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Abstract

In this thesis we studied and investigated a very common but a long

existing noise problem and we provided a solution to this problem.

The task is to deal with different types of noise that occur simul-

taneously and which we call hybrid. Although there are individ-

ual solutions for specific types one cannot simply combine them be-

cause each solution affects the whole speech. We developed an auto-

matic speech recognition system DANSR ( Dynamic Automatic Noisy

Speech Recognition System) for hybrid noisy environmental noise. For

this we had to study all of speech starting from the production of

sounds until their recognition. Central elements are the feature vec-

tors on which pay much attention. As an additional effect we worked

on the production of quantities for psychoacoustic speech elements.

The thesis has four parts: 1) The first part we give an introduction.

The chapter 2 and 3 give an overview over speech generation and

recognition when machines are used. Also noise is considered. 2) In

the second part we describe our general system for speech recognition

in a noisy environment. This is contained in the chapters 4-10. In

chapter 4 we deal with data preparation. Chapter 5 is concerned with

very strong noise and its modeling using Poisson distribution. In the

chapters 5-8 we deal with parameter based modeling. Chapter 7 is

concerned with autoregressive methods in relation to the vocal tract.

In the chapters 8 and 9 we discuss linear prediction and its parameters.

Chapter 9 is also concerned with quadratic errors, the decomposition

into sub-bands and the use of Kalman filters for non-stationary col-

ored noise in chapter 10. There one finds classical approaches as long

we have used and modified them. This includes covariance mehods,

the method of Burg and others. 3) The third part deals firstly with

psychoacoustic questions. We look at quantitative magnitudes that

describe them. This has serious consequences for the perception mod-

els. For hearing we use different scales and filters. In the center of



the chapters 12 and 13 one finds the features and their extraction.

The fearures are the only elements that contain information for fur-

ther use. We consider here Cepstrum features and Mel frequency

cepstral coefficients(MFCC), shift invariant local trigonometric trans-

formed (SILTT), linear predictive coefficients (LPC), linear predictive

cepstral coefficients (LPCC), perceptual linear predictive (PLP) cep-

stral coefficients. In chapter 13 we present our extraction methods

in DANSR and how they use window techniques And discrete cosine

transform (DCT-IV) as well as their inverses. 4) The fourth part con-

siders classification and the ultimate speech recognition. Here we use

the hidden Markov model (HMM) for describing the speech process

and the Gaussian mixture model (GMM) for the acoustic modelling.

For the recognition we use forward algorithm, the Viterbi search and

the Baum-Welch algorithm. We also draw the connection to dynamic

time warping (DTW). In the rest we show experimental results and

conclusions.

v



Contents

Contents vi

List of Figures xiii

1 Introduction 1

1.1 The DANSR Approach . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Excursion: Human Speech and Machine 9

2.1 Excursion:Human and Machine Interaction . . . . . . . . . . . . . 9

2.2 Human Speech Generation and Recognition . . . . . . . . . . . . 10

2.2.1 Human Speech Generation . . . . . . . . . . . . . . . . . . 10

2.2.2 Human Speech Recognition . . . . . . . . . . . . . . . . . 12

2.3 Speech Recognition by Machine . . . . . . . . . . . . . . . . . . . 13

2.3.1 ASR Types . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Acoustics of Speech Production Model . . . . . . . . . . . . . . . 16

2.4.1 Resonant Frequency, Formant and Sampling Rate . . . . . 16

2.4.2 Reflection Coefficients . . . . . . . . . . . . . . . . . . . . 18

2.5 Categories of Speech Excitation . . . . . . . . . . . . . . . . . . . 19

3 Noisy Speech Recognition 20

3.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Goals of DANSR . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Noisy Speech and Difficulties . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



CONTENTS

3.4 Noise Measurement and Distinction . . . . . . . . . . . . . . . . . 26

3.4.1 Noise Measuring Filters and Evaluation . . . . . . . . . . . 26

3.4.1.1 A-weighting Filter . . . . . . . . . . . . . . . . . 27

3.4.2 Box Plot Evaluation . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Signal Energy and Kernel Density Estimation . . . . . . . 33

3.4.4 Signal to Noise Ratio (SNR) . . . . . . . . . . . . . . . . 33

3.5 Overview of DANSR . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 DANSR’s Hybrid Noise Treatments . . . . . . . . . . . . . 35

3.5.1.1 Noisy Speech Pre-emphasizing . . . . . . . . . . . 36

3.5.1.2 Strong Noise . . . . . . . . . . . . . . . . . . . . 36

3.5.1.3 Mild Noise . . . . . . . . . . . . . . . . . . . . . 36

3.5.1.4 Steady-unsteady Time Varying Noise . . . . . . . 37

3.5.2 Framework of DANSR . . . . . . . . . . . . . . . . . . . . 39

4 Pre-emphasizing of DANSR 41

4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Location and Data Collection . . . . . . . . . . . . . . . . 42

4.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Envelope Detection . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2.1 Formulations . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Adaptive Threshold Selection . . . . . . . . . . . . . . . . 47

4.3 Pre-emphasizing and Pre-emphasis Filter . . . . . . . . . . . . . . 48

5 Strong Noise Solution 55

5.1 Basic Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Stochastic Process . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Poisson Distributions . . . . . . . . . . . . . . . . . . . . . 57

5.3.1.1 Homogeneous Poisson Model . . . . . . . . . . . 58

5.4 Shots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Strong Noise and Matched Filter . . . . . . . . . . . . . . . . . . 61

5.6.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



CONTENTS

6 Source Excitation Model 65

6.1 General Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Analysis Speech Production Model . . . . . . . . . . . . . . . . . 67

6.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Source Excitation Types and Formulations . . . . . . . . . . . . . 69

6.3.1 Voiced Speech Source . . . . . . . . . . . . . . . . . . . . . 70

6.3.2 Unvoiced Speech Source . . . . . . . . . . . . . . . . . . . 72

6.3.3 Plosive Speech Source . . . . . . . . . . . . . . . . . . . . 72

6.4 Systems of the Source Excitation Model . . . . . . . . . . . . . . 73

6.4.1 Glottal Filter . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.2 Vocal-tract Filter . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.3 Lip Radiation Filter . . . . . . . . . . . . . . . . . . . . . 74

6.5 Source Excitation Model using Vocal-tract . . . . . . . . . . . . . 75

7 Vocal- tract Model: AR Model 79

7.1 Analysis of Parametric Signal Modeling . . . . . . . . . . . . . . 79

7.2 Overview: Auto-regressive (AR) Model . . . . . . . . . . . . . . . 80

7.3 Analysis of Stochastic AR Process . . . . . . . . . . . . . . . . . 83

7.4 Analysis between AR and LP filters . . . . . . . . . . . . . . . . . 86

8 Estimation of AR Parameters: Linear Prediction (LP) 89

8.1 Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1.1 Order of the Model . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Derivation of LP and Errors . . . . . . . . . . . . . . . . . . . . . 92

8.2.1 Deconvolution phenomenon . . . . . . . . . . . . . . . . . 93

8.2.1.1 Gain and Errors . . . . . . . . . . . . . . . . . . 94

8.3 Mean Squared Error (MSE) and its Minimization . . . . . . . . . 95

8.3.1 Computational Aspects . . . . . . . . . . . . . . . . . . . . 95

9 LPC Solution Approaches 100

9.1 Autocorrelation Approach . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Covariance Approach . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3 The Burg Approach . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.3.1 Lattice FIR Filter . . . . . . . . . . . . . . . . . . . . . . 112

9.3.2 Reflection Coefficients and Linear Prediction Coefficients . 112

9.4 ULS Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.5 Analysis of the Signal Models . . . . . . . . . . . . . . . . . . . . 119

viii



CONTENTS

10 Steady-unsteady Noise Solution 123

10.1 The Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.2 Sub-band Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.3 Spectral Minima Tracking in Sub-bands . . . . . . . . . . . . . . . 129

10.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.4.1 State space derivation . . . . . . . . . . . . . . . . . . . . 131

10.4.2 Prediction Estimates . . . . . . . . . . . . . . . . . . . . . 133

10.4.3 Update Predicted Estimation by Correction . . . . . . . . 134

10.5 Analysis and Evaluations . . . . . . . . . . . . . . . . . . . . . . . 136

10.5.1 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.5.2 Spectral Subtraction . . . . . . . . . . . . . . . . . . . . . 138

10.5.3 White Noise Kalman Filtering . . . . . . . . . . . . . . . . 139

10.5.4 KEM Filtering using White Noise . . . . . . . . . . . . . . 141

10.5.5 KEM Approach for Colored Noise . . . . . . . . . . . . . . 141

10.5.6 FFT based Suband Decomposition and Kalman Filtering 143

10.5.7 Mband Colored Noise and Kalman Filtering . . . . . . . . 143

10.5.8 Principle Component Analysis (PCA) Approach . . . . . . 144

11 Psychoacoustics and DANSR System 146

11.1 Psychoacoustics for DANSR . . . . . . . . . . . . . . . . . . . . . 147

11.1.1 Sound Pressure level (SPL) . . . . . . . . . . . . . . . . . 149

11.1.2 Absolute Threshold of Hearing (ATH) . . . . . . . . . . . 150

11.2 Concepts of Perceptual Adaptation . . . . . . . . . . . . . . . . . 151

11.3 Auditory System and Hearing Model . . . . . . . . . . . . . . . . 151

11.3.1 Human Auditory System . . . . . . . . . . . . . . . . . . . 152

11.3.2 Human Hearing Process . . . . . . . . . . . . . . . . . . . 153

11.3.3 Hearing Model . . . . . . . . . . . . . . . . . . . . . . . . 154

11.4 Auditory Masking and Masking Frequency . . . . . . . . . . . . . 155

11.5 Frequency Analysis and Critical Bands . . . . . . . . . . . . . . . 156

11.5.1 Perception of Loudness . . . . . . . . . . . . . . . . . . . . 157

11.6 Analysis: Perceptual Scales . . . . . . . . . . . . . . . . . . . . . 160

11.6.1 Mel Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11.6.2 Bark Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11.6.3 Erb Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11.6.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.7 Analysis: Auditory Filter-bank . . . . . . . . . . . . . . . . . . . 162

11.7.1 Mel Filterbank . . . . . . . . . . . . . . . . . . . . . . . . 164

ix



CONTENTS

11.7.2 Bark Critical-band . . . . . . . . . . . . . . . . . . . . . . 165

11.8 Perceptual Adaptation in DANSR . . . . . . . . . . . . . . . . . . 166

11.9 Psycho-acoustical Analysis of MP3 . . . . . . . . . . . . . . . . . 166

12 Standard Features and Feature Extraction Techniques 168

12.1 Fundamentals: Feature Extraction . . . . . . . . . . . . . . . . . . 168

12.2 Features and their Purpose . . . . . . . . . . . . . . . . . . . . . . 169

12.2.1 Conventional Feature Parameters . . . . . . . . . . . . . . 171

12.3 Steps involved in Feature Extraction . . . . . . . . . . . . . . . . 172

12.4 Analysis of Standard Feature Extraction Techniques . . . . . . . 173

12.5 Cepstral Feature Extraction Technique . . . . . . . . . . . . . . . 174

12.6 MFCC Feature Extraction Technique . . . . . . . . . . . . . . . . 177

12.7 LPC Feature Extraction Technique . . . . . . . . . . . . . . . . . 182

12.8 LPCC Feature Extraction Technique . . . . . . . . . . . . . . . . 182

12.9 PLP Feature Extraction Technique . . . . . . . . . . . . . . . . . 184

12.9.1 Perceptual Spectral Features . . . . . . . . . . . . . . . . . 185

12.10 SILTT Feature Extraction Technique . . . . . . . . . . . . . . . . 187

12.11Additional Features and their Extractions . . . . . . . . . . . . . 188

12.12Analysis of Feature Extractions . . . . . . . . . . . . . . . . . . . 189

13 APLTT Feature Extraction 192

13.1 Spectral Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

13.1.1 Signal Decomposition . . . . . . . . . . . . . . . . . . . . . 193

13.1.2 Windowing the signal . . . . . . . . . . . . . . . . . . . . 193

13.1.3 Rising Cut-off Functions . . . . . . . . . . . . . . . . . . . 194

13.1.4 Folding Operation . . . . . . . . . . . . . . . . . . . . . . 195

13.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

13.2.1 Discrete Cosine Transform IV (DCT-IV) . . . . . . . . . . 196

13.2.2 Perceptual Feature Transformation . . . . . . . . . . . . . 199

13.2.2.1 Critical band for DANSR . . . . . . . . . . . . . 199

13.2.2.2 Intensity loudness . . . . . . . . . . . . . . . . . 200

13.3 Parametric Representation . . . . . . . . . . . . . . . . . . . . . . 200

13.3.1 Perceptual Entropy (PE) . . . . . . . . . . . . . . . . . . 200

13.4 Parametric Feature Transformation . . . . . . . . . . . . . . . . . 201

13.4.1 Inverse DCT-IV . . . . . . . . . . . . . . . . . . . . . . . 201

13.4.1.1 Unfolding operator . . . . . . . . . . . . . . . . . 201

13.5 Analysis of APLTT and Standard Feature Extraction Techniques 202

x



CONTENTS

14 Classification and Recognition 204

14.1 Formulations of HMM . . . . . . . . . . . . . . . . . . . . . . . . 204

14.2 HMM Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

14.3 Speech Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14.4 Informal Discussions: HMM Architecture . . . . . . . . . . . . . . 210

14.4.1 HMM Problems and Techniques . . . . . . . . . . . . . . . 211

14.4.2 HMM Constraints . . . . . . . . . . . . . . . . . . . . . . . 211

14.4.3 HMM Topology . . . . . . . . . . . . . . . . . . . . . . . . 212

14.5 HMM Formulations for DANSR . . . . . . . . . . . . . . . . . . . 212

14.6 Gaussian Mixture Model (GMM) . . . . . . . . . . . . . . . . . . 213

14.6.1 Computational Aspects of GMM . . . . . . . . . . . . . . 214

14.7 HMM Computational Approaches . . . . . . . . . . . . . . . . . 218

14.7.1 Evaluation: Forward Algorithm . . . . . . . . . . . . . . . 219

14.7.2 Backward Algorithm . . . . . . . . . . . . . . . . . . . . . 220

14.7.2.1 Learning: Baum-Welch Algorithm . . . . . . . . 221

14.7.3 Searching: Viterbi Algorithm . . . . . . . . . . . . . . . . 221

14.8 Analysis of Standard Classification and Clustering Techniques . . 223

14.8.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

14.8.2 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

14.8.3 Clustering using VQ . . . . . . . . . . . . . . . . . . . . . 225

14.8.4 Dynamic Time Warping (DTW) . . . . . . . . . . . . . . . 226

14.9 Analysis and Comparison: HMM and DTW . . . . . . . . . . . . 228

15 Remarks on Experiments 229

15.1 Noisy Speech and DANSR System . . . . . . . . . . . . . . . . . . 229

15.2 Analysis: Feature Extraction and Features . . . . . . . . . . . . . 230

15.3 Clustering, Classification and Recognition . . . . . . . . . . . . . 234

16 Conclusions 237

16.1 Practical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

16.2 Structural Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

16.3 Future Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Appendix 239

Abstrakt in Deutsch 245

16.4 Der Rahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

16.5 Die allgemeine Thematik . . . . . . . . . . . . . . . . . . . . . . . 246

xi



CONTENTS

16.6 Der allgemeine Ansatz . . . . . . . . . . . . . . . . . . . . . . . . 246

16.6.1 Rauschen . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

16.6.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

16.7 Mein System DANSR . . . . . . . . . . . . . . . . . . . . . . . . . 249

16.7.1 Kapiteluebersicht . . . . . . . . . . . . . . . . . . . . . . . 249

Bibliography 253

Index 266

Curriculum Vitae 267

xii



List of Figures

2.1 Speech Generation and Speech Recognition [80] . . . . . . . . . . 11

2.2 Human Speech Generation and Machine for the Speech Recognition 13

2.3 Overview of ASR Process . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Sketch of the vocal-tract: Non-uniform cross-sectional area [118] . 17

3.1 Noisy industrial environment: Speech Generation by a Human be-

ing and a Machine for the Speech Recognition . . . . . . . . . . . 21

3.2 Hybrid Noise and Industrial Environment . . . . . . . . . . . . . . 23

3.3 Hybrid noisy signal : Noisy speech signal in the time and in the

frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Hybrid noisy sound level measurements by an A-weighting filter . 29

3.5 Noise level and noisy signal energy in signal frames . . . . . . . . 31

3.6 Hybrid Noisy Signals : Sound level in Box plot . . . . . . . . . . . 32

3.7 Hybrid noisy signal : Signal energy in signal frames and pdf of

noisy signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Hybrid Noisy Speech Recognition: Framework of DANSR . . . . . 35

3.9 Strong noise modeled by Poisson process . . . . . . . . . . . . . . 37

3.10 Mild noise modeled by white Gaussian noise (WGN) . . . . . . . 38

3.11 Time varying steady-unsteady noise modeled by Gaussian process 39

4.1 Data at first look at 48 kHz sampling rate . . . . . . . . . . . . . 42

4.2 Variability of the same word spoken by the same speaker in the

time and frequency domain at 48 kHz sampling rate in a relatively

quiet residential environment . . . . . . . . . . . . . . . . . . . . . 44

4.3 Decimator: Data is downsampled from 48 kHz sampling rate to

16kHz sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Spectrum of hybrid noisy speech and spectrum of envelop com-

puted by Hilbert transform . . . . . . . . . . . . . . . . . . . . . 48

xiii



LIST OF FIGURES

4.5 Redundancy removed signal and sampling rate is 16 kHz: Time

domain plot and spectrogram . . . . . . . . . . . . . . . . . . . . 49

4.6 Pre-emphasis filter . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Amplitude and phase response of the pre-emphasis filter . . . . . 51

4.8 The effect of pre-emphasis filter on the speech signal: Noisy signal 52

4.9 The effect of pre-emphasis filter on the speech signal: Redundancy

removed signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Signal whitening and matched filtering for shot noise . . . . . . . 63

5.2 Strong noisy signal and matched filtered output . . . . . . . . . . 64

6.1 Human vocal and articulation organs [52] . . . . . . . . . . . . . . 66

6.2 Source-excitation speech production model . . . . . . . . . . . . . 70

6.3 Excitation source of the voiced speech . . . . . . . . . . . . . . . . 71

6.4 Voiced speech in source-excitation model . . . . . . . . . . . . . . 71

6.5 Unvoiced speech in source-excitation model . . . . . . . . . . . . . 72

6.6 Plosive speech in source-excitation model . . . . . . . . . . . . . . 73

6.7 Speech Production Systems . . . . . . . . . . . . . . . . . . . . . 74

6.8 Stochastic source-excitation model . . . . . . . . . . . . . . . . . 75

6.9 Simplified speech production model . . . . . . . . . . . . . . . . . 78

7.1 Moving average autoregressive ( ARMA) filter and perceptional

site [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Moving average (all-zero MA filter) and auto-regressive (all-pole

AR filter) [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Analysis AR filter and Inverse LP filter: Deconvolution . . . . . . 87

7.4 All-pole AR filter and all-zero LP filter: Deconvolution . . . . . . 88

8.1 Short time speech signal processing . . . . . . . . . . . . . . . . . 90

8.2 Speech production system and linear prediction analysis . . . . . 94

9.1 LP by autocorrelation using Yule-Walker approach: Öffne die Tür 102
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Chapter 1

Introduction

This chapter contains a general discussion of the whole thesis. It deals with the

speech which is a natural communication form. A substantial amount of different

views and a huge variety of aspects are inherent in the communication while

using the speech. Obviously at a technical level, this makes the speech analysis

an interesting and a difficult task.

The speech recognition is a technology that receives and also reconstructs

speech on the machine. For this the human speech recognition approach is closely

replicated. The main goal of this thesis is in short an automatic speech recognition

(ASR) in a difficult environment. By difficult we mean simply that there are

various kinds of noise.

This occurs in many practical situations and leads to several technical prob-

lems. Our environment is a technical factory where people give commands to

a machine that are executed automatically. The state of the art of this inves-

tigation is probabilistic. Particularly a pattern recognition method namely the

Hidden Markov Model (HMM) is used in order to find the most likely answer to

the pattern recognition problem. We deal with a very large dimensional space.

For instance, the analog speech waveform is first captured by some transducers. A

common type of transducer is a microphone to capture the speech waveform. The

analog speech waveform is digitized for its processing in the computer. Suppose,

the digitized signal has 90000 samples at 48 KHz sampling rate. These samples

are then processed into short blocks which has a length for example 10 to 30

milli seconds (msec), these are then used to extract features by feature extraction

technique for dimensionality reduction. These features are classified and modeled

by a Gaussian mixture model. In each class, the features contain information for

the corresponding class, these are then recognized by the techniques such as for-
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ward algorithm, Viterbi algoirhm and Baum-Welch algorithm used in the HMM

in order to obtain the most likely result. The probabilistic speech recognition

approach is most commonly used practical and commercial applications.

An additional topic is to understand psychoacoustic elements. Such elements

contain information that cannot be easily expressed in a written form or in words.

Examples are pauses or intonation; they can change the meaning of the spoken

words significantly. We are interested in extracting quantitative magnitudes that

are used in the speech. This is closely related to the techniques we developed for

dealing with the noise.

The speech signal contains information at many different levels such as infor-

mational aspects, for example semantic, perceptive and syntactic information and

also an information about the speaker. All these information influences recogni-

tion and understanding of speech. There are many other external factors that

impact the speech recognition. One such dominant factor is environmental noise.

A rough distinction between the noises is that they can be extreme, soft or steady

and unsteady time varying. Such a scenario can be obtained e.g. when machines,

radios, and human speeches interact. This study focuses on recognizing speech in

the presence of the environmental noise. We consider a very general kind of noise

that, however, occurs in many practical situations. It has been studied rarely in

a general way with very little or no success at all.

There exists plenty of studies in speech research on the noise problem. Even

each of these approaches is a unique. The aim is usually the same. Here we

stress on the research studies that considered the noisy speech recognition only.

Most approaches solve the noise problem by enhancing the noisy speech features.

Combinations of different solution techniques in order to enhance the noisy speech

features or mapping the features prior to recognition; this has been investigated

over the decades. There the most common solution approaches are support vec-

tor machine (SVM), blind source separation (BSS) in combination with Kalman

filters, independent component analysis (ICA) in combination with Wiener filter,

neural network, code book mapping, model adaptation, cepstral mean subtrac-

tion (CMC), warped filter-bank, Gaussian mixture model and hidden Markov

model [46], [45], [117],[73],[86],[148],[146],[77].
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1.1 The DANSR Approach

Our results are contained in a system called DANSR (Dynamic Automatic Noisy

Speech Recognition System). This gave the title to the whole thesis.

In the thesis one sees contributions from a combination of two views:

• In the users view one sees more increased possibilities for recognizing speech,

in particular in the presence of environmental complex noise.

• From the structural and methodological view one observes that the system

provides an integrated approach of several and partially innovative meth-

ods in a complete system. For this purpose we had to discuss the whole

recognition system. It can be a starting point for future research too.

The speech signal analysis is based on the discrete time. We have used the

discrete time speech samples of the real world continuous time speech sounds. The

purpose of analyzing the speech signal for its machine recognition is to reconstruct

the speech signal in the machine. Moreover, if the information of the signal can

be restricted to a certain limit, then the signal is band limited. According to

Nyquist theorem, a band limited signal can be reconstructed from its discrete

time samples if the sampling rate of the signal is higher than twice their highest

frequency [20]. The bandwidth of the speech signal is 200 Hz to 3500 Hz and

most speech energy lies at 7 kilo Hertz (kHz).

The vocabulary used in this study is not arbitrary. We have a list of some

predefined small commands that are used by the speaker. In the terminology

of artificial intelligence this establishes a closed world because the situation is

precisely defined (although very complex). We assume that we have a single

microphone for reception only. This is termed as a single-channel reception.

The state of the art of our ASR problem solution approach is probabilistic: In

principle we take a Hidden Markov model (HMM). For explaining our work we

shortly touch prior achievements. The noisy speech recognition is considered in

[17]. The focus is on the feature enhancement in order to recognize speech. The

main difference of our approach and the literature in [17] is: We focus on very dif-

ferent noise types taking place simultaneously in a hybrid industrial noisy speech

and classify the noises for their treatments. Actually we are being specific about

the noise types and provide a solution accordingly for the hybrid industrial noisy

speech. Because of such differences we cannot restrict ourselves to one method

only. Instead we have to use several approaches and in addition the order of using
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them is relevant. The Vector Taylor Series (VTS) compensation in combination

with Mel frequency cepstral coefficients (MFCC) feature extraction and HTK for

noisy speech recognition is used. The noise is additive and it is considered as

white Gaussian noise. This has been applied to noisy speech databases in a car

and in a room[107]. The hidden Markov model toolkit (HTK) is a speech recog-

nition development toolkit which uses the probabilistic approach namely Hidden

Markov Model (HMM) for the speech recognition [128]. This also focuses on the

speech feature enhancement first. First order cepstral normalization (FOCN) and

minimax normalization are used to enhance the speech features in order to recog-

nize the speech which is assumed to be corrupted by an additive noise using the

Baum-Welch algorithm which is used in the HMM based speech recognition for

learning [123]. For the recognition of noisy speech, linear prediction coefficients

(LPC) cepstral features are used for the multilayer perceptron (MLP) classifica-

tion and recognition that are investigated in [71]. The noisy speech is used for

suppressing the noises using minimum mean square error (MMSE) optimization

criterion and multi layer perceptron neural network for recognition in [93]. At this

stage, we have not investigated the performance of the MLP or Neural Network

(NN) for the recognition. The voice commands in thai speech are recognized in a

quiet room, in an office room and in a noisy room for a Radio controlled (RC) car

in [104]. This transforms the voice commands to digital signals and then this is

converted to a radio active wave commands which are later recognized by HMM

based recognition system using HTK tool. We focus on the speech enhancement

by reducing the noise and speech feature enhancement by our extended percep-

tual feature extraction technique called perceptual adaptive local trigonometric

transformation (APLTT). We have applied there the perceptual entropy (PE)

instead the best basis spectral entropy that exists in the SILTT. The perceptual

entropy is useful for de-noising speech [57].

The term ”dynamic” for our dynamic automatic noisy speech recognition

(DANSR) has in our studies a number of particular properties:

• Firstly the speech has a relation to its past occurrence, it is not memoryless

and it is dynamic in this sense. For example, if we would like to say ”Open

the door”. Relating to this expression in this example, saying only ”door”

makes no sense considering the semantics of the original intension or only

saying ”d” for the ”door” also makes no sense.

• Secondly the research study is based on small but varying spoken commands

and this is reconstructed as well as recognized on the computer. This is an
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online lively approach. Thus we say the system is dynamic.

• Thirdly we use a dynamic programming approach to attain to our solution

of the problem. The dynamic programming approach includes [112]:

– Recursive approaches for the optimal result.

– The main solution requires a solution to the sub problems i.e. the

problem is divided into sub problems in order to find the problem

solution.

– The solutions of the sub problems are based on the solutions of previous

problems. The solution of the problem is inter-dependent. This means

each output of each approach is used as input to the next approach.

An essential element for speech recognition is provided by the features. Short

feature vectors are easier to handle by the actual recognition algorithms than

long signal sequences. However, they should still contain the whole information

contained in the speech what makes extraction very difficult. With respect to the

feature extraction stage in the speech recognition studies, mostly Mel frequency

cepstral coefficients (MFCC), linear predictive cepstral coefficients (LPCC), per-

ceptual linear predictive (PLP) cepstral coefficients are considered. In MFCC and

PLP the signal decomposition and spectral analysis are followed by the process

of the lapped transformation where the FFT is applied. The problem of abrupt

discontinuity is present although it is reduced because of the lapped transfor-

mation. There also exists the non-standard shift invariant local trigonometric

transformed (SILTT) features based on the local trigonometric transformation

(LTT) approach. But the feature extractions in SILTT do not make use of all

available information provided by the speech. Another problem of the SILTT

transformation is that the perceptual feature extraction is not possible and it

does not provide perceptual speech features. The SILTT has been used for speech

processing and speech recognition in [95], [32], [22]. There a perceptual mapping

is not used while it is used in our speech processing and speech recognition.

We handled the discontinuity problem in MFCC, LPCC, PLP by applying

a local trigonometric transformation followed by a lapped transformation and

took extra care to the application of a folding operation. The discontinuity is

smoothened here better than using the traditional MFCC and PLP. In earlier

research, the adapted local trigonometric transformation is used in the vector

quantization (VQ) based HMM speech recognition [22]. There the signal is de-

composed signal into M uniform-subbands to each subinterval. The energy of
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each sub-band is used as speech features. These features are applied to VQ and

HMM. Here we used a continuous classification model, i.e. the GMM for speech

recognition tool HMM and we integrated this with APLTT.

Occurrence of psychoacoustics elements in speech is very basic and it is com-

mon. They express information that one cannot directly express in words. It is

not clear in the first place how these elements occur in speech in a quantitative

way. We explain how these elements can be captured by a specific feature extrac-

tion. We adopted such quantities into the existing LTT approach. These are in

particular the psychoacoustic quantities that describe the speech properties that

are important for human hearing. In the normal SILTT they are not included.

For this inclusion the different quantities and their commputational properties

have to be studied and combined.

1.2 The Chapters

The thesis has four main parts. The backgrounds, analysis of standard techniques

and the techniques used in the DANSR are discussed in each chapter.

• Part A: This part introduces into our topic. This includes chapter 2 and

chapter 3.

• Part B: This part explains our noise solutions to hybrid noise problems.

The related chapters for this are : Chapter 4, chapter 5, chapter 6, chapter

7, chapter 8, 9, 10.

• Part C: This part introduces basic psychoacoustics quantities for speech

perceptions and their adaptation into our approach, the part also describes

feature extraction. The included chapters in this section are: Chapter 11,

chapter 12, chapter 13.

• Part D: This part talks about classification and recognition. The included

chapter in this section is chapter 14.

Now we list the outlines of the chapters individually.

Chapter 2 outlines the speech generation and recognition with respect to a

human being and it outlines the speech recognition with respect to a machine and

chapter 3 introduces into the methodology we used to enhance the noisy speech

for our noisy speech recognition. The general background of our noise treatment
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is the subject of chapter 3. In chapter 4 we discuss the pre-emphasizing methods.

The data preparation is the content of chapter 4. Chapter 5 is devoted to strong

noise. Chapter 6 introduces the standard source excitation model. The chapters

7,8, 9 and 10 focus on the parametric speech production model. The autogressive

process in the vocal tract model is discussed in chapter 7. Linear prediction and

its parameters are handled in chapter 8 and 9. Sub-band coding, spectral mini-

mization, Kalman filtering is the subject of chapeter 10. The psychoacoustics for

the thesis is in chapter 11. Feature extraction is handled in chapter 12,13. Chap-

ter 14 is concerned with classification. Chapter 15 shows experimental results

including evaluations and chapter 16 gives conclusions.

1.3 Thesis Contributions

The innovations of the thesis are two fold, applications and structural contribu-

tions. The combined methodological approach developed in the thesis and the

sub components of this approach are tested independently and as a whole in a real

industrial environment. The system is in applications very practical and serving

the purpose and meeting the aim as we intended this. We have provided in thesis

our experiments, analysis, evaluations and results that we have done using the

real world hybrid noisy industrial data.

Here we list the main contributions of this thesis:

• An integrated hybrid solution approach to an existing environmental hybrid

noisy ASR problem.

• A new noisy speech pre-emphasizing approach. Here we modified and ex-

tended an existing approach but the existing approach is used for speech

silence detection. Our application for this here is for noisy speech pre-

emphasizing.

• Strong noise modeled by a Poisson distribution and its treatment by matched

filter.

• A new perceptual feature extraction approach. Here an existent adaptive

local trigonometric transformation (LTT) mathematical tool is extended.

This is already applied to speech processing and recognition. We have ex-

tended this adaptive LTT approach to perceptional adaptive LTT (APLTT

) approach and extended this for model based speech recognition system.
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• We have applied the Gaussian mixture model (GMM) to model APLTT

features for classification and the HMM for recognition. The HMM based

speech recognition system is continuous when we apply the GMM.

• Applying the techniques to model the psychoacoustic quantities.

For this purpose we have studied the existing approaches in details and made

many experiments with the data collected from the real world on our own and

evaluated these with other existing approaches.
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Chapter 2

Excursion: Human Speech and

Machine

Outline of the chapter In this chapter we describe the speech from the views

of speech generation, perception and its recognition in the real world. Here we

discuss how it is done by the human body which we model from an engineering

point of view. For this we followed the relevant literature and modified several

aspects for our purposes and for simplification.

2.1 Excursion:Human and Machine Interaction

The speech is an acoustic signal which is produced by a human speaker as a

sound pressure wave and comes out of a speaker’s mouth and goes to a listener’s

ears. The speech is a dynamic and an information bearing signal. The speech

is composed of a sequence of sounds that serve as a symbolic representation

of a thought that the speaker transmits to the listener. The arrangement of

these sounds is governed by some linguistic rules associated with a language.

The scientific study of the language and the rules are discussed in linguistic and

phonetic studies. The problem is to automate the whole process, i.e., the sound

production as well as the sound reception. In this thesis we concentrate on sound

reception. We approach the problem by looking into the information content of

the speech following engineering types of a technical approach. That is, we are

building machines that simulate speech production and speech reconstruction for

its recognition in such a way that engineering methods can be applied.

The task of the speech recognition is to find the most likely information given
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by the speech. The speech is in general viewed as a probabilistic process. For

describing a given signal we need a model. The model can be an acoustic, a

phonetic or a lexicon or a language based. The language model provides the

composition and combination of the words of the speech. The lexicon or phonetic

model discusses the fundamental sound formations of the word. The acoustic

models can be based on the sound units as e.g. words or phonemes.

Our objective is to make speech interpretable to a machine what the speaker

has originally said. This leads to a model based speech processing and then to

a dynamic speech recognition system. By dynamic we mean that the system

approach is dynamic programming based i.e. we have recursion, tracing, bottom

up solution approach and we search for the optimal result.

Next we introduce how the speech is generated and recognized by a human

being. We give a general impression and are concerned with technical or medical

elements.

2.2 Human Speech Generation and Recognition

We show an overview of the speech production and recognition in figure 2.1. In

this figure the connection between sending and receiving is described by the right

and the left vertical arrows. Figure 2.1 is our simple modification of the speech

chain given in [80]. The figure has two parts:

• The upper part : Speech Generation

• The lower part : Speech Recognition

2.2.1 Human Speech Generation

We describe the speech generation in brief only because it is not our central task.

However, for certain aspects it is necessary for us to know something about the

speech generation. Later on in the chapter we describe the vocal tract from an

engineering point of view using speech acoustical information. Here we explain

the influence of the vocal tract in the speech production and generation. This will

clarify the motivation of the use of the vocal tract system in the speech research as

a main organ in the practical speech production model for speech processing[30].

The process is described in steps:
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Figure 2.1: Speech Generation and Speech Recognition [80]

• The speech production process begins when the speaker formulates a mes-

sage in the speaker’s mind and in the brain. That is what the speaker wants

to say to the listener.

• The next step is the language code. This converts the message into some

text and phonetic symbols. These are the elements of a certain language

governed by linguistics and phonetic rules. When the phonemes i.e. the

acoustics units are in correct order, the speaker can pronounce an under-

standable word. For example, if the speaker wants to greet someone saying

”Good Morning” the speaker first needs to decide the language, e.g., if it

is in German or in English. The result of the message formulation or the

conversion of this message into a syntactic form is then sent to the neuro-

muscular controls. The smallest element in the speech is called a phoneme.

The phonemes are given as sounds of a language produced by an individual

speaker

• Next the neuromuscular movement takes place to control the vocal appara-

tus, for example the vocal folds, or the nasal part or the lips that are needed

to be moved to generate the message for instance here it is the greeting :

”Good Morning”.

• When the loudness of the pitch is established, the vocal-tract system, for
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instance the vocal-tract vibration, acts, the speaker can say ”Good Morn-

ing”.

• The result of the whole process is a continuous time analog waveform at

the lips, jaw, velum etc. In this way the speech waveform is produced.

Here the generation process ends. We will not be concerned with the human

speech generation and its automation. However, the generation process has to

be understood to use it in the model that represent the spoken speech. The

source excitation model discussed in chapter 6 is the most commonly used model

to represent the speech generation process. The purpose of using this model is

given in chapter 10 but some physical explanations of this model relating speech

generation by the human being is given in section 2.4.

The vibration rates of the vocal folds during the speech production while trans-

mitting the process through the vocal-tract are different. Similarly, the speech

waveform of formulating the message may change depending on the speaker.

2.2.2 Human Speech Recognition

For recognition we look at figure 2.1 to see what is intended.

The message interpretation shown at the bottom right corner in figure 2.1 is

the speech recognition or the speech perception.

• The first step is an effective conversion of the acoustic waveform into a

spectral representation. This takes place in the inner ear by the basilar

membrane. This membrane acts as a non-uniform spectrum analyzer by

spatially separating the spectral components of the incoming speech signals

and analyzing them, for example using a non-uniform filter bank.

• The next step is the neural transduction of the spectral features into a set

of distinctive sound features.

• These features are decoded and processed by the brain. This is described

by linguistic rules.

• Finally these features are converted to a set of phonemes, word sequences

and sentences in order to understand or recognize the intended message

(that was originally generated). This takes place in the brain and requires

much human knowledge.
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2.3 Speech Recognition by Machine

Here we give a pictorial motivation for the approach. Figure 2.2 shows how the

speech recognition can be replaced by a machine. If we compare figure 2.1 and

figure 2.2, we see in figure 2.2 that the tasks in the human ear and the brain is

replaced by a machine. A basic understanding of the processes taking place in

the human ear is useful for the speech recognition tasks. We see that these tasks

are rather complex and require interdisciplinary knowledge, e.g. from the physics

of sound transmissions, the physiology of the human auditory system, the human

speech perception to begin with. We have given in chapter 11 a brief superficial

introduction and outline of the study of the psychoacoustics that studies the hu-

man speech perception in order to capture an essence of human speech perception

and perceptual speech recognition. These are introductions and outlines of the

study of the psychoacoustics. We show how the psychoacoustics elements are

quantized. Our main aim is to recognize noisy speech and this is discussed in

next chapter 3. The ASR studies belong to an area of pattern recognition which
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Figure 2.2: Human Speech Generation and Machine for the Speech Recognition

is to some degree a sub-area of machine learning. In the overview of an automatic

speech recognition (ASR) system given in figure 2.3, we see the speech data as

input are transformed into some trained set in order to apply some learning tool

in the training phase. Then some test data are used by applying some search tool

in the testing phase. Therefore the ASR system has two main phases:

• Training Phase: Here the examples are given to machine learning.
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• Testing Phase: Here some learning tool is employed and then classification

of the examples in order to recognize the test data to find the overall the

outcome as a result of the learning process takes place.

features
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input
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Feature

extraction

extraction

features
Test
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Figure 2.3: Overview of ASR Process

There are different ways the generated speech can be represented in the machine.

Two most common approaches are:

• Parametric approach: Here some signal models are used to extract speech

parameters. An example of the parametric approach is linear prediction

analysis (LPC). They are individual for each speech act, unkown and have

to be estimated. These parameters are the starting point for the speech

recognition task. We followed this approach. This is discussed in chapters

6,7,8,9.

• Non-parametric approach: FFT based analysis is an example of this ap-

proach. This is a commonly used tool to begin the speech recognition tasks.

Examples of the non-parametric approach is MFCC discussed in chapter 12.

The ASR architecture and structures are now briefly mentioned. An overview

is shown in figure ??.

14



2.3.1 ASR Types

The speech recognition can be of different types. Thus the architecture and

structure of the ASR can be varied. Below we provided a list of possible ASR

types and their architecture [69], [80].

System Architecture This discusses acoustic and linguistic elements as e.g.

phonemes, words, phrases and sentences. The structure of the ASR can be:

• Continuous: Speech that is naturally spoken in a sentence.

• Discrete: Discrete speech systems use one word at a time and it is useful

for people having difficulties in forming complete phrases in one utterance.

• Isolated: In isolated speech, single words are used and it is easier to recog-

nize the speech.

The type of the ASR can be :

• Speaker Dependent : A speaker dependent system is intended for a use by a

single speaker. In a speaker dependent system, necessary training data are

: 100 different people saying the speech for instance 10 times separately and

necessary testing data: 25 different individuals that are not in the list of the

speakers in the training data collection saying the corresponding speech.

• Speaker Independent: A speaker independent system is intended for use by

any speaker; it is more difficult in the sense that it has more variations to

be considered than the speaker dependent one. The speaker independent

system involves a collection of thousands of data.

The vocabulary size of the ASR can be:

• Small Vocabulary: Tens of words for example a list of 10 to 100 vocabulary

model.

• Medium Vocabulary: Hundreds of words for example a list of 100-300 vo-

cabulary model.

• Large Vocabulary: Thousands of words for example a list of 1000- 10000 or

more vocabulary.

Some ASR applications and possible environment are :
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• Examples are speech in a hospital or in a nursing home to monitor the

patients, in an industry to command a machine, for dictating in law en-

forcement, in robotics to perform some intended tasks using some voice

commands etc.

• Environment: This can be noisy, moderate, mixed of noise and normal

environment or quiet.

Our DANSR specification is mentioned in chapter 3.

The human speech generation process is captured for speech processing by

the source excitation model.

2.4 Acoustics of Speech Production Model

The acoustic phonetics studies the acoustic properties of the speech and how

these are related to the human speech production. A standard computational

speech production model is discussed in chapter 6 which makes use the study of

the acoustics, phonetics, psychoacoustics and digital signal processing in order to

model the speech process.

The purpose of the computational speech production model is to manipulate

the reality computationally and to estimate the constraints and the constants in

the body. This correlates the physical process to a computational model for the

processing.The constraints in this context are the natural regulations in generat-

ing the human speech and the constants are the weights or the speech parameters

and the outputs.

Next we present computational aspects about some basic components used in

the model in an overview. They are concerned with both, the human body and

the machine. The model is described in chapter 6.

The vocal-tract is playing a vital role in the speech production discussed in

chapter 6. In the next description we use partially some qualitative terms.

The vocal-tract shown in figure 2.4 is considered a lossless acoustical tube. We

see in the figure that the vocal-tract has different cross sectional areas denoted

by A1, A2, · · · , A5.

2.4.1 Resonant Frequency, Formant and Sampling Rate

The resonant frequency of the vocal tract tube is the peak frequency of the

vocal tract tube. It happens when the particular frequency and the vocal tract
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Figure 2.4: Sketch of the vocal-tract: Non-uniform cross-sectional area [118]

frequency coincide. The standing wave is the current wave in the vocal tract tube.

These are intuitive simple definitions of the resonant frequency and standing or

ongoing wave of the vocal tract. The details of this can be found in the area of

the acoustics phonetics study which is not investigated further.

Resonant Frequency and Formant A connection between the formant and

vocal tract tube is shown in equation (2.2).

The length l of the vocal tract tube is an odd multiple of λ which is the

wavelength of the standing wave. λn indicates the wave length at n which is a

positive integer number.

l =
(2n− 1)λn

4
(2.1)

The length of an adult male vocal tract is approximately 17.7 cm long and the

length of an adult female vocal tract is approximately 14.75 cm long [87].

The resonant frequencies fn for n = 1, 2, 3 · · · are shown in equation (2.2).

The speed of the sound in the air denoted by c is assumed to be 35400cm/sec.

The formants are defined by the spectral peak in the speech sound spectrum.

They are determined by the resonance frequency. This means if the resonant

frequency is 1500 Hz, then a formant is generated at 1500 Hz.

fn =
c

λn
=

(2n− 1)c

4l
(2.2)

Selection of Sampling Rate The relation between the sampling rate se-

lection and the vocal tract architecture is shown in equation (2.4). The wave

propagates in vocal tract cross-sections. In figure 2.4, the cross-sections of the

vocal tract are denoted by A1, A2, · · · , An and n denotes a positive integer num-

ber. Suppose, the length of each tube is j, then the wave propagates in each
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section is τ is computed by equation (2.3).

τ =
j

c
(2.3)

The discrete time system, the sampling rate of the vocal tract is 2τ seconds. The

sampling rate fs is then can be expressed by equation (2.4) [30].

fs =
1

2τ
=

c

2j
(2.4)

The order of the model relating this to the physical vocal tract tube is dis-

cussed in chapter 8 in section 8.1.1.

2.4.2 Reflection Coefficients

As we mentioned earlier the vocal-tract is an acoustical tube which has several

non-uniform sections. The waves that propagate from the tube are partially

reflected and partially interrupted by the discontinuities of the junctions of the

tubes. This is described by the reflection coefficients. The reflection coefficients

reflects the vocal-tract structure, the shape of the vocal-tract and the speech

transmission that is taking place in the acoustical vocal tube. The 0 value of

the reflection coefficient means that all transmission in the vocal-tract tube are

passed and 1 value of this reflection coefficients indicate that the transmissions

are reflected [81], [87].

The reflection coefficients between two sections of the vocal tract can be shown

by equation (2.5). The reflection coefficients are denoted by κ. κi is denotes the

reflection coefficients for i = 1, 2, · · · , p. Ai and Ai+1 are the cross sections of the

vocal tract tube where 1 ≤ i ≤ p. There are p many tube sections. A0 = ∞ is

the area of the space beyond the lips and therefore it is a lossless transmission.

κi =
Ai − Ai+1

Ai + Ai+1

where |κi| ≤ 1 (2.5)

The length of the vocal tract tube is determined by the sampling period and

the speed of the sound as discussed in section 2.4.1. The reflections cause spectral

shaping of the excitation which acts as a digital filter with the order of the system

equal to the number of tube boundaries. The digital filter can be realized by a

lattice structure. In this structure, reflection coefficients are used as weights. This

is the background of the reflection coefficients and its use in the lattice structured
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filter. This is briefly discussed in chapter 9 in section 9.3.1. The details of this

can be found in [24].

2.5 Categories of Speech Excitation

From the speech acoustics point of view, an excitation type can be categorized

by the following kinds of speech sounds [69].

• Voiced (Example: The letter /I/ sound in the utterance of ”six”)

• Unvoiced (Example: The letter /s/ sound in ”six”)

• Mixed (Example: The sound corresponding to the letter ”z” in the phrase

”three Zebras”)

• Plosive (Example: A short region or silence, followed by a region of the

voiced speech, the unvoiced speech, or both. A plosive example (silence +

unvoiced) is the sound corresponding to /t/ in ”pat”. Another (silence +

unvoiced) in the /b/ in ”boot” )

• Whisper is the pressure in the glottal area to utter any excitation types.

We will see in chapter 6 how the above mentioned excitations types are sim-

plified to the voiced and the unvoiced types and how these two types are modeled

by only a single simple computational model to reflect the speech production

process in reality.
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Chapter 3

Noisy Speech Recognition

Outline In this chapter we talk about noisy speech and its definition and han-

dling this in our studies. We explain our aim, problems, challenges and difficulties

relating these studies to the real world. We introduce the hybrid noise and their

treatments. This incorporates different kinds of noises. Our solution approach

takes care of this. This approach is mixed with a preview of literature about

noisy speech evaluation and our own methodological approach. We introduce

both active and passive noise solutions to this problem.

For our approach an industrial environment is selected as an application area.

What is new here to our perspective is that we provide a hybrid solution to our

problem and the actions we take in order to arrive at the solution.

In chapter 2, we provided a simple realization of speech generation, speech

recognition by the human being and also a scenario of speech recognition by a

machine. Here we talk about noisy speech recognition by a machine. The speech

is in the first place not noisy by itself and it is noisy generally only after its

generation by environmental factors.

Next we first introduce to our noisy speech, hybrid noise, their impacts in

section 3.1.

3.1 General Aspects

In general, an industrial environment is noisy. Here we are talking about a

noisy industrial environment which is equipped with different types of machines,

machinery handling and their operations such as manufacturing, assembling. The

next figure 3.1 is not intended to be a definition. The corresponding definitions
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are complex and come later when we discuss the technical aspects. 3.1 is rather

thought of an illustration so that one can see in principle what we want to do.

In figure, 3.1, we see that spoken commands are generated by a human being in

a noisy industrial environment and given to a machine i.e. a computer for its

recognition in the same environment. If we compare figure 2.2 given in chapter 2

and figure 3.1, we see the difference between the two figures. In figure 2.2, speech

is generated in a clean environment but in figure 3.1 speech is generated in a noisy

environment. In figure 3.1, the speech generated by a human being is delivered to

a noisy environment. The speech is corrupted by the environmental noise. The
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Figure 3.1: Noisy industrial environment: Speech Generation by a Human being
and a Machine for the Speech Recognition

industrial noises are not all the same type. They have different intensity and

extremity and we call this combination hybrid. Typically, we categorize them

as strong, steady and mild. A reality is that we cannot process our data that

we have collected from the noisy environment for its required enhancement and

neither do we have an option to enhance the noisy observations by some standard

noise reduction techniques. A main problem is that a ”common” approach or

a ”standard” approach is not an appropriate solution approach to this hybrid

noise. There is not yet any such solutions to the hybrid noise that could enhance

the hybrid noisy speech for its recognition. Nevertheless, our scenario occurs

quite often, see section 3.2. Though there is a huge amount of literature about

noisy speech enhancement or noise reduction or removal [117], a majority of this

[148] solves this problem by applying some standard noise solution approaches or

standard digital filtering or some adaptive filtering such as Wiener filter, Kalman
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filtering for white noise, or spectral subtraction, or sometimes a combination

of one or more of them [86]. In fact, a hybrid noise solution has rarely been

considered. The problem seems to be that it is not trivial to combine different

techniques [46]. But the situation is that because of the different types of noise

we need a hybrid treatment for them. For each type we apply a method based

on the existing noise source. Each method will, however, not just remove or add

something but will effect the whole signal. Here the main tasks for our noisy

speech recognition problem are:

• Removal or reduction of the noise that corrupts the speech. We use the

removal or reduce the noise because both of these are done. The removal

or reduce term is dependent on the type of the noise.

• Recognition of the enhanced speech.

3.2 Scenario

In an industrial environment, a smooth communication is not possible and the

necessity of removal or reduction of the noise in the desired speech becomes

significant for an effective communication.

There the noise is mixed and originating from different sources. These come

for example from lifter systems and related machines or different types of con-

versations among people. We term strong noise as a sudden burst, press or

dropping sound originating from various heavy material handling and falling

down. The duration of this type of noise is very short. The time-varying steady-

unsteady noise in our description is originating from varying electromechanical

machines. We consider the remaining background noise as mild noise. A precise

duration and formulation of the mixed noise from various sources is not possible

in this hybrid noisy environment and precise mathematical definitions cannot be

given. Hence we use qualitative arguments. Here we consider the noises that

affect the commands at its duration which is in our case no longer than three

seconds. It is not always possible to maintain an exact timing.

The scenario of this studies is shown in figure 3.2 in an overview over the whole

situation. Figure 3.2 is again only of an illustrative character, as common in

artificial intelligence. There are elements of the speech, the noise and the system

shown in a combined way to inform the user. We have a predefined command

list. The environment is a closed world because the situation is precisely defined.
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The task is to recognize the delivered speech in spite of the existing environment.

Figure 3.2 shows the different inputs to the recognition system. The inputs can

be desired spoken command, undesired different types of signals such as noise,

the different types of environmental impacts. But the aim is that the recognition

system recognizes the desired spoken command and omits the other undesired

environmental influences. To fulfill the aim of the tasks, we have used different
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Figure 3.2: Hybrid Noise and Industrial Environment

techniques and integrated them. However, the integration is somewhat different

than in ordinary software systems. We have no modules where we just have

to take care of input-output relations. Each technique concerns more or less

with almost the whole system. We have to take care that certain properties of

the system still hold and the system is interactive. Therefore the integration of

the different techniques have to be embedded in such a way that an immediate

interaction between the techniques applied to perform the tasks are possible.

3.2.1 Goals of DANSR

We focus on developing a small vocabulary speech recognition system. The small

vocabulary speech is a set of small spoken words which we interpret as commands.

This set of small words is spoken to a single microphone. The speech sound is a

mixed tonal sound and it has a variety of variable patterns. The variability we
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want to preserve is the speech acoustic information on the word level. For this

we have a followed mainly the parametric modeling. We look first at the vocal

tract configuration by a parametric model and use this model for noise reduction

in order to obtain an enhanced speech, then we use the enhanced speech for

a non-parametric spectral analysis and a perceptual speech feature extraction

technique in order to obtain the features and finally we apply a model based

pattern recognition technique for classifying the features and recognizing them.

Thus the goal of the DANSR is :

• An integrated approach to deal with the different types of noise simultane-

ously by the followings:

1. A suitable combination of mixed noise reduction approaches.

2. Extraction of perceptual speech features of the enhanced speech.

3. Pattern recognition techniques applying the Hidden Markov Model

(HMM) which model is based on the Gaussian mixture model (GMM).

3.3 Noisy Speech and Difficulties

In our day to day life, we can not interpret or if we do not understand a speech

of a speaker in case of an extreme strong noisy situation, we ask the speaker

to repeat. The question is what not understanding means; there is no general

definition. If the listener is a human then this is personal. A machine however

needs a formal definition. We circumvent this problem by deleting the speech

depending on the noise definition, see chapter 5. In an acoustic sense the sound

or speech or noise is an atmospheric pressure waveform where its variation as it

progresses and its differentiation is received subjectively. This means some sound

or speech or noise may be perceived in different meanings from a person or may

vary from theme to theme. For example loud music may be noisy to an individual

or some conversation may be noisy to an individual but for others this may sound

useful or not so influential. Regardless of an environmental influence, the aim is

to recognize some predefined spoken command.

We need to record as much variability as needed. We mention the necessary

amount in chapter 4 in section 4.1. The speech sound is a stochastic process and

variability is one of the major difficulties of this process.

The success of an ASR system requires knowledge from multi-discipline areas

such as electrical engineering that discusses signal processing, communication and
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transmission, physics related to psychoacoustics, linguistics for example phonol-

ogy, computer science as for instance pattern recognition, searching, logic etc. An

individual can hardly attain all the required knowledge. Therefore, one has some-

times in practice a group research where the tasks can be sub-divided based on an

individual’s expert knowledge. Sometimes the expense to continue this research

is not available at the spot. Therefore, in many cases the success of the research

may not be fully achievable. These are certainly some common challenges in this

research. Below we talk about our ASR research problems and challenges.

3.3.1 Challenges

The speech signal has a complex pattern. It is mixed with different tones and

varies with time. The speech signal has different frequencies and different inten-

sities. The complex tonal sound has more processing complexities than a pure

simple sinusoidal tonal sound. The variability of the speech signal makes the

speech research complicated and challenging. A spoken command generated by

a particular speaker several times is not the same. The utterances all have dif-

ferent frequencies and different intensities. Many factors are involved such as

time, speaker, speaking style. Moreover, in our study, we have noisy speech to

process for its recognition. The noise is originated from the background, from the

environment. The environment is mixed with different kinds of noise. We have

listed some common challenges of the speech recognition problem:

• Variability of the speech due to a variety of speeches spoken by the same

speaker.

• Variability of the speech due to a variety of speakers speaking style.

• Variability of the speech due to the speech linguistics formation.

• A variety of environmental noise.

3.3.2 Difficulties

So far we mentioned the challenges; but what are the difficulties we encounter

in the research problem? The human being itself has a difficulty to understand

others in a noisy environment. Some additional difficulties we encounter are listed

below:

• Identifying the noise in the noisy environment.
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• Modeling the hybrid noise.

• Finding a proper solution to remove or reduce the noise that corrupts the

spoken word.

• Managing the collected noisy speech data for noise reduction and training.

This means we cannot use the data directly for the noise reduction without

preparing and pre-emphasizing the collected data. Also, only standard pre-

emphasizing which is generally a first order high pass filter is not sufficient

to prepare the noisy data for their further processing.

3.4 Noise Measurement and Distinction

The measurement of the noisy signal characteristics and the solution to the noisy

signal problem can be passive or active or a combination of both. Here we will

introduce the active and passive approaches and their application to our studies.

• By ”active” we mean actions such as removal, filtering, Poisson modeling

and matched filtering operations, and Kalman filtering.

• By ”passive” we mean some standard measurements of the noisy speech or

the noisy sounds.

To distinguish noise, we first use the passive measurements. Then we apply

the active approach. The active approaches are introduced here but the details

of these are in chapters 4, 5,6,7,8,9,10. For the passive measurements, we first

measure the loudness of the noisy speech using a standard A-weighting filter. We

also calculate the energy of the noisy signals, compute the probability density

function, use a box plot evaluation, and evaluate the noisy signals by computing

the signal to noise ratio (SNR). We call these passive measurements because they

do not make any changes and they do not improve the noisy speech by removing

noises. Rather they give some information about our collected noisy speech.

3.4.1 Noise Measuring Filters and Evaluation

Since the situation is taking place in the bounded space i.e. in a factory which is a

very spacious room in a building and we consider this as a ambient noise measure-

ment. In such situation, sound levels are measured by sound level measurement
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devices such as A, B, C, D, E-weighted filters. We choose the A-weighting filter

among those device because the A-weighting filter accounts for the human hear-

ing perception that is the human ear sensitivity [91]. This is a useful property

for the speech recognition system. The A-weighting filter is also commonly used

for the ambient environmental sound level measurement. The A-weighting filter

measures the loudness of the average sound level over a period as a root mean

squared power in dB. According to the statistical information and the sound

level measurement, we have continuous, varying, intermittent, and impulse types

of sound. We have a random noise level variation such as mixed noise levels

varying from 60 dB to 115 dB. At 90 to 115 dB a communication is not even

possible among the human beings. Such noisy environments damage our hearing

capability. In such measurements, the range of 70 to 80 dB is in the mild-steady

noise level, 80 to 89 dB is in the varying steady-unsteady and above 90 dB is

strong noise level [23]. In figure 3.4, we see the sound levels of the noisy signals

collected from hybrid noisy industrial environment. We have given the locations

in chapter 4. The sound level is measured by A-weighting filter.

3.4.1.1 A-weighting Filter

The A-weighting filter has been used in the frequency domain of the signal. Here

we explain how we have used this filter to evaluate the signal level of the noisy

signal: First the spectrum of the noisy signal is computed using the discrete

Fourier transform (DFT) and the A weighting filter is then applied to measure

the signal power in dBA. The power spectrum of the N sampled signal s[n] where

n = 0, 1, 2, · · · , N − 1 is computed by equation (3.1).

S(k) =
N−1∑
n=0

|s[n]|e−
2πkn
N (3.1)

Equation (3.2) below shows a relation between the frequency response of the A-

weighting filter denoted by αA(f) and the linear frequency of the signal denoted

by f . The measurements of A-weighting filter give us some intuitive idea about

the signal and the sound level. From this we get an approximate idea about

the enhanced signal level and use the enhanced signal for the feature extraction.

Equation (3.2) is mainly collected from [26] and more information on this is in

[135], [23], [91], [51], [49]. We use this formulation to generate the figures 3.4,

3.5, 3.6 using the implementation given in [49] and in [26]. The derivations and
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formulations of the A-weighting filter is discussed in acoustic noise measurements,

monitoring and control and some information about this studies can be found in

[23], [91], [51]. The mathematical derivations and modeling of the weight filters

are the results of many experiments to measure the loudness of the sound in

sound pressure level (SPL) or in dBA [135]. We will not discuss the derivations

of the filter here. We only use the filter to get an information about our noisy

signals, their sound levels. We have modified the implementations given in [51]

and [26] according to our own our measurements; the experimental results are

shown in figures 3.4, 3.5 and 3.6. In figure 3.3, we see the noisy signal in time and

frequency domain. This is included to get an outlook of the mixed noisy signal.
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Figure 3.4 shows sound levels of our measurements using A-weighting filter.

These are collected at different times from the mixed noisy environment. This

figure implies the varying sound levels of the signals.

αA(f) =
(122002)f 4

(f 2 + 20.5989972)2(f 2 + 122002)((f 2 + 107.72)0.5)((f 2 + 737.92)0.5)
(3.2)

If the frequency of signal spectrum S(k) measured at fk where k is the index

of the frequency component then the A-weighting filter measurement for this
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Figure 3.4: Hybrid noisy sound level measurements by an A-weighting filter
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frequency at specific index k is obtained by equation (3.3) for fk = k∆f = fs
N

=
1
NT

. fs is the sampling frequency, N is the length of the interval. Here we have

chosen N = 256. The DFT is computed at each N interval. T is the sampling

period T = 1
fs

. The frequency resolution denoted by ∆f is 1
NT

. The A-weighted

signal level measurement denoted by SA(k) is computed by the multiplication of

the A-weighting filter frequency response and the noisy signal spectrum S(k) in

equation (3.3).

SA(k) = αA(fk)S(k) (3.3)

Then the signal energy ζ shown in equation (3.4) is computed by squaring the

spectrum of SA(k) for 0 to N
2
−1 because of the symmetry property of the Fourier

transform.

ζ = |
N
2
−1∑

k=0

SA[k]|2 (3.4)

Next the signal level in dBA is computed by equation (3.5) where ζref is

reference pressure and its value is 0.000204 dynes/cm2.

Signal level in dBA = 10 log10

ζ

ζref
= 10 log10 ζ − 10 log10 ζref (3.5)

In equation (3.5), ζref is a constant which is replaced by a calibration constant

in its real application.

Signal level in dBA = 10 log10 ζ + C (3.6)

In our measurements, we use a calibration constant of 55 dBA because in a

noisy environment a human being can perceive sounds in the range of 50 to 90

dBA [91].

In figure 3.5, the signal level is computed on the frame (defined in chapter

12) of the signal using an A-weighting filter. In this 3-D figure, we see the sound

level, time and frequency information of the hybrid noisy signal.

3.4.2 Box Plot Evaluation

The box plot shows the distribution of data in general. This represents the data

using their lowest value, highest value, median value and the size of the first and

the third quartile. The median is counted by equation (3.7) and is denoted by

d(m) where m denotes the median and n is the number of data points in the
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observation.

d(m) =
n+ 1

2
(3.7)

The depth dql of the quartile is shown in equation (3.8). There n is the number

of data points in the observation, i takes the value based on the quartile depth

i.e. i takes the value of l. In equation (3.8), dq1 denotes the first quartile. i can

be 2, 3, or 4 which indicates the corresponding quartile.

dql =
in+ 2

4
(3.8)

In figure 3.6, we see a number of noisy signals denoted by dat1, dat2, dat3, · · · ,
dat10 on the boxplot. We see there the noisy signals and their samples values

and signal level in a box plot.
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Figure 3.6: Hybrid Noisy Signals : Sound level in Box plot

The part between the lowest adjacent limit and the bottom of the box rep-

resents one-fourth of the data. One-fourth of the data falls between the bottom

of the box and the median and another one-fourth between the median and the

top of the box. The part between the top of the box and the upper adjacent
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limit represents the final one-fourth of the data observations. This opens up the

pattern for the data and their variations [138].

3.4.3 Signal Energy and Kernel Density Estimation

In figure 3.7 we see the energy information of the noisy signals in the signal frame

(defined in chapters 8, 12) and in b, we see the probability distribution of the

samples values computed by probability density function (pdf) of the noisy sig-

nals. The energy of the signal is computed in figure 3.7 by
∑N−1

n=0 s[n]2 where

n is an integer i.e. Z and sn is a signal of finite length N . The probability

density function of the random variable X is calculated using the kernel proba-

bility density estimation (k-pdf). We assume n independent measurements such

as x1, x − 2, · · · , xn from the random variable X is considered. The kernel den-

sity function approximates the probability density function of p(�) of the random

variable X. The computation is available in matlab. For this we have used the

matlab ”kdf” function. The calculation is followed by the formulation given in

equation (3.9). In this equation, ph(x) is the pdf as a function of x. h is a normal-

ization factor; h > 0 but less than 1 and dependent on the available information

of x. Here x is independent and identically distributed (iid). Here K(�) denotes

kernel function, x is any value and xi is a sample of the x [18], [137].

ph(x) =
1

nh

n∑
i=1

K(
x− xi
h

) (3.9)

3.4.4 Signal to Noise Ratio (SNR)

We judge the speech intelligibility by the signal to noise ratio (SNR). The speech

intelligibility says if the speech is audible or not. The signal strength and noise

strength are primarily measured by the signal to noise ratio (SNR) in dB. This

gives a relative performance of the signal with respect to noise. If the signal

strength is higher than the noise strength, the ratio is positive. If the noise

strength is higher than the signal strength, then the SNR is negative.

The SNR is computed by equation (3.10). There the SNR is denoted by κm,

Ps is the power of the signal and Pn is the power of the noise. The whole signal

is divided into M segments such that m = 1, 2, · · · ,M . There N is the number

of samples in each m. ym[n] is noisy speech, bm[n] is the noise collected from the
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environment without speaking commands to the microphone.

κm = 10 log10

Ps
Pn

= 10 log10

1
N

∑N−1
n=0 y

2
m[n]

1
N

∑N−1
n=0 (bm[n])2

(3.10)

3.5 Overview of DANSR

The different kinds of noises characterize the situation as hybrid. As said, we

need a hybrid solution consisting of different elements. A major problem is the

integration because these elements influence each other and cannot be combined

in an arbitrary order.

Figure 3.8 shows the DANSR system. This gives a rough overview. Details

of the approaches and their motivations are discussed in the subsequent chapters

in the thesis. In the figure we see, first we focus on reducing the noise, then we

apply the perceptual feature extraction consisting of spectral shaping, spectral

analysis and perceptional feature transformation, and finally the GMM model,

evaluation, searching and learning in the classification and recognition stage to

obtain the most likely result. Details of the approaches represented in figure 3.8
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are in the subsequent chapters.
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Above we have introduced active and passive processes. Now we extend these

notions to tasks and they will be discussed now.

Passive Tasks Data collection and their proper management, noisy signal eval-

uation.

Active Tasks Pre-emphasizing the collected data, active noise reduction ap-

proaches, perceptual feature extraction and classification and recognition of the

features.

3.5.1 DANSR’s Hybrid Noise Treatments

The noise treatments of the DANSR are introduced next.
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3.5.1.1 Noisy Speech Pre-emphasizing

According to our plan to maintain a precise 3 second speaking time for the data

collection was sometimes difficult. Despite the noise, the speaker’s speaking style,

accent and non-speech or silence in between added more redundancy in the data.

Therefore we smoothened the data prior to its processing. We termed this pre-

emphasizing. This is discussed in chapter 4. We collected spoken commands.

These collected spoken commands are our data. We present a short overview

over the considered noise types that will be detailed in the following chapters.

3.5.1.2 Strong Noise

As mentioned, this noise occurs rarely, randomly for a short time period. We call

a very short pulse with very high amplitude strong noise. We are not accurate

about its occurrence but it happen stochastically and we are not certain about

its effect on the spoken commands. For the strong noise there are no absolute

numbers given. Our sizes have a qualitative character. They are defined in

relation to the average noise. For this purpose we choose a threshold. A noise

signal is considered as strong if its amplitude exceeds the threshold. The strong

noise is handled first by detecting it as an outlier. This is an abnormal quantity

in an observation. The identification of outliers is a standard difficult problem in

data analysis. In chapter 5 we will discuss strong noise in detail. Here we just

mention that it is modeled by a Poisson statistics. We see in figure 3.9 a signal

that is modeled by Poisson process. This says the Poisson process xt generates

the strong noise 5 times in a time period of duration t = 2. λ is the occurrence

of the event which is the strong noise and t is the time interval.

3.5.1.3 Mild Noise

The mild noise is modeled as white noise. This noise is characterized by a Gaus-

sian process. This is commonly known as white Gaussian noise (WGN). There

the mean denoted by µ is zero and variance denoted by σ is 1. For instance, take

a Gaussian process x for time instants n and n = 0, 1, 2, · · · , N − 1. Then x[n]

and x[n+1] are independent and uncorrelated. This indicates E{x[n+l]x[n+m]}
is zero for l 6= m and l,m ∈ Z. The mild noise is shown in figure 3.10 where we

see the time domain plot of WGN, autocorrelation of two WGN sequence is 1.

The variance of white noise is 1 and mean 0. The frequency information of WGN

is also shown. These plots are generated using matlab functions rand, xcorr and

36



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

P
(x

t=
2
)

Distribution of x
t
 for Poisson(λ = 5)

Time t

Figure 3.9: Strong noise modeled by Poisson process

fft. The rand generates uniformly distributed random sequences, fft gives the

frequency information of of the WGN and xcorr computes the auto-correlation

between the two random squence at time n+ l and n+m.

This Gaussian process is also known as normal standard distribution process.

The probability density function (pdf) of this noise is shown in equation (3.11).

p(x) =
1√

2πσ2
exp(−(x− µ)2

2σ2
) =

1√
2π

exp(−x
2

2
) (3.11)

The model of mild noise is characterized by white Gaussian process is used in eq

(3.12).

σ2 = E{[x2[n]]} (3.12)

3.5.1.4 Steady-unsteady Time Varying Noise

This noise comes from a running machine. This is characterized as a Gaussian

process but its mean µ is not zero and the variance σ may not be always 1 as

it is the case for the white Gaussian noise. If x is a Gaussian process for time

instants n and n = 0, 1, 2, · · · , N − 1, and its mean is µ and variance σ, then the

pdf of the noise is characterized by equation (3.13) where p(x) is the pdf of x.

The colored noise modeled by the Gaussian process is pictured here in figure 3.11

37



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2

4
 a: White Gaussian Noise (WGN)

Time (s)

x
(n

)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.5

0

0.5

1
b: Autocorrelation of WGN noise

A
u
to

c
o
rr

e
la

ti
o
n
 o

f 
W

G
N

Lag [samples]

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2
c: Frequency information of WGN

Frequency (Hz)

|X
(k

)|

Figure 3.10: Mild noise modeled by white Gaussian noise (WGN)

where we see the random Gaussian noise, its auto-correlation and the frequency

information computed by matlab fft and corr functions.

p(x) =
1√

2πσ2
exp(−(x− µ)2

2σ2
) (3.13)

The noise model shown in equation (3.14) is an AR model but its parameters

are obtained by the linear prediction namely the Yule-Walker approach. In equa-

tion (3.14), the noise d[n] is a linear combination of past i many β coefficients

and a disturbance w[n]. This is assumed to be a white noise and it is weighted

by gb.

d[n] =

q∑
i=1

βid[n− i] + gbw[n] (3.14)

For treating this noise, the signal is first divided into sub-bands using a cosine

modulated quadrature mirror filter bank (QMF) and then the noise is minimized

from each sub-band by a spectral minimization technique. Afterwards the signal

is enhanced in each band by Kalman filter. In this noise reduction, noise is

varying in each sub-band. The solution of this is discussed in details in chapter

38



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1
a: Colored Noise

Time (s)

A
m

p
lit

u
d
e

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.5

0

0.5

1
b: Autocorrelation of Colored Noise

A
u
to

c
o
rr

e
la

ti
o
n
 o

f 
C

o
lo

re
d
 N

o
is

e

Lag [samples]

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2
c: Frequency information of Colored Noise

Frequency (Hz)

|X
(k

)|

Figure 3.11: Time varying steady-unsteady noise modeled by Gaussian process

10.

Next we present the framework of our DANSR approach.

3.5.2 Framework of DANSR

The architecture of a typical ASR was introduced first in chapter 2 in section 2.3.1.

The DANSR is a small vocabulary speech recognition system. The DANSR uses

basically the HMM. The frame work has the equation written below as a central

element. This is repeated here but it is discussed in detail in chapter 14. In the

equation p(o|q, λ) is called an acoustic model where the likelihood of the features

given the model λ has to be obtained. o is the feature vectors, q is the sequence

of states. The equation is discussed in chapter 14 in section 14.1.

p(q|o, λ) = arg max
q

p(o|q, λ)p(q, λ)

p(o)
= arg max

q
p(o|q, λ)p(q, λ)

If we look at figure 3.8, then we see that the main key tasks of the DANSR

are:

• Data collection

• Noise reduction or removal
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• Feature extraction

• Classification and recognition

These tasks give a guide for the dissertation.
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Chapter 4

Pre-emphasizing of DANSR

Outline of the Chapter In this chapter we describe our data collection, their

preparation and their pre-emphasizing. We realize our data preparation and data

pre-emphasizing by pre-filtering. This reduces the redundancy and smoothens

the data in two steps: i) Redundancy removal, and ii) Pre-emphasizing by pre-

emphasis filter. In the reduction step, it removes silence and then it uses the pre-

filtering to smoothen the data. The reduction step makes the data size smaller.

How this is performed is explained in this chapter.

4.1 Data Collection

The speech is a random process. The statistical properties such as mean, variance,

correlation, probability density function (pdf), power spectral density are used

primarily to describe the signals. For the processing and recognition we need a

huge number of data in order to capture certain patterns and the statistics of the

data.

We have a predefined list with small spoken commands. The list has 20 small

German spoken commands. We collected data according to our predefined list

(see Appendix).

We have used the digital recorder Zoom 4 Samsung Handy Recorder to collect

our data and noise taking place in the industrial environment. Our selected data

type is in ’Wave’ format and we have used single channel only. We collected data

using 48000 Hz sampling rate at 16 bits per sample. We positioned the recorder

about 3 to 5 meters from the speaker for our data collection. We did this to

avoid flappy sound or any clicking sounds generated in the mouth. The length

of the data is 3 sec for each command. Therefore sometimes the speaking time
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limit was exceeded. Furthermore in the noisy stage, the speaker’s speaking style,

accent and non-speech or silence in between added additional redundancy in the

data.

4.1.1 Location and Data Collection

The data are collected from the mechanical assembling and manufacturing labora-

tory of the university of Kaiserslautern, the environmental maintenance company

Zoeller-Kipper Gmbh located in Mainz and the assembling and manufacturing

company MM Packaging located in Kaiserslautern. In figure 4.1, we see the data

we collected from the hybrid noisy environment. We collected the data from
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Figure 4.1: Data at first look at 48 kHz sampling rate

German speaking people. Each command is collected 100 times for training and

25 times for testing. The speaker is selected randomly from the environment. In
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some cases the same speaker repeated the commands several times for the train-

ing. On the other hand, for the testing the speaker is not necessarily always the

same. For our data processing, we are mainly concerned about the noise in the

range of 200 to 5000 Hz for certainty at a speech bandwidth 200 Hz to 3500 Hz.

In an industrial environment, a communication can take place if the background

sound level is 70 dBA [23]. The noise we encounter has different extremity. This

ranges from 50 dB to 110 dB.

Reducing the redundancy and then using a pre-emphasis filter to smooth and

emphasize the signal is so far new in this area. We applied this at the very first

step to prepare our data for their further processing. Our focus for the speech

enhancement is 70 dBA sound level. We then use this speech for the speech

pattern recognition processing.

We are concerned about building an acoustic model. To build such a model

related to a speaker dependent system, a recognizer needs several hundreds of

data. On the contrary, for a speaker independent system, a recognizer needs

several thousands of data [120]. A collection of several thousands of data is not

possible at the current scope of our research studies, therefore we consider a

system that will be speaker dependent.

In figure 4.2, one sees how the same speech is different for the same speaker.

This variability is one of the main reasons among others that makes this research

very challenging.

We reduced some redundancies by applying an application dependent thresh-

old. In order to prepare the data for the processing, we first decimated the data

to a 16 kHz sampling rate, then we reduced non-speech pause, silence in the

redundancy removal stage. How these are done is discussed below.

4.2 Data Preparation

The redundancy of the collected data is handled in removing and pre-emphasizing

by the following steps:

• Decimation: This is a process that reduces the sampling rate by a factor.

This process has two steps: i) Antialiasing filtering and ii) Down-sampling.

The anti-aliasing filtering is used to avoid aliasing. For the anti-alising

filter, we have used a low pass filter. This is designed using the windowing

method. For the windowing, we used the Kaiser window function because

of its controlling parameters. The Kaiser window has a shape controlling
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Figure 4.2: Variability of the same word spoken by the same speaker in the time
and frequency domain at 48 kHz sampling rate in a relatively quiet residential
environment
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parameter such as width of the main lobe and side lobe. Then we have used

down-sampling by the factor 3. Here the sampling rate is reduced from 48

kHz to 16 kHz.

• Redundancy removal: This has several sub steps in order to remove the

pauses in the speech or silence or non-speech sound of the speech signal.

The sub-steps are: i) Compute the signal envelop by using the Hilbert

transform and ii) Select the threshold. This reduces the redundancy and

shortens the signal. It has a computational benefit due to less samples in

the signal processing.

Next the decimation process is described.

4.2.1 Decimation

For the decimation, we first down sample from 48,000 to 16,000 Hz. This has a

computational benefit and is explained below. For this we do not loose informa-

tion because the speech signal is band-limited 200 to 3500 Hz. The human audible

signal frequency lies between 20 Hz to 20 kHz. Yet most of the speech energy lies

under 7 kHz [19]. Figure 4.3 shows the decimation process which has an antialias-

ing filter before down-sampling the signal. The antialiasing filter is a 64 length

finite impulse response (FIR) low pass filter based on the Kaiser window, the cut-

off frequency is 5 kHz,the Nyquist sampling rate is 8 kHz. The down-sampling

factor is 3. In matlab, the resample function also does this down-sampling but

we used the Kaiser window based low pass FIR filter for the decimation.

Computational Benefit Here we explain how the decimation is computation-

ally beneficiary. If the speech recording time has a maximum of 3 sec, and if the
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speech signal is sampled at 48 kHz at 16 bits per sample (bps) i.e. 16 bps, then

the storage space for the sampled speech is 3 � 16 � 48 = 2304 kilo bits per sample

(kbps) or 3�16�48
8

= 288.5 kilo byte per sample or 3�16�48
8�1024

= 0.282 mega byte per

sample (mbps). � denotes the muliplication. This is doubled for the stereo typed

two channels recorded samples. Therefore we selected the single channel stereo

typed data where both channels record the similar information. If the sampling

rate is 16 kHz at 16 bits per sample, then the required space for the sample is

3 � 16 � 16 = 768 kbps. So the down sampling in our scenario will save a huge

computational cost and a lot of processing time.

4.2.2 Envelope Detection

The envelop of a signal is a boundary within which the signal is contained. The

envelop of a signal is also an estimate of the signal level. The pause or any

clicking distortion or the silence in the speech signal is detected by the envelop

of the speech segment [108]. One way of doing this is computing the envelop

of the signal by the Hilbert transform of the signal. We have not investigated

the Hilbert transform in details. We reviewed this only in order to compute the

signal envelop.

The basic goal of the Hilbert transform in the time domain signal is to get

another time domain signal. The Hilbert transform shifts the frequency compo-

nents of the signal by −90 degree but it does not change the amplitude. The

Hilbert transform acts as a differentiator to a constant signal. This means if the

signal has any constant component, the Hilbert transformation of the signal can-

cels this. This is equivalent to getting the zero mean of the signal. The speech

signal is processed under the assumption that it is an ergodic process. In this

process, the time average of the signal is equivalent to the ensemble average of

the signal. The importance of this is that the time average of the signal can be

computed easily but the ensemble average can not. This time average processing

and more about the speech ergodic process we will see in chapter 7 and 8.

In order to compute the envelope of the signal, we first take the Hilbert

transform of the signal. The envelope signal has a frequency that is much lower

than the measured signal. The problem is that the envelope makes the signal

rough [106]. On the other hand the pre-emphasis filter increases the frequencies

from low to high smoothly.

The computation of the envelop using the Hilbert transform also maintains a

representation of the signal. The envelop of the signal using the Hilbert transform
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sets a qualitative boundary around the silence. We have used this computation to

obtain the envelop of the signal. Then we have selected the threshold. We exclude

all the data that fall below the threshold and remove pause, silence typed redun-

dant data. The advantage of the smoothing is that we get less computational

costs due to reduced amount of data because of the non-speech signal removal.

4.2.2.1 Formulations

Below we mention the relevant formulations for these computations. For this we

follow the formulations mentioned in [106].

The Hilbert transform of the signal s[n] is denoted by sH [n]. How we computed

this is given in equation (4.1). This says the convolution of the signal s[n] with 1
πn

gives the Hilbert transform of s[n] denoted by sH [n]. ⊗ denotes the convolution

operation.

sH [n] =
1

πn
⊗ s[n] (4.1)

In equation (4.2), we see how the envelop is computed using the real valued

signal s[n] and the Hilbert transformed signal sH [n].

| sA[n] |=
√
{s[n]2 + sH [n]2} (4.2)

In figure 4.4, in a we see the spectrum of oeffne die Tuer computed by FFT

where frequency along the x-axis and amplitude of the frequency information of

the signal along the y-axis. In the same figure in b, we see the spectral envelop

of the oeffne die Tür. The spectral envelop shows the signal amplitudes versus

frequency in the plot. In b, we see the FFT spectrum of the envelop computed

by Hilbert transform. For implementation, we used the existing matlab function

hilbert to compute the Hilbert transformation.

4.2.3 Adaptive Threshold Selection

The silence intervals from the speech are removed using a threshold. One com-

monly takes for the threshold one fourth of a median of the envelop for removing

speech silence or pause or clicking sounds from spoken speech. There is again

no precise reason for doing so. Then the speech samples with amplitudes below

the threshold are detected similar to literature [4]. This literature detected these

samples and deleted the non-speech sound from the speech. Thus the removal of

the pauses shortened the time and thus the length of the signal.
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Figure 4.4: Spectrum of hybrid noisy speech and spectrum of envelop computed
by Hilbert transform

In figure 4.5 we can see how the redundancy of the data is removed by applying

decimation, envelop detection and then the threshold selection. The recorded

samples in a are reduced from 85056 times 2 to 26287 times 1, in b 61697 times

2 to 17908, in c 84096 times 2 to 25142 times 1. These data are easier to process

than the originally recorded data. 2 means two channels. We have used only one

channel but the information on the two channels are about the same. The two

channels record data in two directions such as left and right. One channel can be

selected only for the right or for the left direction.

Alternative Recommendation An alternative to this redundancy removal

approach is to apply Savitzky Golay filters to the raw signal envelope before

computing the phase and its derivative [108]. But we have not yet investigated

this approach.

4.3 Pre-emphasizing and Pre-emphasis Filter

The purpose of the pre-emphasis filtering and its effect is discussed here. In the

speech processing literature equation (4.3) is seen as pre-emphasizing the signal

and the filter in equation (4.3) is known as pre-emphasis filter [80]. A common

way of seeing the application of a pre-emphasis filter is to emphasize the frequency

component by considering both the low and high frequency components of the

signal. The formants lie in the frequency range from 200 to 3500 Hz. The speech

signal is a relatively low frequency signal.
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Figure 4.5: Redundancy removed signal and sampling rate is 16 kHz: Time
domain plot and spectrogram
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The redundancy removed signal denoted by s
′
[n] is then used to pre-emphasize

the high frequency of the speech signal prior to its analysis. The pre-emphasis

follows 6 dB per octave rate. This means if the frequency is doubled, then the

amplitude increases by 6 dB. The speech sound has normally higher amplitudes

in the low frequencies than in the high frequencies.

The pre-emphasize filter is identical to the filter that is used to model the lip

radiation filter discussed in chapter 6. The pre-emphasis filter cancels the effect

of the glottis. The system difference equation is presented in equation (4.3). The

system is shown in figure 4.6. We see the result of the pre-emphasis filter is the

emphasized signal s[n] if the input signal is s′[n]. This pre-emphasis filter reduces

s[n−1]’
em
a

z

’[n]s [n]s
+

−1

Figure 4.6: Pre-emphasis filter

the effect of 6dB/octave loss occurring by the glottal source and lip-radiation.

s[n] = s′[n]− aems′[n− 1] (4.3)

Equation (4.3) can be rewritten in equation (4.4) in the z-domain by replacing

s′[n− 1] = S ′(z)z−1.

S(z) = S ′(z)(1− az−1) = S ′(z)Hem(z) (4.4)

The transfer function of the pre-emphasize filter shown in equation (4.5) is

just a high pass filter where we have approximately aem close to 1, for example

0.97. The determination of the coefficient aem is an empirical adjustment. This

is again not precisely defined.

The z-transform of equation (4.3) results in equation (4.5) .

Hem(z) = 1− aemz−1 (4.5)
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In this equation, if aem > 0, the pre-filter acts as a low-pass filter and if

aem > 0, the filter is a high-pass filter. The frequency response of this filter

increases slowly from low to high, therefore it sets up a balance between the high

and low pass frequencies [114]. The parameter aem controls the slope of the curve

[147]. Therefore, this pre-filter may be called a pre-emphasis filter. In figure 4.7,

we see the amplitude and phase response of the pre-filter for aem = 0.97. This

response also shows that it is a high pass filter.
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Figure 4.7: Amplitude and phase response of the pre-emphasis filter

In figure 4.8, a shows the noisy signal which is pre-filtered as it is shown in

b. In the same figure c shows the spectrum of the noisy speech and d is the

spectrum of the pre-filtered speech. In figure 4.9, aem is the redundancy removed

speech signal which is pre-filtered in b. In the same figure c shows the spectrum

of the redundancy removed signal and d shows the spectrum of the redundancy

removed pre-filtered speech. In both figures 4.8 and 4.9, we see the frequency is

flattened by the employment of the pre-filter. This amplifies the high frequency

components and attenuates the low frequency components.

In figure ??, the industrial noisy speech and its pre-emphasized signal is

shown. We can see in the figure a substantial amount of non-speech typed samples

are removed. For this visualization , we have used Praat software [102].
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Figure 4.8: The effect of pre-emphasis filter on the speech signal: Noisy signal
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Figure 4.9: The effect of pre-emphasis filter on the speech signal: Redundancy
removed signal

• Industrial hybrid noisy signal:
Öffne die Tür.

• Sampling rate: 48 kHz.

• Time: 2.729 second and total sam-
ples: 131008× 2.

• Industrial hybrid noisy signal:
Öffne die Tür.

• Sampling rate: 48 kHz.

• Time: 2.729 second and total sam-
ples: 131008× 2.
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• Pre-emphasized signal: Öffne die
Tür.

• Sampling rate: 16 kHz.

• Time: 1.652 second and total sam-
ples: 26437.
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Chapter 5

Strong Noise Solution

Outline of the Chapter We have provided our solution to the strong noise

problem in this chapter. For this first we describe the strong noise as an outlier.

To detect the outliers we select an adaptive threshold. This will then be used

to remove them. First we describe this approach in general. Because our overall

approach is based on a probabilistic basis we need to introduce such a basis here

too. For dealing with strong noise we selected the Poisson distribution for our

purpose and we describe its basic properties first. Then we draw the connections

to our problem and design a matched filter for the treatment.

5.1 Basic Steps

We have described strong noise as something where human beings cannot under-

stand the speech due to its loudness. For us, this happens for a very short time

only and occurs randomly distributed. Using our own intuition and our own real

life experience, we see a strong noise interrupts understanding a speech clearly.

Therefore our approach considers the strong noise as outliers occurring in a larger

speech process. First we describe the outlier definition, its detection and then its

removal.

An outlier is an abnormal quantity in an observation that is often marked as

an perturbation in the observation. Detection and removal of this outliers need a

careful analysis so that the remedy of the outliers does not affect the signal. The

remedy most often begins with the statistical information of the data such as the

probability distribution of the data, a histogram or a boxplot of the data.

Next we say what strong noise is for us. As said, intuitively, strong noise

makes it even for humans almost impossible to undertand the speech.
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First we introduce a basic assumption about strong noise. It says that strong

noise occurs at small intervals only. However, these intervals are not regular but

are randomly distributed. Below we will give a closer description saying what

strong is. Basically, a noise signal is considered as strong if its amplitude exceeds

some threshold and it lasts for a very short time.

The handling of outliers now proceeds in two steps:

• Identifying outliers.

• Removing outliers.

The identification of the outliers has an essential step to identify the intervals

in which they occur. Removal means to remove these intervals from the speech

signals. After the outlier removal there are two possibilities:

• The speech is not affected by the removal. In particular, the understanding

is not disturbed because in the removed intervals no speech took place.

• Some part of the speech is removed too. As a consequence, the speech is

incompletely delivered what affects the understanding.

In the first case one can proceed in the ordinary way. The second case is more

difficult. For handling it the system needs an additional possibility for giving

a feedback message from the receiver (machine) to the user (a human). This

message is:

”Repeat the speech”

Such message is necessary because the given speech could anyway not be

understood because of the strong noise. This also does not help if the statement

is not understood properly because of the noise. The realization of the feedback

provides no problems. It can be done in many ways that we will not discuss here.

5.2 Outlier Detection

The identification of outliers is a common difficult problem in data analysis. In

addition, the definition is user and context dependent.

For the outlier identification we follow our previously given arguments. There-

fore we need to determine :

• Underlying probability.
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• The average loudness.

• The threshold above which noise is considered as strong. This is application

dependent.

The threshold is adaptive as it depends on the expectation of the segment of the

speech signal. This operation is carried out in the time domain. For our purpose

we consider the following steps where we assume a noisy observation z[n]. We

assume for the moment that a probabilistic environment has been defined.

• Determine a threshold θ where 0 < θ < 1.

• Compute the expectation zex = E{|z[n]|}.

• Identify set of the ”outlier” samples z[n] as |zex − z[n]| ≥ θ.

• Remove these identified ”outliers” obtained in the previous stage from the

noisy signal.

In the probabilistic description this will be made precise.

5.3 Stochastic Process

Before we make the steps precise we need to represent the noise as a stochastic

process. The process representation will be somewhat different than before, in

particular with respect to the underlying probability. For this we define a ho-

mogeneous Poisson model (defined in section 5.3.1) for the strong noise and its

detection by matched filtering. Here we look at the notion of a shot. A strong

noise event will be handled as a shot.

5.3.1 Poisson Distributions

First we consider Poisson distributions of events in general. A stochastic process

of events with a random variable x is a Poisson process with a parameter λ ,

λ > 0 and with functions indexed by k as the density functions:

f(k, λ) =
λke−λ

k!
for k = 0, 1, 2, · · · (5.1)

We assume for non-overlapping intervals (t1, t2) and (t3, t4), the random vari-

ables n(t1, t2) and n(t3, t4) counting the occurrences of events in the intervals are
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independent. The parameter λ represents the average number of events in a unit

length interval.

For any fixed t ≥ 0, we consider a Poisson random variable x(t) with the

parameter λ. Here the expectation is E[x(t)] = λ for t ≥ 0. The autocorrelation

function is R(t1, t2) = E[x(t1)x(t2)] for t1 ≥ 0 and t2 ≥ 0.

If the expected number of occurrences of events in an interval is k, then the

probability that there are exactly k occurrences is equal to equation (5.1).

For a time interval of length t we have the probability that k events take place

in this interval is given by equation (5.2).

Pλ(t, k) =
(λt)k

k!
e(−λt) for k = 0, 1, 2, · · · (5.2)

5.3.1.1 Homogeneous Poisson Model

Given an arbitrary impulse waveform δ(t) and a set of Poisson points ti the

homogeneous Poisson model is shown in equation (5.3) [141]. In equation (5.3),

δ appears at random times ti governed by a Poisson distribution and it has an

amplitude ai.

X(t) =
∑
i=1

aiδ(t− ti) (5.3)

Each time an arriving of strong noise is detected, it causes a small impulse shaped

noise as a shot in the signal. This means the arrival rate denoted by λ of strong

noise is described by equation (5.2).

Next we define the shots for the strong noise.

5.4 Shots

An event will now be a shot and the process model describes the shots. Shots are

randomly, rarely, large valued events that occur at Poisson points. It is defined in

equation (5.4) where d[n] is the shot noise at the time instants n, ai is amplitude,

ni is Poisson points. At a short time interval, the shots may occur or may not

occur. The probability of the occurrence of the shots at short time interval is 0

or 1.

d[n] =
∑
i

aiδ[n− ni] (5.4)

The response to δ[n] is called an impulse response and it is denoted by h[n]. If

the arrival rate of the shorts is constant, then equation (5.4) can be rewritten by
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equation (5.5):

d[n] =
∑
i

aih[n− ni] (5.5)

If the time interval denoted by ∆n and ∆n << 1 and the shot may not occur in

each interval, then its probable events can be confined by equation (5.6).

Vn =

{
0, if no impulse occurs in the time interval n∆n < n < (n+ 1)∆n

1, if impulse occurs in the time intervaln∆n < n < (n+ 1)∆n

(5.6)

Similar to the Poisson distribution assumption, if we assume there is only one

impulse occur in each time interval ∆n and the events are independent, then the

probability of the event occurrence can be desribed by equation (5.7).

p(Vn = 0) = exp(−λ∆n) ≈ 1− λ∆n

p(Vn = 1) = λ∆n exp(−λ∆n) ≈ λ∆n
(5.7)

5.5 Matched Filter

If the input signal is in a finite time and mixed with noise, there is a filter which

can be designed to maximize the signal to noise ratio (SNR). This type of filter

is generally called the matched filter. The matched filter can be used to detect

the shot noise. First we define the matched filter. The definition and derivation

is mainly based on [5].

First we consider a more general setting. If a signal x is mixed with noise v,

then we can formulate the resulting signal as

x(t) = f(t) + v(t) (5.8)

In equation (5.8), the signal v(t) is a signal with known power spectrum S(ω).

We assume that f(t) is known and we wish to establish its present location. To

do so, we apply the process x(t) to a linear filter with a response h(t) and Fourier

transform H(ω). The resulting output y(t) is

y(t) = x(t)⊗ h(t) (5.9)

Now equation (5.9) can be rewritten by equation (5.10).

59



We see y(t) which is expressed as yf (t) and yv(t).

y(t) =

∫ ∞
−∞

x(t− α)h(α)dα = yf (t) + yv(t) (5.10)

By taking FFT, equation (5.10) can be rewritten by (5.11). Here F (ω), S(ω), H(ω)

are the spectrum of the f(t), v(t) and the filter h(t).

y(t) =

∫ ∞
−∞

x(t− α)h(α)dα =
1

2π

∫ ∞
−∞

F (ω)H(ω)ejωtdω (5.11)

Now we describe the Fourier transformed of yv(t) by equation (5.12).

E{y2
v(t)} =

1

2π

∫ ∞
−∞

S(ω)|H(ω)|2dω (5.12)

Since yv(t) is due to v(t) and E{v(t)} = 0, then E{yv(t)} = 0 and E{yf (t)} =

yf (t). The objective is to find H(ω) so as to maximize the signal to noise ratio

κ such that at a specific time t0 is written in equation (5.13).

κ =
|yf (t0)|√
E{y2

v(t0)}
(5.13)

Now if S(ω) = S0, by applying Schwarz’s inequality we find equation (5.14).

In the equation Ef = ( 1
2π

)
∫
|F (ω)|2dω is the energy of f(t).

κ2 ≤
∫
|F (ω)ejωt0|2dω

∫
|H(ω)|2|dω

2πS0

∫
|H(ω)|2dω

=
Ef
S0

(5.14)

Equation (5.14) is an equality if equation (5.15) is taking place.

H(ω) = kF ∗(ω)e−jωt0 (5.15)

Now the time domain of H(ω) in equation (5.15) is written in equation (5.16).

h(t) = kf(t0 − t) (5.16)

This determines the optimum H(ω) within a constant factor k. The whole sys-

tem when these elements are combined is called the matched filter. The resulting

signal to noise ratio is maximum and it equals
√

Ef
S0

.
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5.6 Strong Noise and Matched Filter

Here we apply the results of the last section to our shot problem. Now in order to

detect the presence of shots, we apply the detection formalisms that is discussed

in [36]. One common approach is to insert a filter between the input and the

matched filter so that the transfer function of the inserted filter is chosen such

that the input is transformed into white noise and this is known as the whitening

the process [141].

In order to apply the matched filter:

• We assume the signal is mixed with some noise which is shots.

• We use the linear prediction analysis for the signal model.

• We apply the whitening approach.

5.6.1 Analysis

Now the signal s is mixed with a shot noise d such that equation (5.17) holds. In

this equation, we assume that ai can be only 0 or 1 for a signal interval and ni
is unknown since shots are occurring randomly and rarely. The derivation of the

analysis is discussed in details in [36].

o[n] = s[n] + d[n] (5.17)

Here we assume that s includes the true speech and all other noises in our mod-

elling. We would like to detect the presence and location of shots d in the signal

o. Now the signal o is a pth order AR process modeled as linear predictor shown

in equation (5.18) using least squares approach. Here αi is unknown and solved

by using the Burg or Yule-Walker orthe unconstrained least squares (ULS) ap-

proach. The order of the model is p = 2lfs
c

where l is length of the vocal tract, c

is the speed of the light and fs is the sampling rate. It is discussed in chapter 8.

Since shots occur rarely, thus we can say ô[n] ≡ ŝ[n]. This is written in equation

(5.18).

ŝ[n] = α1s[n− 1] + α2s[n− 2] + · · ·+ αps[n− p] =

p∑
i=1

αis[n− i] (5.18)

This says that the influence of the shots to the estimates is neglegible despite

the fact that the size of the shots are individually quite large. As a consequence,
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the difference o− ŝ[n] consists essentially of the shots only. That means we have

to analyze this difference for identifying the shots. First we look at the estimation

error in equation (5.19). b[n] is a white noise and it has variance σ2.

b[n] = s[n]− ŝ[n] = s[n]−
p∑
i=1

αis[n− i] (5.19)

Now we have the parameters αi and we can design a FIR filter F (z) such that

equation (5.20) holds.

F (z) = 1 + a1z
−1 + · · ·+ apz

−p (5.20)

• Now b and d are the input to the filter F (z) and we are trying to detect

d[n].

The next idea is to design a filter that suppresses the signals with size less that

the threshold. For this we define a filter that gives a maximum ratio of d and b.

This will be a linear filter g[n] that generates z[n]. Now suppose,

y[n] = b[n] + d[n] = b[n] +
∑
i

aiδ[n− ni] (5.21)

Now following the hypothesis of the statistical detection of the matched filter, we

have only two cases:

• H0: b[n].

• H1: b[n] + d[n]

In equation (5.21), if ai is 0, then input to filter F is b only which supports the

hypothesis i.e. H0 noise is present only. If ai 6= 0, then the shots denoted as

δ is located in ni. This supports hypothesis H1. If we are under H0, then the

output of filter F is (b ⊗ h)[n] where h is the impulse response. Thus, for the

white noise with zero-mean i.e. µ = 0 and standard deviation σ, the threshold θ

can be written by equation (5.22).

θ = σ
√

(1 + α2
1 + α2

2 + · · ·+ α2
p) (5.22)

Since the filter is linear, the output of the filter F (z) can be written as equation

(5.23). There zb[n] is white noise and zd[n] = aih[n− ni]

z[n] = zd[n] + zb[n] (5.23)
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This is visualized in figure 5.1. There, the impulse response of the matched

filter G(z) is g[n] Now, a signal greater than θ is shot. This is an outlier.

z[n]=z  [n]+z  [n]db
z[n]=z  [n]+z  [n]db

~~~

G(z)F(z)
o[n]

d[n]

s[n]

Matched Filter

+

Whitening filter
(Linear Prediction(LP))

Figure 5.1: Signal whitening and matched filtering for shot noise

Applying the Schwarz inequality that is applied in matched filter we receive

the signal to noise ratio r in equation (5.24). We consider the signal has a finite

length that is n = 1, 2, · · · , N .

κ =
|zd[n]|2

E{|zb[n]|2}
=

1

σ2

∑N
k=1 |g[k]d[n− k]|2∑N

k=1 |g[k]|2
(5.24)

Now applying the Schwarz inequality we get

|
N∑
k=1

g[k]d[n− k]|2 ≤
N∑
k=1

g2[m]
N∑
k=1

d2[k] (5.25)

Now in equation (5.25), κ ≤ Ed
σ2 where Ed =

∑N
k=1 d

2[k]. The resulting upper

bound is reached when we assume g[k] = d[n − k]. It is therefore the maximum

for g[k]. Now the optimum solution is the reversed copy of g[n] for the hypothesis

H0. In this case d[n] has a finite duration N that is g[k] = d[n − k] in order for

the filter g[n] to be causal. Hence, the matched filter for our shots is in equation

(5.26). This says G(z) is the reverse version of F (z).

G(z) = F (−z) = αpz
−1 + αp−1z

−2 + · · ·+ α1z
−p (5.26)

In figure 5.2, we see the noisy observation o in the first row, whitened trans-

formation of the signal s in the second row and third row shows the success of the

matched filter in detecting the shots. In the signal, we see a detection of shots,

one is close to sample 100 and another one is close to sample 500.
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Figure 5.2: Strong noisy signal and matched filtered output

5.7 Actions

Now we find the treatment of the strong noise. If the speech is affected by the

omission of the shots, this means that also some speech occurred in the interval

may have been omitted. In this case, the system gives a feedback as indicated in

section 5.1 to the speaker ”Repeat”.
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Chapter 6

Source Excitation Model

Outline of the Chapter Here we see a relation between the physical and

the numerical interpretation of the speech production model. This regards the

human body as a machine and provides a computational model. We describe the

model from an acoustics point of view. This is also known as a source excitation

model. We find how the acoustic filter mainly consists of some cavities, namely

the vocal tract, the nasal tract, the mouth and the lips but finally it is simplified

to a vocal tract model only. This can represent three different excitation types,

namely voiced, unvoiced and plosive. It is a linear model which is excited by a

white noise. In order to make this complicated speech process simpler by reducing

many variables, this model has some approximations and assumptions. These are

discussed here. The model is a standard speech production model. The model

analysis is based on the discrete time.

6.1 General Aspects

The speech is produced by an excitation source which is later transformed into

different shapes by the actions of the vocal and articulatory organs. The vocal

organs are vocal tract i.e. the glottis, pharyngeal tract, the vocal folds and the

articulatory organs are palete, nasal tract, tongue, mouth, lips. These are mainly

some cavities which generate resonances for the human speech sound production

[69]. A pictorial representation of these organs can be seen in figure 6.1. We

have included this figure in order to make an impression of the position and the

participation of these organs. The number of parameters such as the poles and

zeros are used in general for an efficient tractability. The all pole model appears

to be simplest in the parametric typed vocal tract modeling and the details of
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Figure 6.1: Human vocal and articulation organs [52]
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this is explained in this chapter. Therefore the purpose is here to use the all pole

model in order to capture the human speech production for its modeling. This

chapter explains the background of the speech production modeling. Further

discussions of this model and the use of this model will be seen in chapters 7, 8,

9, 10.

The analysis of the model is discussed using two approaches:

• Difference equation: To emphasize and manipulate the system using the

input and output.

• Z-transform: To analyze and provide the transfer function of the vocal tract

model. This is used to represent the speech production system.

More details about the difference equation and the z-transformation for the dis-

crete time system analysis can be found in [60].

6.2 Analysis Speech Production Model

As mentioned initially the speech is produced by the excitation source supplied by

the lungs. This then goes to the larynx. It shows preliminary acoustical shapes,

namely voiced or unvoiced shapes of the source. This then goes to the vocal

tract. This in combination with articulatory organs transforms the acoustical

source into a speech waveform [131]. The main cavities, the vocal tract, the nasal

tract, the mouth and the lips generate the speech waveform.

In the analysis the source excitation model is a discrete time speech pro-

duction model. How the continuous time speech waveform s(t) is converted to

discrete time signals s[n] is discussed in Appendix. This discrete time speech

representation s[n] is now our starting speech processing point. We assume that

if the continuous time to discrete time (C/D) conversion is processed properly

(see Appendix). The information we lose in the C/D conversion is negligible.

Properly means if we follow the Nyquist theorem for sampling the signal, then

the signal can be reconstructed to its original form.

The major aspects of the speech production model are listed below. All these

concepts in the model are intended to describe the model in reality.

• The speech is first excited by some source and this source is a white noise.

• The final element of the source excitation model is the vocal-tract model.

67



• In the vocal-tract system, the speech sound is produced by opening and

closing of the vocal folds. This introduces a vibration in the system. The

opening and closing rate of the vocal folds varies from person to person.

• The articulatory features and events associated with the production of the

sequence facilitates the continuous-time acoustic speech waveform in the

discrete-time source excitation model.

There is one difference between the model provided in figure 2.1 and the source

excitation model provided next. In figure 2.1, the vocal-tract has a continuous

input and output while the excitation model has discrete input and output. The

purpose of this is to reconstruct the speech and to make the manipulations and

computations easier. The discrete speech production model is efficient to repre-

sent the physical speech production process [80]. We have used it in our study.

The vocal tract system takes a continuous input which comes from the

excitation source and produces a periodic airflow as an output that is not linear.

The reason is that the glottis is not linear. If the glottis were a linear system,

then a constant input would yield a constant output and all the speech sounds

would always be same. We have followed a linear signal model to capture the

vocal tract information.

6.2.1 Assumptions

First we list some facts of the speech production model. They are taken from the

literature and not questioned here [80], [131], [69], [30].

• The excitation mechanism of the speech production system: There is an

input to initiate a process and this is the excitation.

• The operation of the vocal-tract system: The vocal-tract is playing a sig-

nificant role in deciding what to keep or discard to generate the speech.

• The lip and the nasal radiation process: The lips and the nasal radiation

process give the final emphasis on the speech generation.

• Voiced and unvoiced speech: The vocal-tract changes its shape at a short

time interval to generate different phonemes or finally the speech. If the

vocal-tract had not changed its shape to generate the speech, all the phonemes

or the speech would have been the same. The question is how to decide the
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time interval where the shape of the vocal-tract changes. These change at

every 10 to 30 ms [66], [30]. The interval should not be too small that we

can not capture the dynamic behavior of the speech signal and the interval

should not be too large that we miss the dynamic changes of the speech.

• For the voiced speech, the excitation source is periodic: The excitation

source for the voiced speech is a train of pulses modified by some factor

which may be seen gain for the volume controller for the voiced speech and

the transformation or the modification of this source is taking place in the

vocal tract associated with the articulatory organs.

• The excitation is small or close to zero at its time period except at the

beginning of the pitch period: The excitation is actually originated at the

beginning of each pitch period to keep the process going and in between

the pulses, the excitation is assumably zero.

• The excitation takes place in the lungs and generates speech waveforms

when it passes through the vocal-tract. The speech signal is globally non

stationary but it is locally stationary or quasi-stationary.

• The excitation source u is a random white Gaussian process. The weight

or the gain in the model is the loudness of the sound. This depends on the

amount of the air pressure or the excitation source coming out the lungs.

The gain factor is unique for a speaker and for a speech. Some other basic

terms used in the model are for example pitch period and formant.

• The formant is the resonant frequency of the vocal-tract. The formants

help to signify the opening and closing phenomena of the vocal folds. It

is denoted as the fundamental frequency in the speech production model.

The pitch period is reciprocal to the formant frequency.

6.3 Source Excitation Types and Formulations

The source excitation model initially considers an excitation source for three

different types that are sometimes named differently: The excitation source can

be periodic or voiced, or random or unvoiced, or plosive or impulsive.

In figure 6.2, each source namely voiced, unvoiced and plosive source is mul-

tiplied by a factor. This changes the loudness of the speech. It varies and it

changes according to the speaker and the speech spoken by the speaker. In figure
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Figure 6.2: Source-excitation speech production model

6.2, the source u[n] where n ∈ Z is the excitation source for the voiced, unvoiced

and plosive speech. The source denoted by u is characterized by following three

main excitation types :

• Periodic Pulse: This produces the voiced speech

• Random Pulse: This generates the unvoiced speech

• Impulsive Pulse: This produces the plosive speech.

In the following explanation, the source is always denoted by the same notation

u. Because the source can be only one typed. This means, the source u can be

either voiced, or the unvoiced or the plosive. Therefore, in our consideration, a

single source notation u is reasonable.

6.3.1 Voiced Speech Source

The source of the voiced speech is essentially periodically patterned. This means

the pattern of the voiced speech does not have a precise periodic pattern. This

is termed as a quasi-periodic The voiced speech mainly the English vowel such

as ”a”, ”e”,”i”. The excitation source is formulated in equation (6.1) and shown

in figure 6.3. In equation (6.1), unit pulse denoted by δ[n] is delayed by k. The

pitch period k is a difference between two pulses. In the equation, i ∈ Z and Z

denotes integer number. The notations n and k should not be confused with the

notations used using the same in other chapters.

u[n] =
∑
i

δ[n− ik] for the voiced case (6.1)

The voiced typed signal flow is shown in figure 6.4. The excitation source u[n] in

equation (6.1) goes to the glottal filter fg[n]. This is then modified by the factor

gs and generates the output gg[n]. This then goes to the vocal-tract filter fv[n]
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and generates vf [n]. Then it goes to the lip radiation filter fr[n] and generates

the voiced speech s[n]. The process is shown also in figure 6.2. The formulation

of the periodic pulse source and its voiced speech production is shown in equation

(6.2). In figure 6.2, each line at the left corner indicates a unit pulse which is

weighted by a factor gs. In equation (6.1), ”.” denotes mulitplication. In figure

[n]u

δ[n−ik]

k

n

Figure 6.3: Excitation source of the voiced speech

6.4, the vertical lines are the pulses. There it is assumed to be periodic and they

are repeated in a periodic manner. u[n] is the function of n on the x-axis and

the amplitude of u[n] is on the y-axis where n = 0, 1, 2, 3, · · · . The downward

vertical arrow gs is a weight. The circle with ”x” denotes the multiplication sign.

The sign ”⊗” is the symbol of the convolution sum.
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Figure 6.4: Voiced speech in source-excitation model

gg[n] = gs.(fg ⊗ u)[n]

vf [n] = (fv ⊗ gg)[n]

s[n] = (fr ⊗ vf )[n]

(6.2)
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6.3.2 Unvoiced Speech Source

The excitation source of an unvoiced speech is a random white Gaussian noise

formulated in equation (6.3). In the equation, w[n] is the white Gaussian noise.

Its mean is zero and its variance is one. The English alphabet ”F”, ”V” are

some examples of the unvoiced speech. Here, the excitation source u[n] defined

in equation (6.3) comes from the lungs and the larynx. Then a multiplication of

the source by a factor gs goes to the vocal-tract and the lip radiation filter and

generates the unvoiced speech s[n].

u[n] = w[n] for unvoiced case (6.3)

The transformation of the unvoiced speech is shown in figure 6.5. The figure 6.5
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[n]f
f

g

v

Figure 6.5: Unvoiced speech in source-excitation model

shows the source u[n] is multiplied by gs. This is then the input to the vocal-tract

filter and generates vf [n] and the lip radiation filter fr[n] to generate the unvoiced

speech s[n]. The formulation of the unvoiced speech is shown in equation (6.4).

The glottal filter has no influence on the generation of the unvoiced speech. In

equation (6.4), the unvoiced speech s[n] is the output of the vocal-tract filter and

the lip radiation filter for the weighted source u[n].

vf [n] = (gs.u⊗ fv)[n]

s[n] = (fr ⊗ vf )[n]
(6.4)

6.3.3 Plosive Speech Source

As mentioned in section 6.2, the excitation source u[n] is generated from the

lungs. It is weighted by the gain gs and then goes to the vocal-tract filter and

the lip radiation to generate plosive speech. Examples of such speech are ”B”,

”P”. The plosive source is an impulse formulated in equation (6.5) and it is 1 at
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n = 0. With the use of δ[n] as the unit pulse we get:

u[n] = δ[n]

This says:

u[n] =

{
δ[n] = 1 for n = 0

0 for n 6= 0
(6.5)

In figure 6.6, also shown in figure 6.2, the source is influenced by gs which is a

volume controller and produces vf [n] when it goes through the vocal-tract filter

fv[n]. Finally, s[n] is the response of vf [n] of the lip radiation filter fr[n].
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filter 
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v
f
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[n]s

f [n]
v

Figure 6.6: Plosive speech in source-excitation model

In figure 6.6, the only horizontal line at the left is the impulse signal. This is

denoted by u[n]. This is weighted by the factor gs and goes to the vocal tract filter

and lip radiation filter in order to generate the plosive speech. The mathematical

formulation of this in equation (6.6).

vf [n] = (gs.u⊗ fv)[n]

s[n] = (fr ⊗ vf )[n]
(6.6)

Next we will explain the vocal tract filter, glottal filter and the lip radiation filter

in order to explain the simple speech production model.

6.4 Systems of the Source Excitation Model

In this section we define the glottal filter, the vocal tract filter and the lip radiation

filter. These are used in defining the source excitation model using the vocal tract

only. The definitions are given in z-domain in order to emphasize the system

design using pole and zero as well as the transfer function.
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In figure 6.7, we see the source is going through the glottal filter, vocal tract

filter and lip radiation filter. These filters are shown here.

F
F

Glottal filter Vocal−tract filter Lip−radiation filter
s

g

u

v
F (z)

(z)
r(z)

Figure 6.7: Speech Production Systems

6.4.1 Glottal Filter

In equation (6.7), Fg(z) is the transfer function in the z-domain and this represents

the glottal filter fg[n]. In equation (6.7), β = e−cT and c is the speed of the sound

and T is the sampling interval length or sampling period. The concept behind

this is cT << 1 and thus e−cT ≈ 1.

The glottal filter given in equation (6.7) is a second order low pass filter, Fg(z).

Fg(z) ≡ 1

(1− βz−1)

1

(1− βz−1)
≡ 1

(1− βz−1)2
≡ 1

(1− z−1)2
(6.7)

6.4.2 Vocal-tract Filter

The shape of the vocal-tract changes slowly when it produces different kinds of

sounds. This filter varies according to a speaker and the speech sounds spoken by

the speaker. The transfer function of the vocal-tract system is given in equation

(6.8). We see equation (6.8) is an all pole filter with p many poles.

Fv(z) =
1

1−
∑p

i aiz
−i (6.8)

6.4.3 Lip Radiation Filter

In equation (6.9), Fr(z) is the z-transform of fr[n]. It is responsible for the speech

sound that comes through the lips. In equation (6.9), the lip radiation filter has

a single zero. and ar takes the value close to 1. The role of pre-emphasis filter

discussed in chapter 4 in section 4.3. This takes over by the lip radiation filter.

Fr(z) = 1− arz−1 (6.9)
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Next we will explain how the speech production model is represented by using

only the vocal-tract system.

6.5 Source Excitation Model using Vocal-tract

In the source excitation model the excitations for the voiced, and unvoiced are

considered. The excitation source for the unvoiced speech and plosive speech are

considered as white random noise. Therefore the source excitation model has

only two main excitation types: i) A train of pulses for the voiced speech and ii)

White noise for the unvoiced speech.

In figure 6.8 we see that the excitation source responsible for the voiced or

the unvoiced speech is going through a time varying linear filter to generate the

speech output which can be a voiced speech or an unvoiced speech. The time

varying linear filter is a combination of the glottal filter, the vocal tract filter and

the lip radiation filter but all these are represented by by a transfer function and

this is known as the vocal model. How all these filters namely the glottal filter,

the vocal tract filter and the lip radiation filter are manipulated to replace these

by only the vocal tract filter is the discussion of this section. The vocal tract

filter is the most common speech production model used in the speech research.

This conventional speech production model is an all pole model. In this model,

the system for the voiced and unvoiced speech output is modeled by poles only.

Voiced

Unvoiced

linear filter

Time−varying

(voiced/unvoiced)

Speech output

(Speech input : voiced or unvoiced)

Figure 6.8: Stochastic source-excitation model

The lip radiation filter has a zero. Then the glottal filter modeled by two first

order low pass filters has two poles. The lip radiation represented by the high

pass filter has one zero and this cancels the spectral effect of one of the glottal

poles in case they are matched.
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A presence of a second zero near z = 1 would effectively eliminate the spectral

effects of the larynx and the lips. In such a case, the analysis could mainly be

focussed on the coefficients of the vocal-tract parameters only. The pre-emphasis

filter discussed in chapter 4 in section 4.3 is a first order high pass filter and it

has only one zero. This has one coefficient for the zero which is less than 1. The

pre-emphasis filter boosts the high frequency of the formants which have been

suppressed in the high frequency region by the glottis. The glottis is a vocal

organ which contains the vocal folds and the opening space in between the vocal

folds.

We use U(z) and S(z). These are the z-transforms of u[n] and s[n]. The

glottal filter (Fg(z)) has no contribution in generating the unvoiced and the plosive

speech. Therefore, different from figure 6.2, the effect of the glottal filter is not

considered.

Voiced Case The voiced speech is generated when the vocal-tract is excited

by a series of periodic pulses. The variation in the voiced speech is very smooth

within a period. For this reason, it is analyzed as an essentially periodic signal.

The vocal tract filter for the voiced source given in equation (6.10) is a multi-

plication of the gain gs and the transfer functions of the glottal filter Fg(z), the

vocal-tract filter Fv(z), and the lip radiation filter Fr(z). As mentioned ar is

close to 1. Thus we simplified equation (6.10) to equation (6.11) which has p+ 1

number of poles.

H(z) =
S(z)

U(z)
= gs.Fg(z)Fv(z)Fr(z)

H(z) = gs.
1

(1− z−1)2
.

1

1−
∑p

i=1 aiz
−i .(1− arz

−1)

(6.10)

H(z) =
gs

1−
∑p+1

i=1 aiz
−i

(6.11)

Unvoiced Case The vocal-tract filter for the unvoiced source is formulated in

equation (6.12). We used the z-transformation of the system and replaced the

values of the system discussed above in equation (6.12). The glottal filter remains
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open which means it is not participating in generating the unvoiced speech.

H(z) =
S(z)

U(z)
= gsFv(z)Fr(z)

H(z) = gs.
1

1−
∑p+2l

i=1 aiz−i
.(1− arz−1)

(6.12)

For the unvoiced sound there is an effect from the nasal sound which is realized

mainly by several zeros. In this manipulation, the zeros are replaced by placing

more poles in order to make the model all pole only [10].

A zero can be replaced by two poles if the magnitude of the zero is small

enough for example less than 1. This assumption is used in equation (6.13) to

avoid the zero in the modeling. Thus equation (6.12) is simplified to equation

(6.13) .

H(z) =
S(z)

U(z)
= gs.

1

1−
∑p+2l

i=1 aiz−i
.(1− arz−1)

H(z) =
gs

1−
∑p+2l+2

i=1 aiz−i

(6.13)

In equation (6.13), we have 2l poles for l ∈ Z and we have l many zeros for

an effect of the nasal source. In equation (6.13), 2 is used for the zero in the lip

radiation filter. By replacing all zeros with poles, we arrive at equation (6.13).

This is now the vocal-tract system with poles only. Therefore, it is called an all

pole filter. The all pole model is a simple parameter estimation model between

an all zero and a pole zero model because the relation of the pole coefficients and

the autocorrelation function yields a set of simultaneous linear equations and the

estimation of the parameters of the all pole model can be performed by computing

the estimates of the autocorrelation terms [10]. This is discussed in chapter 8.

By taking a sufficient number of poles, the overall transfer function shown in

equation (6.16) for the voiced and unvoiced case is rewritten in equation (6.15).

H(z) =
S(z)

U(z)
=

gs

1−
∑p+2l+2

i=1 aiz−i
(6.14)

Equation (6.15) is now the speech production system that represents the vo-

cal tract in order to generate voiced and unvoiced speech. Thus we obtain a

single transfer function with poles only and this includes the voiced, unvoiced
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and plosive speech.

H(z) =
gs

1−
∑p

i=1 aiz
−i (6.15)

This is an all pole filter and the pictorial definition is in figure 6.9. There we see

that the weighted source gsu generates s through the system
∑p

i=1 aiz
−i.

i=1

p
−i

i
z a

[n]s

s
g

+

u[n]

Figure 6.9: Simplified speech production model

H(z) =
S(z)

U(z)
=

gs

1−
∑p+2l+2

i=1 aiz−i
(6.16)

Equation (6.15) is known as auto-regressive (AR) model. It is most commonly

used for a parametric signal modeling. This is the background of the speech

production model by the AR process. This is described in chapter 7.

In equation (6.15), ai are unknown. We need a technique to find out the values

of ai. For this, we use a linear prediction (LP). This is discussed in chapters 8

and 9.

78



Chapter 7

Vocal- tract Model: AR Model

Outline of the chapter In this chapter we discuss auto-regressive (AR) para-

metric signal modeling. It contains mainly known facts and relations. We repeat

them here because they are used several times in this thesis. In chapter 6 we have

seen that the source excitation model is modeled by an AR process. This model

can be stochastic and deterministic. The source excitation model is in fact the

stochastic typed AR model. We introduce this here. The model parameters have

to be solved and this is discussed in the next chapters 7 and 8.

We first introduce the notion of parametric signal modeling. For this we read

namely[109], [63], [92], [8], [10].

7.1 Analysis of Parametric Signal Modeling

A non-stationary signal such as the speech signal is generally analyzed in a small

segment. This small section can be modeled by using a parametric signal model

or by a non-parametric signal model. In a parametric signal modeling this small

segment is modeled by some parameters. These parameters may change from seg-

ment to segment. This generally happens when a non-stationary signal such as

one from speech is modeled. In this modeling, most often a complicated process

such as a speech signal can be represented by a smaller number of parameters

than the actual samples in the signal. The parameters capture changes or dy-

namics of the signal. That means the signal parameters reflect the changes of

the signal. The reduction of the parameters often requires an approximation,

estimation and some constraints or some additional information. A common ap-

proximation is that the system is driven by some known input where the input

is most often assumed as a unit sample signal or white Gaussian noise. On the
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other hand, in the non-parametric signal modeling, the signal is most often char-

acterized by the measurements of the frequency response and this may be a large

number of frequencies. Examples of such type of modeling approach are overlap-

add and the overlap-save methods [9]. The optimal spectrum of the excitation in

the parametric case will be different from that in the non-parametric case: this

is principally because the parametric model combines the information available

from all frequencies in only a few parameters. In a direct non-parametric fre-

quency response measurement there is no relation between the measurements at

the various frequencies and therefore the excitation should be designed to achieve

a predefined accuracy in the frequency bands of interest. An example is maxi-

mizing the absolute or relative accuracy of the measurements. In a parametric

approach, the energy will be concentrated on the frequencies where it contributes

most to the knowledge about the model parameters. We paraphrased the above

based on our studies given in [109], [63], [92], [8], [10]. For this some factors are

[63]:

• Model type

• Model order

• Approach to estimate model parameters

According to the list we specify our parametric model as: The AR typed

model is discussed next in this chapter, the model order is discussed in chapter 2

in section 8.1.1 and least squares (LS) approach is discussed in chapter 8.

The AR parametric signal modeling assumes that some excitation source, for

example the white Gaussian Noise (WGN) u generates some random output s

through some system h. The goal is now to estimate the parameters of the system

h which has the input u and the estimated output ŝ. We want that the difference

between s and ŝ is minimal.

The AR parametric signal model can be stochastic and deterministic. We

only discuss the stochastic AR parametric signal model for the speech production

model.

7.2 Overview: Auto-regressive (AR) Model

The basic AR parametric modeling is based on the auto-regressive moving av-

erage (ARMA) parametric modeling. This is visualized in figure 7.1 The basic
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parametric modeling, namely the auto-regressive (AR) model, the moving aver-

age (MA) model and the ARMA model uses mostly the least squares criteria

in order to estimate the model parameters. Here we briefly introduce the AR,

MA and ARMA parametric modeling in an overview but we have used only the

AR parametric modeling and this is mainly discussed in this chapter. The AR

modeling is commonly used for the signal modeling because it is easily tractable

for the parameter estimation [10]. This is also discussed in chapter 6. In the

parametric modeling, given a set of time series observations, we determine the

parameters that generate the series. For this we need to obtain the best estimate

of the parameters that can closely replicate the process. The best estimation of

this modeling most commonly uses the least squares criteria. The details can be

found in [92], [10].

Suppose the speech s[n] is a response of a system h[n] which has the excitation

u[n]. This means u[n] is the input, s[n] is the output and h[n] is the system. If

we assume u[n] is white Gaussian noise and h[n] is modeled by the ARMA model

defined in equation (7.1). The model has two parts: One is for AR model which

order is p and another is for MA model which orderis q. For the white noise as

input u, the system h generates s. We describe this now in the z-domain where

S(z), U(z) and H(z) are the z-domain representation of s[n], u[n] and h[n].

H(z) =
B(z)

A(z)
=

1 +
∑q

i=1 biz
−i

1 +
∑p

i=1 aiz
−i (7.1)

The expansions of B(z) and A(z) are given in equations (7.2) and (7.3)

B(z) = 1 + b1z
−1 + b2z

−2 + · · ·+ bqz
−q (7.2)

A(z) = 1 + a1z
−1 + · · ·+ apz

−p (7.3)

The input-output relation is given in equation (7.4).

s[n] + a1s[n− 1] + · · ·+ aps[n− p] = u[n] + b1u[n− 1] + · · ·+ bqu[n− q] (7.4)

s[n] +

p∑
i=1

ais[n− i] = u[n] +

q∑
i=1

biu[n− i] (7.5)
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Taking the z-transform of equation (7.5), we arrive at equation (7.6).

S(z) +

p∑
i=1

aiS(z)zi = U(z) +

q∑
i=1

biU(z)z−i (7.6)

S(z)(1 +

p∑
i=1

aiz
−i) = U(z)(1 +

q∑
i=1

biz
−i) (7.7)

S(z)

U(z)
=

1 +
∑q

i=1 biz
−i

1 +
∑p

i=1 aiz
−i (7.8)

H(z) =
S(z)

U(z)
=

1 +
∑q

i=1 biz
−i

1 +
∑p

i=1 aiz
−i (7.9)

Thus we have the following equation which is the same that is shown in
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equation (7.1).

H(z) =
B(z)

A(z)
=

1 +
∑q

i=1 biz
−i

1 +
∑p

i=1 aiz
−i

If bi equals zero for all i, then the ARMA system given in equation (7.1)

represents the system of the all pole model written in equation (7.10), but if ai
equals zero for all i, then the ARMA system represents the system of the all

zero model written in equation (7.11). Thus the ARMA modeling can be seen

as a combination of the MA and the AR modeling even one can make use of the

AR, MA and ARMA model independently for the signal model. An overview of

ARMA is shown in figure 7.1 where we see s is reposed of the ARMA system to

the random white noise input. The s is corrupted by some observation noise and

generates s
′
.

H(z) =
1

A(z)
=

1

1 +
∑p

i=1 aiz
−i for bi = 0 (7.10)

H(z) = B(z) = 1 +

p∑
i=1

biz
−i for ai = 0 (7.11)

The polynomials of A(z) and B(z) given in equations (7.2) and (7.3) are

characterized by the location of the poles and the zeros in the z-domain, then the

ARMA model has p and q many poles and zeros in A(z) and in B(z). Therefore,

A(z) and B(z) are called an all-pole model and all-zero model. This gives a

background and an overview of AR modeling.

An overview is shown in figure 7.1. On the top of figure 7.1 we see a very

general description. The upper half describes MA and the lower half describes

AR. The individual section of the ARMA filter is shown in figure 7.2. As said we

use the AR model for our signal modeling, we explain this in details next.

7.3 Analysis of Stochastic AR Process

The speech signal changes with time and its different phonemes have different

characteristics in the waveform. The phoneme is the fundamental unit of the

sound. In equation (7.12), we see that the speech signal s[n] is a linear com-

bination of its past p samples and the excitation u[n] multiplied by a weight

83



b
1

b2 bq

z
−1

z
−1noiseWhite

u

+

Moving Average(MA) process

White noise
u

a
1 2

a ap

z z−1
−1

s

+

+

−

s

(Output)

(Output)

Autoregressive (AR) process

Figure 7.2: Moving average (all-zero MA filter) and auto-regressive (all-pole AR
filter) [121]

84



gs.

s[n] =

p∑
i=1

ais[n− i] + gsu[n] (7.12)

Now if we take a z-transform of equation (7.12), we arrive at equation (7.15).

S(z) =

p∑
i=1

aiS(z)z−i + gsU(z) (7.13)

S(z)(1−
p∑
i=1

aiz
−i) = gsU(z) (7.14)

S(z)

U(z)
=

gs
1−

∑p
i=1 aiz

−i =
gs
A(z)

(7.15)

When we compare equation (7.10) and equation (7.15), we see the difference

between the two equations is the factor gs. A difference is also in the sign between

equation (7.10) and equation (7.15); that is the plus (+) or minus (−). This is

not making any big difference because the response is mainly depending on the

value of the coefficients. This says that the input and output are not the same

in the two equatiosn (7.10) and in equation (7.15). In the later equation there is

an additional factor. Equation (7.15) is a stochastic AR modeling. We can say

equation (7.10) is a deterministic AR modeling.

In equation (7.12), we see that the speech signal s[n] is equal to the linear

combination of its past p samples and the excitation u[n] is multiplied by a weight

gs. In the stochastic sense, the second term in the equation (7.12) is a disturbance

or error. The first term i.e. the sum in equation (7.12) is a linear estimate of s

denoted by ŝ[n]. But if gsu[n] is zero in equation (7.12), then s[n] is equal to its

approximated prediction ŝ[n]. In such case if we know the coefficients ai, then

s[n] is equal to ŝ[n].

According to the source excitation model described in chapter 6 in section

6.2.1, at the beginning of the pitch period between the pitch pulses, the excitation

is zero, therefore in equation (7.12) gsu[n] is zero and s[n] can be approximately

equal to its predicted value ŝ[n].

s[n] =

p∑
i=1

ais[n− i] = ŝ[n] (7.16)

But the value of the ai is unknown and we need to find the solutions of ai. We
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obtained the value of ai by using linear prediction(LP) analysis. This is discussed

in chapter 8.

In equation (7.16), it is shown that the actual value of s[n] is equal to the

approximated ŝ[n] because there is no excitation between the pitch pulses and

the approximate ŝ[n] is the linearly weighted summation of the past p samples.

From equation (7.12) and equation (7.16), we find equation (7.17).

s[n] = ŝ[n] + gsu[n]

gsu[n] = s[n]− ŝ[n]
(7.17)

Now we can say if the prediction of s[n] is correct, then in equation (7.17)

gsu[n] is zero. That means we have the best prediction. In the linear prediction

sense, gsu[n] is termed as the error e[n]. Therefore, equation (7.17) can be rewrit-

ten by equation (7.18). This says the error is the difference between the actual

sample and the predicted sample.

e[n] = s[n]− ŝ[n] (7.18)

In the least squares criterion, the total error is minimized by taking the expec-

tation of the square errors. It is described in defined in chapter 8 in section

8.2.

7.4 Analysis between AR and LP filters

The AR coefficients a1, a2, · · · , ap are the parameters of the vocal tract. One

common approach to estimate these unknown AR parameters is by using the

linear prediction (LP). Thus the LP can be seen here as a synthesis filter or

an inverse filter and the AR modelling in the vocal tract can be seen as an

analysis filter. This relation is shown in figure 7.3 and this relation is known as

deconvolution.

If a system is cascaded by two systems, the second system often can recover

the first system; the action of the cascaded system is called deconvolution [96].

The output of the all pole filter s[n] is the input to the LP filter. The output of

the LP filter is then the error signal e[n]. This is shown in figure 7.3 where the

LP filter Hl(z) is acting as an inverse filter of the AR filter H(z). This is again

discussed in chapter 8 in section 8.2.1 and the H(z) and Hl(z) are shown again

in that chapter in figure 8.2.

In figure 7.3, the deconvolution happens between the AR filter H(z) and the
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Figure 7.3: Analysis AR filter and Inverse LP filter: Deconvolution

LP filter Hl(z) where the input u of the AR filter generates the output s and the

output of the AR filter goes to the LP filter to generate the excitation input u

which is indirectly equal to the error e signal defined in section 7.3, the output

of the LP filter. The relation of u and e is shown in equation (7.17).

In figure 7.3, by the synthesis we mean that the original input of the system

can again be estimated by the LP filter. In this synthesis or recovery process, the

LP filter as a synthesis filter recovers the input of the analysis filter which is the

AR filter.

The AR filter is known as an all pole filter. Conversely, we may say the LP

filter is an all zero filter. But this is not a standard term. A detailed architectural

view of this deconvolution process in shown in figure 7.4. This also says that the

input u is modified by gs and generates s through the all pole filter and this

output as input goes to the all zero filter and generates u.
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Chapter 8

Estimation of AR Parameters:
Linear Prediction (LP)

Outline of the chapter In this chapter we give a formulation of the linear

prediction(LP) for the all pole modeling described in chapter 7. The LP approach

uses a least squares approximation that gives a set of linear equations in order

to find an approximate solution for the AR parameters. The LP approach is

derived using an auto-correation approach. This is also known as the Yule-Walker

approach.

The parameters of the AR process that are used for the speech production

model are unknown. The relation between the AR and the LP is shown in section

7.4. The statistical properties such as mean, correlation, variance of the speech

signal are used for the LP analysis to approximate the best speech parameters.

The best means the predicted outcome is closest to the desired one such that the

difference between the two is least. This is explained in section 8.2.

In the LP analysis the current speech sample is modeled by linear combina-

tions of its p most recent past samples. p is the prediction model order. The LP

analysis uses mean squared error criteria for the best predicted samples such that

it is closest to the real sample.

A major part of the chapter is devoted to description of the mean squared

error and its computational aspects.

Some assumptions of using LP First we mention the assumptions used in the

LP based speech signal modeling.

• The excitation source and the vocal-tract system are independent from each

other.

• Each excitation actuates at the beginning of each segment and remains
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active until the end of the segment.

• The vocal tract system is modeled using the AR process where the excitation

source is white noise.

• The vocal-tract changes its shape slowly. Its characteristics changes at every

10 to 30 ms time interval.

• The parameters are computed at each short time interval at each 10 to 30

ms intervals.

8.1 Signal Analysis

s
5

[n] [n][n]sm M
s

Sampled Signal in each block: s[0],s[1],....,s[n],...,s[N-1]

2 i

0 1 3 15 n

0 L-1L-21 2 l

Sampled signal: s[0], s[1], .......s[l],....,s[L-1]

p-2 p-1

1 2 3 m MM-1

p1

N-1N-2

Signal segments:

0 N-1
Window Function

Predicted Sample: s[n] considers p many past samples  : s[1],s[2],...,s[i],....,s[p]
^

(In forward prediction)

Figure 8.1: Short time speech signal processing

Figure 8.1 explains how the signal is processed for the analysis. Initially, the

analog speech waveform s(t) is digitized into s[l] and l = 0, 1, 2, 3, · · · , L − 1.

These are blocked into segments sm and m = 1, 2, · · · ,M . Each block sm has N

many samples as n = 0, 1, 2, · · · , N − 1 and each current sample s[n] is modeled

by linear combinations of its previous p many samples. p is prediction or model

order. The decision of the number of model parameters is discussed in section

8.1.1. It is indexed by i and i = 1, 2, · · · , p. Thus in equation (8.1), s is M ×N
dimensional. Generally a signal is blocked using a window function. In such case

the signal is multiplied by a window function. This is shown in figure 8.1. The

windowing is generally used to control the effect of the sidelobes in the spectral
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estimation [121]. A typical length of the window function is equal to the length

of the signal block. However, in a covariance or Burg or ULS based LP approach,

a windowing of a signal is not necessarily needed.



s[0]

s[1]
...

s[n]
...

s[L− 1]


L×1

→ Segemented Signals→



s1[0] · · · s1[n] · · · s1[N − 1]
...

sk[0] · · · sk[n] · · · sk[N − 1]
...

sm[0] · · · sm[n] · · · sm[N − 1]

sM [0] · · · sM [n] · · · sM [N − 1]


M×N

(8.1)

Next we give a physical explanation of the order of the model.

8.1.1 Order of the Model

The order of the model is equal to the number of the parameters that represent

the speech. We explain here the relation between the model order and vocal tract

tube and how the model order and parameters are related. This is formulated in

equation (8.2) [87].

The order has to be large enough to represent each formant. Similarly, the

number of the coefficients needs to be sufficient to approximate the parameters

of the voice articulator. Important numbers are the length of the vocal-tract, the

joined structure of the nasal and oral cavities, and the excitation sources. Each

formant is represented by a complex conjugate pole pair. Therefore there is the

number 2 in equation (8.2) [87]. Additionally 4 represents the number of vocal

tract sections. In equation (8.2), ≈ is used because this is an approximation of

the model order p and the precise number of involved coefficients may not be

known.

p ≈ 2× (Number of Formants) + 4 (8.2)

The number of formants is the division of the Nyquist rate fs/2 where fs is the

sampling frequency by the average spacing of the neighboring formants fn+1 and

fn where n denotes the formant number.The average distance between neighbor-

ing formants is approximated by c
2l

(see chapter 2, section 2.4.1).

The order of the model plays an important role in the modeling problem.

It determines the number of parameters to be estimated and the computational
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complexity of the estimation algorithm. The quality of the spectral analysis is

also influenced by the order of the model. If the order of the model is too low, it

will display poor resolutions and if the model order is too large, it creates false

spectral peaks known as spectral splittings in the spectral analysis. In such case,

one single peak may be divided into two separate ones and generate some alias

or misleading spectral peaks in the frequency spectrum.

8.2 Derivation of LP and Errors

The LP predictor coefficients are αi for i for i = 1, 2, · · · , p. This is shown in

equation (8.3); there the predicted signal of the actual s is denoted by ŝ.

ŝ[n] =

p∑
i=1

αis[n− i] (8.3)

Now if we take the z-transforms of the terms in equation (8.3), we have equation

(8.4). The symbols used in this equation are introduced in chapter 6 in section

7.3

Ŝ(z) =

p∑
i=1

αiS(z)z−i (8.4)

An expanded form of equation (8.3) is:

ŝ[n] = α1s[n− 1] + α2s[n− 2] + · · ·+ αps[n− p] (8.5)

Equation (8.5) is an expansion of equation (8.3) where it shows that the estimated

speech signal is equal to the summation of the past p samples which are multiplied

by the weighted coefficients. Equation (8.5) is known as forward linear prediction

(FLP). The backward linear prediction (BLP) is predicted using p many future

samples; it is defined in the next chapter. Now from equation (8.3), equation

(8.5), and equation (8.7) we obtain the error in equation (8.6).

e[n] = s[n]− ŝ[n] = s[n]−
p∑
i=1

αis[n− i] (8.6)

Now equation (8.7) is telling us that if the prediction is almost correct, then the

actual speech sample is equivalent to the predicted speech samples.

s[n] ≈ α1s[n− 1] + α2s[n− 2] + · · ·+ αps[n− p] (8.7)
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In fact, the error may not be exactly zero since the process is stochastic but the

goal is to get this error to a very close proximity to zero. It changes over time

even if the signal is a quasi-stationary process.

Thus the equations (equation (8.3), equation (8.5) and equation (8.7)) are

only approximately true because they use the estimated coefficients αi.

The error signal in equation (8.6) is the error for a single true signal and a

single estimated one. The mean error and the mean squared error are given in

equation (8.8) and equation (8.9). For the mean error, we take the expectation

of the difference between the true sample and the predicted samples and it is

computed for n = 0, 1, · · · , N − 1 and the mean squared error is the expectation

of the squared error given by equation (8.9).

E(|e|) =
1

N
{
N−1∑
n=0

(s[n]−
p∑
i=1

αis[n− i])} (8.8)

E{(e)2} =
1

N
{
N−1∑
n=0

(s[n]−
p∑
i=1

αis[n− i])2} (8.9)

8.2.1 Deconvolution phenomenon

The output or the response of a system will be known if we know the input and

impulse response of a system. In such cases the output will be the sum of the

multiplication of the inputs with the time shifted version of the impulse responses

of the system or the sum of the multiplication of the impulse responses of the

system with the time shifted versions. This is the convolution. It is expressed in

equation (8.10). There, ⊗ is a convolution symbol.

s[n] =
∞∑

k=−∞

u[n]h[n− k] = u[n]⊗ h[n] (8.10)

The deconvolution is the action that recovers the effect of the convolution i.e.

the deconvolution does the opposite task of the convolution. With respect to

equation (8.10), the deconvolution will restore u[n] when we have h[n] and s[n].

When we are trying to find the source excitation u by having the output s and

the system coefficients α, this action is also be called a deconvolution operation.

In figure 8.2 the vocal-tract filter is expressed by the AR process shown in

equation (8.11). In the same figure, the LP filter is expressed by equation (8.12).

In figure 8.2, the AR model denoted by H(z) at the left side is modeled by

93



+
s

Solution to the AR model parameters: LP Speech  model applying AR process

e
+s

gu

za
ii

ii
α z

Figure 8.2: Speech production system and linear prediction analysis

equation (8.11) and the LP system denoted by Hl(z) at the right side is modeled

by equation (8.12). The ai parameters where i = 1, 2, · · · , p in the left side of

figure 8.2 are unknown and are solved using the LP system on the right side.

The LP provides the solution to the unknown ai parameters where i = 1, 2, · · · , p
of the vocal-tract system on the left side. The symbols used in eq (8.12) are

introduced in chapter 7 in section 7.3. The relation between H(z) and Hl(z) are

discussed in chapter 7 in section 7.4 and shown in figure 7.3 in that chapter.

H(z) =
S(z)

U(z)
=

gs
1−

∑p
i aiz

−i (8.11)

The solution to ai parameters is estimated by the αi and incorporated in eq

(8.12) where the running index i in our case is same for the both systems H(z)

and Hl(z). i = 1, 2, · · · , p. The goal is to estimate αi so that it is a close capture

of ai.

Hl(z) =
E(z)

S(z)
= 1−

p∑
i

αiz
−i (8.12)

The terms gain and error in the mean squared sense that come up in the LP

prediction are introduced next.

8.2.1.1 Gain and Errors

A physical explanation of the gain in the LP analysis comes from the volume

controller which is different for each speech and for each speaker. Analytically

this may come from an energy level for the frames and it may not be the same

for each frame. Multiplying equation (8.11) and equation (8.12), we find gs as
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shown by equation (8.13). If the coefficients are correct, then we get αi = ai.

S(z)

U(z)
.
E(z)

S(z)
=
E(z)

U(z)
= gs

1−
∑p

i αiz
−i

1−
∑p

i aiz
−i (8.13)

Taking an inverse z-transform of E(z)
U(z)

= gs (equation (8.13)), we find the error

signal written in equation (8.14) by using equation (8.13). Equation (8.14) is the

time domain representation of equation (8.13).

e[n] = gsu[n] (8.14)

Now we extend the error term to the minimum mean squared error in the next

section.

8.3 Mean Squared Error (MSE) and its Mini-
mization

We want to find the LP coefficients which are closest to the AR coefficients.

These coefficients are the vocal-tract parameters to represent the true speech.

The computational aspects of MSE in the LP case discussed next.

The mean squared error criterion emphasizes the effect of large errors much

more than the absolute error criterion and MSE is more sensitive to outliers than

the absolute error criterion [24].

8.3.1 Computational Aspects

When the Euclidean distance describes a distribution and the squared Euclidean

errors are considered, then the underlying distribution of the process is presum-

ably a Gaussian distribution. The zero mean signal can be obtained by taking

the mean of the signal and then subtracting the mean from the signal.

The mean of the discrete random process is the average summation of the

ensemble. Applying the concept of the ergodic mean convergence in the stochastic

process, we compute the mean squared of the error of the speech signal. This

is shown in equation (8.15). There we see for the time interval the difference

between the time averaged mean µn, and ensemble averaged mean µ, the time

averaged correlation rn and the ensemble averaged autocorrelation r converges to
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0.

lim
n→∞

E(µn − µ) = 0

lim
n→∞

E(rn − r) = 0
(8.15)

The mean squared error is denoted by η(n) for each speech signal s[n].

To find the minimum mean squared error, we need to differentiate E{e2} in

equation (8.16) with respect to αk for k ∈ Z. The error e is computed for n

where n = 0, 1, 2, · · · , N − 1. We have to differentiate equation (8.16) p many

times with respect to αk, hence there are p many equations. It is formulated in

equation (8.17).

The derivation is given in the following equations. There, η′k = ∂η
∂αk

for n =

0, 1, · · · , N and k = 1, 2, · · · , p.

η = E{e2} =
1

N

N−1∑
n=0

[s[n]− ŝ[n]]2 (8.16)

η′k =
∂[E{e2}]
∂αk

=
∂

∂αk

1

N

N−1∑
n=0

[s2[n]− 2s[n]ŝ[n] + ŝ2[n]]} (8.17)

Equation (8.17) tells us the expected value of the summation of the squared error

signal for N many speech samples. We can think of using the N many samples

in a segment for a short time interval.

For minimizing the mean squared error, we set equation (8.17) equals to 0

and compute the partial derivative with respect to αk for k = 1, 2, · · · , p times.

η′k =
∂[E{e2}]
∂αk

= 0 (8.18)

From equation (8.17) and equation (8.18) we arrive at equation (8.19).

∂

∂αk
{
N−1∑
n=0

[s2[n]− 2s[n]ŝ[n] + ŝ2[n]]} = 0

−2
N−1∑
n=0

s[n]
∂ŝ[n]

∂αk
+ 2

N−1∑
n=0

ŝ[n]
∂ŝ[n]

∂αk
= 0

(8.19)
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By rearranging equation (8.19), we find equation (8.20).

N−1∑
n=0

s[n]
∂ŝ[n]

∂αk
=

N−1∑
n=0

ŝ[n]
∂ŝ[n]

∂αk
(8.20)

∂ŝ[n]

∂αk
= s[n− k] (8.21)

The derivation of ŝ with respect to αk is written in equation (8.22). ŝ is shown

in equation (8.3).

N−1∑
n=0

s[n]s[n− k] =
N−1∑
n=0

ŝ[n]s[n− k] =
N−1∑
n=0

p∑
i=1

αis[n− i]s[n− k] (8.22)

Now substituting the value of ŝ (shown in equation (8.3) ) in equation (8.20) we

arrive at equation (8.23). In equation (8.19), index k is dummy variable of the

differentiation of equation (8.16) with respect to αk.

N−1∑
n=0

s[n]s[n− k] =
N−1∑
n=0

p∑
i=1

αis[n− i]s[n− k] (8.23)

Equation (8.23) says s[n] can be obtained by taking i many past α coefficients and

we solve the minimal average error problem by solving the above equations. There

are many standard methods for this. The smaller the number of coefficients is the

faster the solutions are obtained. That would indicate one should use only very

few coefficients. On the other hand, however, reducing the number of coefficients

is also limited because with a very small number of coefficients we cannot expect

a good approximation. In the speech signal, these coefficients are real valued

numbers.

Suppose r[i] denotes the autocorrelation between s[n] and s[n − i] as shown

in equation (8.24). There the autocorrelation function measures the similarity

between the process s at time instances n and n−i. The autocorrelation function

for a real valued wide sense stationary process is a symmetric function. Therefore,

for fixed n, r[i] = r[−i] and we can say r[−i] = E{s[n]s[n−i]}. In equation (8.24),

i = 1, 2, · · · , p and n = 0, 1, 2, · · · , N − 1.

r[i] = E{s[n]s[n− i]} (8.24)

In equation (8.25), r[i, k] denotes the autocorrelation between s[n−i] and s[n−k].
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In equation (8.25) by symmetry we have r[i, k] = r[k, i].

r[i, k] = E{s[n− i]s[n− k]} (8.25)

From the equations (8.23), (8.24) and (8.25), we obtain (8.26)

r[i] =

p∑
k=1

αkr[i, k] (8.26)

Expanding equation (8.26), we arrive at p many linear equations shown in equa-

tion (8.27).

α1r[0] + α2r[1] + α3r[2] + · · · · · ·+ αpr[p− 1] = r[1]

α1r[1] + α2r[0] + α3r[1] + · · · · · ·+ αpr[p− 2] = r[2]

α1r[2] + α2r[1] + α3r[0] + · · · · · ·+ αpr[p− 3] = r[3]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
α1r[p− 1] + α2r[p− 2] + α3r[p− 3] + · · · · · ·+ αpr[0] = r[p]

(8.27)

Equation (8.27) is written using a matrix vector form by equation (8.28).
r[0] r[1] · · · r[p− 2] r[p− 1]

r[1] r[0] · · · r[p− 1] r[p− 2]
...

...
...

...
...

r[p− 1] r[p− 2] · · · r[1] r[0]



α1

α2

...

αp

 =


r[1]

r[2]
...

r[p]

 (8.28)

In equation (8.28), Φ is a p × p dimensional matrix, r is p × 1 dimensional

vector and the coefficients α is p× 1 dimensional vector.

Φ =


r[0] r[1] · · · r[p− 2] r[p− 1]

r[1] r[0] · · · r[p− 1] r[p− 2]
...

...
...

...
...

r[p− 1] r[p− 2] · · · r[1] r[0]

 α =


α1

α2

...

αp

 r =


r[1]

r[2]
...

r[p]


In equation (8.28), Φ is symmetric and Toeplitz. Equation (8.28) is called the

Yule-Walker equation.

Φα = r (8.29)

A direct solution of the equation (8.29) is the solution for the αi coefficients

for i = 1, 2, · · · , p. The solution to (8.29) is obtained multiplying both sides of
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equation (8.29) by the inverse of Φ matrix shown in equation (8.30).

α = Φ−1r (8.30)

At lag 0, equation (8.31) r is the mean squared value of the s[n]. This is

actually the energy of the signal.

r[0] = E{s[n]s[n]} = E{s[n]2} (8.31)

How many coefficients are enough in equation (8.29) is discussed in section

8.1.1.

For the sampling frequency is 16 kHz, the model order is 12. The solutions

to the αi in equation (8.29) is obtained using the Levinson-Durbin recursion ap-

proach [80]. The AR parameters can be approximated by using different types of

LP approaches. Some of them including our LP approach for the AR parameters

approximation are discussed in the next chapter.
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Chapter 9

LPC Solution Approaches

Outline of the chapter This chapter is a continuation of the investi-

gations in the last one. The linear prediction (LP) can be approached using

auto-correlation, auto-covariance, Burg and unconstrained least squares (ULS)

approaches. These approaches are briefly discussed in this chapter. We have

applied the ULS approach for parametric signal modeling.

First we list some LP parametric approaches that have partially been intro-

duced in the last chapter.

• Autocorrelation Approach: This approach uses the Yule-Walker equation

to extract the parameters. The Levinson-Durbin algorithm is used for the

parametric solution.

• Covariance Approach: The covariance approach uses the Cholesky decom-

position for its parametric solution.

• Burg Approach: The Burg method is an order and time recursive approach.

This also uses the Levinson Durbin algorithm.

• ULS Approach: The unconstrained parametric solution is an order and time

recursive approach. Both order and time are used to extract and update the

parameters. This does not use the Levinson-Durbin algorithm to extract

the parameters.

Next we introduce the above listed approaches.
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9.1 Autocorrelation Approach

In autocorrelation approach, the number N of non-zero samples of a certain

length l is nonzero and zero outside of the length l. The averaged autocorrelation

function is replaced by the time averaged autocorrelation function.

This method is the most straight forward one for the AR model parameters.

In this approach, the ensemble autocorrelation r[i] is replaced by the correspond-

ing time-averaged autocorrelation computed from a given block of data. In the

previous chapter 8 we have discussed errors and the minimization of the mean

squared error and the use of a windowed signal. This is an important use of

auto-correlation that we will not repeat here.

In chapter 8, we have explained how we have p many linear equations by

equation (8.21). The LP solution using this approach needs the inversion of the

Φ matrix and the multiplication of a p × p matrix with a p × 1 length r vector.

Here Φ is a Toeplitz matrix and in this matrix, the diagonal entries are identical.

Φ is also a symmetric matrix and thus we have r(i, k) = r(k, i). The solution for

the parameters can be obtained by using a Gaussian elimination approach or by

the Levinson-Durbin recursion. This algorithm is discussed in [80]. The Levinson

approach is efficient to solve the parameters and it uses the properties of Toeplitz

matrix.

In figure 9.1, fig a is a single speech frame in the time domain, fig b shows the

pole-zero plot using LP analysis which shows the stability of the model because

its poles are inside the unit circle. fig c is the log based FFT spectrum of the LP

coefficients. fig d is the spectrum of the residual signal obtained by LP analysis

and the input that is the random white Gaussian noise and is again obtained

by the deconvolution i.e. the spectral analysis of the deconvolution of the LP

parameters. fig e is the spectral analysis of the residual signal and fig f is the

verification of the excitation of the signal. The implementation in figure 9.1 has

a close replication that is given in [127] but we modify the implementation using

our own data for our own experiments.

The advantage of the autocorrelation approach is that it ensures the stability

of the system model. The Levinson-Durbin recursion makes the computations

efficient. We have introduced the computations of the LPC autocorrelation prob-

lem solving approach using Levinson-Durbin recursion algorithm in chapter 8 but

a detailed computational aspect of this algorithm is not discussed in the thesis.

The disadvantage of the autocorrelation approach is that it uses windowing in

the segmentation process and therefore the true spectrum might not be obtained
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Figure 9.1: LP by autocorrelation using Yule-Walker approach: Öffne die Tür
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in the spectral analysis.

In figure 9.2, we see the analysis of the signal model using auto-correlation

approach. In a, we see the segment of the speech signal. In b, we see the frequency

response of the LP filter which parameters extracted by auto-correlation approach

or Yule-Walker equation. In c, we wee the pole position of the covariance approach

and in d, we see the excitation which is the output of the filter and this is

white noise. Here the peak values in figure b indicate the coefficients of the AR

parameter approximation. These are normally called the formant of the speech

signal. The order of the model is 12. Therefore, in figure b, we see six peaks.

These peaks are smaller as frequency increases. This is because the speech signal

is a low frequency signal.
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Figure 9.2: Signal model: Auto-correlation (Yule-Walker) approach

9.2 Covariance Approach

In the covariance approach, the minimum mean squared error is computed us-

ing the the derivative of equation (9.1) with respect to ak for k ∈ Z and k =
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1, 2, · · · , p. The starting point is mean squared error.

η = {E(e2)} =
1

N

p+N−1∑
n=p

(
s[n]−

p∑
i=1

ais(n− i)
)2

(9.1)

The summation limit can be any point starting from n = p to n = N . Here

the truncation of the signal is not essential and an explicit signal windowing is

not done. Therefore, in this approach the spectral distortions from the rectnular

windowed signal do not occur.

Instead of when using a correlation approach applying the Yule-Walker is

to obtain the auto-correlation matrix Φ described in section 8.3.1 in equation

(8.30). Here in the covariance approach, the covariance matrix C in equation

(9.5) derived from equation (9.3) is positive definite and symmetric but it is not

Toeplitz. In equation (9.2), n = 0, 1, · · · , N − 1 and i, j = 1, 2, · · · , p

cn[i, 0] =

p∑
j=1

αicn[i, j] (9.2)

An extended equation (9.2) for cn[i, k] is shown in equation (9.3). In the

equation we take i, k = 1, 2, · · · , p.

cn[i, k] =
l+N−1∑
n=l

s[n− i]s[n− k] ; ∀ l ∈ Z (9.3)

cl[i, k] in equation (9.3) reflects p many linear equations that can be written

in a matrix vector form similar to equation (8.27) as it is shown in equation (9.5)


c[1, 1] c[1, 2] · · · c[1, p− 1] c[1, p]

c[2, 1] c[2, 2] · · · c[2, p− 1] c[2, p]
...

...
...

...
...

c[p, 1] c[p, 2] · · · c[p, p− 1] c[p, p]



α1

α2

...

αp

 =


c[1, 0]

c[2, 0]
...

c[p, 0]

 (9.4)

Equation (9.4) has p many linear equations in a matrix form denoted by C.

The LP coefficient vector in the covariance method is denoted by α and the

covariance vector is denoted by c. These notations are used in equation (9.5). C

in equation (9.5) is symmetric and positive definite but not Toeplitz as it is in

the auto-correlation approach discussed in the previous chapter 7.
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C =


c[1, 1] c1, 2] · · · c[1, p− 1] c[1, p]

c[2, 1] c[2, 2] · · · c[2, p− 1] c[2, p]
...

...
...

...
...

c[p, 1] c[p, 2] · · · c[p, p− 1] c[p, p]

 ; α =


α1

α2

...

αp

 ; c =


c[1, 0]

c[2, 0]
...

c[p, 0]

(9.5)

Equation (9.4) in a compact form is now written in equation (9.6).

c = Cα (9.6)

The solution to the LP parameters is then rewritten using equation (9.6) in

equation (9.7). Finding the solution to the LP parameters α in equation(9.7)

requires computing the inverse matrix i.e. C−1. The covariance matrix C is

symmetric, positive definite but not Toeplitz, therefore Levinson Durbin recursion

is not used, instead the Cholesky decomposition is used in equation (9.7) for the

parametric solution. In Cholesky decomposition, the covariance matrix denoted

by C is divided into lower and upper triangular matrix [24]. We have not shown

the derivation of the Cholesky decomposition approach in the text.

α = C−1c (9.7)

The covariance approach works on the the whole data set or on the segments of

the signal. The autocorrelation approach is applied on the finite length signal and

any signal beyond the finite length is zero. The covariance approach is not quite

practical for implementing the model using real time data because this works

on the whole signal or on the blocks and the samples are not zero outside the

processed block while the speech signal is generally processed as a finite length

signal.

Similar to figure 9.2, in figure 9.3, we see the analysis of the signal model using

covariance approach. In a, we see the segment of the speech signal. In b, we see

the frequency response of the LP filter which parameters extracted by covariance

approach. In c, we wee the pole position of the covariance approach and in d, we

see the excitation which is the output of the filter and this is white noise.
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Figure 9.3: Signal model: Covariance approach
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9.3 The Burg Approach

The Burg approach is an order recursive least-squares linear predictor. There

order recursive means that if the model is of p th order, we can compute the

model parameters of the model order p+ 1. The autocorrelation and covariance

approach are fixed order algorithms meaning that they are not order recursive.

This says if we change the order of the model, we need to repeat the whole

computations. The Burg approach uses both the forward and backward error

minimization approach. We have introduced the forward prediction and its error,

now we will introduce the backward prediction (BP) and its error. The order

recursive algorithm interconnects the optimum filtering and the FLP and the

BLP problems. The optimum filtering refers to the system which response is

closest to the desired response. The Burg approach needs to consider the time

instance n and the order p such that i = 1, 2, · · · , p.
Some terminologies of the Burg approach as the excitation, the speech input

and the forward and backward prediction errors are shown in figure 9.4. In figure

9.4, we observe how the forward and backward predicted value are estimated

from the same observation using the same amount of samples. We name now the

forward prediction error e[n] as ef [n] for an easier manipulation and it is written

in equation (9.8) where f denotes forward.

ef [n] = s[n]− ŝ[n] = s[n]−
p∑
i=1

αis[n− i] (9.8)

Backward Prediction In the backward prediction shown in equation (9.9)

the current sample is computed from p many future samples. The equation

is expanded in equation (9.10). βi is the backward prediction coefficient for

i = 1, 2, · · · , p.

ŝ[n− p] =

p∑
i=1

βis[n− i+ 1] (9.9)

ŝ[n−p] = β1s[n−p+1]+β2s[n−p+2]+β3s[n−p+3]+· · ·+βps[n] =

p∑
i=1

βis[n−i+1]

(9.10)

Now if we write the signal s[n − p] using backward prediction we arrive at

equation (9.11). There eb is backward prediction error where b denotes backward.
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ŝ[n− p]] =

p∑
i=1

βis[n− i+ 1] + eb[n] (9.11)

Now the backward prediction error in equation (9.12) is the difference between

the current sample and the current backward predicted sample. In equation

(9.12), ′ denotes transpose. We have used T as a time frame in chapter 13 even

though T is a conventional transpose notation. For fixed order, we simply write

eb[n].

eb[n] = s[n− p]− ŝ[n− p] = s[n− p]− β ′s[n− p] (9.12)

The backward prediction gives rise to the following linear equations in equa-

tion (9.13). By rearranging equation (9.13) we arrive at equation (9.14). Here r

is again autocorrelation function.

β0r[p− 1] + β1r[p− 2] + β2r[p− 3] + · · · · · ·+ βp−1r[0] = r[p]

β0r[p− 2] + β1r[p] + β2r[p− 4] + · · · · · ·+ βp−1r[1] = r[p− 1]

β0r[p− 3] + β1r[p− 4] + β2r[p− 5] + · · · · · ·+ βp−1r[2] = r[p− 2]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
β0r[0] + β1r[1] + β2r[2] + · · · · · ·+ βp−1r[p− 1] = r[1]

(9.13)

βp−1r[0] + βp−2r[1] + βp−3r[2] + · · · · · ·+ β0r[p− 1] = r[p]

βp−1r[1] + βp−2r[0] + βp−3r[1] + · · · · · ·+ β0r[p− 2] = r[p− 1]

βp−1r[2] + βp−2r[1] + βp−3r[0] + · · · · · ·+ β0r[p− 3] = r[p− 2]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
βp−1r[p− 1] + βp−2r[p− 2] + βp−3r[p− 3] + · · · · · ·+ β0r[0] = r[1]

(9.14)

Now we can write the backward prediction by equation (9.15) similar to the

forward prediction equation (8.27) derived in chapter 8.
r[0] r[1] · · · r[p− 2] r[p− 1]

r[1] r[0] · · · r[p− 1] r[p− 2]
...

...
...

...
...

r[p− 1] r[p− 2] · · · r[1] r[0]



β1

β2

...

βp

 =


r[p]

r[p− 1]
...

r[1]

 (9.15)

Now if we compare equation (9.15) with equation (8.27), we obtain the matrix

Φ, the backward prediction coefficients β and the vector rb in a matrix and vector
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form.

Φ =


r[0] r[1] · · · r[p− 2] r[p− 1]

r[1] r[0] · · · r[p− 1] r[p− 2]
...

...
...

...
...

r[p− 1] r[p− 2] · · · r[1] r[0]

 β =


β1

β2

...

βp

 rb =


r[p]

r[p− 1]
...

r[1]


Since the matrix Φ is Toeplitz and symmetric in equation (8.27), we can

rearrange this equation (8.27). Now if we compare equation (9.15) with equa-

tion (8.27), and rewrite equation (8.27) by equation (9.16), we find the relation

between backward prediction coefficients β and forward prediction coefficients α.
r[0] r[1] · · · r[p− 2] r[p− 1]

r[1] r[0] · · · r[p− 1] r[p− 2]
...

...
...

...
...

r[p− 1] r[p− 2] · · · r[1] r[0]



αp
αp−1

...

α1

 =


r[p]

r[p− 1]
...

r[1]

 (9.16)

From equation (9.15), equation (9.16) and equation (8.21) given in chapter 8,

we interconnect the BLP coefficients. β is the reverse version of FLP coefficients

α which is also shown in equation (9.17).

β =


β1

β2

...

βp

 =


αp
αp−1

...

α1

 = αb (9.17)

In equation (9.10), r[i] = E[s[n]s[n−i]] for i = 1, 2, · · · , p and n = 0, 1, · · · , N−1

Thus the solution to the BLP is written in equation (9.18).

β = Φ−1r

αb = Φ−1r
(9.18)

In the Burg level approach, the prediction coefficients are achieved by minimizing

the average of the forward and backward errors shown in equation (9.19). ef and

eb are defined in equation (9.8) and equation (9.12). Here we used the forward
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and backward quadratic errors.

efbp =
1

N

N−1∑
n=0

p∑
i=1

[{ef [n, i]}2 + {eb[n, i]}2] (9.19)

As mentioned, the quality of the error is depending on the selection of the co-

efficients α. These are obtained by equation (9.20) Levinonson-Durbin recursion

approach [80]. In equation (9.20), κ is the reflection coefficients. One way to find

this is lattice filter realization. Thus the error interpretation can be done using

lattice filtering. Next we have briefly discussed this.

αi[n] = αi−1[n] + κiαi−1[i− n] (9.20)

Benefits of FLP and BLP Error Computations: The BLP and FPL

convey the same statistical information of the signal but a combination of both

BLP error and FLP error generate more error points. The results in improved

estimate of the AR parameters [121]. Thus (N−p) forward and (N−p) backward

LP errors may summarized as :

efbp =

[
efp
ebp

]
efbp =

[
Sp
S
′
pJ

]
efbp =

[
1

αfbp

]
(9.21)

Sp =


s[p+ 1] s[p] · · · s[1]

s[p+ 2] s[p+ 1] · · · s[2]
...

...
...

...

s[N − 1] s[N − 2] · · · s[N − p+ 1]

s[N ] s[N − 1] · · · s[N − p]

 ; s =


s[p+ 1]

s[p+ 2]
...

s[N − 1]

s[N ]

 (9.22)

J =


0 0 . . . · · · 1

0 0 0 . . . 0

. . . . . . . . . . . .

0 1 0 . . . 0

1 0 0 . . . 0

 (9.23)
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Similarly,

S
′

pJ =


s[1] s[2] · · · s[p+ 1]

s[2] s[1] · · · s[p]
...

...
...

...

s[N − p+ 1] s[N − p+ 2] · · · s[N − p]
s[N − p] s[N − p+ 1] · · · s[N ]

 ; s
′
=


s[N ]

s[N − 1]
...

s[p+ 2]

s[p+ 1]

(9.24)

efp =


efp [p+ 1]

efp [p+ 2]
...

efpN − 1]

efp [N ]

 ; ebp =


ebp[p+ 1]

ebp[p+ 2]
...

ebpN − 1]

ebp[N ]

 ;αfbp =


αp[1]

αp[2]
...

αp[p− 1]

αp[p]

 (9.25)

9.3.1 Lattice FIR Filter

The lattice structure is useful in modeling the layer or the cross section of the tube.

Each section or the stage of the lattice filter indicates the cross sectional area of

the vocal tract tube. The lattice predictor combines the forward prediction (FP)

error and backward prediction (BP) error in a single cascaded structure. This

gives the lattice prediction coefficient. Figure 9.5 is a pth order lattice structured

filter. Each rectangular box in the figure is embedded with the backward and

forward error formulation and a computation of the reflection coefficients which

are known as PARCOR coefficients. Changing the filter length leads to a com-

pletely new set of filter coefficients. The order of the predictions and the stages

of the lattice predictor are the same. If the prediction order is p, then the lattice

structure has p many stages. The the prediction coefficients α can be directly

computed from the lattice filtering. Reflection coefficients and its relation to the

vocal tract model are introduced in chapter 2 in section 2.4.2. We show here how

the reflection coefficients can be computed from the LP coefficients. A detailed

description of the lattice filter and its structure can be found in [60], [24].

9.3.2 Reflection Coefficients and Linear Prediction Coef-
ficients

Here we show how reflection coefficients κ can be derived from the LP coefficients.
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For the order and time recursive case, we consider the model order and the

time thus we have seen ŝ[n] =
∑i

i=1 αp[i]s[n− i] for i = 1, 2, · · · , p. Now we look

at figure 9.6, we say equation (9.26) holds for the input and output relation as

input is denoted as s and output denoted as y.

e
0

[n]b z
-1

e [n-1]b
1

e
1
f [n]

e
1

[n]b

e
0
f [n]

κ

κ 
s[n]

=y[n]

1

1

Figure 9.7: Ist order lattice structure

y[n] = s[n] + α1[1]s[n− 1] (9.26)

We see figure 9.7, we rewrite equation (9.26) as equation (9.27).

ef0 [n] = eb0[n] = s[n]

ef1 [n] = ef0 [n] + κ1e
b
0[n− 1] = s[n] + κ1s[n− 1]

eb1[n] = κ1e
f
0 [n] + eb0[n− 1] = κ1s[n] + s[n− 1] (9.27)

Now equation (9.26) and equation (9.27) allow us to say the first order reflec-

tion coefficient κ1 is α1[1] and this is shown in equation (9.28).

κ1 = α1[1] (9.28)

Similarly for the order p = 2, we have

y[n] = s[n] + α2[1]s[n− 1] + α2[2]s[n− 2] = s[n] +
2∑
i=1

α2[i]s[n− i] (9.29)

y[n] = s[n] + α2[1]s[n− 1] + α2[2]s[n− 2] (9.30)
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ef2 [n] = ef1 [n] + κ2e
b
1[n− 1]

eb2[n] = ef1 [n]κ2 + eb1[n− 1]

Now we arrive at equation (9.31)

ef2 [n] = s[n] + κ1(1 + κ2)s[n− 1] + κ2s[n− 2] (9.31)

The first stage lattice filter is just discussed in equation (9.28), similarly the

second order reflection coefficients can be obtained lattice filter gives equations

(9.33) and (9.31).

α2[2] = κ2 and α2[1] = κ1(1 + κ2) (9.32)

κ2 = α2[2]

κ1 =
α2[1]

1 + α2[2]

Similar to the reflection coefficients κ1 and κ2, κm can be computed for the pth

ordered lattice structured filter shown in figure 9.5. The output of the (p − 1)th

stage corresponds to output of (p − 1)th order lattice filter. Thus if y[n] is the

output then y[n] = efp−1[n]

efi [n] = efi−1[n]− κiebi−1[n− 1] (9.33)

ebi [n] = ebi−1[n− 1]− κiefi−1[n] (9.34)

Now from equation (9.34), figure 9.5 and figure 9.6, we can define the reflection

coefficient κi by equation (9.35). This gives the reflection coefficients for the

lattice filter.

κi =

∑N−1
n=0 {ebi−1[n− 1]efi−1[n]}∑N−1

n=0 {e
f
i−1[n]}

(9.35)

Applying equation (9.35), we get the error of the Burg approach in terms of

forward and backward error prediction in equation (9.36).

efb =
1

N

N−1∑
n=0

p∑
i=1

[(efi−1[n]− κiebi−1[n− 1])2 + (ebi−1[n− 1]− κiefi−1[n])2] (9.36)
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Finally minimization of equation (9.36) gives us the optimum coefficients that is

the reflection coefficients in equation (9.37).

κi =
2
∑N−1

n=0 {ebi−1[n− 1]efi−1[n]}∑N−1
n=0 e

f
i−1

2
[n] + ebi−1

2
[n]]

(9.37)

Now substituting κ in equation (9.20), we obtain the coefficients of signal

model using the Burg approach.

In figure 9.8, we see the analysis of the signal model using Burg approach. In

a, we see the segment of the speech signal. In b, we see the frequency response

of the LP filter. In c, we see the pole position of the Burg approach which says

the system is stable. In d, we see the output of the filter and this is white noise.
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Figure 9.8: Signal model: Burg approach
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9.4 ULS Approach

In this approach the error in equation (9.42) is minimized by computing the

average of the sum of the squares of the estimated forward and backward linear

prediction errors.The forward and backward prediction errors are computed in

order to compute their combined error. In equation (9.17), we have seen the

backward prediction coefficients are the reverse version of the forward prediction

coefficients. The ULS approach is described in details [122], [121]. The ULS

approach is modified covariance method. This is based on optimization with

respect to all the prediction coefficients, whereas the Burg method performs a

constrained least squares minimization with respect to only a single prediction

coefficient.

J introduced in equation (9.23). This represents p + 1 by p + 1 dimensional

reflection matrix and ′ denotes transpose. Using the reflection matrix, we get a

relation between forward linear prediction and backward linear prediction. This

is shown in equation (9.38).

[βp1 , β
p
2 , · · · , βpp ]

′
= [αpp, α

p
p−1, · · · , α

p
1]
′
= Jα (9.38)

We get the forward prediction error efp [n] and backward prediction error ebp[n]

in equations (9.39) and (9.40). The total N − p forward linear prediction error

elements and the N − p backward linear prediction error elements can be formed

from N data samples without searching through all the available data.

FLP error: efp [n] = s[n]− ŝ[n] = s
′

p[n]αfbp (9.39)

BLP error: ebp[n] = s[n− p]− ŝ[n− p] = s
′

p[n]Jαfbp (9.40)

The vector notations of sp and αfbp are formulated in equation(9.41).

sp[n] =


s[n]

s[n− 1]
...

s[n− p+ 1]

s[n− p]



′

;αfbp =


αp[1]

αp[2]
...

αp[p− 1]

αp[p]



′

; Jαp =


αpp
αpp−1

...

αp1
1

 (9.41)

The sum of the forward and backward linear prediction squared error ηfb is

written in equation (9.42). This generates p+ 1 set of linear equations shown in
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equation (9.42).

ηfbp =
1

N

N−1∑
n=p

{[|efp [n]|2 + |ebp[n]|2]} (9.42)

Substituting the values of the ef [n] and eb[n], we arrive at equation (9.43).

ηfbp =
N−1∑
n=0

[(s[n]−
p∑
i=1

αp[i]s[n− i])2 + (s[n− p]− β ′ps[n− p])2] (9.43)

The error minimization ηfbp with respect to the prediction coefficients yields a

set of linear equations which can be formulated by equation (9.44) where j =

1, 2, 3, · · · , p.
p∑
i=1

αp[i]r[j, i] = r[j, 0] (9.44)

In equation (9.44), r[i, j] is computed by equation (9.45).

r[i, j] =
N−1∑
n=p

{{s[n− i]s[n− j]}+ {s[n− p+ i]s[n− p+ j]}} (9.45)

Similar to equation (8.25) we have coefficient matrix Φ obtained from r[i, j]

which is computed by equation (9.45). Thus we get matrix of the data vector

and compute the inverse of the matrix using fast modified QR factorization. This

is called an unconstrained model because the matrix Φ of the data vector is not

Toeplitz and the inverse can not be solved by the Levinson-Durbin approach what

is the case in other standard signal models.

Equation (9.45) generates a set of (p + 1) times (p + 1) linear equations in a

matrix Φ similar to equation (8.28) discussed in chapter 8.

Φα =

[
ηfbp
0

]
(9.46)

Φ =
N∑

n=p+1

(sp[n]s
′

p[n] + Jsp[n]s
′

p[n]J) (9.47)
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where

sp[n] =


s[n]

s[n− 1]
...

s[n− p+ 1]

s[n− p]

 s
′

p[n] =


s[n− p]

s[n− p+ 1]
...

s[n− 1]

s[n]


We see the analysis of the signal model in figure 9.9 using ULS approach using

the same signal segment used in figures 9.2, 9.3, and 9.8. Similar to these figures,

in figure 9.9, we see the segment of the speech signal in a. In the same figure, b

is the frequency response of the LP filter, figure c shows the pole position of the

ULS approach and the output of the filter is white noise in figure d. Here the

peak values in figure b are the coefficients of the AR parameter approximation

and this are better shown in the figure than figures 9.2, 9.3, and 9.8. In figure

b, we can clearly see the six peaks as representations of formants following the

model order 12 as each two poles represents each formant. Thus using the ULS

approach, we have six formants for 12 order LP model in b in figure 9.9.

In equation (9.46), 0 is a p × 1 length zero vector and ηfbp is a p × 1 length

vector.

The problem to the coefficients is then solved by fast covariance QR factor-

ization. For this we followed a reference [122]. The error η is not solved by using

Levinson-Durbin recursion, therefore it is called unconstrained [60].

Next we discuss a general analysis of different types of linear prediction solu-

tion approaches.

9.5 Analysis of the Signal Models

This analysis is collected from a number of literature that discusses the adaptive

signal analysis for the signal model. Non-stationary speech is managed to follow

the stationary in a mathematical sense for its analysis. The synonym of the

stationary is approximation. Therefore a statistical model is necessary for its

analysis. A stationary random process is not a realistic model for speech. As

mentioned earlier an approximation, one assumes that speech signals keep their

properties in intervals of about 20 ms duration. As a result, a prediction filter

for this speech signal has to be updated according to this time frame. Therefore,

an efficient algorithm for the inversion of the autocorrelation matrix is crucial for
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the application of a predictor.

In our noise solution, we have the Yule-Walker approach for model analysis

and the ULS approach for signal model. In figure 9.10, we have shown the

analysis between these two models and true AR parameters. We see the ULS

approach shows good AR parameters approximation than Yule-Walker approach.

The implementation is based on the reference [98].
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Figure 9.10: Signal model analysis: Yule-Walker approach and ULS approach

Both, the Burg approach and the modified covariance algorithm which is

called here as ULS approach are based on the minimization of the forward and

backward squared prediction errors. The ULS approach is based on the mini

mization of the prediction coefficients. The Burg approach sets constraints on

the LP coefficients so that this coefficients satisfy the Levinson recursion and

obtain least squares optimization using reflection coefficients in order to solve

AR parameters problems. Some problems such as spectral line splitting, bias

of the frequency estimates are eliminated in ULS approach. The only problem

applying the ULS approach is its weakened stability issue of the LP coefficients
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but mainly it does not appear when the ULS is structured following stable lattice

filters which is used here. Next we summarize some important aspects.

• The ULS approach and Burg approach can be analyzed using the lattice

structure. This is useful to capture the physical speech production process

efficiently.

• The Yule-Walker introduces poor estimated parameters [89].

• The problems such as line splitting, frequency bias, and spurious or false

peaks are observed in the Burg approach.

• The ULS approach may result in instability where the Yule-Walker ap-

proach and Burg approach may generate stable model analysis. In spectral

estimation, a model stability is not a major concern.
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Chapter 10

Steady-unsteady Noise Solution

Outline In this chapter we discuss how the steady-unsteady time-varying noisy

signal is treated for the solution to our noise problem. This is similar to the noisy

speech enhancement discussed in [34]. Here our signal model is based on the ULS

approach, and the noise is modeled by applying the Yule-Walker equation. The

noise is minimized in the sub-bands of the signal. The sub-bands are achieved by

an M-band cosine modulated quadrature mirror filter bank (QMF) developed in

[132] and the noise is minimized by the spectral minimization method proposed in

[38]. Afterwards the Colored Noised Kalman filtering is applied in each sub-band

in order to enhance the speech. The signal and the noise models for the Kalman

filtering are discussed in chapters 8, 9. This chapter first gives a short overview

about the structure of the sub-bands and how this is used, next the spectral

minimization algorithm, finally the Kalman filtering operation as a treatment

of the steady-unsteady time-varying noisy signal are discussed. We explain the

existing algorithms for a complete analysis of our noise problem and its solution.

Though the algorithm has already been applied in multimedia signal processing,

the explanation of the problem definitions and the explanations of each subparts

of the whole application are described in the chapter using our own terminology

and applying our own concepts based on the literature review.

10.1 The Scenario

The scenario is described first only in some overview. Details will come later. We

model the scenario in a natural way: We have noisy speech observations y[n] at

time indices n which are mixed by clean speech s[n] and background noise b[n].
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Therefore we have the observation y[n] given in equation (10.1).

y[n] = s[n] + b[n] (10.1)

The main probllem now is: To obtain the clean speech s[n] itself.

The major difficulty is that it is directly unaccessible. At the current situation,

one simple way we can obtain it is if we know b[n] and subtract this from the

observation but b[n] is unkown too. For this reason the only way out is to estimate

s[n]. Now the challenge is to provide at least a good or even the best estimate.

In the sequel we will approach this challenge.

Our starting point is to estimate y[n] and compare it with the obsevation.

ŷ[n]

For this we assume that we have a model of the situation that allows us to

compute the output y[n]. For getting this our model tries to reflect the partic-

ipating parts of the human body, in particular the vocal tract. While such a

model is available in its principle structure but it contains unknown parameters.

These parameters are approximately obtained in chapter 8 and 9 using the LPC.

For this reason, the computed ŷ[n] will not coincide with the observed value. It

is only an approximation. The goal is to make the approximation as good as

possible. This can be done by changing the parameters that are underlying the

computation. There are different ways one can attain this unknown values.

First,we return to equation (10.1). Now suppose, we have two different esti-

mated values sa[n] and ba[n] as well as sb[n] and bb[n] from some a and b obtained

at some time index n. The best estimated value would be the one that would

provide less differences between the observed value and estimated value.

We look at the signal s and noise b in the following two equations.

s[n] =

p∑
i=1

αis[n− i] + gsus[n]

b[n] =

q∑
k=1

βkb[n− k] + gbub[n] (10.2)

The first term on the right side of the first equation ( this is first introduced in

chapter 7 in section 7.3, we maintain the same equation number for a convenience)

is a linear combination of some past values of s[n] with coefficients αi for i =

1, 2, · · · , p that have to be determined. The second term in this equation describes
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a weighted white noise. We have a linear combination of some past values of b[n]

with coefficients βk for k = 1, 2, · · · , q that have to be determined.

Here we have equation (10.2) for the speech s[n] and equation (10.1) for the

noise b[n]. These equations holds if we have the coefficients and we do the arith-

metic in the right way. As mentioned, initially the coefficients are not known and

we have to determine them.

The speech s[n] is modeled by the ULS approach discussed in chapter 9 in

section 9.4 and the noise b[n] is modeled by applying the standard Yule -Walker

equation discussed in chapter 8 in section 8.3. Both of them use the minimizing

the mean squared error (MSE) criteria of the least squares approach. In the

MSE criteria the minimum mean squared error between the observed value and

estimated value is investigated.

As said, a problem is that the computed ŷ is not exactly the observed y.

Thus we have an optimization problem which results when we make use of the

equations (7.12), (10.2) in equation (10.1) in a recursive way.

Given the background of the noisy situation, the handling of the situation is

taking place in three different steps that are described in [34].

• Sub-band decomposition

• Noise tracking in the sub-band by spectral noise minimization

• Colored Noise Kalman filtering

In the sub-band decomposition and synthesis stage, each sub-band is attached

with a noise tracking by spectral minimization and colored noisy Kalman filtering

operation as shown in figure 10.1. This says the signal is first decomposed into

m-bands using analysis filter hm which z-transform is Hm. The sub-band signal

is then used first for noise suppression by a spectral minima tracking algoithm,.

Then an m-bands Kalman filters are used to enhanced the spectrally wighted

sub-band signals. After the enhancement, the decomposed signal is synthesized

to x using synthesis filter fm which z-transform in Fm. Next, we describe first

signal decompositions, then the noise tracking and finally the Kalman filtering

operation.

10.2 Sub-band Analysis

A sub-band decomposition is a transformation that decomposes the signal into

some sub-bands. Each sub-band has the frequency of each band. This is useful to
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manipulate the information of the signal and to analyze the signal in smaller sec-

tions rather than the whole signal. The sub-band decomposition is used in many

applications. A common application of sub-band decomposition is a speech cod-

ing. A signal can be split into sub-bands in different ways as for instance by

applying FFT based filter bank such as quadrature mirror filter (QMF) bank

or a wavelet transformation. Some common concepts such as decimation, inter-

polation, sub-band decomposition, sub-band synthesis are used in the sub-band

decomposition of a signal. The decimation is the process of decreasing the sam-

pling rate and the interpolation is the process of increasing the sampling rate.

A basic sub-band decomposition system has an analyzer and a synthesizer.

In the analysis, the sampling frequency fs of input signal s[n] is divided into sub-

bands via the analysis filter bank. For example, a two channel based sub-banded

signal may have the signal bands s0[n] and s1[n]. Each sub-band is also known as

channel. Each sub-band is decimated at a decimated sampling rate for instance
fs
2

. In the synthesis section, the decimated signal bands are interpolated via a

synthesis filter bank [83], [84], [79].

We only investigate the M-band sub-band approach and do not discuss the

other methods. For this purpose we start with the concept of M-band filter banks.
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M-band Filter Banks We explain here how we apply the M-band quadratic

mirror filter band (QMF) to split the signal in to sub-bands. As mentioned

before, this is already applied in [34]. This QMF typed sub-band uses the cosine

modulated low pass prototype filter in the polyphase FIR filter structure to realize

the M-band filter banks with a nearly but not totally perfect reconstruction.

Therefore it is called pseudo typed QMF sub-band analysis [7], [6]. The properties

of this filter-bank are mentioned in [7] and a list of the main properties is given

next.

• The FIR filter is designed using the window method which uses the Kaiser

window function [119].

• The filter bank uses a polyphase FIR filter structure (see Appendix).

• The responses are uniform linear phases.

• This structure uses only a single prototype filter and a cosine modulation.

Therefore it is simple to design.

• The sampling rate is critical; that means the number of sub-bands is equal

to the decimation factor.

In figure 10.2 we see how the signal s[n] is decomposed in the analysis section

and regenerated in the sythesis section:

• In the analysis section, s[n] is decomposed into sub-bands vm[n] for m =

0, 1, · · · ,M − 1. An analysis filter hm[n] is used for signal decompositions.

This is shown in equation (10.3) (the analysis filter is defined in equation

(10.10)). The signal in each sub-band vm[n] is then down sampled by some

factor i and generates um[n]. This is shown in equation (10.4). Here i = 32.

The QMF sub-band decomposition has a critical sampling rate. This means

that the number sub-bands, the down sampling and the up sampling has

same factor; if the sub-band

vm[n] = hm[n]⊗ s[n] (10.3)

um[n] =

{
vm[in] for n = 0,±i,±2i, · · ·
0 Otherwise

(10.4)
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• In the synthesis section we have first the up-sampled sub-banded signal

wm[n] and the up-sample factor is j. Here i and j are the same integer

valued numbers. This means j = 32. This is shown in equation (10.5).

The up-sampled sub-banded signals are then synthesized into xm[n] by the

synthesis filter fm[n] as it is shown in equation (10.6) (the synthesis filter is

defined in equation (10.8)). The synthesis signals xm[n] are then summed

up to y[n] which is approximately equal to s[n]. This is shown in equation

(10.7).

wm[n] =

{
um[n

j
] for n = 0,±j,±2j, · · ·

0 Otherwise
(10.5)

xm[n] = fm[n]⊗ wm[n] (10.6)

y[n] =
M−1∑
m=0

xm[n] ≈ s[n] (10.7)
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Figure 10.2: Pseudo Cosine Modulated M-Band QMF

The basic elements and properties of QMF are now:

• It uses only one prototype filter for the signal decomposition as the analysis

filter and the synthesis filter are mirror images of each other.
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• The sampling rate conversion in the analysis and synthesis case are equal

to the number of decomposition bands. This is called critical sampling. In

this case the up-sampling rate and the down-sampling rate are equal.

• The analysis and the synthesis filter are mirror images of each other. This

means if fm[n] is a synthesis filter, then equation (10.8) is satisfied.

fm[n] = hm[L− 1− n] (10.8)

Filter Coefficients The analysis and synthesis filters are carefully designed to

cancel aliasing and imaging distortions shown in equation (10.9). The coefficients

of the filters are real. They are derived by a cosine modulation instead of an ex-

ponential modulation that happens to be in the discrete time Fourier transform

(DFT) based filter banks. The adjacent sub-band aliasing is cancelled by estab-

lishing precise relationships between the analysis and synthesis filters hm[n] and

fm[n]. These conditions are given in equations (10.10) and (10.11).

ŝ[n] =
1

M

L−1∑
l=0

M−1∑
m=0

s[m]hm[lM − n]fm[l −Mn] (10.9)

In equations (10.10) and (10.11), Ω = (−1)mπ
4

and w[n] corresponds to the L

sample length of the Kaiser window function.

hm[n] = 2w[n] cos{ π
M

(m+ 0.5)(n− L− 1

2
) + Ωm} (10.10)

fm[n] = 2w[n] cos{ π
M

[(m+ 0.5)(n− L− 1

2
)− Ωm} (10.11)

At the analysis stage, the input signal s[n] is processed by a (L − 1)th order

FIR filter. The input is divided into M sub-bands in the analysis stages. In the

synthesis stage, y[n] is a combination of the sub-bands. The synthesis filter is the

mirror image of the analysis filter. Both the analysis and synthesis section uses

FIR filter based on Kaiser window function.

10.3 Spectral Minima Tracking in Sub-bands

Now the noise level in each band in the M-band signals is tracked down to its min-

imum following the spectral minimum tracking algorithm described in [38]. The

algorithm is based on the spectral amplitude estimation in the sub-bands. This
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estimation is based on the minimum mean squared error estimation (MMSE).

The goal is here to track the local minima of the noisy measurement signal by

computing the local minima of the speech signal by using some constants. These

are determined experimentally.

The spectral minima tracking is a type of spectral weighting. This is a spectral

amplitude estimator. This is a typed of minima tracking in each sub-band. This

attenuates different spectral regions of the mixed noisy speech signal and the

noise with different constant known factors. An aim of this is to obtain less noisy

signal. In this approach the noise estimate is updated continuously tracking the

minima of the noisy speech in each sub band. The concept is that ehe noise

estimate increases when ever the noisy speech power increases.

We use the power spectrum and first introduce the basic notions. In equation

(10.12), Psm(k) denotes the power spectrum of the mth band signal Sm(k). It

is the kth spectral component of mth sub-band of the noisy speech signal. This

has some how similarity the spectral subtraction method. In the equations we

see first the smoothed power spectral density of the observation using smoothing

factor rho and the spectrum of the observation. The noise spectral density is

updated until it equals to power spectral density of the observation.

Pbm(k) is the noise power spectrum of the Bm(k). Here B is the noise vector.

It is the kth spectral component of the m sub-band. The short time noise power

spectrum is needed to estimate the spectral amplitude of the noisy signal. The

noise spectrum estimation performs some type of temporal minima tracking of

Psm(k). This spectral estimator has a build-in minimum tracking τ term in

equation (10.14).

In equation (10.12), Psm(k) is smooth noisy signal power spectral density of k

component at m band. This is also the local minima of the noisy speech signal.

|Ym(k)| is noisy signal spectrum of k component at m band. In equation (10.14),

Pbm(k) is noise power ppectral density of k component at m band ρ is the smooth-

ing factor and typically it is from 0.7 to 0.9 which is selected experimentally. τ

is the look a head factor which controls the adaptation time of the local minima

Psm(k). Typical parameter selections for ρ = 0.7, τ = 0.96, and υ = 0.998 in

order to adapt the noise in each sub-bands.

• Smoothed sub-band power spectrum is given in equation (10.12):

Psm(k) = ρPsm−1(k) + (1− ρ)|Ym(k)|2 (10.12)

• If noise power spectral density Pbm(k) at m band which has frequency com-
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ponent k is less than than the smoothen signal as shown in equation (10.13),

then it is updated by equation (10.14).

Pbm−1(k) < Psm(k) (10.13)

• If Pbm(k) is equal to smoothed noisy speech power density spectrum Psm(k)

i.e. eq (10.15), then it stops updating.

Pbm(k) = υPbm−1(k) +
1− υ
1− τ

(Psm(k)− τPsm−1(k)) (10.14)

• Else

Pbm(k) = Psm(k) (10.15)

10.4 Kalman Filter

One can estimate something before an event has happened (priori) or after an

event has happened (posteriori). In our context this leads to the next concepts.

The detailed of this derivations can be found in [21], [127].

10.4.1 State space derivation

First we reformulate the equations formulated for y[n], s[n] and b[n] in terms of

vectors and matrices where we use bold face letters. The state information is

written in the state space form in equation (10.16). In the equation, n is the time

varying index and the state vector s at time n+1 is a p length vector of the linear

combination of p previous vectors using a p× p dimensional matrix A and some

additional disturbance vector u of length p that is modeled as zero mean random

white noise which is perpetrated by a p× 1 dimensional matrix gs at time n.

s[n+ 1] = A[n]s[n] + gs[n]u[n] (10.16)

Equation (10.16) is rewritten in equation (10.23).

s[n+ 1] = γT [n]s[n] (10.17)

The steady background noise defined by an AR process is written in equation

(10.18). In the equation, n is again the time index. The equation says if we

look at the noise vector b at time n + 1, then it is a linear combination of a

q × q dimensional matrix D[n] and noise vector b at time n with an additional
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disturbance ν which is perpetrated by a q × 1 dimensional matrix gb at time n.

ν is modeled as zero mean random white noise.

b[n+ 1] = D[n]b[n] + gb[n]ν[n] (10.18)

Using an abbreviation ψ, equation (10.18) is rewritten in equation (10.19). ′

denotes a transpose symbol.

b[n+ 1] = ψ
′
[n]b[n] (10.19)

The definitions of s[n], b[n], gs , gb, γ, ψ as well as of the matrices A[n] and D[n]

are given below:

s
′
[n] =

[
s[n− 1], s[n− 2], s[n− 3], · · · , s[n− p+ 1], s[n− p]

]
p×1

b
′
[n] =

[
b[n− 1], b[n− 2], b[n− 3], · · · , b[n− q + 1], b[n− q]

]
q×1

g
′

s =
[
0, 0, · · · , 0, 1

]
p×1

; γ
′
=
[
0, 0, · · · , 0, 1

]
p×1

g
′

b =
[
0, 0, · · · , 0, 1

]
q×1

; ψ
′
=
[
0, 0, · · · , 0, 1

]
q×1

A[n] =


0 1 . . . · · · 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

α1 α2 a3 . . . αp


p×p

D[n] =


0 1 . . . · · · 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

β1 β2 β3 . . . βq


q×q

(10.20)

The αi and βi are coefficients to be determined. How these coefficients are

determined using the ULS approach and the Yule-Walker equation are explained

in chapter 8 and chapter 9.

The observation equation is given in equation (10.21). In the equation, n is the

varying time index. The equation says if we look at the observation vector y at

time n, then we see that it is a linear combination using a q×p dimensional matrix

C[n] at time n from the previous q states of the state s[n] and disturbance which

is modeled as a colored noise b. In this equation, a measurement disturbance

matrix G[n] times measurement disturbance w[n]. The noisy observation vector

given by y at time n+ 1 is shown in a state space form in equation (10.21).

y[n+ 1] = C[n]y[n] + G[n]w[n] (10.21)

132



The detailed of equation (10.21) is:

C[n] =

[
A[n] 0

0 D[n]

]
,y[n] =

[
s[n]

b[n]

]
,G[n] =

[
gs 0

0 gb

]
,wn =

[
u[n]

v[n]

]

un and νn are zero-mean white noise sequences. The covariance of un is σ2
u[n]

and the covariance of νn is σ2
b [n] such that equation (10.22) hold and summarized

W[n] is covariance matrix of w[n].

W[n] =

[
σ2
u[n] 0

0 σ2
b [n]

]
(10.22)

Now the The state s and the noise b are not correlated. The noisy observation

vector y at time n is a sum of speech s and noise b. Here we introduce a ma-

trix H[n] to rewrite the state space definition of the observation y. Now our

observation vector is written in equation (10.23).

Observation :y[n] = H[n]Ty[n] =
[
γ[n] ψ[n]

] [s[n]

b[n]

]
(10.23)

Given the model parameters, the computations of the M-band colored noisy

Kalman filtering operation is taking place in two steps. For this we read the

literature [31], [46], [127], [21], [10]. The computational steps are:

• Prediction of the measurement.

• Update the predicted estimation.

The computational steps are discussed next.

10.4.2 Prediction Estimates

The prediction estimate of y[n] at time n given the value for n− 1 is y[n|n− 1].

ŷ[n|n− i] is the predicted value of y[n] based on the observation samples up to

time [n− i]. In order to estimate the error, we have to consider the development

of the error over time.

The innovation or the error signal e[n|n] is given in equation (10.24).

e[n|n] = y[n]− ŷ[n|n] (10.24)
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Similar to equation (10.24), we have equation (10.25).

e[n|n− 1] = y[n]− ŷ[n|n− 1] (10.25)

The prediction equation is shown in equation (10.26).

ŷ[n|n− 1] = C[n− 1]ŷ[n− 1] (10.26)

By using equation (10.26), equation (10.25) can be derived as shown in equation

(10.27).

e[n|n− 1] = y[n]− ŷ[n|n− 1]

e[n|n− 1] = C[n− 1]ŷ[n− 1] + G[n]w[n]−C[n− 1]ŷ[[n− 1]|[n− 1]

e[n|n− 1] = C[n− 1]{[ŷ[n− 1]− ŷ[[n− 1]|[n− 1]]}+ G[n]w[n]

(10.27)

Equation (10.27) can be re-written as shown in equation (10.28).

e[n|n− 1] = C[n− 1]e[(n− 1|n− 1)] + G[n− 1]w[n− 1] (10.28)

The covariance matrix of the prediction error e[n|n− 1] is shown in equation

(10.29). In the equations ′ denotes the transpose.

P[n|n− 1] = E{e[n|n− 1]e[n|n− 1]
′
} (10.29)

Similar to equation (10.29), we have equation (10.30).

P[n|n] = E{e[n|n]e
′
[n|n]} (10.30)

Substituting the value of the prediction error shown in equation (10.29), the

prediction error covariance matrix P[n|n− 1] is shown in equation (10.31) [21].

P[n|n− 1] = C[n− 1]P[n− 1|n− 1]C
′
[n− 1] + GW [n]G

′
(10.31)

10.4.3 Update Predicted Estimation by Correction

The next step is then to estimate the current estimate ŷ[n|n] from ŷ[n|n−1]. This

leads to the new state update estimation equation shown in equation (10.32).

ŷ[n|n] = ŷ[n|n− 1] + K[n](y[n]−H
′
[n− 1]ŷ[n|n− 1]) (10.32)
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In equation (10.32), the Kalman gain matrix K[n] has to be computed and how

this is computed is shown in equation (10.33).

K[n] = P[n|n− 1]H[n− 1](H
′
[n− 1]P[n|n− 1]H[n− 1])−1 (10.33)

The state variable estimation error, also called the innovation signal, is now

shown in equation (10.34). The innovation is a mixture of the signal and the

noise [127].

e[n|n] = (y[n]−H
′
[n])ŷ[n|n− 1] (10.34)

For the covariance matrix of estimation error we have equation (10.35) and I is

the identity matrix.

P[n|n] = (I−K[n]H
′
[n])P[n|n− 1] (10.35)

Using the Kalman gain for the estimation of the prediction, we can estimate the

clean signal denoted as ŝ by equation (10.36).

ŝ[n] = H
′
ŷ[n|n] (10.36)

In figure 10.3, we see the signal flow diagram of the Kalman prediction and

estimation for the color noisy speech signal. Here, we see the observation consists

of s and noise b. These are predicted first and then estimated using the Kalman

gain K in order to generate estimated s. In this diagram, we see the observation

consists of mixed speech and noise. Both of them are modeled by AR approaches.

The observation is estimated, updated and corrected by Kalman gain matrix K.
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In figure 10.4, we see that time varying steady-unsteady noisy signal is en-

hanced. For this we used 32 sub-bands where each band is 1024 length. The noise

is minimized and the Kalman filter is applied in each sub-band. In this figure,

a is noisy spoken command Offne die Tuer and b is an enhanced version of this

in the time domain. The amplitude and sound level in c and d of the noisy and

enhanced signal are then measured using A-weighting filter (discussed in chapter

3). This filter is used in practice for instance in the acoustic control. The spec-

trum of the noisy and enhanced signal are shown in e and f. We computed the

SNR of this experiment and it is 21.

10.5 Analysis and Evaluations

In this section, we analyze, investigate and compare some speech enhancement

approaches to evaluate our time varying noise treatment approach. These experi-

ments and comparisons are done using our own data. In the figures, the standard

enhanced speech means the application of standard pre-emphasis filter and the

corresponding technique, the specially enhanced signal means the applications of

the redundancy removal approach, the pre-emphasis filter, the mached filter and

the corresponding technique.

10.5.1 Wiener Filter

The Wiener fillter is a kind of competition to the present appoach and therefore

we consider it. In the Wiener filter, y[n] in equat (10.1) is mixed with the desired

signal s[n] and an additive noise b[n]. A common choice of b[n] is an additive

white Gaussian noise. Then y[n] is estimated by the coefficients hi. The signal

s[n] is a short time signal. This means the signal is windowed by a Hamming

windowing (see chapter 8). This generates an estimate of y[n] which is denoted

by ŷ[n] and the difference between y[n] and ŷ[n] is an error e[n]. The error is

minimized by using mean squared error (MSE) shown in equation (10.39). The

accepted signal is the one which give the minimum mean squared error (10.39).

More on the Wiener filter can be found in [126]. (10.37).

ŷ[n] =

p−1∑
i=0

hiy[n− i] (10.37)

e[n] = y[n]− ŷ[n] (10.38)
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E{e2} = E{(y − ŷ)2} (10.39)

In figure 10.5 we see the result of applying the Wiener filter. In the figure, in

a we see the speech signal which is enhanced by using a standard pre-emphasis

filter (see chapter 4). In the same figure, in b, we see our approach that is

the redundancy removed signal is used for strong noise removal by applying the

matched filter and then this signal is enhanced by using the Wiener filter. The

enhanced signal created an additional noisy rhythmic sound. The Wiener filter is

not effective for our hybrid noisy signal. The SNR in this case is approximately

-1.04 (explained in chapter 3).
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10.5.2 Spectral Subtraction

One of the most commonly standard noise reduction methods is the spectral

subtraction. In this method the magnitude spectrum of the noise is subtracted

from the magnitude spectrum of the noisy speech signal. In equation (10.40),

Y (k), S(k) and B(k) are the Fourier transforms of y[n], s[n] and b[n].

Y (k) = S(k) +B(k) (10.40)
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An estimate of the enhanced magnitude spectrum of the signal Ŝ(f) can then

be found subtracting the magnitude spectrum of the noise spectrum from the

magnitude spectrum of the observation signal Y (k). The constants are ζ = 1 and

θ = 1.

|Ŝ(k)|ζ = |Y (k)|ζ − θ|B(k)|ζ (10.41)

In figure 10.6, in a we see the noisy signal enhanced by the spectral subtraction

method and in b we see the noisy signal is specially enhanced. The spectral sub-

traction method did not enhance the speech signal rather this added an additional

noisy sound. The SNR is approximately -3.47.
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Figure 10.6: Evaluation of spectral subtraction and its output

10.5.3 White Noise Kalman Filtering

The Kalman filter is first applied to the speech signal assuming the speech is

corrupted by the white noise [72]. The model is shown in equation (10.42).

The system noise w[n] is a white Gaussian noise. This has zero mean and unit

variance. The measurement noise v[n] is an additive noise which is also zero
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mean and has known variances. Here the signal model is based on the Yule-

Walker equation and the transition matrix A is a p times p dimensional coefficient

matrix, system matrix units B, C is a p times 1 dimensional matrix and s is p

times 1 dimensional vector.

x[n+ 1] = A[n]s[n] + B[n]w[n]

y[n] = C[n]x[n] + v[n]
(10.42)

Applying this Kalman filter to our hybrid noisy speech, we obtained a degraded

speech signal. We observed this when using the standard noise reduction tech-

nique and also using our approach which is a redundancy removal, pre-emphasizing

and strong noise removal and then applying Kalman filter. In figure 10.7, we see

the result of this type of Kalman filter in the hybrid noisy our speech. This filter

is not useful for our application. The SNR is approximately -1.187.
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Figure 10.7: Evaluation of white noise of the Kalman filter and its output
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10.5.4 KEM Filtering using White Noise

In equations (10.16) the system noise u[n] is white noise and in equation (10.23),

the measurement noise w[n] is a known additive noise. The signal model is based

on Yule-Walker equation. The states and parameters which are the coefficients of

the signal model are optimized by expectation-maximization approach in the E-

step and M-step. This is a similar approach that is described in [116] (introduced

next) except that the noise is white and additive. We see the application of this

approach to our signal. This is an inefficient approach for the hybrid noisy speech.

More over the computation time for a single speech signal which has about 26000

samples, this approach takes 2 minutes. The SNR is approximately -1.36.
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Figure 10.8: Evaluation of white noise of the Kalman filter using EM approach
and its output

10.5.5 KEM Approach for Colored Noise

In [116], the colored noisy speech is enhanced by a Kalman filter using an expectation-

maximization (EM) approach. Considering our state space derivations in equa-

tions (10.16) and (10.23), the signal model is based on the Yule-Walker equation,
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the system noise u[n] is the colored noise.This is also modeled by the Yule-Walker

equation. The enhanced speech is then recognized by an HMM based speech

recognition system. Typical noise is computer fan noise, noise in the lab, typical

office environment. The type of the ASR system is single word speech recognition

system. The noisy speech is enhanced by the Kalman filter. The speech signal

modeled by using the standard Yule-Walker approach and the noise is consid-

ered as colored. The noise is modeled by the AR approach which parameters are

obtained by using the Yule-Walker approach. This enhances the speech using

EM approach iteratively and by estimating the state expectation and covariance

matrix in the E-step and parameters of the signal and noise model are estimated

in the M-step. This approach is also known as KEM. In figure 10.9, we see the

result of applying the KEM. This is an inefficient approach for our hybrid noisy

signal. More over it has a high computational time which is about 3 to 5 minutes

or more for a single speech signal which has a length of 25000 to 60000 samples.
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Figure 10.9: Evaluation of color noise of the Kalman filter using EM approach
and its output
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10.5.6 FFT based Suband Decomposition and Kalman Fil-
tering

In this approach with respect to our state space derivations in equations (10.16)

and (10.23), the signal model s[n] is based on the Burg approach and the noise

model b[n] is based on the Yule-Walker approach which is estimated in the sub-

band. The signal sub-bands are obtained by an FFT based filter bank. This

approach is described [46]. How the FFT based filterbank is used to decompose

the signal can be found in [140]. This enhances our hybrid noisy speech to some

extent. We see the result of its application to our noisy data in figure 10.10

where a shows the enhanced speech applying the pre-emphasized FFT based

sub-band decomposition and Kalman filter at each band and b shows our noise

reduction approach by redundancy removal, pre-emphasis, matched filter and

then the Kalman filtering on sub-band decomposed signals. The SNR is 6.09.
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Figure 10.10: Evaluation of color noise in the sub-band Kalman filter and its
output

10.5.7 Mband Colored Noise and Kalman Filtering

Here we see the result of spectral minimization of the noise and the Kalman filter

on each sub-band in the M-band signal in figure 10.11. This enhances the speech
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and we use this enhanced speech for the feature extraction. The SNR is 10.49.
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Figure 10.11: Evaluation of color noise of the Kalman filter using color noise
Mband filter bank and spectral minimization and its output

10.5.8 Principle Component Analysis (PCA) Approach

The de-noising operation of our noisy speech is done by applying PCA. The PCA

is an eigen value analysis tool. This extracts the meaningful basis of the noisy

redundant signal by searching for the principle components in a coordinate system

using the coordinates in order to simplify a complex expression to a simpler one.

The principal components (PC) are the linear combination of the basis vectors.

The detailed of this is described in [124]. Here the noisy signal is de-noised but the

signal loses its useful information. This is not an efficient noise reduction approach

for our hybrid noisy speech while feature extraction is used for the recognition.

There is an option to apply this PCA de-noised signal for the classification and

recognition. But we have not investigated this further. The result of this PCA

application is shown in figure 10.12.

In the Wiener filtering, spectral subtraction method, different versions of

Kalman filter such as an iterative Kalman filter for the colored noise or a Kalman

filter for the white noise or for an assumption of stationary color noise did not

solve our noise problem and rather degraded the spoken command.
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Figure 10.12: Evaluation of white noise applying PCA and its output
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Chapter 11

Psychoacoustics and DANSR
System

Outline of the Chapter We provide some essential psychoacoustics informa-

tion and basic definitions in this chapter. We explain their necessity and inclusion

in the feature extraction in order to extract perceptual features. We introduce the

psychoacoustics quantities that are adapted to the DANSR’s feature extraction

technique. We are not concerned with the human interpretation of psychoacous-

tic elements and we restricted ourselves to the basic quantities on top of which

the interpretation has to be built.

Speech contains more information then expressed in the meaning of the words.

Humans are often able to recognize this information when they obtain the sound

data. Our task is to identify these data quantities so that a machine is able to

process them further. For this purpose we discuss properties of the human ear.

This is a very complex device and we make the discussion as short as possible.

We mention only aspects where we have taken advantage of. Nevertheless, there

are quite many of them.

A major reason to adapt the psychoacoustic quantities to take the speech

signals that are perceptually relevant only. The collected data have redundan-

cies. In the percpetual feature extraction discussed in the following chapters, the

redundancies are avoided following the human speech perception by the ear. By

this we simply mean that speech we hear is analyzed, extracted and compressed

naturally in the human hear where the redundant irrelevant information are fil-

tered out and the speech is perceptually relevant and meaningfully audible. In the

perceptual feature extraction, the goal is to mimic the perception process of hu-

man hearing removing the redundant information but keep only the perceptually

meaningful relevant compact information for recognition.
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11.1 Psychoacoustics for DANSR

The speech sounds arrive in a random process and it shows variations both in the

spectral and temporal analysis. The human ear and brain together analyse the

frequency of the speech. The outer ears accept speech sound pressure waves and

send this through the middle ear to the inner ear. This transforms finally the

sound to the brain. Thus we hear and recognize the speech by their collaborative

work.

Spoken language contains more information than a written text. This infor-

mation is hidden in the speaking style but contained in the wave forms obtained

by the receiver. This information is not discovered by the speech recgnition dis-

cussed so far. It is the topic of psychoacoustics that is a bigger area in itself

in which we will not introduce and give only some general remarks. Instead we

will rather describe the quantities that need to be extracted. In this chapter we

mention a number equations from psychoacoustics area. We took them from the

literature without explanations. From the principle point of our approach, the

corresponding derivations, values of specific constants and explanations do not

play a role.

In the inner ear, the basilar membrane is working as a spectrum analyzer. By

responding to the temporal variation of the sound pressure wave and its localiza-

tions, the human ear responds to temporal variations of pressure and localizes the

sound. The frequency, timing, amplitude, loudness and phase information at dif-

ferent frequency ranges and the localization of the sound sources are determined

by the brain.

The study of the psychoacoustics is related to the perception of the sound and

related phenomena. The speech signal in the temporal and spectral intervals i.e.

between 100 to 1000 ms is generally analyzed by going through the audio sensation

and its variations as well as the loudness-time function of the psychoacoustics

[113]. In chapter 2 in section 2.2, we have introduced into the role of the human

ears in recognizing speech.

The purpose of using the psychoacoustics quantities is to approximate the

mapping of the signal in the auditory system. This type of auditory or perceptual

modeling approximates the use of the masking threshold, loudness scales, sound

pressure level etc. The masking threshold is the limit that makes one signal more

audible than the others. The perceptual measurement needs to be connected to

the feature extraction. To adopt some basic psychoacoustics quantities, we first

reviewed the human auditory system and its functioning, then the hearing model
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that is used in [12]. The temporal time-frequency resolution and the threshold

masking are common adaptations for the perceptual spectral analysis [42], [110].

The perceptual entropy is used for speech coding and multimedia application for

speech data compression in [90], [6], [105], [58], [130]. Based on the review of some

psychoacoustics literature such as [145], [105], [82], [28], [74], [143], [3], [139], we

have selected some basic psychoacoustics quantities such as frequency analysis

and masking properties, perception of loudness and perceptual entropy. Some

of them are also commonly used in the perceptual feature extraction techniques

discussed in the next chapter. Thus we have developed a special feature extraction

technique and it is discussed in chapter 13.

For perceptual adaptation we incorporated the auditory filter-bank to perceive

frequencies along the critical bands. This is defined later in the chapter. The

behaviors of the basilar membrane in the inner ear of the auditory system is

similar to the overlapping passbands of a bank of bandpass filters. This is called

an auditory filter. This influences the adaptation of some fundamental properties

such as frequency masking or the scaling of the loudness of the human auditory

system. An adaptation to the critical bandwidth is related to the bandwidth of

an auditory filter which is incorporated in masking, loudness, absolute threshold,

and phase sensitivity [12]. The processing time of the samples of the signal is

notified most often by the loudness. This is one of the basic information we at

first perceive. The human ear perceives sounds following its temporal pressure

variations [113]. The characteristics of the sound perception process of the human

ear and brain are non-linear. The response of the human brain and ears can be

quadratic or cubic or quantic. For example, two loud pure tones at corresponding

frequencies f1 and f2 are simultaneously sounded together to generate a third

difference tone |f2 − f1| to be heard.

The difference between a standard sub-band analysis and a critical sub-band

analysis is that the standard sub-band is of equal width and the width of the

standard sub-band does not reflect the human auditory behavior where in the

critical band analysis, it works according to the function of frequency to approxi-

mate the human auditory behavior. The critical band based sub-band uses some

scales to follow the distance of the basilar membrane in the cochlea in the inner

ear. The critical band analysis is mapped to the critical band frequency scale

such as Mel, Bark or Erb scales that we discuss in section 11.6.

In order to model the human auditory system, the perceptual quantities such

as absolute threshold of hearing (ATH), sound pressure level (SPL), sensation

level (SL), masking frequency, temporal masking, the mapping of the non-linear
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frequency scale are considered. In the frequency analysis the signal is transformed

to a non-uniform logarithmic scale following some special frequency scale such as

Bark, Mel or ERB. The mapping process and the transformed non-uniform new

scale is called a critical band.

The sound pressure is measured in Pascal. In psychoacoustics, the values of

sound pressure lies between 10−5 Pascals to 102 Pascals. It is measured by a

hearing threshold given by SPL. Then again in the perception stage, there is a

sensation level (SL) which indicates an intensity level of an acoustic events to be

heard by a listener. The SL may be used sometimes to determine which sound

to be heard regardless of the loudness of the sound. It is not the same as ATH.

The SPL and ATH are defined next.

11.1.1 Sound Pressure level (SPL)

The ratio between the reference sound pressure in Pascals and the threshold of

hearing in Pascals is the sound pressure level (SPL) [12], [145]. The SPL is

measured in dB. The absolute threshold of hearing is estimated as p0 = 2× 10−5

Pascals which is about 20µPa.

The intensity of the sound pressure in decibels relative to a given reference

level is computed by equation (11.1). In this equation, Lspl is the sound pressure

level, p is sound pressure of an event in pascal.

Lspl = 20 log10

p

p0

(11.1)

The relation between dB and Pascal is shown below in equation (11.2) and dB

to Pascal transformation is shown in equation (11.3) where Pa stands for Pascal.

dBSPL means SPL is measured in dB.

Lp(dBSPL) = 20 log10

p

p0

(11.2)

p(Pa) = p
Lp(dBSPL)

20
0 (11.3)

The SPL is also measured with respect to sound intensity level(SIL). This is

equal to the sound power level(PWL) i.e. PWL = 10 log10
P
P0

and sound intensity

level(IL) i.e. IL = 10 log10
I
I0

[145]. The PWL is used to measure the perception

of loud mixed tonal sound.
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Figure 11.1: ATH in linear frequency scale in Hz, Bark, mel, and erb Scale

11.1.2 Absolute Threshold of Hearing (ATH)

The threshold of hearing is a listener’s ability to recognize a sound in a noise free

environment. It is expressed by a sound pressure level(SPL) and computed by

equation (11.4) where f is the frequency in hertz and Tq(f) is expressed in dB,

see [105]. This is a standard formula used in psychoacoustics studies. We have

used the ATH in chapter 13 to compute the perceptual entropy (PE).

Tq(f) = 3.64(
f

1000
)−0.8 − 6.5e−0.6( f

1000
−3.3)2 + 10−3(

f

1000
)4 (11.4)

In figure 11.1, we see the threshold of hearing is measured in SPL in dB in a

quiet environment as a function of frequency. The threshold is measured in SPL

in dB as a frequency of the linear frequency Hz in a, in b we see the threshold as

a function of Mel frequency scale, in c we see that it is measured a function of

Bark frequency scale and in d we see the threshold measured as a function of Erb
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frequency sale. In figure 11.1, the frequency f is replaced with the Bark, Mel and

Erb frequency scale in equation (11.4). For this implementation we mainly used

the matlab toolbox given in [85]. In figure 11.1, the ATH measured by perceptual

scales namely the Bark, Mel and Erb in b,c and d have the similar looking but the

ATH shown in a some what different than the one shown in b,c and d. From this

figure, we can imagine that the standard frequency that is measured in Hertz

(Hz) may misinterpret the spectral analysis. The scales are defined in section

11.6. Therefore it is important for our purpose that the features are perceptually

transformed using the perceptual scale in the auditory filter.

11.2 Concepts of Perceptual Adaptation

The purpose of a perceptional model is to hear, interprete and understand the

sounds of spoken language. We concentrate on the first and partially on the

second issue. The speech sound signal contains a number of acoustic elements that

are used in the speech perception. These representations can then be combined

to be used in the word recognition and other language processing activities. This

is done particularly in the cochlea and in the basilar membrane.

The perceptual adaptation is managed by adopting several perceptual quan-

tities such as the critical bandwidth transformation, the intensity-loudness power

law transformation which is also the hearing law.

Next we introduce the hearing process of the human ear that we experience

in our daily life in order to recognize speech.

11.3 Auditory System and Hearing Model

The sound enters into the human ears as a pressure wave and the human ears

perceive the sound by its vibration. The human ears are also known as an auditory

system because this acts as a sensor for the human hearing. For this, the human

ears are the principle organ. Here first we explain how the human ear interprets

sounds for its perception. Then we introduce how the human ear is used in the

literature in order to model it.

Below this is illustrated by two figures. Figure 11.3 shows the human ear

which has three main parts. Figure 11.4 shows how it is modeled to capture its

perception processing.
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11.3.1 Human Auditory System

Here we first outline the anatomy of the human ears, then we describe how

these organs are used to perceive human speech. The human auditory system is

explained here in order to understand the human speech perception process and

to adopt some essential perceptional quantities to extract perceptional features

for our DANSR. If we look at figure 11.3 that is collected from [65], we see that

the human ear or the auditory system consists of major three components. These

are introduced below and for this we have followed the description of the auditory

system given by [13]. Figure 11.2 is a simple explanation of the components of

the human ears and the interactions of the components of human ears in order

to perceive speech.

Typmpanic 
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Malleus

 Incus

Stapes

Acoustic nerve

Vestibular nerve

Inner ear

Outer ear
Sound

Pressure

wave

Brain

Cochlea
Basiler membrane
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of hearing

Sensation 

of balance

Middle ear
Outer ear

Figure 11.2: Simple View: Human ear and the interactions among the compo-
nents

• Outer ear: This is connected to the middle ear through an auditory or ear

channel via the tympanic membrane to the way to middle ear. The channel

has many small glands so that the canal is lubricated from the secretion of

the glands and the area is protected. The outer ear is also called pina.

• Middle ear: Three small parts, malleus, incus, stapes on the back side of

the tympanic membrane are the components of the middle ear. These three

bones can vibrate. The middle ear is again connected to the throat and

nasal system through the eustachian tube. There is a nerve connected in

the malleus and incus to the tongue. The middle ear is connected to the

inner ear through stapes.

• Inner ear: This is a cavity which has bones inside it. The inner ear has

two regions : i) Sensation of hearing which is the snail shell shaped cochlea

and ii) Sensation of balance which is semicircular shaped vestibular nerve.

The vestibular nerve is associated with many ducts and the middle ear is
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connected to the inner ear through stapes to vestibular. The ducts belong

to the vestibular nerve and has many fluid filled passage ways. The cochlea

is connected to the brain with different 12 pairs of auditory or acoustic

nerves. There are many fluid filled cavities in the vestibule as well as in the

cochlea. This is the place where frequency analysis is taking place.

Figure 11.3: Human Auditory System [65]

Next we have introduced how we have used these organs to perceive sounds for

its recognition.

11.3.2 Human Hearing Process

The sound wave travels from the outer ear through the ear channel to the tym-

panic membrane. The vibrations are transmitted to the hair cells connected to

a fluid filled passage in the inner ear. The vibrations generate signals which are

carried out to the brain for the sound interpretation through the auditory or

acoustic nerve. There are about 16000 to 20000 hair cells along the length of the

cochlea in 4 different rows. There is only one row in which the inner hair cells

are attached to nerves, and the rest third rows are outer hair cells. These hair

cells in the cochlea play a significant role in the properties of the sound i.e. pitch,

loudness and how these properties stimulate the hair cells and send a signal to

the brain.
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The idea of the fluid filled cavities is that a movement of the bones caused a

vibration wave in the fluid which stimulates the microscopic hair cells connected

to the nerve. Moving back and forth, the hair cells connected to the cavities in

the cochlea fire electrical signals or impulses that are carried out to the brain

through the auditory or acoustic nerves to the brain as an interpretation of the

sound. The vibration or firing of the hair cells at different rate helps the brain to

interpret the sound frequency one from the other.

The human ear is subjective to its response to different frequencies. This

characteristics is technically achieved by using the different types of scales namely

the Bark scale, Mel scale and the Erb scale. The peripheral auditory system acts

as a frequency analyzer. The basilar membrane of the inner ear plays a significant

role to locate and characterize the frequency. An auditory filter can measure the

neural tuning curve and neural impulse responses. The auditory filter is mapped

on the critical band to represent the frequency resolution of the auditory system.

The critical bandwidth is measured by comparing the masking and loudness [142].

11.3.3 Hearing Model

Now if we compare the human auditory system given in figure 11.3 with figure

11.4, we can see its approximation in figure 11.4. In this figure, we see in the hear-

ing model the capture of the sound wave, its entrance to the inner ears through

the outer and middle ear are estimated by the spectral shaping (this is explained

chapter 12). In the same figure the frequencies analysis of the sound wave and

their distinction by the different parts of the auditory organ shown in figure 11.3

as well as transportation of these to the brain through the auditory nerve are

estimated in figure 11.4 by spectral analysis and their parametric representations

(discussed in chapter 12). In the human hearing model approximated by the

auditory filter bank, a sound of a definite frequency does not actually vibrate

the membranes in the cochlea at one point. Rather, there is one point where

the vibration is biggest, and a range around that value where we have that the

vibration is big enough to be important. This range on the cochlea is called the

critical band excited by a sound. It covers frequencies about 10% to 15% higher

and lower than the tone which is played. The flexing which is the bending of the

cochlea falls away as the tone moves from the center of the band. Intensity is the

power per area and the power is the rate at which the energy is distributed. The

pitch is determined by a periodic sound’s frequency of one period of the wave

[37]. The resolution of a finite length signal is the minimum number of samples
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Figure 11.4: Approximated Human Auditory Filter bank [12]

that is required to represent it. Thus the resolution can be seen as information

container of the signal. This is approximated in the auditory filter-bank via each

filter used in the filter-bank. For these special perceptual frequency scale is used

for the spectral analysis discussed in section 11.5.

11.4 Auditory Masking and Masking Frequency

Auditory masking is a psychoacoustic effect that determines the mapping of the

frequency in the critical band. Frequency masking makes one sound inaudible

due to a presence of another sound. This gives the threshold of the audibility at

where one sound is raised by the presence of another sound [76]. The frequency

of the later sound may be higher [147]. The inaudible frequency of the sound is

called a masked frequency and the frequency of the sound which presence makes

masked frequency is called masker frequency. Two common masking types are i)

Frequency masking or simultaneous masking excites multiple tones at the same

time and ii) Temporal masking excites a particular frequency zone in the cochlea

along the basilar membrane. Both types of maskings are carried over to the

human brain by the auditory nerve [145]. The auditory masking is related to the

SPL and the sensation level (SL) which is an intensity level of an acoustic event
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to be heard by a listener. The masking effect is the same when the power of the

tone and the power of noise spectrum is near that tone. However, the masking

effect outside this area of the tone does not interfere to that described area. Here,

if the characteristic frequency band has the same acoustic power for the tone and

the noise spectrum within that band, the tone is masked and this is the concept

of the critical bands defined in [41]. Further to this explanation, an assumption is

that the human hearing system processes sounds in relatively narrow frequency

bands. The hearing system produces masked threshold frequencies independent

of the frequency. The unmasked threshold is the quietest level of the signal

which can be perceived without masking the signal. In some literature, the total

masking threshold is approximated by a summation of the threshold produced

by an individual signal components following the power law.

The human sound perception i.e. the speech hearing is affected by masking

properties. The intensity the acoustic stimulation is measured by the standard

sound pressure level (SPL). The loudness remains constant for a narrow band

noise source at a constant SPL even as the noise bandwidth is increased up to

the critical bandwidth tends to remain constant about 100 Hz to 500 Hz and

increases approximately 20% of the center frequency above 500 Hz. The width of

the critical band is commonly referred to as one Bark scale which is a non-linear

function. It is often used to convert the frequency from the Hertz to the Bark

scale.

11.5 Frequency Analysis and Critical Bands

Here we refer to the parts of the ear described in figure 11.2 and describe its

functioning.The critical bands are some sub-divisions of a frequency domain. The

sub-divisions are some non-uniform sub-bands. These are used to understand the

frequency analysis of the human auditory system. The critical band introduced

by the scientist Harvey Fletcher in the 1940s, is the frequency bandwidth of the

”auditory filter” created by the cochlea which is a sense organ of hearing within

the inner ear. The critical bank is roughly the band of audio frequencies within

which a second tone will interfere with the perception of a first tone by auditory

masking [12]. The critical band denotes a constant distance on the cochlea and the

bandwidth where the signal intensities are added to decide whether the combined

signal exceeds a masked threshold [139]. The critical bands are continuous and

the audible frequency in each of the band has a tone in its centered position.

The critical band relates to the perception properties such as loudness, pitch,
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and tone. The auditory system performs a frequency analysis of sounds into their

component frequencies. The cochlea acts as a spectrum analyzer of the sounds

in the inner ear. The high frequency bands are wider than the low frequency

bands. A summation of a collection of the critical band responds is assumed

to be the loudness [61]. The human hearing system processes sounds in narrow

frequency bands. It produces a masked thresholds frequency below 500 Hz and

the range of the masked threshold is independent of the frequency. The critical

bandwidth has a constant width below 500 Hz but it increases 10 dB per decade

for the frequency bands. The bandwidth of the bands increases by a factor of 10

as the frequency increases by the same factor [41]. The critical bandwidth shows

a constant bandwidth at about 100 Hz, but the range of the critical bandwidth

increases proportional to the frequency above the frequencies of 500 Hz and the

increase rate is 20% of the center frequency.

The masking threshold is measured on the critical-band. Therefore the power

spectrum of the signal is partitioned into critical bands. The architecture of

the cochlear filter pass band is non-uniform which changes as a function of the

frequency non-linearly. There are many different formulations that have been

developed to calculate the critical bandwidth. One approach is to calculate the

critical bandwidth as shown in equation (11.5) where f is the linear frequency in

Hz and BWc(f) is the frequency of the critical band in f . This critical is later

transformed into perceptual spectral band when it is multiplied by a perceptional

feature scale such as the Mel, the Bark or the Erb scale.

BWc(f) = 25 + 75(1 + 1.4(f/1000)2)0.69 (11.5)

The psychoacoustic model needs a delay in the time-frequency decomposition in

order to center the data in the audio frame within the psychoacoustic analysis

window. Critical bands and their band width distribution are shown in the next

table.

11.5.1 Perception of Loudness

The loudness is a physiological aspect and it considers the intensity of the sound.

Its sensation to an environment for a particular subject is difficult to measure.

The loudness is measured in sone or phone and the unit of the loudness level is

phone. The loudness is subjective and environmental. The definition of the loud-

ness in some literature paraphrased here is an intensive attribute of the auditory

sensation where the sound can be distinguished as loud and soft for being pro-
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Table 11.1: Critical bands and their band width distribution [143]

Band No Lower Band(Hz) Center(Hz) Upper Band(Hz) Band Width(Hz)
1 20 50 100
2 100 150 200 100
3 200 250 300 100
4 300 350 400 100
5 400 450 510 110
6 510 570 630 120
7 630 700 770 140
8 770 840 920 150
9 920 1000 1080 160

10 1080 1170 1270 190
11 1270 1370 1480 210
12 1480 1600 1720 240
13 1720 1850 2000 280
14 2000 2150 2320 320
15 2320 2500 2700 380
16 2700 2900 3150 450
17 3150 3400 3700 550
18 3700 4000 4400 700
19 4400 4800 5300 900
20 5300 5800 6400 1100
21 6400 7000 7700 1300
22 7700 8500 9500 1800
23 9500 10500 12000 2500
24 12000 13500 15500 3500
25 15500 18775 22050 6550
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cessed and recognized by the human hear and the brain. The perceived loudness

is not proportional to the intensity of the sound. It is more nearly proportional to

the logarithm of the intensity. This is what makes decibels such a useful measure.

The relationship between the loudness of a sound and a perceived loudness of the

human ear is captured by an estimation of the magnitude of the loudness and the

estimation of the production of the loudness of the sound [12].

Hearing of a sound has several effects. The environmental phenomena affect

the sound of hearing. For instance, if the environment is quiet or noisy, then the

perceived sound can be different but still there is a threshold at which level the

subject can perceive the sound regardless of an environmental effect. According

to my knowledge the environmental impact is not getting here a priority so far

in the literature on the perceived sound research.

About 150 dB SPL spans the dynamic range of the auditory system; an SPL

reference of a quiet environment is around 0 dB SPL while a stimulus of 140 dB

SPL approaches the threshold of a pain.

Here the human auditory system can select from loud or weak or soft sound

components. Without this ability all sounds would be the same. The loudness in

this sense may be a part of the frequency warping. Thus we realize the importance

of loudness and distinguish the sound according to this. Based on [129], [142],

the loudness is denoted as a power function of physical sound intensity.

Equation (11.6) is a non-linear equation where the loudness of the sound is

proportional to the intensity raised to the power of 0.3 [12]. In equation (11.6),

L is the perception of the magnitudes of the loudness, k is an arbitrary constant

determining the frequency scale unit, I is the stimulus intensity, a is a power

exponent which is generally 0.3.

L = kIa = kI0.3 (11.6)

Equal Loudness Curves The human ear can distinct the frequencies well

and this is of interest for a machine too. The audibility of the human is variable

according to the frequency. The same SPL at different frequencies may not be

perceived as equally loud. This distinction is captured by a set of loudness curve

that compares SPL (sound pressure in db) with the phone scale. In the phone

scale, a sound with equal phone values is perceived equally loud at any frequency.

The value of SPL and loudness level is equal at f = 1KHz on the equal loudness

curves. This has a lower sensitivity at lower frequencies. These aspects are

sometimes termed as equal loudness pre-emaphasis [42].
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11.6 Analysis: Perceptual Scales

One purpose of psychoacoustic scales is to provide steps that correspond to equal

perceptual intervals [35]. In different contexts the same numerical distance can

be perceived in different ways what are reflected in the scales. We will discuss

the Mel, Bark and Erb scale in this section. These are measured in logarithmic

scales. These scales give different intervals for the linear frequencies. These

scales influence the way in which the speech is recognized and therefore present

information for the listener.

11.6.1 Mel Scale

The Mel scale (measured in Mel) is a non-linear scaling that is used to perceive

frequency characteristics of the human ear. In the Mel scale, the frequency ranges

are divided into four equal intervals. The frequency is adjusted there in such a

way that one half of this frequency scale is equivalent to a given linear frequency.

The pitch is a psychoacoustic variable is characterized by the frequency, loud-

ness, intensity or amplitude of the acoustic sound. The Mel scale shows a good

performance while discriminating the speech segments. In the mel scaled band,

the mel scale is used to represent the frequency in the critical band. One mel is

defined as one thousands of the pitch of a 1 kHz tone. The filter bank is a set of

triangular filter banks based on critical band scales at frequencies i.e organized

in the 2nd column in table 11.1. The frequency f is in Hertz. The spacing of

the critical bands is non-linear. The Mel scale is first used in ASR system for

perceptual speech feature extraction by [110].

Next we discuss the relation between Mel scale and linear frequency scale

measured by Hz. There are several different formulations of the Mel scale. Each

of them is used differently in the literature. Below we present a definition in

equation (11.7) that we see frequently used. In equation (11.7), f is in Hz linear

scale and fmel(f) is in the Mel scale. According to [78], the cochlear position x

from 0 to the frequency is f in Hz where f = 165.4 × (102.1x − 1) and thus the

scaling at f = 1000 gives in the Mel scale at m = 512.18 × ln( f
165.4

+ 1). Here

the break frequency is 165.4 Hz that separates the log-like high-frequency region

from the linear-like low-frequency region.

fmel(f) = 2595 log10(2 +
f

700
) (11.7)

The corresponding inverse expression from mel scale to the linear frequency
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scale Hz is shown in equation (11.8).

f = 700(10(f−1(m)/2595) − 1) (11.8)

11.6.2 Bark Scale

In the Bark frequency scale an equal or uniform distance represents perceptually

equal distances. The Bark scale is linear below 500 Hz and non-linear above

500 Hz [15]. This non-linear spectral distance is measured using the logarithmic

frequency axis. There are several definitions of this concept. As mentioned in

section 11.5 they all give the same information about the relation between the

Hz and the Bark scale [25] , [56].

We state the formula that we have followed for the Bark scale and its inverse

transformation. We followed in this regard Bark scale’s recent formula. Among

the different Bark scale formulations we use the formula shown in equation (11.9).

B(f) = 6 sinh−1(
f

600
) (11.9)

The Bark scale to hertz scale is converted using equation (11.10).

hz = 600× sinh
B(f)

6
(11.10)

11.6.3 Erb Scale

The other commonly used perceptual frequency scale is the Erb scale. The Erb

scale is formulated in equation (11.11) where f is the center-frequency in Hz,

normally in the range 100 Hz to 10kHz. The Erb scale is generally narrower than

the classical critical bandwidth (CB) such as Bark or Mel scale and f is in Hz

[67].

Erb(f) = 21.4 log10(0.00437f + 1) (11.11)

The Erb warping is determined by scaling the inverse of eq (11.11), evaluated

along a uniform frequency rangning from zero to the number of Erbs at half of

the sampling rate, so that direct current (DC) maps to zero and half the sampling

rate maps to π [67].
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11.6.4 Comparison

We see in figure 11.5, the Mel scale in a, the Bark scale in c and the Erb scale

in e. The basilar membrane which is situated in the cochlea is thin close to the

stapes but wider at the end. The thin section of this membrane responds to

high frequency and the wider section responds to low frequency. Following this

anatomical structure of the basilar membrane, the critical band is closely spaced

at the low frequency but widely spaced close to high frequency in figure 11.5. In

this figure, the critical band is mapped to the Mel scale in b, the Bark scale in d

and Erb scale in e. Each of these cases, we see the critical band is densely spaced

at low frequency and sparsely spaced at high frequency.

In figure 11.6, we see the comparison among the Bark, Erb and Mel perceptual

scales. The curves indicating the scales are generated using the equations (11.9),

(11.11) and (11.7). They all show the similar behaviors against linear scale Hz.

They are expanded at low frequencies below 1000 Hz and above this frequency

they are all compressed. For this implementation we mainly relied on the matlab

toolbox given in [85].

11.7 Analysis: Auditory Filter-bank

To capture the functions of the human auditory system and its hearing, a bank

of filters is arranged in such a way that the passbands of the filer-bank are over-

lapped. This is used to model the human auditory system, it is called the auditory

filter bank. The filter shape can be different such as triangular, trapezoidal. The

filter bank can be uniform or non-uniform. A set of transfer functions Hm(z) in

the analysis filter bank splits the input into M subband signals in the synthesis

filterbank. The shape of the filter bank can be triangular or trapezoidal.

For the speech feature extraction usually non-uniform spaced filter-bank is

used. In such a case, the part of the spectrum below 1kHz is processed by more

filters in the bank because it is assumed that the 1st formant lies in the lower

frequency range and there exists more vocal tract information.

The frequency resolution of the auditory filter bank largely determines which

portions of a signal are perceptually irrelevant. The auditory time-frequency

analysis that occurs in the critical band filter bank induces simultaneous and

non-simultaneous masking phenomena that are assumed to be the shape of the

distortion spectrum. A perceptual model exploits the masking thresholds for a

complex sound. The loudness scale is related to the sound level depending on the
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bank mapped to Mel, Bark, and Erb frequency scale
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duration and frequency of the sound. It is variable with respect to the perceived

sound level.

In the following discussion of the filterbanks we refer to the scales introduced

above.

11.7.1 Mel Filterbank

In Mel frequency wrapping, the signal power is the input to the bank of filters

which has a bandwidth of the triangular band pass filters and gives the frequency

resolution at different frequency bands. The bandwidth of the triangular band

pass filter is positioned in the psychoacoustic frequency scale in particular in

the Mel scale. This is done by integrating the area of the bandwidth over this

frequency scale. The filters are overlapped in the filter bank such that the lower

boundary of one filter is at the center frequency of the previous filter and the upper

boundary of the filter is the center frequency of the next filter. The maximum

response of the filter is the top vertex of the triangular filter which is the center

frequency and is normalized to unity.

The frequency is given by Mel scale, then the corresponding frequency is

f−1
f (mel) = [700em/1127 − 700]Hz

Suppose the number of filters is M and m = 1, 2, 3, · · · ,M , where m denotes
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the triangular filter given by equation (11.12) and f is the frequency in each

bin which size is equal to the FFT size. Now the filter-bank Hm(k) is given

in equation (11.12). f(m − 1), f(m), f(m + 1) are the left, middle and right

boundary of the mth filter. Hm(k) is the weight of energy at frequency k for mth

filter.

Hm(k) =


0 for k < f(m− 1)

2(k−f(m−1))
f(m+1)−f(m−1))f(m)−f(m−1))

for f(m− 1) ≤ k ≤ f(m)
2(f(m+1)−k)

(f(m+1)−f(m−1))(f(m+1)−f(m))
for f(m) ≤ k ≤ f(m+ 1)

0 for k > f(m+ 1)

(11.12)

Here fl and fh are the lowest and highest frequencies of the filter-bank in Hz,

and fs is the sampling frequency in Hz, M is the number of filters, and N is the

size of the FFT. Then the boundary points B are non-uniformly spaced in the

mel-scale. One bin has the same length as the size of the FFT.

f(m) =
N

fs
B−1

(
B(fl) +m

B(fh)−B(fl)

M + 1

)
(11.13)

In equation (11.13), B is the acoustic scale which can be either Mel, or Bark

or Erb scale. We then compute the log-energy for m = 0, 1, · · · ,M .

11.7.2 Bark Critical-band

The relation between the Bark scale and the linear frequency scale is shown in

equation (11.14). There f is the frequency in Hz and fb is the related Bark

frequency.

fb = 6 ln
( f

600
+
(
{ f

600
}2 + 1

)0.5)
(11.14)

In the critical band analysis shown in equation (11.15), the center frequencies

of the filters in the filter bank is spaced in the Bark scale and the distance between

the center frequencies of the filters in the critical band filter-bank is 1 Bark scale.

The first filter is placed at zero frequency and the last filter is placed at Nyquist

frequency. The lowest and highest frequencies in the filter bank are 0 and the

Nyquist frequency. This spacing is similar to the Mel scaled filter bank. In the

Bark scaled filter-bank given in equaation (11.15) fb is the bark frequency and
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fcb is the center frequency of the filter in Bark scale [100].

Φ =



0, if (fb − fcb) < −2.5

10(fb−fcb+0.5), if −2.5 ≤ (fb − fcb) ≤ −0.5

1 if −0.5 ≤ (fb − fcb) ≤ 0.5

10−2.5((fb−fcb)−0.5), if −0.5 ≤ (fb − fcb) ≤ 1.3

0, if (fb − fcb) > 1.3

(11.15)

Again, we took over the equation from the literature [?].

11.8 Perceptual Adaptation in DANSR

In summary, the main adapted psychoacoustic quantities in this research are:

• Bark scaled Critical Band

• Pre-emphasis by Loudness Scale

• Perceptual Entropy

For the extension we have applied the similar formulation as given in section

11.7.2. Pre-emphasis by the loudness scale (12.20) is discussed in chapter 12

and the perceptual entropy is discussed in section 13.3.1 in chapter 13. The

purpose of the perceptual adaptation is as mentioned before to keep the relevant

perceptually meaningful information by removing the redundancy. In this line,

the perception of human auditory system is attempted to mimic by adapting

some basic perceptual quantities listed above in this section.

11.9 Psycho-acoustical Analysis of MP3

Here we would like to mention that the MP3 was developed by Karlheinz Bran-

denburg and his group and some explanation that can be found in [90] used the

spectral analysis and the compression done by the human ear. A reality is that

what the sound pressure waveform we perceive has redundancy and our ears an-

alyze the frequency of the perceived the waveform and process this. Only the

essential parts of this is that we need to perceive the semantic of the wave and

the rest is done by the brain. The purpose of the feature extraction discussed

in chapter 12 is to reduce the redundancy of the captured waveform and used
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this for recognition. The aim for the MP3 development by Brandenburg and his

group is to closely achieve the audio and psychoacoustics properties in order to

compress the real world signals. But we have not investigated these aspects of

the audio and psychoacoustics properties in details. The perception of human

hearing and the role of human ear is still an ongoing research and it is not yet

clear how human ears analyse the captured waveform.
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Chapter 12

Standard Features and Feature
Extraction Techniques

Outline of the chapter We discuss the feature extraction techniques in our

context. We start with a brief overview of the standard feature extraction tech-

niques, their effectivity and limitations. This includes in particular feature types

such as cepstrum, MFCC, LPC, LPCC, PLP, RASTA and SILTT. In case where

different notations and conceptual variations exist we make precise what we use.

This will also be used to take advantage for computer implementations when

studying the human ear. On these foundations we present our extraction process

in the next chapter. This is an essential part of our system. Although several

of the details are somehow known, the selection and integration of the individual

methods into DANSR are innovative.

12.1 Fundamentals: Feature Extraction

In the speech processing, the speech waveform is recorded by using some sensors or

transducers. They are not used directly for recognition purposes, they are rather

transformed into some lower dimensional vectors. These are the feature vectors.

These represent the input speech i.e. some acoustic phonetic information. From

this point on the information of the features can be analyzed on an acoustic,

a phonetic, or a linguistic, word or the language level. Distinctly the role of a

feature extraction technique is vital in order to perform the transformation of the

speech signals into feature vectors, then to authenticate the information of these

feature vectors in the classification and recognition stage.

The feature extraction has the following aspects that we will discuss next:
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• Feature extraction: This is a description of the approach that is used to

extract the features from the data collection.

• Feature subset generation: This describes how the features are distributed.

• Definition of the evaluation criteria: The criteria of the feature selection i.e.

entropy or energy or spectral envelope.

• Assessment of the evaluation criteria: This is to confirm the validity of the

evaluations in the classification and in the recognition stage.

12.2 Features and their Purpose

One of the main goals of the signal analysis used in the feature extraction is to

reveal information they contain. This type of signal analysis is also in the context

of the machine learning. In this context the signal analysis is mainly concerned

about the information of the signal and how that can be represented efficiently

in a compact form so that one can represent the original input on the machine.

This type of analysis transforms a large dimensional signal into some small finite

vectors of relatively smaller length than the original signal. These finite vectors

hold the essential signal information and can now be used as a representation of

the original signal in a compact manner. How the features are extracted and what

are they, can be intuited in figure 12.1. There discrete speech signal s is windowed

by a window function, then processed spectrally. then these are used for feature

extraction. The features are generated in vector. In figure 12.1, o1,o2, · · · , are

feature vectors and features are the elements in the each feature vector. These

will be detailed in this chapter.

Often, features that are not individually relevant may become relevant in cer-

tain contexts. One approach to feature selection is to use the rank of the features

according to their individual relevance. An example of this is the MFCC feature

extraction technique. In this technique, in order to capture the dynamic behav-

ior, there exist first the feature transformation, then derivative of the features,

then again second derivatives of the features. But these options are application

and user dependent. The MFCC feature extraction technique is discussed in the

text.

The next sections have mainly an overview character. Later we will be precise

when we discuss the methods that we use.

Now some common feature extraction methods are listed:
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Figure 12.1: Speech Features in Picture

• Non-parametric Fourier transform based speech features extraction: This

commonly uses spectral envelops of the speech in the transformation for

feature extraction.

• Non-parametric wavelet or local trigonometric transformation (LTT) types

of speech feature extraction: These extraction processes may be categorized

as non-parametric because they do not use a model. They rather decompose

the signal in a special manner and feature analysis is generally based on a

discrete cosine transformation.

• Parametric Fourier Transform based speech feature extraction: This uses

some parametric model such as linear prediction or a linear combination of

spectral envelops in the transformation to extract features.

Some feature extraction techniques incorporate perceptual properties of hu-

man hearing and human speech production. The requirements and the repre-

sentations can be different for different applications. One can not say in general

what is the best feature extraction method is. But an analysis of different types

of feature extraction techniques is given in section 12.12. For example, speech

feature extraction in the speech recognition application distinguishes between dif-

ferent phonemes of a language. Such representations vary according to the type

of the demand. In such cases, it raises a compromise between what to keep or

delete and therefore one or the other information can be selected or ignored ac-
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cording to the priority of the speech recognition aspect. Given the above feature

extraction methods, we used the features that use the LTT types of features us-

ing DCT typed spectral analysis. However, we extended this feature extraction

technique to perceptional feature extractions importing some essential perception

quantities. This is discussed in the next chapter 13.

Below we provide some different measurements that are commonly used as

features in the speech recognition research.

12.2.1 Conventional Feature Parameters

There are different measurements and distribution properties to be used as fea-

tures. Below we provide first a list of conventional feature parameters. We will

see the use of the computations of these parametric feature transformations in

the description of standard feature extraction techniques in sections 12.5, 12.6,

12.9.

Frame energy This is a measure of the energy of the short time speech signal.

Spectral envelope A spectral envelope is a piecewise spectral information. It

is used parametrically and also non-parametrically using FFT to characterize the

signal.

In the non-parametric method, generally the windowing or low pass filter

based log magnitude spectrum is computed to extract the piecewise spectral in-

formation of the system. In the parametric method, most commonly the ampli-

tude response of the all-pole filter is analyzed to obtain the piecewise spectral

information of the system.

Log energy These are logarithmic computations of the short term energy of

the speech signal.

Delta cepstrum These are the derivatives of the cepstrum features introduced

in section 12.5. They are used to capture the dynamic behavior or the underlying

information of the speech process by taking the derivatives of the primarily ex-

tracted feature parameters. We will discuss them below. Particular examples are

the derivatives of the energy and the velocity and the acceleration of the features

as an indication to get a realization of the time variation of the signal.
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Spectrogram The spectrogram is a graphical representation of the energy den-

sity as a function of the frequency. Spectrograms of the speech signals often an-

alyze the phonemes and their transitions. In a linguistics sense, phoneme can be

defined as some phonetically distinct articulations.

Entropy Entropy characterizes the behavior of the random variables. It is quite

often useful to estimate the probabilities of events to find the hypothesis of the

smallest error [53].

12.3 Steps involved in Feature Extraction

The perceptual feature extraction has four fundamental steps: Spectral shaping,

spectral analysis, perceptual representation, and parametric transformation. In a

standard situation, the feature extraction of the speech starts by pre-emphasizing

the signal. Then the signal is blocked into frames in the spectral shaping follow-

ing the spectral analysis and the perceptual feature transformation. A common

approach to the feature extraction methods is that the features are computed on

the speech frames. The concepts are or have been defined in detailing the past

steps.

Spectral shaping This involves the transformation of the analog speech wave-

form into discrete time signals, pre-emphasizing, pre-filtering, signal segmentation

into blocks (uually in the range of 10 to 30 ms) for their spectral analysis in the

next step.

Spectral analysis This is an analysis of the frequency information enquired

in the frames by some spectral analysis methods such as Fourier transform, dis-

crete cosine transform (DCT) or wavelet transform. This transformation can be

perceptual when it uses the perception scales such as Bark scale or Mel scale.

Perceptual feature representation Here the aim is to approximate the

perception of the human ear. This is discussed in chapter 11. The procedure

is in general taking place in the human ear and is the subject of the spectral

analysis in the non-uniform band pass filter bank. This type of analysis is called

as perceptual spectral analysis. The analysis is done in the critical band (see

chapter 11) which uses some non-uniform scales as for example Mel, Erb or Bark
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scale. The frequency analysis in the critical band is an auditory filtering (see

chapter 11).

The perceptual feature representation uses auditory filtering that applies some

psychoacoustic quantities such as masking properties in the critical band, per-

ception of loudness scaling, equal loudness contour.

Parametric feature transformation This is used to extract the speech fea-

tures which can be if the perceptual spectrally analyzed speech frames after the

perceptual feature representation ahave been considered. These features are then

used for the classification and the recognition discussed in chapter 14.

12.4 Analysis of Standard Feature Extraction
Techniques

First we list in an overview of the most commonly used feature extraction meth-

ods that incorporate human hearing and then we list the commonly used feature

extraction methods that do not have links with the human hearing or the per-

ception process.

• Standard Perceptual Feature extraction techniques : They are concerned

with the human speech perception.

– Mel frequency cepstral coefficients(MFCC)

– Perceptual linear predictive (PLP) cepstral coefficients

• Feature extraction techniques : They do not consider the human perception

in the architecture.

– Linear predictive coefficients (LPC)

– Linear predictive cepstral coefficients (LPCC)

– Cepstrum

– Shift invariant local trigonometric transformed (SILTT) features

Some of the feature extraction methods are described in brief next. We repeat

some elements for being clear.

The common processings used in MFCC and PLP are the following:

• Spectral Shaping
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• Perceptual Spectral Analysis

• Perceptual Feature Representation

• Parametric Feature Transformation

The other standard feature extraction techniques such as cepstrum, LPC,

LPCC do not include the perceptual feature representations. The MFCC and

PLP are in fact an extended version of cepstrum and LPC techniques.

12.5 Cepstral Feature Extraction Technique

The cepstral features are derived mainly from cepstrum analysis. Here we come to

more details. There are two types of cepstral features: i) LPC cepstrum analysis

and ii) FFT cepstrum analysis. In the LPC cepstrum analysis, the speech signal

s[n] is first seen as an output of the convolution of the excitation u[n] and the

impulse response h[n] as given in equation (12.1). This is just characterizing

the signal in terms of the model parameters using the deconvolution approach

discussed in chapter 7 and 8.

s[n] = u[n]⊗ h[n] (12.1)

The equation (12.1) is represented in the frequency domain using FFT and the

corresponding equation is (12.2). S(k), U(k) and H(k) are the Fourier transforms

of s[n], u[n] and h[n]. n = 0, 1, 2, · · · , N − 1 and k = n = 0, 1, 2, · · · , N −
1. Then the logarithm of this equation is taken in equation (12.3) in order to

separate the source excitation and the impulse response. Then the cepstrum is

computed by the homomorphic filtering i.e. taking the inverse Fourier transform

of the logarithmic computation of the magnitude of the speech spectrum. The

homomorphic filtering is defined by equations (12.2) and (12.3). The details of

this explanation can be found in [9], [69].

S(k) = U(k)H(k) (12.2)

log (S(k)) = log (U(k)) + log (H(k)) (12.3)

The logarithmic operation on the S(k) gives equation (12.3). This is now an

additive operation. The logarithmic view allows an additive operation. It is

assumed that the excitation is related to high frequencies and the response of
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the vocal tract filter has a relatively lower frequency than the excitation source.

Based on this assumption, the source is separated. The cepstrum features of the

speech are then obtained by homomorphic signal processing what is discussed in

[9]. This involves taking the inverse FFT of the logarithmic spectrum of the short

term spectrum of the signal. These steps are shown in equation (12.9). The FFT

based cepstrum features are the inverse Fourier transforms of the logarithm of

the magnitude of its FT of the finite length data sets.

Spectral shaping by windowing the signals The letters here have a dif-

ferent meaning than in the earlier notation. The signal is framed into m blocks

by applying a window function of length N in such a way that each signal of the

m blocks has N many samples where m = 1, 2, · · · ,M and n = 0, 1, · · · , N − 1.

This segmented signal is called sm[n]: this signal is a frame. The formulation

of the framed signal by the windowing is shown in equation (12.4). The length

of the window is equal to the signal length N . Thus the framed or the windowed

signal sm[n] is the multiplication of the signal s[n] by the window function w[n].

Multiplying the signal s[n] by the window function w[n], we attain the signal

frames denoted by sm[n] for m = 1, 2, · · · ,M and n = 0, 1, · · · , N − 1, shift r

which is the shift samples between adjacent segments and r ≤ N .This shifting

is sometimes known as overlapping. This can take place at each one half or two

third of the length of the signal where the length of the signal is assumed to be

the same as the length of the signal block. This is shown in equation (12.4).

sm[n] = s[n+mrw[n] (12.4)

There are different types of window functions available. Some commonly used

window functions in the speech research are the rectangular window function

given in equation (12.5), the Hamming window function given in equation (12.7),

and the Hanning window function given in equation (12.6). One purpose of the

windowing is to improve the leakage problem and results in a spectral bias in

the frequency analysis. The leakage problem arises when signal is truncated into

blocks. The formulation of the rectangular window is :

w[n] = 1 for 0 ≤ n ≤ N − 1 and 0 otherwise (12.5)

The formulation of the Hanning window is :

w[n] = 0.5− 0.5 cos(
2πn

N − 1
)) for n = 0, 1, 2, · · · , N − 1 (12.6)
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The formulation of the Hamming window is :

w[n] = 0.54− 0.46 cos(
2πn

N − 1
) for n = 0, 1, 2, · · · , N − 1 (12.7)

We will not discuss the derivations of the window functions and the constants used

in equations (12.5), (12.7) and (12.6). These are some commonly used window

functions in digital signal processing (DSP).

Spectral analysis and feature transformation The cepstrum is computed

by taking the inverse Fourier transform (IDFT) of the logarithm of the squared

magnitude in the DFT for the signal given in equations (12.8) and (12.9) [14].

Logarithmic power spectrum In this step, first the logarithm of the

square of the spectrum of the windowed signal Sm(k) of the windowed signal

sm[n] is computed by taking the logarithmic computation of the square of the

absolute value of the magnitude of the DFT for the windowed signal. This is

shown in equation (12.8).

Sm(k) = 10 log10(|
N−1∑
n=0

sm[n]e−j2
π
N
kn|2) (12.8)

Parametric feature transformation The cepstrum parameters for the

windowed signal are denoted by im[n] and are computed by equation (12.9)

which is the inverse DFT of equation (12.8).

im[k] =
1

N

N−1∑
k=0

Sm(k)e2 π
N
kn (12.9)

The whole cepstral operation in order to extract cepstral features is shown in

figure 12.2. There we see the signal is first segmented into framed signals and

the discrete Fourier transform (DFT) of the framed signals is computed, then the

inverse DFT is taken on the logarithm of the DFT transformed signal.

In figure 12.3, we see the features extracted from speech command Öffne die

Tür. Extracted features do not show good structure of the features. By good,

we mean the difference between the features are not treated well by the cepstral

feature extraction technique.
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The MFCC, LPCC, PLP feature extraction techniques are more or less an

extension of the cepstral feature extraction technique. This is our next topic.

12.6 MFCC Feature Extraction Technique

The MFCC extracts perceptual speech features for the speech recognition. It is

probably the first perceptual speech feature extraction technique for the speech

recognition system and is examined in [110]. This is one of most commonly used

feature extraction techniques in the ASR technology.

The MFCC extraction process is shown in figure 12.4.

The relations among the steps in MFCC are shown in figure 12.4 and are then

discussed. Next we give a short descriptions of the components shown in figure

12.4.

Pre-emphasis First the input signal denoted by ś[n] is pre-emhasized by using

a pre-emphasis filter. The pre-emphasized signal is s[n] for n ∈ Z (integers) and

aem ≈ 0.97. The pre-emphasis filter repeated here is already shown in equation

(4.3) in chapter 4 in section 4.3. There ś[n] is denoted by s
′
[n] (observe ′ does

not denote here a transpose or ′ does not denote a transposein in chapter 4).

s[n] = ś[n]− aemś[n− 1]

The specific value is a kind of standard resulting from experience and will not

be discussed here.
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Figure 12.3: Cepstra features

Windowed signal The signal is windowed into sm[n] following the same pro-

cedure as described in section 12.5 and the same formulation as given in equation

(12.4). Then sm[n] is used for the power spectrum computation in the next stage.

Windowing is descrbed in detail in section 12.5.

Logarithmic power spectrum The windowed signal is used to compute the

logarithm of the square of the spectrum of the windowed signal using equation

(12.8) given in section 12.5.

Perceptual spectral analysis The human ear has a high frequency resolution

in the low frequencies and a low frequency resolution in the high frequencies. In

order to reflect the frequency resolution property of the human ear, the power

spectrum obtained by equation (12.8) is multiplied by the Mel scaled filter banks.

The Mel scaled filter banks given in equation (11.12) in chapter 11 is also known

as Mel filter bank. This is a set of triangular shaped filter banks which is scaled

by a Mel scale. The Mel scale is given in equation (11.7) in chapter 11. This
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scale is linearly spacing up to 1000 Hz and logarithmic spacing above 1000 Hz.

In equation (12.10) (given in chapter 11), Hl(k) is the Mel filter bank coeffi-

cients for l = 0, 1, 2, · · · , L where L (observe l and L should not be confused with

the notations in chapter 8) denotes the number of filters that are mapped to the

Mel scale and k = 0, 1, · · · , N
2

. Due to the FFT symmetry property, the compu-

tation is taken for 0 ≤ n ≤ N
2

which is one half of total lengh N . In equation

(12.10), ℵm(l) is the perceptual power spectrum of l th critical band in the Mel

scale and the subscript m denotes the power spectrum of the m th frame. Hl(k)

is defined in equation (11.12) in chapter 11.

ℵm(l) =

N
2∑

k=0

Hl(k)Sm(k) (12.10)

Logarithmic perceptual power spectrum In this step, the logarithm of

the squared magnitude of the output of the Mel filter bank is computed. The

logarithm of the spectrum of each filter-bank is obtained on each frame using

equation (12.11). The reason for computing the logarithm on the mel power

spectrum of the speech frames is to compress the wide-ranging varieties to follow

the dynamic range compression characteristics of the human hearing system. In

equation (12.11), the ouput of the filter is Pm[l] for l = 1, 2, · · · , L many triangular

band pass filters and m = 1, 2, · · · ,M .

Pm(l) = 10 log10 | [ℵm(l)] | (12.11)

Feature transformation applying DCT Since the log power spectrum is

real and symmetric the inverse DFT is equivalent to the discrete cosine transfor-

mation (DCT). The detailed information about this computation and the related
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transformation can be found in [103]. Windowing and DCT is considered in sec-

tion 12.10 and chapter 13. The DCT has the property to produce uncorrelated

features and thus the features variations can be set using a diagonal assumption.

This property is used to model the speech features using the Gaussian mixture

model (GMM) for the classification in the HMM recognition discussed in chapter

14. Now the DCT of Pm(l) is computed by the formulation given in equation

(12.12) where l = 1, 2, · · · , L and n the DCT coefficients where n = 0, 1, 2, · · · , J .

cm[n] =
L∑
l=1

(
Pm[l] cos(πn(l − 1/2)/L

)
(12.12)

The cm(n) are the standard coefficients of the MFCC features. But more dynamic

information of the speech can be captured by taking derivatives of the speech.

This is discussed below.

Derivatives of the feature transformation Since the speech signal is a

random process that changes over time, the speech signal is analyzed on the

frames. The dynamics of the changes of the features can be further captured by

taking first and second derivatives of the features obtained at the previous step.

The purpose of these derivatives is to capture any changes that may take place

during the feature transformation from the time domain to the feature domain

at their perception stage. The first derivative of the MFCC standard feature is

called delta feature. How this is computed is shown in equation (12.13). Here

m is used for the speech frames and m = 1, 2, · · · ,M . n denotes the number of

features from each frame and n = 1, 2, · · · , J . The derivative is computed with

respect to twice the signal window.

The second derivatives of the MFCC standard feature is called delta-delta

features. It is computed by equation (12.14). These formulations are collected

from [115], [54].

∆cm[n] = cm+2[n]− cm−2[n] (12.13)

∆2cm[n] = ∆cm+1[n]−∆cm−1[n] (12.14)

Signal energy Now an additional feature in the MFCC analysis is the signal

energy. It can be computed separately and then this can be included in the

feature parameters. This is computed by equation (12.15). The energy MFCC

feature coefficients are denoted by em where m denotes the frame number. The
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notation e should not be confused with the error denoted by e in chapters 6,7,

8,9 and 10. Each frame has only one frame energy and this is normally the first

feature in the feature vector where each vector is representing each speech frame.

em =
N−1∑
n=0

s2
m[n] (12.15)

We see that the MFCC feature parameters are energy of the frames, cep-

stral coefficients which is extracted using DCT, delta, and delta-delta cepstrum

coefficients. Such MFCC features cm are shown in equation (12.16).

cm = [em, cm[n],∆cm[n],∆2cm[n]] (12.16)

In figure 12.5, we see the features extracted from speech command Öffne die

Tür. These features in each frame are better managed than cepstral features.
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12.7 LPC Feature Extraction Technique

The basic idea of this technique is to the obtain the auditory spectrum and then

to obtain the features. In the LPC feature extraction the signal is segmented and

windowed by using equation (12.4). The linear prediction (LP) analysis described

in chapter 8 are used to obtain LPC coefficients. These LPC coefficients are the

LPC speech features used for the classification and the recognition. An extended

version of this, LPCC, is discussed next. The LPC feature extraction technique

is shown in figure 12.6.

Speech
signal

Pre−emphasis Windowing
Auto−

correlation

Levinson−

Durbin
recursion

LPC
features

Figure 12.6: LPC feature extraction technique

12.8 LPCC Feature Extraction Technique

The LPCC feature extraction technique is a combination of the LPC analysis and

the cepstrum analysis discussed in section 12.5. The basic idea of this technique

is the same as in the LPC analysis. In this technique, the windowed signal is used

for computing the autocorrelation and the power spectrum and the inverse DFT

of the logarithm of the power spectrum is computed for the LPCC features. A

block diagram of the LPCC feature extraction technique is shown in figure 12.8.

In figure 12.9, we see the features extracted from speech command Öffne die

Tür. These features in each frame are good managed as it is done in MFCC

features.
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12.9 PLP Feature Extraction Technique

This Perceptual Linear Predictive (PLP) technique relates the psychoacoustics

studies to the auditory spectrum in order to create perceptual PLP features .

It uses the LP analysis, the cepstrum analysis and the insights about human

perception. This technique is described in [42]. The steps are:

• Spectral Shaping: This is the same as in the cepstral analysis and the

MFCC analysis.

• Perceptual Spectral Analysis: This first uses human speech perception

with critical band analysis, equal loudness pre-emphasis and intensity loud-

ness conversion and adapt these to the speech which are already spectrally

shaped.

• Perceptual Feature Transformation: This is the same as the cepstral anal-

ysis and the MFCC analysis.

• Feature Transformation: This uses the vocal tract model of the perceptual

184



feature transformed speech and then solves the problem of finding the model

parameters using the LPC analysis. These parameters are the PLP features.

12.9.1 Perceptual Spectral Features

The spectrally shaped speech is now mapped to psycho-acoustical quantities in

order to approximate the human speech perception. The psycho-acoustical quan-

tities are : i) Critical band analysis, ii) Equal loudness pre-emphasis and iii)

Intensity loudness. These are introduced below.

Critical band analysis This uses the Bark scale in order to approximate hu-

man hearing perception. The formulation of the Bark critical band analysis is

given in section 11.7.2 in chapter 11. Equation (11.15) and equation (11.14) ex-

plained in chapter 11 in section 11.7.2 is mainly used by [42] for PLP perceptual

spectral analysis.

In this explanation, each of the filter’s output is the sum of the product of the

windowed FFT speech signals and the Φm(k) weight given in eq (12.17). There

m = 2, 3, · · · , (M−1) where m is the running index of the filters in the filter-bank

and k denotes the frequency of certain m th filter. The first filter m = 1 is at 0

Barks and the last filter at m = M . The output of the first and last filters are

calculated in such a way that the resultant output of these two filters is equal to

their closest filter output [100].

Xm(k) =

N
2
−1∑

k=0

| S(k) |2| Φm(k) | (12.17)

Here Xm is the filter output of the mth filter and | S(k) |2 is the Nth power

spectrum of the windowed speech frame and | Φm(k) | is the filter weights of the

mth Bark filter corresponding to the linear frequency scale [100].

Equal loudness pre-emphasis This re-emphasizes the spectrum to ap-

proximate the unequal sensitivity of human versus technical frequency to ap-

proximate the equal loudness curve. This is known as the psychophysical equal-

loudness pre-emphasis which reduces the spectral amplitude variation between

the critical band spectrum and the linear frequency band spectrum.

In equation (12.18), Em is the weighted equal loudness obtained by equation

185



(12.19).

ηm(k) =

N
2∑

k=0

Em(k)Xm(k) (12.18)

In equation (12.19), ω is an angular frequency and ω = 2πf and m is the

signal segment and f is the linear frequency. � denotes the multiplication.

Em(ω) =
(ω2 + 56.8 � 106)ω4

(ω2 + 6.3 � 106)2(ω2 + 0.38 � 109)
(12.19)

Intensity loudness Given the signal intensity, equation (12.20) approx-

imates the human loudness perception. Eq (12.20) is a cubic-root amplitude

compression which relates the sound intensity and perceived loudness [100].

m(k)ג =

N
2∑

k=0

(ηm(k))
1
3 (12.20)

Perceptual Feature Transformation It uses the cepstral coefficients of the

perceptually spectral speech features spectrum by taking the inverse discrete

transform of the perceptually spectral speech features for its perceptual feature

transformation using equation (12.9) given in section 12.5.

Feature Transformation Here this uses the autoregressive approach for the

perceptually transformed features for a vocal tract modeling and the solution to

the parameters are obtained by using LPC analysis given in chapter 8. These

LPC parameters are the PLP features.

Figure 12.10 shows the PLP feature extraction technique. It contains the

components that have been already introduced in this technique.

More about the intensity and loudness can be found in psychoacoustics studies

[41]. We have not done a detailed investigation of these studies. Our literature

survey on the perceptual feature extraction is given in chapter 11. In figure 12.11,

we see the features extracted from speech command Öffne die Tür. These features

in each frame are good managed but it shows some constant value. This might

be the energy extracted from each feature vector.
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12.10 SILTT Feature Extraction Technique

As said, the local trigonometric transformation (LTT) is the basis to extract

shift invariant local trigonometric transform (SILTT) features. The idea of this

technique is to build a library of functions of an orthonormal basis that compared

to the given signal or collection of signals has the lowest information cost.There

are several possibilities to compute the cost function. Examples are Shannon

entropy, Neumann entropy, wavelet entropy etc. The Shannon spectral entropy

is a common such cost function.

One first selects the window width. Then the procedure is repeated to con-

struct the best basis from all possible local cosine and sine bases using the cost

functional. For the search for the local cosine and sine basis the best matching to

the signal in terms of the cost function defined on the entropy of the decomposed

signal l is selected. The entropy then gives the SILTT features.

In figure 12.12, we can see that the signal is first segmented, windowed and

folded in order to extract spectral coefficients using DCT IV. These are then

used to extract spectral entropy. These spectral features are then given to the

inverse DCT IV. The results are unfolded in order to extract SILTT features.

We extended the SILTT for our feature extraction and a detailed formulation of

this technique and its extended version in our approach is discussed in the next

chapter.
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Figure 12.11: PLP features

12.11 Additional Features and their Extractions

The cepstrum, MFCC, LPC and PLP feature extraction techniques have been

used for both the clean and noisy speech recognitions. Over the years there are

several other feature extraction techniques developed by modifying the cepstrum,

MFCC, LPC and PLP feature extraction techniques. Examples are the cepstral

mean normalization (CMN). The CMN is described in [33]. The multilevel CMN

is the sub-band based CMN. This is described in [40]. Next we list several sys-

tems just for completenes without analysis. Relative spectral processing known

as RASTA extending PLP feature extraction technique is described in [43]. The

RASTA processing suppresses the noise in the overlap-add analysis-synthesis sec-

tion of the signal. A detailed description of the overlap-add analysis-synthesis

process can be found in [60], [9]. This RASTA spectral processing is done on the

cube root of the power spectrum by setting of all negative spectral values to a

small positive constant [44]. Details on the RASTA processing can be found in

[1]. An extension of the RASTA feature extraction technique for additive and

convolution noise has been used for the speech feature in [99]. These are all es-

sentially an extension of PLP technique and a slight modification of the RASTA
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using the spectral analysis in sub-bands. The reconstruction of missing features

extending the MFCC feature extraction technique is done in [16]. Relating the

psycho-acoustics to multi-channel processing using RASTA in the framework of

HMM and artificial neural network (ANN) is done in [40]. There are also some

other feature extraction techniques e.g. warped or perceptual minimum vari-

ance distortionless response (MVDR) which is based on the unbiased minimum

variance estimate of the spectral components [136]. The SILTT has been used

for speech processing, the wheezing lung sounds analysis, seismic data process-

ing, speech recognition in [111], [101], [32], [95], [50], [88]. These techniques are

mainly taking the cepstral mean normalization or by applying some additional

digital filtering using full band or in the sub-band. They are used for the clean

speech recognition and noisy speech recognition. We have not investigated further

details of these features at this stage.

12.12 Analysis of Feature Extractions

Here we evaluate and compare the standard feature extraction techniques. We

rely either on the results in this thesis or the cited literature. In the standard

feature extraction methods such as LPC, PLP, MFCC, the time-axis of the speech
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signal is divided into a series of some time intervals and then some functions are

used to smoothen the intervals in an overlapping or non-overlapping manner. It

can happen that the speech signal is non-stationary even though it is analyzed

in most situations as a quasi-stationary typed. The problem in the standard

methods is that the division of the speech signal may be processed as unchanged

in each 10 to 30 ms and the change may not be fixed in a consecutive manner. Here

the situation can be improved in some ways if there is a flexibility in the speech

signal processing. This flexibility is managed in the SILTT feature extraction

method.

The difference between the Cepstrum and the simple Yule-Walker approach

for the LP technique is the Fourier spectrum of the segment and computation

of the autocorrelation process of the segment and then computing the spectrum

using the FFT. In both cases, there is a problem to determine the true spectrum.

It is observed that the MFCC using Fourier transform (FT) for the Mel filter-

bank cepstral coefficients gives better recognition results for recognizing clean

speech and speaker [68]. The PLP based on FT using Bark-filter bank cepstral

coefficients and LP technique performs well in recognizing noisy speech [1]. The

basic difference between MFCC, LPCC, PLP using the FFT and SILTT applying

the DCT is in the approximation of the human auditory perception. In MFCC,

the frequency bands are positioned logarithmically using the Mel frequency scale.

In PLP, the frequency bands are positioned logarithmically using the Bark fre-

quency scale following the critical bandwidth and equal loudness approximation

approach [144].

In SILTT, the perceptual feature transformation is not used. In the LPC,

the pre-emaphsis is done at the front end, and on the contrary, the PLP uses

equal-loudness filtering. In LPC, the linear spectral analysis is followed, where

in PLP analysis, it is compressed to the critical band spectrum. In LPC, the

cepstrally smoothed spectrum is the transformed features. In PLP, the LPC

based smoothing of the spectrum is considered for the feature transformation

[62].

In MFCC and PLP the signal decomposition and spectral analysis is followed

by the process of the lapped transformation where the FFT is applied. The prob-

lem of abrupt discontinuity is it reduced because of the lapped transformation.

We handled this by applying a local trigonometric transformation followed by the

lapped transformation and extra care is taken to the edge applying the folding

operation. The discontinuity is smoothened here better than in the traditional

MFCC and PLP. The other problem in the LTT transformation is that it is not
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transformed to the perceptual conversion. That we have done in this feature

extraction technique.

Even the existing standard feature extraction methods are quite successful in

speech recognition. However, the success has a limited and restricted domain.

In some situations they work well at some scenario, but sometimes they do not.

However, in our analysis and evaluation, the MFCC features shows better struc-

tured than other commonly used feature extraction techniques namely ceptral

features, LPCC features and PLP features.

191



Chapter 13

APLTT Feature Extraction

Outline of the chapter In this study we apply the adaptive perceptual local

trigonometric transformation (APLTT) to extract features for the DANSR. This

chapter provides the architecture and definition of the APLTT feature extraction

technique. The APLTT is an extension of the shift invariant local trigonometric

transformation (SILTT) introduced in the previous chapter. This is a new per-

ceptual feature extraction technique because we extend the SILTT by adopting

some psychoacoustic quantities into it. The adopted psychoacoustic quantities

are: Erb scaled critical band spectral analyzer, loudness and masking properties

and perceptual entropy. We explain here how this is done.

The feature extraction steps are in general:

• Spectral Shaping: The signal is decomposed into blocks using a lapped

transformation followed by a folding operator.

• Spectral Analysis: This is done by computing discrete cosine transform IV

(DCT - IV).

• Perceptual Mapping: This is done by computing perceptual spectral infor-

mation using a Bark scale. This is an extension of the SILTT.

• Perceptual Feature Transformation : The perceptual features are the per-

ceptual entropy (PE). This is a modification of the SILTT.

• Parametric Feature Transformation : This is done by computing the inverse

of the discrete cosine transform IV (IDCT - IV) followed by an unfolding

operation.

Below each of the steps is described independently.
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13.1 Spectral Shaping

In spectral shaping the signal is prepared for the spectral analysis. The spectral

shaping has several sub steps:

• Decompose the signal in a dyadic manner

• Windowing the signal

• Apply a folding operator

These steps are now discussed below:

13.1.1 Signal Decomposition

The signal s(n) is decomposed in such a way that the length of each block (seg-

ment) is a power of 2. The length of the decomposed signal is in the range

of 10 to 30 milli seconds (ms). Each block has N many samples such that

n = 0, 1, 2, · · · , 2N − 1. Each block is denoted by Ij where j = 0, 1, 2, · · · , 2N − 1.

13.1.2 Windowing the signal

Windowing is in principle an extension of segmentation. The purpose of it is to

overcome generated discontinuities.

The starting point are segments that are intervals Ij = [aj, aj+1). Next a

number r is chosen such that aj + r,< aj+1 − r, ∀j. The intervals are taken as

[aj−r, aj+r). The number r describes the overlapping. This is used for smoothly

combining the intervals. The smooth windowed signal is obtained by applying

the trigonometric cutoff functions what is discussed next. It starts from taking a

function β(t). The function β(t) is such that β(t) ∈ <d with 0 ≤ d satisfying the

following condition:

β(t) =

{
0 if t ≤ −1

1 if t ≥ 1
(13.1)

This condition will now be extended to a full definition in the interval -1, 1.

The function β(t) is called a rising cutoff function because β(t) rises from being

identically zero to being identically one as t goes from −∞ to +∞. In equation
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(13.2), bj(t) is defined for any real number and it is a continuous function.

bj(t) =


β(

t−aj
r

) t ∈ [aj − r, aj + r)

1 t ∈ [aj + r, aj+1 − r)
β(

aj+1−t
r

) t ∈ [aj+1 − r, aj+1 + r)

0 t ∈ (−∞, aj − r] ∪ [aj+r,∞)

(13.2)

To ensure smoothness we take a number ε such that aj+1 − aj ≥ ε > 0 for each

j ∈ Z The whole complex process is shown in figure 13.1. In the sequel we will

define the steps. The framed signal is already discussed in sections 13.1.1 and

13.1.2.

Perceptual LTT 
speech featuresInverse discrete 

cosine transform
IV

(IDCT-IV)

y
m

(n)
Unfolding
 operation

Discrete 
transformcosine

(DCT-IV)
IV(Rising cut-off 

Windowed-signal

function)

byFramed 
signal

Hm(f)X (f)
m(f)mY

I j b (t)j m
S  (k)Folding

operation

Adaptation

Loudness
to Intesity-

y  (n)
m

Feature transformation

s

 Speech

signal Spectrum

Entropy Filter-bank
Critical-bands

spaced at
Perceptual scale

Perceptual-adapation Auditory filter-bank

Perceptual

(PE)

Y (f)
m_(pe)

Spectral Shaping Spectral-analysis

Figure 13.1: DANSR feature extraction: Adaptive Perceptual LTT (APLTT)

13.1.3 Rising Cut-off Functions

In this section we define some operators that are used for windowing in a more

general way. The main element of these transformations is the unitary operator

which transforms a sharp cut off function into a smooth orthogonal projection.

This operator is called folding operator. The folding operator depends on the real

variable and must satisfy the symmetry property. The motivation of the rising

cut-off function: We introduce the rising cut-off function in order to provide

a smooth integration of the segments. The smoothness results in a projection

depending on the parameter function’s smoothness [32], [95].
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For this we want to specify β(t) more in the inner interval [−1, 1] and two

more functions ρ and θ are introduced. In equation (13.3), one has to choose the

numers m,n ∈ Z in equation (13.3).

ρ(t) =

{
2nπ if t ≤ −1

2mπ if t ≥ 1
(13.3)

We take r0(t) = r sin(t) and r1(t) = r(sin{sin(π
2
t)}). Thus we can say r1(t) =

sin(π
4
(1 + sin π

2
t)) and define in equation (13.4):

θ(t) =

{
0 if t < −1
π
2

if t > 1
(13.4)

By choosing θ(t) + θ(−t) = π
2
, we can specify the rising cut-off function β(t)

as shown in equation (13.5) where i is used in exp[iρ(t)] to indicate a complex

exponential term.

β(t) = exp[iρ(t)] sin(θ(t)) (13.5)

Since |β(−t)| = | sin[π
2
− θ(t)]| = | cos(θ)|, we obtain |β(t)|2 + |β(−t)|2 = 1.

The β function is now defined as β(t):

β(t) =


sin π

4
(1 + sin π

2
t) for −1 ≤ t ≤ 1

0 for t < −1

1 if t > 1

(13.6)

This functions satisfies the needed conditions.

13.1.4 Folding Operation

A basic operation is now to split each interval into two overlapping intervals and

construct a basis for each one. The integration is obtained by a rising cut-off

function. The local cosine transform reduces the blocking effects and smoothens

the signal. The principle of overlapping between the adjacent blocks is used in the

local cosine trigonometric transformation. There we use smooth cut-off functions

to split the signal and to fold the overlapping sections back into segments in

such a way that the orthogonality is preserved. To obtain a better frequency

localization, the signal is multiplied by a smooth window function which uses the

local sine and cosine bases consisting of sine or cosine multiplied by a smooth

compactly supported bell functions. These localized sine and cosine functions
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are orthogonal. The basis element is characterized by the position α, the interval

I, and frequency index k. This generates the smooth local trigonometric basis.

The (DCT-IV(discussed below) is used for folding the overlapping sections back

into the interval I = [aj, aj+1) using the bell function bj(t).

Equation (13.7) shows an inner product of the local cosine basis using the

folding operator and DCT-IV. There the sj[n] start with the multiplication of

the window bj(t) and the signal s[n]. The multiplication is folded at the edges

using the folding operator and then DCT IV is applied on the folded result giving

the disjoint window segments sj[n].

sj[n] =


bj[n]s[n] + bj(2aj − n)s(2aj − n) if aj ≤ n ≤ (aj + r)

s[n] if aj + r ≤ n ≤ [aj+1 − r
bj[n]s[n] + bj[2aj+1 − n]s[2aj+1 − n] if aj+1 − r ≤ n ≤ aj+1

(13.7)

In short, we denote this as sj[n] = bj[n]s[n]. Observe that sj[n] is 0 outside of

the interval.

In figure 13.2, we see the folding operation is explained in figure a. In this

figure, we see the folding operation is done symmetrically in the middle of the bell

function where left side shows -0.5 and right side shows 0.5. Thus the windowing

proceeds taking the middle of the left window and middle of the right window.

The both mid points of the windows are folded. This is shown in figure b in the

same figure.

13.2 Spectral Analysis

Up to now we still have been in the time domain. Now we go to the z-domain. We

will use a kind of the Fourier transformation. After segmentation we would like

to do this for each segment. The problem is now coming from the discontinuities

at the boundaries of the segments. For dealing with it we introduced overlapping

intervals and the rising cut-off functions. The transformation that we will use now

is the Discrete Cosine Transform IV (DCT-IV). The spectral analysis is ilustrated

in figure 13.2.

13.2.1 Discrete Cosine Transform IV (DCT-IV)

The DCT IV as a kernel function is shown in equation (13.8). There n =

0, 1, 2, · · · , (N/2 − 1) and k = 0, 1, 2, · · · , (N/2 − 1). A detailed derivation of
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DCT family can be found in [39], [103]. For describing properties of DCT-IV, we

define:

Fk =
N−1∑
n=0

π

N
cos
(
[n+

1

2
][k +

1

2
]
)

(13.8)

Here we represent the notations for the local trigonometric symmetric case where

the signal is windowed and folded prior to its spectral representations. It has

also the property of recovering the original representation of the signal. We now

introduce (13.9), χIj [n] is the characteristic function of the interval which is 1 for

n ∈ Ij and 0 otherwise.

φjk[n] =

√
2√
|Ij|

cos
π

|Ij|
[k +

1

2
][n− aj]χIj [n] (13.9)

Folding has the property of recovering the original representation of the signal

cjk =
〈
Sj[n], φjk(n)

〉
(13.10)

This allows the representation shown in equation (13.11). The inner products of

the cjk and φjk[n] are the DCT coefficients.

Sj[n] =
∑
k∈Z

cjkφ
j
k[n] (13.11)

In figure 13.2, we see the spectral analysis In figure 13.2. There we see the DCT-

IV is applied on the windows shown figure b. The APLTT spectral analysis of

speech signal is shown in figure d. We see the signal is a detailed represented by

the APLTT spectral analysis.

In figure 13.3, we see the spectral analysis of the speech signal applying DCT-

IV in figure a and applying the Fourier transform in figure b in the same fig-

ure. The APLTT spectral analysis captures more detailed of the signal than the

Fourier transform based spectral analysis.

Logarithmic Power Spectrum In this step, first the logarithmic power

spectrum of Sj[n] is computed by equation (13.12) where k = 0, 1, 2, · · · , (N/2−
1).

ϑm(k) = 10 log10(|
N−1∑
n=0

Sj[n]|2) (13.12)
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Figure 13.2: Spectral shaping and spectral analysis: LTT and FT
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13.2.2 Perceptual Feature Transformation

In this LTT formulation we have embedded some basic perceptual quantities such

as critical bands, the scale of loudness which influences the frequency masking

and the perceptual entropy. The adaptation is new to this technique.

For critical band adaptation, we first use the concept of auditory filters where

the critical band is realized.

13.2.2.1 Critical band for DANSR

This uses the Bark critical bank scale using equation in order to approximate the

human hearing perception. This is shown in (11.13) in chapter 11.

Hm(k) =


0 for k < f(m− 1)

2(k−f(m−1))
f(m+1)−f(m−1))f(m)−f(m−1))

for f(m− 1) ≤ k ≤ f(m)
2(f(m+1)−k)

(f(m+1)−f(m−1))(f(m+1)−f(m))
for f(m) ≤ k ≤ f(m+ 1)

0 for k > f(m+ 1)

The mapping between the linear scale in Hz and the perceptual scale is done in

equation (11.13) as follows. This is also written in chapter 10 in section 11.7.

f(m) =
N

fs
B−1

(
B(fl) +m

B(fh)−B(fl)

M + 1

)
Here B(f) is the Erb scale in (13.13) (see chapter 11). We have choosen Erb

scale because it closely approximates the cross section of the cochliear

Erb scale: B(f) = 21.4 log10(0.00437f + 1) (13.13)

Now similar to equation (12.10) discussed in chapter 11 in section 11.7.1, we

compute equation (13.14). In the equation |Hl(k)|1/3 is a cubic root to support

power law of hearing.

ℵm(l) =

N
2∑

k=0

|Hl(k)|1/3ϑm(k) (13.14)

Now the logarithmic perceptual power spectrum is computed by equation (13.15)

and the output of the mth filter is

ιm[l] = 10 log10 | [ℵm(l)] | (13.15)
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Figure 13.4: Perceptual filterbank and output of this filter bank

The output of the psycho-acoustic filter is shown in figure 13.4 where the left

filter is the auditory filter-bank of the DANSR which is mapped to Erb scale and

the right figure is the output of the filterbank.

13.2.2.2 Intensity loudness

To formulate the intensity loudness, we have applied equation (12.20) (see chapter

12). This is explained in chapter 11 in section 11.5.1 using a basic equation given

in equation (11.6). For this reason, in equation (13.14) the filter weight |Hl(k)|
is raised to —Hl(k)|1/3.

13.3 Parametric Representation

Here we discuss the feature transformation of the perceptual spectral feature

analysis. For this the perceptual entropy (PE) is selected. The PE has been used

to suppress noise for the transform coding audio signal in [57]. The DCT is an

example of transform coding as the DCT transforms the the signal by some linear

combinations of the orthonormal local cosine bases.

13.3.1 Perceptual Entropy (PE)

The term perceptual entropy is used to define the smallest amount of data which

is needed to encode some audio signal without any perceptual difference to the

original. It indicates the average minimum number of bits in the frequency sam-

ples needed to encode a signal for this purpose [64], [58], [6]. The perceptional

spectral analysis is used in [90], [105]. The perceptual spectral analysis means
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mainly the critical bank analysis using perceptual scales such as Bark, Mel or

Erbs. The PE is defined in equation (13.16). For this definition we follow the

description given in [90]. In this equation, N is the number of frequency com-

ponents between a certain signal frame which is used for spectral analysis using

DCT and then transform this perceptual spectral analysis using Bark scale and

loundness pre-emphasis given in eq in the filter-bank used fl, fu where fl is the

lower frequency and fu is the upper frequency limit e.g. fu = 20000 Hz; m(k)ג

is the amplitude of the frequency component and k is the estimated threshold

level at the frequency Tm(k). This definition of the PE needs an existence of a

concept of audibility and an auditory threshold. To apply PE, we have computed

the perceptual power spectrum and

Ym(k) =
1

N

k=fu∑
k=fl

( m(k)ג

Tm(k)

)
(13.16)

It gives a lower bound estimate for the perceptual coding based on the computed

mask threshold.

13.4 Parametric Feature Transformation

In this step the perceptual spectral features are parametrically transformed by

applying IDCT- IV and the unfolding operation applying to the mathematical

operations given next.

13.4.1 Inverse DCT-IV

The perceptual features obtained by bark critical bank spectral analysis, loudness

pre-emphasis and perceptual entropy are parametrically transformed by applying

the iinverse of DCT-IV shown in equation (13.17).

y[n] =
2

N

N−1∑
n=0

Ym(k) cos[
π

N
[l +

1

2
][n+

1

2
]] (13.17)

13.4.1.1 Unfolding operator

Following the similar terminology as provided in equation (13.7), the unfolding

operator is applied to equation (13.17) in the form of equation (13.19).
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y[n] =


bj[n]y[n]− bj[2aj − n]yj[2aj − n] if aj ≤ n ≤ (aj + r)

yj[n] if (aj + r) ≤ n ≤ aj+1 − r
bj[n]yj[n] + bj[2aj+1 − n]y[2aj+1 − n] if aj+1 − r ≤ n ≤ aj+1

(13.18)

The ouput of this unfolded form y[n] are our speech features used for classifi-

cation and recognition.

The unfolding operator is now shown in equation (13.19) :

s[n] =


bj[n]s[n]− bj[2aj − n]sj[2aj − n] if aj ≤ n ≤ (aj + r)

sj[n] if (aj + r) ≤ n ≤ aj+1 − r
bj[n]sj[n] + bj[2aj+1 − n]s[2aj+1 − n] if aj+1 − r ≤ n ≤ aj+1

(13.19)

13.5 Analysis of APLTT and Standard Feature
Extraction Techniques

As mentioned the APLTT is an extension of the SILTT. This has no connection

with the human hearing perception. The non-stationary signal is normally de-

composed in order to analyze its spectral information and to process the signal.

The most common decomposition technique is the FFT transformation. This is

commonly known as short time Fourier transformation (STFT). The technique

is introduced in chapter 8 in section 8.1. The finite intervals are managed by

applying some window function. This reduces a blocking artifact due to the de-

composition by the lapped transformation discussed in [47]. This transformation

has to double the blocks or the channels of the signal segment or the frame. Each

segment can be processed as a finite signal by applying some window function on

the frame signal.

In SILTT, the spectral analysis is obtained by the adaptive window func-

tion, folding operation and local cosine transformation (DCT-IV). The spectrally

transformed speech is then used to extract the features by applying the spectral

entropy using equation (13.21) preceded by IDCT-IV and the unfolding operation.

In SILTT, the spectral transformed speech is used to extract the features by

computing the spectral entropy using equation (13.20) and equation (13.21). In

equation (13.20), S is the spectrum computed by DCT-IV and Sk is the spectrum

at k frequency components. In equation (13.20), Sk is the energy of the kth
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frequency component of the spectrum and s̆k is the probability mass function

(PMF) of the spectrum. Then the entropy is computed by equation (13.21).

s̆k =
Sk∑N
i=1 Si

for k = 1, 2, · · · , N (13.20)

H(s̆) = −
∑
s̆∈S

s̆k log2(s̆k) (13.21)

The LTT is used for wheezing lung sound analysis [29], the SILTT is used for

speech recognition [111], the use of LTT for the speech processing can be found

in [50], audio signal analysis by using LTT is shown in [88], [75], [101], [111].

This extracts the speech features by the SILTT and uses VQ based HMM for the

speech recognition.

The APLTT uses the SILTT spectral analysis and in addition this uses basic

perceptual spectral analysis discussed in this chapter. These perceptual spectral

speech features are used for feature classification and recognition. We consider

the perceptual LTT for a GMM model based HMM recognition system.

The experimental analysis and its comparisons using other feature extraction

techniques are provided in chapter 15.
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Chapter 14

Classification and Recognition

Outline of the Chapter We apply a continuous Hidden Markov Model (HMM)

to recognition. This uses the Gaussian mixture model (GMM) for the acoustic

modeling which characterizes the probability distribution of the states. These

provide latent variables. The theoretical aspects of this and its application to

our recognition are provided in this chapter. First we introduce the intuitive

concepts in question and then we provide the formal definitions. For the general

concepts we start with HMM for an introduction into the topic. The given for-

mal formulations of HMM model in this chapter are mainly a reflection of the

literature.

The HMM given in this chapter is limited to our recognition problems. The

problems are mainly finding the probability of the observations given the GMM

model, finding the best path of the observations given the model, and re-estimating

and training the model parameters i.e. learning. The techniques we use are for-

ward and backward search, Viterbi search and the Baum-Welch algorithm. We

also discuss the clustering. The chapter contains a combination of formal and in-

formal elements. In the informal parts we present the main ideas for understand-

ing the approach. For the formal elements we give mathematical formulations.

14.1 Formulations of HMM

The Bayes’ rule is a standard method when dealing with the HMM based pattern

recognition problem. In the solution approach, the HMM finds the most probable

answer for the unknown states given the features and the model.

The following notations are useful:

• There the speech features are divided into some states. The states are the
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members of a set which is denoted by Q = {q1, q2, · · · , qN}. The number of

states is N .

• There is a set of feature vectors denoted by O = {o1,o2, · · · ,ot, · · · ,oT}.
The features are obtained from the observations and we call them for sim-

plicity again observations or features. The observations or features refer

the same context. Each ot has n many feature elements and each word

which may be called as an event has T many feature vectors such that

t = 1, 2, · · · , T .

• λ is the model parameters.

The problem is to find the most likely answer for a unknown sequence of

words termed as states Q given the observation O which takes some values and

a set of parameters λ for a certain sequence of states. This is shown in equation

(14.1) where Q∗ is a given word or a sequence of states. These represent the

the observation O and Q is the states for a certain word. p(q|o, λ) is known

as the posterior probability [130]. In equation (14.1), o represents the states

o1, o2, · · · , oT and q represents the states q1, q2, · · · , qN

Q∗ = arg max
q

p(q|o, λ) (14.1)

Now we can formulate the basic equation for the whole intended process by

equation (14.2) applying mainly Bayes rule. There o is the feature vector, λ

represents model parameters of given observations O, q is the states and p is

the probability. In equation (14.2), p(o|q, λ) is called an acoustic model. This

computes the probability of the features given the states. The model looks for

the most likelihood of the q for the features. This means the most likelihood of

the feature observations given the model is obtained. Here o denotes any of the

ot.

p(q|o, λ) = arg max
q

p(o|q, λ)p(q, λ)

p(o, λ)
= arg max

q
p(o|q, λ)p(q, λ) (14.2)

The HMM is an extension of the Markov model. In a Markov model the

probabilistic relations between the states and the features are known. In HMM,

however, the relations between the states and the feature vectors are hidden. The

HMM is called the double stochastic processes. Let us assume that the double

stochastic processes is {O,Q} where O is a Markov chain holding the observation
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transitions and Q is a sequence of independent random variables such that the

conditional distribution of Q depends only on O [94]. Now the double stochastic

processes indicate[127]:

1. O and Q are both random variable processes. These processes may have

unknown probabilities. The statistics of these probabilities are continuously

varying with time. By this we mean the statistics of the observation or

feature vectors such as o1,o2, · · · ,ot, · · · ,oT are not same and they may

differ from state to state that is q1, q2, · · · , · · · , qN .

2. Q is stationary processes. These are realized by the observations O. These

are for us Gaussian mixture models (GMM). According to my knowledge the

reason behind the GMM modeling is tractable mathematical manipulation

for the modeling. This is a linear combination of Gaussians with some

weights or mixtures. Observe that the GMM and Gaussian process do not

convey the same information. Thus for modeling the feature vectors, the

GMM is our general assumption.

The difference between the HMM and the Markov model is that in the HMM

the state q that generated an observation vector o is hidden; we only observe o

but we do not observe the hidden state q that generates the observation vectors.

In HMM, we have the transition probability A and the observation probability

B for the output probability and the initial state probability π. Each state

produces an output with a certain observation probability bj(ot). This is captured

by an observation probability matrix B. The states Q(qi), the observations O(ot)

are given but which state generates which observation is not given and it is hidden.

Now the model λ is formulated by equation (14.3). The elements of the model

and their notations in equation (14.3) are introduced in details in section 14.2.

The model parameters are mainly mean and covariance matrix of observation

vectors. These are used in the Gaussian mixture model (GMM) to compute the

probability density function. This is discussed in section 14.6.

λ = (A,B, π) (14.3)

Next we introduce the HMM elements and their notations in details.
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14.2 HMM Elements

What we directly have here is first the speech signal in discrete time via some

sensor. This is here a sound recorder embedded with a microphone. These signals

are compressed to feature vectors using the feature extraction technique.

For analyzing the state probabilities we now compare all the outcomes from

M many subspaces or subsets or events which give us the observations o. These

A, B and π are used to define the HMM. Now the HMM elements are listed:

• The matrix of the state transition probabilities is A = {aij}: The com-

munication between the states is taking place through the state transition

probability matrix A = {ai,j} where i, j = 1, 2, · · · , N . For the matrix

elements we have the equations aij = p(qt = j|qt−1 = i) for 1 ≤ i, j ≤ N

such that aij ≥ 0 ∀i, j and
∑N

j=1 aij = 1. For aij, the element of row

i and column j of aij specifies the probability of the feature vectors O =

{o1,o2, · · · ,ot, · · · ,oT} to go from state i to state j. Each row of the matrix

must sums up to 1.

• Clock: t = {1, 2, 3, · · · , T}. This denotes the time index of the feature

observations O where O = {o1,o2, · · · ,ot, · · · ,oT}. This means it has T

many feature vectors in the observation.

• M events: E = {e1, e2, e3, · · · , eM} which give us observations. Here the

number of events refer to the number of references for each command em
for m = 1, 2, · · · ,M . For example, if we have total M = 100 training

samples for the command ”Oeffne die Tuer”, then E = e1, e2, · · · , eM where

m = 1, 2, · · · , k, · · · ,M and in this example M = 100. Then we can say ot
belongs to the kth event ek.

• Observation probability matrix B computed from bj(ot): This is the prob-

ability of the tth feature vector ot at state j for any event producing the

observation. Thus for T and N , we have a set of probable values denoted

by bj(ot) where bj(ot) = p(ot|qt = j).

• Initial and final state: The observation O = {o1,o2, · · · ,ot} is a sequence of

T many vectors which are observed in the states. The states Q has initial

and final states. These are not included in the observation probabilities

bj(ot). The final state has only one non-null transition that loops onto

itself with a probability of 1. For the initial state we have probabilities πi:
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πi = p[q1 = i] for i = 1. This gives the probability for the first state j = 1.

The value of πi is such that πi ≥ 0 and πi ≤ 1.

The transition probability aij for i, j = 1, 2, · · · , N indicates the dynamic

behavior of the feature vectors in the states. bj(ot) is the probability of the

observation ot given time t and at state j. There the given stochastic process

for the ot will reveal the hidden stochastic process for the bj(ot). That’s why the

HMM is called the double stochastic process.

The HMM has to be defined in order to use this for the pattern recognition

problem.

The probability of both o and q occurring simultaneously is computed by the

given equation (14.4). This is a prior probability. Here again o denotes any of

the ot.

p(o,q|λ) = p(o|q, λ)p(q|λ) (14.4)

Equation (14.4) can be expanded to equation (14.5).

p(o,q|λ) = πq1 .bq1(o1).aq1q2 .bq2(o2).aq2q3 . · · · .aqT−1qTbqT (oT ) (14.5)

Now the probability of the states q given the feature observation vector o is

the posterior probability. This is computed by equation (14.6).

p(q|o, λ) = p(o|q, λ)p(q|λ) (14.6)

Computations of initial πi, initial aij and bj(ot): The πi for i = 1, can be

chosen randomly but this value has to be greater than 0 and less than or equal

to 1. The initial aij can also be chosen randomly such that the i th row sums to

1. The observation probability bj(ot) is computed here by the GMM.

14.3 Speech Aspects

The main types of variations in speech stochastic processes are the variations

in the spectral composition and the variations in the time-scale [127]. In the

state transition probabilities say something about the probability of the transition

among the states and the variations of the duration on time-scales of the signal in

each state. For example, the short or slow articulation can be expressed by self-

loop transitions in the states of the model where the fast speaking or articulations

can be skipped in next state connection. The state observation probabilities
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models the probability distributions of the spectral composition of the signal

segments are associated with each state [127].

The HMM with respect to the speech recognition problem is described by

figure 14.1. This figure shows how the HMM fits to the Bayes’ rule in order to

solve the speech recognition problem. Some explanations:

Likelihood
Speech features

A−priori 

Bayes’ rule
A−posteriori Most likely

result
probability

probability

Figure 14.1: Bayes’ rule in the classification and recognition problem

• Example: Suppose we have some commands in the vocabulary list : ”Stop”,

”OeffnedasFenster”, ”Gehweiter”. Suppose further that we have a 3 states

model for the command ”OeffnedasFenster”. They are: i) oeffne, ii) das,

and iii) Fenster and the three states are denoted by q1, q2, q3. We have one

state model denoted by q1 for the command ”Stop” and two states model

q1, q2 for the command ”Gehweiter” and ”Geh” ”Weiter”.

• Acoustic features are obtained by the APLTT feature extraction. Each

feature vector has several feature elements. Now the APLTT feature vectors

for each command are denoted by o1,o2, · · · ,oT .

• These feature vectors are used in the Gaussian mixture model to obtain the

probability density function (pdf).

• Now given the features and the model i.e. the pdf of the acoustic speech

features, we compute the likelihoods of the states given the features and

the model.

• Likelihood: This gives us the probability of possible features given all possi-

ble states. This means for example p(o|Oeffne das Fensterq1,q2,q3); p denotes

the probability measurement.

• Now the Bayes rule helps us to find the most likely answer i.e. what is the

probability that the states belong to the given features and the model that
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is

P (oeffne das Fenster|o1,o2,o3, · · · ,oT , λ).

• A-priori probability is the computation of the pdf by the GMM.

• A-posteriori probability indicates the likelihood of the state given the fea-

tures and model.

• The highest probability indicates the answer to the problem.

An example of transition between the states in the recognition stage in the Viterbi

space in shown in figure 14.2. For this, we use the samples and implementation

code given in [130]. This figure shows how the recognition is considered using the

states following the transition path created by the feature observations. In the

0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

1800

2000
State transition to find the best path of recognition

Figure 14.2: State transitions in the Viterbi search space [130]

next section we show the HMM architecture and the computational methods to

obtain the HMM parameters. We discuss this first informally. The mathematical

derivations of these are discussed section 14.7.

14.4 Informal Discussions: HMM Architecture

In this section the definitions of the HMM for the speech recognition problem are

first listed and then the approaches and their informal computation approaches

for these are introduced. We have also introduced the HMM constraints for the

speech recognition problem and the HMM topology.

210



14.4.1 HMM Problems and Techniques

The HMM solves a problem by its model of evaluation, searching, and re-estimating

through learning the states of the observations for the optimum likelihood result.

For these, given acoustic features o and the model λ, the HMM uses some meth-

ods.

Evaluation This computes the probability of the observations p(o|λ) given the

model λ and the probability of the observations of being in certain state at certain

time by the forward algorithm.

Search A preliminary remark is that search is a method that is underlying many

machine learning and optimization procedures. Here search is used to compute

the optimal likelihood of the observations and a state given the mode. It tries to

find the best state holding the word on the sequence of features observations at

a specific time the given model. Here we use the Viterbi search algorithm.

Learning and Re-estimation The re-estimation adjusts the model λ in order

to maximize the probability p(o|λ) of the feature vectors o ∈ O. This improves

the initial HMM parameters estimation. These are done by expectation maxi-

mization algorithm, in particular the Baum-Welch technique using the forward-

backward algorithm.

14.4.2 HMM Constraints

Here we list the major constraints of HMM model. They are in general applicable

for any HMM based pattern recognition problem.

• All possible states must be known prior to the system design.

• All possible connections among the states must be known.

• All the vocabularies must be known in advance in the recognition system.

• The initial probabilities and the estimate of the state observation or emis-

sion probabilities as well as state transition probabilities must be given.
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14.4.3 HMM Topology

The HMM topology says what type of HMM model one selects for a particular

pattern recognition problem. They must be defined in advance, for example:

• if the HMM is discrete or continuous;

• if the model is left-to-right or fully-connected;

• if the transition probabilities are fully defined such as in the transition

probability matrix;

• if the type of HMM model is for phoneme, or words or sub-words or char-

acters or language.

Our topology is left to right. It is shown in the next section.

14.5 HMM Formulations for DANSR

An overview over the structure of our approach about classification and recogni-

tion is shown in figure 14.3. There, we see how the different parts of the DANSR

system interact with one another. In the figure, we refer to the elements intro-

duced in the previous section as for instance APLTT. In this figure, the acoustic

model is the GMM which computes the pdf of the features. The language model

means the word in vocabulary (in the computations it is state), the search model

is mainly the Viterbi algorithm.

The scenario of the situation is:

• We have a predefined list LIST = {w1, w2, · · · , wL} of (in our application)

L = 20 many predefined words.

• Each wl has M = 100 + 25 many training and testing examples. Here

we have 100 for the training events or reference or examples where 100

for testing and 25 for the testing examples for each wl and we take l =

1, 2, · · · ,M .

• Now each wl has N many states, for instance we can take N = 5. As a

running index we have i = 1, 2, · · · , N .

• Each signal (for instance a word) is segmented into signal blocks. Each

state ql has feature vectors ol obtained from each segmented signal block

by the feature extraction technique.
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Figure 14.3: Recognition Module and its Integration with APLTT Features

Here the DANSR topology is left-to-right and continuous; mainly we have

a word or sub-word model. We have characterized the feature observations by

applying the GMM for the words or the sub-words for the HMM recognition.

This can be seen in figure 14.4 where null indicates the beginning and end state

which is 0. How we compute the observation probability of the features at certain
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2 
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a a

33
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22

23

null null
π

i

Figure 14.4: Left-right HMM topology

state and a certain event by the GMM is discussed in the next section.

14.6 Gaussian Mixture Model (GMM)

We have used the GMM to model the speech features. As mentioned, here the

model describes the probability density functions of the feature vectors using

their means and covariances. The difference between the Gaussian process and

Gaussian mixture process (GMM) is that the Gaussian process is unimodal while
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the GMM is multimodal. The unimodal has only one peak or mode and a mul-

timodal has more than one peak. The term ”peak” means the local maximum

of the distribution. The GMM smoothly approximates an arbitrary shaped den-

sity using the mean vectors, covariance matrices of the observations and gives an

insight of the process [2], [133].

The GMM is a linear combination of G ∈ Z many Gaussians. Given the

feature vectors (ot is a part of feature observations), each Gaussian model in the

GMM has its own mean and covariance matrix as its parameters and these have

to be estimated separately for each Gaussian model for the GMM. The compu-

tation of the mean and covariance matrix for Gaussian model in the GMM is not

computed in a similar manner that is done for the Gaussian model because here

we do not know which observation belongs to which Gaussian and which mean

and covariance matrix belongs to which feature vectors which again belongs to

a certain observation in the list. The GMM combines probability distributions

by some weighting. These weights are unknown for a particular application and

these weights have to be determined. These determinations are done by an es-

timation. Hence we come to an iteration process. There we can say what our

initial weighs are. The initial weights are taken in such a way that they are all the

same. This means for the G many Gaussian models, we have G many weights and

the weights are initialized as 1
G

. The GMM model parameters are initialized by

K-means clustering discussed in section 14.8.2 but optimized by the expectation

maximization (EM). The EM is an iterative process and this iteratively optimized

the model parameters by using equation (14.7) where i denotes the number of

iteration. A detailed equation (14.7) and the EM iteration process can be found

in [55]. Here we only noted how the GMM parameters are estimated by the EM

iteration.

Q(λ(i), λ(i+1)) =
T∑
t=1

∑
q1,q2,··· ,qN

p(q|ot, λ(i)) log p(q,ot|λ(i+1)) (14.7)

For the EM iteration, first the Q is initialized, then the iteration is continued to

estimate Q(λ(i), λ(i+1)) and stopped when λ(i+1) = argmaxλ(i+1)Q(λ(i), λ(i+1)). We

can see the use of this in equations (14.18) and (14.22).

14.6.1 Computational Aspects of GMM

?? For the observation sequence O = {o1,o2, · · · ,ot, · · · ,oT} for t = 1, 2, · · · , T
the probability is formulated by equation (14.8) where the cg describes the mixture
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for the component g = 1, 2, · · · , G such that
∑G

g=1 cg = 1. O is a T dimentional

feature vector such that o1,o2, · · · ,oT and each ot vector consists of l = 1, 2 · · · , n
feature elements. GMM denoted by λ has three main parameters, the mixture

components c, the mean vector denoted by µ, and the covariance matrix denoted

by Σ. All these three parameters have indices g = 1, 2, · · · , G.

In equation (14.8), N is a notation used for the Gaussian mixture model and

N contains the parameters of the Gaussian mixture model. This is shown in

equation (14.9).

p(ot|q) =
G∑
g=1

T∑
t=1

cgp(ot | µg,Σg) =
G∑
g=1

T∑
t=1

cgN(ot, µg,Σg) (14.8)

In equation (14.9), we see the model λ for the HMM recognition task and its

parameters for given observation vectors ot where g = 1, 2, · · · , G and t =

1, 2 · · · , T .

λ = {cg, µg,Σg|ot} for ∀ g ∈ G (14.9)

We see the pdf p(ot) of the feature vectors ot in equation (14.10). Here ′ indicates

transpose, we avoided the conventional transpose notation T for transpose to

avoid confusion with T that we used for T dimensional observations. In the

equation the dimension of each feature vector is l where t = 1, 2, · · · , T . The

distribution is characterized by equation (14.10).

p(ot) = (2π)−l/2|Σ|−
1
2 exp[−1

2
(ot − µ)

′
Σ−1(ot − µ)] (14.10)

The mean of the feature vector ot can be expressed by using equation (14.11)

µt = E[ot] =
1

l

l∑
n=1

ot[n] (14.11)

The covariance of the feature vectors om and on where m,n = 1, 2, · · · , t, · · · , T
is shown in equation (14.12) where µm is the mean of the feature vector om.

Similarly µn is the mean of the feature vector on. Cm,n denotes the covariance

of the feature vectors om and on. Similarly Cm,m denotes the covariance of the

feature vectors om and om.

Cm,n = E[(om − µm)(on − µn)] (14.12)
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Cm,m = E[(om − µm)(om − µm)] = E[(om − µm)2] = σm,m (14.13)

For the GMM, it can be determined whether the covariance matrix is full or

diagonal. This generally depends on the development criteria and the available

data. The common approach is a diagonal covariance matrix. The effect of

modeling GMM using a full covariance matrix and a diagonal covariance matrix

is the same [27]. For the DANSR, the diagonal covariance matrix is considered

and it is shown in eq (14.14).

Σ =


σ2

11 0 · · · 0 0

0 σ2
22 · · · 0 0

... · · · · · · · · · ...

0 0 · · · 0 σ2
nn

 and Σ−1 =


1
σ2
11

0 · · · 0 0

0 1
σ2
22
· · · 0 0

... · · · · · · · · · ...

0 0 · · · 0 1
σ2
nn


(14.14)

Now we can see the main parameters of the GMM: c, µ,Σ for the whole feature

observations that is {c = c1, c2, · · · , cG, µ = µ1, µ2, · · · , µG,Σ = Σ1,Σ2, · · · ,ΣG}.
Now each state has a likelihood function which is parameterized by the G

mixture weights, G mean vectors and G diagonal covariance matrices.

Now equation (14.15) is an expansion of equation (14.8).

Thus the probability density of the occurrence of the observations ot the model

λ is equation (14.15). | Σg | is the determinant of the covariance matrix.

N(ot, µg,Σg) =
G∑
g=1

T∑
t=1

{cg
1

(2π)l/2 | Σg |1/2
exp

(
− 1

2
(ot − µg)

′
Σ−1
g (ot − µg)

)
}

(14.15)

The connection between the HMM and the GMM is shown by eq (14.16) where

the pdf of the observations is modeled by the GMM and this is the probability

of the observations of an event given the state j.

bj(ot) = p[ot = ek|qt = j], for 1 ≤ k ≤M. (14.16)

In equation (14.16), bj(ot) of ot at tth time instant which is the tth frame for

the state j for j = 1, 2, · · · , N is rewritten in eq (14.17).

bj(ot) =
G∑
g=1

cjg
1

(2π)l/2 | Σjg |1/2
exp

(
− 1

2
(ot − µjg)

′
Σ−1
jg (ot − µjg)

)
(14.17)
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Now the EM algorithm estimates the parameters of the GMM components

iteratively in two steps: i) E-step, and ii) M-step. The E-step estimates which

GMM component belongs to which observation. In the M-step, the re-estimation

of the parameters of the estimation of the E-step is done to find the optimum

estimation. In each iteration, the re-estimated parameters give at least as high a

log-likelihood as the previous parameter values gave.

The EM iteratively computes the log-likelihood (LL) of the GMM. This mea-

sures how the model fits to the experimental data or the particular observations

[70].

Now for an instance i of the iteration of the EM estimation is written in

equation (14.18). There N(ot, µ
(i)
g ,Σ

(i)
g ) denotes the value of the pdf of the gth

GMM component at i iteration,
∑l

m=1 denotes the mth diagonal of the l dimen-

sional observation vector. µ
(i)
g denotes the mean of the ot feature vector and gth

component of the GMM.

p(ot|λ)(i) =
c

(i)
g N(ot, µ

(i)
g ,Σ

(i)
g )∑l

m=1 c
(i)
mN(ot, µ

(i)
m ,Σ

(i)
m )

(14.18)

The estimated GMM parameters for the (i+1)th iteration using the (i)th iteration

is shown in equation (14.19), equation (14.20), and in equation (14.21) where

ĉ
(i+1)
g , µ̂

(i+1)
g and Σ̂

(i+1)
g are the new estimated values of (i + 1)th iteration for c,

µ and Σ of the gth component.

ĉ(i+1)
g =

1

T

T∑
t=1

pg(ot, λ)(i) (14.19)

Similarly, the mean vector µ̂g is shown in eq (14.20).

µ̂(i+1)
g =

∑T
t=1 p(ot|λ)(i)ot∑T
t=1 pg(ot|λ)

(i)

(14.20)

The covariance matrix Σg is estimated Σ̂g by eq (14.21).

Σ̂(i+1)
g =

∑T
t=1 pg(ot|λ)(i)(om,t − µ̂(i+1)

g,m )2∑T
t=1 pg(ot|λ)(i)

(14.21)

Using ĉg, µ̂g and Σ̂jg shown in equation (14.19), equation (14.20), and in equation

(14.21) we have the posterior probability pg(qj|o, λ) for the (i + 1) iteration of
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Figure 14.5: Three states are used in 3 dimensional GMM model

gth component in equation (14.22).

pg(ot|λ)(i+1)
g =

ĉ
(i+1)
g N(ot, µ̂

(i+1)
g , Σ̂

(i+1)
g )∑l

m=1 ĉ
(i+1)
m N(ot, µ̂

(i+1)
m , Σ̂

(i+1)
m )

(14.22)

The parameters of the GMM for the EM algorithm can also be learned by some

algorithms such as the K-means and the vector quantization (VQ) (see in section

14.8.3).

In figure 14.5, from left to right, we see the feature vectors are clustered

and classified into one GMM, next we see the same features are clustered by 3

GMM. For the first case, less GMM components are selected and in the later case

selection of GMM components more than necessary.

14.7 HMM Computational Approaches

Now we have the model for applying GMM. Next we use the parameters in the

recognition for searching. The search takes place in a large amount of sample

data that are required to train the model parameters. The amount of data we

used is discussed in chapter 4. We assume L many data sets for a pre-selected

vocabulary Sl and l = 1, 2, · · · , L. Each Sl is an independent signal collected from

the same or different speakers independently one at a time. That means each

spoken command is an independent trial for the same or different vocabularies or

the spoken commands. It can be said that each Sl is used for feature extraction

and each Sl has several e.g. K many feature vectors ok, k = 1, 2, · · · , K. Now

a question is why do we need the training process? A possible answer to this

question is that to maximize the model and the model parameters given the
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observations we need to train the model parameters. In the forward algorithm,

the total probability is obtained by summing the probabilities over all possible

paths to any given state. The Viterbi gives the best sequence until a particular

time, but not the overall probability of being in a given state [54].

In the following section we describe the HMM problem solving techniques

using the forward, Viterbi, backward and Baum-Welch algorithm.

14.7.1 Evaluation: Forward Algorithm

Evaluation is mainly done by forward search using the forward algorithm. In the

evaluation, given the model the probability of the set of observations in a specific

state sequence is estimated. Given the model, the probability of the state ot
being at state i at time t is estimated by the forward probability denoted by α

[54]. The forward probability can in principle be computed by the recursion by

using eq (14.23).

αt(i) = p(o,q|λ) = p(o1,o2, · · · ,ot,qt = i, λ) (14.23)

The forward algorithm estimates the likelihood p(o | λ) (which means for the

given model the probability of the observation at certain time at certain state)

by the following three steps:

• Initialization: This uses the initial parameters to start the evaluation and

this is shown in equation (14.24).

α1(i) = πi.bi(o1) for 1 ≤ i ≤ N (14.24)

Substituting the initial state i = 1 in equation (14.24), we find equation

(14.25).

α1(i = 1) = 1 (14.25)

• Induction: The probabilities of the observations from the past to the present

state are computed using the previous probabilities, transition probabilities

and observation probabilities in order to estimate the likelihood of the ob-

servations. The computation is shown in equation (14.26) for t = 2, 3, · · · , T
and j = 2, 3, · · · , N .

αt(j) =
( N∑
i=1

αt−1(i).aij
)
.bj(ot) for 1 ≤ t ≤ T for 2 ≤ j ≤ N. (14.26)

219



• Termination: This gives the estimate of the likelihood of the observation

for a state given the model by equation (14.27) where T is the length of the

each features observation . This means o = o1,o2, · · · ,ot, · · · ,oT .

αT (N) = p(o | λ) =
N∑
i=1

αT (i) (14.27)

14.7.2 Backward Algorithm

The backward search is done by the backward algorithm. This is necessary for

the learning algorithm. The backward probability β denotes the probability of

the observations oT through ot+1 being in state i at time t given a HMM model

λ by eq (14.28). Here the probability of the future sequence conditioned on the

present state j at time t is computed.

βt(i) = p(o | q, λ) = p(ot+1,ot+2, · · · ,oT | qt = i|λ) (14.28)

• Initialization : The model in state i at time T is 1. The transition of the

observations is finished at time T + 1 and this is also 1 [54].

βT (i) = 1 for 1 ≤ i ≤ N. (14.29)

• Induction: The likelihood of the observation given the model is shown in

equation (14.30).

βt(i) =
N∑
j=1

aij.bj(ot+1).βt+1(j) for t = T−1, T−2, · · · , 1 and 1 ≤ i ≤ N.

(14.30)

• Termination: To illustrate the backward procedure, suppose β0(.) is the be-

ginning state at the beginning word that emits the π values in the transition

to the first real states at time 1 [54].

β1(1) =
N∑
j=1

πjbj(o1)β1(j) (14.31)

β1(1) = π1b1(o1)β1(1) + π2b2(o1)β1(2) + π3b3(o1)β1(3) (14.32)
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14.7.2.1 Learning: Baum-Welch Algorithm

The probability of the model given at a certain state i at time t is shown by equa-

tion (14.33). This is used for training the model by the Baum-Welch technique

which uses the forward backward algorithm using the model parameters that are

obtained from the observation sequences. The combination of the forward and

backward probability is computed by (14.33). This is used to learn the model

parameters from the forward and backward direction in the frame of EM algo-

rithm. It stops learning when the likelihood is the same for both the forward and

backward algorithms. For the GMM model parameters estimations, the solutions

for the re-estimation formula for ĉ, û, and Σ̂ are estimated for the observations

bj(ot).

p(o,qt = i | λ) = αt(i)βt(i) (14.33)

The Baum-Welch technique uses the following steps for training the model and

model parameters of the observation sequences:

1. Compute the forward probabilities α by using the forward algorithm.

2. Compute the backward probabilities β by using the backward algorithm.

3. Compute the transition probabilities A and the emission probabilities B at

the current state using the observation sequences.

4. Compute the new model model parameters µ, Σ and c.

5. Compute the new log likelihood of the model.

6. Stop computations when there is no changes in the log-likelihood observed.

Thus the learning process of the HMM is done by re-estimating the parameters

in the Baum-Welch algorithm by using the forward-backward algorithm applying

the EM concept.

14.7.3 Searching: Viterbi Algorithm

In the Viterbi search, the best state sequence along a single path at certain time

t, the best state and the best score are computed. The highest likelihood δt(i)

in state i at time t is given in equation (14.34). The Viterbi algorithm computes

the optimal state sequence q1, · · · , qT−1 related to the observations with respect

to their joint probability O = {o1,o2,o3, · · · ,oT} given the model.
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We get for the best sequence:

δt(i) = maxq1,q2,··· ,qt−1p(q1, q2, · · · , qt−1, qt = i,o1,o2, · · · ,ot|λ) (14.34)

In general, for any value of t, the best score is obtained by eq (14.35).

δt(j) =
(
maxiδt−1(j).aij

)
.bj(ot) (14.35)

Here the best state sequence along a single path up to time t is computed by eq

(14.36). This needs to keep tract of the best path up to time t for each time and

the state ψt(j) which is the best state prior to state j at time t. This can use

ψt(j) to trace back, from time = T to 1, the best path.

ψt(j) = argmaxq1,q2,··· ,qt−1
p[q1, q2, · · · , qt−1, qt = i,o1,o2, · · · ,ot|λ] (14.36)

Steps in the Viterbi algorithm:

Initialization Equation (14.37) denotes the transition that starts from the

state π which is the initial state at the i th state and it ends at state bi for

1 ≤ i ≤ N and the observation o at time t = 1. We conclude:

δ1(i) = πi.bi(o1) for 1 ≤ i ≤ N

ψ1(i) = 0
(14.37)

Induction In the recursion one finds the path that leads to a maximum likeli-

hood considering the best likelihood at the previous step and the transition from

it. This is then multiplied by the current likelihood given the current state and

thus the best path is obtained through the induction:

δt(i) = max1≤i≤N(δt−1(i)aij).bj(ot) for 1 ≤ i ≤ N and 1 ≤ j ≤ N (14.38)

ψt(j) = argmax1≤i≤N(δt−1(i)aij]) for 1 ≤ i ≤ N and 1 ≤ j ≤ N (14.39)

Termination This finds the best likelihood when the end of the observation

sequence is reached at a given final state.

p∗ = max1≤i≤N(δT (i)]) (14.40)
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This finds the maximal value of δT (i).

q∗T = argmax1≤i≤N(δT (i)) (14.41)

This finds the i where δT (i) is maximal. Then the backtracking is done using

backward algorithm.

Backtracking This finds the best sequence of states from ψt.

q∗t = ψt+1q
∗
t+1 ∀t = T − 1, T − 2, · · · , 1 (14.42)

The algorithm is computed in the log domain to avoid underflow errors. In

the algorithm, any state can be denoted as a valid end-of-utterance state. The

maximization occurs only over those states which are used in the problem as

states for the valid end-of-utterance states.

14.8 Analysis of Standard Classification and Clus-
tering Techniques

Here we give other standard classification and clustering techniques such as DTW,

VQ, KNN. These can be used in a hybrid manner or they can be used indepen-

dently for the clustering and classification.

14.8.1 Clustering

The clustering methods in machine learning are unsupervised. They depend on a

similarity measure. The clustering is applied to multivariate data. The clustering

methods can be hierarchical, partitioning or flat. Each data point is (hopefully)

assigned to only one cluster. Now we consider a set of spoken words where each

word is spoken several times. The unkown set of words corresponding to the same

listed word is regarded as a cluster that should be generated by the clustering

method. Each spoken word is now represented by feature vectors. Clustering

splits a data set into different sets. The conditions for the splitting are obtained

by the similarity measure. They say that the objects in one set are close together

and objects in different sets are distant. If the objects are represented as points

in a real space one often takes the Euclidean measure or a weighted Euclidean

measure. In this case one can define the center of each cluster and the condition

is now that a point belongs to a cluster (or is moved to one) where the center
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is closest to the point (nearest neighbor search). However, moving of objects

changes the clusters and therefore one has to recompute the centers. This leads

to an iteration of the clustering process.

There are two tasks that have to be done:

• Partitioning the vector space into a number of regions or clusters : This can

be achieved by using vector quantization (VQ). This approach is sometimes

called discrete HMM.

• Estimating the parameters of the statistical model for each cluster: This

can be done by using GMM.

There are a number of clustering algorithms developed over the years. K-means

is a simple method used for clustering. The GMM, VQ, and EM use the K-means

algorithm to initialize the process and then recursively optimize this to find the

maximum likelihood solution for a problem. The GMM is already discussed in

details in section 14.6. Here first we introduce K-means clustering using the

context of speech feature clustering, then VQ clustering.

14.8.2 K-means

The main characteristic of K-means is that the number K of clusters is fixed in

advance. Each cluster set has a center and it should contain just the objects

that are closest to the center. After moving the objects to the correct cluster

the center has to be computed again what gives rise to an iteration. K-means

minimizes the distortion for a set of vectors ot for t = 1, 2, · · · , T . The objective

is to find the set of centers µt for k = 1, 2, · · · , K that minimize the distortion.

In the K-means, the squared euclidean distance is mostly used in the clustering

process, while in the expectation-maximization (EM) based GMM uses a mixture

resolving approach in the clustering process. The K-means has the following steps

[125]:

1. Set the number of clusters K

2. Initialize the cluster centroids µ1, µ2, · · · , µK

3. Assign the features according to the nearest µk

4. Recompute (µ1, µ2, · · · , µK) until there is no significant changes noticed.
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An additional but serious problem is the presence of different kinds of noise. The

consequence is that the spoken words are corrupted dynamically. That means

(among others) the observed classes can overlap to some degree. The spoken

words are represented in the 2-dimensional plane. Now we refer to figure 14.6. The

reference words to which we want to map the (corrupted) words are w1, · · · , w8.

The undotted lines show the true classes of the (corrupted) spoken words. The

dotted lines show the classification obtained by a similarity measures. Because

this measure classifies incorrectly the dotted classes are not the same as the true

classes. We also see that the dotted classes can overlap as in the cases of w7 and

w8.
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Figure 14.6: Esimated Nearest Neighbors in K-means Clustering Approaches

14.8.3 Clustering using VQ

One approach for estimating the parameters of the statistical model for each

cluster is to divide the signal into sets of prototype vectors which are represented

by their centroids. This process is again iteratively repeated for getting some

effectively smaller representation of these vectors. This process is known as vector

quantization (VQ). This VQ can be extended to a pdf model following a number
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of Gaussian mixture densities [127]. How does the assignment and the updating

work using VQ? The VQ creates the clusters where the cluster weights are the

ratio of points to the cluster of total points in the state. This estimates bj(ot) by

computing means and covariances. b̂j(m) estimates bj(ot) in cluster m. We also

use b̂j(m) for estimating numbers:

b̂j(m) =
Number of vectors in cluster m and state j

Number of vectors in state j
(14.43)

Then the GMM (introduced in section 14.6) is applied on the VQ based clus-

ters to model the observations in order to obtain the most likelihood of observa-

tions that belongs to a cluster.

Now how updating is done? The updating of the mixture component cj(m),

the mean vector µj(m), the covariance matrix Σj(m), the transition matrix aij(m)

as re-estimated update parameters is denoted by ˆ as the re-estimated mixture

component ĉj(m), the the mean vector µ̂j(m), the covariance matrix Σ̂j(m), the

transition matrix Âj(m)(= aij(m)) for the state j and the mixture component

m:

µ̂j(m) = Mean of the vectors in component m and state j (14.44)

Σ̂j(m) = Covariance matrix of the vectors in component m and state j (14.45)

To estimate aij, bj(ot) we use the Viterbi algorithm to segment utterances,

then we re-cluster points according to the highest probability.

Then we re-estimate aij, bj(ot), repeat re-estimating aij, bj(ot) and finally

the result will be obtained.

In the next section, we introduce a pattern matching method called dynamic

time warping (DTW). This is frequently used in small vocabulary word recogni-

tion.

14.8.4 Dynamic Time Warping (DTW)

This technique originated from dealing with general temporal processes when

one is searching for the nearest neighbor of a given process. For this, DTW uses
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mainly a similarity measurement. The DTW measures the similarity between the

test and reference speech sequences and find the best match. The DTW frame is

shown in figure 14.7, where the reference is in the vertical position and the test

or unknown input is in the horizontal position. The optimal DTW path D(i, j)

is calculated from the beginning which is at left-hand side of the frame to the

top right-hand side along the point i, j. The ith and jth entry in the DTW frame

is the value of the minimum cost mapping through a cost matrix. Each point

in the matrices is marked as node (it is shown in figure 14.7 by using an arrow)

which can be defined as a correspondence between the respective features in the

frames of the speech sequences and each node such as i, j is associated with

costs which can be defined as distances such as d(i, j) between the respective

features of the speech sequences. The cost matrix can be regarded as a weighted

Euclidean distance matrix or a weighted city block distance. Euclidean distances

are presented between the cepstrum coefficients of the ith given sequence and

the jth reference sequence. Each row of the cost matrix specifies a vector of

the cepstrum coefficients calculated during one window of the reference speech

sequence, each column corresponds to a vector of cepstrum coefficients calculated

during one window of the test or input speech sequence, and the entry in the cost

matrix is a measure of distance between the two vectors.

D(i, j) = min[D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)] + d(i, j) (14.46)

The local distance is measured using the Euclidean distance presented in the

equation, 14.47, where i, j in xi and yj denote the speech feature coefficients in

each speech segments (frame).

d(x, y) =

√√√√ k∑
i=1

(xi − yi)2 (14.47)

The similarity (or equivalenty distance) measurement allows to compare two

processes. The lengths of the two sequences were mapped to each other using

zeros to make the length equal when the two sequences are of different length.

The cost path in this study: horizontal (i− 1, j), vertical (i, j − 1), diagonal

(i− 1, j − 1) and the cost transitions are estimated here diagonally, or horizon-

tally or vertically. Thus, in the DTW transitions, the three options to the next

mapping are: (1) move to the next element in the first time series only, (2) move

to the next element of the second time series only, or (3) move to the next element
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in both time series.
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Figure 14.7: a: Computational Approaches of DTW and b: DTW alignment path
in the speech features

14.9 Analysis and Comparison: HMM and DTW

Now we discuss how DTW differs from HMM. Both the HMM and the DTW try

to find the most suitable word in the given vocabulary for a test word. However,

they measure this in different ways. DTW takes the smallest distance where

HMM takes the highest probability. The difference between DTW and HMM is

formally expressed in equation (14.48) and in equation (14.49), [114]. In equation

(14.48) and in equation (14.49), Av is word for which we want to find the most

suitable word in the vocabulary. This word is denoted by W ∗.

W ∗ = argmin
w∈vocabularydistance(Av, w) (14.48)

W∗ = argmax
w∈vocabularyP (w | Av) (14.49)

This shows how to apply DTW to the recognition problem in two versions.
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Chapter 15

Remarks on Experiments

In the text we have presented many experiments. Here we add some more in-

formation. In the speech recognition the variations between the speech are main

points that have to be considered. This is managed by collecting huge amount of

data samples (see chapter 2). In the following sections we have shown the features

extracted by using the feature extraction techniques MFCC, PLP and RASTA

discussed in chapter 12 and the DANSR feature extraction technique APLTT

discussed in chapter 13. The number of extracted features are 12 from each

speech frame. These features are used for recognition using the GMM model

based HMM recognition technique. As said, we have a list of selected spoken

commands for our research. Each command in the list is repeated independently

by each speaker 100 different times in the hybrid noisy industrial environment.

These are our training data sets. For testing, we collected data from 25 different

new people. These are our testing data sets. These data are first enhanced using

our hybrid noise reduction technique, then the features are extracted using our

APLTT feature extraction technique and also MFCC, PLP, RASTA features for

their GMM and HMM recognition. The results of the features, perceptual anal-

ysis of the APLTT and the standard feature extraction techniques as well as the

recognition performance using the APLTT and HMM, MFCC, PLP and RASTA

are presented below.

15.1 Noisy Speech and DANSR System

In figure 15.1, in a, noisy spoken command öffne die Tür has 256× 960 speech

frames where each frames has 256 samples. In b in the same figure, the enhanced

speech has 256× 270 frames. Addition of the redundancy removal component
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Figure 15.1: Noisy framed signal and enhanced framed features

has reduces the redundancy more than 70%. This increases the computional

efficiency in the further processing.

In figure 15.2, in a, we the enhanced speech has been processed using 168× 256

. This means the spoken command öffne die Tür has 168 frames and each frame

has 256 samples. On the contrary, in b in the same figure, we see the signal

has 168 frames and each frame has 12 features. Thus we can see, in the feature

extraction, the signal is more compact and computational expense is reduced in

a greater extent. At the same time, the features represent the originally spoken

command. This can be examined followed reverse process applying some filtering

[25].

15.2 Analysis: Feature Extraction and Features

In figure 15.3 we see the result of embedding psychoacoustic quantities in APLTT.

In figure 15.4, we see the APLTT feature variation in the classification us-

ing GMM. In figure 15.5, we see the MFCC feature using noisy and without

noisy speech that is enhanced by redundancy removal, pre-emphasizing, M-band

Kalman filter.

The RASTA features extraction using noisy and without noisy speech is shown

in figure 15.6 in a and in b. In figure 15.7, in a, we see noisy PLP features and

in b, we see the enhanced PLP speech features.
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Figure 15.2: Dimensionality reduction: Framed signal and enhanced framed fea-
tures
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Figure 15.4: APLTT features variation using GMM
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Figure 15.8: K-means clustering: 3 commands: ”Öffne die Tür”, ”Geh weiter”,
”Öffine das Fenster”

15.3 Clustering, Classification and Recognition

Here we show clustering, classification and K-means and GMM.

K-means Figure 15.8 shown a clustering of using 3 data set: Öffne die Tür”,

”Geh weiter”, ”Öffine das Fenster”. In this experimental demo, we have used

3 command sets in order to visualize the clustering. The feature sets in each

command is 8340. Öffne die Tür” and ”Öffine das Fenster”. These two commands

have some letters in words are common. The centers of the commands are not

well seen but the centers of the clusters are computed and spotted. K-means by

itself is not robust clustering approach because the center at the first place is

taken in a random manner.

In figure 15.9, we see an example of features and 3 dimensional GMM in a

scattered form.

Examples of some commercial speech recognition software are dragon, IBM
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via Voice, Phillip speech recognition system. They deal mainly with clean speech.

The probabilistic approach for the ASR are described in texts such as [80], [134],

[68], [147], [11]. A number of practical applications using the probabilistic ap-

proach including the probabilistic ASR theoretical approaches are discussed in

[144], [97], [48], [149].

The comparison and evaluation of the DANSR system with the commercial

software such as dragon, IBM via Voice remain yet our future task. We focus in

the thesis on the core development of the speech recognition algorithm that could

recognize the spoken commands on the hybrid noisy environment. Therefore we

first focus on enhancing the speech using hybrid noise reduction and removal

techniques, then we extracted robust features using our newly developed fea-

ture extraction technique APLTT, these features modeled by the GMM for their

recognition using the HMM pattern recognition tool. This whole approach is a

new methodological development in the speech recognition research. But much

more training, testing and evaluation have to be done in order to make this newly

developed methodological approach reliable. At this stage the performance anal-

ysis of the DANSR system is about the same and in some cases it shows a little

better performance than the standard developed speech recognition techniques.

A rough estimate of DANSR recognition using a small number of data set

listed below in table 15.1 tells us DANSR’s current status. At this development

stage using a small amount of data it is performing about the same or better

than other existing methods which are developed over the decades. The system

requires more resources, more training and more testing in order to provide a

reliable conclusion.
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Table 15.1: Experimental estimate: Analysis and recognition result of small com-
mands

Spoken Commands MFCC PLP APLTT RASTA
Mach das 20 18 22 22
Geh vorwaerts 21 22 23 21
Geh weiter 21 20 22 23
Komm hier 20 21 23 20
Bleib hier 21 20 23 22
Stop 20 23 22 20
Halte es 22 20 23 21
Mach weiter 23 22 24 22
Mach es 20 21 22 22
Bewege dich nicht 22 22 23 22
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Chapter 16

Conclusions

This thesis investigated a very complex but often occurring noise recognition

problem. The problem considers situations where different kinds of noise occur

simultaneously. We termed these noise kinds as mild, steady-unsteady and strong.

The first two kinds have been individually considered, the last kind alsmost never.

However, in all these treatments there was no systematic approach that such

noises happen together in a situation. To approach this problem we faced a

basic difficulty: It is not sufficient to deal with just the specific noises. Each

treatment will affect the whole speech system and may violate the assumptions

for removing other noises. For this reason we developed an integrated system

dealing with these diifficulties. As a final result we obtained the system DANSR

(Dynamic Automatic Noise Speech Recognition) to deal with such situations that

we called hybrid noise problems.

In order to achieve this, we reorganized the whole recognition approach as

a new methodological approach by using existing methods, adding new meth-

ods and modifying existing methods. In a summary, we mention first the main

achievenments:

• A practical system DANSR to deal with the problems in a real application

• A general structural approach to deal with such hybrid noisy situations.

16.1 Practical Results

Our applicatiion scenario is a factory room or a lab where one has noisy machines

and working persons. In addition, heavy objects may fall down and generate

strong noise. In this scenario persons want to give spoken commands to machines
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using a single microphone that are executed automatically.The commands are

not arbitrary, we had a fixed list shown in the Appendix. Thus, we had a hybrid

recognition problem. Our system DANSR was able to realize the recognition

task. We had three example scenarios in which we tested DANSR. Our system

presented a hybrid solution integrated in a single system.

16.2 Structural Results

Our basic view is probabilistic what is today the state of the art. For realizing the

recognition task we needed to analyze the recognition from the very beginning

on. We started with a new noisy speech pre-emphasizing approach. Then we

focused on enhancing the speech, putting features and feature extractions in the

the center of our interest. Here, a new perceptual feature extraction approach was

given. Essentially, an existent adaptive local trigonometric transformation (LTT)

mathematical tool is extended for a model based speech recognition system. We

introduced a new approach for dealing with strong noise where we modeled it by

a Poisson distribution and its treatment by matched filter. These techniques have

also been used to model the psychoacoustic quantities. The last step is concerned

with classification and the recognition itself. In principle, we have an HMM based

speech recognition system. There we have applied the Gaussian mixture model

(GMM) to model APLTT features for classification.

16.3 Future Extensions

The main restrictions of our approach are due to the limited possibilities for

training for the recognition task. For broader applications, we would need many

thousands of training examples. There, we probably need to have a new look at

features and their extractions. Finally, I think that more experiments should be

done for system’s reliability.
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Appendix

This appendix is concerned with signal processing. We present concepts and

terms we used in the thesis mainly without detailed explanations.Some of the

terms are also slightly different used in the literature. This appendix is intended

to support readers.
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Figure 16.1: From continuous-time speech signal to discrete-time speech signal
representation

Transformation of continuous time signal to discrete time signal Here

we give an overview over the whole process about the transformation of contin-

uous time signal to discrete time signal in figure 16.1. The steps are shown in

figure 16.1 from left to right. In the figure 16.1, speech pressure waveform s(t)

is captured by a microphone. There the waveform is undergone some operations

such as amplification, anti-aliasing low pass filtered, sample and hold technique

in order to be transformed to a discrete-time signal s[n]. The C/D converter

that generates the discrete-time signal is characterized by an infinite amplitude

precision. Therefore, even if the signal s[n] is discrete in time, it is continuous

in amplitude. A physical device does not have this infinite precision property

in practice. Therefore, for the approximation to a C/D converter, an analog-to-

digital(A/D) converter quantizes each amplitude to a finite set of values closest to
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the actual analog signal amplitude. The resulting digital signal is then discrete in

time and amplitude. Associated with this are discrete-time signal systems whose

input and output are sequences [131]. This is shown in figure 16.1. The purpose

of sample is to hold the analog value steady for a short time while the converter

or other following systems performs some operation that takes a little time.

Spectrum The representation of the digital signal in terms of its frequency

component in a frequency domain is called the signal spectrum [84].

Discrete Fourier Transform (DFT) The DFT is a common tool that is

used to establish a relationship between the time domain representation and the

frequency domain representation. For example if s[n[ is a time domain signal at

time instant n where n ∈ Z, its frequency representation is S(k) of s[n] using

DFT is given in equation (16.1). There we considered the signal is N finite

length signal. In the equation, the frequencies are 2π
N
k for k = 0, 1, 2, · · · , N − 1.

N represents the number of points that are equally spaced in the interval of 0 to

2π on the unit circle in the z-plane.

S(k) =
N−1∑
n=0

s[n]e
−j2πkn

N (16.1)

The inverse DFT (IDFT) of S(k) is s[n] for n = 0, 1, 2, · · · , N − 1 is given in

equation (16.2).

s[n] = 1/N
N−1∑
k=0

S(k)e
j2πkn
N (16.2)

Z-transform The z-transform of al sequence s[n] is S(z) given in equation

(16.3). There z is a complex variable and in equation (16.3), it is considered the

s[n] = 0 for n < 0.

S(z) =
∞∑
n=0

s[n]z−n (16.3)

Cut-off frequency: It is a frequency that is characterizing a boundary

between a passband and a stopband

Bandwidth(BW) The BW is the range of the signal’s frequency that is a

measure of the width of a range of the frequencies, measured normally in Hertz
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(Hz).

Sampling theorem: A bandlimited signal with bandwidth(BW) = B Hz can

be obtained by its samples as long as the sampling rate is Fs ≥ 2B. This is also

known as Nyquist theorem.

Aliasing effect: If samples are not taken fast enough, but a signal bandlimited

to B Hz is not sampled faster than 2B times samples/second, then there is an

overlapping of the samples and an error-free reconstruction is not possible. The

aliasing fact displays a wrong frequency information about the signal.

Nyquist rate and possibilities: Sampling at the Nyquist rate is called the

critical sampling. If the sampling rate is faster than the Nyquist rate, the the

sampling rate is called the oversampling.

Antialiasing Phenomena: Antialising is a summary of methods that reduce

the alias effect. It is standard to use a low pass filter before sampling. Antialiasing

is to remove frequency components that would otherwise alias. As a prevention,

a low pass filter is applied to obtain band limited signal during analog to digital

conversion (ADC).

Impulse Signal The impulse signal denoted by δ[n] is defined in equation

(16.4). This impulse signal is physically realizable signal and this is frequently

used for designing a filter as well as for understanding a filter response.

δ[n] =

{
0 for n 6= 0

1 for n = 0
(16.4)

In equation (16.5) we can see an abstract definition of dirac delta function. It

can be thought as very thin and tall with a unit area located at the origin.{∫∞
−∞ δ(t) = 1 for t = 0

0 for 6= 0
(16.5)

Impulse Response The impulse response is the response of a filter to δ[n].
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Convolution Sum If an arbitrary input signal x[n] is expressed as a sum of

weighted impulses according to equation (16.6) then the response y[n] can be

described as in equation (16.7).

x[n] =
∞∑

k=−∞

x[k]δ[n− k] (16.6)

In equation (16.7), h[n − k] is the system response to the delayed unit impulse

sample δ[n− k] where n is the time index and k is the parameter that indicates

the location of the input unit impulse and h[n − k] = T{δ[n − k]}. Here T is a

linear time invariant (LTI) operator. h[n] is an LTI system.

y[n] =
∞∑

k=−∞

x[k]T{δ[n− k]} =
∞∑

k=−∞

x[k]h[n− k] =
∞∑

k=−∞

x(k)h(n, k) (16.7)

The response y[n] of the LTI system is a function of the input signal x[n] and its

delayed impulse response h[n] by equation (16.7) which is known as the convolu-

tion sum [59].

Polyphase Representation In a naive sense, the polyphase representation

means if a FIR structure H(z) can be expressed as a sum of M terms. Polyphase

means that there are several bands for instance in this explanation we have M

many bands. For example, H(z) is a polyphase structured FIR filter if it can

be expressed as a sum of two terms, with one term containing the even indexed

co-efficients and the other containing the odd-indexed coefficients.

Strict Sense Stationary Random Process (SSS) A random process x(m)

is stationary in a strict sense if all its distributions and statistical parameters are

time-invariant.

Wide Sense Stationary Random Process (WSS) A process is said to be

wide sense stationary process if the mean and the autocorrelation functions of

the process are time invariant.

Spectral Temporal Resolution This is determined by the window size, over-

lapping size, and the dimension of the feature vector dimension [127].
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Statistical Model Evaluation The statistical model resolution is determined

by the number of models, the number of states per model, and the numer of

sub-state models per state [127].

Tone A pure sinusoidal signal with known frequency and timing can be termed

as pure tone, a complex tone can be defined when fundamental frequency hap-

pened to be in a periodic manner or it is mixed with different frequency.

ATH, DL and JND The critical band is the point at which thresholds no

longer increase. Absolute threshold is a minimum audible signal. Differential

threshold (DL) or just noticeable difference (jnd) is just minimum perceptible

change.

DANSR Wordlist

1. Geh weiter

2. Geh vorwaerts

3. Biege links ab

4. Biege rechts ab

5. Bring mir das

6. Geh an dem Fenster vorbei

7. Geh an den Tuer vorbei

8. Stop

9. Schliesse das

10. Schliesse die Tuer

11. Schliesse das Fenster

12. Oeffne es.

13. Oeffne die Tuer

14. Oeffne das Fenster
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15. Komm her

16. Mach weiter

17. Halte es

18. Bleib hier

19. Heb es auf

20. Mach es jezt
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Abstrakt in Deutsch

In diesem Abstrakt geben wir die Thematik und die Ziele der Dissertation an

und schildern in einem Ueberblick die wesentlichen Inhalte. Wir starten mit

allgemeinen Inhalten, die sich in der Arbeit an verschiedenen geeigneten Stellen

finden.

16.4 Der Rahmen

Die folgenden Veroeffentlichungen die in engem Zusammenhang zu dieser Disser-

tation stehen sind in der Zwischenzeit publiziert worden:

• Sheuli Paul, Michael Richter, Steven Liu, Hybrid solution to single- channel

hybrid noisy speech for an industrial environment. ISSPIT,IEEE, Vietnam,

Ho Chi Minh City (2012).

• Sheuli Paul, Michael Richter, A dynamic automatic noisy speech recognition

(dansr) system for a single-channel hybrid noisy industrial environment.Vol.

165. ICA, Canada, Montreal (2013)

• Sheuli Paul, Michael Richter, Human Speech Recognition (SR) and A New

Feature Extraction Technique for SR Systems. MDLM and MDA, New

York 2013.

• Sheuli Paul, Michael Richter, Volker Michel. Reaction to Hybrid Noise in

Communication. Noise Pollution: Sources, Effects on Workplace Produc-

tivity and Health Implications. Invited Book Chapter, Nova publication,

March, 2014, NY, USA.

Alle sonst verwendeten Quellen wurden nach bestem Wissen angegeben.
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16.5 Die allgemeine Thematik

In dieser Arbeit behandeln wir Themen der automatischen Erkennung gesproch-

ener Sprache. Generell ist dies ein seit Jahrzehnten vielfach behandeltes Thema.

Dabei hat es sehr interessante Erfolge gegeben. Ein Beispiel ist die Taetigkeit in

einem Anwaltsbuero, wenn eine Person einen Text in ein Mikrophon spricht und

dieser Text dann automatisch in Schriftform uebersetzt wird. Die Erkennungsrate

lag hier oft bei 100 Prozent. Diese mannigfachen Erfolge bearbeiten jedoch stets

Aufgaben die ganz bestimmten Beschraenkungen unterworfen sind. Fuer diese

Arbeit sind zwei Restriktionen von zentralem Interesse:

• Die gesprochene Sprache geschah in einer ”sauberen” Umgebung. Das

heisst, stoerende Gerausche waren nicht zugelassen. Beim Sprechen in das

Mikrofon hatte dieses direkt vor dem Mund des Sprechers zu sein.

• Es wurde nur der Wortlaut als solcher erkannt. Elemente der Sprache, die

den Sinn der Worte durchaus veraendern koennen wie Pausen oder Beto-

nungen wurden nicht beruecksichtigt. Durch die Art des Sprechens kann

der Sinn der Aussage am Ende sogar ins Gegenteil verkehrt werden.

Es gab durchaus verschiedene Ansaetze, Rauschen in der Umgebung zu integri-

eren. Es war jedoch in der Regel so, dass nur bestimmte Geraeusche zugelassen

wurden. Diese Geraeusche kamen mehr oder weniger aus einer bestimmten Quelle

und nicht aus einem heterogen Umfeld mit sehr unterschiedlichen Quellen. Die

Art des Sprechens faellt in den Bereich der psychoakustischen Signale. Dies steckt

meist immer noch in den Anfaengen.

16.6 Der allgemeine Ansatz

Um die genannten Probleme in den Griff zu bekommen, haben wir den Grun-

dansatz der Spracherkennung aufgerollt. Dies fuehrt zu einem neuen Ansatz, der

insbesondere ein einheitliches Vorgehen fuer unterschiedliche Fragestellungen er-

laubt. Dieser Ansatz benutzt im einzelnen meist bekannte Dinge. Diese musssen

jedoch nach ihrer Selektion entsprechend modifiziert und zu einem Gesamtsystem

integriert werden.

Der Ausgangspunkt ist, das gesprochene Sprache Toene produziert. Toene

kommen aber auch aus verschiedenen Geraeuschquellen. Gesprochene Sprache

wird im Koerper des Sprechers hergestellt und diese Produktion wurde als erstes
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analysiert, wobei im wesentlichen auf vorhandene Arbeiten zurckgegriffen wurde.

Dazu modellieren wir die beteiligten Koerperteile als eine Maschine. Diese erzeugt

Schallwellen die an das Ohr des Empfaengers kommen. Dort werden die Schall-

wellen digitalisiert und mathematisch verarbeitet und dann dem Gehirn zum

Verstaendnis zugeleitet. Doe folgenden Abbildungen zeigen dies. Die erste Ab-

bildung zeigt die rein menschlicheVerarbeitung. Im zweiten Bild sehen wir, was

eine Maschine ersetzen soll. Dabei wird deutlich, um welche komplexe Aufgabe

es sich handelt. Die dritte Abbildung zeigt unser gesamtes Szenario inklusive der

verschiedenen Arten des Rauschens.
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Figure 16.2: Speech Generation and Speech Recognition

16.6.1 Rauschen

Ein gesprochenes Wort kann mehr oder weniger verrauscht sein. Ein erstes

Rauschen kommt vom Sprechen selbst und wird im wesentlichen vom Kehlkopf

erzeugt. In dieser Arbeit interessieren wir uns aber mehr fuer von der Umge-

bung erzeugtes Rauschen. Diese Umgebung wird fuer uns durch eine Arbeit-

shalle in einer Fabrik geliefert. Das Ziel ist, hier Kommandos zu sprechen,

die dann automatisch erkannt und anschiessend automatisch ausgfuehrt werden.

Das Rauschen ist von einer hybriden Natur mit unerschiedlichen Quellen. Im

wesentlichen unterscheiden wir drei Arten von Rauschen:

• Leichtes Rauschen.
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• Zeitveraenderliches dynamisches Rauschen.

• Starkes Rauschen. Dieses ist sehr laut aber kurzzeitig. Es ist unregelmaessig

und wird durch eine Poissonverteilung beschrieben.

Das starke Rauschen hat insofern eine besondere Bedeutung als es alles andere

ubertoent, man kann gar nichts mehr verstehen. Da es nur kurz und unregel-

maessig erfolgt sind es fuer uns Ausreisser. Diese muessen identifiziert werden

und es hat gegebenenfalls eine Nachfrage auf Wiederhlung zu erfolgen.

16.6.2 Features

Ein gesprochenes Wort erzeugt zu viele Signale um sie alle kombinatorisch ve-

rarbeiten zu koennen; dies wird auch durch Segmentierungen nicht behoben.

Die Methode der Kompression besteht in der Erzeugung von Feature Vektoren.

Dies sind reellwertige Vektoren. Es sind relativ wenige und sie haben eine kurze

Laenge. Die Featurevektoren sind nun das einzige was zur weiteren Behandlung

uebrig bleibt und deshalb muessen sie alle wichtigen Informationen beinhalten.

Hier fragt es sich, warum es ueberhaupt moeglich sein kann, so viele Signale

auf so wenige Features zu komprimieren. Eine Antwort dazu liefern die unter-

schiedlichen Datenstrukturen: Signale sind binaer, Features aber reellwertig. Es

gibt nun eine ganze Reihe von solchen Features die fuer verschiedene Zwecke

gedacht sind. Wir orientieren uns an den MFCC, SILTT, LPC und LPPC Fea-

tures. Die Extraktion von Features ist ein zentraler Punkt der Arbeit und nimmt

einen breiten Raum ein.
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16.7 Mein System DANSR

Mein System ist hauptsaechlich auf die Behandlung von Rauschen und darueber

hinaus auch auf Psychoakustik ausrichtet. Aus diesem Grunde ist die Behandlung

von Features zentral. Die Schwierigkeit liegt darin, dass kurze Featurevektoren

immer noch die gesamte in den Signalen vorhandene Information enthalten soll.

Die wichtigsten Punkte sind:

• Eigenschaften von Features.

• Technische Vorbereitungen.

• Parametermodellierung und das Modell fuer die Auswirkungen der Quellen.

• Verschiedene Prozesse und Vorhersagemoeglichkeiten

• Featureextraktionen.

16.7.1 Kapiteluebersicht

Die Dissertation hat vier Teile:
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• Teil A: Hier wird in den Gegenstand eingefuehrt.Es wird ein Ueberblick ue-

ber Spracherkennung und Spracherzeugung gegeben sowie ueber den Ein-

satz einer Maschine. Dies beinhaltet die Kapitel 2 und 3. Im letzteren wird

auch auf Rauschen eingegangen, es bereitet Kapitel 5 vor.

• Teil B: Hier beschreiben wir unsere Loesung zum Problem der Spracherken-

nung in einer hybrid verrauschten Umgebung. Dies geschieht in den Kapiteln

4-10. Kapitel 4 enthaelt die Datenvorbereitung: In Kapitel 5 behandeln wir

die Loesung fuer das Problem des starken Rauschens wobei dies durch die

Poissonverteilung modelliert wird. In den Kapiteln 5 bis 8 konzentrieren wir

uns auf die Parameter basierte Modellierung der Signale fuer das Sprachkon-

struktionsmodell. Kapitel 6 enthaelt dabei eine Diskussion der verwendeten

Verstaerkungsmethoden. Kapitel 7 behandelt autoregressive Methoden im

Zusammenhang mit dem Kehlkopfmodell. In den Kapiteln 8 und 9 wer-

den die linearen Vorhersagen und ihre Parameter behandelt. Diese beiden

Kapitel haengen eng zusammen. Kapitel 9 behandelt quadratische Fehler

fuer die Vorhersage. Diese basieren auf der Dekomposition von ”Subbands”.

Sie beinhalten die Minimierung des Rauschens sowie die Verwendung von

Kalmanfiltern fuer nicht-stationaere farbige Rauschsignale. Kapitel 10 be-

handelt klassische Loesungsansaetze soweit wir sie verwendet und modi-

fiziert haben. Dazu gehoeren u.a. die Ansaetze der Autokorrelation und

Kovarianz, der Ansatz von Burg sowie der Kleinste Quadrate Ansatz ohne

Constraints.

• Teil C: Hier werden die psychoakoustischen Groessen behandelt. Wir disku-

tieren ihre Verwendung fuer unseren Ansatz. In Kapitel 11 stellen wir

unsere Vorstellung und Behandlung von quantitativen Groessen fuer diese

Zwecke. Das hat wesentliche Auswirkungen auf die Perzeptionsmodelle.

Zu diesem Zwecke wird ein Gehoermodell eingefuehrt. Zur Beschreibung

verwenden wir unterschiedliche Skalierungen, fuer die dann anschliessend

entsprechende Filter benutzt werden. Das Ganze wird dann Teil von DANSR.

Im Mittelpunkt der Kapitel 13 und 14 stehen die Features und ihre Extrak-

tion. In Kapitel 13 werden unterschiedliche Beschreibungen fuer Features

untersucht. Das ist insofern zentral als die Features die einzigen Elemente

sind, die Informationen zur weiteren Verwendung enthalten. Man findet

hier hier die Cepstrum Features sowie die MFCC, SILTT, LPC, LPCC und

die PLP Features. Kapitel 14 behandelt dann die Extraktionsmethoden

in DANSR. Dazu gehoeren zentral die Signaldekomposition und die Ver-
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wendung von Windowtechniken um Ueberlappungen zu beschreiben. Zur

letzteren verwenden wir DCT-IV und ihr Inverses.

• Teil D: Hier behandeln wir Klassifikation und die eigentliche Spracherken-

nung. Dies geschieht in Kapitel 15. Grundlegend verwenden wir das Hidden

Markov Modell (HMM) zur Bschreibung des Sprachprozesses in einem Mod-

ell. Dabei wird das akustische Modell als Gaussian Mixture Modell (GMM)

beschrieben. Die korrekte Spracherkennung ist dann ein Zuordnungsprob-

lem, fuer welches Lernen und Suchen verwendet wird. Technisch gesehen

verwenden wir u.a. Vorwaerts- und Rueckwaertssuche, Viterbisuche sowie

den Baum-Welch Algorithmus. Zum Vergleich von Wortfolgen fuehren wir

den DTW ein. In Kapitel 16 stellen wir Experimente und ihre Resultate

fuer die gesamte Arbeit vor.

• Am Ende findet man die Resultate, die Auswertungen und Abschlussbetra-

chtungen.

Die einzelnen Kapitel:

• Kapitel 2 gibt einen Ueberblick ueber die Spracherzeugung und Erkennung.

Beides geschieht sowohl bezueglich eines Menschen wie auch einer Maschine.

• Kapitel 3 fuehrt in unsere Methodologie ein, insbesondere wenn die Sprache

durch Rauschen gestoert ist. Fuer letzteres wird auch der allgemeine Hin-

tergrund mit seinen vielen Fazetten aufgearbeitet.

• In Kapitel 4 stellen wir unsere Behandlung des starken Rauschens vor. Hi-

erzu gehoert auch die Modellierung mittels Poissonverteilungen.

• In Kapitel 5 diskutieren wir unsere Vorgehensweise fuer ein generelles parametrisches

Sprachproduktionsmodell.

• Kapitel 6 praesentiert unsere Vorverarbeitungsmethoden.

• Autogressive Prozesse im Kehlkopf sind Gegenstand von Kapitel 7.

• Lineare Vorhersage und ihre Parameter werden in den Kapiteln 8 und 9

untersucht, zwei sehr stark verbundene Kapitel.

• Kapitel 10 behandelt die Dekomposition von Signalen und ihre Rauschmin-

imisierung. Kalman Filter werden werden fuer die nicht-lineare Behandlung

von farbigen Rauschsignalen verewndet.
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• Kapitel 11 wendet sich psychoakustischen Phaenomenen in Bezug auf ihre

Quantifizierung und ihre Behandlung in DANSR zu.

• In Kapitel 12 werden allgemeine Features mit ihren Eigenschaften und Ex-

traktionsmethoden vorgestellt.

• In Kapitel 13 findet man unsere Form der Extraktion innerhalb von DANSR.

• Kapitel 14 behandelt schliesslich die Form der Klassifikation als eigentliche

Spracherkennung in einem Lernsystem. Die Modellierung geschieht in HMM

und GMM.

• Kapitel 15 beinhaltet Loesungen und experimentelle Resultate.

• Abschliessende Bemerkungen enthaelt Kapitel 16.
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