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1 Introduction

Perceiving objects and interacting with them within our environment
determines a great part of human behavior. In order to do so, we have to classify such
objects according to the nature of their properties. Thus, we need to be able to
identify the values for both qualitative and quantitative parameters of these object
properties.

Quantitative measures or magnitudes, respectively, are often unconsciously
assessed in order to solve problems. For doing so, internal representations of these
magnitudes are required. In the past it has been suggested that such magnitude
representations can be imagined as a spatial continuum on which magnitudes are
ordered by size. This is true for magnitudes that are easy to identify (e.g., the physical
size of an object), as well as for less commonly assessed magnitudes (e.g., the pitch
height of a sound) or even abstract magnitudes (e.g., numbers).

During the last 20 years there has been an increasing amount of research on
the nature of these internal representations. For instance, to date there is a wide
range of studies that have examined number representations, because despite their
abstract nature, numbers are easy to identify and compare.

However, objects in our environment typically contain information on more
than one stimulus dimension. For example, when we hear a single sound we can
identify categorical or qualitative information (e.g., timbre) as well as ordinal or
guantitative information (e.g., pitch height, loudness, duration). Therefore, it is
important to consider not only isolated object properties, but also the relations
between such object or stimulus features and the mechanisms for simultaneous
processing of multiple stimulus features.

The present thesis focuses on the question of whether the processing of
stimulus features that are represented along differing spatial axes is independent or
not. Particularly, it is investigated whether pitch height as a quantitative measure can
be viewed independently of other stimulus features. Interferences of pitch processing
with another typical auditory characteristic that only contains categorical information

(i.e., timbre) are studied as well as interferences with another quantifiable stimulus
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feature (i.e., number). Therefore, a joint theoretical background is given which
provides with details on the isolated and simultaneous processing of such stimulus
features as well as with underlying concepts with a special focus on pitch and number.
The thesis then reports two new studies in which the question of independent
processing of pitch with simultaneously varied stimulus features is examined
separately. A joint review on results is given in the general discussion and an outlook

on further research follows in the final summary and conclusion.
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2 Theoretical Background

This section provides with the theoretical background for the studies that are
presented in this thesis. The central concept is that of Stimulus-Response Compatibility
(SRC, Fitts & Deininger, 1954; Fitts & Seeger, 1953). The compatibility of stimuli and
response options affects performance not only in real life settings, but also in
experimental choice-reaction tasks (e.g., Fitts & Seeger, 1953; Kornblum, Hasbroucq, &
Osman, 1990; Proctor & Vu, 2006). As this concept allows for the investigation of
isolated and simultaneous processing of stimulus features, it forms the ground for
theoretical considerations in this thesis.

In the beginning, the concept of SRC is defined. Then, an overview on
theoretical accounts to explain SRC effects is provided, followed by a more detailed
view on the dimensional overlap model (Kornblum et al., 1990) and the principle of
polarity correspondence (Proctor & Cho, 2006; Proctor & Vu, 2006). The Spatial
Numerical Associations of Response Codes (SNARC; Dehaene, Bossini, & Giraux, 1993)
and the Spatial Musical (or Pitch) Associations of Response Codes (SMARC, Rusconi,
Kwan, Giordano, & Umilta, 2006; SPARC, Lidji, Kolinsky, Lochy, & Morais, 2007) effects,
which are examples for isolated SRC effects for numerical and non-numerical
magnitudes, are then described and accounted for. The section continues with
introducing the question of independent processing of simultaneously perceived
stimulus features and underlying concepts. In particular, it is considered whether pitch
as an isolated stimulus feature can be viewed independently of other, simultaneously
perceived features that can evoke SRC effects and that can be task-relevant or not. The

theoretical background concludes with a brief overview and the research interest.
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2.1 Defining Stimulus-Response Compatibility (SRC)

When stimulus and response in a choice-reaction task share some common
features, this will result in enhanced performance (e.g., Fitts & Deininger, 1954; Fitts
& Seeger, 1953; Kornblum et al., 1990; Proctor & Vu, 2006). This phenomenon is
named the Stimulus-Response Compatibility (SRC, Fitts & Deininger, 1954; Fitts
& Seeger, 1953). For instance, when a stimulus presented on the left side of a screen
has to be responded to with a left key press (i.e., in a compatible trial), responses will
be faster and more accurate than when the response has to be given with a right key
press.

A first notion on SRC effects was already made in the 19" century by Donders
(1868/1969), who observed that the performance for left or right hand responses to
electrical stimulation of the left or right foot was faster when stimulation and response
were located on the same side. Almost a hundred years later, the concept of SRC was
established by Fitts and colleagues (Fitts & Deininger, 1954; Fitts & Seeger, 1953).

SRC effects have been shown to persist throughout multiple perceptual
domains (e.g., Tagliabue, Zorzi, & Umilta, 2002; Vu, Proctor, & Urcuioli, 2003) and are
only dependent on response location, but not on the responding hand (Wallace, 1971).
Furthermore, SRC effects are also mostly independent of task. This means that the
stimulus feature that causes the overlap of stimulus and response does not have to be
task-relevant (Hommel & Prinz, 1997; Kornblum & Lee, 1995; Lu & Proctor, 1995;
Proctor & Reeve, 1990; Simon, 1990). Moreover, SRC affects performance even when
the compatibility is merely implied (e.g., a very small object is associated with the left
side on a continuum representing physical size; Ren, Nicholls, Ma, Chen, & Dyer, 2011;

Shaki, Petrusic, & Leth-Steensen, 2012; Shoben, Cech, Schwanenflugel, & Sailor, 1989).

2.2 Mechanisms of Stimulus-Response Compatibility

In the past, a variety of models has been developed in order to account for
aspects of SRC (Proctor & Vu, 2006). In the following, a chronological overview on the

development of SRC models is given in which these models are briefly described. The



2 Theoretical Background 5

selection of models is based on an overview by Proctor and Cho (2006) and expanded
by a further theoretical account for SRC. Afterwards, the dimensional overlap model
(Kornblum et al.,, 1990; Kornblum & Lee, 1995) and the principle of polarity
correspondence, as established by Proctor and colleagues (Proctor & Cho, 2006;

Proctor & Vu, 2006), are introduced and explained in further detail.

2.2.1 Explanatory Approaches for Stimulus-Response Compatibility: An

Overview

Generally, models accounting for SRC effects can be allocated within two
groups: The group of conceptual models, which are stated qualitatively, and the group
of quantitative and computational models, which allow for the specification of effect
magnitudes in addition (Proctor & Vu, 2006). All the accounts described below assume
SRC effects to originate on the response selection stage of task solving, rather than on
the representational or action planning stage.

The early SRC model of Deininger and Fitts (1956) is a conceptual model which
is based on the assumption that there are always one or more steps of information
transformation involved in motor performance. The number of steps and the time
required for transformations depend on whether a stimulus-response relation “agrees
closely with the basic habits or expectancies of individuals, i.e., with individual and
with population stereotypes” (Fitts & Seeger, 1953, p. 208). The required type of
transformation or recoding determines performance efficiency (Deininger & Fitts,
1956). Specifically, performance becomes more efficient when the number of
operations within the transformation decreases (Proctor & Vu, 2006).

Similar to the conceptual SRC model by Deininger and Fitts (1956), Rosenbloom
and colleagues (Rosenbloom, 1986; Rosenbloom & Newell, 1987) developed an
algorithmic model of SRC in which it is proposed that SRC effects depend on the
number of transformational operations which have to be performed. This model
presumes that performance in speeded tasks can be viewed as algorithms or

programs. By estimating the number of operations that are required to respond to a
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specific combination of stimulus and response set within an algorithm, it is even
possible to determine a rank ordering of reaction times (RT).

In 1990, Kornblum, Hasbroucqg, and Osman introduced the dimensional overlap
model. This model extends the above mentioned ones by the addition of an automatic
activation component. While the earlier models focused on intentional transformation
processing routes, Kornblum and colleagues (Kornblum et al., 1990; Kornblum & Lee,
1995) added an automatic response-selection route which produces a response
associated with a stimulus feature independent of its task-relevance. This response can
then interfere with the response chosen according to task instructions. Due to its
importance for the present thesis, further details on this theoretical account will be
given in the following section (2.2.2).

Connectionist models are models which emphasize the role of short-term and
long-term associations instead of a dual-route for response selection (e.g., Barber &
O'Leary, 1997; Stoffer & Umilta, 1997). Specifically, associations of stimuli with
responses can either be introduced by task instructions (i.e., short-term associations)
or they can be pre-existing and overlearned (i.e., long-term associations). According to
connectionist models, SRC depends on the automatic activation and the directness of
the short-term associations of stimuli with responses. Connectionist models, like the
parallel distributed processing (PDP) model developed by Zhang, Zhang, and Kornblum
(1999), which is based on the dimensional overlap model, extend the conceptual
models, as they also allow for quantitative predictions (Proctor & Vu, 2006).

Hommel, Miusseler, Aschersleben, and Prinz (2001) also brought forth a
conceptual account for SRC. Their theory of event coding is based on the idea of
common coding. It is assumed that within a task, perception and actions are coded in a
joint system (Eimer, Hommel, & Prinz, 1995; Hommel et al., 2001, see Figure 1). Action
plans and stimulus representations are both composed of feature codes and these
cognitive codes, the so-called event codes, are related to external events (Proctor
& Vu, 2006). Thus, instead of a translation from sensory to motor code (lower part,
unbroken lines), the perception of a stimulus with certain features directly activates
actions that produce the same features (upper part, broken lines). This, in turn, results
in enhanced performance in case the primed action is also the one that is correct

according to task instructions.
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direct activation

. code | ,/ code r,

sensory code ——— motor code
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. . translation o
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Figure 1: Model of the relationship between perception and action. The lower part
depicts the separate coding view involving translation; the upper part (ellipsis)

depicts the common coding view. (Eimer et al., 1995)

Another conceptual account is the perspective of salient features coding
(Proctor & Reeve, 1985; Reeve & Proctor, 1990). This account was initially established
for intentional stimulus-response translation and is based on the idea that salient
stimulus and response features are involved in translation processes. Consequently,
performance is enhanced when salient stimulus and response features systematically
correspond (Proctor & Vu, 2006). This kind of correspondence includes three kinds of
stimulus features: features, that are intrinsically spatial (e.g., the side of a screen on
which a visual stimulus is presented on), features that are represented spatially or
ordered in a fixed fashion (e.g., numbers), and features that only allow the
asymmetrical forming of categories within this feature (e.g., the parity of a number).
Therefore, salient features coding can also account for SRC effects that emerge from a
mere structural similarity of stimulus and response set.

The account of salient features coding was further developed by Proctor and
colleagues (Proctor & Cho, 2006; Proctor & Vu, 2006) into the principle of polarity

correspondence. As polarity correspondence is a more general principle that is
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employed as one of the underlying accounting frameworks in the present thesis, it is

described separately and in more detail later (see section 2.2.3).

2.2.2 The Dimensional Overlap Model

In their dimensional overlap model (Figure 2), Kornblum and colleagues
(Kornblum et al., 1990; Kornblum & Lee, 1995) were the first ones to establish a non-
intentional, automatic route of information processing to account for SRC. The
invention of an automatic route allows for the explanation of SRC effects that derive
from task-relevant as well as from task-irrelevant stimulus features. The dimensional
overlap model assumes two determining factors for SRC: the set-level determinant and
the element-level determinant. The set-level determinant, which is termed as
dimensional overlap by the authors, forms the representational aspect of the model,
while the element-level determinant forms the processing aspect.

Dimensional overlap can be viewed as a consequence of the fact that humans
“organize the world along various dimensions and into categories of similar, related,
and/or associated objects” (Kornblum et al., 1990, p. 257). Stimulus sets in
experimental tasks typically are formed systematically according to specific criteria
instead of being chosen randomly, resulting in sets of objects that are homogenous
and highly structured. Therefore, object dimensions and attributes are easy to identify
which in turn facilitates the transformation of stimuli and responses into classes or
categories (Kornblum et al., 1990). If the categories within such sets can be mapped
onto each other with a homomorphism (i.e., a transformation that maintains relations
and operations within a set, but not necessarily the number of elements), dimensional
overlap is present. For instance, one might consider a set of squares (set 1) and a set of
circles (set 2) of different sizes, as well as another set of squares (set 3) varying in
grayness (from white to black). All three sets contain an order relation (i.e.,
smaller/larger, brighter/darker grey). Thus, there is dimensional overlap between any
two of these three sets. However, dimensional overlap between set 1 and set 2 is
greater than for example between set 1 and set 3 due to the greater similarity of the

order relations of set 1 and 2 (size) compared to set 1 and 3 (size and grayness).
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Figure 2: The dimensional overlap model (Kornblum et al., 1990). Continuous lines

depict the processing paths when dimensional overlap is present.

When an experimental task is solved, a perceived stimulus is encoded according
to its features (set level). The type of coding determines whether dimensional overlap
between stimulus and response is present or not. The element-level determinant
addresses the processing stage. In any SRC task, the automatic processing route (upper
branch) is activated: When a stimulus (S;) is perceived and dimensional overlap is
present (i.e., stimulus and response set share common features in a perceptual,
conceptual, or structural manner), the response that is compatible with the stimulus
(r;) is identified and programmed, regardless of whether this stimulus feature is task-
relevant or not. In addition, the task-relevant response (ry) is identified via the
intentional route (lower branch), according to task instructions. The time for response
identification varies depending on the mapping specified by the instructions. When the
mapping follows a rule, this rule can be employed for quick response identification. If,
however, no such rule can be applied and stimuli are assigned randomly to responses,
the correct response has to be identified by a search through the S-R-table. In both
cases, if automatic and identified responses are the same (r; = ry), the automatically
programmed response is carried out; if they are not the same, the automatic response
has to be aborted and the motor program for the identified response has to be

retrieved and executed. This, in turn, leads to a decrease in performance.
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2.2.3 The Principle of Polarity Correspondence

The principle of polarity correspondence has been established by Proctor and
colleagues in 2006 (Proctor & Cho, 2006; Proctor & Vu, 2006). It is based on the
previously presented account of salient features coding (Proctor & Reeve, 1985; Reeve
& Proctor, 1990). The major point of this account is that structural correspondence of
stimulus and response sets affects performance in choice reaction tasks. This was for
example shown in a study of Proctor and Reeve (1985): The authors observed that
when the stimuli O, o, Z, and z had to be mapped to two left- and two right-hand
responses that were horizontally aligned, mappings of the type o, O, Z, z produced
shorter RT than mappings of the type o, Z, O, z. Proctor and Reeve concluded that the
salient feature of the stimulus set was the name of the letter. This categorization by
letter name was already sufficient to cause overlap with the salient feature of the
response set (i.e., whether a response had to be made with the left or the right hand).

The idea of structural correspondence, as brought forth in the account of
salient features coding, also forms the core of the later developed principle of polarity
correspondence (Proctor & Cho, 2006). This principle assumes that “for a variety of
binary classification tasks, people code the stimulus alternatives and the response
alternatives as + polarity and - polarity, and response selection is faster when the
polarities correspond than when they do not” (Proctor & Cho, 2006, p. 418). For
example, large numbers and right hand responses are both typically coded as +
polarity which leads to faster right hand responses for large numbers and faster left
hand responses for small numbers within a given set.

It is important to emphasize that polarity correspondence can also be applied
to stimulus and response sets that do not contain any perceptual or conceptual
overlap. Particularly, any kind of structural similarity of stimulus and response set can
lead to consistent polarity coding. This means that associations of stimuli with
responses can also occur for stimulus sets that do not contain any spatial or magnitude
information. For instance, for number parity it has been shown that participants code
odd as - polarity and even as + polarity (Nuerk, Iversen, & Willmes, 2004; Proctor

& Cho, 2006).
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In sum, polarity correspondence is a comparably simple principle that, similarly
to the dimensional overlap account, explains SRC effects for stimulus features when
they are intrinsically spatial, when a spatial association (of magnitudes) is only merely
implied or even when a feature can only be divided into categories due to a structural
asymmetry of the stimulus set concerning that feature. Thus, a variety of effects and
interferences in processing stimulus features can be explained within this framework,
especially also for the features that are of interest in the present thesis, that is, pitch,

timbre, and number.

2.3 Stimulus-Response Compatibility of Isolated Magnitudes: Numbers

and Pitch Heights

As implied in earlier sections (sections 2.2.1 and 2.2.3), a stimulus feature does
not have to be intrinsically spatial in order to cause SRC. In fact, stimuli that are only
considered as activating a mental spatial representation can evoke SRC effects. For
example, numbers do not explicitly contain any spatial information but are thought to
be represented spatially (for further details, see section 2.3.1.1). Compatibility effects
of spatially represented stimuli with responses are said to reflect spatial associations of
response codes (Lidji et al., 2007).

Effects of such merely implied spatial associations were first observed for
numbers in a study by Dehaene, Bossini, and Giraux in 1993. Since then, a wide range
of similar effects have been reported for magnitudes such as physical size (e.g., Ren et
al., 2011; Shaki et al., 2012; Shoben et al., 1989), time (e.g., Bonato, Zorzi, & Umilta,
2012; Ishihara, Keller, Rossetti, & Prinz, 2008a; Ishihara, Keller, Rossetti, & Pringz,
2008b; Santiago, Lupianez, Pérez, & Funes, 2007; Vallesi, Binns, & Shallice, 2008), color
in synaesthetes (Brugger, Knoch, Mohr, & Gianotti, 2004), luminance (e.g., Cohen
Kadosh, Cohen Kadosh, & Henik, 2008b; Pinel, Piazza, Le Bihan, & Dehaene, 2004),
pitch (e.g., Cho, Bae, & Proctor, 2012; Lidji et al., 2007; Rusconi et al., 2006), and
others (for a review, see Cohen Kadosh, Lammertyn, & lzard, 2008c). Furthermore it

has been shown that also the representations of ordinal sequences such as letters of
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the alphabet or months of the year are spatially organized (e.g., Gevers, Reynvoet, &
Fias, 2003).

In the present work, the focus is put to the spatial representation of pitch
height and the question, whether SRC effects of pitch height are affected by other
stimulus features that can be coded categorically (timbre) or in terms of a magnitude
(numbers). Therefore, the following sections introduce the mental representation of
numbers and pitch heights and their resulting SRC effects, as for both these
magnitudes, SRC is thought to originate from a specific, underlying spatial
representation. As numbers were the first magnitude for which such SRC effects were
explicitly reported, the focus is first put on this concept, followed by a view on the
mental representation of pitch, which is the concept that is centrally investigated in

this thesis.

2.3.1 Mental Representation of Numbers

“Number is the within of all things.”

(Pythagoras of Samos)

Numbers determine our lives. No matter if written, carved into wood, as knots
in a rope or hammered into stone: Numbers have been and continue to be
omnipresent in our world and they have been and still are fundamental for the
development of modern technology. Therefore, numbers are a cultural invention of
great importance and it is impossible to imagine the world without them (Dehaene,
2011).

Considering the importance of numbers in the modern world, it is not
surprising that a great deal of research has focused on how this abstract concept is
perceived and processed. Numbers were the first magnitude for which an SRC effect
due to a merely implied spatial association was reported. The next section therefore
gives a short overview on how numbers are assumed to be mentally represented,
followed by an introduction to Spatial Numerical Associations of Response Codes or, in

short, the SNARC effect (Dehaene et al., 1993), and their underlying mechanisms.
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2.3.1.1 Defining Numbers and Their Spatial Representation: The Mental Number Line

Numbers as a magnitude are special, as they form an abstract magnitude
representation (i.e., they represent numerosities). Even though there is a wide range
of models accounting for number representation, one of the most accepted ones is the
triple-code model established by Dehaene (1992). Dehaene’s model (Figure 3) is based
on two premises. The first premise states that numbers are mentally represented in
three different codes or formats: the auditory verbal word frame, the visual arabic
number form and the analog magnitude representation. The second premise states

that each numerical procedure is tied to a specific input and output code.
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Figure 3: The triple-code model of number processing (Dehaene, 1992)
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The auditory verbal word frame is required for processing verbal input. This
level of representation processes number words. According to Dehaene (1992), in this
format, arithmetical facts (e.g., addition and multiplication tables) and the counting
skill are stored. For tasks requiring the retrieval of such facts, the input therefore
needs to be transformed to the verbal code before being processed. Visually presented
Arabic numerals are processed on the visual arabic number form level. On this level,
parity judgments are made and arithmetical operations with multi-digit numbers are
carried out. Also for the judgment on whether two numbers are equal or not, they
have to first be transformed to the visual arabic format (Dehaene et al., 1993). Within
the analog magnitude representation level, finally, the magnitude of a number and its
distance relations with other numbers are represented on an oriented, logarithmically
compressed number line (Dehaene, 1992). In this number form, magnitude
comparisons and approximate calculation, as well as subitizing and numerical
estimation take place.

Numbers and numerosities are essential for comparing values of measured
entities. While humans are able to perceive numerosities from very early childhood on
(e.g., Antell & Keating, 1983; Lourenco & Longo, 2010; Starkey & Cooper, 1980;
Starkey, Spelke, & Gelman, 1990), the meaning of exact numbers has to be learned.
Thus, in order to perform comparisons of numbers, humans have to learn that
numbers represent numerosities and that they are ordered in a fixed fashion. In other
words, they have to develop an analog magnitude code for numbers.

The order of numbers is often depicted along a number line on which, at least
in Western cultures, numbers are ordered ascending from left to right, likely due to
reading habits (e.g., Shaki, Fischer, & Petrusic, 2009). This number line provides with
information required to solve for instance retrieval, comparison, or arithmetic tasks
(Dehaene, 2011). In order to effectively and efficiently retrieve ordinal and magnitude
information, an internal representation of this number line is required which forms
along with the learning of numbers and is, therefore, not innate (Nufiez, 2011). This so-
called mental number line (MNL, Restle, 1970) is thought to be subject to
developmental change from a logarithmically compressed representation in childhood
towards a linear and analogue one (Case & Okamoto, 1996; Laski & Siegler, 2007,

Siegler & Booth, 2004). However, there is still debate on whether the MNL observable



2 Theoretical Background 15

in adults is exclusively linear or if the compressed one is also present and utilized when
needed (e.g., Gallistel & Gelman, 2000). Due to controversial findings on this issue, it
may be the case that we use multiple numerical representations (Siegler & Opfer,
2003) which are accessed flexibly, as determined by the specific requirements of a task
(Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Lourenco & Longo, 2009; Nufiez, Doan,
& Nikoulina, 2011; Viarouge, Hubbard, & Dehaene, 2011).

Generally, the MNL is to be viewed as a hypothetical construct for number
representations that are spatial in nature. On the MNL, numerical distance is
represented as spatial distance and similar number sizes lead to representational
overlap (e.g., Gobel, Shaki, & Fischer, 2011). The concept of an MNL is broadly
assumed to underlie the associations of numbers with space (e.g., Santens & Gevers,

2008), as reflected by the SNARC effect first reported by Dehaene et al. (1993).

2.3.1.2 Spatial Numerical Associations of Response Codes: The SNARC Effect

The SNARC effect (Dehaene et al., 1993) is probably the best known example
for SRC effects that are attributed to an internal spatial representation of magnitudes.
When relative numerical magnitude within a set (e.g., small or large) and response
location (e.g., left or right) correspond, reactions are made faster and with higher
accuracy than when the mapping of numbers to space is not corresponding or
compatible, respectively. This association can be observed even when numerical
magnitude is not relevant for the task. For instance, in the study of Dehaene et al.
(1993), participants were asked to judge the parity of a number (i.e., whether a
number is odd or even) and reacted faster when numerical size and response side
corresponded.

The SNARC effect is independent of whether response buttons are horizontally,
vertically, or diagonally positioned (i.e., response dimension) and how the numbers are
presented (i.e., modality; Nuerk, Wood, & Willmes, 2005). The effect has shown to
persist in a considerable number of studies (for a review and meta-analysis, see Wood,
Willmes, Nuerk, & Fischer, 2008). However, SNARC seems to be comparably flexible

(Pinhas, Pothos, & Tzelgov, 2013) and depending on the relative magnitude of a
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number within a given set. This means that numbers are coded as small or large in
relation to the numerical range employed in a task. For instance, in a task involving
numbers ranging from 0-5, the numbers 4 and 5 will be coded as large numbers, while
in a number set ranging from 4-9, 4 and 5 will be coded as (relatively) small numbers
(Pinhas et al., 2013). Moreover, on the internal scale from 0 to 10, the number 5 holds
a special status (Tzelgov, Meier, & Henik, 1992), which is likely because 5 halves the
distance between 0 and 10. Due to this, in stimulus sets with numbers ranging from 0
to 10, it is likely best to choose from a numerical range with 5 as an implicit midpoint.
This is even more important as the theory of place coding (e.g., Verguts & Fias, 2008)
assumes that when a number is perceived, not only the representation of that specific
number, but also the representation of the neighboring numbers is activated. Thus,
when stimulus sets contain numbers very close to each other, relative coding of
numbers as large or small may be impaired. Furthermore, certain conditions, as
introduced through task instructions (e.g., Bachtold, Baumiiller, & Brugger, 1998; Fias,
2001), incompatible spatial mapping or positioning (e.g., Fischer, Mills, & Shaki, 2010;
Fischer, Shaki, & Cruise, 2009; Notebaert, Gevers, Verguts, & Fias, 2006; Shaki &
Fischer, 2008), and memory requirements or load (e.g., Fischer, Riello, Giordano, &
Rusconi, 2013; Herrera, Macizo, & Semenza, 2008; Lindemann, Abolafia, Pratt, &
Bekkering, 2008; van Dijck & Fias, 2011; van Dijck, Gevers, & Fias, 2009), can lead to

reversion or dilution of SNARC effects.

2.3.1.3 Mechanisms Underlying SNARC

Commonly, the SNARC effect is thought to reflect a horizontal internal mental
representation of numbers ascending from left to right (i.e., the MNL). Already
Dehaene et al. (1993) attributed their observation of enhanced performance for
compatible response mappings to a systematic association of numbers with space
(Wood et al., 2008) and concluded that “the representation of number magnitude is
automatically accessed during parity judgment of Arabic digits. This representation

may be linked to a mental number line (Restle, 1970), because it bears a natural and
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seemingly irrepressible correspondence with the natural left-right coordinates of
external space” (Dehaene et al., 1993, p. 394).

It is often assumed that the SNARC effect emerges due to stimulus processing
along a dual-route architecture (e.g., Gevers, Ratinckx, de Baene, & Fias, 2006). This
dual-route architecture reflects the major ideas of the dimensional overlap model
(Kornblum et al.,, 1990): When a stimulus is presented, two processing routes are
activated in parallel. While the fast and unconditional route automatically programs
the response associated with the stimulus according to spatial associations caused by
the MNL, the slower, conditional route identifies the (correct) response according to
task instructions. When conditional and unconditional responses are identical, a
response can be given relatively fast, whereas when this is not the case, the
unconditional response needs to be aborted in order to give the correct response
(Gevers et al., 2006). SNARC is therefore thought to originate at a response-selection
level rather than on earlier levels of stimulus processing (Daar & Pratt, 2008; Keus,
Jenks, & Schwarz, 2005; Keus & Schwarz, 2005; Mdller & Schwarz, 2007).

In the past there has been a debate on whether the observation of SNARC
implies a MNL or not (e.g., Fias & Fischer, 2005; Gevers & Lammertyn, 2005; Santens
& Gevers, 2008; Wood et al., 2008). For example, it is argued that SNARC is just the
result of a highly overlearned stimulus-response loop (Fitousi, Shaki, & Algom, 2009) or
that the culturally formed number representation on which SNARC is based is not
necessarily fundamentally spatial (Nufiez et al.,, 2011). Other findings point towards
SNARC not only deriving from the response selection stage of processing (e.g., Fischer,
Castel, Dodd, & Pratt, 2003; Salillas, El Yagoubi, & Semenza, 2008) or that SNARC is
associated with spatial dimensions other than the horizontal one (Gevers
& Lammertyn, 2005, Holmes & Lourenco, 2012). These findings, along with the existing
debate, give rise to the question whether SNARC can be fully explained with the
concepts of MNL in combination with a dual-route processing architecture.

As an alternative account, the principle of polarity correspondence (Proctor
& Cho, 2006, see section 2.2.3) further contests the view that the MNL is the sole basis
for SNARC effects (e.g., van Dijck, Gevers, Lafosse, & Fias, 2012; Wood et al., 2008). In
view of polarity correspondence, the asymmetrical categorization of numbers as

(relatively) small or large within a stimulus set is already sufficient to produce polarity
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codes that then potentially overlap with the polarity codes of responses. Therefore, a
MNL would not be required for inducing SNARC effects, because the spatial association
is linked to relative magnitude (Ben Nathan, Shaki, Salti, & Algom, 2009).

Concerning the results of their meta-analysis, Wood et al. (2008) state that
even though the polarity correspondence framework can account for a wider range of
data than the concept of an MNL, there is clear neuropsychological evidence for the
use of a mental image (Hoeckner et al., 2008; Vuilleumier, Ortigue, & Brugger, 2004;
Zorzi, Priftis, Meneghello, Marenzi, & Umilta, 2006; Zorzi, Priftis, & Umilta, 2002).
Wood and colleagues reason that “both coordinated [according to the concept of
MNL] and categorical [according to polarity correspondence] spatial relations may be
important for the SNARC effect, in particular, and for the association between
numbers and space, in general.” (Wood et al., 2008, p. 511).

Interestingly, the dimensional overlap model (see section 2.2.2) actually
integrates features of both the dual-route processing architecture and the polarity
correspondence account. On the representational level, the dimensional overlap
model assumes that dimensional overlap occurs when stimulus and response sets can
be grouped into similar categories, which basically resembles the idea of polarity
coding. On the processing level, the dimensional overlap model contains an
unconditional, automatic route that programs an automatic response, as well as an
intentional route that identifies the correct response according to task instructions,
which is the same in the dual-route architecture assumed for SNARC. The only
difference is, that for instance for the SNARC effect, the dimensional overlap model
does not require the assumption that the unconditional response is programmed
according to the spatial position of a number on the MNL.

In view of this, it appears that both the principle of polarity correspondence
and the dimensional overlap model are strong frameworks to account for SNARC and
other SRC effects. While polarity correspondence is a rather simple principle that can
be applied to a variety of tasks and settings, the dimensional overlap model is more
complex, which in turn allows for more precise predictions considering expected
outcomes. Therefore, both these accounts will be revisited later for the question of

independence of simultaneous SRC effects and the final discussion of collected data.
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2.3.2 Mental Representation of Pitch

“How often do you hear a single sound by itself? Only when doing
psychoacoustic experiments in a soundproof booth!”

(Christopher J. Darwin)

Sounds are an inextricable part of our environment at all times. An important
attribute of sound is pitch, because it helps with the differentiation as well as with the
grouping of acoustic information in our environment and is therefore “of primary
importance in defining and differentiating our acoustic environment” (Plack &
Oxenham, 2005, p. 3). Pitch is, for instance, important for speech communication, as it
can carry prosodic (e.g., English), but also semantic information (e.g., Chinese).
Furthermore, pitch and pitch perception are also central to music, as simultaneous and
sequential presentation of tones forms the basis of harmony and melody (Schwartz &
Purves, 2004).

Despite the criticism by Darwin (2005), who argued that in our everyday
environment we usually perceive more than one sound at once, most research on
pitch and pitch perception has focused and continues to focus on the perception of
isolated tones. A reason for doing so is that some of the earlier research on SRC effects
aimed to answer questions of applied psychology, like, for instance, how to best relate
displays and controls. In line with this applied research, it appears more useful to study
effects of isolated tones instead of a whole set of tones. Isolated tones are also used
when representational organizations of pitch and pitch processing are investigated.
Typically, early studies on the spatial representation of pitch required their participants
to estimate the spatial location of the pitch height of a sound (e.g., Mudd, 1963; Pratt,
1930; Roffler & Butler, 1968; Stumpf, 1883; Trimble, 1934). It has only been more
recently that spatial representations of pitch height have been investigated in a more

indirect way, analogous to studies on the SNARC effect.
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2.3.2.1 Defining Pitch and its Spatial Representation

Pitch is “the auditory attribute of a sound in terms of which sounds may be
ordered on a scale extending from low to high. Pitch depends primarily on the
frequency content of the sound stimulus, but it also depends on the sound pressure
and the waveform of the stimulus” (ANSI, 1994). Subjectively perceived pitch is related
to and primarily determined by the fundamental frequency of a tone (Moore, 2003;
Schwartz & Purves, 2004). Even though it cannot be simply described as a function of
frequency or any other physical stimulus parameter (Hall & Peters, 1981), in this work,
pitch height will be referred to in terms of fundamental frequency (in Hz).

In the Western world, pitches are usually described as low or high (e.g.,
Casasanto, Phillips, & Boroditsky, 2003; Rusconi et al., 2006; Shayan, Ozturk, & Sicoli,
2011), which may even to a part form its vertical mental representation (Dolscheid,
Shayan, & Casasanto, 2011). The question of whether this reflects actual spatial
associations for pitch height was already assessed by Stumpf in 1883, who argued that
the use of the vertical spatial dimension for describing pitch height was only
metaphoric and that the auditory sensation did not include a real spatial
characterization.

Contrary to the conclusion drawn by Stumpf (1883), later studies encouraged
the idea of spatial representations of pitch height. Pratt (1930), who asked participants
to locate the positions of tones on a numbered scale, observed that tones were
located ascending on this scale according to their pitch height. He concluded that high
tones seemed to be phenomenologically higher in space than low ones (Rusconi et al.,
2006). Further studies produced similar results when participants were instructed to
estimate the spatial position of sounds (e.g., Mudd, 1963; Roffler & Butler, 1968;
Trimble, 1934; for a more detailed overview see Rusconi et al., 2006).

The structural relations between pitches can be described with geometrical
models (Rusconi et al., 2006). Such models are derived from multidimensional scaling
of pitch judgments (Shepard, 1982; Ueda & Ohgushi, 1987). Geometrical models
describe pitch height in terms of an ascending spiral with circular (representing pitch
chroma) and vertical rectilinear (representing pitch height) components (Ueda

& Ohgushi, 1987). Therefore, as can be seen in Figure 4, geometrical models assume a
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more complex, two-dimensional, helix-shaped representation of pitch (Cohen Kadosh,
Brodsky, Levin, & Henik, 2008a). This idea is supported by behavioral (Cohen Kadosh et
al., 2008a), as well as neuropsychological (Warren, Uppenkamp, Patterson, & Griffiths,

2003) findings.

CHROMA

Figure 4: The pitch helix (Shepard, 1982)

Later studies on spatial associations of pitch height with representational space
(e.g., Cho et al.,, 2012; Lidji et al., 2007) have confirmed a vertical rather than a
horizontal orientation of this representation. In analogy with the MNL for numbers,
Lidji et al. (2007) termed the ascending continuum, on which pitches are ordered from

low to high, the mental pitch line.

2.3.2.2 Spatial Pitch Associations of Response Codes: The SPARC Effect

The pitch height of a sound is typically coded as a magnitude in choice reaction
tasks, even when it is task-irrelevant. In tasks which require the judgment of a stimulus
feature other than pitch (e.g., instrumental timbre), responses to tones high in pitch

are made faster and more accurately with an upper hand key while responses to low
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tones are made faster with the lower hand key. This effect is termed the Spatial
Musical (or Pitch) Associations of Response Codes (SMARC, Rusconi, Kwan, Giordano,
Umilta, & Butterworth, 2005; Rusconi et al., 2006; SPARC, Lidji et al., 2007). In
agreement with Lidji et al. (2007), who stated that the pitch of isolated tones (as used
in the present work) could not necessarily be considered music, the acronym SPARC
will be adopted in this thesis.

Even though the acronym for spatial associations of pitch with response codes
was only first formed in analogy to the term SNARC in 2005 by Rusconi et al., results on
SRC for pitch height were already reported earlier. For instance, in 1982, a study was
conducted by Shepard, who found a compatibility effect for the pitch height of a
stimulus and spoken responses that differed in whether the vowel sound was high or
low (i.e., /i:/ =high vs. fu:/=low). A study of Walker and Ehrenstein (2000), who
employed dynamic auditory stimuli (i.e., there was a pitch increase or decrease within
a stimulus), used behavioral measures that were more similar to those of Rusconi et al.
and Lidji et al.: Here, participants had to either respond to the initial pitch of the
stimulus (low vs. high) or the direction in which the pitch changed (lower vs. higher)
with an upper or lower response key. Results showed compatibility effects for pitch
change, and, more importantly, for the initial pitch in which a tone was presented,
regardless of task. Later studies investigating the SPARC effect aimed to investigate
effects of spatial mapping of pitch in an isolated way and, therefore, used non-dynamic
tones in which pitch was kept constant within a stimulus for both explicit (e.g., pitch
comparison) and implicit (e.g., timbre judgment) SPARC tasks.

The vertical SPARC effect can be observed when responses are aligned
vertically, that is, when there is an upper and a lower response key. The effect is
commonly attributed to a vertical mapping of pitch heights onto representational
space (e.g., Cho et al., 2012) which reflects a vertically oriented mental pitch line (Lidji
et al., 2007). Vertical SPARC is typically independent of task and musical experience of
participants (e.g., Lidji et al., 2007; Rusconi et al., 2006). This means that even
participants with little or no former musical training (i.e., nonmusicians) automatically
map pitch onto vertical responses, even when the pitch height of heard tones is not

task-relevant.
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When responses have to be made along a horizontal response alignment (i.e.,
responses are given with a left and right response key), a horizontal SPARC effect can
be observed. Such an effect expresses itself through enhanced performance when
tones low in pitch have to be mapped to a left key response and tones high in pitch
have to be mapped to a right key response. This mapping is affected only by the
location of the response key, but not by the responding hand (Rusconi et al., 2006).
Horizontal SPARC effects are attributed to an orthogonal transformation of the original
vertical pitch-to-space mapping into the horizontal dimension (Lidji et al., 2007;
Nishimura & Yokosawa, 2009; Rusconi et al., 2006), which will be explained in more
detail in the following section (2.3.2.3).

Horizontal pitch-to-space associations (i.e., horizontal SPARC) are known to be
modulated by musical experience of participants (Cho et al., 2012; Lidji et al., 2007;
Rusconi et al., 2006), task relevance of pitch (Cho et al., 2012; Lidji et al., 2007; Rusconi
et al., 2006), and the presence of a reference tone (Cho et al., 2012). Generally, the
remapping of the vertical representation onto the horizontal response alignment is
less stable in nonmusicians. When the task is explicit (i.e., pitch is task relevant; e.g.,
pitch comparison), nonmusicians map pitch onto space automatically; when, however,
the task is implicit (i.e., pitch his not task relevant; e.g., timbre judgment), results are
inconsistent (SPARC observed: e.g., Nishimura & Yokosawa, 2009; Wolf, Bittrich, &
Blankenberger, 2012; no SPARC observed: e.g., Lidji et al., 2007; Rusconi et al., 2006).
A recent study suggests that within the view of polarity correspondence as an
underlying mechanism, the relative coding of pitch as low or high is enhanced when a

reference tone precedes the target (referential coding, Cho et al., 2012).

2.3.2.3 Mechanisms Underlying SPARC

Generally, vertical SPARC is assumed to reflect the mental representation of
pitch along a vertically oriented continuum. Rusconi et al. (2006) concluded “that a
representational dimension (pitch height) influences performance with vertically

aligned responses irrespective of its relevance to the task. This suggests that our
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cognitive system maps pitch onto a mental representation of space” (Rusconi et al.,
2006, p. 126).

In analogy with the assumptions made earlier for SNARC (see section 2.3.1.3),
SPARC can be explained with the concept of a mental pitch line. Even though the
spatial representation of pitch is assumed to be two-dimensional (e.g., Shepard, 1982),
the primary dimension of this representation is the vertical axis which represents
increasing frequency in terms of a mental line. Within a dual-route processing
architecture, this mental pitch line causes unconditional responses to be prepared in
accordance with a heard tone being low or high in pitch. However, like argued for the
case of SNARC, SPARC has been observed also in the horizontal dimension, which
questions the idea of a vertical pitch line to account for all spatial associations of pitch
with responses. Like for SNARC, the dimensional overlap model (Kornblum et al.,
1990), as well as the principle of polarity correspondence (Proctor & Cho, 2006),
account for a wider range of pitch-to-space associations. For instance, according to the
principle of polarity correspondence, high pitches, as well as upper or right key
responses, are coded as + polarity. Thus, when a stimulus has to be mapped to a
response with identical polarity, performance is enhanced.

The vertical spatial representation of pitch is thought to be the underlying basis
for the observation of horizontal SPARC effects. As mentioned before, it is likely that
horizontal SPARC effects result of an orthogonal transformation of the vertical pitch-
to-space mapping into the horizontal response dimension (e.g., Rusconi et al., 2006).
This transformation occurs as a consequence of the strong association of the
categories up and right and the categories left and low (e.g., Cho & Proctor, 2003;
Weeks, Proctor, & Beyak, 1995). In terms of polarity correspondence, this means that
the response categories within the horizontal and vertical response set are coded as -
and + polarity and fortuitous mapping leads to better performance.

According to Cho et al. (2012), the remapping of the vertical spatial
representation of pitch into the horizontal dimension is facilitated in nonmusicians
when they are provided with a task-irrelevant reference tone. This means that when
such a reference tone with a constant, intermediate pitch precedes the target
stimulus, participants unconditionally compare pitch heights. This comparison leads to

the coding of the target pitch as (relatively) low or high. This relation is then coded
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as - or + polarity which in turn enhances performance for responses of the same
polarity as the target.

Alternatively, the dimensional overlap model (Kornblum et al., 1990) would
state that within a stimulus set, pitch heights, just like numbers, can be coded into
categories. Also within this model, the presence of a reference tone would, as
assumed by Cho et al. (2012), increase the likelihood of sounds being grouped into
pitch categories which then leads to dimensional overlap between the stimulus feature
pitch and the response set. However, dimensional overlap of pitch with horizontal
responses is likely less strong than the overlap between pitch heights and vertically
aligned responses, as pitch and vertical space share the same relation (low/high), while
the relations of pitch and horizontal space are only similar (low/high and left/right).

In sum, the principle of polarity correspondence (Proctor & Cho, 2006) enables
to explain both horizontal and vertical pitch-to-space associations (Cho et al., 2012) in
a simplistic fashion, while, again, the dimensional overlap model (Kornblum et al.,
1990) allows for a prediction of outcomes in greater detail. However, it is still unclear
whether the observation that only nonmusicians show SPARC independently of
experimental conditions can be solely attributed to the fact that, in nonmusicians,
associations of pitch to vertical space may not be as overlearned as in musicians (e.g.,
Lidji et al., 2007). In order to further clarify what factors affect horizontal SPARC in
nonmusicians, the present thesis works with SPARC as central concept of interest.
Particularly, it is investigated, whether pitch height causes automatic horizontal spatial

associations independently of other, accompanying stimulus features.

2.4 Simultaneous Stimulus-Response Compatibility Effects

Up to this point, the present thesis has brought forward details and accounts
for SRC effects concerning isolated stimulus features with the examples of numerical
magnitude and pitch. However, natural objects in our environment, as well as stimuli
employed in experimental tasks, usually contain information on more than one
stimulus dimension. When such stimuli are perceived, an integration of multiple

stimulus codes is required which can lead to interferences in stimulus processing and
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response selection. In view of the concept of SRC it is of interest how such processing
interferences can affect SRC effects of multiple stimulus features. In order to further
investigate this question, this section begins with a view on the common processing of
simultaneously perceived stimulus features. Next, the dimensional overlap model
(Kornblum et al., 1990) and the principle of polarity correspondence (Proctor & Cho,
2006) are presented as frameworks that can account for simultaneous SRC effects. The
section then continues with the question of whether horizontal SPARC in nonmusicians
is independent of other auditory stimulus features and concludes with a more detailed
look on timbre as a categorical and number as an ordinal variable that might interact

with pitch.

2.4.1 Processing of Simultaneously Perceived Stimulus Features

When a stimulus with multiple features is perceived, all of these features are
encoded and activated (Kahnemann & Henik, 1981; Kahnemann & Treisman, 1984;
Tzelgov et al., 1992). This assumption entails potential interference between any kind
of stimulus feature that is varied within a stimulus set. Whether multiple stimulus
features interfere with each other or not depends on the way in which a stimulus is
processed. In the past, there has been a long ongoing debate on whether
multidimensional stimuli are processed holistically or analytically that cannot be
answered in an all-or-none way (Kemler Nelson, 1993). Rather, since the 1960s, it is
assumed that the type of processing depends on the type of stimulus (e.g., Garner,
1974; Lockhead, 1966; Lockhead, 1972; Shepard, 1964).

Stimuli within a set typically entail different features or dimensions on which
they can vary and these dimensions can be classified as integral dimensions or
separable dimensions (Garner, 1974). Garner (1974) introduced a set of four
converging operations by which integral dimensions can be defined. Of interest for the
present thesis are two of these operations, as they are related to speeded
classification. One operation states that dimensional integrality is present when
interference is observed in a speeded filtering task requiring selective attention to one

dimension while the other one is varied. A very simple example for this kind of
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observation is a variant of the Stroop task (Stroop, 1935). In this task, participants are
required to respond to the color in which a color word is printed. Thus, selective
attention has to be paid to the color dimension (i.e., the color in which the word is
printed in), while the other dimension (i.e., the color word) varies but has to be
ignored. In this task it is typically observed that performance drops when print color
and color word do not match. Therefore, visual color information and written color
information can be considered integral dimensions. The second operation of interest
introduced by Garner (1974) states that dimensions are integral when a correlation of
dimensions leads to redundancy gain. In the Stroop example this would mean that in
one block, participants would be presented with stimuli in which print color and color
word are always consistent (i.e., the dimensions are positively correlated or
congruent), while in the other block, the two dimensions would always be inconsistent
(i.e., the dimensions are negatively correlated or incongruent). Typically, when
dimensions are consistent, items are responded to faster than when they are
inconsistent (i.e., there is a redundancy gain). When stimulus dimensions are not
integral but separable, no such interference effects or redundancy gains are observed.

Garner’s (1974) distinction of integral and separable dimensions can be re-
formulated in terms of dependence and independence as investigated in the present
thesis. As a consequence of the converging operations, integral dimensions are
processed dependently, while the processing of separable dimensions is independent.
This distinction is also valid for stimulus features that cause SRC.

In SRC tasks, stimulus dimensions or features can be grouped into three types:
features that entail categorical information (e.g., number parity), features that entail
spatial associations (e.g., numerical size), and features that are intrinsically spatial
(e.g., stimulus location). Technically, any two of these three types can be varied along
with each other in experimental tasks. Table 1 displays a matrix in which examples for
each type of combination are presented. Note that the given examples only provide an
illustration for possible feature type combinations; there is no statement made on

whether the features or dimensions in these examples are integral or not.
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Table 1: Illustrating examples for combinations of different types of simultaneously

perceived stimulus features.

categorical spatial association intrinsically spatial
. . . . shapes presented on
. color words printed in numbers printed in . .
categorical . . left or right side of a
varying colors varying colors

screen

numbers presented on
left or right side of a
screen

numbers printed in

spatial association . .
P different sizes

words ‘left’ and ‘right’
intrinsically spatial presented on left or
right side of a screen

2.4.2 Accounting for Simultaneous Stimulus-Response Compatibility

Effects

When two stimulus features within a set can cause SRC in a given task, this
means that both features overlap with the response. However, even though the
overlap with the response could be seen as a conceptual similarity between the two
stimulus features, this does not imply that these features are processed as integral
dimensions. Whether two stimulus features that are consistent with responses are
processed independently or not also depends on the degree to which they contain
spatial information and whether the categories that can be formed for each feature
contain similar relations (Henik & Tzelgov, 1982). Thus, SRC effects can jointly occur
but still be independent.

In order to shed some light on possible underlying mechanisms for
simultaneous SRC effects, in the following sections, the principle of polarity
correspondence (Proctor & Cho, 2006), as well as the dimensional overlap model
(Kornblum et al., 1990) will be revisited. In both cases, effects of integral and separable

dimensions will be discussed.
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2.4.2.1 Polarity correspondence of multiple stimulus features and responses

Within the framework of polarity correspondence (Proctor & Cho, 2006) it is
stated that response selection will be faster when polarity codes of stimulus and
response alternatives correspond (also see section 2.2.3). For the example of numbers
brought forward earlier, this would mean that large numbers are responded to faster
with a right hand response because both are coded as + polarity. However, the
principle of polarity correspondence can also account for consistency effects other
than isolated SRC.

When two features of the same stimulus can be coded as polarities, this can
lead to enhanced performance when the polarity codes of these stimulus features
correspond, resulting in a so-called congruency effect. For instance, a small number
printed in a small font is congruent, because numerical and physical magnitudes in this
example are both coded as the — polarity. In terms of Garner’s (1974) distinction, a
congruency effect resembles integral dimensions. It is important to note that such a
congruency effect is only bound to the consistency of stimulus feature polarities, but
not to that of responses.

When stimulus features are not integral but separable, no interference effects
or redundancy gains will be observed (Kemler Nelson, 1993). However, it is still
possible that both SRC effects present themselves independently of each other. Such
an observation would mean that the polarity codes of both stimulus features and of

the response set affect the response selection process.

2.4.2.2 Dimensional overlap between multiple stimulus features and responses

The dimensional overlap model (Kornblum et al., 1990) assumes an automatic
route that activates an unconditional response when dimensional overlap between a
stimulus feature and the response set is present (for more detail, see section 2.2.2).
When the unconditionally programmed response is not consistent with the response
that has been identified according to task instructions, the response time will increase

because the unconditional response has to be aborted and the identified response has
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to be executed. However, the dimensional overlap model can also account for effects
caused by more complex configurations of dimensional overlap between stimulus
features and the response set. Table 2 is adapted from Kornblum and Lee (1995) and
displays the eight possible types of stimulus-response ensembles that exist according

to the taxonomy of the dimensional overlap model (Kornblum et al., 1990).

Table 2: Overview of stimulus-response ensembles according to the taxonomy of the

dimensional overlap model (adapted from Kornblum & Lee, 1995)

Overlapping ensemble dimensions Illustrative stimulus and response sets
. . S-S . .
S-R dimensions . . Illustrative stimulus sets
dimensions
Illustrative
Ensemble Relevant Irrelevant Relevant Irrelevant response
Type (s, (s) (5-5) (s (s) -
eometric .
1 no no no colors g digit names
shapes
2 yes no no digits colors digit names
3 no yes no colors digits digit names
color .
4 no no yes colors digit names
words
. keypresses
position P
(left or
5 yes yes no colors (left or .
right) right) on
& colored keys
position colors keypress
6 yes no yes (left or and color (left or
right) words right)
color
words/ keypress
7 no yes yes colors position (left or
(left or right)
right)
8 es es es colors color color names
4 4 ¥ words

The mechanisms that describe the experimental outcomes for each of these
ensemble types are theoretically explained by the dimensional overlap model as
presented by Kornblum et al. in 1990. However, a clearer and more detailed view is
provided by the slightly expanded model presented in a paper by Kornblum and Lee in
1995 (Figure 5).
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Figure 5: The extended dimensional overlap model (Kornblum & Lee, 1995)

In this version of the model, after the encoding of the stimulus, there are two
different paths, depending on the amount of stimulus features that cause overlap (i.e.,
tags). When there is only one tag present, stimulus processing continues like in the
original version of the model. When there are two tags present, the codes for these
two stimulus features are compared for dimensional overlap. If they are the same (i.e.,
when there is dimensional overlap between S; and Sjand stimulus codes are consistent
or congruent, respectively), then this information determines the stimulus vector (S.V.)
which then in turn enters the processing stage and activates the unconditional,
automatic response. When two tags are present and the stimulus codes are not the
same (i.e., there is dimensional overlap between S; and Sj and codes are not consistent
or incongruent, respectively), it is clear that for giving a correct response, the identity
of this correct response (r), as determined by task instructions, has to be produced
and the response program has to be retrieved. This, in turn, leads to a further increase
of time until the response can be executed.

The present thesis aims to investigate whether horizontal SPARC in
nonmusicians is independent of other, simultaneously perceived stimulus features,
namely timbre and number. In a horizontal explicit SPARC task, participants respond to
the pitch height of a heard sound. Therefore, the relevant stimulus dimension (S;)
entails dimensional overlap with the response. Number as a task-irrelevant feature (S;)
clearly also overlaps with the response set. Thus, stimuli containing numerical and
pitch information may belong to the group of type 5 or type 8 ensembles, depending

on whether pitch and number also share dimensional overlap (S,-S;). If such stimuli
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form a type 5 ensemble, the there will be no redundancy gain or interference effects
between the pitch and number dimension (i.e., both SRC effects may be present but if
so, they will only be additive). If this is not the case, the stimuli form a type 8
ensemble, where then congruency effects should be obtained.

For timbre, it is not entirely clear at this point whether it produces SRC effects
or not. If it does, stimulus sets containing pitch as relevant (S;) and timbre as irrelevant
(Si) dimension are type 5 or type 8 ensembles. If timbre does not produce any SRC
effects, and therefore no overlap with responses, stimulus sets varying on the pitch
and timbre dimension are type 2 or type 6 ensembles, depending on whether pitch
and timbre share dimensional overlap. For a type 2 ensemble, a classic SPARC effect is
the expected outcome. For a type 5 ensemble, the outcome may be a SPARC effect.
However, it may also occur that the programming of an automatic response according
to pitch is impaired due to interferences of pitch and timbre on the stimulus level.

In an implicit SPARC task, pitch height is a task-irrelevant feature. This means
that there is dimensional overlap between the task-irrelevant dimension (S;) and the
response set. When pitch is combined with number as a relevant dimension (S;), this
again leads to type 5 or type 8 ensembles. The same is the case if pitch is combined
with timbre under the precondition that timbre produces SRC as well. If timbre does
not produce any SRC, this would mean that the task-relevant dimension (S;) does not
produce any dimensional overlap with the response set. Such stimulus sets are either
type 3 or type 7 ensembles, depending on the relation between pitch and timbre. If
there is no dimensional overlap between pitch and timbre, a standard implicit SPARC
effect should be obtained. If there is dimensional overlap, such an implicit SPARC
effect may not be observed.

Whether or not pitch and timbre or pitch and number cause dimensional
overlap and are thus integral dimensions when varied within one and the same
stimulus set, can only be clarified through experimental studies. In the following

sections, outcomes on past studies related to this matter will be presented.
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2.4.3 SPARC and Features of Auditory Stimuli: Dependent or

Independent?

The perception of any kind of stimulus typically takes place on multiple
dimensions. For instance, for a heard sound, not only its pitch, but also other features
such as timbre, loudness, or duration, can be identified (e.g., Roederer, 2008). The
principle of polarity correspondence states that polarity coding can take place for any
kind of stimulus (feature) or response set, if the categories within a set can be coded
asymmetrically (Proctor & Cho, 2006). Thus, a sound contains multiple kinds of
information that can potentially be coded as polarities. This is for instance especially
the case for duration and loudness, as these features are considered magnitudes as
well. In addition, if a stimulus set contains more than one timbre, this feature can
potentially be coded as polarities as well.

Considering the results of past studies (e.g., Lidji et al., 2007; Rusconi et al.,
2006), it appears to be the case that vertical SPARC is generally stable, which implies
that in the vertical response condition, mainly the polarity codes for pitch height affect
responses. This is not surprising in view of the knowledge that most SRC effects,
including spatial associations for duration and loudness, originally emerge in a
horizontal response dimension, which may reduce interferences. Alternatively, it can
be argued that in the vertical response condition, dimensional overlap of stimuli with
responses is induced and reinforced due to the semantic categorization of pitches as
low or high.

In the horizontal response dimension, it has been shown that pitch-to-space
associations are less stable in nonmusicians (Cho et al., 2012; Lidji et al., 2007; Rusconi
et al., 2006). When responses are made with horizontally aligned keys, polarity codes
of other stimulus features that are usually represented along or associated with the
horizontal axis might modulate polarity correspondence of pitch and response or, in
terms of dimensional overlap, the stimulus feature that causes the unconditional,
automatic response. Therefore, it is important to consider whether horizontal SPARC
emerges independently of other stimulus features or not. In particular, it is of interest

whether possible interferences emerge only for stimulus features that can be
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considered magnitudes, like numerical magnitude, or also for stimulus features that

only contain structural similarity with the response set, like timbre.

2.4.3.1 SPARC and Timbre

Previous research on the horizontal SPARC effect has identified the factors task
(explicit vs. implicit), participant subgroup (musicians vs. nonmusicians), and procedure
(reference tone vs. no reference tone) to affect the mapping of pitch onto horizontal
space (e.g., Cho et al., 2012; Lidji et al., 2007; Rusconi et al., 2006; for more details, see
section 2.3.2.2). It is important, however, to also take properties of the stimulus set
into consideration. When any kind of structural similarity is sufficient to produce
overlapping polarity codes of stimulus and response, participants might as well code
stimulus attributes other than the pitch of a heard sound as polarities (e.g., timbre).
This, in turn, might then interfere with response selection based on pitch polarity and
affect participants’ response behavior.

Timbre is, next to pitch and loudness, one of the three primary dimensions of
sound (Melara & Marks, 1990a; Melara & Marks, 1990b). According to Levitin (1999), it
is the most important one of the six perceptual attributes of auditory events. Timbre is
the auditory feature that allows to distinguish between different types of sound
production (i.e., the identity of a sound source; e.g., Caclin, Giard, Smith, & McAdames,
2007), even when the other features remain the same and it is mainly determined by
the specific quality of the frequency spectrum (e.g., Roederer, 2008). Even though
timbre is often defined in a categorical fashion, humans are able to distinguish timbres
along different dimensions such as for example attack time, spectral centroid, and
spectral flux (McAdams, Winsberg, Donnadieu, De Soete, & Krimphoff, 1995; Menon et
al.,, 2002) and it has been sown that such timbre dimensions are processed in an
interactive fashion (Caclin et al., 2007). Despite this, in this work, timbre will be
considered in terms of a categorical variable. The reason for doing so is that in the
experiments investigating relations of SRC effects of pitch and timbre in the present

thesis, only two timbres that are very easily distinguishable are employed.
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In the stimulus sets of previous SPARC studies, timbre has been varied to a
great extent (single instruments: e.g., piano, violin, clarinet; instrument groups: e.g.,
percussions, wind instruments, brass instruments, string instruments; non-
instrumental sounds: e.g., sinusoids), but has often not been included as a factor in
analyses. Timbre and pitch are, however, not perceived independently (e.g., Beal,
1985; Crowder, 1989; Krumhansl & lverson, 1992; Melara & Marks, 1990a; Melara
& Marks, 1990b; Russo & Thompson, 2005; Singh, 1992; Vanzella, Schellenberg, &
Bishop, 2010; Warrier & Zatorre, 2002; Zarate, Ritson, & Poeppel, 2013). Participants
cannot ignore the task-irrelevant variation of one of these two attributes while
attending to the other, task-relevant one (Pitt, 1994). Moreover, especially for
nonmusicians it is difficult to ignore timbre changes when judging pitch and vice versa
(Krumhansl & Iverson, 1992). This is particularly interesting because it means that pitch
and timbre can share dimensional overlap. In addition, for nonmusicians, timbre is a
more salient sound attribute and weighed more heavily than pitch (Pitt, 1994;
Wolpert, 1990). Thus, even when timbre categories are easily distinguishable, they
have the potential to affect pitch-to-space associations. Therefore, timbre has to be
considered as a possible modulating factor on automatic mappings of pitch to space.

The relative pitch height of a sound within a given set and its tonal distance
from the middle of this set is yet another important attribute by which sounds can be
classified. Tonal distance can affect performance in speeded choice-reaction tasks such
as an explicit or implicit SPARC task. The greater the distance between two pitches, the
easier they are discriminable (e.g., Cohen Kadosh et al., 2008a; Elkin & Leuthold, 2011).
Pitch distances have previously been shown to interact with pitch-to-space
associations. For instance, for relatively great pitch distances, the strength of the
observed SPARC effect increases (Beecham, Reeve, Wilson, & Antonietti, 2009) while
for relatively small distances, the effect may disappear. When tonal distances are
within the range of half an octave, SPARC can even be reversed (Rusconi et al., 2006).
In sum, the pitch distances within a stimulus set and the resulting tonal range
potentially affect the spatial mapping of pitch and interferences with other stimulus
features to the extent that possible effects are concealed if pitch distances are not

considered as a factor in analyses.
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To summarize, prior studies on the automatic mapping of pitch height to space
have shown a dependency of musical experience, response alignment, and the
presence of a reference tone (e.g., Cho et al., 2012), while little attention has been
paid to sound attributes other than pitch, such as timbre and pitch distance or pitch
range, respectively. These factors, however, have the potential to modulate automatic
spatial mappings of pitch heights. This might be particularly relevant for nonmusicians,
which have been shown to produce less stable automatic pitch-to-space mappings.

The aim of Study 1 in the present thesis is therefore to investigate the influence
of timbre on automatic coding of pitches as low and high in nonmusicians. Further

details on experimental variation and methods are given in section 3.1.

2.4.3.2 SPARC and SNARC

The principle of polarity correspondence (Proctor & Cho, 2006; sections 2.2.3
and 2.4.2.1) and the dimensional overlap model (Kornblum et al., 1990; sections 2.2.2
and 2.4.2.2) enable to account for effects that may be observed when polarity codes
for features of one and the same stimulus correspond or, in other words, when there is
dimensional overlap between multiple stimulus features. In particular, it allows for
explaining possible interactions of SPARC with other stimulus features that have not
been considered in the past. Specifically, also interferences of SPARC with
representations of other magnitudes and resulting effects can be accounted for.

Timbre is a stimulus feature that can, at least in the studies of the present
thesis, at the most produce structural overlap with a response set, due to its
categorical nature. In order to gain a more complete picture, however, it is of interest
to also investigate whether pitch-to-space associations, which are thought to originate
from a vertical spatial representation, are affected when varied along with another
magnitude representation that originates in the horizontal dimension. Numerical
magnitude is a very suitable stimulus feature for this, as spatial-numerical associations
have been shown to be relatively persistent (Cohen Kadosh et al., 2008c), specifically

also in the auditory domain (e.g., Cohen Kadosh et al., 2008c; Nuerk et al., 2005).
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When numerical magnitude is varied along with other magnitudes within a
stimulus set, congruency effects can be observed. Such effects involving numbers are
typically termed as size congruity effects (e.g., Henik & Tzelgov, 1982; Schwarz &
Heinze, 1998). A prominent example for the size congruity paradigm is the combined
variation of numerical and physical size of stimuli (e.g., Algom, Dekel, & Pansky, 1996;
Cohen Kadosh & Henik, 2006; Henik & Tzelgov, 1982; Pansky & Algom, 1999; Santens
& Verguts, 2011; Schwarz & Ischebeck, 2003). In this paradigm, participants are usually
presented with two digits of different physical and numerical sizes and are asked to
judge which digit is (either numerically or physically) larger by pressing the response
key on the side on which the (numerically or physically) larger stimulus appeared.
When stimuli are congruent, that is, when a stimulus is both physically and numerically
larger (e.g., 2, 8), responses are faster than when physical and numerical size of the
stimuli do not correspond (e.g., 2, 8). Size congruity effects can also be observed when
only a single digit is presented (e.g., Santens & Verguts, 2011; Schwarz & Heinze, 1998;
Schwarz & Ischebeck, 2003). In this kind of task, participants are asked to compare the
presented stimulus to a given standard (e.g., whether its numerical magnitude is
smaller or larger than 5).

Effects of size congruity have also been reported in studies that investigated
interactions between numerical magnitude and duration (Dormal, Andres, & Pesenti,
2008; Dormal, Andres, & Pesenti, 2012), dot size (Gebuis, Cohen Kadosh, Haan, &
Henik, 2009), luminance (Cohen Kadosh et al., 2008b), and line length (Dormal et al.,
2012; Dormal & Pesenti, 2007). The observed interferences are generally attributed to
be a consequence of shared magnitude processing (Cohen Kadosh et al., 2008c).

The exact processing stage on which interference due to size congruity is
thought to take place has been further specified through an extensive study by
Santens and Verguts (2011). These authors tested whether the interaction of
numerical and physical size derived from the representational or rather from the
decisional level of stimulus processing. While the shared representations account
attributes observed interferences to the mapping of both numerical and physical
magnitudes onto a shared representation, the shared decisions account states that this

interaction takes place on the decision level (Schwarz & Heinze, 1998, see Figure 6).
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In their study, Santens and Verguts (2011) found that congruity effects were
task-dependent. Specifically, when the task required the comparison of (numerical or
physical) size, congruency effects were observed, whereas when the task involved the
judgment of number parity, congruency did not facilitate responses. These results
imply that congruency effects derive on a decisional level rather than on a
representational one. This is because in Santens and Verguts’ experiments, only the
required decision, but not the stimulus set itself was varied. By implementing the
shared decisions account into a computational model, Santens and Verguts were able
to simulate congruency effects analogous to the behavioral results in all their
experimental tasks, confirming the assumptions based on the shared decisions

account.

shared representations account shared decisions account

[ output ] [ output ]
t t
[ decision ] decision ]

T

[ shared representation

/

[ numerical input ] [

[numericalrepresentation] [ physical representation ]

\ )

physical input ] [ numerical input ] [

physical input ]

Figure 6: Models for the shared representation account (left panel) and the shared
decisions account (right panel) for congruity effects of numerical and physical
size. The grey field depicts the origin of the size congruity effect. (Santens &
Verguts, 2011)

The research of Santens and Verguts (2011) shows that for the case of
numerical and physical size in the visual domain, the interference effect in holistic
stimulus processing takes place on a decisional level. Based on their findings, the
authors state that the dual-route model they present in their work predicts that novel
size congruity effects of numerical size and other quantities also originate on the
decision level of stimulus processing. In particular, Santens and Verguts predict that
“each quantitative dimension can interfere with any other to the extent that the

irrelevant dimension is effective in automatically activating the decision units that are
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used for the task at hand” (Santens & Verguts, 2011, p. 107). This prediction is further
supported by the results of several neuroimaging studies which point towards a shared
neural code for magnitude processing (e.g., Cohen Kadosh et al., 2005; Cohen Kadosh
et al., 2008c; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Vogel, Grabner,
Schneider, Siegler, & Ansari, 2013) that is independent of the input format. Specifically,
Cohen Kadosh et al. (2008c) state in their review, that the collected results “suggest
that the IPS [i.e., intraparietal sulcus] hosts overlapping domain-general and domain-
specific neural populations in human adults for numbers and different magnitudes”
(Cohen Kadosh et al., 2008c, p. 140). Thus, when including the variation of numerical
size and pitch within one task, these magnitudes may also interfere on a behavioral
level depending on the decision required for the task.

In view of this, it is of interest whether SNARC and SPARC, which originate from
different representational dimensions, are independent. This possibility is suggested
by a study in which participants completed both an explicit and an implicit task for
both SNARC and SPARC in a blocked design (Beecham et al., 2009). For each task, the
data were submitted to a hierarchical cluster analysis in order to identify whether
participants showed a SNARC or SPARC pattern, a reversed SNARC or SPARC pattern,
or none of these. The authors found no significant relationship between subgroup
memberships, which implies that SNARC and SPARC were not related. However, the
method of Beecham et al. (2009) is a rather indirect way to investigate overlap
between SNARC and SPARC, as in this study, number and pitch height were varied in
separate tasks. A factorial design, in which both SNARC and SPARC compatibility are
varied within one and the same task, is a more direct way to answer the question of
independence.

An optimal way for implementing such a factorial design was found by Fischer
et al. (2013). These authors combined numerical magnitude and pitch height within
auditorily presented stimuli (number words ranging from two to six sung in five
different pitch heights). While in half of the blocks their nonmusician participants
decided whether a sung number was smaller or larger than the immediately preceding
reference (always “four” sung in intermediate pitch), in the other half they judged
whether the pitch of the target sound was lower or higher than the reference.

Responses were given along a diagonally aligned response set containing a lower left
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and an upper right response key. The central finding was that, in both tasks, only the
task-relevant magnitude produced an SRC effect. In other words, instead of polarity
categories of both stimulus attributes, only the polarity of the relevant attribute
affects RT. According to Fischer et al., these results imply that numerical magnitude
and pitch are not automatically mapped onto spatial representations. Rather,
participants employed a cognitive strategy that selectively maps only the task-relevant
attribute to its specific spatial dimension (the Strategic Association of Response Codes,
STARC hypothesis; Fischer, 2006).

The results of Fischer et al. (2013) imply that SNARC and SPARC do not interact.
Specifically, no congruency effects were obtained, even though the study used a
diagonal response set which should, according to the authors, have allowed for
capturing both SNARC and SPARC at the same time. As mentioned earlier, congruency
means that two stimulus attributes share dimensional overlap or that they are coded
as the same polarity. For instance, “nine” sung in a high pitch is congruent, because
numerical magnitude and pitch height have the same polarity, whereas “nine” sung in
a low pitch is incongruent (e.g., Boenke, Ohl, Nikolaev, Lachmann, & van Leeuwen,
2009). Such congruency effects are typically considered to result from automatic,
preattentive binding across stimulus dimensions (Pomerantz & Lockhead, 1991). The
absence of these effects in the study of Fischer et al. is therefore consistent with the
authors’ claim that magnitude-to-space associations are not produced automatically.

Nevertheless, the results of Fischer et al. (2013) do not support these strong
conclusions due to tasks and stimuli employed in their study. In their magnitude
comparison tasks, one effect is always explicit while the other one is implicit. The
absence of the implicit effects, however, does not necessarily imply that it is always
only the task-relevant magnitude that is spatially mapped onto responses.
Furthermore, implicit spatial associations of magnitudes can be influenced by the
range from which specific magnitudes are chosen. While for numbers the explicit
SNARC effect occurs for relatively small distances, in implicit SNARC tasks (i.e., where
numerical magnitude is not relevant for task solving), this is not always the case, as the
distance effect (Moyer & Landauer, 1967) leads to increased difficulty of number
discrimination when numerical distances are very small (e.g., Dehaene, 2011; Verguts

& van Opstal, 2005). Moreover, the number 5 has a special status on the internal



2 Theoretical Background 41

number scale (Tzelgov et al., 1992), as it forms the midpoint of a decade, which is why
within a range from 0 to 10 it is likely best to choose stimuli around the midpoint 5. As
will be shown in Study 1, a small range is an even larger problem with implicit SPARC.
Nonmusicians do not always automatically map pitch height onto space (e.g., Cho et
al.,, 2012; Lidji et al., 2007; Rusconi et al., 2006), but the mapping process can be
reinforced by the presence of a reference tone (Cho et al., 2012) and potentially by
factors such as timbre or pitch range, as investigated in Study 1. In particular, the
finding of an implicit horizontal SPARC effect in nonmusicians with a consistently
presented reference tone (Cho et al., 2012) contrasts with the results of Fischer and
colleagues.

In sum, when varying pitch height and numerical magnitude within one
stimulus set, these magnitudes can potentially interact. Prior studies (Beecham et al.,
2009; Fischer et al., 2013) investigating this question cannot terminally answer the
qguestion of independence of pitch and number processing due to methodological
deficiencies. Therefore, the aim of Study 2 is to introduce the paradigm of Fischer et al.
(2013) to a set of tasks and stimuli sufficient to produce a SNARC and SPARC effect also
in implicit task conditions. Details on experimental methodology and possible

outcomes are described in section 4.1.

2.5 Overview and Research Interest

Effects of SRC, like for pitch heights, can potentially be modulated by further
stimulus features varied within a stimulus set. The horizontal SPARC effect in
nonmusicians has been shown to be less stable than pitch-to-space associations in
other participant subgroups (i.e., trained musicians) or in other response dimensions
(i.e., the vertical response dimension). This may be because in the horizontal
dimension, horizontally represented additional stimulus features can be consistent
with responses.

In order to further clarify the inconsistency of findings on the horizontal SPARC
in nonmusicians, the present thesis investigates how these pitch-to-space associations

interact with further stimulus features. As lined out in section 2.4.1, there are three
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types of stimulus features: features that are of categorical nature (e.g., timbre),
features that entail spatial associations (e.g., numbers) and features that are
intrinsically spatial (e.g., presentation side of auditory stimuli). These features can
produce SRC effects with horizontal responses originating from a horizontally aligned
representational organization. The question of independent processing of pitch and
intrinsically spatial features is not addressed in this thesis as such an experiment has
already been carried out by Nishimura and Yokosawa (2009). The presentation of
auditory stimuli that varied in pitch and the side of the ear to which they were
presented yielded SRC effects of both pitch (i.e., a SPARC effect) and presentation side
(i.e., a Simon effect; Simon & Rudell, 1967) that were independent. Therefore, in the
present thesis, two studies, in which additional stimulus features entailing categorical
information or spatial associations were varied, were conducted consecutively. Study 1
investigates the simultaneous processing of pitch and timbre under conditions of
varied pitch range. Study 2 was conducted hereafter and investigates the question of
independence of pitch and number processing. Results obtained in Study 1 were taken

into account for the construction of the stimulus set in Study 2.
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3 Study 1: Pitch and Timbre

3.1 Research Interest

The aim of Study 1 in this thesis is to investigate the influence of pitch and
timbre differences on the automatic coding of pitches as low and high in
nonmusicians. This implies a variation of pitch differences (i.e., pitch range) and
response alignment while keeping constant timbre categories. A set of three timbre
judgment tasks was conducted with piano and vocals as timbre categories. The first
task involved sounds within a small pitch range which had to be responded to with
horizontally aligned responses (Experiment B). The second task differed from the first
one only in the orientation of the response alignment, which was vertical
(Experiment C). The third task adopted the horizontal response alignment of the first
task, but involved a set of stimuli with increased tonal distances (Experiment D). In
order to assure that the specific set of stimuli was suitable to produce explicit (and
therefore not necessarily automatic) pitch-to-space associations, in a prior control
experiment, participants completed a pitch comparison task with the stimuli of the
first timbre judgment task (Experiment A).

These experiments provide the opportunity to observe possible isolated effects
of timbre and tonal distance as well as interactions of such effects with effects of
pitch-to-space mappings. Particularly, it might be observed that pitch interferes with
timbre judgment and vice versa, since, as argued before, pitch and timbre are not
processed independently (e.g., Krumhansl| & lverson, 1992).

If interference is observed in a timbre judgment task with pitch height varying
as a task-irrelevant feature, this would, within the taxonomy of the dimensional
overlap model (Kornblum et al., 1990), mean that pitch and timbre form a type 7 or a
type 8 ensemble, depending on whether timbre produces dimensional overlap with
the response or not (see section 2.4.2.2 for more details). If no interference effects are
observed, pitch and timbre form a type 3 or a type 5 ensemble. If interference is

observed in a pitch comparison task with timbre varying as a task-irrelevant feature,
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pitch and timbre form a type 6 or a type 8 ensemble. If no such effects are observed,
pitch and timbre form a type 2 or a type 5 ensemble.

In both tasks, the observation of interference effects would imply that pitch
and timbre are indeed integral stimulus dimensions of auditory stimuli, which is
indicated by the results of a range of studies which observed interaction between pitch
and timbre on a perceptual level (e.g., Krumhansl & Iverson, 1992). The results will
have also relevance for the more general question of whether mappings of pitch to

horizontal space can be investigated without considering other stimulus attributes.

3.2 Empirical Section

In the empirical section of Study 1, each experiment is introduced with a short
summary of theoretical facts that motivate the experiment (however, for a more
detailed introduction to the general topic, see section 2.4.3.1), followed by methods
and results. Also, short discussions and transitions between experiments are provided,

whereas a joint discussion of results follows in section 3.3.

3.2.1 Experiment A (Control Task): Pitch Comparison in a Horizontal Task

Setting With Small Pitch Range

Past studies on the horizontal SPARC effect in nonmusicians have reported
consistent findings only when pitch height was task-relevant (e.g., Cho et al., 2012;
Lidji et al., 2007; Rusconi et al., 2006). For solving such a task, pitch height has to be
categorized as low or high (or lower or higher than a given standard). This induced
structural asymmetry within the set of pitches leads to polarity coding and facilitates
the mapping to left and right key responses.

As timbre and pitch of a sound are not perceived independently (e.g.,
Krumhansl & Iverson, 1992), it is an interesting question whether the judgment of
timbre is affected by pitch and vice versa. In order to also determine whether timbre

contributes to or impairs the horizontal SPARC effect in nonmusicians, a pitch
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comparison task was conducted in which half of the sounds were piano tones and the
other half were vocal tones. These timbre categories were maintained throughout the
whole set of experiments in Study 1 while varying other factors. This approach allows
for comparing findings across tasks and for testing whether vocal sounds as a novel
timbre category (in contrast to instrumental sounds and sinusoids) lead to similar

pitch-to-space mappings as compared to those for piano tones and other instruments.

3.2.1.1 Method

Participants. Twenty-four students of the University of Kaiserslautern were paid
for their participation (15 female; average age: 24.9 years; range: 21 — 30 years). All of
them were right-handed and reported normal hearing. Fourteen of them had not
received any musical training in the past; the others had received an average of 4.9
years of musical training, but had stopped since 9.1 years on average. Therefore, they

were all considered as nonmusicians.

Stimuli and procedure. Stimuli consisted of a set of two low- and two high-pitch
tones (A3, B3, B4, and C#4, respectively 220.00, 246.94, 493.88, and 554.37 Hz) with
distances of 6 and 8 semitones around the intermediate reference (F4, 349.23 Hz) in
two timbres, that is, piano and vocal tones. The vocals consisted of the syllable /ba:/ in
German pronunciation, sung by a proficient female singer, recorded through a
Sennheiser microphone (MD 421-ll, Sennheiser electronic) and an Edirol external
sound card (USB Audio Capture UA-25, Edirol) to a MacBook Pro (Mac OS X Version 10.6.3,
Apple) via the Amadeus Pro (v1.5.1, HairerSoft) software. The recordings took place in a
professional audio cabin and were edited with Audition 5 (Audition CS5.5, Adobe
Systems Inc.). The piano sounds were produced via the Akoustik KeyZ (DSK Music)
plug-in with Audition 3 (Audition 3.0, Adobe Systems Inc.). All stimuli were edited to a
duration of 600 ms.

Participants were tested individually in a soundproof booth. The experiment
was run on a Dell laptop computer (Latitude D380, Dell). Stimulus presentation and

response collection were controlled through the E-Prime software (E-Prime 2.0,
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Psychology Software Tools Inc.). Stimuli were presented via closed Beyerdynamic
headphones (DT-770 Pro, Beyerdynamic) at equal loudness well above threshold and
clearly within the individual comfort zone.

On each trial, a fixation cross was presented in the centre of the laptop screen
for a duration of 200 ms; 250 ms after the onset of the fixation (i.e., 50 ms after the
fixation had disappeared), the reference tone was presented for a duration of 600 ms,
followed by the target sound in the respective timbre after an inter-stimulus interval
(ISI) of 500 ms. After each target, participants were required to judge whether the
target was lower or higher in pitch than the reference by pressing one of two
horizontally aligned response keys (Q or P) with their left or right index finger.
Responses were recorded until 2500 ms after stimulus onset, followed by an inter-trial

interval (ITl) of 1000 ms. The time course of a trial is displayed in Figure 7.
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Figure 7: Time course of a trial in the pitch comparison task in Experiment A.

Participants completed two experimental blocks with 80 trials each (10
repeated measures per stimulus) that differed only in the assignment of the lower and
higher category to response sides. Trials were presented in a pseudorandom order
with the restriction that two consecutive trials did not contain the same target sound
and that there were no more than three consecutive trials with the same correct
response location. The order of blocks was counterbalanced across participants. Each
block was preceded by a practice block consisting of 8 trials with feedback (RT in ms
and correctness displayed on the screen after each trial). Altogether, the experiment

lasted about 25 minutes.
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3.2.1.2 Results

Reaction times shorter than 100 ms were excluded from analysis (3 of 3840

trials). In addition, an individual outlier criterion of two standard deviations was

applied to the data of each participant (176 trials, 4.6%, approximately equally

distributed across conditions). Mean differences (right — left key) in RT (dRT, correct

trials only) and error rates (dER) are displayed in Table 3 as a function of timbre, global

pitch, and distance from the middle.

Table 3: Average dRT (ms) and dER (%) in Experiments A, B, C, and D for each timbre,

global pitch, and tonal distance from the middle.

piano vocals
low high low high
far close close far far close close far

Experiment A pitch comparison horizontal — small range

dRT (ms) 27.6 56.8 -70.6 -55.9 55.6 42.5 -22.4  -63.6
dER (%) -0.8 7.1 -4.8 -6.7 2.1 13 -2.5 -2.1
Experiment B timbre judgment horizontal — small range

dRT (ms) -4.2 8.6 -35.5 -41 11.8 2.0 -13.1 2.0
dER (%) 2.9 7.5 -7.3 -4.2 5.8 5.8 -2.9 -3.3
Experiment C timbre judgment vertical — small range

dRT (ms) 14.9 1.7 -17.6  -19.7 20.8 2.2 -30.4 -19.0
dER (%) 5.0 2.1 -2.7 -4.6 4.2 -2.5 -4.2 -2.5
Experiment D timbre judgment horizontal — large range

dRT (ms) -21.8 3.4 -55.4  -43.3 24.2 10.0 -31.6  -12.3
dER (%) 3.8 7.9 -6.3  -11.3 10.0 6.3 -6.3 -4.6

Note. Horizontal = left and right response key; vertical = upper and lower response key; dRT =

difference in mean RTs; dER = difference in ERs.

There was no correlation of RT and error rates (ER), r =.083, p = .698, indicating

that there was no speed-accuracy tradeoff. A 2 x 2 x 2 analysis of variance with
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repeated measures (rmANOVA) with the within-subject variables Pitch (low vs. high),
Timbre (piano vs. vocals), and Distance (6 vs. 8 semitones from reference) was
conducted on the mean dRT and dER for each dimension. ER analyses were calculated
on arcsine-transformed ER. Results of statistical analyses on dRT and dER are provided
in Table 4. Note that for easier reading and interpretation of the Graphs, results for

dER are displayed as untransformed values (in %).

Table 4: Results for the statistical analyses on RT and ER in Experiment A.

F p Ny

RT

Pitch 9.63 .005 .295
Timbre 5.84 .024 .203
Distance 4.42 .047 161
Pitch x Timbre 1.43 244 .058
Pitch x Distance 0.25 .621 .011
Timbre x Distance 0.41 .529 .017
Pitch x Timbre x Distance 14.23 .001 .382
ER

Pitch 26.80 <.001 .538
Timbre 1.78 .195 .072
Distance 4.08 .055 151
Pitch x Timbre 2.83 .106 .110
Pitch x Distance 0.76 .392 .032
Timbre x Distance 5.06 .034 .180
Pitch x Timbre x Distance 1.25 .276 .051

RT analyses. The ANOVA on RT revealed a main effect of Pitch, F(1, 23) =9.63,
p =.005, with a 45.6 ms advantage for the low-left mapping and a 53.1 ms advantage
for the high-right mapping (see Figure 8). There was also a main effect of Timbre,
F(1, 23) =5.84, p =.024, meaning that piano sounds were on average responded to
13.6 ms faster with the right hand than vocals. In addition, a main effect of Distance
was found, F(1,23)=4.42, p=.047, with greater distances on average being

responded to 10.7 ms faster with the right hand. These main effects were further
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qualified by a three-way interaction of Pitch, Timbre and Distance, F(1, 23) = 14.23,
p=.001.

Separate analyses for each timbre revealed a two-way interaction of pitch and
distance both in the piano category, F(1, 23) =5.95, p =.023, and the vocal category,
F(1, 23) =12.72, p =.002. However, the directions of these interactions were opposed
to each other: While in the piano category, greater distances lead to smaller dRTs
(29.2 ms) for high pitches, the opposite was found in the vocals category, where dRTs
increased for greater distances in low pitches (41.3 ms). None of the other effects

reached significance.
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Figure 8: Mean dRT (left panel) and dER (right panel) for the pitch comparison task with

small pitch range and horizontally aligned responses in Experiment A.

ER analyses. The analyses on arcsine transformed ER yielded a main effect of
Pitch, F(1,23)=26.80, p<.001, with a 2.4% advantage for the compatible low
mapping and a 4.0% advantage for the compatible high mapping. There was a two-way
interaction of Timbre and Distance, F(1,23)=5.06, p=.034. Separate analyses
revealed a main effect of Distance only in the piano category, F(1, 23) =6.88, p =.015,
where greater distances were on average responded to 4.9 ms faster with the right

hand. None of the other effects reached significance.
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3.2.1.3 Discussion

In line with previous studies that employed speeded bimanual pitch
comparison tasks (Cho et al., 2012; Lidji et al., 2007; Rusconi et al., 2006), faster and
more accurate responses were observed for the low/left- and right/high-mapping (i.e.,
a SPARC effect). Thus, performance was enhanced when polarity codes of pitch height
and response overlapped.

In accordance with a recent study in which participants were asked to judge the
pitch height of sung number words (Fischer et al., 2013), the observed SPARC effect
was found to be present also in the vocal timbre category. Specifically, timbre did not
modulate pitch-to-space mappings in the nonmusician participants when performing
pitch comparisons. This similarity in findings for piano and vocal sounds is to be
expected as vocal sounds are comparable to instrumental sounds or can even be
considered as a special form of instrumental sounds due to the nature of their

production and their line of harmonics (Roederer, 2008).

6000

Frequency (Hz)

0 Time (ms) 600 0 Time (ms) 600

Figure 9: Spectrogram of the reference tone in the vocal category (left panel) and the

piano category (right panel).

The similarity of the timbre categories used in the present experiment is

illustrated in Figure 9. Here, the spectograms of the reference tones for both piano and
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vocals are depicted. Note that the formants (i.e., the bright horizontal frequency
bands) for both timbres lie on the same frequencies, which means that the sounds are
of the same pitch, but also that they contain the same line of harmonics.

The present results show that the set of stimuli that was used in Experiment A
is suitable to produce pitch-to-space associations in a pitch comparison task. More
specifically, explicit judgments of pitch height were not affected by timbre, even
though timbre was associated with response sides. Therefore, pitch and timbre can be
viewed as type 5 ensemble for dimensional overlap in this task. In order to test
whether timbre modulates mappings of pitch height onto horizontal responses in an
implicit task, it is interesting to compare the findings of Experiment A with results

obtained in a horizontal timbre judgment task with nonmusicians.

3.2.2 Experiment B: Timbre Judgment in a Horizontal Task Setting With

Small Pitch Range

The results of Experiment A showed that the SPARC effect in nonmusicians was
not modulated by timbre category in a horizontal pitch comparison task. This finding
goes in line with the assumption of polarity correspondence of left responses with low
tones and right responses with high tones (Cho et al., 2012).

Experiment B aimed to investigate, whether the automatic mapping of pitch
height onto horizontal responses in an implicit SPARC task (i.e., pitch is not task-
relevant) can be affected by timbre. In this experiment, the stimulus and response set
of Experiment A (pitch comparison task) were adopted for an implicit SPARC task in
which participants had to respond to the timbre category of the tone (piano or vocals).
Technically, based on the results of Experiment A, it would be expected that also in
Experiment B, timbre and pitch form a type 5 ensemble and are therefore processed
independently.

Previous studies did, however, not lead to consistent conclusions regarding the
qguestion whether horizontal pitch-to-space mappings in nonmusicians are generated
automatically. This may be due to the fact that these studies did not sufficiently

consider that pitch is not perceived independently from timbre (e.g., Pitt, 1994).
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Therefore, when pitch is the irrelevant stimulus dimension in a speeded bimanual
choice reaction task, dimensional overlap between pitch and timbre may conceal
SPARC. The present experiment enables to observe possible interactions of timbre
with the spatial mapping of pitches in nonmusicians. Such an interaction would imply
that interferences of timbre and pitch are dependent on the task relevance of pitch for

this group of participants.

3.2.2.1 Method

Participants. Twenty-four students (14 female; average age: 23.8 years; range:
21 — 29 years) of the University of Kaiserslautern were paid for their participation in
the experiment or participated in partial fulfillment of a course requirement. All of
them were right-handed and reported normal hearing and none of them had
participated in Experiment A. Fourteen of them had no prior musical experience; the
others had received an average of 4.4 years of musical training, but had stopped since

6.6 years on average. Therefore, all of them were considered as nonmusicians.
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Figure 10: Time course of a trial in the timbre judgment task in Experiment B.

Stimuli and procedure. For this experiment, the stimuli of Experiment A were
adopted with the exception that there was no reference tone. The trial-to-trial
procedure was the same as in Experiment A except that target sounds followed
directly after fixation without a preceding reference tone (see Figure 10). In this
experiment, participants had to make judgments based on whether the heard sound

was a piano or a vocal tone by pressing a left or right response key. All the other
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experimental settings remained the same as in Experiment A, resulting in an overall

duration of about 20 minutes per participant.

3.2.2.2 Results

Two trials with RT shorter than 100 ms were excluded from analysis. Another
5.1% (197 of 3840 trials, approximately equally distributed across conditions) were
removed due to the individual outlier criterion as described in Experiment A. Mean
dRT and dER (right — left key) are displayed in Table 3 as a function of timbre, global
pitch, and distance from the middle. There was no speed-accuracy tradeoff, as there
was no correlation of RT and ER, r=-.026, p = .906. All analyses were conducted as in

Experiment A (for results, see Table 5).

Table 5: Results for the statistical analyses on RT and ER in Experiment B.

F p Np’

RT

Pitch 11.60 .002 .335
Timbre 1.03 .320 .043
Distance 0.08 .787 .003
Pitch x Timbre 5.25 .031 .186
Pitch x Distance 0.14 .707 .006
Timbre x Distance 2.84 .105 .110
Pitch x Timbre x Distance 0.01 .936 .000
ER

Pitch 21.82 <.001 487
Timbre 0.75 .394 .032
Distance 1.87 .184 .075
Pitch x Timbre 0.11 .746 .005
Pitch x Distance 0.66 426 .028
Timbre x Distance 0.10 .757 .004

Pitch x Timbre x Distance 0.88 .359 .037
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RT analyses. There was a main effect of Pitch, F(1, 23)=11.60, p =.002,
displayed by a 5 ms advantage for left hand responses to low tones and a 22 ms
advantage for right hand responses to high tones. The interaction of Pitch and Timbre,
F(1, 23) =5.25, p =.031, revealed the effect of Pitch to only be present for the piano
category, F(1,23)=14.12, p=.001, but not for the vocal category, F(1,23)=1.98,
p =.173. In the piano category, participants made 2 ms faster left hand responses for
low tones and 38 ms faster right hand responses for high tones (see Figure 11). There
were no other main effects or interactions. To ensure that none of the observed
effects was due to some of the participants having received musical training in their
past, another rmANOVA with Former musical training (no training vs. former training)
as a between-subjects variable was run in addition. The interaction of Former musical
training and Pitch was not significant, F <1, as were all other interactions with this

between-subjects factor.
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Figure 11: Mean dRT (left panel) and dER (right panel) for the timbre judgment task with small

pitch range and horizontally aligned responses in Experiment B.

ER analyses. The rmANOVA on arcsine transformed ER revealed a main effect of
Pitch, F(1, 23) = 21.82, p <.001, confirming the effect found in the RT analysis with a
5.5% advantage for the left/low and a 4.4% advantage for the right/high mapping.

None of the other main effects or interactions reached significance.
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3.2.2.3 Discussion

The present horizontal timbre judgment task showed that the nonmusician
participants made horizontal pitch-to-space associations, regardless of whether they
had received any musical training in the past or not. This finding is in agreement with
other studies which showed that nonmusicians automatically map pitch onto
horizontal space (e.g., Cho et al., 2012; Nishimura & Yokosawa, 2009; Wolf et al., 2012)
and contrasts others that did not obtain such effects in similar settings (Lidji et al.,
2007; Rusconi et al., 2006).

The major finding in this experiment is that the observed SPARC effect was
dependent of timbre. When timbre was the task-relevant feature, participants were
only able to ignore the pitch height of the vocal sounds, but not of the piano sounds.
This means that, in terms of dimensional overlap, pitch and timbre form a type 7
ensemble, as timbre was not associated with responses. The finding of a pitch-timbre
interference in the present experiment goes in line with the observation that -
especially for nonmusicians - pitch and timbre interfere in pitch and timbre judgment
tasks (Krumhansl & Iverson, 1992; Pitt, 1994). A comparison with the findings of
Experiment A, however, shows that the observed interference is asymmetric: In pitch
judgments, no such interaction was present while in timbre judgments, interference
effects were obtained, which is reflected by the fact that the stimulus sets in both
tasks can be allocated within different ensemble types for dimensional overlap
(Experiment A: type 5; Experiment B: type 7).

The pitch height of piano sounds was mapped to horizontal space
independently of task. This independent mapping implies that for piano tones, pitch is
automatically coded spatially. A possible reason for this could be the nature of
construction of the piano. On the piano, pitches are ordered ascending from left to
right. The knowledge of this organization concept may reinforce the association of low
tones with left and high tones with right side responses.

Adopting the horizontal timbre judgment task into a vertical response setting
allows for further clarification of the observed findings. Specifically, it provides the
opportunity to observe whether vertical spatial mapping of pitch is modulated by

timbre as well.
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3.2.3 Experiment C: Timbre Judgment in a Vertical Task Setting With
Small Pitch Range

Experiment B revealed that, in nonmusicians, automatic pitch-to-space
associations were modulated by timbre. Particularly, only when judging the timbre of
piano tones, spatial coding of pitch height interfered with response selection.

Experiment C aimed to examine, whether these observations in the horizontal
response dimension were caused by similar, timbre-dependent differences in the
vertical spatial mapping of pitch heights to responses. Horizontal SPARC effects are
attributed to an orthogonal remapping of vertical spatial representations into the
horizontal response alignment. Therefore, pitch-timbre interferences in the vertical
mapping could modulate horizontal SPARC effects.

To test for such interferences, in Experiment C, task, procedure, and
participants of Experiment B were maintained while only the alignment of responses
was changed. This enables to conclude whether the findings in Experiment B may have

been caused by timbre-related differences in vertically aligned pitch representations.

3.2.3.1 Method

Participants. The 24 students of Experiment B participated in this experiment.

Stimuli and procedure. Stimuli and procedures were adopted from Experiment
B with the only change, that response locations were now aligned vertically with a
lower and an upper response button (B and 6). Prior studies didn’t find any effect of
hand assignment to response buttons for nonmusicians (Lidji et al., 2007; Rusconi et
al., 2006). In order to not impede the assumed left/low and right/high mapping
advantage, a constant assignment of right hand to the upper and left hand to the

lower button was maintained.
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3.2.3.2 Results

Two trials were excluded from RT analysis (RT < 100 ms). Another 5% (193 of
3840 trials, approximately equally distributed across conditions) were removed due to
outlier elimination. Mean dRT and dER (upper — lower key) are displayed in Table 3 as a
function of timbre, global pitch, and distance from the middle. There was no
correlation of RT and ER, r=-.276, p =.193, indicating that there was no speed-
accuracy tradeoff. Analyses were conducted as in Experiment A, results are displayed

in Table 6.

Table 6: Results for the statistical analyses on RT and ER in Experiment C.

F p Ny’

RT

Pitch 9.63 .005 .295
Timbre 0.01 .935 .000
Distance 3.19 .087 122
Pitch x Timbre 0.47 501 .020
Pitch x Distance 1.26 273 .052
Timbre x Distance 0.44 .514 .019
Pitch x Timbre x Distance 0.16 .691 .007
ER

Pitch 7.14 .014 237
Timbre 2.82 .107 .109
Distance 2.64 .118 .103
Pitch x Timbre 1.01 .325 .042
Pitch x Distance 2.29 .144 .090
Timbre x Distance 4.16 .053 .153
Pitch x Timbre x Distance 0.00 .957 .000

RT analyses. The 2 x 2 x 2 rmANOVA with Pitch, Timbre, and Distance as within-
subject variables uncovered a SPARC effect, F(1, 23) =9.63, p =.005, which revealed
itself through a 10 ms advantage for the low pitch to lower button mapping and a

22 ms advantage for the high pitch to upper button mapping (see Figure 12). None of
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the other effects reached significance. In order to answer the question whether
response dimension affected the timbre dependence of the SPARC effect, another
rmANOVA was conducted on the combined data of Experiment B and C with Response
alignment (horizontal vs. vertical) as an additional within-subjects factor. Here, as
expected, there was a main effect of Pitch, F(1, 23) =17.00, p <.001. The only other
significant effect was the three-way interaction of Response dimension, Pitch, and
Timbre, F(1, 23) =4.86, p =.038, confirming that the change of response dimension

was the cause for the absence of a Pitch x Timbre interaction in Experiment C.
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Figure 12: Mean dRT (left panel) and dER (right panel) for the timbre judgment task

with small pitch range and vertically aligned responses in Experiment C.

ER analyses. In the error analysis, too, the main effect of Pitch was observed,
F(1, 23) =7.14, p = .014, with a 2.2% advantage for the compatible low mapping and a
3.5% advantage for the compatible high mapping. None of the other effects reached

significance.

3.2.3.3 Discussion

Vertical SPARC was evident regardless of timbre category in the vertical timbre
judgment task (see Figure 12). This implies that vertical pitch-to-space associations
were formed automatically and independently of timbre. This observation goes in line

with those of other studies which reported no effect of timbre on automatic vertical
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pitch-to-space associations in nonmusicians (e.g., Lidji et al., 2007; Rusconi et al., 2006)
and is likely due to the fact that timbre is, if at all, associated with horizontal, but not
with vertical space. Therefore, in Experiment C, pitch and timbre form a type 3
ensemble for dimensional overlap.

A comparison between Experiment B and C confirmed that the orientation of
the response dimension (i.e., horizontal vs. vertical) is crucial for the observation of
pitch-timbre interferences. In particular, pitch-to-space associations for vocal tones are
impaired only when responses have to be made along a horizontally aligned response
set. This implies that the results in the horizontal timbre judgment task (Experiment B)
were not caused by timbre-dependent differences in vertical SPARC.

An alternative explanatory account for the result in Experiment B is introduced
by findings in Experiment A. In this horizontal pitch comparison task it was observed
that SPARC in vocal sounds interacted with tonal distance from the reference.
Specifically, in the vocal category, greater pitch distances from the middle elicited
significantly greater dRTs. This means that pitch distances can potentially modulate
pitch-to-space associations for vocal sounds.

In order to investigate whether increased pitch differences can affect the
automaticity of horizontal mappings of pitch to space, another horizontal timbre
judgment task was conducted. In this task, procedures and settings of Experiment B

were adopted with a stimulus set with an enlarged pitch range.

3.2.4 Experiment D: Timbre Judgment in a Horizontal Task Setting With

Large Pitch Range

The findings in Experiment C revealed that vertical mappings of pitch are
generated automatically and independently of timbre. This goes in line with the results
of previous studies that did not report timbre differences in their implicit vertical
SPARC tasks (e.g., Lidji et al., 2007; Rusconi et al., 2006). The observations made in
Experiments B and C allow for the conclusion that the results obtained in the
horizontal timbre judgment task (Experiment B) were not caused by pitch-timbre

interferences in the vertical setting (Experiment C).
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Alternatively, however, pitch representations in implicit horizontal tasks could
be modulated by pitch distances. As can be seen in Experiment A, in vocal sounds,
tones further away in pitch yielded a significantly larger SPARC effect. Similar
observations have also been reported by other studies to the extent that smaller pitch
distances caused weaker (Beecham et al., 2009) or even reversed (Rusconi et al., 2006)
SPARC effects.

In order to examine possible effects of tonal distances on pitch-to-space
associations for vocal sounds, an additional implicit horizontal SPARC task was
conducted. In this task, like in Experiment B, participants were required to make
timbre judgments with left or right key responses. However, the tone pitches were
now separated by larger tonal distances from the middle and each other. This allows

exploring whether pitch range can modulate horizontal SPARC in nonmusicians.

3.2.4.1 Method

Participants. Twenty-four students (14 female; average age: 23.5 years; range:
21 — 30 years) of the University of Kaiserslautern were paid for their participation in
the experiment or participated in partial fulfillment of a course requirement. All of
them were right-handed and reported normal hearing and none of them had
participated in any of the other experiments. Fifteen of them had no prior musical
experience, the others had received an average of 4.9 years of musical training, but
had stopped since 6.3 years on average. Therefore, they were all considered as

nonmusicians.

Stimuli and procedure. For this experiment, stimuli with pitch distances of 9 and
12 semitones (F3, G#3, D5, and F5, respectively 174.61, 207.65, 587.33, and 698.46 Hz)
from the middle (F4, respectively 349.23 Hz) were produced in two different timbres

(vocals and piano). All procedures remained the same as in Experiment B.
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3.2.4.2 Results

One of 3840 trials was excluded from analyses because of RTs being smaller
than 100 ms. Another 5.3% (204, approximately equally distributed across conditions)
of the trials were removed from analyses due to the individual outlier criterion. Table 3
displays mean dRT and dER (right — left key) separately for timbre, global pitch, and
distance from the middle. There was no speed-accuracy tradeoff, r=-.177, p = .407, RT

and ER analyses were conducted as in Experiment A (see Table 7 for results).

Table 7: Results for the statistical analyses on RT and ER in Experiment D.

F p Np’

RT

Pitch 38.02 <.001 .623
Timbre 4.59 .043 .166
Distance 0.80 .381 .034
Pitch x Timbre 0.01 918 .000
Pitch x Distance 3.66 .068 137
Timbre x Distance 9.53 .005 .293
Pitch x Timbre x Distance 2.06 .165 .082
ER

Pitch 2475 <.001 .518
Timbre 1.01 .326 .042
Distance 1.45 241 .059
Pitch x Timbre 0.01 .922 .000
Pitch x Distance 0.10 .756 .004
Timbre x Distance 4.70 .041 .170
Pitch x Timbre x Distance .000 .999 .000

RT analyses. The RT analysis revealed a main effect of Pitch, F(1, 23) = 38.02,
p <.001, which expressed itself through a 4 ms advantage for the low pitch/left hand
and a 36 ms advantage for the high pitch/right hand response mapping. In addition, a
main effect of Timbre was obtained, F(1,23)=4.59, p=.043, with dRTs being on

average 27 ms smaller for piano sounds than for vocals (see Figure 13). A careful
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observation of Table 3 and Figure 13 suggests that, regardless of pitch, piano sounds
were generally responded to faster with the right hand. Furthermore, a Timbre x
Distance interaction, F(1, 23) =9.53, p =.005, was found. Additional analyses revealed
the effect of Distance to be significant only for the vocal category, F(1, 23) =8.31,
p = .008, but not for the piano category, F(1, 23) = 0.70, p = .410, meaning that in the
vocal category, greater distances resulted in average dRTs being 16 ms larger. None of
the other effects reached significance. In order to rule out influences of former musical
training for the occurrence of the observed main effects and interactions, an additional
rmANOVA with the between-subjects factor Former musical training was conducted.
Like in Experiment B, the interaction with Pitch, F<1, and also none of the other
interactions reached significance.

To verify the influence of global pitch differences on the occurrence of SPARC in
the vocal category, an additional 2 x 2 rmANOVA was run on the dRT for vocal sounds
with Pitch (low vs. high) as within-subjects variable and Pitch range (6+8 vs. 9+12
semitones) as between-subjects variable in order to compare the results of Experiment
B and D. The analysis revealed a main effect of Pitch, F(1, 46) =18.76, p <.001, and a
two-way interaction of Pitch and Pitch range, F(1, 46) = 5.00, p = .030, confirming the

impact of Pitch range on the occurrence of SPARC in the vocal category.
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Figure 13: Mean dRT (left panel) and dER (right panel) for the timbre judgment task with large

pitch range and horizontally aligned responses in Experiment D.
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ER analyses. The main effect of Pitch was also found in the error analyses,
F(1, 23) = 24.75, p <.001, with an advantage of 7.0% for left hand responses to low
tones and an advantage of 7.1% for right hand responses to high tones. Again, there
was a two-way interaction of Timbre and Distance, F(1, 23) = 4.70, p = .041. However,
the main effect of Distance was significant in the piano category only, F(1, 23) =5.41,

p =.029, with greater dER for distances closer to the middle.

3.2.4.3 Discussion

In the second horizontal timbre judgment task, horizontal pitch-to-space
associations in nonmusicians were observed. In contrast to Experiment B, this SPARC
effect was independent of timbre. Furthermore, timbre was associated with horizontal
responses. This means that in Experiment D, pitch and timbre form a type 5 ensemble
for dimensional overlap, which is different from what was observed in Experiment B
(type 7). This difference in results was confirmed by additional analyses which revealed
that the SPARC was modulated through increasing the pitch range of the stimulus set.
This means that for vocal sounds, when pitch range is increased, automatic mappings
of pitch to horizontal responses can be observed.

The observation of an interaction of SPARC and pitch range in the vocal
category goes in accordance with results of other studies who reported that SPARC
could be modulated by the distance of a sound from the tonal middle of the set of
stimuli (Beecham et al., 2009; Rusconi et al., 2006). Specifically, Rusconi et al. (2006)
reported that an advantage of the SPARC compatible mapping was obtained only when
tones had a distance of at least eight semitone steps from the middle of the tonal
range. These results can now be extended with the new finding that pitch distances
affect automatic spatial horizontal pitch representations in different ways for different
timbres. This, in turn, emphasizes the importance of stimulus set features such as pitch
range and timbre categories for the investigation of the horizontal SPARC effect in

nonmusicans.
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3.3 Joint Discussion

3.3.1 Primary Outcomes

Previous studies on the automatic mapping of pitch to horizontal space in
nonmusicians have shown a dependency on task (Cho et al., 2012; Lidji et al., 2007;
Rusconi et al., 2006) and the presence of a reference tone (Cho et al., 2012). However,
while most of these studies focused on the general presence of SPARC effects in
musicians and nonmusicians for different tasks and response settings, little attention
has been paid to pitch range and timbre of stimulus sets as possible modulating factors
of the horizontal SPARC effect.

Study 1 aimed to investigate the influence of pitch and timbre differences on
the automatic spatial coding of pitches. Therefore, four SPARC tasks were conducted in
which timbre was controlled for while task relevancy of pitch, orientation of response
dimension, and pitch range of the stimulus set were varied. In Experiment A, where
pitch height was the task-relevant sound feature, the SPARC effect occurred regardless
of timbre. This implies that the participants’ spatial coding of pitch height was not
modulated by timbre. In this task, timbre and pitch form a type 5 ensemble for
dimensional overlap.

In contrast, in Experiment B, where participants had to make judgments based
on timbre, the observed automatic mapping of pitch onto horizontal responses was
modulated by timbre. In particular, when pitch height was irrelevant for the task, the
SPARC effect only occurred for piano tones but not for vocal tones. This implies that
the task relevancy of pitch affects interferences between spatial pitch and timbre
mappings. In Experiment B, pitch and timbre therefore form a type 7 ensemble.

Experiment C, in which participants had to make timbre judgments with
vertically aligned response keys, showed that the findings in Experiment B are specific
to the horizontal response dimension. Specifically, when pitch had to be automatically
mapped onto vertical space, no influence of timbre category was observed, which
reflects the characteristics of a type 3 ensemble. The findings of Experiment B,
therefore, cannot be explained by timbre-related differences in vertical pitch

representation.
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The role of pitch range became evident in Experiment D. In this horizontal
timbre judgment task, participants showed a SPARC effect that was not modulated by
timbre. Thus, when pitch distances were large enough, also for vocal sounds pitch
height was automatically mapped onto horizontal responses. In this experiment, pitch
and timbre form a type 5 ensemble.

The results of Study 1 indicate that the pitch range of a stimulus set can affect
horizontally aligned spatial mappings of pitch differently, depending on the timbre of a
sound, which is reflected by the different types of ensembles that can be ascribed to
the same combination of stimulus dimensions: Only in Experiment B, which entailed a
timbre judgment task with a small pitch range, the ensemble type reflects pitch and
timbre to be integral, inseparable stimulus dimensions, while pitch and timbre are
separable in all the other tasks. Specifically, while for piano sounds pitch range does
not affect automatic spatial pitch associations along the horizontal dimension, the case
is different for vocal sounds, where SPARC was elicited only for tones with a distance
of at least 9 semitone steps from the middle of the tonal range.

Altogether, these findings imply that in nonmusicians, stimulus features other
than pitch can modulate automatic mapping of pitch height onto horizontal responses.
Specifically, pitch processing is not independent of timbre and pitch range in
nonmusicians. Note, however, that the interference of pitch and timbre in horizontal
response settings is, if present, asymmetrical: While pitch judgments are made
independently of timbre, timbre judgments are modulated by pitch. The direction of
this interference, therefore, needs to be taken into account when considering the
results of bimanual choice reaction tasks involving sounds of different pitch heights

and timbres.

3.3.2 Polarity Coding and the Horizontal SPARC Effect

The horizontal SPARC effect is thought to originate from an orthogonal
transformation of a vertical pitch-to-space mapping into the horizontal dimension (Cho
et al., 2012; Lidji et al., 2007; Nishimura & Yokosawa, 2009; Rusconi et al., 2006). It has

been suggested that this orthogonal transformation appears as a result of the
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advantage for the up-right/down-left mapping of relevant and irrelevant stimulus
features to responses in bimanual choice reaction tasks (Cho & Proctor, 2003; Weeks
et al.,, 1995). Specifically, the polarity coding principle can account for both the
mapping of pitch to vertical space and for the remapping of this vertical representation
into the horizontal plane.

Nonmusicians do not always automatically map pitch heights onto space. Cho
et al. (2012) were able to show that nonmusicians, in contrast to musicians, only
associated pitch heights with horizontal space automatically, when a reference tone
was present. In view of polarity correspondence, the authors reason that in a
horizontal response setting, nonmusicians do not automatically code pitch height as
polarities along the vertical axis. Cho et al. further argue that only the presence of a
reference tone and resulting referential coding of tones as relatively low or high in
pitch leads to coding of pitch as polarities that overlap with horizontal responses.

Sounds contain, next to pitch, other stimulus features which can be coded as
polarities with the potential to overlap with polarity codes of the response set. This is
reflected in the main effect of timbre that was obtained: For both horizontal timbre
judgment tasks (i.e., Experiment B and D), an observation of Table 3 suggests a
response bias towards right key responses for piano tones. This means that piano
sounds are nearly always responded to faster with a right hand response while this
was not the case for vocal sounds. The main effect of timbre found in Experiment A
and D suggests that the timbre categories were coded as polarities with piano sounds
being the + polarity. In Experiment A and D, the effects of timbre and pitch are purely
additive and therefore can be considered as independent. In Experiment B, in contrast,
timbre interacts with the polarity coding of pitch. Here, in the vocal category, polarity
coding of pitch was not sufficient anymore to produce a SPARC effect.

It is likely that in the present experiments, the nature of construction of the
piano played a special role. Even if people are not familiar with the ascending left-to-
right ordering of pitches on a piano keyboard, they probably know that the keys are
horizontally aligned which may in turn facilitate the establishment of polarity codes.
Therefore, the results obtained for the horizontal SPARC effect with piano sounds may

only reflect pitch-to-space associations for this specific instrument.
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The more interesting finding is, therefore, that for sounds of a timbre without
such an explicit horizontal association, pitch range modulates horizontal SPARC.
Specifically, the findings show that for the vocal sounds used in the present
experiments, extending pitch differences and thereby the pitch range modulated the
evocation of SPARC. This suggests that when tones are sufficiently distant in pitch from
the tonal middle of the stimulus set, pitches can automatically be coded as low and
high in a horizontal timbre judgment task. Moreover, a reference tone, compared to
which a target is perceived as relatively low or high, is not necessarily required to
activate automatic pitch-to-space mappings. This result contrasts the conclusion drawn
by Cho et al. (2012) who found a reference tone to be crucial to the evocation of
automatic spatial mapping of pitch. However, their results could to some extent be
ascribed to their specific choice of artificially produced stimuli which can result in
unnatural sounds and impaired timbre identification. For nonmusicians such stimuli
could draw more attention to the more salient sound feature timbre and impair the
coding of these stimuli according to pitch height. As Cho et al. did not include timbre as
a factor in their analysis, the question whether this sound attribute may have affected
the horizontal implicit SPARC effect in their sample cannot be answered.

Taken together, the present results indicate that timbre and pitch range can
affect the spatial vertical mapping of pitch and the assumed orthogonal transformation
of these vertical pitch-to-space mappings into the horizontal dimension. Moreover, the
findings imply that both timbre and pitch range should be considered carefully in

upcoming research.
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4 Study 2: Pitch and Number

4.1 Research Interest

Study 2 aims to investigate whether SNARC and SPARC are independent in the
horizontal domain. Therefore, the paradigm of Fischer et al. (2013) was adapted with a
set of conditions and tasks more suitable to produce implicit SNARC and SPARC effects.
This implies the introduction of variations in stimulus magnitudes (i.e., specific
numbers and pitch heights) that are sufficient to produce a SNARC and SPARC effect
also in implicit task conditions. Especially for obtaining a more reliable implicit SPARC
effect, the results of Study 1 were taken into account for the creation of the stimulus
set in Study 2. In addition, a variation of task was introduced. A set of two choice
reaction tasks was conducted. In one task (number comparison), numerical magnitude
was task-relevant and pitch was not. In the other task (parity judgment), neither
numerical magnitude nor pitch height were task-relevant. This means that both SNARC
and SPARC were implicit which minimizes the possibility that selective attention to a
task-relevant magnitude crowds out the implicit effect.

These experimental tasks offer the opportunity to observe effects of both
SNARC and SPARC occurring together. Such a result will be relevant to the issue of the
automaticity of these effects. More importantly, however, this will enable to answer
the question of their independence. If the effects were to occur as additive factors in
the planned factorial design, this would most likely imply that the effects belong to
separate mechanisms. Within the taxonomy of the dimensional overlap model
(Kornblum et al., 1990; for more detail, see section 2.4.2.2), such an observation would
imply that pitch and number form a type 5 ensemble with horizontal responses. An
interaction, however, would suggest that spatial numerical and pitch associations
belong to joint mechanisms, reflecting a type 8 ensemble. In particular, a size congruity
effect of pitch height and numerical magnitude might be observed. If such a size
congruity effect was present and specific to tasks involving magnitude judgment, this
would allow to study whether observed interferences take place on the decision level

of processing, as suggested by the shared decisions account.
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4.2 Empirical Section

4.2.1 Method

Participants. Forty-eight students (27 female; average age: 23 years; range: 18
— 27 years) of the University of Kaiserslautern were paid for their participation in the
experiment. All of them were right-handed and reported normal hearing. Twenty-eight
of them had no formal training in music, the others had received an average of 4.8
years of musical training, but had stopped since 7.3 years on average. Thus they were

all considered as nonmusicians.

Stimuli and procedure. Stimuli consisted of the German number words for 1, 2,
8, and 9 (i.e., “eins”, “zwei”, “acht”, and “neun”) that were sung in two low and two
high pitches (F3, G#3, D5, and F5) by a proficient female singer, and edited to a
duration of 600 ms. The values for the numerical magnitude and pitch height both
were chosen according to a 4:3 scheme, which indicates the ratio of the distances
around the center. The above mentioned numerical magnitude values are obtained
with a center at 5 and distances of 4 and 3; the pitch values with a center at F4 and
distances of 12 and 9 semitones. The pitches were specifically chosen as a result of
Study 1, which showed that for vocal sounds it is crucial to employ large enough
distances in order to obtain a reliable implicit horizontal SPARC effect in nonmusician
participants. In addition, clear SNARC effects were reproduced with this specific set of
numbers on both number comparison and parity judgment, with numbers sung in one
pitch height (F4) only.

Participants were randomly assigned to either of two tasks (magnitude
comparison or parity judgment). In the magnitude comparison task, participants heard
a single target stimulus and judged whether it was numerically smaller or larger than 5.
In the parity judgment task, participants judged if the target number was odd or even.
Responses were given along a horizontally aligned response set with a left and right
response key (Q and P). In both tasks, participants were instructed to ignore all

irrelevant aspects of the numbers.
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The experiment was run on Dell laptop computer (Latitude D830, Dell).
Stimulus presentation and response collection were controlled through the E-Prime
Software (E-Prime 2.0, Psychology Software Tools Inc.). Stimuli were presented via
closed Beyerdynamic headphones (DT-770 Pro, Beyerdynamic) at equal loudness well
above threshold and clearly within the individual comfort zone.

On each trial, a fixation cross was presented in the centre of the computer
screen for a duration of 200ms. 250ms after the onset of the fixation, the target sound
was presented for a duration of 600ms. Responses were recorded until 2500ms after
stimulus onset, followed by an inter-trial interval of 1000ms.

Participants completed two experimental blocks with 160 trials each (10
repeated measures per stimulus) that only differed in the assignment of categories
(magnitude comparison: smaller vs. larger than 5; parity judgment: odd vs. even) to
response sides. Trials were presented in a pseudorandom order with the restriction
that two consecutive trials did not contain the same target and that there were no
more than three consecutive trials with the same correct response location. The order
of blocks was counterbalanced across participants. Each block was preceded by a short
practice session consisting of 16 trials with feedback after each trial (RT and

correctness). Altogether, the experiment lasted about 30 minutes.

4.2.2 Results

RTs shorter than 100 ms were excluded from analysis (6 of 15360 trials). In
addition, an individual outlier criterion of two standard deviations was applied to the
data of each participant (654 trials, 4.3%, approximately equally distributed across
conditions). Mean RT in ms (correct trials only) and ER in % are shown in Table 8 as a
function of SNARC compatibility, SPARC compatibility, and task. There was no
significant correlation of RT and ER, p=.70. A 2 x 2 x 2 rmANOVA with the within-
subject variables SNARC compatibility (compatible vs. incompatible) and SPARC
compatibility (compatible vs. incompatible) and the between-subjects variable Task
(magnitude comparison vs. parity judgment) was conducted on mean RT of correct

trials and arcsine-transformed ER (for results, see Table 9).
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Table 8: Average RT (ms) and ER (%) as a function of SNARC compatibility, SPARC

compatibility, and task.

magnitude comparison parity judgment
SNc SN i SNc SNi
SPc SPi SPc SP i SPc SP i SPc SPi
RT (ms) 413 424 444 461 459 461 481 485
ER (%) 6.4 7.8 6.4 8.6 6.3 6.4 12.5 15.5

Note. SN ¢ = SNARC compatible; SN i = SNARC incompatible; SP ¢ = SPARC compatible; SP i =
SPARC incompatible.

RT analyses. In the RT analysis, the main effect of SNARC compatibility,
F(1,46) =52.54, p<.001, was a 25 ms advantage for SNARC compatible trials. The
main effect of SPARC compatibility, F(1, 46) =20.04, p <.001, was a comparatively
smaller advantage of 8 ms for the SPARC compatible trials. The interaction of SPARC
compatibility and Task, F(1,46)=5.92, p=.019, revealed the effect of SPARC
compatibility only to be present for the magnitude comparison task, F(1, 23) =10.83,

p <.001, but not for the parity judgment task, F(1, 23) = 2.44, p =.132 (also see Figure

14).
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Figure 14: Mean RT for the magnitude comparison (left panel) and the parity judgment
(right panel) task as a function of SNARC compatibility, SPARC compatibility,

and task.



4  Study 2: Pitch and Number 72

No other effects reached significance. In particular, the interaction of SNARC
and SPARC compatibility, p = .204, was far from significance. In principle, an interaction
of SNARC and SPARC compatibility could have indicated congruency. In terms of
congruency, the SNARC and SPARC compatible trials (‘both compatible’) and the
SNARC and SPARC incompatible trials (‘both incompatible’) are congruent trials.
Congruency effects would therefore lead to a cross over interaction of SNARC and

SPARC compatibility. However, no such effect was obtained.

Table 9: Results for the statistical analyses on RT and ER.

F p Ne’

RT

SNARC compatibility 52.54 <.001 .533
SNARC compatibility x Task 0.25 .618 .005
SPARC compatibility 20.04 <.001 .303
SPARC compatibility x Task 5.92 .019 114
SNARC compatibility x SPARC compatibility 1.66 .204 .035
SNARC compatibility x SPARC compatibility x Task 0.03 .859 .001
Task 2.92 .094 .060
ER

SNARC compatibility 32.11 <.001 411
SNARC compatibility x Task 23.98 <.001 .343
SPARC compatibility 11.54 <.001 .201
SPARC compatibility x Task 0.04 .836 .001
SNARC compatibility x SPARC compatibility 1.90 175 .040
SNARC compatibility x SPARC compatibility x Task 1.38 .246 .029
Task 4.34 .043 .086

ER analyses. The rmANOVA on ER was conducted with the same factors as
above (also see Figure 15). Again, main effects were obtained of SNARC compatibility,
F(1, 46) =32.11, p <.001, and SPARC compatibility, F(1, 46) = 11.54, p < .001. The Task
x SNARC compatibility interaction, F(1, 46) = 23.98, p < .001, indicated that the SNARC
effect was present only for the parity judgment task, F(1, 23) = 47.41, p < .001, but not

for the magnitude judgment task, F(1, 23) =0.36, p =.550. In addition, there was a
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main effect of Task, F(1, 46) = 4.34, p = .043, indicating that parity judgment was less

accurate than magnitude comparison.
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Figure 15: Mean ER for the magnitude comparison (left panel) and the parity judgment
(right panel) task as a function of SNARC compatibility, SPARC compatibility,

and task.

4.3 Discussion

In order to study whether SNARC and SPARC are independent effects, a
factorial design was adapted in which numerical magnitude and pitch height were
varied within auditorily presented stimuli (Fischer et al., 2013). These stimuli were
employed in a set of two tasks. While in the number comparison task the SNARC effect
was explicit and the SPARC effect implicit, in the parity judgment task, both effects
were implicit.

In the response times, both SNARC and SPARC effects were found to be present
in the magnitude comparison task, even though pitch was not relevant for solving the
task. This implies that pitch was automatically coded along with number, or, in other
words, that the assessment of numerical magnitude co-activated the spatial coding of
pitch. In the parity judgment task, only the SNARC effect was present, while no SPARC
effect could be observed. This implies that the spatial code for numbers was activated
automatically, while this was not the case for pitch height. The absence of a SPARC

effect suggests that pitch height is only coded spatially when magnitude coding is
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required by the task. However, in the ER, SPARC was present in both tasks. This result
points towards the assumption that pitch, like number, is automatically and
unconditionally mapped onto space. In sum, it can be concluded that both number and
pitch automatically activate a spatial representation.

These results contrast to those of Fischer et al. (2013), who found in both their
magnitude judgment tasks that only compatibility of the task-relevant attribute with
responses enhanced performance. As mentioned earlier, their results could be
attributed to their specific choice of stimuli. For nonmusicians, implicit SPARC is, next
to the presence of a reference tone (Cho et al., 2012), sensitive to timbre and pitch
range, as shown in Study 1 of the present work. Moreover, an earlier study of Rusconi
et al. (2006) showed that for stimuli ranging with tonal differences of 2, 4, and 6
semitone step distances around the middle, vertical SPARC was even reversed in
nonmusicians. Therefore, it is likely that part of the stimuli in Fischer and colleagues’
set were not sufficient to produce implicit horizontal SPARC effects in nonmusician
participants.

Even though both numerical magnitude and pitch height were jointly and
automatically mapped to horizontal space, the observed SNARC and SPARC effects
were found to be additive and therefore independent. Regarding the dimensional
overlap taxonomy (Kornblum et al., 1990), this result means that pitch and number
form a type 5 ensemble, where both relevant and irrelevant stimulus dimensions are
associated with responses, but not with each other. The additivity of the observed
SPARC and SNARC effects includes the absence of congruency effects, and, moreover,
their independence implies separate processing mechanisms. In other words, in both
tasks employed in the present study, number and pitch appear to be separable
dimensions in the sense of Garner’s (1974) distinction. A reason for this observation
might be that SNARC and SPARC originate on separate representational dimensions
(SNARC: horizontal; SPARC: vertical). Another reason could be that, in contrast to other
magnitudes for which size congruity effects can be observed (e.g., the joint variation of
physical and numerical size within a stimulus set), different verbalizations underlie
judgments of the numerical and pitch dimension (small — large vs. low — high).

Congruency effects would have been expected based on the principle of

polarity correspondence (Proctor & Cho, 2006): Potentially, the spatial representations
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of number and pitch strengthen each other when they share the same polarity and
interfere with each other in case their polarities do not match. Because no congruency
effects were observed, it is not possible to discuss whether such effects for pitch and
number would be task-specific. This would have been expected based on the shared
decisions account (Santens & Verguts, 2011), which proposes that the irrelevant
dimension will interfere with the decision process, when magnitude judgment is
required by the task. Instead, however, the spatial representations of number

magnitude and pitch appear to enter the decision stage through separate channels.
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5 General Discussion

The focus of the present thesis was to investigate, how associations of pitch
with horizontal space are affected by stimulus attributes other than the pitch height of
a heard sound, especially when pitch height is not task-relevant. Effects of SRC, like
SPARC for pitch heights, can potentially be modulated by different, additionally varied
stimulus features, regardless of whether these features are task-relevant or not (e.g.,
Henik & Tzelgov, 1982; Tlauka, 2002).

Nonmusicians have been shown to produce less stable horizontal pitch-to-
space associations (e.g., Cho et al., 2012; Lidji et al., 2007; Rusconi et al., 2006) and
generally, findings on horizontal SPARC in nonmusicians are inconsistent. Thus,
especially in this participant subgroup, it is of interest whether associations of pitch
height with horizontal space may be affected by stimulus features other than pitch.

According to the principle of polarity correspondence (Proctor & Cho, 2006),
any kind of structural similarity of stimulus and response set can lead to a facilitation
of response selection. This means that ordinal information, but also categorical
information, can be coded as polarities that then overlap with responses. Structural
similarity is reflected as dimensional overlap in the dimensional overlap model
(Kornblum et al.,, 1990) which allows for more detailed predictions on possible
interferences. In order to further clarify the inconsistency of findings on the horizontal
SPARC effect in nonmusicians, the present thesis included two separate studies that
investigated interactions of horizontal SPARC with stimulus features that contain only

categorical (i.e., timbre) or ordinal (i.e., numerical size) information.

5.1 On the Interdependence of SRC Effects for Pitch and Timbre

Earlier studies on horizontal SPARC in nonmusicians mostly focused on the
presence of SPARC depending on the task-relevance of pitch and response setting
(e.g., Lidji et al., 2007; Rusconi et al., 2006), but little attention was paid to features of

the stimulus set. Study 1 aimed to investigate, how pitch and timbre differences within
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a stimulus set influence the automatic spatial coding of pitches. Therefore, a set of
four SPARC tasks was conducted with nonmusicians, in which task relevancy of pitch,
orientation of response dimension, and pitch range of the stimulus set were varied
while timbre was controlled for.

Results showed that participants’ pitch-to-space associations were formed
independently of timbre, when pitch was task-relevant in a horizontal response
setting. However, the case was different, when pitch was a task-irrelevant stimulus
feature. Here, in the horizontal response dimension, pitch-to-space associations were
modulated by instrumental timbre. However, this effect of timbre could not be
replicated in the vertical response dimension, which leads to the conclusion that the
interaction of pitch and timbre in the horizontal timbre judgment task was not caused
by timbre-specific differences of associations of pitch and vertical space. A replication
of the horizontal timbre judgment task with a widened pitch range yielded SPARC
effects independently of timbre and also associations of timbre with response sides.
These results showed that for the horizontal SPARC effect with vocal sounds, large
enough pitch distances are required for the forming of an automatic mapping of task-
irrelevant pitch to horizontal space.

The results of Study 1 indicated that the pitch range of a stimulus set can affect
horizontal SPARC, depending on the timbre of a sound. This is particularly the case for
vocal sounds, as for this timbre category, SPARC was only present when stimuli
spanned over a large tonal range. In sum, pitch processing is not always independent
of timbre and pitch range in nonmusicians. Specifically, these factors can affect the
assumed orthogonal transformation of vertical pitch-to-space mappings into the
horizontal dimension when pitch height is not task-relevant. However, when pitch
ranges are chosen sufficiently wide, SRC for pitch and timbre are formed
independently. In view of future research, the possible interferences need to be taken
into account when conducting choice-reaction tasks involving sounds of varying pitch

heights and timbres.
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5.2 Joint Processing of Pitch and Number: Horizontal SPARC and SNARC

do not Interact

The question of whether SNARC and SPARC are independent has been
addressed by earlier studies (Beecham et al., 2009; Fischer et al., 2013). A final answer
could not be given, as only an indirect measure was used or the stimulus set was not
sufficient to produce isolated implicit SRC effects of pitch and number. In order to
provide a more conclusive answer, Study 2 involved a factorial design in which
numerical size and pitch height of the stimuli were varied within one and the same
stimulus set. The improvement here was that it was ensured that the chosen numbers,
as well as the pitch heights, were sufficient to produce isolated explicit and implicit
SRC effects in a horizontal task setting. In addition, task relevance of magnitude
processing was varied. The new stimuli were employed in a parity judgment and in a
number comparison task. Thus, while pitch was always task-irrelevant, numerical
magnitude could be task-relevant or not.

Results showed that both pitch height and numerical magnitude were
automatically coded spatially in both tasks. However, horizontal SPARC and SNARC did
not interact. Specifically, the effects were only additive and can therefore be
considered independent. This finding implies that both numerical magnitude and pitch
facilitated responses with corresponding responses, and caused, unlike the prediction
made by the shared decisions account, no congruency effects that might have been
task-specific.

The results of Study 2 show that, with a carefully chosen stimulus set, both
horizontal SPARC and SNARC can be observed as implicit effects in tasks that do or do
not involve the assessment of a magnitude. The independence of these effects implies
that spatial representations of numerical magnitude and pitch height enter the
decision stage through separate channels, which might be because the effects
originate from separate representational dimensions (i.e., horizontal vs. vertical). In
comparison with an earlier study which yielded different results (Fischer et al., 2013),
the observations made in Study 2 again emphasize the importance of a careful

consideration of stimulus features such as pitch range for similar future studies.



5 General Discussion 79

5.3 SRC for Pitch and Simultaneously Perceived Stimulus Features

Study 1 and 2 aimed to investigate whether stimulus features that contain
categorical (i.e., timbre) or ordinal (i.e., numerical size) information can interfere with
horizontal pitch-to-space associations in nonmusicians. Study 1 showed that pitch
processing is not always independent of timbre and pitch range. However, an
enlargement of the chosen tonal range within the same timbre categories produced
SRC effects for both pitch and timbre, which were independent from each other. Thus,
pitch and categorical information (i.e., timbre) did not interact when the pitch range
was large enough to produce automatic horizontal pitch-to-space associations in all
timbre categories. Study 2 yielded similar results: With pitches chosen from the same
large tonal range as in Study 1, horizontal SPARC and SNARC were both observed. Just
like in Study 1, SRC for pitch and numerical (or ordinal) information were both present,
but independent.

The results obtained in Study 1 and 2 imply that when the pitch range is chosen
large enough, horizontal SPARC is independent of other simultaneously perceived
stimulus features, even when those additional stimulus features cause SRC effects
themselves. This similarity of results is reflected by the type of ensemble that can be
ascribed to the stimulus sets used in Study 1 and Study 2 according to the taxonomy of
the dimensional overlap model (Kornblum et al., 1990): In Experiment D of Study 1, as
well as in Study 2, pitch and the additionally varied stimulus feature formed type 5
ensembles. The results of Nishimura & Yokosawa (2009), who combined horizontal
SPARC with an intrinsically spatial feature (i.e., the side of the ear to which a sound
was presented), complete the picture: In their study, the authors observed that
horizontal SPARC and the Simon effect (Simon & Rudell, 1967) were both present, but
did not interact, which means that pitch and presentation side also form a type 5
ensemble for dimensional overlap.

It is important to note that the observed independence of SPARC of other
stimulus features seems to be, however, restricted to stimulus features that are
originally represented on different spatial axes. This is indicated through a study in

which participants had to reply to either the initial pitch or the direction of pitch



5 General Discussion 80

change within auditorily presented stimuli with top and bottom key presses. Here, SRC
effects were present for both initial pitch and pitch change (Walker & Ehrenstein,
2000). More importantly, however, the authors observed enhanced performance,
when initial pitch and pitch change corresponded (e.g., when the pitch of a high tone
increased). This means that for pitch and pitch change, which are both semantically
bound to the vertical response dimension (i.e., tones were initially low or high and the
pitch changed to the tone being lower or higher), congruency facilitates responses as
expected in terms of the size congruity paradigm (Santens & Verguts, 2011). This
implies that pitch and pitch change form a type 8 ensemble with vertically aligned
responses within the taxonomy of the dimensional overlap model (Kornblum et al.,
1990). Whether the observed congruency effect originates from the decision level of
stimulus processing, as expected by the shared decisions account (e.g., Santens &
Verguts, 2011), cannot be decided based on the results obtained by Walker and
Ehrenstein, as both their tasks involved a direct assessment of pitch.

The independence of horizontal SPARC and further stimulus features as
observed in the present thesis can be explained by the fact that, while most SRC
effects are thought to originate on a horizontal representational dimension, pitch is
represented on a vertical axis. The principle of polarity coding (Proctor & Cho, 2006)
can be employed to account for these observations: Horizontal SPARC derives from an
orthogonal transformation of the vertical pitch-to-space association into the horizontal
response dimension. Thus, the originally formed polarity codes correspond with the
lower and upper response option and are transformed in order to generate a
response. Other stimulus features, like timbre or numerical magnitude, are
represented horizontally in the first place, which yields polarity codes corresponding to
left and right response options. Therefore, responses formed according to these
stimulus features might enter the decision stage through separate channels, which
would explain their independence.

Alternatively, the definition of dimensional overlap (Kornblum et al., 1990) can
be applied to the finding that horizontal SPARC is independent of simultaneously
varied stimulus features. According to Kornblum et al. (1990), dimensional overlap is
present when the categories within stimulus and response sets can be mapped onto

each other with a homomorphism that maintains operations and relations within a set.
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The extent to which dimensional overlap is present depends on the similarity between
these relations. In the present thesis, the varied dimensions of stimulus sets were
timbre, pitch, and number while the response set was always binary and aligned
horizontally. Because pitch is more strongly and consistently associated to the vertical
spatial axis while timbre and number are associated to the horizontal axis, the
similarity of relations is reduced by default. Furthermore, there is no semantic overlap
between categories within the sets. While pitch can be categorized as low or high,
number will be judged as small or large and timbre in the present experiments can be
judged as piano or vocals. Taken together, these factors may be the reason why no
dimensional overlap between pitch and other stimulus features was observed when
responses were given along a horizontally aligned response set.

In sum, the findings of the present thesis imply that stimulus features
originating from separate representational dimensions are processed independently
more likely than features which originate from the same representational dimension,
such as for example numerical and physical size or pitch and pitch change. Moreover,
the observations made show that when spatial associations for pitch have to be
transformed from the original vertical into the horizontal domain, special attention has
to be paid to accessory stimulus features in order to not receive data in which effects
are occluded due to features that are coded along with or even more saliently than

pitch.
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6 Summary and Conclusion

The present thesis aimed to investigate, whether associations of pitch with
horizontal space in nonmusicians are affected by stimulus features that can produce
compatibility effects with horizontally aligned responses themselves. The findings of
Study 1 and 2 show that when the tonal range is wide enough, horizontal pitch-to-
space associations are formed automatically, independently of whether additional
stimulus information is of categorical (i.e., timbre) or ordinal (i.e., number) nature. The
observations made in Study 1 also imply, however, that horizontal SPARC in
nonmusicians can be affected by timbre when the employed tonal range is small. In
view of these findings, future research should carefully consider timbre and pitch
differences within sets of auditory stimuli in order to not occlude possible
compatibility or congruity effects.

For further studies on the independence of SPARC and SNARC as observed in
Study 2, it would be interesting to employ the stimulus set of Study 2 to a task where
neither numerical magnitude, nor pitch height, nor number parity are task-relevant.
This could for instance be achieved by introducing an additional, task-relevant stimulus
feature (e.g., voice timbre: male vs. female; color of a visually presented shape: red vs.
green). Furthermore, the collection of psychophysiological measures of participants’
reactions to the same stimulus set could shed more light on the question whether the
observed independence of pitch and number results of distinct processing areas. This
could, for example, be achieved by employing functional magnetic resonance imaging
(fMRI). Based on the assumption that a shared magnitude neural code exists which is
located in the IPS (Cohen Kadosh et al., 2008c) and the results obtained in Study 2, it
would be expected to find higher levels of activity in the IPS when the spatial
association of the stimulus is not compatible with the response side, or, in other
words, when stimulus and response are coded as different polarities. Furthermore,
magnitude comparison, or in this case, number comparison, should yield higher
activation in the left IPS (e.g., Nieder & Dehaene, 2009).

In addition, replications of the above studies with trained musicians and also

with different timbre categories (e.g., artificial sounds, non-complex sounds such as
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sinusoids) might be an interesting continuation of this research, as results could give
insight into whether implicit SPARC is always affected by timbre when pitch ranges are
rather small and whether timbres less similar to (harmonic) instrumental sounds
produce the same effects as those employed in the present work.

Thus, while inconsistencies in horizontal SPARC may not be terminally
explained by the results obtained in this thesis, the present work extends previous
studies by the knowledge that in nonmusicians, horizontal SPARC can be timbre-
dependent and that, when the tonal range is chosen appropriately, horizontal SPARC is
independent of other stimulus features that cause SRC effects originating from

horizontal representations.
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