, as brought forth in the account of 

salient features coding, also forms the core of the later developed principle of polarity 

correspondence (Proctor & Cho, 2006). This principle assumes that “for a variety of 

binary classification tasks, people code the stimulus alternatives and the response 

alternatives as + polarity and - polarity, and response selection is faster when the 

polarities correspond than when they do not” (Proctor & Cho, 2006, p. 418). For 

example, large numbers and right hand responses are both typically coded as + 

polarity which leads to faster right hand responses for large numbers and faster left 

hand responses for small numbers within a given set. 

It is important to emphasize that polarity correspondence can also be applied 

to stimulus and response sets that do not contain any perceptual or conceptual 

overlap. Particularly, any kind of structural similarity of stimulus and response set can 

lead to consistent polarity coding. This means that associations of stimuli with 

responses can also occur for stimulus sets that do not contain any spatial or magnitude 

information. For instance, for number parity it has been shown that participants code 

odd as - polarity and even as + polarity (Nuerk, Iversen, & Willmes, 2004; Proctor 

& Cho, 2006). 
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In sum, polarity correspondence is a comparably simple principle that, similarly 

to the dimensional overlap account, explains SRC effects for stimulus features when 

they are intrinsically spatial, when a spatial association (of magnitudes) is only merely 

implied or even when a feature can only be divided into categories due to a structural 

asymmetry of the stimulus set concerning that feature. Thus, a variety of effects and 

interferences in processing stimulus features can be explained within this framework, 

especially also for the features that are of interest in the present thesis, that is, pitch, 

timbre, and number. 

 

2.3 Stimulus-Response Compatibility of Isolated Magnitudes: Numbers 

and Pitch Heights 

 

As implied in earlier sections (sections 2.2.1 and 2.2.3), a stimulus feature does 

not have to be intrinsically spatial in order to cause SRC. In fact, stimuli that are only 

considered as activating a mental spatial representation can evoke SRC effects. For 

example, numbers do not explicitly contain any spatial information but are thought to 

be represented spatially (for further details, see section 2.3.1.1). Compatibility effects 

of spatially represented stimuli with responses are said to reflect spatial associations of 

response codes (Lidji et al., 2007). 

Effects of such merely implied spatial associations were first observed for 

numbers in a study by Dehaene, Bossini, and Giraux in 1993. Since then, a wide range 

of similar effects have been reported for magnitudes such as physical size (e.g., Ren et 

al., 2011; Shaki et al., 2012; Shoben et al., 1989), time (e.g., Bonato, Zorzi, & Umiltà, 

2012; Ishihara, Keller, Rossetti, & Prinz, 2008a; Ishihara, Keller, Rossetti, & Prinz, 

2008b; Santiago, Lupiáñez, Pérez, & Funes, 2007; Vallesi, Binns, & Shallice, 2008), color 

in synaesthetes (Brugger, Knoch, Mohr, & Gianotti, 2004), luminance (e.g., Cohen 

Kadosh, Cohen Kadosh, & Henik, 2008b; Pinel, Piazza, Le Bihan, & Dehaene, 2004), 

pitch (e.g., Cho, Bae, & Proctor, 2012; Lidji et al., 2007; Rusconi et al., 2006), and 

others (for a review, see Cohen Kadosh, Lammertyn, & Izard, 2008c). Furthermore it 

has been shown that also the representations of ordinal sequences such as letters of 
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the alphabet or months of the year are spatially organized (e.g., Gevers, Reynvoet, & 

Fias, 2003). 

In the present work, the focus is put to the spatial representation of pitch 

height and the question, whether SRC effects of pitch height are affected by other 

stimulus features that can be coded categorically (timbre) or in terms of a magnitude 

(numbers). Therefore, the following sections introduce the mental representation of 

numbers and pitch heights and their resulting SRC effects, as for both these 

magnitudes, SRC is thought to originate from a specific, underlying spatial 

representation. As numbers were the first magnitude for which such SRC effects were 

explicitly reported, the focus is first put on this concept, followed by a view on the 

mental representation of pitch, which is the concept that is centrally investigated in 

this thesis. 

 

2.3.1 Mental Representation of Numbers 

 

“Number is the within of all things.” 

(Pythagoras of Samos) 

 

Numbers determine our lives. No matter if written, carved into wood, as knots 

in a rope or hammered into stone: Numbers have been and continue to be 

omnipresent in our world and they have been and still are fundamental for the 

development of modern technology. Therefore, numbers are a cultural invention of 

great importance and it is impossible to imagine the world without them (Dehaene, 

2011). 

Considering the importance of numbers in the modern world, it is not 

surprising that a great deal of research has focused on how this abstract concept is 

perceived and processed. Numbers were the first magnitude for which an SRC effect 

due to a merely implied spatial association was reported. The next section therefore 

gives a short overview on how numbers are assumed to be mentally represented, 

followed by an introduction to Spatial Numerical Associations of Response Codes or, in 

short, the SNARC effect (Dehaene et al., 1993), and their underlying mechanisms. 
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2.3.1.1 Defining Numbers and Their Spatial Representation: The Mental Number Line 

 

Numbers as a magnitude are special, as they form an abstract magnitude 

representation (i.e., they represent numerosities). Even though there is a wide range 

of models accounting for number representation, one of the most accepted ones is the 

triple-code model established by Dehaene (1992). Dehaene’s model (Figure 3) is based 

on two premises. The first premise states that numbers are mentally represented in 

three different codes or formats: the auditory verbal word frame, the visual arabic 

number form and the analog magnitude representation. The second premise states 

that each numerical procedure is tied to a specific input and output code. 

 

 

Figure 3: The triple-code model of number processing (Dehaene, 1992) 
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The auditory verbal word frame is required for processing verbal input. This 

level of representation processes number words. According to Dehaene (1992), in this 

format, arithmetical facts (e.g., addition and multiplication tables) and the counting 

skill are stored. For tasks requiring the retrieval of such facts, the input therefore 

needs to be transformed to the verbal code before being processed. Visually presented 

Arabic numerals are processed on the visual arabic number form level. On this level, 

parity judgments are made and arithmetical operations with multi-digit numbers are 

carried out. Also for the judgment on whether two numbers are equal or not, they 

have to first be transformed to the visual arabic format (Dehaene et al., 1993). Within 

the analog magnitude representation level, finally, the magnitude of a number and its 

distance relations with other numbers are represented on an oriented, logarithmically 

compressed number line (Dehaene, 1992). In this number form, magnitude 

comparisons and approximate calculation, as well as subitizing and numerical 

estimation take place. 

Numbers and numerosities are essential for comparing values of measured 

entities. While humans are able to perceive numerosities from very early childhood on 

(e.g., Antell & Keating, 1983; Lourenco & Longo, 2010; Starkey & Cooper, 1980; 

Starkey, Spelke, & Gelman, 1990), the meaning of exact numbers has to be learned. 

Thus, in order to perform comparisons of numbers, humans have to learn that 

numbers represent numerosities and that they are ordered in a fixed fashion. In other 

words, they have to develop an analog magnitude code for numbers. 

The order of numbers is often depicted along a number line on which, at least 

in Western cultures, numbers are ordered ascending from left to right, likely due to 

reading habits (e.g., Shaki, Fischer, & Petrusic, 2009). This number line provides with 

information required to solve for instance retrieval, comparison, or arithmetic tasks 

(Dehaene, 2011). In order to effectively and efficiently retrieve ordinal and magnitude 

information, an internal representation of this number line is required which forms 

along with the learning of numbers and is, therefore, not innate (Núñez, 2011). This so-

called mental number line (MNL, Restle, 1970) is thought to be subject to 

developmental change from a logarithmically compressed representation in childhood 

towards a linear and analogue one (Case & Okamoto, 1996; Laski & Siegler, 2007; 

Siegler & Booth, 2004). However, there is still debate on whether the MNL observable 
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in adults is exclusively linear or if the compressed one is also present and utilized when 

needed (e.g., Gallistel & Gelman, 2000). Due to controversial findings on this issue, it 

may be the case that we use multiple numerical representations (Siegler & Opfer, 

2003) which are accessed flexibly, as determined by the specific requirements of a task 

(Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Lourenco & Longo, 2009; Núñez, Doan, 

& Nikoulina, 2011; Viarouge, Hubbard, & Dehaene, 2011). 

Generally, the MNL is to be viewed as a hypothetical construct for number 

representations that are spatial in nature. On the MNL, numerical distance is 

represented as spatial distance and similar number sizes lead to representational 

overlap (e.g., Göbel, Shaki, & Fischer, 2011). The concept of an MNL is broadly 

assumed to underlie the associations of numbers with space (e.g., Santens & Gevers, 

2008), as reflected by the SNARC effect first reported by Dehaene et al. (1993). 

 

2.3.1.2 Spatial Numerical Associations of Response Codes: The SNARC Effect 

 

The SNARC effect (Dehaene et al., 1993) is probably the best known example 

for SRC effects that are attributed to an internal spatial representation of magnitudes. 

When relative numerical magnitude within a set (e.g., small or large) and response 

location (e.g., left or right) correspond, reactions are made faster and with higher 

accuracy than when the mapping of numbers to space is not corresponding or 

compatible, respectively. This association can be observed even when numerical 

magnitude is not relevant for the task. For instance, in the study of Dehaene et al. 

(1993), participants were asked to judge the parity of a number (i.e., whether a 

number is odd or even) and reacted faster when numerical size and response side 

corresponded. 

The SNARC effect is independent of whether response buttons are horizontally, 

vertically, or diagonally positioned (i.e., response dimension) and how the numbers are 

presented (i.e., modality; Nuerk, Wood, & Willmes, 2005). The effect has shown to 

persist in a considerable number of studies (for a review and meta-analysis, see Wood, 

Willmes, Nuerk, & Fischer, 2008). However, SNARC seems to be comparably flexible 

(Pinhas, Pothos, & Tzelgov, 2013) and depending on the relative magnitude of a 
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number within a given set. This means that numbers are coded as small or large in 

relation to the numerical range employed in a task. For instance, in a task involving 

numbers ranging from 0-5, the numbers 4 and 5 will be coded as large numbers, while 

in a number set ranging from 4-9, 4 and 5 will be coded as (relatively) small numbers 

(Pinhas et al., 2013). Moreover, on the internal scale from 0 to 10, the number 5 holds 

a special status (Tzelgov, Meier, & Henik, 1992), which is likely because 5 halves the 

distance between 0 and 10. Due to this, in stimulus sets with numbers ranging from 0 

to 10, it is likely best to choose from a numerical range with 5 as an implicit midpoint. 

This is even more important as the theory of place coding (e.g., Verguts & Fias, 2008) 

assumes that when a number is perceived, not only the representation of that specific 

number, but also the representation of the neighboring numbers is activated. Thus, 

when stimulus sets contain numbers very close to each other, relative coding of 

numbers as large or small may be impaired. Furthermore, certain conditions, as 

introduced through task instructions (e.g., Bächtold, Baumüller, & Brugger, 1998; Fias, 

2001), incompatible spatial mapping or positioning (e.g., Fischer, Mills, & Shaki, 2010; 

Fischer, Shaki, & Cruise, 2009; Notebaert, Gevers, Verguts, & Fias, 2006; Shaki & 

Fischer, 2008), and memory requirements or load (e.g., Fischer, Riello, Giordano, & 

Rusconi, 2013; Herrera, Macizo, & Semenza, 2008; Lindemann, Abolafia, Pratt, & 

Bekkering, 2008; van Dijck & Fias, 2011; van Dijck, Gevers, & Fias, 2009), can lead to 

reversion or dilution of SNARC effects. 

 

2.3.1.3 Mechanisms Underlying SNARC 

 

Commonly, the SNARC effect is thought to reflect a horizontal internal mental 

representation of numbers ascending from left to right (i.e., the MNL). Already 

Dehaene et al. (1993) attributed their observation of enhanced performance for 

compatible response mappings to a systematic association of numbers with space 

(Wood et al., 2008) and concluded that “the representation of number magnitude is 

automatically accessed during parity judgment of Arabic digits. This representation 

may be linked to a mental number line (Restle, 1970), because it bears a natural and 
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seemingly irrepressible correspondence with the natural left-right coordinates of 

external space” (Dehaene et al., 1993, p. 394). 

It is often assumed that the SNARC effect emerges due to stimulus processing 

along a dual-route architecture (e.g., Gevers, Ratinckx, de Baene, & Fias, 2006). This 

dual-route architecture reflects the major ideas of the dimensional overlap model 

(Kornblum et al., 1990): When a stimulus is presented, two processing routes are 

activated in parallel. While the fast and unconditional route automatically programs 

the response associated with the stimulus according to spatial associations caused by 

the MNL, the slower, conditional route identifies the (correct) response according to 

task instructions. When conditional and unconditional responses are identical, a 

response can be given relatively fast, whereas when this is not the case, the 

unconditional response needs to be aborted in order to give the correct response 

(Gevers et al., 2006). SNARC is therefore thought to originate at a response-selection 

level rather than on earlier levels of stimulus processing (Daar & Pratt, 2008; Keus, 

Jenks, & Schwarz, 2005; Keus & Schwarz, 2005; Müller & Schwarz, 2007). 

In the past there has been a debate on whether the observation of SNARC 

implies a MNL or not (e.g., Fias & Fischer, 2005; Gevers & Lammertyn, 2005; Santens 

& Gevers, 2008; Wood et al., 2008). For example, it is argued that SNARC is just the 

result of a highly overlearned stimulus-response loop (Fitousi, Shaki, & Algom, 2009) or 

that the culturally formed number representation on which SNARC is based is not 

necessarily fundamentally spatial (Núñez et al., 2011). Other findings point towards 

SNARC not only deriving from the response selection stage of processing (e.g., Fischer, 

Castel, Dodd, & Pratt, 2003; Salillas, El Yagoubi, & Semenza, 2008) or that SNARC is 

associated with spatial dimensions other than the horizontal one (Gevers 

& Lammertyn, 2005, Holmes & Lourenco, 2012). These findings, along with the existing 

debate, give rise to the question whether SNARC can be fully explained with the 

concepts of MNL in combination with a dual-route processing architecture. 

As an alternative account, the principle of polarity correspondence (Proctor 

& Cho, 2006, see section 2.2.3) further contests the view that the MNL is the sole basis 

for SNARC effects (e.g., van Dijck, Gevers, Lafosse, & Fias, 2012; Wood et al., 2008). In 

view of polarity correspondence, the asymmetrical categorization of numbers as 

(relatively) small or large within a stimulus set is already sufficient to produce polarity 
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codes that then potentially overlap with the polarity codes of responses. Therefore, a 

MNL would not be required for inducing SNARC effects, because the spatial association 

is linked to relative magnitude (Ben Nathan, Shaki, Salti, & Algom, 2009). 

Concerning the results of their meta-analysis, Wood et al. (2008) state that 

even though the polarity correspondence framework can account for a wider range of 

data than the concept of an MNL, there is clear neuropsychological evidence for the 

use of a mental image (Hoeckner et al., 2008; Vuilleumier, Ortigue, & Brugger, 2004; 

Zorzi, Priftis, Meneghello, Marenzi, & Umiltà, 2006; Zorzi, Priftis, & Umiltà, 2002). 

Wood and colleagues reason that “both coordinated [according to the concept of 

MNL] and categorical [according to polarity correspondence] spatial relations may be 

important for the SNARC effect, in particular, and for the association between 

numbers and space, in general.” (Wood et al., 2008, p. 511). 

Interestingly, the dimensional overlap model (see section 2.2.2) actually 

integrates features of both the dual-route processing architecture and the polarity 

correspondence account. On the representational level, the dimensional overlap 

model assumes that dimensional overlap occurs when stimulus and response sets can 

be grouped into similar categories, which basically resembles the idea of polarity 

coding. On the processing level, the dimensional overlap model contains an 

unconditional, automatic route that programs an automatic response, as well as an 

intentional route that identifies the correct response according to task instructions, 

which is the same in the dual-route architecture assumed for SNARC. The only 

difference is, that for instance for the SNARC effect, the dimensional overlap model 

does not require the assumption that the unconditional response is programmed 

according to the spatial position of a number on the MNL. 

In view of this, it appears that both the principle of polarity correspondence 

and the dimensional overlap model are strong frameworks to account for SNARC and 

other SRC effects. While polarity correspondence is a rather simple principle that can 

be applied to a variety of tasks and settings, the dimensional overlap model is more 

complex, which in turn allows for more precise predictions considering expected 

outcomes. Therefore, both these accounts will be revisited later for the question of 

independence of simultaneous SRC effects and the final discussion of collected data. 
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2.3.2 Mental Representation of Pitch 

 

“How often do you hear a single sound by itself? Only when doing 

psychoacoustic experiments in a soundproof booth!” 

(Christopher J. Darwin) 

 

Sounds are an inextricable part of our environment at all times. An important 

attribute of sound is pitch, because it helps with the differentiation as well as with the 

grouping of acoustic information in our environment and is therefore “of primary 

importance in defining and differentiating our acoustic environment” (Plack & 

Oxenham, 2005, p. 3). Pitch is, for instance, important for speech communication, as it 

can carry prosodic (e.g., English), but also semantic information (e.g., Chinese). 

Furthermore, pitch and pitch perception are also central to music, as simultaneous and 

sequential presentation of tones forms the basis of harmony and melody (Schwartz & 

Purves, 2004). 

Despite the criticism by Darwin (2005), who argued that in our everyday 

environment we usually perceive more than one sound at once, most research on 

pitch and pitch perception has focused and continues to focus on the perception of 

isolated tones. A reason for doing so is that some of the earlier research on SRC effects 

aimed to answer questions of applied psychology, like, for instance, how to best relate 

displays and controls. In line with this applied research, it appears more useful to study 

effects of isolated tones instead of a whole set of tones. Isolated tones are also used 

when representational organizations of pitch and pitch processing are investigated. 

Typically, early studies on the spatial representation of pitch required their participants 

to estimate the spatial location of the pitch height of a sound (e.g., Mudd, 1963; Pratt, 

1930; Roffler & Butler, 1968; Stumpf, 1883; Trimble, 1934). It has only been more 

recently that spatial representations of pitch height have been investigated in a more 

indirect way, analogous to studies on the SNARC effect. 
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2.3.2.1 Defining Pitch and its Spatial Representation 

 

Pitch is “the auditory attribute of a sound in terms of which sounds may be 

ordered on a scale extending from low to high. Pitch depends primarily on the 

frequency content of the sound stimulus, but it also depends on the sound pressure 

and the waveform of the stimulus” (ANSI, 1994). Subjectively perceived pitch is related 

to and primarily determined by the fundamental frequency of a tone (Moore, 2003; 

Schwartz & Purves, 2004). Even though it cannot be simply described as a function of 

frequency or any other physical stimulus parameter (Hall & Peters, 1981), in this work, 

pitch height will be referred to in terms of fundamental frequency (in Hz). 

In the Western world, pitches are usually described as low or high (e.g., 

Casasanto, Phillips, & Boroditsky, 2003; Rusconi et al., 2006; Shayan, Ozturk, & Sicoli, 

2011), which may even to a part form its vertical mental representation (Dolscheid, 

Shayan, & Casasanto, 2011). The question of whether this reflects actual spatial 

associations for pitch height was already assessed by Stumpf in 1883, who argued that 

the use of the vertical spatial dimension for describing pitch height was only 

metaphoric and that the auditory sensation did not include a real spatial 

characterization. 

Contrary to the conclusion drawn by Stumpf (1883), later studies encouraged 

the idea of spatial representations of pitch height. Pratt (1930), who asked participants 

to locate the positions of tones on a numbered scale, observed that tones were 

located ascending on this scale according to their pitch height. He concluded that high 

tones seemed to be phenomenologically higher in space than low ones (Rusconi et al., 

2006). Further studies produced similar results when participants were instructed to 

estimate the spatial position of sounds (e.g., Mudd, 1963; Roffler & Butler, 1968; 

Trimble, 1934; for a more detailed overview see Rusconi et al., 2006). 

The structural relations between pitches can be described with geometrical 

models (Rusconi et al., 2006). Such models are derived from multidimensional scaling 

of pitch judgments (Shepard, 1982; Ueda & Ohgushi, 1987). Geometrical models 

describe pitch height in terms of an ascending spiral with circular (representing pitch 

chroma) and vertical rectilinear (representing pitch height) components (Ueda 

& Ohgushi, 1987). Therefore, as can be seen in Figure 4, geometrical models assume a 
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more complex, two-dimensional, helix-shaped representation of pitch (Cohen Kadosh, 

Brodsky, Levin, & Henik, 2008a). This idea is supported by behavioral (Cohen Kadosh et 

al., 2008a), as well as neuropsychological (Warren, Uppenkamp, Patterson, & Griffiths, 

2003) findings. 

 

Figure 4: The pitch helix (Shepard, 1982) 

 

Later studies on spatial associations of pitch height with representational space 

(e.g., Cho et al., 2012; Lidji et al., 2007) have confirmed a vertical rather than a 

horizontal orientation of this representation. In analogy with the MNL for numbers, 

Lidji et al. (2007) termed the ascending continuum, on which pitches are ordered from 

low to high, the mental pitch line. 

 

2.3.2.2 Spatial Pitch Associations of Response Codes: The SPARC Effect 

 

The pitch height of a sound is typically coded as a magnitude in choice reaction 

tasks, even when it is task-irrelevant. In tasks which require the judgment of a stimulus 

feature other than pitch (e.g., instrumental timbre), responses to tones high in pitch 

are made faster and more accurately with an upper hand key while responses to low 

C# 
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tones are made faster with the lower hand key. This effect is termed the Spatial 

Musical (or Pitch) Associations of Response Codes (SMARC, Rusconi, Kwan, Giordano, 

Umiltà, & Butterworth, 2005; Rusconi et al., 2006; SPARC, Lidji et al., 2007). In 

agreement with Lidji et al. (2007), who stated that the pitch of isolated tones (as used 

in the present work) could not necessarily be considered music, the acronym SPARC 

will be adopted in this thesis. 

Even though the acronym for spatial associations of pitch with response codes 

was only first formed in analogy to the term SNARC in 2005 by Rusconi et al., results on 

SRC for pitch height were already reported earlier. For instance, in 1982, a study was 

conducted by Shepard, who found a compatibility effect for the pitch height of a 

stimulus and spoken responses that differed in whether the vowel sound was high or 

low (i.e., /i:/ = high vs. /u:/ = low). A study of Walker and Ehrenstein (2000), who 

employed dynamic auditory stimuli (i.e., there was a pitch increase or decrease within 

a stimulus), used behavioral measures that were more similar to those of Rusconi et al. 

and Lidji et al.: Here, participants had to either respond to the initial pitch of the 

stimulus (low vs. high) or the direction in which the pitch changed (lower vs. higher) 

with an upper or lower response key. Results showed compatibility effects for pitch 

change, and, more importantly, for the initial pitch in which a tone was presented, 

regardless of task. Later studies investigating the SPARC effect aimed to investigate 

effects of spatial mapping of pitch in an isolated way and, therefore, used non-dynamic 

tones in which pitch was kept constant within a stimulus for both explicit (e.g., pitch 

comparison) and implicit (e.g., timbre judgment) SPARC tasks. 

The vertical SPARC effect can be observed when responses are aligned 

vertically, that is, when there is an upper and a lower response key. The effect is 

commonly attributed to a vertical mapping of pitch heights onto representational 

space (e.g., Cho et al., 2012) which reflects a vertically oriented mental pitch line (Lidji 

et al., 2007). Vertical SPARC is typically independent of task and musical experience of 

participants (e.g., Lidji et al., 2007; Rusconi et al., 2006). This means that even 

participants with little or no former musical training (i.e., nonmusicians) automatically 

map pitch onto vertical responses, even when the pitch height of heard tones is not 

task-relevant. 
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When responses have to be made along a horizontal response alignment (i.e., 

responses are given with a left and right response key), a horizontal SPARC effect can 

be observed. Such an effect expresses itself through enhanced performance when 

tones low in pitch have to be mapped to a left key response and tones high in pitch 

have to be mapped to a right key response. This mapping is affected only by the 

location of the response key, but not by the responding hand (Rusconi et al., 2006). 

Horizontal SPARC effects are attributed to an orthogonal transformation of the original 

vertical pitch-to-space mapping into the horizontal dimension (Lidji et al., 2007; 

Nishimura & Yokosawa, 2009; Rusconi et al., 2006), which will be explained in more 

detail in the following section (2.3.2.3). 

Horizontal pitch-to-space associations (i.e., horizontal SPARC) are known to be 

modulated by musical experience of participants (Cho et al., 2012; Lidji et al., 2007; 

Rusconi et al., 2006), task relevance of pitch (Cho et al., 2012; Lidji et al., 2007; Rusconi 

et al., 2006), and the presence of a reference tone (Cho et al., 2012). Generally, the 

remapping of the vertical representation onto the horizontal response alignment is 

less stable in nonmusicians. When the task is explicit (i.e., pitch is task relevant; e.g., 

pitch comparison), nonmusicians map pitch onto space automatically; when, however, 

the task is implicit (i.e., pitch his not task relevant; e.g., timbre judgment), results are 

inconsistent (SPARC observed: e.g., Nishimura & Yokosawa, 2009; Wolf, Bittrich, & 

Blankenberger, 2012; no SPARC observed: e.g., Lidji et al., 2007; Rusconi et al., 2006). 

A recent study suggests that within the view of polarity correspondence as an 

underlying mechanism, the relative coding of pitch as low or high is enhanced when a 

reference tone precedes the target (referential coding, Cho et al., 2012). 

 

2.3.2.3 Mechanisms Underlying SPARC 

 

Generally, vertical SPARC is assumed to reflect the mental representation of 

pitch along a vertically oriented continuum. Rusconi et al. (2006) concluded “that a 

representational dimension (pitch height) influences performance with vertically 

aligned responses irrespective of its relevance to the task. This suggests that our 
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cognitive system maps pitch onto a mental representation of space” (Rusconi et al., 

2006, p. 126). 

In analogy with the assumptions made earlier for SNARC (see section 2.3.1.3), 

SPARC can be explained with the concept of a mental pitch line. Even though the 

spatial representation of pitch is assumed to be two-dimensional (e.g., Shepard, 1982), 

the primary dimension of this representation is the vertical axis which represents 

increasing frequency in terms of a mental line. Within a dual-route processing 

architecture, this mental pitch line causes unconditional responses to be prepared in 

accordance with a heard tone being low or high in pitch. However, like argued for the 

case of SNARC, SPARC has been observed also in the horizontal dimension, which 

questions the idea of a vertical pitch line to account for all spatial associations of pitch 

with responses. Like for SNARC, the dimensional overlap model (Kornblum et al., 

1990), as well as the principle of polarity correspondence (Proctor & Cho, 2006), 

account for a wider range of pitch-to-space associations. For instance, according to the 

principle of polarity correspondence, high pitches, as well as upper or right key 

responses, are coded as + polarity. Thus, when a stimulus has to be mapped to a 

response with identical polarity, performance is enhanced. 

The vertical spatial representation of pitch is thought to be the underlying basis 

for the observation of horizontal SPARC effects. As mentioned before, it is likely that 

horizontal SPARC effects result of an orthogonal transformation of the vertical pitch-

to-space mapping into the horizontal response dimension (e.g., Rusconi et al., 2006). 

This transformation occurs as a consequence of the strong association of the 

categories up and right and the categories left and low (e.g., Cho & Proctor, 2003; 

Weeks, Proctor, & Beyak, 1995). In terms of polarity correspondence, this means that 

the response categories within the horizontal and vertical response set are coded as - 

and + polarity and fortuitous mapping leads to better performance. 

According to Cho et al. (2012), the remapping of the vertical spatial 

representation of pitch into the horizontal dimension is facilitated in nonmusicians 

when they are provided with a task-irrelevant reference tone. This means that when 

such a reference tone with a constant, intermediate pitch precedes the target 

stimulus, participants unconditionally compare pitch heights. This comparison leads to 

the coding of the target pitch as (relatively) low or high. This relation is then coded  
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as - or + polarity which in turn enhances performance for responses of the same 

polarity as the target. 

Alternatively, the dimensional overlap model (Kornblum et al., 1990) would 

state that within a stimulus set, pitch heights, just like numbers, can be coded into 

categories. Also within this model, the presence of a reference tone would, as 

assumed by Cho et al. (2012), increase the likelihood of sounds being grouped into 

pitch categories which then leads to dimensional overlap between the stimulus feature 

pitch and the response set. However, dimensional overlap of pitch with horizontal 

responses is likely less strong than the overlap between pitch heights and vertically 

aligned responses, as pitch and vertical space share the same relation (low/high), while 

the relations of pitch and horizontal space are only similar (low/high and left/right). 

In sum, the principle of polarity correspondence (Proctor & Cho, 2006) enables 

to explain both horizontal and vertical pitch-to-space associations (Cho et al., 2012) in 

a simplistic fashion, while, again, the dimensional overlap model (Kornblum et al., 

1990) allows for a prediction of outcomes in greater detail. However, it is still unclear 

whether the observation that only nonmusicians show SPARC independently of 

experimental conditions can be solely attributed to the fact that, in nonmusicians, 

associations of pitch to vertical space may not be as overlearned as in musicians (e.g., 

Lidji et al., 2007). In order to further clarify what factors affect horizontal SPARC in 

nonmusicians, the present thesis works with SPARC as central concept of interest. 

Particularly, it is investigated, whether pitch height causes automatic horizontal spatial 

associations independently of other, accompanying stimulus features. 

 

2.4 Simultaneous Stimulus-Response Compatibility Effects 

 

Up to this point, the present thesis has brought forward details and accounts 

for SRC effects concerning isolated stimulus features with the examples of numerical 

magnitude and pitch. However, natural objects in our environment, as well as stimuli 

employed in experimental tasks, usually contain information on more than one 

stimulus dimension. When such stimuli are perceived, an integration of multiple 

stimulus codes is required which can lead to interferences in stimulus processing and 
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response selection. In view of the concept of SRC it is of interest how such processing 

interferences can affect SRC effects of multiple stimulus features. In order to further 

investigate this question, this section begins with a view on the common processing of 

simultaneously perceived stimulus features. Next, the dimensional overlap model 

(Kornblum et al., 1990) and the principle of polarity correspondence (Proctor & Cho, 

2006) are presented as frameworks that can account for simultaneous SRC effects. The 

section then continues with the question of whether horizontal SPARC in nonmusicians 

is independent of other auditory stimulus features and concludes with a more detailed 

look on timbre as a categorical and number as an ordinal variable that might interact 

with pitch. 

 

2.4.1 Processing of Simultaneously Perceived Stimulus Features 

 

When a stimulus with multiple features is perceived, all of these features are 

encoded and activated (Kahnemann & Henik, 1981; Kahnemann & Treisman, 1984; 

Tzelgov et al., 1992). This assumption entails potential interference between any kind 

of stimulus feature that is varied within a stimulus set. Whether multiple stimulus 

features interfere with each other or not depends on the way in which a stimulus is 

processed. In the past, there has been a long ongoing debate on whether 

multidimensional stimuli are processed holistically or analytically that cannot be 

answered in an all-or-none way (Kemler Nelson, 1993). Rather, since the 1960s, it is 

assumed that the type of processing depends on the type of stimulus (e.g., Garner, 

1974; Lockhead, 1966; Lockhead, 1972; Shepard, 1964). 

Stimuli within a set typically entail different features or dimensions on which 

they can vary and these dimensions can be classified as integral dimensions or 

separable dimensions (Garner, 1974). Garner (1974) introduced a set of four 

converging operations by which integral dimensions can be defined. Of interest for the 

present thesis are two of these operations, as they are related to speeded 

classification. One operation states that dimensional integrality is present when 

interference is observed in a speeded filtering task requiring selective attention to one 

dimension while the other one is varied. A very simple example for this kind of 
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observation is a variant of the Stroop task (Stroop, 1935). In this task, participants are 

required to respond to the color in which a color word is printed. Thus, selective 

attention has to be paid to the color dimension (i.e., the color in which the word is 

printed in), while the other dimension (i.e., the color word) varies but has to be 

ignored. In this task it is typically observed that performance drops when print color 

and color word do not match. Therefore, visual color information and written color 

information can be considered integral dimensions. The second operation of interest 

introduced by Garner (1974) states that dimensions are integral when a correlation of 

dimensions leads to redundancy gain. In the Stroop example this would mean that in 

one block, participants would be presented with stimuli in which print color and color 

word are always consistent (i.e., the dimensions are positively correlated or 

congruent), while in the other block, the two dimensions would always be inconsistent 

(i.e., the dimensions are negatively correlated or incongruent). Typically, when 

dimensions are consistent, items are responded to faster than when they are 

inconsistent (i.e., there is a redundancy gain). When stimulus dimensions are not 

integral but separable, no such interference effects or redundancy gains are observed. 

Garner’s (1974) distinction of integral and separable dimensions can be re-

formulated in terms of dependence and independence as investigated in the present 

thesis. As a consequence of the converging operations, integral dimensions are 

processed dependently, while the processing of separable dimensions is independent. 

This distinction is also valid for stimulus features that cause SRC. 

In SRC tasks, stimulus dimensions or features can be grouped into three types: 

features that entail categorical information (e.g., number parity), features that entail 

spatial associations (e.g., numerical size), and features that are intrinsically spatial 

(e.g., stimulus location). Technically, any two of these three types can be varied along 

with each other in experimental tasks. Table 1 displays a matrix in which examples for 

each type of combination are presented. Note that the given examples only provide an 

illustration for possible feature type combinations; there is no statement made on 

whether the features or dimensions in these examples are integral or not. 
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Table 1: Illustrating examples for combinations of different types of simultaneously 

perceived stimulus features. 

 categorical spatial association intrinsically spatial 

categorical 
color words printed in 

varying colors 
numbers printed in 

varying colors 

shapes presented on 
left or right side of a 

screen 

spatial association  
numbers printed in 

different sizes 

numbers presented on 
left or right side of a 

screen 

intrinsically spatial   
words ‘left’ and ‘right’ 
presented on left or 
right side of a screen 

 

 

2.4.2 Accounting for Simultaneous Stimulus-Response Compatibility 

Effects 

 

When two stimulus features within a set can cause SRC in a given task, this 

means that both features overlap with the response. However, even though the 

overlap with the response could be seen as a conceptual similarity between the two 

stimulus features, this does not imply that these features are processed as integral 

dimensions. Whether two stimulus features that are consistent with responses are 

processed independently or not also depends on the degree to which they contain 

spatial information and whether the categories that can be formed for each feature 

contain similar relations (Henik & Tzelgov, 1982). Thus, SRC effects can jointly occur 

but still be independent. 

In order to shed some light on possible underlying mechanisms for 

simultaneous SRC effects, in the following sections, the principle of polarity 

correspondence (Proctor & Cho, 2006), as well as the dimensional overlap model 

(Kornblum et al., 1990) will be revisited. In both cases, effects of integral and separable 

dimensions will be discussed. 
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2.4.2.1 Polarity correspondence of multiple stimulus features and responses 

 

Within the framework of polarity correspondence (Proctor & Cho, 2006) it is 

stated that response selection will be faster when polarity codes of stimulus and 

response alternatives correspond (also see section 2.2.3). For the example of numbers 

brought forward earlier, this would mean that large numbers are responded to faster 

with a right hand response because both are coded as + polarity. However, the 

principle of polarity correspondence can also account for consistency effects other 

than isolated SRC. 

When two features of the same stimulus can be coded as polarities, this can 

lead to enhanced performance when the polarity codes of these stimulus features 

correspond, resulting in a so-called congruency effect. For instance, a small number 

printed in a small font is congruent, because numerical and physical magnitudes in this 

example are both coded as the – polarity. In terms of Garner’s (1974) distinction, a 

congruency effect resembles integral dimensions. It is important to note that such a 

congruency effect is only bound to the consistency of stimulus feature polarities, but 

not to that of responses. 

When stimulus features are not integral but separable, no interference effects 

or redundancy gains will be observed (Kemler Nelson, 1993). However, it is still 

possible that both SRC effects present themselves independently of each other. Such 

an observation would mean that the polarity codes of both stimulus features and of 

the response set affect the response selection process. 

 

2.4.2.2 Dimensional overlap between multiple stimulus features and responses 

 

The dimensional overlap model (Kornblum et al., 1990) assumes an automatic 

route that activates an unconditional response when dimensional overlap between a 

stimulus feature and the response set is present (for more detail, see section 2.2.2). 

When the unconditionally programmed response is not consistent with the response 

that has been identified according to task instructions, the response time will increase 

because the unconditional response has to be aborted and the identified response has 
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to be executed. However, the dimensional overlap model can also account for effects 

caused by more complex configurations of dimensional overlap between stimulus 

features and the response set. Table 2 is adapted from Kornblum and Lee (1995) and 

displays the eight possible types of stimulus-response ensembles that exist according 

to the taxonomy of the dimensional overlap model (Kornblum et al., 1990). 

 

Table 2: Overview of stimulus-response ensembles according to the taxonomy of the 

dimensional overlap model (adapted from Kornblum & Lee, 1995) 

  Overlapping ensemble dimensions  Illustrative stimulus and response sets 

  S-R dimensions  
S-S 

dimensions 
 Illustrative stimulus sets   

Ensemble 
Type 

 
Relevant 

(Sr) 
 

Irrelevant 
(Si) 

 
 

(Sr-Si) 
 

Relevant 
(Sr) 

 
Irrelevant 

(Si) 
 

Illustrative 
response 

sets 

1  no  no  no  colors  
geometric 

shapes 
 digit names 

2  yes  no  no  digits  colors  digit names 

3  no  yes  no  colors  digits  digit names 

4  no  no  yes  colors  
color 

words 
 digit names 

5  yes  yes  no  colors  
position 
(left or 
right) 

 

keypresses 
(left or 

right) on 
colored keys 

6  yes  no  yes  
position 
(left or 
right) 

 
colors 

and color 
words 

 
keypress 
(left or 
right) 

7  no  yes  yes  colors  

color 
words/ 
position 
(left or 
right) 

 
keypress 
(left or 
right) 

8  yes  yes  yes  colors  
color 

words 
 color names 

 

 

The mechanisms that describe the experimental outcomes for each of these 

ensemble types are theoretically explained by the dimensional overlap model as 

presented by Kornblum et al. in 1990. However, a clearer and more detailed view is 

provided by the slightly expanded model presented in a paper by Kornblum and Lee in 

1995 (Figure 5). 
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Figure 5: The extended dimensional overlap model (Kornblum & Lee, 1995) 

 

In this version of the model, after the encoding of the stimulus, there are two 

different paths, depending on the amount of stimulus features that cause overlap (i.e., 

tags). When there is only one tag present, stimulus processing continues like in the 

original version of the model. When there are two tags present, the codes for these 

two stimulus features are compared for dimensional overlap. If they are the same (i.e., 

when there is dimensional overlap between Si and Sj and stimulus codes are consistent 

or congruent, respectively), then this information determines the stimulus vector (S.V.) 

which then in turn enters the processing stage and activates the unconditional, 

automatic response. When two tags are present and the stimulus codes are not the 

same (i.e., there is dimensional overlap between Si and Sj and codes are not consistent 

or incongruent, respectively), it is clear that for giving a correct response, the identity 

of this correct response (rk), as determined by task instructions, has to be produced 

and the response program has to be retrieved. This, in turn, leads to a further increase 

of time until the response can be executed. 

The present thesis aims to investigate whether horizontal SPARC in 

nonmusicians is independent of other, simultaneously perceived stimulus features, 

namely timbre and number. In a horizontal explicit SPARC task, participants respond to 

the pitch height of a heard sound. Therefore, the relevant stimulus dimension (Sr) 

entails dimensional overlap with the response. Number as a task-irrelevant feature (Si) 

clearly also overlaps with the response set. Thus, stimuli containing numerical and 

pitch information may belong to the group of type 5 or type 8 ensembles, depending 

on whether pitch and number also share dimensional overlap (Sr-Si). If such stimuli 
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form a type 5 ensemble, the there will be no redundancy gain or interference effects 

between the pitch and number dimension (i.e., both SRC effects may be present but if 

so, they will only be additive). If this is not the case, the stimuli form a type 8 

ensemble, where then congruency effects should be obtained. 

For timbre, it is not entirely clear at this point whether it produces SRC effects 

or not. If it does, stimulus sets containing pitch as relevant (Sr) and timbre as irrelevant 

(Si) dimension are type 5 or type 8 ensembles. If timbre does not produce any SRC 

effects, and therefore no overlap with responses, stimulus sets varying on the pitch 

and timbre dimension are type 2 or type 6 ensembles, depending on whether pitch 

and timbre share dimensional overlap. For a type 2 ensemble, a classic SPARC effect is 

the expected outcome. For a type 5 ensemble, the outcome may be a SPARC effect. 

However, it may also occur that the programming of an automatic response according 

to pitch is impaired due to interferences of pitch and timbre on the stimulus level. 

In an implicit SPARC task, pitch height is a task-irrelevant feature. This means 

that there is dimensional overlap between the task-irrelevant dimension (Si) and the 

response set. When pitch is combined with number as a relevant dimension (Sr), this 

again leads to type 5 or type 8 ensembles. The same is the case if pitch is combined 

with timbre under the precondition that timbre produces SRC as well. If timbre does 

not produce any SRC, this would mean that the task-relevant dimension (Sr) does not 

produce any dimensional overlap with the response set. Such stimulus sets are either 

type 3 or type 7 ensembles, depending on the relation between pitch and timbre. If 

there is no dimensional overlap between pitch and timbre, a standard implicit SPARC 

effect should be obtained. If there is dimensional overlap, such an implicit SPARC 

effect may not be observed. 

Whether or not pitch and timbre or pitch and number cause dimensional 

overlap and are thus integral dimensions when varied within one and the same 

stimulus set, can only be clarified through experimental studies. In the following 

sections, outcomes on past studies related to this matter will be presented. 
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2.4.3 SPARC and Features of Auditory Stimuli: Dependent or 

Independent? 

 

The perception of any kind of stimulus typically takes place on multiple 

dimensions. For instance, for a heard sound, not only its pitch, but also other features 

such as timbre, loudness, or duration, can be identified (e.g., Roederer, 2008). The 

principle of polarity correspondence states that polarity coding can take place for any 

kind of stimulus (feature) or response set, if the categories within a set can be coded 

asymmetrically (Proctor & Cho, 2006). Thus, a sound contains multiple kinds of 

information that can potentially be coded as polarities. This is for instance especially 

the case for duration and loudness, as these features are considered magnitudes as 

well. In addition, if a stimulus set contains more than one timbre, this feature can 

potentially be coded as polarities as well. 

Considering the results of past studies (e.g., Lidji et al., 2007; Rusconi et al., 

2006), it appears to be the case that vertical SPARC is generally stable, which implies 

that in the vertical response condition, mainly the polarity codes for pitch height affect 

responses. This is not surprising in view of the knowledge that most SRC effects, 

including spatial associations for duration and loudness, originally emerge in a 

horizontal response dimension, which may reduce interferences. Alternatively, it can 

be argued that in the vertical response condition, dimensional overlap of stimuli with 

responses is induced and reinforced due to the semantic categorization of pitches as 

low or high. 

In the horizontal response dimension, it has been shown that pitch-to-space 

associations are less stable in nonmusicians (Cho et al., 2012; Lidji et al., 2007; Rusconi 

et al., 2006). When responses are made with horizontally aligned keys, polarity codes 

of other stimulus features that are usually represented along or associated with the 

horizontal axis might modulate polarity correspondence of pitch and response or, in 

terms of dimensional overlap, the stimulus feature that causes the unconditional, 

automatic response. Therefore, it is important to consider whether horizontal SPARC 

emerges independently of other stimulus features or not. In particular, it is of interest 

whether possible interferences emerge only for stimulus features that can be 
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considered magnitudes, like numerical magnitude, or also for stimulus features that 

only contain structural similarity with the response set, like timbre. 

 

2.4.3.1 SPARC and Timbre 

 

Previous research on the horizontal SPARC effect has identified the factors task 

(explicit vs. implicit), participant subgroup (musicians vs. nonmusicians), and procedure 

(reference tone vs. no reference tone) to affect the mapping of pitch onto horizontal 

space (e.g., Cho et al., 2012; Lidji et al., 2007; Rusconi et al., 2006; for more details, see 

section 2.3.2.2). It is important, however, to also take properties of the stimulus set 

into consideration. When any kind of structural similarity is sufficient to produce 

overlapping polarity codes of stimulus and response, participants might as well code 

stimulus attributes other than the pitch of a heard sound as polarities (e.g., timbre). 

This, in turn, might then interfere with response selection based on pitch polarity and 

affect participants’ response behavior. 

Timbre is, next to pitch and loudness, one of the three primary dimensions of 

sound (Melara & Marks, 1990a; Melara & Marks, 1990b). According to Levitin (1999), it 

is the most important one of the six perceptual attributes of auditory events. Timbre is 

the auditory feature that allows to distinguish between different types of sound 

production (i.e., the identity of a sound source; e.g., Caclin, Giard, Smith, & McAdams, 

2007), even when the other features remain the same and it is mainly determined by 

the specific quality of the frequency spectrum (e.g., Roederer, 2008). Even though 

timbre is often defined in a categorical fashion, humans are able to distinguish timbres 

along different dimensions such as for example attack time, spectral centroid, and 

spectral flux (McAdams, Winsberg, Donnadieu, De Soete, & Krimphoff, 1995; Menon et 

al., 2002) and it has been sown that such timbre dimensions are processed in an 

interactive fashion (Caclin et al., 2007). Despite this, in this work, timbre will be 

considered in terms of a categorical variable. The reason for doing so is that in the 

experiments investigating relations of SRC effects of pitch and timbre in the present 

thesis, only two timbres that are very easily distinguishable are employed. 
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In the stimulus sets of previous SPARC studies, timbre has been varied to a 

great extent (single instruments: e.g., piano, violin, clarinet; instrument groups: e.g., 

percussions, wind instruments, brass instruments, string instruments; non-

instrumental sounds: e.g., sinusoids), but has often not been included as a factor in 

analyses. Timbre and pitch are, however, not perceived independently (e.g., Beal, 

1985; Crowder, 1989; Krumhansl & Iverson, 1992; Melara & Marks, 1990a; Melara 

& Marks, 1990b; Russo & Thompson, 2005; Singh, 1992; Vanzella, Schellenberg, & 

Bishop, 2010; Warrier & Zatorre, 2002; Zarate, Ritson, & Poeppel, 2013). Participants 

cannot ignore the task-irrelevant variation of one of these two attributes while 

attending to the other, task-relevant one (Pitt, 1994). Moreover, especially for 

nonmusicians it is difficult to ignore timbre changes when judging pitch and vice versa 

(Krumhansl & Iverson, 1992). This is particularly interesting because it means that pitch 

and timbre can share dimensional overlap. In addition, for nonmusicians, timbre is a 

more salient sound attribute and weighed more heavily than pitch (Pitt, 1994; 

Wolpert, 1990). Thus, even when timbre categories are easily distinguishable, they 

have the potential to affect pitch-to-space associations. Therefore, timbre has to be 

considered as a possible modulating factor on automatic mappings of pitch to space. 

The relative pitch height of a sound within a given set and its tonal distance 

from the middle of this set is yet another important attribute by which sounds can be 

classified. Tonal distance can affect performance in speeded choice-reaction tasks such 

as an explicit or implicit SPARC task. The greater the distance between two pitches, the 

easier they are discriminable (e.g., Cohen Kadosh et al., 2008a; Elkin & Leuthold, 2011). 

Pitch distances have previously been shown to interact with pitch-to-space 

associations. For instance, for relatively great pitch distances, the strength of the 

observed SPARC effect increases (Beecham, Reeve, Wilson, & Antonietti, 2009) while 

for relatively small distances, the effect may disappear. When tonal distances are 

within the range of half an octave, SPARC can even be reversed (Rusconi et al., 2006). 

In sum, the pitch distances within a stimulus set and the resulting tonal range 

potentially affect the spatial mapping of pitch and interferences with other stimulus 

features to the extent that possible effects are concealed if pitch distances are not 

considered as a factor in analyses. 
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To summarize, prior studies on the automatic mapping of pitch height to space 

have shown a dependency of musical experience, response alignment, and the 

presence of a reference tone (e.g., Cho et al., 2012), while little attention has been 

paid to sound attributes other than pitch, such as timbre and pitch distance or pitch 

range, respectively. These factors, however, have the potential to modulate automatic 

spatial mappings of pitch heights. This might be particularly relevant for nonmusicians, 

which have been shown to produce less stable automatic pitch-to-space mappings. 

The aim of Study 1 in the present thesis is therefore to investigate the influence 

of timbre on automatic coding of pitches as low and high in nonmusicians. Further 

details on experimental variation and methods are given in section 3.1. 

 

2.4.3.2 SPARC and SNARC 

 

The principle of polarity correspondence (Proctor & Cho, 2006; sections 2.2.3 

and 2.4.2.1) and the dimensional overlap model (Kornblum et al., 1990; sections 2.2.2 

and 2.4.2.2) enable to account for effects that may be observed when polarity codes 

for features of one and the same stimulus correspond or, in other words, when there is 

dimensional overlap between multiple stimulus features. In particular, it allows for 

explaining possible interactions of SPARC with other stimulus features that have not 

been considered in the past. Specifically, also interferences of SPARC with 

representations of other magnitudes and resulting effects can be accounted for. 

Timbre is a stimulus feature that can, at least in the studies of the present 

thesis, at the most produce structural overlap with a response set, due to its 

categorical nature. In order to gain a more complete picture, however, it is of interest 

to also investigate whether pitch-to-space associations, which are thought to originate 

from a vertical spatial representation, are affected when varied along with another 

magnitude representation that originates in the horizontal dimension. Numerical 

magnitude is a very suitable stimulus feature for this, as spatial-numerical associations 

have been shown to be relatively persistent (Cohen Kadosh et al., 2008c), specifically 

also in the auditory domain (e.g., Cohen Kadosh et al., 2008c; Nuerk et al., 2005). 
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When numerical magnitude is varied along with other magnitudes within a 

stimulus set, congruency effects can be observed. Such effects involving numbers are 

typically termed as size congruity effects (e.g., Henik & Tzelgov, 1982; Schwarz & 

Heinze, 1998). A prominent example for the size congruity paradigm is the combined 

variation of numerical and physical size of stimuli (e.g., Algom, Dekel, & Pansky, 1996; 

Cohen Kadosh & Henik, 2006; Henik & Tzelgov, 1982; Pansky & Algom, 1999; Santens 

& Verguts, 2011; Schwarz & Ischebeck, 2003). In this paradigm, participants are usually 

presented with two digits of different physical and numerical sizes and are asked to 

judge which digit is (either numerically or physically) larger by pressing the response 

key on the side on which the (numerically or physically) larger stimulus appeared. 

When stimuli are congruent, that is, when a stimulus is both physically and numerically 

larger (e.g., 2, 8), responses are faster than when physical and numerical size of the 

stimuli do not correspond (e.g., 2, 8). Size congruity effects can also be observed when 

only a single digit is presented (e.g., Santens & Verguts, 2011; Schwarz & Heinze, 1998; 

Schwarz & Ischebeck, 2003). In this kind of task, participants are asked to compare the 

presented stimulus to a given standard (e.g., whether its numerical magnitude is 

smaller or larger than 5). 

Effects of size congruity have also been reported in studies that investigated 

interactions between numerical magnitude and duration (Dormal, Andres, & Pesenti, 

2008; Dormal, Andres, & Pesenti, 2012), dot size (Gebuis, Cohen Kadosh, Haan, & 

Henik, 2009), luminance (Cohen Kadosh et al., 2008b), and line length (Dormal et al., 

2012; Dormal & Pesenti, 2007). The observed interferences are generally attributed to 

be a consequence of shared magnitude processing (Cohen Kadosh et al., 2008c). 

The exact processing stage on which interference due to size congruity is 

thought to take place has been further specified through an extensive study by 

Santens and Verguts (2011). These authors tested whether the interaction of 

numerical and physical size derived from the representational or rather from the 

decisional level of stimulus processing. While the shared representations account 

attributes observed interferences to the mapping of both numerical and physical 

magnitudes onto a shared representation, the shared decisions account states that this 

interaction takes place on the decision level (Schwarz & Heinze, 1998, see Figure 6). 
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In their study, Santens and Verguts (2011) found that congruity effects were 

task-dependent. Specifically, when the task required the comparison of (numerical or 

physical) size, congruency effects were observed, whereas when the task involved the 

judgment of number parity, congruency did not facilitate responses. These results 

imply that congruency effects derive on a decisional level rather than on a 

representational one. This is because in Santens and Verguts’ experiments, only the 

required decision, but not the stimulus set itself was varied. By implementing the 

shared decisions account into a computational model, Santens and Verguts were able 

to simulate congruency effects analogous to the behavioral results in all their 

experimental tasks, confirming the assumptions based on the shared decisions 

account. 

 

 

 

 

 

 

The research of Santens and Verguts (2011) shows that for the case of 

numerical and physical size in the visual domain, the interference effect in holistic 

stimulus processing takes place on a decisional level. Based on their findings, the 

authors state that the dual-route model they present in their work predicts that novel 

size congruity effects of numerical size and other quantities also originate on the 

decision level of stimulus processing. In particular, Santens and Verguts predict that 

“each quantitative dimension can interfere with any other to the extent that the 

irrelevant dimension is effective in automatically activating the decision units that are 

output 

decision 

shared representation 

output 

decision 

numerical input physical input physical input numerical input 

physical representation numerical representation 

shared representations account shared decisions account 

Figure 6: Models for the shared representation account (left panel) and the shared 

decisions account (right panel) for congruity effects of numerical and physical 

size. The grey field depicts the origin of the size congruity effect. (Santens & 

Verguts, 2011) 
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used for the task at hand” (Santens & Verguts, 2011, p. 107). This prediction is further 

supported by the results of several neuroimaging studies which point towards a shared 

neural code for magnitude processing (e.g., Cohen Kadosh et al., 2005; Cohen Kadosh 

et al., 2008c; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Vogel, Grabner, 

Schneider, Siegler, & Ansari, 2013) that is independent of the input format. Specifically, 

Cohen Kadosh et al. (2008c) state in their review, that the collected results “suggest 

that the IPS [i.e., intraparietal sulcus] hosts overlapping domain-general and domain-

specific neural populations in human adults for numbers and different magnitudes” 

(Cohen Kadosh et al., 2008c, p. 140). Thus, when including the variation of numerical 

size and pitch within one task, these magnitudes may also interfere on a behavioral 

level depending on the decision required for the task. 

In view of this, it is of interest whether SNARC and SPARC, which originate from 

different representational dimensions, are independent. This possibility is suggested 

by a study in which participants completed both an explicit and an implicit task for 

both SNARC and SPARC in a blocked design (Beecham et al., 2009). For each task, the 

data were submitted to a hierarchical cluster analysis in order to identify whether 

participants showed a SNARC or SPARC pattern, a reversed SNARC or SPARC pattern, 

or none of these. The authors found no significant relationship between subgroup 

memberships, which implies that SNARC and SPARC were not related. However, the 

method of Beecham et al. (2009) is a rather indirect way to investigate overlap 

between SNARC and SPARC, as in this study, number and pitch height were varied in 

separate tasks. A factorial design, in which both SNARC and SPARC compatibility are 

varied within one and the same task, is a more direct way to answer the question of 

independence. 

An optimal way for implementing such a factorial design was found by Fischer 

et al. (2013). These authors combined numerical magnitude and pitch height within 

auditorily presented stimuli (number words ranging from two to six sung in five 

different pitch heights). While in half of the blocks their nonmusician participants 

decided whether a sung number was smaller or larger than the immediately preceding 

reference (always “four” sung in intermediate pitch), in the other half they judged 

whether the pitch of the target sound was lower or higher than the reference. 

Responses were given along a diagonally aligned response set containing a lower left 
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and an upper right response key. The central finding was that, in both tasks, only the 

task-relevant magnitude produced an SRC effect. In other words, instead of polarity 

categories of both stimulus attributes, only the polarity of the relevant attribute 

affects RT. According to Fischer et al., these results imply that numerical magnitude 

and pitch are not automatically mapped onto spatial representations. Rather, 

participants employed a cognitive strategy that selectively maps only the task-relevant 

attribute to its specific spatial dimension (the Strategic Association of Response Codes, 

STARC hypothesis; Fischer, 2006). 

The results of Fischer et al. (2013) imply that SNARC and SPARC do not interact. 

Specifically, no congruency effects were obtained, even though the study used a 

diagonal response set which should, according to the authors, have allowed for 

capturing both SNARC and SPARC at the same time. As mentioned earlier, congruency 

means that two stimulus attributes share dimensional overlap or that they are coded 

as the same polarity. For instance, “nine” sung in a high pitch is congruent, because 

numerical magnitude and pitch height have the same polarity, whereas “nine” sung in 

a low pitch is incongruent (e.g., Boenke, Ohl, Nikolaev, Lachmann, & van Leeuwen, 

2009). Such congruency effects are typically considered to result from automatic, 

preattentive binding across stimulus dimensions (Pomerantz & Lockhead, 1991). The 

absence of these effects in the study of Fischer et al. is therefore consistent with the 

authors’ claim that magnitude-to-space associations are not produced automatically. 

Nevertheless, the results of Fischer et al. (2013) do not support these strong 

conclusions due to tasks and stimuli employed in their study. In their magnitude 

comparison tasks, one effect is always explicit while the other one is implicit. The 

absence of the implicit effects, however, does not necessarily imply that it is always 

only the task-relevant magnitude that is spatially mapped onto responses. 

Furthermore, implicit spatial associations of magnitudes can be influenced by the 

range from which specific magnitudes are chosen. While for numbers the explicit 

SNARC effect occurs for relatively small distances, in implicit SNARC tasks (i.e., where 

numerical magnitude is not relevant for task solving), this is not always the case, as the 

distance effect (Moyer & Landauer, 1967) leads to increased difficulty of number 

discrimination when numerical distances are very small (e.g., Dehaene, 2011; Verguts 

& van Opstal, 2005). Moreover, the number 5 has a special status on the internal 
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number scale (Tzelgov et al., 1992), as it forms the midpoint of a decade, which is why 

within a range from 0 to 10 it is likely best to choose stimuli around the midpoint 5. As 

will be shown in Study 1, a small range is an even larger problem with implicit SPARC. 

Nonmusicians do not always automatically map pitch height onto space (e.g., Cho et 

al., 2012; Lidji et al., 2007; Rusconi et al., 2006), but the mapping process can be 

reinforced by the presence of a reference tone (Cho et al., 2012) and potentially by 

factors such as timbre or pitch range, as investigated in Study 1. In particular, the 

finding of an implicit horizontal SPARC effect in nonmusicians with a consistently 

presented reference tone (Cho et al., 2012) contrasts with the results of Fischer and 

colleagues. 

In sum, when varying pitch height and numerical magnitude within one 

stimulus set, these magnitudes can potentially interact. Prior studies (Beecham et al., 

2009; Fischer et al., 2013) investigating this question cannot terminally answer the 

question of independence of pitch and number processing due to methodological 

deficiencies. Therefore, the aim of Study 2 is to introduce the paradigm of Fischer et al. 

(2013) to a set of tasks and stimuli sufficient to produce a SNARC and SPARC effect also 

in implicit task conditions. Details on experimental methodology and possible 

outcomes are described in section 4.1. 

 

2.5  Overview and Research Interest 

 

Effects of SRC, like for pitch heights, can potentially be modulated by further 

stimulus features varied within a stimulus set. The horizontal SPARC effect in 

nonmusicians has been shown to be less stable than pitch-to-space associations in 

other participant subgroups (i.e., trained musicians) or in other response dimensions 

(i.e., the vertical response dimension). This may be because in the horizontal 

dimension, horizontally represented additional stimulus features can be consistent 

with responses. 

In order to further clarify the inconsistency of findings on the horizontal SPARC 

in nonmusicians, the present thesis investigates how these pitch-to-space associations 

interact with further stimulus features. As lined out in section 2.4.1, there are three 
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types of stimulus features: features that are of categorical nature (e.g., timbre), 

features that entail spatial associations (e.g., numbers) and features that are 

intrinsically spatial (e.g., presentation side of auditory stimuli). These features can 

produce SRC effects with horizontal responses originating from a horizontally aligned 

representational organization. The question of independent processing of pitch and 

intrinsically spatial features is not addressed in this thesis as such an experiment has 

already been carried out by Nishimura and Yokosawa (2009). The presentation of 

auditory stimuli that varied in pitch and the side of the ear to which they were 

presented yielded SRC effects of both pitch (i.e., a SPARC effect) and presentation side 

(i.e., a Simon effect; Simon & Rudell, 1967) that were independent. Therefore, in the 

present thesis, two studies, in which additional stimulus features entailing categorical 

information or spatial associations were varied, were conducted consecutively. Study 1 

investigates the simultaneous processing of pitch and timbre under conditions of 

varied pitch range. Study 2 was conducted hereafter and investigates the question of 

independence of pitch and number processing. Results obtained in Study 1 were taken 

into account for the construction of the stimulus set in Study 2. 
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3 Study 1: Pitch and Timbre 

3.1 Research Interest 

 

The aim of Study 1 in this thesis is to investigate the influence of pitch and 

timbre differences on the automatic coding of pitches as low and high in 

nonmusicians. This implies a variation of pitch differences (i.e., pitch range) and 

response alignment while keeping constant timbre categories. A set of three timbre 

judgment tasks was conducted with piano and vocals as timbre categories. The first 

task involved sounds within a small pitch range which had to be responded to with 

horizontally aligned responses (Experiment B). The second task differed from the first 

one only in the orientation of the response alignment, which was vertical 

(Experiment C). The third task adopted the horizontal response alignment of the first 

task, but involved a set of stimuli with increased tonal distances (Experiment D). In 

order to assure that the specific set of stimuli was suitable to produce explicit (and 

therefore not necessarily automatic) pitch-to-space associations, in a prior control 

experiment, participants completed a pitch comparison task with the stimuli of the 

first timbre judgment task (Experiment A). 

These experiments provide the opportunity to observe possible isolated effects 

of timbre and tonal distance as well as interactions of such effects with effects of 

pitch-to-space mappings. Particularly, it might be observed that pitch interferes with 

timbre judgment and vice versa, since, as argued before, pitch and timbre are not 

processed independently (e.g., Krumhansl & Iverson, 1992). 

If interference is observed in a timbre judgment task with pitch height varying 

as a task-irrelevant feature, this would, within the taxonomy of the dimensional 

overlap model (Kornblum et al., 1990), mean that pitch and timbre form a type 7 or a 

type 8 ensemble, depending on whether timbre produces dimensional overlap with 

the response or not (see section 2.4.2.2 for more details). If no interference effects are 

observed, pitch and timbre form a type 3 or a type 5 ensemble. If interference is 

observed in a pitch comparison task with timbre varying as a task-irrelevant feature, 
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pitch and timbre form a type 6 or a type 8 ensemble. If no such effects are observed, 

pitch and timbre form a type 2 or a type 5 ensemble. 

In both tasks, the observation of interference effects would imply that pitch 

and timbre are indeed integral stimulus dimensions of auditory stimuli, which is 

indicated by the results of a range of studies which observed interaction between pitch 

and timbre on a perceptual level (e.g., Krumhansl & Iverson, 1992). The results will 

have also relevance for the more general question of whether mappings of pitch to 

horizontal space can be investigated without considering other stimulus attributes. 

 

3.2 Empirical Section 

 

In the empirical section of Study 1, each experiment is introduced with a short 

summary of theoretical facts that motivate the experiment (however, for a more 

detailed introduction to the general topic, see section 2.4.3.1), followed by methods 

and results. Also, short discussions and transitions between experiments are provided, 

whereas a joint discussion of results follows in section 3.3. 

 

3.2.1 Experiment A (Control Task): Pitch Comparison in a Horizontal Task 

Setting With Small Pitch Range 

 

Past studies on the horizontal SPARC effect in nonmusicians have reported 

consistent findings only when pitch height was task-relevant (e.g., Cho et al., 2012; 

Lidji et al., 2007; Rusconi et al., 2006). For solving such a task, pitch height has to be 

categorized as low or high (or lower or higher than a given standard). This induced 

structural asymmetry within the set of pitches leads to polarity coding and facilitates 

the mapping to left and right key responses. 

As timbre and pitch of a sound are not perceived independently (e.g., 

Krumhansl & Iverson, 1992), it is an interesting question whether the judgment of 

timbre is affected by pitch and vice versa. In order to also determine whether timbre 

contributes to or impairs the horizontal SPARC effect in nonmusicians, a pitch 
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comparison task was conducted in which half of the sounds were piano tones and the 

other half were vocal tones. These timbre categories were maintained throughout the 

whole set of experiments in Study 1 while varying other factors. This approach allows 

for comparing findings across tasks and for testing whether vocal sounds as a novel 

timbre category (in contrast to instrumental sounds and sinusoids) lead to similar 

pitch-to-space mappings as compared to those for piano tones and other instruments. 

 

3.2.1.1 Method 

 

Participants. Twenty-four students of the University of Kaiserslautern were paid 

for their participation (15 female; average age: 24.9 years; range: 21 – 30 years). All of 

them were right-handed and reported normal hearing. Fourteen of them had not 

received any musical training in the past; the others had received an average of 4.9 

years of musical training, but had stopped since 9.1 years on average. Therefore, they 

were all considered as nonmusicians. 

 

Stimuli and procedure. Stimuli consisted of a set of two low- and two high-pitch 

tones (A3, B3, B4, and C#4, respectively 220.00, 246.94, 493.88, and 554.37 Hz) with 

distances of 6 and 8 semitones around the intermediate reference (F4, 349.23 Hz) in 

two timbres, that is, piano and vocal tones. The vocals consisted of the syllable /ba:/ in 

German pronunciation, sung by a proficient female singer, recorded through a 

Sennheiser microphone (MD 421-II, Sennheiser electronic) and an Edirol external 

sound card (USB Audio Capture UA-25, Edirol) to a MacBook Pro (Mac OS X Version 10.6.3, 

Apple) via the Amadeus Pro (v1.5.1, HairerSoft) software. The recordings took place in a 

professional audio cabin and were edited with Audition 5 (Audition CS5.5, Adobe 

Systems Inc.). The piano sounds were produced via the Akoustik KeyZ (DSK Music) 

plug-in with Audition 3 (Audition 3.0, Adobe Systems Inc.). All stimuli were edited to a 

duration of 600 ms. 

Participants were tested individually in a soundproof booth. The experiment 

was run on a Dell laptop computer (Latitude D380, Dell). Stimulus presentation and 

response collection were controlled through the E-Prime software (E-Prime 2.0, 
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Psychology Software Tools Inc.). Stimuli were presented via closed Beyerdynamic 

headphones (DT-770 Pro, Beyerdynamic) at equal loudness well above threshold and 

clearly within the individual comfort zone. 

On each trial, a fixation cross was presented in the centre of the laptop screen 

for a duration of 200 ms; 250 ms after the onset of the fixation (i.e., 50 ms after the 

fixation had disappeared), the reference tone was presented for a duration of 600 ms, 

followed by the target sound in the respective timbre after an inter-stimulus interval 

(ISI) of 500 ms. After each target, participants were required to judge whether the 

target was lower or higher in pitch than the reference by pressing one of two 

horizontally aligned response keys (Q or P) with their left or right index finger. 

Responses were recorded until 2500 ms after stimulus onset, followed by an inter-trial 

interval (ITI) of 1000 ms. The time course of a trial is displayed in Figure 7. 

 

 

 

 

Participants completed two experimental blocks with 80 trials each (10 

repeated measures per stimulus) that differed only in the assignment of the lower and 

higher category to response sides. Trials were presented in a pseudorandom order 

with the restriction that two consecutive trials did not contain the same target sound 

and that there were no more than three consecutive trials with the same correct 

response location. The order of blocks was counterbalanced across participants. Each 

block was preceded by a practice block consisting of 8 trials with feedback (RT in ms 

and correctness displayed on the screen after each trial). Altogether, the experiment 

lasted about 25 minutes. 

 

 

fixation reference target response 

200 
50 

600 500 600 1000 

ITI ISI 

time [ms] 

Figure 7: Time course of a trial in the pitch comparison task in Experiment A. 
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3.2.1.2 Results 

 

Reaction times shorter than 100 ms were excluded from analysis (3 of 3840 

trials). In addition, an individual outlier criterion of two standard deviations was 

applied to the data of each participant (176 trials, 4.6%, approximately equally 

distributed across conditions). Mean differences (right – left key) in RT (dRT, correct 

trials only) and error rates (dER) are displayed in Table 3 as a function of timbre, global 

pitch, and distance from the middle. 

 

Table 3: Average dRT (ms) and dER (%) in Experiments A, B, C, and D for each timbre, 

global pitch, and tonal distance from the middle. 

 piano  vocals 

 low  high  low  high 

 far close  close far  far close  close far 

Experiment A pitch comparison horizontal – small range 

dRT (ms) 27.6 56.8  -70.6 -55.9  55.6 42.5  -22.4 -63.6 

dER (%) -0.8 7.1  -4.8 -6.7  2.1 1.3  -2.5 -2.1 

 
Experiment B timbre judgment horizontal – small range 

dRT (ms) -4.2 8.6  -35.5 -41  11.8 2.0  -13.1 2.0 

dER (%) 2.9 7.5  -7.3 -4.2  5.8 5.8  -2.9 -3.3 

 
Experiment C timbre judgment vertical – small range 

dRT (ms) 14.9 1.7  -17.6 -19.7  20.8 2.2  -30.4 -19.0 

dER (%) 5.0 2.1  -2.7 -4.6  4.2 -2.5  -4.2 -2.5 

 
Experiment D timbre judgment horizontal – large range 

dRT (ms) -21.8 3.4  -55.4 -43.3  24.2 10.0  -31.6 -12.3 

dER (%) 3.8 7.9  -6.3 -11.3  10.0 6.3  -6.3 -4.6 

 
 

Note. Horizontal = left and right response key; vertical = upper and lower response key; dRT = 

difference in mean RTs; dER = difference in ERs. 

 

There was no correlation of RT and error rates (ER), r = .083, p = .698, indicating 

that there was no speed-accuracy tradeoff. A 2 × 2 × 2 analysis of variance with 
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repeated measures (rmANOVA) with the within-subject variables Pitch (low vs. high), 

Timbre (piano vs. vocals), and Distance (6 vs. 8 semitones from reference) was 

conducted on the mean dRT and dER for each dimension. ER analyses were calculated 

on arcsine-transformed ER. Results of statistical analyses on dRT and dER are provided 

in Table 4. Note that for easier reading and interpretation of the Graphs, results for 

dER are displayed as untransformed values (in %). 

 

Table 4: Results for the statistical analyses on RT and ER in Experiment A. 

 F p ηp
2
 

RT    

Pitch 9.63 .005 .295 

Timbre 5.84 .024 .203 

Distance 4.42 .047 .161 

Pitch ⨯ Timbre 1.43 .244 .058 

Pitch ⨯ Distance 0.25 .621 .011 

Timbre ⨯ Distance 0.41 .529 .017 

Pitch ⨯ Timbre ⨯ Distance 14.23 .001 .382 

    
ER    

Pitch 26.80 < .001 .538 

Timbre 1.78 .195 .072 

Distance 4.08 .055 .151 

Pitch ⨯ Timbre 2.83 .106 .110 

Pitch ⨯ Distance 0.76 .392 .032 

Timbre ⨯ Distance 5.06 .034 .180 

Pitch ⨯ Timbre ⨯ Distance 1.25 .276 .051 

    
 

 

RT analyses. The ANOVA on RT revealed a main effect of Pitch, F(1, 23) = 9.63, 

p = .005, with a 45.6 ms advantage for the low-left mapping and a 53.1 ms advantage 

for the high-right mapping (see Figure 8). There was also a main effect of Timbre, 

F(1, 23) = 5.84, p = .024, meaning that piano sounds were on average responded to 

13.6 ms faster with the right hand than vocals. In addition, a main effect of Distance 

was found, F(1, 23) = 4.42, p = .047, with greater distances on average being 

responded to 10.7 ms faster with the right hand. These main effects were further 
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qualified by a three-way interaction of Pitch, Timbre and Distance, F(1, 23) = 14.23, 

p = .001. 

Separate analyses for each timbre revealed a two-way interaction of pitch and 

distance both in the piano category, F(1, 23) = 5.95, p = .023, and the vocal category, 

F(1, 23) = 12.72, p = .002. However, the directions of these interactions were opposed 

to each other: While in the piano category, greater distances lead to smaller dRTs 

(29.2 ms) for high pitches, the opposite was found in the vocals category, where dRTs 

increased for greater distances in low pitches (41.3 ms). None of the other effects 

reached significance. 

 

  

Figure 8: Mean dRT (left panel) and dER (right panel) for the pitch comparison task with 

small pitch range and horizontally aligned responses in Experiment A. 

 

ER analyses. The analyses on arcsine transformed ER yielded a main effect of 

Pitch, F(1, 23) = 26.80, p < .001, with a 2.4% advantage for the compatible low 

mapping and a 4.0% advantage for the compatible high mapping. There was a two-way 

interaction of Timbre and Distance, F(1, 23) = 5.06, p = .034. Separate analyses 

revealed a main effect of Distance only in the piano category, F(1, 23) = 6.88, p = .015, 

where greater distances were on average responded to 4.9 ms faster with the right 

hand. None of the other effects reached significance. 
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3.2.1.3 Discussion 

 

In line with previous studies that employed speeded bimanual pitch 

comparison tasks (Cho et al., 2012; Lidji et al., 2007; Rusconi et al., 2006), faster and 

more accurate responses were observed for the low/left- and right/high-mapping (i.e., 

a SPARC effect). Thus, performance was enhanced when polarity codes of pitch height 

and response overlapped. 

In accordance with a recent study in which participants were asked to judge the 

pitch height of sung number words (Fischer et al., 2013), the observed SPARC effect 

was found to be present also in the vocal timbre category. Specifically, timbre did not 

modulate pitch-to-space mappings in the nonmusician participants when performing 

pitch comparisons. This similarity in findings for piano and vocal sounds is to be 

expected as vocal sounds are comparable to instrumental sounds or can even be 

considered as a special form of instrumental sounds due to the nature of their 

production and their line of harmonics (Roederer, 2008). 

 

 

 

 

 

The similarity of the timbre categories used in the present experiment is 

illustrated in Figure 9. Here, the spectograms of the reference tones for both piano and 
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Figure 9: Spectrogram of the reference tone in the vocal category (left panel) and the 

piano category (right panel). 
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vocals are depicted. Note that the formants (i.e., the bright horizontal frequency 

bands) for both timbres lie on the same frequencies, which means that the sounds are 

of the same pitch, but also that they contain the same line of harmonics. 

The present results show that the set of stimuli that was used in Experiment A 

is suitable to produce pitch-to-space associations in a pitch comparison task. More 

specifically, explicit judgments of pitch height were not affected by timbre, even 

though timbre was associated with response sides. Therefore, pitch and timbre can be 

viewed as type 5 ensemble for dimensional overlap in this task. In order to test 

whether timbre modulates mappings of pitch height onto horizontal responses in an 

implicit task, it is interesting to compare the findings of Experiment A with results 

obtained in a horizontal timbre judgment task with nonmusicians. 

 

3.2.2 Experiment B: Timbre Judgment in a Horizontal Task Setting With 

Small Pitch Range 

 

The results of Experiment A showed that the SPARC effect in nonmusicians was 

not modulated by timbre category in a horizontal pitch comparison task. This finding 

goes in line with the assumption of polarity correspondence of left responses with low 

tones and right responses with high tones (Cho et al., 2012). 

Experiment B aimed to investigate, whether the automatic mapping of pitch 

height onto horizontal responses in an implicit SPARC task (i.e., pitch is not task-

relevant) can be affected by timbre. In this experiment, the stimulus and response set 

of Experiment A (pitch comparison task) were adopted for an implicit SPARC task in 

which participants had to respond to the timbre category of the tone (piano or vocals). 

Technically, based on the results of Experiment A, it would be expected that also in 

Experiment B, timbre and pitch form a type 5 ensemble and are therefore processed 

independently. 

Previous studies did, however, not lead to consistent conclusions regarding the 

question whether horizontal pitch-to-space mappings in nonmusicians are generated 

automatically. This may be due to the fact that these studies did not sufficiently 

consider that pitch is not perceived independently from timbre (e.g., Pitt, 1994). 
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Therefore, when pitch is the irrelevant stimulus dimension in a speeded bimanual 

choice reaction task, dimensional overlap between pitch and timbre may conceal 

SPARC. The present experiment enables to observe possible interactions of timbre 

with the spatial mapping of pitches in nonmusicians. Such an interaction would imply 

that interferences of timbre and pitch are dependent on the task relevance of pitch for 

this group of participants. 

 

3.2.2.1 Method 

 

Participants. Twenty-four students (14 female; average age: 23.8 years; range: 

21 – 29 years) of the University of Kaiserslautern were paid for their participation in 

the experiment or participated in partial fulfillment of a course requirement. All of 

them were right-handed and reported normal hearing and none of them had 

participated in Experiment A. Fourteen of them had no prior musical experience; the 

others had received an average of 4.4 years of musical training, but had stopped since 

6.6 years on average. Therefore, all of them were considered as nonmusicians. 

 

 

 

 

 

Stimuli and procedure. For this experiment, the stimuli of Experiment A were 

adopted with the exception that there was no reference tone. The trial-to-trial 

procedure was the same as in Experiment A except that target sounds followed 

directly after fixation without a preceding reference tone (see Figure 10). In this 

experiment, participants had to make judgments based on whether the heard sound 

was a piano or a vocal tone by pressing a left or right response key. All the other 

fixation target response 
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Figure 10: Time course of a trial in the timbre judgment task in Experiment B.  
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experimental settings remained the same as in Experiment A, resulting in an overall 

duration of about 20 minutes per participant. 

 

3.2.2.2 Results 

 

Two trials with RT shorter than 100 ms were excluded from analysis. Another 

5.1% (197 of 3840 trials, approximately equally distributed across conditions) were 

removed due to the individual outlier criterion as described in Experiment A. Mean 

dRT and dER (right – left key) are displayed in Table 3 as a function of timbre, global 

pitch, and distance from the middle. There was no speed-accuracy tradeoff, as there 

was no correlation of RT and ER, r = -.026, p = .906. All analyses were conducted as in 

Experiment A (for results, see Table 5). 

 

Table 5: Results for the statistical analyses on RT and ER in Experiment B. 

 F p ηp
2 

RT    

Pitch 11.60 .002 .335 

Timbre 1.03 .320 .043 

Distance 0.08 .787 .003 

Pitch ⨯ Timbre 5.25 .031 .186 

Pitch ⨯ Distance 0.14 .707 .006 

Timbre ⨯ Distance 2.84 .105 .110 

Pitch ⨯ Timbre ⨯ Distance 0.01 .936 .000 

    
ER    

Pitch 21.82 < .001 .487 

Timbre 0.75 .394 .032 

Distance 1.87 .184 .075 

Pitch ⨯ Timbre 0.11 .746 .005 

Pitch ⨯ Distance 0.66 .426 .028 

Timbre ⨯ Distance 0.10 .757 .004 

Pitch ⨯ Timbre ⨯ Distance 0.88 .359 .037 
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RT analyses. There was a main effect of Pitch, F(1, 23) = 11.60, p = .002, 

displayed by a 5 ms advantage for left hand responses to low tones and a 22 ms 

advantage for right hand responses to high tones. The interaction of Pitch and Timbre, 

F(1, 23) = 5.25, p = .031, revealed the effect of Pitch to only be present for the piano 

category, F(1, 23) = 14.12, p = .001, but not for the vocal category, F(1, 23) = 1.98, 

p = .173. In the piano category, participants made 2 ms faster left hand responses for 

low tones and 38 ms faster right hand responses for high tones (see Figure 11). There 

were no other main effects or interactions. To ensure that none of the observed 

effects was due to some of the participants having received musical training in their 

past, another rmANOVA with Former musical training (no training vs. former training) 

as a between-subjects variable was run in addition. The interaction of Former musical 

training and Pitch was not significant, F < 1, as were all other interactions with this 

between-subjects factor. 

 

  

Figure 11: Mean dRT (left panel) and dER (right panel) for the timbre judgment task with small 

pitch range and horizontally aligned responses in Experiment B. 

 

ER analyses. The rmANOVA on arcsine transformed ER revealed a main effect of 

Pitch, F(1, 23) = 21.82, p < .001, confirming the effect found in the RT analysis with a 

5.5% advantage for the left/low and a 4.4% advantage for the right/high mapping. 

None of the other main effects or interactions reached significance. 
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3.2.2.3 Discussion 

 

The present horizontal timbre judgment task showed that the nonmusician 

participants made horizontal pitch-to-space associations, regardless of whether they 

had received any musical training in the past or not. This finding is in agreement with 

other studies which showed that nonmusicians automatically map pitch onto 

horizontal space (e.g., Cho et al., 2012; Nishimura & Yokosawa, 2009; Wolf et al., 2012) 

and contrasts others that did not obtain such effects in similar settings (Lidji et al., 

2007; Rusconi et al., 2006). 

The major finding in this experiment is that the observed SPARC effect was 

dependent of timbre. When timbre was the task-relevant feature, participants were 

only able to ignore the pitch height of the vocal sounds, but not of the piano sounds. 

This means that, in terms of dimensional overlap, pitch and timbre form a type 7 

ensemble, as timbre was not associated with responses. The finding of a pitch-timbre 

interference in the present experiment goes in line with the observation that - 

especially for nonmusicians - pitch and timbre interfere in pitch and timbre judgment 

tasks (Krumhansl & Iverson, 1992; Pitt, 1994). A comparison with the findings of 

Experiment A, however, shows that the observed interference is asymmetric: In pitch 

judgments, no such interaction was present while in timbre judgments, interference 

effects were obtained, which is reflected by the fact that the stimulus sets in both 

tasks can be allocated within different ensemble types for dimensional overlap 

(Experiment A: type 5; Experiment B: type 7). 

The pitch height of piano sounds was mapped to horizontal space 

independently of task. This independent mapping implies that for piano tones, pitch is 

automatically coded spatially. A possible reason for this could be the nature of 

construction of the piano. On the piano, pitches are ordered ascending from left to 

right. The knowledge of this organization concept may reinforce the association of low 

tones with left and high tones with right side responses. 

Adopting the horizontal timbre judgment task into a vertical response setting 

allows for further clarification of the observed findings. Specifically, it provides the 

opportunity to observe whether vertical spatial mapping of pitch is modulated by 

timbre as well. 
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3.2.3 Experiment C: Timbre Judgment in a Vertical Task Setting With 

Small Pitch Range 

 

Experiment B revealed that, in nonmusicians, automatic pitch-to-space 

associations were modulated by timbre. Particularly, only when judging the timbre of 

piano tones, spatial coding of pitch height interfered with response selection. 

Experiment C aimed to examine, whether these observations in the horizontal 

response dimension were caused by similar, timbre-dependent differences in the 

vertical spatial mapping of pitch heights to responses. Horizontal SPARC effects are 

attributed to an orthogonal remapping of vertical spatial representations into the 

horizontal response alignment. Therefore, pitch-timbre interferences in the vertical 

mapping could modulate horizontal SPARC effects. 

To test for such interferences, in Experiment C, task, procedure, and 

participants of Experiment B were maintained while only the alignment of responses 

was changed. This enables to conclude whether the findings in Experiment B may have 

been caused by timbre-related differences in vertically aligned pitch representations. 

 

3.2.3.1 Method 

 

Participants. The 24 students of Experiment B participated in this experiment. 

 

Stimuli and procedure. Stimuli and procedures were adopted from Experiment 

B with the only change, that response locations were now aligned vertically with a 

lower and an upper response button (B and 6). Prior studies didn’t find any effect of 

hand assignment to response buttons for nonmusicians (Lidji et al., 2007; Rusconi et 

al., 2006). In order to not impede the assumed left/low and right/high mapping 

advantage, a constant assignment of right hand to the upper and left hand to the 

lower button was maintained. 
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3.2.3.2 Results 

 

Two trials were excluded from RT analysis (RT < 100 ms). Another 5% (193 of 

3840 trials, approximately equally distributed across conditions) were removed due to 

outlier elimination. Mean dRT and dER (upper – lower key) are displayed in Table 3 as a 

function of timbre, global pitch, and distance from the middle. There was no 

correlation of RT and ER, r = -.276, p = .193, indicating that there was no speed-

accuracy tradeoff. Analyses were conducted as in Experiment A, results are displayed 

in Table 6. 

 

Table 6: Results for the statistical analyses on RT and ER in Experiment C. 

 F p ηp
2 

RT    

Pitch 9.63 .005 .295 

Timbre 0.01 .935 .000 

Distance 3.19 .087 .122 

Pitch ⨯ Timbre 0.47 .501 .020 

Pitch ⨯ Distance 1.26 .273 .052 

Timbre ⨯ Distance 0.44 .514 .019 

Pitch ⨯ Timbre ⨯ Distance 0.16 .691 .007 

    
ER    

Pitch 7.14 .014 .237 

Timbre 2.82 .107 .109 

Distance 2.64 .118 .103 

Pitch ⨯ Timbre 1.01 .325 .042 

Pitch ⨯ Distance 2.29 .144 .090 

Timbre ⨯ Distance 4.16 .053 .153 

Pitch ⨯ Timbre ⨯ Distance 0.00 .957 .000 

    
 

 

RT analyses. The 2 × 2 × 2 rmANOVA with Pitch, Timbre, and Distance as within-

subject variables uncovered a SPARC effect, F(1, 23) = 9.63, p = .005, which revealed 

itself through a 10 ms advantage for the low pitch to lower button mapping and a 

22 ms advantage for the high pitch to upper button mapping (see Figure 12). None of 



3 Study 1: Pitch and Timbre 58 

the other effects reached significance. In order to answer the question whether 

response dimension affected the timbre dependence of the SPARC effect, another 

rmANOVA was conducted on the combined data of Experiment B and C with Response 

alignment (horizontal vs. vertical) as an additional within-subjects factor. Here, as 

expected, there was a main effect of Pitch, F(1, 23) = 17.00, p < .001. The only other 

significant effect was the three-way interaction of Response dimension, Pitch, and 

Timbre, F(1, 23) = 4.86, p = .038, confirming that the change of response dimension 

was the cause for the absence of a Pitch × Timbre interaction in Experiment C. 

 

  

Figure 12: Mean dRT (left panel) and dER (right panel) for the timbre judgment task 

with small pitch range and vertically aligned responses in Experiment C. 

 

ER analyses. In the error analysis, too, the main effect of Pitch was observed, 

F(1, 23) = 7.14, p = .014, with a 2.2% advantage for the compatible low mapping and a 

3.5% advantage for the compatible high mapping. None of the other effects reached 

significance. 

 

3.2.3.3 Discussion 

 

Vertical SPARC was evident regardless of timbre category in the vertical timbre 

judgment task (see Figure 12). This implies that vertical pitch-to-space associations 

were formed automatically and independently of timbre. This observation goes in line 

with those of other studies which reported no effect of timbre on automatic vertical 
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pitch-to-space associations in nonmusicians (e.g., Lidji et al., 2007; Rusconi et al., 2006) 

and is likely due to the fact that timbre is, if at all, associated with horizontal, but not 

with vertical space. Therefore, in Experiment C, pitch and timbre form a type 3 

ensemble for dimensional overlap. 

A comparison between Experiment B and C confirmed that the orientation of 

the response dimension (i.e., horizontal vs. vertical) is crucial for the observation of 

pitch-timbre interferences. In particular, pitch-to-space associations for vocal tones are 

impaired only when responses have to be made along a horizontally aligned response 

set. This implies that the results in the horizontal timbre judgment task (Experiment B) 

were not caused by timbre-dependent differences in vertical SPARC. 

An alternative explanatory account for the result in Experiment B is introduced 

by findings in Experiment A. In this horizontal pitch comparison task it was observed 

that SPARC in vocal sounds interacted with tonal distance from the reference. 

Specifically, in the vocal category, greater pitch distances from the middle elicited 

significantly greater dRTs. This means that pitch distances can potentially modulate 

pitch-to-space associations for vocal sounds. 

In order to investigate whether increased pitch differences can affect the 

automaticity of horizontal mappings of pitch to space, another horizontal timbre 

judgment task was conducted. In this task, procedures and settings of Experiment B 

were adopted with a stimulus set with an enlarged pitch range. 

 

3.2.4 Experiment D: Timbre Judgment in a Horizontal Task Setting With 

Large Pitch Range 

 

The findings in Experiment C revealed that vertical mappings of pitch are 

generated automatically and independently of timbre. This goes in line with the results 

of previous studies that did not report timbre differences in their implicit vertical 

SPARC tasks (e.g., Lidji et al., 2007; Rusconi et al., 2006). The observations made in 

Experiments B and C allow for the conclusion that the results obtained in the 

horizontal timbre judgment task (Experiment B) were not caused by pitch-timbre 

interferences in the vertical setting (Experiment C). 
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Alternatively, however, pitch representations in implicit horizontal tasks could 

be modulated by pitch distances. As can be seen in Experiment A, in vocal sounds, 

tones further away in pitch yielded a significantly larger SPARC effect. Similar 

observations have also been reported by other studies to the extent that smaller pitch 

distances caused weaker (Beecham et al., 2009) or even reversed (Rusconi et al., 2006) 

SPARC effects. 

In order to examine possible effects of tonal distances on pitch-to-space 

associations for vocal sounds, an additional implicit horizontal SPARC task was 

conducted. In this task, like in Experiment B, participants were required to make 

timbre judgments with left or right key responses. However, the tone pitches were 

now separated by larger tonal distances from the middle and each other. This allows 

exploring whether pitch range can modulate horizontal SPARC in nonmusicians. 

 

3.2.4.1 Method 

 

Participants. Twenty-four students (14 female; average age: 23.5 years; range: 

21 – 30 years) of the University of Kaiserslautern were paid for their participation in 

the experiment or participated in partial fulfillment of a course requirement. All of 

them were right-handed and reported normal hearing and none of them had 

participated in any of the other experiments. Fifteen of them had no prior musical 

experience, the others had received an average of 4.9 years of musical training, but 

had stopped since 6.3 years on average. Therefore, they were all considered as 

nonmusicians. 

 

Stimuli and procedure. For this experiment, stimuli with pitch distances of 9 and 

12 semitones (F3, G#3, D5, and F5, respectively 174.61, 207.65, 587.33, and 698.46 Hz) 

from the middle (F4, respectively 349.23 Hz) were produced in two different timbres 

(vocals and piano). All procedures remained the same as in Experiment B. 
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3.2.4.2 Results 

 

One of 3840 trials was excluded from analyses because of RTs being smaller 

than 100 ms. Another 5.3% (204, approximately equally distributed across conditions) 

of the trials were removed from analyses due to the individual outlier criterion. Table 3 

displays mean dRT and dER (right – left key) separately for timbre, global pitch, and 

distance from the middle. There was no speed-accuracy tradeoff, r = -.177, p = .407, RT 

and ER analyses were conducted as in Experiment A (see Table 7 for results). 

 

Table 7: Results for the statistical analyses on RT and ER in Experiment D. 

 F p ηp
2 

RT    

Pitch 38.02 < .001 .623 

Timbre 4.59 .043 .166 

Distance 0.80 .381 .034 

Pitch ⨯ Timbre 0.01 .918 .000 

Pitch ⨯ Distance 3.66 .068 .137 

Timbre ⨯ Distance 9.53 .005 .293 

Pitch ⨯ Timbre ⨯ Distance 2.06 .165 .082 

    
ER    

Pitch 24.75 < .001 .518 

Timbre 1.01 .326 .042 

Distance 1.45 .241 .059 

Pitch ⨯ Timbre 0.01 .922 .000 

Pitch ⨯ Distance 0.10 .756 .004 

Timbre ⨯ Distance 4.70 .041 .170 

Pitch ⨯ Timbre ⨯ Distance .000 .999 .000 

    
 

 

RT analyses. The RT analysis revealed a main effect of Pitch, F(1, 23) = 38.02, 

p < .001, which expressed itself through a 4 ms advantage for the low pitch/left hand 

and a 36 ms advantage for the high pitch/right hand response mapping. In addition, a 

main effect of Timbre was obtained, F(1, 23) = 4.59, p = .043, with dRTs being on 

average 27 ms smaller for piano sounds than for vocals (see Figure 13). A careful 
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observation of Table 3 and Figure 13 suggests that, regardless of pitch, piano sounds 

were generally responded to faster with the right hand. Furthermore, a Timbre × 

Distance interaction, F(1, 23) = 9.53, p = .005, was found. Additional analyses revealed 

the effect of Distance to be significant only for the vocal category, F(1, 23) = 8.31, 

p = .008, but not for the piano category, F(1, 23) = 0.70, p = .410, meaning that in the 

vocal category, greater distances resulted in average dRTs being 16 ms larger. None of 

the other effects reached significance. In order to rule out influences of former musical 

training for the occurrence of the observed main effects and interactions, an additional 

rmANOVA with the between-subjects factor Former musical training was conducted. 

Like in Experiment B, the interaction with Pitch, F < 1, and also none of the other 

interactions reached significance. 

To verify the influence of global pitch differences on the occurrence of SPARC in 

the vocal category, an additional 2 × 2 rmANOVA was run on the dRT for vocal sounds 

with Pitch (low vs. high) as within-subjects variable and Pitch range (6+8 vs. 9+12 

semitones) as between-subjects variable in order to compare the results of Experiment 

B and D. The analysis revealed a main effect of Pitch, F(1, 46) = 18.76, p < .001, and a 

two-way interaction of Pitch and Pitch range, F(1, 46) = 5.00, p = .030, confirming the 

impact of Pitch range on the occurrence of SPARC in the vocal category. 

 

  

Figure 13: Mean dRT (left panel) and dER (right panel) for the timbre judgment task with large 

pitch range and horizontally aligned responses in Experiment D. 
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ER analyses. The main effect of Pitch was also found in the error analyses, 

F(1, 23) = 24.75, p < .001, with an advantage of 7.0% for left hand responses to low 

tones and an advantage of 7.1% for right hand responses to high tones. Again, there 

was a two-way interaction of Timbre and Distance, F(1, 23) = 4.70, p = .041. However, 

the main effect of Distance was significant in the piano category only, F(1, 23) = 5.41, 

p = .029, with greater dER for distances closer to the middle. 

 

3.2.4.3 Discussion 

 

In the second horizontal timbre judgment task, horizontal pitch-to-space 

associations in nonmusicians were observed. In contrast to Experiment B, this SPARC 

effect was independent of timbre. Furthermore, timbre was associated with horizontal 

responses. This means that in Experiment D, pitch and timbre form a type 5 ensemble 

for dimensional overlap, which is different from what was observed in Experiment B 

(type 7). This difference in results was confirmed by additional analyses which revealed 

that the SPARC was modulated through increasing the pitch range of the stimulus set. 

This means that for vocal sounds, when pitch range is increased, automatic mappings 

of pitch to horizontal responses can be observed. 

The observation of an interaction of SPARC and pitch range in the vocal 

category goes in accordance with results of other studies who reported that SPARC 

could be modulated by the distance of a sound from the tonal middle of the set of 

stimuli (Beecham et al., 2009; Rusconi et al., 2006). Specifically, Rusconi et al. (2006) 

reported that an advantage of the SPARC compatible mapping was obtained only when 

tones had a distance of at least eight semitone steps from the middle of the tonal 

range. These results can now be extended with the new finding that pitch distances 

affect automatic spatial horizontal pitch representations in different ways for different 

timbres. This, in turn, emphasizes the importance of stimulus set features such as pitch 

range and timbre categories for the investigation of the horizontal SPARC effect in 

nonmusicans. 

 



3 Study 1: Pitch and Timbre 64 

3.3 Joint Discussion 

3.3.1 Primary Outcomes 

 

Previous studies on the automatic mapping of pitch to horizontal space in 

nonmusicians have shown a dependency on task (Cho et al., 2012; Lidji et al., 2007; 

Rusconi et al., 2006) and the presence of a reference tone (Cho et al., 2012). However, 

while most of these studies focused on the general presence of SPARC effects in 

musicians and nonmusicians for different tasks and response settings, little attention 

has been paid to pitch range and timbre of stimulus sets as possible modulating factors 

of the horizontal SPARC effect. 

Study 1 aimed to investigate the influence of pitch and timbre differences on 

the automatic spatial coding of pitches. Therefore, four SPARC tasks were conducted in 

which timbre was controlled for while task relevancy of pitch, orientation of response 

dimension, and pitch range of the stimulus set were varied. In Experiment A, where 

pitch height was the task-relevant sound feature, the SPARC effect occurred regardless 

of timbre. This implies that the participants’ spatial coding of pitch height was not 

modulated by timbre. In this task, timbre and pitch form a type 5 ensemble for 

dimensional overlap. 

In contrast, in Experiment B, where participants had to make judgments based 

on timbre, the observed automatic mapping of pitch onto horizontal responses was 

modulated by timbre. In particular, when pitch height was irrelevant for the task, the 

SPARC effect only occurred for piano tones but not for vocal tones. This implies that 

the task relevancy of pitch affects interferences between spatial pitch and timbre 

mappings. In Experiment B, pitch and timbre therefore form a type 7 ensemble. 

Experiment C, in which participants had to make timbre judgments with 

vertically aligned response keys, showed that the findings in Experiment B are specific 

to the horizontal response dimension. Specifically, when pitch had to be automatically 

mapped onto vertical space, no influence of timbre category was observed, which 

reflects the characteristics of a type 3 ensemble. The findings of Experiment B, 

therefore, cannot be explained by timbre-related differences in vertical pitch 

representation. 
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The role of pitch range became evident in Experiment D. In this horizontal 

timbre judgment task, participants showed a SPARC effect that was not modulated by 

timbre. Thus, when pitch distances were large enough, also for vocal sounds pitch 

height was automatically mapped onto horizontal responses. In this experiment, pitch 

and timbre form a type 5 ensemble. 

The results of Study 1 indicate that the pitch range of a stimulus set can affect 

horizontally aligned spatial mappings of pitch differently, depending on the timbre of a 

sound, which is reflected by the different types of ensembles that can be ascribed to 

the same combination of stimulus dimensions: Only in Experiment B, which entailed a 

timbre judgment task with a small pitch range, the ensemble type reflects pitch and 

timbre to be integral, inseparable stimulus dimensions, while pitch and timbre are 

separable in all the other tasks. Specifically, while for piano sounds pitch range does 

not affect automatic spatial pitch associations along the horizontal dimension, the case 

is different for vocal sounds, where SPARC was elicited only for tones with a distance 

of at least 9 semitone steps from the middle of the tonal range. 

Altogether, these findings imply that in nonmusicians, stimulus features other 

than pitch can modulate automatic mapping of pitch height onto horizontal responses. 

Specifically, pitch processing is not independent of timbre and pitch range in 

nonmusicians. Note, however, that the interference of pitch and timbre in horizontal 

response settings is, if present, asymmetrical: While pitch judgments are made 

independently of timbre, timbre judgments are modulated by pitch. The direction of 

this interference, therefore, needs to be taken into account when considering the 

results of bimanual choice reaction tasks involving sounds of different pitch heights 

and timbres. 

 

3.3.2 Polarity Coding and the Horizontal SPARC Effect 

 

The horizontal SPARC effect is thought to originate from an orthogonal 

transformation of a vertical pitch-to-space mapping into the horizontal dimension (Cho 

et al., 2012; Lidji et al., 2007; Nishimura & Yokosawa, 2009; Rusconi et al., 2006). It has 

been suggested that this orthogonal transformation appears as a result of the 
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advantage for the up-right/down-left mapping of relevant and irrelevant stimulus 

features to responses in bimanual choice reaction tasks (Cho & Proctor, 2003; Weeks 

et al., 1995). Specifically, the polarity coding principle can account for both the 

mapping of pitch to vertical space and for the remapping of this vertical representation 

into the horizontal plane. 

Nonmusicians do not always automatically map pitch heights onto space. Cho 

et al. (2012) were able to show that nonmusicians, in contrast to musicians, only 

associated pitch heights with horizontal space automatically, when a reference tone 

was present. In view of polarity correspondence, the authors reason that in a 

horizontal response setting, nonmusicians do not automatically code pitch height as 

polarities along the vertical axis. Cho et al. further argue that only the presence of a 

reference tone and resulting referential coding of tones as relatively low or high in 

pitch leads to coding of pitch as polarities that overlap with horizontal responses. 

Sounds contain, next to pitch, other stimulus features which can be coded as 

polarities with the potential to overlap with polarity codes of the response set. This is 

reflected in the main effect of timbre that was obtained: For both horizontal timbre 

judgment tasks (i.e., Experiment B and D), an observation of Table 3 suggests a 

response bias towards right key responses for piano tones. This means that piano 

sounds are nearly always responded to faster with a right hand response while this 

was not the case for vocal sounds. The main effect of timbre found in Experiment A 

and D suggests that the timbre categories were coded as polarities with piano sounds 

being the + polarity. In Experiment A and D, the effects of timbre and pitch are purely 

additive and therefore can be considered as independent. In Experiment B, in contrast, 

timbre interacts with the polarity coding of pitch. Here, in the vocal category, polarity 

coding of pitch was not sufficient anymore to produce a SPARC effect. 

It is likely that in the present experiments, the nature of construction of the 

piano played a special role. Even if people are not familiar with the ascending left-to-

right ordering of pitches on a piano keyboard, they probably know that the keys are 

horizontally aligned which may in turn facilitate the establishment of polarity codes. 

Therefore, the results obtained for the horizontal SPARC effect with piano sounds may 

only reflect pitch-to-space associations for this specific instrument. 
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The more interesting finding is, therefore, that for sounds of a timbre without 

such an explicit horizontal association, pitch range modulates horizontal SPARC. 

Specifically, the findings show that for the vocal sounds used in the present 

experiments, extending pitch differences and thereby the pitch range modulated the 

evocation of SPARC. This suggests that when tones are sufficiently distant in pitch from 

the tonal middle of the stimulus set, pitches can automatically be coded as low and 

high in a horizontal timbre judgment task. Moreover, a reference tone, compared to 

which a target is perceived as relatively low or high, is not necessarily required to 

activate automatic pitch-to-space mappings. This result contrasts the conclusion drawn 

by Cho et al. (2012) who found a reference tone to be crucial to the evocation of 

automatic spatial mapping of pitch. However, their results could to some extent be 

ascribed to their specific choice of artificially produced stimuli which can result in 

unnatural sounds and impaired timbre identification. For nonmusicians such stimuli 

could draw more attention to the more salient sound feature timbre and impair the 

coding of these stimuli according to pitch height. As Cho et al. did not include timbre as 

a factor in their analysis, the question whether this sound attribute may have affected 

the horizontal implicit SPARC effect in their sample cannot be answered. 

Taken together, the present results indicate that timbre and pitch range can 

affect the spatial vertical mapping of pitch and the assumed orthogonal transformation 

of these vertical pitch-to-space mappings into the horizontal dimension. Moreover, the 

findings imply that both timbre and pitch range should be considered carefully in 

upcoming research.  
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4 Study 2: Pitch and Number 

4.1 Research Interest 

 

Study 2 aims to investigate whether SNARC and SPARC are independent in the 

horizontal domain. Therefore, the paradigm of Fischer et al. (2013) was adapted with a 

set of conditions and tasks more suitable to produce implicit SNARC and SPARC effects. 

This implies the introduction of variations in stimulus magnitudes (i.e., specific 

numbers and pitch heights) that are sufficient to produce a SNARC and SPARC effect 

also in implicit task conditions. Especially for obtaining a more reliable implicit SPARC 

effect, the results of Study 1 were taken into account for the creation of the stimulus 

set in Study 2. In addition, a variation of task was introduced. A set of two choice 

reaction tasks was conducted. In one task (number comparison), numerical magnitude 

was task-relevant and pitch was not. In the other task (parity judgment), neither 

numerical magnitude nor pitch height were task-relevant. This means that both SNARC 

and SPARC were implicit which minimizes the possibility that selective attention to a 

task-relevant magnitude crowds out the implicit effect. 

These experimental tasks offer the opportunity to observe effects of both 

SNARC and SPARC occurring together. Such a result will be relevant to the issue of the 

automaticity of these effects. More importantly, however, this will enable to answer 

the question of their independence. If the effects were to occur as additive factors in 

the planned factorial design, this would most likely imply that the effects belong to 

separate mechanisms. Within the taxonomy of the dimensional overlap model 

(Kornblum et al., 1990; for more detail, see section 2.4.2.2), such an observation would 

imply that pitch and number form a type 5 ensemble with horizontal responses. An 

interaction, however, would suggest that spatial numerical and pitch associations 

belong to joint mechanisms, reflecting a type 8 ensemble. In particular, a size congruity 

effect of pitch height and numerical magnitude might be observed. If such a size 

congruity effect was present and specific to tasks involving magnitude judgment, this 

would allow to study whether observed interferences take place on the decision level 

of processing, as suggested by the shared decisions account. 
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4.2 Empirical Section 

4.2.1 Method 

 

Participants. Forty-eight students (27 female; average age: 23 years; range: 18 

– 27 years) of the University of Kaiserslautern were paid for their participation in the 

experiment. All of them were right-handed and reported normal hearing. Twenty-eight 

of them had no formal training in music, the others had received an average of 4.8 

years of musical training, but had stopped since 7.3 years on average. Thus they were 

all considered as nonmusicians. 

 

Stimuli and procedure. Stimuli consisted of the German number words for 1, 2, 

8, and 9 (i.e., “eins”, “zwei”, “acht”, and “neun”) that were sung in two low and two 

high pitches (F3, G#3, D5, and F5) by a proficient female singer, and edited to a 

duration of 600 ms. The values for the numerical magnitude and pitch height both 

were chosen according to a 4:3 scheme, which indicates the ratio of the distances 

around the center. The above mentioned numerical magnitude values are obtained 

with a center at 5 and distances of 4 and 3; the pitch values with a center at F4 and 

distances of 12 and 9 semitones. The pitches were specifically chosen as a result of 

Study 1, which showed that for vocal sounds it is crucial to employ large enough 

distances in order to obtain a reliable implicit horizontal SPARC effect in nonmusician 

participants. In addition, clear SNARC effects were reproduced with this specific set of 

numbers on both number comparison and parity judgment, with numbers sung in one 

pitch height (F4) only. 

Participants were randomly assigned to either of two tasks (magnitude 

comparison or parity judgment). In the magnitude comparison task, participants heard 

a single target stimulus and judged whether it was numerically smaller or larger than 5. 

In the parity judgment task, participants judged if the target number was odd or even. 

Responses were given along a horizontally aligned response set with a left and right 

response key (Q and P). In both tasks, participants were instructed to ignore all 

irrelevant aspects of the numbers. 
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The experiment was run on Dell laptop computer (Latitude D830, Dell). 

Stimulus presentation and response collection were controlled through the E-Prime 

Software (E-Prime 2.0, Psychology Software Tools Inc.). Stimuli were presented via 

closed Beyerdynamic headphones (DT-770 Pro, Beyerdynamic) at equal loudness well 

above threshold and clearly within the individual comfort zone. 

On each trial, a fixation cross was presented in the centre of the computer 

screen for a duration of 200ms. 250ms after the onset of the fixation, the target sound 

was presented for a duration of 600ms. Responses were recorded until 2500ms after 

stimulus onset, followed by an inter-trial interval of 1000ms. 

Participants completed two experimental blocks with 160 trials each (10 

repeated measures per stimulus) that only differed in the assignment of categories 

(magnitude comparison: smaller vs. larger than 5; parity judgment: odd vs. even) to 

response sides. Trials were presented in a pseudorandom order with the restriction 

that two consecutive trials did not contain the same target and that there were no 

more than three consecutive trials with the same correct response location. The order 

of blocks was counterbalanced across participants. Each block was preceded by a short 

practice session consisting of 16 trials with feedback after each trial (RT and 

correctness). Altogether, the experiment lasted about 30 minutes. 

 

4.2.2 Results 

 

RTs shorter than 100 ms were excluded from analysis (6 of 15360 trials). In 

addition, an individual outlier criterion of two standard deviations was applied to the 

data of each participant (654 trials, 4.3%, approximately equally distributed across 

conditions). Mean RT in ms (correct trials only) and ER in % are shown in Table 8 as a 

function of SNARC compatibility, SPARC compatibility, and task. There was no 

significant correlation of RT and ER, p = .70. A 2 × 2 × 2 rmANOVA with the within-

subject variables SNARC compatibility (compatible vs. incompatible) and SPARC 

compatibility (compatible vs. incompatible) and the between-subjects variable Task 

(magnitude comparison vs. parity judgment) was conducted on mean RT of correct 

trials and arcsine-transformed ER (for results, see Table 9). 
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Table 8: Average RT (ms) and ER (%) as a function of SNARC compatibility, SPARC 

compatibility, and task. 

 magnitude comparison  parity judgment 

 SN c  SN i  SN c  SN i 

 SP c SP i  SP c SP i  SP c SP i  SP c SP i 

  
RT (ms) 413 424  444 461  459 461  481 485 

ER (%) 6.4 7.8  6.4 8.6  6.3 6.4  12.5 15.5 

 
 

Note. SN c = SNARC compatible; SN i = SNARC incompatible; SP c = SPARC compatible; SP i = 

SPARC incompatible. 

 

RT analyses. In the RT analysis, the main effect of SNARC compatibility, 

F(1, 46) = 52.54, p < .001, was a 25 ms advantage for SNARC compatible trials. The 

main effect of SPARC compatibility, F(1, 46) = 20.04, p < .001, was a comparatively 

smaller advantage of 8 ms for the SPARC compatible trials. The interaction of SPARC 

compatibility and Task, F(1, 46) = 5.92, p = .019, revealed the effect of SPARC 

compatibility only to be present for the magnitude comparison task, F(1, 23) = 10.83, 

p < .001, but not for the parity judgment task, F(1, 23) = 2.44, p = .132 (also see Figure 

14). 

 

  

Figure 14: Mean RT for the magnitude comparison (left panel) and the parity judgment 

(right panel) task as a function of SNARC compatibility, SPARC compatibility, 

and task. 

 

380 

400 

420 

440 

460 

480 

500 

520 

SNARC comp SNARC incomp 

m
e
a
n
 R

T
 [

m
s
] 

Magnitude Comparison 

380 

400 

420 

440 

460 

480 

500 

520 

SNARC comp SNARC incomp 

m
e
a
n
 R

T
 [

m
s
] 

Parity Judgment 

SPARC comp 

SPARC incomp 



4 Study 2: Pitch and Number 72 

No other effects reached significance. In particular, the interaction of SNARC 

and SPARC compatibility, p = .204, was far from significance. In principle, an interaction 

of SNARC and SPARC compatibility could have indicated congruency. In terms of 

congruency, the SNARC and SPARC compatible trials (‘both compatible’) and the 

SNARC and SPARC incompatible trials (‘both incompatible’) are congruent trials. 

Congruency effects would therefore lead to a cross over interaction of SNARC and 

SPARC compatibility. However, no such effect was obtained. 

 

Table 9: Results for the statistical analyses on RT and ER. 

 F p ηp
2 

RT    

SNARC compatibility 52.54 < .001 .533 

SNARC compatibility ⨯ Task 0.25 .618 .005 

SPARC compatibility 20.04 < .001 .303 

SPARC compatibility ⨯ Task 5.92 .019 .114 

SNARC compatibility ⨯ SPARC compatibility 1.66 .204 .035 

SNARC compatibility ⨯ SPARC compatibility ⨯ Task 0.03 .859 .001 

Task 2.92 .094 .060 

    
ER    

SNARC compatibility 32.11 < .001 .411 

SNARC compatibility ⨯ Task 23.98 < .001 .343 

SPARC compatibility 11.54 < .001 .201 

SPARC compatibility ⨯ Task 0.04 .836 .001 

SNARC compatibility ⨯ SPARC compatibility 1.90 .175 .040 

SNARC compatibility ⨯ SPARC compatibility ⨯ Task 1.38 .246 .029 

Task 4.34 .043 .086 

    
 

 

ER analyses. The rmANOVA on ER was conducted with the same factors as 

above (also see Figure 15). Again, main effects were obtained of SNARC compatibility, 

F(1, 46) = 32.11, p < .001, and SPARC compatibility, F(1, 46) = 11.54, p < .001. The Task 

× SNARC compatibility interaction, F(1, 46) = 23.98, p < .001, indicated that the SNARC 

effect was present only for the parity judgment task, F(1, 23) = 47.41, p < .001, but not 

for the magnitude judgment task, F(1, 23) = 0.36, p = .550. In addition, there was a 
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main effect of Task, F(1, 46) = 4.34, p = .043, indicating that parity judgment was less 

accurate than magnitude comparison. 

 

  

Figure 15: Mean ER for the magnitude comparison (left panel) and the parity judgment 

(right panel) task as a function of SNARC compatibility, SPARC compatibility, 

and task. 

 

4.3 Discussion 

 

In order to study whether SNARC and SPARC are independent effects, a 

factorial design was adapted in which numerical magnitude and pitch height were 

varied within auditorily presented stimuli (Fischer et al., 2013). These stimuli were 

employed in a set of two tasks. While in the number comparison task the SNARC effect 

was explicit and the SPARC effect implicit, in the parity judgment task, both effects 

were implicit. 

In the response times, both SNARC and SPARC effects were found to be present 

in the magnitude comparison task, even though pitch was not relevant for solving the 

task. This implies that pitch was automatically coded along with number, or, in other 

words, that the assessment of numerical magnitude co-activated the spatial coding of 

pitch. In the parity judgment task, only the SNARC effect was present, while no SPARC 

effect could be observed. This implies that the spatial code for numbers was activated 

automatically, while this was not the case for pitch height. The absence of a SPARC 

effect suggests that pitch height is only coded spatially when magnitude coding is 
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required by the task. However, in the ER, SPARC was present in both tasks. This result 

points towards the assumption that pitch, like number, is automatically and 

unconditionally mapped onto space. In sum, it can be concluded that both number and 

pitch automatically activate a spatial representation. 

These results contrast to those of Fischer et al. (2013), who found in both their 

magnitude judgment tasks that only compatibility of the task-relevant attribute with 

responses enhanced performance. As mentioned earlier, their results could be 

attributed to their specific choice of stimuli. For nonmusicians, implicit SPARC is, next 

to the presence of a reference tone (Cho et al., 2012), sensitive to timbre and pitch 

range, as shown in Study 1 of the present work. Moreover, an earlier study of Rusconi 

et al. (2006) showed that for stimuli ranging with tonal differences of 2, 4, and 6 

semitone step distances around the middle, vertical SPARC was even reversed in 

nonmusicians. Therefore, it is likely that part of the stimuli in Fischer and colleagues’ 

set were not sufficient to produce implicit horizontal SPARC effects in nonmusician 

participants. 

Even though both numerical magnitude and pitch height were jointly and 

automatically mapped to horizontal space, the observed SNARC and SPARC effects 

were found to be additive and therefore independent. Regarding the dimensional 

overlap taxonomy (Kornblum et al., 1990), this result means that pitch and number 

form a type 5 ensemble, where both relevant and irrelevant stimulus dimensions are 

associated with responses, but not with each other. The additivity of the observed 

SPARC and SNARC effects includes the absence of congruency effects, and, moreover, 

their independence implies separate processing mechanisms. In other words, in both 

tasks employed in the present study, number and pitch appear to be separable 

dimensions in the sense of Garner’s (1974) distinction. A reason for this observation 

might be that SNARC and SPARC originate on separate representational dimensions 

(SNARC: horizontal; SPARC: vertical). Another reason could be that, in contrast to other 

magnitudes for which size congruity effects can be observed (e.g., the joint variation of 

physical and numerical size within a stimulus set), different verbalizations underlie 

judgments of the numerical and pitch dimension (small – large vs. low – high). 

Congruency effects would have been expected based on the principle of 

polarity correspondence (Proctor & Cho, 2006): Potentially, the spatial representations 
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of number and pitch strengthen each other when they share the same polarity and 

interfere with each other in case their polarities do not match. Because no congruency 

effects were observed, it is not possible to discuss whether such effects for pitch and 

number would be task-specific. This would have been expected based on the shared 

decisions account (Santens & Verguts, 2011), which proposes that the irrelevant 

dimension will interfere with the decision process, when magnitude judgment is 

required by the task. Instead, however, the spatial representations of number 

magnitude and pitch appear to enter the decision stage through separate channels. 
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5 General Discussion 

 

The focus of the present thesis was to investigate, how associations of pitch 

with horizontal space are affected by stimulus attributes other than the pitch height of 

a heard sound, especially when pitch height is not task-relevant. Effects of SRC, like 

SPARC for pitch heights, can potentially be modulated by different, additionally varied 

stimulus features, regardless of whether these features are task-relevant or not (e.g., 

Henik & Tzelgov, 1982; Tlauka, 2002). 

Nonmusicians have been shown to produce less stable horizontal pitch-to-

space associations (e.g., Cho et al., 2012; Lidji et al., 2007; Rusconi et al., 2006) and 

generally, findings on horizontal SPARC in nonmusicians are inconsistent. Thus, 

especially in this participant subgroup, it is of interest whether associations of pitch 

height with horizontal space may be affected by stimulus features other than pitch. 

According to the principle of polarity correspondence (Proctor & Cho, 2006), 

any kind of structural similarity of stimulus and response set can lead to a facilitation 

of response selection. This means that ordinal information, but also categorical 

information, can be coded as polarities that then overlap with responses. Structural 

similarity is reflected as dimensional overlap in the dimensional overlap model 

(Kornblum et al., 1990) which allows for more detailed predictions on possible 

interferences. In order to further clarify the inconsistency of findings on the horizontal 

SPARC effect in nonmusicians, the present thesis included two separate studies that 

investigated interactions of horizontal SPARC with stimulus features that contain only 

categorical (i.e., timbre) or ordinal (i.e., numerical size) information. 

 

5.1 On the Interdependence of SRC Effects for Pitch and Timbre 

 

Earlier studies on horizontal SPARC in nonmusicians mostly focused on the 

presence of SPARC depending on the task-relevance of pitch and response setting 

(e.g., Lidji et al., 2007; Rusconi et al., 2006), but little attention was paid to features of 

the stimulus set. Study 1 aimed to investigate, how pitch and timbre differences within 
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a stimulus set influence the automatic spatial coding of pitches. Therefore, a set of 

four SPARC tasks was conducted with nonmusicians, in which task relevancy of pitch, 

orientation of response dimension, and pitch range of the stimulus set were varied 

while timbre was controlled for. 

Results showed that participants’ pitch-to-space associations were formed 

independently of timbre, when pitch was task-relevant in a horizontal response 

setting. However, the case was different, when pitch was a task-irrelevant stimulus 

feature. Here, in the horizontal response dimension, pitch-to-space associations were 

modulated by instrumental timbre. However, this effect of timbre could not be 

replicated in the vertical response dimension, which leads to the conclusion that the 

interaction of pitch and timbre in the horizontal timbre judgment task was not caused 

by timbre-specific differences of associations of pitch and vertical space. A replication 

of the horizontal timbre judgment task with a widened pitch range yielded SPARC 

effects independently of timbre and also associations of timbre with response sides. 

These results showed that for the horizontal SPARC effect with vocal sounds, large 

enough pitch distances are required for the forming of an automatic mapping of task-

irrelevant pitch to horizontal space. 

The results of Study 1 indicated that the pitch range of a stimulus set can affect 

horizontal SPARC, depending on the timbre of a sound. This is particularly the case for 

vocal sounds, as for this timbre category, SPARC was only present when stimuli 

spanned over a large tonal range. In sum, pitch processing is not always independent 

of timbre and pitch range in nonmusicians. Specifically, these factors can affect the 

assumed orthogonal transformation of vertical pitch-to-space mappings into the 

horizontal dimension when pitch height is not task-relevant. However, when pitch 

ranges are chosen sufficiently wide, SRC for pitch and timbre are formed 

independently. In view of future research, the possible interferences need to be taken 

into account when conducting choice-reaction tasks involving sounds of varying pitch 

heights and timbres. 
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5.2 Joint Processing of Pitch and Number: Horizontal SPARC and SNARC 

do not Interact 

 

The question of whether SNARC and SPARC are independent has been 

addressed by earlier studies (Beecham et al., 2009; Fischer et al., 2013). A final answer 

could not be given, as only an indirect measure was used or the stimulus set was not 

sufficient to produce isolated implicit SRC effects of pitch and number. In order to 

provide a more conclusive answer, Study 2 involved a factorial design in which 

numerical size and pitch height of the stimuli were varied within one and the same 

stimulus set. The improvement here was that it was ensured that the chosen numbers, 

as well as the pitch heights, were sufficient to produce isolated explicit and implicit 

SRC effects in a horizontal task setting. In addition, task relevance of magnitude 

processing was varied. The new stimuli were employed in a parity judgment and in a 

number comparison task. Thus, while pitch was always task-irrelevant, numerical 

magnitude could be task-relevant or not. 

Results showed that both pitch height and numerical magnitude were 

automatically coded spatially in both tasks. However, horizontal SPARC and SNARC did 

not interact. Specifically, the effects were only additive and can therefore be 

considered independent. This finding implies that both numerical magnitude and pitch 

facilitated responses with corresponding responses, and caused, unlike the prediction 

made by the shared decisions account, no congruency effects that might have been 

task-specific. 

The results of Study 2 show that, with a carefully chosen stimulus set, both 

horizontal SPARC and SNARC can be observed as implicit effects in tasks that do or do 

not involve the assessment of a magnitude. The independence of these effects implies 

that spatial representations of numerical magnitude and pitch height enter the 

decision stage through separate channels, which might be because the effects 

originate from separate representational dimensions (i.e., horizontal vs. vertical). In 

comparison with an earlier study which yielded different results (Fischer et al., 2013), 

the observations made in Study 2 again emphasize the importance of a careful 

consideration of stimulus features such as pitch range for similar future studies. 



5 General Discussion 79 

5.3 SRC for Pitch and Simultaneously Perceived Stimulus Features 

 

Study 1 and 2 aimed to investigate whether stimulus features that contain 

categorical (i.e., timbre) or ordinal (i.e., numerical size) information can interfere with 

horizontal pitch-to-space associations in nonmusicians. Study 1 showed that pitch 

processing is not always independent of timbre and pitch range. However, an 

enlargement of the chosen tonal range within the same timbre categories produced 

SRC effects for both pitch and timbre, which were independent from each other. Thus, 

pitch and categorical information (i.e., timbre) did not interact when the pitch range 

was large enough to produce automatic horizontal pitch-to-space associations in all 

timbre categories. Study 2 yielded similar results: With pitches chosen from the same 

large tonal range as in Study 1, horizontal SPARC and SNARC were both observed. Just 

like in Study 1, SRC for pitch and numerical (or ordinal) information were both present, 

but independent. 

The results obtained in Study 1 and 2 imply that when the pitch range is chosen 

large enough, horizontal SPARC is independent of other simultaneously perceived 

stimulus features, even when those additional stimulus features cause SRC effects 

themselves. This similarity of results is reflected by the type of ensemble that can be 

ascribed to the stimulus sets used in Study 1 and Study 2 according to the taxonomy of 

the dimensional overlap model (Kornblum et al., 1990): In Experiment D of Study 1, as 

well as in Study 2, pitch and the additionally varied stimulus feature formed type 5 

ensembles. The results of Nishimura & Yokosawa (2009), who combined horizontal 

SPARC with an intrinsically spatial feature (i.e., the side of the ear to which a sound 

was presented), complete the picture: In their study, the authors observed that 

horizontal SPARC and the Simon effect (Simon & Rudell, 1967) were both present, but 

did not interact, which means that pitch and presentation side also form a type 5 

ensemble for dimensional overlap. 

It is important to note that the observed independence of SPARC of other 

stimulus features seems to be, however, restricted to stimulus features that are 

originally represented on different spatial axes. This is indicated through a study in 

which participants had to reply to either the initial pitch or the direction of pitch 
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change within auditorily presented stimuli with top and bottom key presses. Here, SRC 

effects were present for both initial pitch and pitch change (Walker & Ehrenstein, 

2000). More importantly, however, the authors observed enhanced performance, 

when initial pitch and pitch change corresponded (e.g., when the pitch of a high tone 

increased). This means that for pitch and pitch change, which are both semantically 

bound to the vertical response dimension (i.e., tones were initially low or high and the 

pitch changed to the tone being lower or higher), congruency facilitates responses as 

expected in terms of the size congruity paradigm (Santens & Verguts, 2011). This 

implies that pitch and pitch change form a type 8 ensemble with vertically aligned 

responses within the taxonomy of the dimensional overlap model (Kornblum et al., 

1990). Whether the observed congruency effect originates from the decision level of 

stimulus processing, as expected by the shared decisions account (e.g., Santens & 

Verguts, 2011), cannot be decided based on the results obtained by Walker and 

Ehrenstein, as both their tasks involved a direct assessment of pitch. 

The independence of horizontal SPARC and further stimulus features as 

observed in the present thesis can be explained by the fact that, while most SRC 

effects are thought to originate on a horizontal representational dimension, pitch is 

represented on a vertical axis. The principle of polarity coding (Proctor & Cho, 2006) 

can be employed to account for these observations: Horizontal SPARC derives from an 

orthogonal transformation of the vertical pitch-to-space association into the horizontal 

response dimension. Thus, the originally formed polarity codes correspond with the 

lower and upper response option and are transformed in order to generate a 

response. Other stimulus features, like timbre or numerical magnitude, are 

represented horizontally in the first place, which yields polarity codes corresponding to 

left and right response options. Therefore, responses formed according to these 

stimulus features might enter the decision stage through separate channels, which 

would explain their independence. 

Alternatively, the definition of dimensional overlap (Kornblum et al., 1990) can 

be applied to the finding that horizontal SPARC is independent of simultaneously 

varied stimulus features. According to Kornblum et al. (1990), dimensional overlap is 

present when the categories within stimulus and response sets can be mapped onto 

each other with a homomorphism that maintains operations and relations within a set. 
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The extent to which dimensional overlap is present depends on the similarity between 

these relations. In the present thesis, the varied dimensions of stimulus sets were 

timbre, pitch, and number while the response set was always binary and aligned 

horizontally. Because pitch is more strongly and consistently associated to the vertical 

spatial axis while timbre and number are associated to the horizontal axis, the 

similarity of relations is reduced by default. Furthermore, there is no semantic overlap 

between categories within the sets. While pitch can be categorized as low or high, 

number will be judged as small or large and timbre in the present experiments can be 

judged as piano or vocals. Taken together, these factors may be the reason why no 

dimensional overlap between pitch and other stimulus features was observed when 

responses were given along a horizontally aligned response set. 

In sum, the findings of the present thesis imply that stimulus features 

originating from separate representational dimensions are processed independently 

more likely than features which originate from the same representational dimension, 

such as for example numerical and physical size or pitch and pitch change. Moreover, 

the observations made show that when spatial associations for pitch have to be 

transformed from the original vertical into the horizontal domain, special attention has 

to be paid to accessory stimulus features in order to not receive data in which effects 

are occluded due to features that are coded along with or even more saliently than 

pitch. 
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6 Summary and Conclusion 

 

The present thesis aimed to investigate, whether associations of pitch with 

horizontal space in nonmusicians are affected by stimulus features that can produce 

compatibility effects with horizontally aligned responses themselves. The findings of 

Study 1 and 2 show that when the tonal range is wide enough, horizontal pitch-to-

space associations are formed automatically, independently of whether additional 

stimulus information is of categorical (i.e., timbre) or ordinal (i.e., number) nature. The 

observations made in Study 1 also imply, however, that horizontal SPARC in 

nonmusicians can be affected by timbre when the employed tonal range is small. In 

view of these findings, future research should carefully consider timbre and pitch 

differences within sets of auditory stimuli in order to not occlude possible 

compatibility or congruity effects. 

For further studies on the independence of SPARC and SNARC as observed in 

Study 2, it would be interesting to employ the stimulus set of Study 2 to a task where 

neither numerical magnitude, nor pitch height, nor number parity are task-relevant. 

This could for instance be achieved by introducing an additional, task-relevant stimulus 

feature (e.g., voice timbre: male vs. female; color of a visually presented shape: red vs. 

green). Furthermore, the collection of psychophysiological measures of participants’ 

reactions to the same stimulus set could shed more light on the question whether the 

observed independence of pitch and number results of distinct processing areas. This 

could, for example, be achieved by employing functional magnetic resonance imaging 

(fMRI). Based on the assumption that a shared magnitude neural code exists which is 

located in the IPS (Cohen Kadosh et al., 2008c) and the results obtained in Study 2, it 

would be expected to find higher levels of activity in the IPS when the spatial 

association of the stimulus is not compatible with the response side, or, in other 

words, when stimulus and response are coded as different polarities. Furthermore, 

magnitude comparison, or in this case, number comparison, should yield higher 

activation in the left IPS (e.g., Nieder & Dehaene, 2009). 

In addition, replications of the above studies with trained musicians and also 

with different timbre categories (e.g., artificial sounds, non-complex sounds such as 
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sinusoids) might be an interesting continuation of this research, as results could give 

insight into whether implicit SPARC is always affected by timbre when pitch ranges are 

rather small and whether timbres less similar to (harmonic) instrumental sounds 

produce the same effects as those employed in the present work. 

Thus, while inconsistencies in horizontal SPARC may not be terminally 

explained by the results obtained in this thesis, the present work extends previous 

studies by the knowledge that in nonmusicians, horizontal SPARC can be timbre-

dependent and that, when the tonal range is chosen appropriately, horizontal SPARC is 

independent of other stimulus features that cause SRC effects originating from 

horizontal representations. 
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