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Abstract

In this thesis we studied and investigated a very common but a long
existing noise problem and we provided a solution to this problem.
The task is to deal with different types of noise that occur simul-
taneously and which we call hybrid. Although there are individ-
ual solutions for specific types one cannot simply combine them be-
cause each solution affects the whole speech. We developed an auto-
matic speech recognition system DANSR ( Dynamic Automatic Noisy
Speech Recognition System) for hybrid noisy environmental noise. For
this we had to study all of speech starting from the production of
sounds until their recognition. Central elements are the feature vec-
tors on which pay much attention. As an additional effect we worked
on the production of quantities for psychoacoustic speech elements.

The thesis has four parts: 1) The first part we give an introduction.
The chapter 2 and 3 give an overview over speech generation and
recognition when machines are used. Also noise is considered. 2) In
the second part we describe our general system for speech recognition
in a noisy environment. This is contained in the chapters 4-10. In
chapter 4 we deal with data preparation. Chapter 5 is concerned with
very strong noise and its modeling using Poisson distribution. In the
chapters 5-8 we deal with parameter based modeling. Chapter 7 is
concerned with autoregressive methods in relation to the vocal tract.
In the chapters 8 and 9 we discuss linear prediction and its parameters.
Chapter 9 is also concerned with quadratic errors, the decomposition
into sub-bands and the use of Kalman filters for non-stationary col-
ored noise in chapter 10. There one finds classical approaches as long
we have used and modified them. This includes covariance mehods,
the method of Burg and others. 3) The third part deals firstly with
psychoacoustic questions. We look at quantitative magnitudes that
describe them. This has serious consequences for the perception mod-
els. For hearing we use different scales and filters. In the center of



the chapters 12 and 13 one finds the features and their extraction.
The fearures are the only elements that contain information for fur-
ther use. We consider here Cepstrum features and Mel frequency
cepstral coefficients(MFCC), shift invariant local trigonometric trans-
formed (SILTT), linear predictive coefficients (LPC), linear predictive
cepstral coefficients (LPCC), perceptual linear predictive (PLP) cep-
stral coefficients. In chapter 13 we present our extraction methods
in DANSR and how they use window techniques And discrete cosine
transform (DCT-IV) as well as their inverses. 4) The fourth part con-
siders classification and the ultimate speech recognition. Here we use
the hidden Markov model (HMM) for describing the speech process
and the Gaussian mixture model (GMM) for the acoustic modelling,.
For the recognition we use forward algorithm, the Viterbi search and
the Baum-Welch algorithm. We also draw the connection to dynamic
time warping (DTW). In the rest we show experimental results and
conclusions.



Contents

Contents
List of Figures

1 Introduction
1.1 The DANSR Approach . . . . . .. ... ... ... .. ......
1.2 The Chapters . . . . . . . . . . . . .. ...
1.3 Thesis Contributions . . . . . . . ... ... ... .. ... ....

2 Excursion: Human Speech and Machine
2.1 Excursion:Human and Machine Interaction . . . . . . .. .. ...
2.2 Human Speech Generation and Recognition . . .. .. ... ...
2.2.1 Human Speech Generation . . . . ... ... ... .....
2.2.2  Human Speech Recognition . . . . ... .. ... .. ...
2.3 Speech Recognition by Machine . . . . .. ... ... ... ....
231 ASR Types . . . . . .
2.4  Acoustics of Speech Production Model . . . . . ... . ... ...
2.4.1 Resonant Frequency, Formant and Sampling Rate . . . . .
2.4.2 Reflection Coefficients . . . . . . ... ... ... .....
2.5 Categories of Speech Excitation . . . . . . . .. ... ... ....

3 Noisy Speech Recognition
3.1 General Aspects . . . . . ...
3.2 Scenario . . . .. ..
3.2.1 Goals of DANSR . . .. ... ... ... .. ........
3.3 Noisy Speech and Difficulties . . . . . . .. ... ... ... ....
3.3.1 Challenges . . . . .. .. ... o
3.3.2 Difficulties . . . . . ...

vi

vi

xiii

N O W -

o ©

10
10
12
13
15
16
16
18
19



CONTENTS

3.4 Noise Measurement and Distinction . . . . . .. .. ... ... .. 26
3.4.1 Noise Measuring Filters and Evaluation . . . . . . . .. .. 26
3.4.1.1 A-weighting Filter . . . . .. .. ... ... ... 27

3.4.2 Box Plot Evaluation . . ... ... .. ... ........ 30
3.4.3 Signal Energy and Kernel Density Estimation . . . . . .. 33
3.4.4 Signal to Noise Ratio (SNR) . . . ... ... ... .... 33

3.5 Overview of DANSR . . . . .. ... ... ... ... ... 34
3.5.1 DANSR’s Hybrid Noise Treatments . . . . . ... ... .. 35
3.5.1.1 Noisy Speech Pre-emphasizing . . . . . ... . .. 36

3.5.1.2 Strong Noise . . .. ... ... ... ....... 36

3.5.1.3 Mild Noise . .. .. ... ... ... ..., 36

3.5.1.4 Steady-unsteady Time Varying Noise . . . . . . . 37

3.5.2  Framework of DANSR . . . .. ... .. ... ... .... 39
Pre-emphasizing of DANSR 41
4.1 Data Collection . . . . . . . ... ... 41
4.1.1 Location and Data Collection . . . . . .. ... ... ... 42

4.2 Data Preparation . . . . . . .. ... 0oL 43
4.2.1 Decimation . . . . . ... ... 45
4.2.2  Envelope Detection . . . . . . .. .. ... oL 46
4.2.2.1 Formulations . . . ... ... .. A7

4.2.3 Adaptive Threshold Selection . . . . . ... ... .. ... 47

4.3 Pre-emphasizing and Pre-emphasis Filter . . . . .. ... ... .. 48
Strong Noise Solution 55
5.1 Basic Steps . . . . . .. 55
5.2 Outlier Detection . . . . . . .. ... ... ... .. 56
5.3 Stochastic Process . . . . . .. ... oL 57
5.3.1 Poisson Distributions . . . . . . ... ... 000 57
5.3.1.1  Homogeneous Poisson Model . . . . . . .. ... 58

5.4 Shots . . . . ..o o8
5.5 Matched Filter . . . . . .. ... o 29
5.6 Strong Noise and Matched Filter . . . . .. ... ... ... ... 61
5.6.1 Analysis . . . . . .. 61

5.7 Actions . . . ... 64

vil



CONTENTS

6 Source Excitation Model 65
6.1 General Aspects . . . . . ..o 65
6.2 Analysis Speech Production Model . . . . . ... ... ... ... 67

6.2.1 Assumptions. . . . .. ... 68
6.3 Source Excitation Types and Formulations . . . . . .. ... ... 69
6.3.1 Voiced Speech Source . . . . . . .. .. ... ... . .... 70
6.3.2 Unvoiced Speech Source . . . . ... ... ... ...... 72
6.3.3 Plosive Speech Source . . . . . ... ... ... .. .... 72
6.4 Systems of the Source Excitation Model . . . . . . .. ... ... 73
6.4.1 Glottal Filter . . . . .. ... ... .. ... .. ... ... 74
6.4.2 Vocal-tract Filter . . . . . .. .. ... ... ... 74
6.4.3 Lip Radiation Filter . . . . . ... ... ... ... .... 74
6.5 Source Excitation Model using Vocal-tract . . . . .. .. ... .. 75

7 Vocal- tract Model: AR Model 79
7.1  Analysis of Parametric Signal Modeling . . . . ... ... .. .. 79
7.2 Overview: Auto-regressive (AR) Model . . . . . ... .. ... .. 80
7.3 Analysis of Stochastic AR Process . . . ... ... ... ..... 83
7.4 Analysis between AR and LP filters . . . . . ... ... ... ... 86

8 Estimation of AR Parameters: Linear Prediction (LP) 89
8.1 Signal Analysis . . . . . . ... 90

8.1.1 Order of the Model . . . . . ... ... ... ... ..... 91

8.2 Derivation of LP and Errors . . . . . . .. ... ... ... ... 92
8.2.1 Deconvolution phenomenon . . . .. ... ... ... ... 93
8.2.1.1 Gain and Errors . . . . .. ... ... ... ... 94

8.3 Mean Squared Error (MSE) and its Minimization . . . . ... .. 95
8.3.1 Computational Aspects . . . . . . ... ... ... ... 95

9 LPC Solution Approaches 100
9.1 Autocorrelation Approach . . . . . ... ... ... 101
9.2 Covariance Approach . . . . . . . . .. ... ... ... ... 103
9.3 The Burg Approach . . . . . ... ... ... 107

9.3.1 Lattice FIR Filter . . . . . .. ... ... ... ...... 112
9.3.2 Reflection Coefficients and Linear Prediction Coefficients . 112
94 ULS Approach . . . . . . . ... ... ... 117
9.5 Analysis of the Signal Models . . . . .. ... ... ... ..... 119

Viil



CONTENTS

10 Steady-unsteady Noise Solution

10.1
10.2
10.3
10.4

10.5

The Scenario . . . . . . . . ..
Sub-band Analysis . . . . ... ...
Spectral Minima Tracking in Sub-bands. . . . . . . .. .. .. ..
Kalman Filter . . . . . . .. ... oo
10.4.1 State space derivation . . . . . . . ... ... ... ...
10.4.2 Prediction Estimates . . . . . . . ... ... ... ...
10.4.3 Update Predicted Estimation by Correction . . . . . . ..
Analysis and Evaluations . . . . . . .. .. ... ... ... ....
10.5.1 Wiener Filter . . . . . .. .. ... ... 0.
10.5.2 Spectral Subtraction . . . . . . .. ... ... ...
10.5.3 White Noise Kalman Filtering . . . . . .. ... ... ...
10.5.4 KEM Filtering using White Noise . . . . . . . .. .. ...
10.5.5 KEM Approach for Colored Noise . . . . . . .. .. .. ..
10.5.6 FFT based Suband Decomposition and Kalman Filtering

10.5.7 Mband Colored Noise and Kalman Filtering . . . . .. ..
10.5.8 Principle Component Analysis (PCA) Approach . . . . . .

11 Psychoacoustics and DANSR System

11.1

11.2
11.3

11.4
11.5

11.6

11.7

Psychoacoustics for DANSR . . . . . . ... ... ... ... ...
11.1.1 Sound Pressure level (SPL) . . .. .. ... ... .. ...
11.1.2 Absolute Threshold of Hearing (ATH) . ... ... .. ..
Concepts of Perceptual Adaptation . . . . . ... .. ... .. ..
Auditory System and Hearing Model . . . . . ... ... .. ...
11.3.1 Human Auditory System . . . . . . . . ... .. ... ...
11.3.2 Human Hearing Process . . . . . . ... ... ... . ...
11.3.3 Hearing Model . . . . . . . . ... .. ... ... .. ...
Auditory Masking and Masking Frequency . . . . . ... ... ..
Frequency Analysis and Critical Bands . . . . . .. .. ... ...
11.5.1 Perception of Loudness . . . . . . ... .. ... .. .. ..
Analysis: Perceptual Scales . . . . ... ... ... ... .. ...
11.6.1 Mel Scale . . . . .. ... ..
11.6.2 Bark Scale . . . . .. ... ...
11.6.3 Erb Scale . . . . . .. ...
11.6.4 Comparison . . . . . . . . .. ..
Analysis: Auditory Filter-bank . . . . . .. ... ... ... ...
11.7.1 Mel Filterbank . . . . . . . ... ... 0oL

X



CONTENTS

11.8
11.9

11.7.2 Bark Critical-band . . . . . . ... ... ... ... ....
Perceptual Adaptation in DANSR . . . . ... ... ... ... ..
Psycho-acoustical Analysis of MP3 . . . . . .. ... ... ....

12 Standard Features and Feature Extraction Techniques

12.1
12.2

12.3
12.4
12.5
12.6
12.7
12.8
12.9

Fundamentals: Feature Extraction. . . . . .. ... ... ... ..
Features and their Purpose . . . . . . . .. . ... ... ... ...
12.2.1 Conventional Feature Parameters . . . . . .. .. .. ...
Steps involved in Feature Extraction . . . .. ... ... ... ..
Analysis of Standard Feature Extraction Techniques . . . . . . .
Cepstral Feature Extraction Technique . . . . . . ... ... ...
MFCC Feature Extraction Technique . . . . . . .. ... .. ...
LPC Feature Extraction Technique . . . . . ... ... ... ...
LPCC Feature Extraction Technique . . . . ... ... ... ...
PLP Feature Extraction Technique . . . . . ... ... ... ...
12.9.1 Perceptual Spectral Features . . . . . . . . . .. ... ...

12.10 SILTT Feature Extraction Technique . . . . . . . .. .. ... ..
12.11Additional Features and their Extractions . . . . .. .. ... ..
12.12Analysis of Feature Extractions . . . . . . . ... ... ... ...

13 APLTT Feature Extraction

13.1

13.2

13.3

13.4

13.5

Spectral Shaping . . . . . . ... . ...
13.1.1 Signal Decomposition . . . . . . . .. .. ... ...
13.1.2 Windowing the signal . . . . .. .. ... .. ... .. ..
13.1.3 Rising Cut-off Functions . . . . . ... .. ... ... ...
13.1.4 Folding Operation . . . . . .. .. .. .. ... .. ....
Spectral Analysis . . . . . . . . ...
13.2.1 Discrete Cosine Transform IV (DCT-IV) . . . . ... . ..
13.2.2 Perceptual Feature Transformation . . . . ... ... ...

13.2.2.1 Critical band for DANSR . . . . ... ... ...

13.2.2.2 Intensity loudness . . . . .. .. ... ... ...
Parametric Representation . . . . . . . .. .. ... ... .. ...
13.3.1 Perceptual Entropy (PE) . . .. ... ... ... .. ...
Parametric Feature Transformation . . . . . . ... ... ... ..
13.4.1 Inverse DCT-IV . . . . . . .. ... ... .. ...

13.4.1.1 Unfolding operator . . . . . . .. ... ... ...
Analysis of APLTT and Standard Feature Extraction Techniques

168
168
169
171
172
173
174
177
182
182
184
185
187
188
189

192
193
193
193
194
195
196
196
199
199
200
200
200
201
201
201
202



CONTENTS

14 Classification and Recognition

14.1 Formulations of HMM . . . . . . .. .. ...
14.2 HMM Elements . . . . . . . . . ...
14.3 Speech Aspects . . . . . . ..
14.4 Informal Discussions: HMM Architecture . . . . . . . . . . .. ..
14.4.1 HMM Problems and Techniques . . . . . . ... ... ...
14.4.2 HMM Constraints . . . . . . . .. ... ... ... ... ..
14.4.3 HMM Topology . . . . . . . . . . .. . ... ...

14.5 HMM Formulations for DANSR . . . . . .. ... ... ... ...
14.6 Gaussian Mixture Model (GMM) . . . . .. ... ... ... ...
14.6.1 Computational Aspects of GMM . . . . . . . . ... ...

14.7 HMM Computational Approaches . . . . . . .. ... ... ...
14.7.1 Evaluation: Forward Algorithm . . . . .. ... ... ...
14.7.2 Backward Algorithm . . . . . . . ... ... ... ... ..
14.7.2.1 Learning: Baum-Welch Algorithm . . . .. . ..

14.7.3 Searching: Viterbi Algorithm . . . .. ... .. ... ...

14.8 Analysis of Standard Classification and Clustering Techniques . .
14.8.1 Clustering . . . . . . . . . ..
14.82 K-means . . . . . . . . Lo
14.8.3 Clustering using VQ . . . . . . . . .. .. ...
14.8.4 Dynamic Time Warping (DTW) . . . . ... ... ... ..

14.9 Analysis and Comparison: HMM and DTW . . . .. ... .. ..

15 Remarks on Experiments

15.1 Noisy Speech and DANSR System . . . . . . ... ... ... ...
15.2 Analysis: Feature Extraction and Features . . . . . . ... .. ..
15.3 Clustering, Classification and Recognition . . . . . . ... .. ..

16 Conclusions

16.1 Practical Results . . . . . . . . . . . .
16.2 Structural Results . . . . . . . . . . ...
16.3 Future Extensions . . . . . . . . . . . .. ...

Appendix

Abstrakt in Deutsch

16.4 Der Rahmen . . . . . . . . . ..o oo
16.5 Die allgemeine Thematik . . . . . . . .. .. ... ... ...

x1

229
229
230
234

237
237
238
238

239



CONTENTS

16.6 Der allgemeine Ansatz . . . . . . . .. ... ... L. 246
16.6.1 Rauschen . . . . . . . . . .. .. ... ... .. ..., 247

16.6.2 Features . . . . . . . . . . . . .. 248

16.7 Mein System DANSR. . . . . . . . . .. ... ... ... ... 249
16.7.1 Kapiteluebersicht . . . . . . . ... ... ... ... ... 249
Bibliography 253
Index 266
Curriculum Vitae 267

xii



List of Figures

2.1
2.2
2.3
24

3.1

3.2
3.3

3.4
3.5
3.6
3.7

3.8
3.9
3.10
3.11

4.1
4.2

4.3

4.4

Speech Generation and Speech Recognition [80] . . . . . ... .. 11
Human Speech Generation and Machine for the Speech Recognition 13
Overview of ASR Process . . . .. ... .. ... ... ...... 14
Sketch of the vocal-tract: Non-uniform cross-sectional area [118] . 17
Noisy industrial environment: Speech Generation by a Human be-

ing and a Machine for the Speech Recognition . . . . . . . . . .. 21
Hybrid Noise and Industrial Environment . . . . . . . . . . . . .. 23
Hybrid noisy signal : Noisy speech signal in the time and in the

frequency domain . . . . .. ..o 28
Hybrid noisy sound level measurements by an A-weighting filter . 29
Noise level and noisy signal energy in signal frames . . . . . . .. 31
Hybrid Noisy Signals : Sound level in Box plot . . . . . . . .. .. 32
Hybrid noisy signal : Signal energy in signal frames and pdf of

noisy signal . . . ... Lo L 34
Hybrid Noisy Speech Recognition: Framework of DANSR . . . . . 35
Strong noise modeled by Poisson process . . . . . . ... ... .. 37
Mild noise modeled by white Gaussian noise (WGN) . . . . . .. 38

Time varying steady-unsteady noise modeled by Gaussian process 39

Data at first look at 48 kHz sampling rate . . . . . . . . .. ... 42
Variability of the same word spoken by the same speaker in the
time and frequency domain at 48 kHz sampling rate in a relatively
quiet residential environment . . . . . . ... ... L. 44
Decimator: Data is downsampled from 48 kHz sampling rate to
16kHz sampling rate . . . . . . . .. Lo Lo 45
Spectrum of hybrid noisy speech and spectrum of envelop com-
puted by Hilbert transform . . . . ... .. ... ... ... ... 48

Xlil



LIST OF FIGURES

4.5

4.6
4.7
4.8
4.9

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

7.2

7.3
7.4

8.1
8.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Redundancy removed signal and sampling rate is 16 kHz: Time

domain plot and spectrogram . . . . . ... ... 49
Pre-emphasis filter . . . . . . ..o 50
Amplitude and phase response of the pre-emphasis filter . . . . . o1

The effect of pre-emphasis filter on the speech signal: Noisy signal 52
The effect of pre-emphasis filter on the speech signal: Redundancy

removed signal . . ... o Lo 53
Signal whitening and matched filtering for shot noise . . . . . .. 63
Strong noisy signal and matched filtered output . . . . . . .. .. 64
Human vocal and articulation organs [52] . . . . . ... ... ... 66
Source-excitation speech production model . . . . . . . .. .. .. 70
Excitation source of the voiced speech . . . . . .. ... ... ... 71
Voiced speech in source-excitation model . . . . . . . .. ... .. 71
Unvoiced speech in source-excitation model . . . . . . . . . .. .. 72
Plosive speech in source-excitation model . . . . . . . . . . .. .. 73
Speech Production Systems . . . . .. .. .. .. ... ... 74
Stochastic source-excitation model . . . . . . ... ... ... 75
Simplified speech production model . . . . . . . . ... ... ... 78
Moving average autoregressive ( ARMA) filter and perceptional

site [121] . o o o o 82
Moving average (all-zero MA filter) and auto-regressive (all-pole

AR filter) [121] . . . . ..o 84
Analysis AR filter and Inverse LP filter: Deconvolution . . . . . . 87
All-pole AR filter and all-zero LP filter: Deconvolution . . . . . . 88
Short time speech signal processing . . . . . . .. ... ... ... 90
Speech production system and linear prediction analysis . . . . . 94

LP by autocorrelation using Yule-Walker approach: Offne die Tiir 102

Signal model: Auto-correlation (Yule-Walker) approach . . . . . . 103
Signal model: Covariance approach . . . . . .. ... ... .. .. 106
Visualization of the forward and backward linear prediction [24] . 108
p* stage lattice filker . . . . ... 113
i'" section of the lattice section in details . . . . . . .. ... ... 113
Ist order lattice structure . . . . . . . .. ... 114

X1v



LIST OF FIGURES

9.8 Signal model: Burg approach . . . . ... ... ... .. ... ..
9.9 Signal model: ULS approach . . . . . .. ... ... ... ... ..
9.10 Signal model analysis: Yule-Walker approach and ULS approach .

10.1 M-band Kalman filter for colored noise problem . . . . . . . . ..
10.2 Pseudo Cosine Modulated M-Band QMF . . . . . . .. ... ..
10.3 Signal Flow in the Kalman filtering . . . . . . . . . ... ... ..
10.4 Hybrid noisy speech and M-band Kalman filter . . . . . .. . ..
10.5 Evaluation of Wiener filter and its output . . . . . . ... .. ..
10.6 Evaluation of spectral subtraction and its output . . . . . . . ..
10.7 Evaluation of white noise of the Kalman filter and its output . . .
10.8 Evaluation of white noise of the Kalman filter using EM approach
and itsoutput . . . . .. ..o
10.9 Evaluation of color noise of the Kalman filter using EM approach
and itsoutput . . . . .. ...
10.10Evaluation of color noise in the sub-band Kalman filter and its
output . . . ..o
10.11Evaluation of color noise of the Kalman filter using color noise
Mband filter bank and spectral minimization and its output
10.12Evaluation of white noise applying PCA and its output . . . . . .

11.1 ATH in linear frequency scale in Hz, Bark, mel, and erb Scale

121

150

11.2 Simple View: Human ear and the interactions among the components152

11.3 Human Auditory System [65] . . . . . . ... ... ... .....
11.4 Approximated Human Auditory Filter bank [12] . . . . . . . . ..
11.5 Critical band in trigonometric, trapezoidal and rectangular filter-
bank mapped to Mel, Bark, and Erb frequency scale. . . . . . ..
11.6 Perceptual Scales: Erb, Bark, and Mel frequency scales and linear
frequency scale in Herz . . . . . . .. ... ... ... ... ...

12.1 Speech Features in Picture . . . . . . .. .. ... ... ... ...
12.2 Cepstral feature extraction technique . . . . . . .. . ... .. ..
12.3 Cepstra features . . . . . . . . . . ... ...
12.4 MFCC feature extraction technique . . . . . . . . . ... ... ..
12.5 MFCC features . . . . . . . . . . . .. .. ... ... ...
12.6 LPC feature extraction technique . . . . . . . .. ... ... ...
12.7 LPCC feature extraction technique . . . . . ... ... ... ...
12.8 LPCC feature extraction technique . . . . . . .. ... ... ...

XV

153



LIST OF FIGURES

12.9 LPCC features . . . . . . . . . .. ... ... 184
12.10PLP feature extraction technique . . . . . . . .. ... ... ... 187
12.11PLP features . . . . . . . . ... 188
12.12SILTT feature extraction technique . . . . . . . . .. .. ... .. 189

13.1 DANSR feature extraction: Adaptive Perceptual LTT (APLTT) . 194

13.2 Spectral shaping and spectral analysis: LTT and FT . . . .. .. 198
13.3 Windowed signal in APLTT and in standard feature extraction
technique . . . . . . . . 198
13.4 Perceptual filterbank and output of this filter bank . . . . . . .. 200
14.1 Bayes’ rule in the classification and recognition problem . . . . . . 209
14.2 State transitions in the Viterbi search space [130] . . . . ... .. 210
14.3 Recognition Module and its Integration with APLTT Features . . 213
14.4 Left-right HMM topology . . . . . . . . . . ... ... ... ... 213
14.5 Three states are used in 3 dimensional GMM model . . . . . . .. 218

14.6 Esimated Nearest Neighbors in K-means Clustering Approaches . 225
14.7 a: Computational Approaches of DTW and b: DTW alignment

path in the speech features . . . . . . .. .. ... ... 228
15.1 Noisy framed signal and enhanced framed features . . . . . . . .. 230
15.2 Dimensionality reduction: Framed signal and enhanced framed fea-

tures . . . . .. e e 231
15.3 Psychoacoustic quantities embedded in APLTT and its output . 231
15.4 APLTT features variation using GMM . . . . . .. ... ... .. 232
15.5 MFCC features using without noise reduction technique and with

noise reduction technique . . . . . . . . .. .. ... 232
15.6 RASTA using without noise reduction technique and with noise

reduction technique ina 3D plot . . . . . . . . ... ... ... 233
15.7 PLP using without noise reduction technique and with noise re-

duction technique . . . . . . .. ..o oo 233
15.8 K-means clustering: 3 commands: ” Offne die Tiir”, ” Geh weiter”,

?Offine das Fenster” . . . . . .. ... ... ... ... ... ... 234
15.9 Three states are used in 3 dimensional GMM model . . . . . . . . 235

16.1 From continuous-time speech signal to discrete-time speech signal
representation . . . . . ... 239

Xvi



LIST OF FIGURES

16.2 Speech Generation and Speech Recognition . . . . . . .. ... .. 247
16.3 Speech Generation and Machine for the Speech Recognition . . . 248
16.4 Hybrid Noise and Industrial Environment . . . . . . . . . . .. .. 249

XVvil



Chapter 1

Introduction

This chapter contains a general discussion of the whole thesis. It deals with the
speech which is a natural communication form. A substantial amount of different
views and a huge variety of aspects are inherent in the communication while
using the speech. Obviously at a technical level, this makes the speech analysis
an interesting and a difficult task.

The speech recognition is a technology that receives and also reconstructs
speech on the machine. For this the human speech recognition approach is closely
replicated. The main goal of this thesis is in short an automatic speech recognition
(ASR) in a difficult environment. By difficult we mean simply that there are
various kinds of noise.

This occurs in many practical situations and leads to several technical prob-
lems. Our environment is a technical factory where people give commands to
a machine that are executed automatically. The state of the art of this inves-
tigation is probabilistic. Particularly a pattern recognition method namely the
Hidden Markov Model (HMM) is used in order to find the most likely answer to
the pattern recognition problem. We deal with a very large dimensional space.
For instance, the analog speech waveform is first captured by some transducers. A
common type of transducer is a microphone to capture the speech waveform. The
analog speech waveform is digitized for its processing in the computer. Suppose,
the digitized signal has 90000 samples at 48 KHz sampling rate. These samples
are then processed into short blocks which has a length for example 10 to 30
milli seconds (msec), these are then used to extract features by feature extraction
technique for dimensionality reduction. These features are classified and modeled
by a Gaussian mixture model. In each class, the features contain information for
the corresponding class, these are then recognized by the techniques such as for-



ward algorithm, Viterbi algoirhm and Baum-Welch algorithm used in the HMM
in order to obtain the most likely result. The probabilistic speech recognition
approach is most commonly used practical and commercial applications.

An additional topic is to understand psychoacoustic elements. Such elements
contain information that cannot be easily expressed in a written form or in words.
Examples are pauses or intonation; they can change the meaning of the spoken
words significantly. We are interested in extracting quantitative magnitudes that
are used in the speech. This is closely related to the techniques we developed for
dealing with the noise.

The speech signal contains information at many different levels such as infor-
mational aspects, for example semantic, perceptive and syntactic information and
also an information about the speaker. All these information influences recogni-
tion and understanding of speech. There are many other external factors that
impact the speech recognition. One such dominant factor is environmental noise.
A rough distinction between the noises is that they can be extreme, soft or steady
and unsteady time varying. Such a scenario can be obtained e.g. when machines,
radios, and human speeches interact. This study focuses on recognizing speech in
the presence of the environmental noise. We consider a very general kind of noise
that, however, occurs in many practical situations. It has been studied rarely in
a general way with very little or no success at all.

There exists plenty of studies in speech research on the noise problem. Even
each of these approaches is a unique. The aim is usually the same. Here we
stress on the research studies that considered the noisy speech recognition only.
Most approaches solve the noise problem by enhancing the noisy speech features.
Combinations of different solution techniques in order to enhance the noisy speech
features or mapping the features prior to recognition; this has been investigated
over the decades. There the most common solution approaches are support vec-
tor machine (SVM), blind source separation (BSS) in combination with Kalman
filters, independent component analysis (ICA) in combination with Wiener filter,
neural network, code book mapping, model adaptation, cepstral mean subtrac-
tion (CMC), warped filter-bank, Gaussian mixture model and hidden Markov
model [46], [45], [117],[73],[86],[148],[146],[77].



1.1 The DANSR Approach

Our results are contained in a system called DANSR (Dynamic Automatic Noisy
Speech Recognition System). This gave the title to the whole thesis.
In the thesis one sees contributions from a combination of two views:

e In the users view one sees more increased possibilities for recognizing speech,
in particular in the presence of environmental complex noise.

e From the structural and methodological view one observes that the system
provides an integrated approach of several and partially innovative meth-
ods in a complete system. For this purpose we had to discuss the whole
recognition system. It can be a starting point for future research too.

The speech signal analysis is based on the discrete time. We have used the
discrete time speech samples of the real world continuous time speech sounds. The
purpose of analyzing the speech signal for its machine recognition is to reconstruct
the speech signal in the machine. Moreover, if the information of the signal can
be restricted to a certain limit, then the signal is band limited. According to
Nyquist theorem, a band limited signal can be reconstructed from its discrete
time samples if the sampling rate of the signal is higher than twice their highest
frequency [20]. The bandwidth of the speech signal is 200 Hz to 3500 Hz and
most speech energy lies at 7 kilo Hertz (kHz).

The vocabulary used in this study is not arbitrary. We have a list of some
predefined small commands that are used by the speaker. In the terminology
of artificial intelligence this establishes a closed world because the situation is
precisely defined (although very complex). We assume that we have a single
microphone for reception only. This is termed as a single-channel reception.

The state of the art of our ASR problem solution approach is probabilistic: In
principle we take a Hidden Markov model (HMM). For explaining our work we
shortly touch prior achievements. The noisy speech recognition is considered in
[17]. The focus is on the feature enhancement in order to recognize speech. The
main difference of our approach and the literature in [17] is: We focus on very dif-
ferent noise types taking place simultaneously in a hybrid industrial noisy speech
and classify the noises for their treatments. Actually we are being specific about
the noise types and provide a solution accordingly for the hybrid industrial noisy
speech. Because of such differences we cannot restrict ourselves to one method
only. Instead we have to use several approaches and in addition the order of using



them is relevant. The Vector Taylor Series (VTS) compensation in combination
with Mel frequency cepstral coefficients (MFCC) feature extraction and HTK for
noisy speech recognition is used. The noise is additive and it is considered as
white Gaussian noise. This has been applied to noisy speech databases in a car
and in a room[107]. The hidden Markov model toolkit (HTK) is a speech recog-
nition development toolkit which uses the probabilistic approach namely Hidden
Markov Model (HMM) for the speech recognition [128]. This also focuses on the
speech feature enhancement first. First order cepstral normalization (FOCN) and
minimax normalization are used to enhance the speech features in order to recog-
nize the speech which is assumed to be corrupted by an additive noise using the
Baum-Welch algorithm which is used in the HMM based speech recognition for
learning [123]. For the recognition of noisy speech, linear prediction coefficients
(LPC) cepstral features are used for the multilayer perceptron (MLP) classifica-
tion and recognition that are investigated in [71]. The noisy speech is used for
suppressing the noises using minimum mean square error (MMSE) optimization
criterion and multi layer perceptron neural network for recognition in [93]. At this
stage, we have not investigated the performance of the MLP or Neural Network
(NN) for the recognition. The voice commands in thai speech are recognized in a
quiet room, in an office room and in a noisy room for a Radio controlled (RC) car
in [104]. This transforms the voice commands to digital signals and then this is
converted to a radio active wave commands which are later recognized by HMM
based recognition system using HTK tool. We focus on the speech enhancement
by reducing the noise and speech feature enhancement by our extended percep-
tual feature extraction technique called perceptual adaptive local trigonometric
transformation (APLTT). We have applied there the perceptual entropy (PE)
instead the best basis spectral entropy that exists in the SILTT. The perceptual
entropy is useful for de-noising speech [57].

The term ”dynamic” for our dynamic automatic noisy speech recognition
(DANSR) has in our studies a number of particular properties:

e Firstly the speech has a relation to its past occurrence, it is not memoryless
and it is dynamic in this sense. For example, if we would like to say "Open
the door”. Relating to this expression in this example, saying only ”door”
makes no sense considering the semantics of the original intension or only
saying ”d” for the "door” also makes no sense.

e Secondly the research study is based on small but varying spoken commands
and this is reconstructed as well as recognized on the computer. This is an



online lively approach. Thus we say the system is dynamic.

e Thirdly we use a dynamic programming approach to attain to our solution
of the problem. The dynamic programming approach includes [112]:

— Recursive approaches for the optimal result.

— The main solution requires a solution to the sub problems i.e. the
problem is divided into sub problems in order to find the problem
solution.

— The solutions of the sub problems are based on the solutions of previous
problems. The solution of the problem is inter-dependent. This means
each output of each approach is used as input to the next approach.

An essential element for speech recognition is provided by the features. Short
feature vectors are easier to handle by the actual recognition algorithms than
long signal sequences. However, they should still contain the whole information
contained in the speech what makes extraction very difficult. With respect to the
feature extraction stage in the speech recognition studies, mostly Mel frequency
cepstral coefficients (MFCC), linear predictive cepstral coefficients (LPCC), per-
ceptual linear predictive (PLP) cepstral coefficients are considered. In MFCC and
PLP the signal decomposition and spectral analysis are followed by the process
of the lapped transformation where the FFT is applied. The problem of abrupt
discontinuity is present although it is reduced because of the lapped transfor-
mation. There also exists the non-standard shift invariant local trigonometric
transformed (SILTT) features based on the local trigonometric transformation
(LTT) approach. But the feature extractions in SILTT do not make use of all
available information provided by the speech. Another problem of the SILTT
transformation is that the perceptual feature extraction is not possible and it
does not provide perceptual speech features. The SILTT has been used for speech
processing and speech recognition in [95], [32], [22]. There a perceptual mapping
is not used while it is used in our speech processing and speech recognition.

We handled the discontinuity problem in MFCC, LPCC, PLP by applying
a local trigonometric transformation followed by a lapped transformation and
took extra care to the application of a folding operation. The discontinuity is
smoothened here better than using the traditional MFCC and PLP. In earlier
research, the adapted local trigonometric transformation is used in the vector
quantization (VQ) based HMM speech recognition [22]. There the signal is de-
composed signal into M uniform-subbands to each subinterval. The energy of



each sub-band is used as speech features. These features are applied to VQ and
HMM. Here we used a continuous classification model, i.e. the GMM for speech
recognition tool HMM and we integrated this with APLTT.

Occurrence of psychoacoustics elements in speech is very basic and it is com-
mon. They express information that one cannot directly express in words. It is
not clear in the first place how these elements occur in speech in a quantitative
way. We explain how these elements can be captured by a specific feature extrac-
tion. We adopted such quantities into the existing LTT approach. These are in
particular the psychoacoustic quantities that describe the speech properties that
are important for human hearing. In the normal SILTT they are not included.
For this inclusion the different quantities and their commputational properties
have to be studied and combined.

1.2 The Chapters

The thesis has four main parts. The backgrounds, analysis of standard techniques
and the techniques used in the DANSR are discussed in each chapter.

e Part A: This part introduces into our topic. This includes chapter 2 and
chapter 3.

e Part B: This part explains our noise solutions to hybrid noise problems.
The related chapters for this are : Chapter 4, chapter 5, chapter 6, chapter
7, chapter 8, 9, 10.

e Part C: This part introduces basic psychoacoustics quantities for speech
perceptions and their adaptation into our approach, the part also describes
feature extraction. The included chapters in this section are: Chapter 11,
chapter 12, chapter 13.

e Part D: This part talks about classification and recognition. The included
chapter in this section is chapter 14.

Now we list the outlines of the chapters individually.

Chapter 2 outlines the speech generation and recognition with respect to a
human being and it outlines the speech recognition with respect to a machine and
chapter 3 introduces into the methodology we used to enhance the noisy speech
for our noisy speech recognition. The general background of our noise treatment



is the subject of chapter 3. In chapter 4 we discuss the pre-emphasizing methods.
The data preparation is the content of chapter 4. Chapter 5 is devoted to strong
noise. Chapter 6 introduces the standard source excitation model. The chapters
7,8, 9 and 10 focus on the parametric speech production model. The autogressive
process in the vocal tract model is discussed in chapter 7. Linear prediction and
its parameters are handled in chapter 8 and 9. Sub-band coding, spectral mini-
mization, Kalman filtering is the subject of chapeter 10. The psychoacoustics for
the thesis is in chapter 11. Feature extraction is handled in chapter 12,13. Chap-
ter 14 is concerned with classification. Chapter 15 shows experimental results
including evaluations and chapter 16 gives conclusions.

1.3 Thesis Contributions

The innovations of the thesis are two fold, applications and structural contribu-
tions. The combined methodological approach developed in the thesis and the
sub components of this approach are tested independently and as a whole in a real
industrial environment. The system is in applications very practical and serving
the purpose and meeting the aim as we intended this. We have provided in thesis
our experiments, analysis, evaluations and results that we have done using the
real world hybrid noisy industrial data.
Here we list the main contributions of this thesis:

e An integrated hybrid solution approach to an existing environmental hybrid
noisy ASR problem.

e A new noisy speech pre-emphasizing approach. Here we modified and ex-
tended an existing approach but the existing approach is used for speech
silence detection. Our application for this here is for noisy speech pre-
emphasizing.

e Strong noise modeled by a Poisson distribution and its treatment by matched
filter.

e A new perceptual feature extraction approach. Here an existent adaptive
local trigonometric transformation (LTT) mathematical tool is extended.
This is already applied to speech processing and recognition. We have ex-
tended this adaptive LTT approach to perceptional adaptive LTT (APLTT
) approach and extended this for model based speech recognition system.



e We have applied the Gaussian mixture model (GMM) to model APLTT
features for classification and the HMM for recognition. The HMM based
speech recognition system is continuous when we apply the GMM.

e Applying the techniques to model the psychoacoustic quantities.

For this purpose we have studied the existing approaches in details and made
many experiments with the data collected from the real world on our own and
evaluated these with other existing approaches.



Chapter 2

Excursion: Human Speech and
Machine

Outline of the chapter In this chapter we describe the speech from the views
of speech generation, perception and its recognition in the real world. Here we
discuss how it is done by the human body which we model from an engineering
point of view. For this we followed the relevant literature and modified several
aspects for our purposes and for simplification.

2.1 Excursion:Human and Machine Interaction

The speech is an acoustic signal which is produced by a human speaker as a
sound pressure wave and comes out of a speaker’s mouth and goes to a listener’s
ears. The speech is a dynamic and an information bearing signal. The speech
is composed of a sequence of sounds that serve as a symbolic representation
of a thought that the speaker transmits to the listener. The arrangement of
these sounds is governed by some linguistic rules associated with a language.
The scientific study of the language and the rules are discussed in linguistic and
phonetic studies. The problem is to automate the whole process, i.e., the sound
production as well as the sound reception. In this thesis we concentrate on sound
reception. We approach the problem by looking into the information content of
the speech following engineering types of a technical approach. That is, we are
building machines that simulate speech production and speech reconstruction for
its recognition in such a way that engineering methods can be applied.

The task of the speech recognition is to find the most likely information given



by the speech. The speech is in general viewed as a probabilistic process. For
describing a given signal we need a model. The model can be an acoustic, a
phonetic or a lexicon or a language based. The language model provides the
composition and combination of the words of the speech. The lexicon or phonetic
model discusses the fundamental sound formations of the word. The acoustic
models can be based on the sound units as e.g. words or phonemes.

Our objective is to make speech interpretable to a machine what the speaker
has originally said. This leads to a model based speech processing and then to
a dynamic speech recognition system. By dynamic we mean that the system
approach is dynamic programming based i.e. we have recursion, tracing, bottom
up solution approach and we search for the optimal result.

Next we introduce how the speech is generated and recognized by a human
being. We give a general impression and are concerned with technical or medical
elements.

2.2 Human Speech Generation and Recognition

We show an overview of the speech production and recognition in figure 2.1. In
this figure the connection between sending and receiving is described by the right
and the left vertical arrows. Figure 2.1 is our simple modification of the speech
chain given in [80]. The figure has two parts:

e The upper part : Speech Generation

e The lower part : Speech Recognition

2.2.1 Human Speech Generation

We describe the speech generation in brief only because it is not our central task.
However, for certain aspects it is necessary for us to know something about the
speech generation. Later on in the chapter we describe the vocal tract from an
engineering point of view using speech acoustical information. Here we explain
the influence of the vocal tract in the speech production and generation. This will
clarify the motivation of the use of the vocal tract system in the speech research as
a main organ in the practical speech production model for speech processing[30].
The process is described in steps:

10



Speech generation

Articulatory
motions

Message Language Neur 1 Vocal-tract
formulation code controls system
Discrete input Continuous input
Humanbeing Acoustic
waveform
Message Language Neural s I.:mer ear'
1 translation : asiler ane
understand transduction motion
Discrete output Continuous output

Speech recognition

Figure 2.1: Speech Generation and Speech Recognition [80]

e The speech production process begins when the speaker formulates a mes-
sage in the speaker’s mind and in the brain. That is what the speaker wants
to say to the listener.

e The next step is the language code. This converts the message into some
text and phonetic symbols. These are the elements of a certain language
governed by linguistics and phonetic rules. When the phonemes i.e. the
acoustics units are in correct order, the speaker can pronounce an under-
standable word. For example, if the speaker wants to greet someone saying
”Good Morning” the speaker first needs to decide the language, e.g., if it
is in German or in English. The result of the message formulation or the
conversion of this message into a syntactic form is then sent to the neuro-
muscular controls. The smallest element in the speech is called a phoneme.
The phonemes are given as sounds of a language produced by an individual
speaker

e Next the neuromuscular movement takes place to control the vocal appara-
tus, for example the vocal folds, or the nasal part or the lips that are needed
to be moved to generate the message for instance here it is the greeting :
”Good Morning”.

e When the loudness of the pitch is established, the vocal-tract system, for

11



instance the vocal-tract vibration, acts, the speaker can say ”Good Morn-

ing”.
e The result of the whole process is a continuous time analog waveform at
the lips, jaw, velum etc. In this way the speech waveform is produced.

Here the generation process ends. We will not be concerned with the human
speech generation and its automation. However, the generation process has to
be understood to use it in the model that represent the spoken speech. The
source excitation model discussed in chapter 6 is the most commonly used model
to represent the speech generation process. The purpose of using this model is
given in chapter 10 but some physical explanations of this model relating speech
generation by the human being is given in section 2.4.

The vibration rates of the vocal folds during the speech production while trans-
mitting the process through the vocal-tract are different. Similarly, the speech
waveform of formulating the message may change depending on the speaker.

2.2.2 Human Speech Recognition

For recognition we look at figure 2.1 to see what is intended.
The message interpretation shown at the bottom right corner in figure 2.1 is
the speech recognition or the speech perception.

e The first step is an effective conversion of the acoustic waveform into a
spectral representation. This takes place in the inner ear by the basilar
membrane. This membrane acts as a non-uniform spectrum analyzer by
spatially separating the spectral components of the incoming speech signals
and analyzing them, for example using a non-uniform filter bank.

e The next step is the neural transduction of the spectral features into a set
of distinctive sound features.

e These features are decoded and processed by the brain. This is described
by linguistic rules.

e Finally these features are converted to a set of phonemes, word sequences
and sentences in order to understand or recognize the intended message
(that was originally generated). This takes place in the brain and requires
much human knowledge.
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2.3 Speech Recognition by Machine

Here we give a pictorial motivation for the approach. Figure 2.2 shows how the
speech recognition can be replaced by a machine. If we compare figure 2.1 and
figure 2.2, we see in figure 2.2 that the tasks in the human ear and the brain is
replaced by a machine. A basic understanding of the processes taking place in
the human ear is useful for the speech recognition tasks. We see that these tasks
are rather complex and require interdisciplinary knowledge, e.g. from the physics
of sound transmissions, the physiology of the human auditory system, the human
speech perception to begin with. We have given in chapter 11 a brief superficial
introduction and outline of the study of the psychoacoustics that studies the hu-
man speech perception in order to capture an essence of human speech perception
and perceptual speech recognition. These are introductions and outlines of the
study of the psychoacoustics. We show how the psychoacoustics elements are
quantized. Our main aim is to recognize noisy speech and this is discussed in
next chapter 3. The ASR studies belong to an area of pattern recognition which

Speech generation

Articulatory

motions
Message Language Neuromuscular Vocal-tract
formulation code controls system
Discrete input Continuous input
Humanbeing Acoustic

waveform

Speech output(message) Machine

(e.g. computer)

Speech recognition

Figure 2.2: Human Speech Generation and Machine for the Speech Recognition

is to some degree a sub-area of machine learning. In the overview of an automatic
speech recognition (ASR) system given in figure 2.3, we see the speech data as
input are transformed into some trained set in order to apply some learning tool
in the training phase. Then some test data are used by applying some search tool
in the testing phase. Therefore the ASR system has two main phases:

e Training Phase: Here the examples are given to machine learning.
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e Testing Phase: Here some learning tool is employed and then classification
of the examples in order to recognize the test data to find the overall the
outcome as a result of the learning process takes place.

Training Phase

Speech Training
inpu .
put I Feature features Learning
extraction
Test Test Y
m Feature | 1€atures | Search
. o —
extraction Result
Testing Phase

Figure 2.3: Overview of ASR Process

There are different ways the generated speech can be represented in the machine.
Two most common approaches are:

e Parametric approach: Here some signal models are used to extract speech
parameters. An example of the parametric approach is linear prediction
analysis (LPC). They are individual for each speech act, unkown and have
to be estimated. These parameters are the starting point for the speech
recognition task. We followed this approach. This is discussed in chapters

6,7,8,9.

e Non-parametric approach: FFT based analysis is an example of this ap-
proach. This is a commonly used tool to begin the speech recognition tasks.
Examples of the non-parametric approach is MFCC discussed in chapter 12.

The ASR architecture and structures are now briefly mentioned. An overview
is shown in figure 77,
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2.3.1 ASR Types

The speech recognition can be of different types. Thus the architecture and
structure of the ASR can be varied. Below we provided a list of possible ASR
types and their architecture [69], [80].

System Architecture This discusses acoustic and linguistic elements as e.g.
phonemes, words, phrases and sentences. The structure of the ASR can be:

e Continuous: Speech that is naturally spoken in a sentence.

e Discrete: Discrete speech systems use one word at a time and it is useful
for people having difficulties in forming complete phrases in one utterance.

e [solated: In isolated speech, single words are used and it is easier to recog-
nize the speech.

The type of the ASR can be :

e Speaker Dependent : A speaker dependent system is intended for a use by a
single speaker. In a speaker dependent system, necessary training data are
: 100 different people saying the speech for instance 10 times separately and
necessary testing data: 25 different individuals that are not in the list of the
speakers in the training data collection saying the corresponding speech.

e Speaker Independent: A speaker independent system is intended for use by
any speaker; it is more difficult in the sense that it has more variations to
be considered than the speaker dependent one. The speaker independent
system involves a collection of thousands of data.

The vocabulary size of the ASR can be:

e Small Vocabulary: Tens of words for example a list of 10 to 100 vocabulary
model.

e Medium Vocabulary: Hundreds of words for example a list of 100-300 vo-
cabulary model.

e Large Vocabulary: Thousands of words for example a list of 1000- 10000 or
more vocabulary.

Some ASR applications and possible environment are :
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e Examples are speech in a hospital or in a nursing home to monitor the
patients, in an industry to command a machine, for dictating in law en-
forcement, in robotics to perform some intended tasks using some voice
commands etc.

e Environment: This can be noisy, moderate, mixed of noise and normal
environment or quiet.

Our DANSR specification is mentioned in chapter 3.
The human speech generation process is captured for speech processing by
the source excitation model.

2.4 Acoustics of Speech Production Model

The acoustic phonetics studies the acoustic properties of the speech and how
these are related to the human speech production. A standard computational
speech production model is discussed in chapter 6 which makes use the study of
the acoustics, phonetics, psychoacoustics and digital signal processing in order to
model the speech process.

The purpose of the computational speech production model is to manipulate
the reality computationally and to estimate the constraints and the constants in
the body. This correlates the physical process to a computational model for the
processing.The constraints in this context are the natural regulations in generat-
ing the human speech and the constants are the weights or the speech parameters
and the outputs.

Next we present computational aspects about some basic components used in
the model in an overview. They are concerned with both, the human body and
the machine. The model is described in chapter 6.

The vocal-tract is playing a vital role in the speech production discussed in
chapter 6. In the next description we use partially some qualitative terms.

The vocal-tract shown in figure 2.4 is considered a lossless acoustical tube. We
see in the figure that the vocal-tract has different cross sectional areas denoted

by A17A27”' 7A5'

2.4.1 Resonant Frequency, Formant and Sampling Rate

The resonant frequency of the vocal tract tube is the peak frequency of the
vocal tract tube. It happens when the particular frequency and the vocal tract
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Figure 2.4: Sketch of the vocal-tract: Non-uniform cross-sectional area [118]
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frequency coincide. The standing wave is the current wave in the vocal tract tube.
These are intuitive simple definitions of the resonant frequency and standing or
ongoing wave of the vocal tract. The details of this can be found in the area of
the acoustics phonetics study which is not investigated further.

Resonant Frequency and Formant A connection between the formant and
vocal tract tube is shown in equation (2.2).

The length [ of the vocal tract tube is an odd multiple of A which is the
wavelength of the standing wave. )\, indicates the wave length at n which is a

positive integer number.

(2n — 1)\,
4

The length of an adult male vocal tract is approximately 17.7 cm long and the

I = (2.1)

length of an adult female vocal tract is approximately 14.75 cm long [87].

The resonant frequencies f, for n = 1,2,3--- are shown in equation (2.2).
The speed of the sound in the air denoted by ¢ is assumed to be 35400cm/sec.
The formants are defined by the spectral peak in the speech sound spectrum.
They are determined by the resonance frequency. This means if the resonant
frequency is 1500 Hz, then a formant is generated at 1500 Hz.

¢ (2n—-1)c

Selection of Sampling Rate The relation between the sampling rate se-
lection and the vocal tract architecture is shown in equation (2.4). The wave
propagates in vocal tract cross-sections. In figure 2.4, the cross-sections of the
vocal tract are denoted by Ay, As,--- , A, and n denotes a positive integer num-
ber. Suppose, the length of each tube is j, then the wave propagates in each
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section is 7 is computed by equation (2.3).

J

= - 2'3
r=? (2.3
The discrete time system, the sampling rate of the vocal tract is 27 seconds. The

sampling rate fs is then can be expressed by equation (2.4) [30].

o= o= (2.4)

The order of the model relating this to the physical vocal tract tube is dis-
cussed in chapter 8 in section 8.1.1.

2.4.2 Reflection Coefficients

As we mentioned earlier the vocal-tract is an acoustical tube which has several
non-uniform sections. The waves that propagate from the tube are partially
reflected and partially interrupted by the discontinuities of the junctions of the
tubes. This is described by the reflection coefficients. The reflection coefficients
reflects the vocal-tract structure, the shape of the vocal-tract and the speech
transmission that is taking place in the acoustical vocal tube. The 0 value of
the reflection coefficient means that all transmission in the vocal-tract tube are
passed and 1 value of this reflection coefficients indicate that the transmissions
are reflected [81], [87].

The reflection coefficients between two sections of the vocal tract can be shown
by equation (2.5). The reflection coefficients are denoted by k. k; is denotes the
reflection coefficients for i = 1,2,--- | p. A; and A;,; are the cross sections of the
vocal tract tube where 1 < ¢ < p. There are p many tube sections. Ay = oo is
the area of the space beyond the lips and therefore it is a lossless transmission.

- A — A

ki = ———  where |k;| <1 2.5
Ai + A i (2:5)

The length of the vocal tract tube is determined by the sampling period and
the speed of the sound as discussed in section 2.4.1. The reflections cause spectral
shaping of the excitation which acts as a digital filter with the order of the system
equal to the number of tube boundaries. The digital filter can be realized by a
lattice structure. In this structure, reflection coefficients are used as weights. This
is the background of the reflection coefficients and its use in the lattice structured
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filter. This is briefly discussed in chapter 9 in section 9.3.1. The details of this
can be found in [24].

2.5 Categories of Speech Excitation

From the speech acoustics point of view, an excitation type can be categorized
by the following kinds of speech sounds [69].

e Voiced (Example: The letter /I/ sound in the utterance of ”six”)
e Unvoiced (Example: The letter /s/ sound in ”six”)

e Mixed (Example: The sound corresponding to the letter ”z” in the phrase
"three Zebras”)

e Plosive (Example: A short region or silence, followed by a region of the
voiced speech, the unvoiced speech, or both. A plosive example (silence +
unvoiced) is the sound corresponding to /t/ in "pat”. Another (silence +
unvoiced) in the /b/ in "boot” )

e Whisper is the pressure in the glottal area to utter any excitation types.

We will see in chapter 6 how the above mentioned excitations types are sim-
plified to the voiced and the unvoiced types and how these two types are modeled
by only a single simple computational model to reflect the speech production
process in reality.
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Chapter 3
Noisy Speech Recognition

Outline In this chapter we talk about noisy speech and its definition and han-
dling this in our studies. We explain our aim, problems, challenges and difficulties
relating these studies to the real world. We introduce the hybrid noise and their
treatments. This incorporates different kinds of noises. Our solution approach
takes care of this. This approach is mixed with a preview of literature about
noisy speech evaluation and our own methodological approach. We introduce
both active and passive noise solutions to this problem.

For our approach an industrial environment is selected as an application area.
What is new here to our perspective is that we provide a hybrid solution to our
problem and the actions we take in order to arrive at the solution.

In chapter 2, we provided a simple realization of speech generation, speech
recognition by the human being and also a scenario of speech recognition by a
machine. Here we talk about noisy speech recognition by a machine. The speech
is in the first place not noisy by itself and it is noisy generally only after its
generation by environmental factors.

Next we first introduce to our noisy speech, hybrid noise, their impacts in
section 3.1.

3.1 General Aspects

In general, an industrial environment is noisy. Here we are talking about a
noisy industrial environment which is equipped with different types of machines,
machinery handling and their operations such as manufacturing, assembling. The
next figure 3.1 is not intended to be a definition. The corresponding definitions

20



are complex and come later when we discuss the technical aspects. 3.1 is rather
thought of an illustration so that one can see in principle what we want to do.
In figure, 3.1, we see that spoken commands are generated by a human being in
a noisy industrial environment and given to a machine i.e. a computer for its
recognition in the same environment. If we compare figure 2.2 given in chapter 2
and figure 3.1, we see the difference between the two figures. In figure 2.2, speech
is generated in a clean environment but in figure 3.1 speech is generated in a noisy
environment. In figure 3.1, the speech generated by a human being is delivered to
a noisy environment. The speech is corrupted by the environmental noise. The

Speech generation

Articulatory
motions

Message I Neuromuscular Vocal-tract

formulation code controls system

Discrete input Continuous input

Acoustic

Humanbeing
waveform

Speech output(message) / Machine
(e.g. computer)

Speech r ition

Noisy Environment

Figure 3.1: Noisy industrial environment: Speech Generation by a Human being
and a Machine for the Speech Recognition

industrial noises are not all the same type. They have different intensity and
extremity and we call this combination hybrid. Typically, we categorize them
as strong, steady and mild. A reality is that we cannot process our data that
we have collected from the noisy environment for its required enhancement and
neither do we have an option to enhance the noisy observations by some standard
noise reduction techniques. A main problem is that a "common” approach or
a "standard” approach is not an appropriate solution approach to this hybrid
noise. There is not yet any such solutions to the hybrid noise that could enhance
the hybrid noisy speech for its recognition. Nevertheless, our scenario occurs
quite often, see section 3.2. Though there is a huge amount of literature about
noisy speech enhancement or noise reduction or removal [117], a majority of this
[148] solves this problem by applying some standard noise solution approaches or
standard digital filtering or some adaptive filtering such as Wiener filter, Kalman
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filtering for white noise, or spectral subtraction, or sometimes a combination
of one or more of them [86]. In fact, a hybrid noise solution has rarely been
considered. The problem seems to be that it is not trivial to combine different
techniques [46]. But the situation is that because of the different types of noise
we need a hybrid treatment for them. For each type we apply a method based
on the existing noise source. Each method will, however, not just remove or add
something but will effect the whole signal. Here the main tasks for our noisy
speech recognition problem are:

e Removal or reduction of the noise that corrupts the speech. We use the
removal or reduce the noise because both of these are done. The removal
or reduce term is dependent on the type of the noise.

e Recognition of the enhanced speech.

3.2 Scenario

In an industrial environment, a smooth communication is not possible and the
necessity of removal or reduction of the noise in the desired speech becomes
significant for an effective communication.

There the noise is mixed and originating from different sources. These come
for example from lifter systems and related machines or different types of con-
versations among people. We term strong noise as a sudden burst, press or
dropping sound originating from various heavy material handling and falling
down. The duration of this type of noise is very short. The time-varying steady-
unsteady noise in our description is originating from varying electromechanical
machines. We consider the remaining background noise as mild noise. A precise
duration and formulation of the mixed noise from various sources is not possible
in this hybrid noisy environment and precise mathematical definitions cannot be
given. Hence we use qualitative arguments. Here we consider the noises that
affect the commands at its duration which is in our case no longer than three
seconds. It is not always possible to maintain an exact timing.

The scenario of this studies is shown in figure 3.2 in an overview over the whole
situation. Figure 3.2 is again only of an illustrative character, as common in
artificial intelligence. There are elements of the speech, the noise and the system
shown in a combined way to inform the user. We have a predefined command
list. The environment is a closed world because the situation is precisely defined.
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The task is to recognize the delivered speech in spite of the existing environment.
Figure 3.2 shows the different inputs to the recognition system. The inputs can
be desired spoken command, undesired different types of signals such as noise,
the different types of environmental impacts. But the aim is that the recognition
system recognizes the desired spoken command and omits the other undesired
environmental influences. To fulfill the aim of the tasks, we have used different

e . A
Industrial Environment
Noise 1
Noise 2
. Noise 3
Human being ——— | 3 I
Noise n Noise
Conversations +
Desired Spoken Commands Spoken
Environmental | ¢ommands
effects
Environmental Impact Speech Recognition Recognized
System > Commands
L J

Figure 3.2: Hybrid Noise and Industrial Environment

techniques and integrated them. However, the integration is somewhat different
than in ordinary software systems. We have no modules where we just have
to take care of input-output relations. Each technique concerns more or less
with almost the whole system. We have to take care that certain properties of
the system still hold and the system is interactive. Therefore the integration of
the different techniques have to be embedded in such a way that an immediate
interaction between the techniques applied to perform the tasks are possible.

3.2.1 Goals of DANSR

We focus on developing a small vocabulary speech recognition system. The small
vocabulary speech is a set of small spoken words which we interpret as commands.
This set of small words is spoken to a single microphone. The speech sound is a
mixed tonal sound and it has a variety of variable patterns. The variability we
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want to preserve is the speech acoustic information on the word level. For this
we have a followed mainly the parametric modeling. We look first at the vocal
tract configuration by a parametric model and use this model for noise reduction
in order to obtain an enhanced speech, then we use the enhanced speech for
a non-parametric spectral analysis and a perceptual speech feature extraction
technique in order to obtain the features and finally we apply a model based
pattern recognition technique for classifying the features and recognizing them.
Thus the goal of the DANSR is :

e An integrated approach to deal with the different types of noise simultane-
ously by the followings:

1. A suitable combination of mixed noise reduction approaches.
2. Extraction of perceptual speech features of the enhanced speech.

3. Pattern recognition techniques applying the Hidden Markov Model
(HMM) which model is based on the Gaussian mixture model (GMM).

3.3 Noisy Speech and Difficulties

In our day to day life, we can not interpret or if we do not understand a speech
of a speaker in case of an extreme strong noisy situation, we ask the speaker
to repeat. The question is what not understanding means; there is no general
definition. If the listener is a human then this is personal. A machine however
needs a formal definition. We circumvent this problem by deleting the speech
depending on the noise definition, see chapter 5. In an acoustic sense the sound
or speech or noise is an atmospheric pressure waveform where its variation as it
progresses and its differentiation is received subjectively. This means some sound
or speech or noise may be perceived in different meanings from a person or may
vary from theme to theme. For example loud music may be noisy to an individual
or some conversation may be noisy to an individual but for others this may sound
useful or not so influential. Regardless of an environmental influence, the aim is
to recognize some predefined spoken command.

We need to record as much variability as needed. We mention the necessary
amount in chapter 4 in section 4.1. The speech sound is a stochastic process and
variability is one of the major difficulties of this process.

The success of an ASR system requires knowledge from multi-discipline areas
such as electrical engineering that discusses signal processing, communication and
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transmission, physics related to psychoacoustics, linguistics for example phonol-
ogy, computer science as for instance pattern recognition, searching, logic etc. An
individual can hardly attain all the required knowledge. Therefore, one has some-
times in practice a group research where the tasks can be sub-divided based on an
individual’s expert knowledge. Sometimes the expense to continue this research
is not available at the spot. Therefore, in many cases the success of the research
may not be fully achievable. These are certainly some common challenges in this
research. Below we talk about our ASR research problems and challenges.

3.3.1 Challenges

The speech signal has a complex pattern. It is mixed with different tones and
varies with time. The speech signal has different frequencies and different inten-
sities. The complex tonal sound has more processing complexities than a pure
simple sinusoidal tonal sound. The variability of the speech signal makes the
speech research complicated and challenging. A spoken command generated by
a particular speaker several times is not the same. The utterances all have dif-
ferent frequencies and different intensities. Many factors are involved such as
time, speaker, speaking style. Moreover, in our study, we have noisy speech to
process for its recognition. The noise is originated from the background, from the
environment. The environment is mixed with different kinds of noise. We have
listed some common challenges of the speech recognition problem:

e Variability of the speech due to a variety of speeches spoken by the same
speaker.

e Variability of the speech due to a variety of speakers speaking style.
e Variability of the speech due to the speech linguistics formation.

e A variety of environmental noise.

3.3.2 Difficulties

So far we mentioned the challenges; but what are the difficulties we encounter
in the research problem? The human being itself has a difficulty to understand
others in a noisy environment. Some additional difficulties we encounter are listed
below:

e Identifying the noise in the noisy environment.
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e Modeling the hybrid noise.

e Finding a proper solution to remove or reduce the noise that corrupts the
spoken word.

e Managing the collected noisy speech data for noise reduction and training.
This means we cannot use the data directly for the noise reduction without
preparing and pre-emphasizing the collected data. Also, only standard pre-
emphasizing which is generally a first order high pass filter is not sufficient
to prepare the noisy data for their further processing.

3.4 Noise Measurement and Distinction

The measurement of the noisy signal characteristics and the solution to the noisy
signal problem can be passive or active or a combination of both. Here we will
introduce the active and passive approaches and their application to our studies.

e By "active” we mean actions such as removal, filtering, Poisson modeling
and matched filtering operations, and Kalman filtering.

e By "passive” we mean some standard measurements of the noisy speech or
the noisy sounds.

To distinguish noise, we first use the passive measurements. Then we apply
the active approach. The active approaches are introduced here but the details
of these are in chapters 4, 5,6,7,8,9,10. For the passive measurements, we first
measure the loudness of the noisy speech using a standard A-weighting filter. We
also calculate the energy of the noisy signals, compute the probability density
function, use a box plot evaluation, and evaluate the noisy signals by computing
the signal to noise ratio (SNR). We call these passive measurements because they
do not make any changes and they do not improve the noisy speech by removing
noises. Rather they give some information about our collected noisy speech.

3.4.1 Noise Measuring Filters and Evaluation

Since the situation is taking place in the bounded space i.e. in a factory which is a
very spacious room in a building and we consider this as a ambient noise measure-
ment. In such situation, sound levels are measured by sound level measurement
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devices such as A, B, C, D, E-weighted filters. We choose the A-weighting filter
among those device because the A-weighting filter accounts for the human hear-
ing perception that is the human ear sensitivity [91]. This is a useful property
for the speech recognition system. The A-weighting filter is also commonly used
for the ambient environmental sound level measurement. The A-weighting filter
measures the loudness of the average sound level over a period as a root mean
squared power in dB. According to the statistical information and the sound
level measurement, we have continuous, varying, intermittent, and impulse types
of sound. We have a random noise level variation such as mixed noise levels
varying from 60 dB to 115 dB. At 90 to 115 dB a communication is not even
possible among the human beings. Such noisy environments damage our hearing
capability. In such measurements, the range of 70 to 80 dB is in the mild-steady
noise level, 80 to 89 dB is in the varying steady-unsteady and above 90 dB is
strong noise level [23]. In figure 3.4, we see the sound levels of the noisy signals
collected from hybrid noisy industrial environment. We have given the locations
in chapter 4. The sound level is measured by A-weighting filter.

3.4.1.1 A-weighting Filter

The A-weighting filter has been used in the frequency domain of the signal. Here
we explain how we have used this filter to evaluate the signal level of the noisy
signal: First the spectrum of the noisy signal is computed using the discrete
Fourier transform (DFT) and the A weighting filter is then applied to measure
the signal power in dBA. The power spectrum of the N sampled signal s[n] where
n=0,1,2,--- /N — 1 is computed by equation (3.1).

S(k) =) lsln]le"~ (3.1)

Equation (3.2) below shows a relation between the frequency response of the A-
weighting filter denoted by a4(f) and the linear frequency of the signal denoted
by f. The measurements of A-weighting filter give us some intuitive idea about
the signal and the sound level. From this we get an approximate idea about
the enhanced signal level and use the enhanced signal for the feature extraction.
Equation (3.2) is mainly collected from [26] and more information on this is in
[135], [23], [91], [51], [49]. We use this formulation to generate the figures 3.4,
3.5, 3.6 using the implementation given in [49] and in [26]. The derivations and
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formulations of the A-weighting filter is discussed in acoustic noise measurements,
monitoring and control and some information about this studies can be found in
[23], [91], [51]. The mathematical derivations and modeling of the weight filters
are the results of many experiments to measure the loudness of the sound in
sound pressure level (SPL) or in dBA [135]. We will not discuss the derivations
of the filter here. We only use the filter to get an information about our noisy
signals, their sound levels. We have modified the implementations given in [51]
and [26] according to our own our measurements; the experimental results are
shown in figures 3.4, 3.5 and 3.6. In figure 3.3, we see the noisy signal in time and
frequency domain. This is included to get an outlook of the mixed noisy signal.

a:Noisy Speech in time domain: Oeffne die Tuer

Signal Sample

0.4 0.5 0.6 . . 0.9 1
Time (in second)

x 10* b: Noisy Speech Spectrum: Oeffne die Tuer

Frequency (Hz)

0 0.5 1 1.5 2 25
Time (sec)

Figure 3.3: Hybrid noisy signal : Noisy speech signal in the time and in the
frequency domain

Figure 3.4 shows sound levels of our measurements using A-weighting filter.
These are collected at different times from the mixed noisy environment. This
figure implies the varying sound levels of the signals.

(122002) 4

(7 + 20.5989972)2(f2 + 122002)((f2 + 107.72)05)((f2 + 737.92)0%)
(3.2)

If the frequency of signal spectrum S(k) measured at fj where k is the index
of the frequency component then the A-weighting filter measurement for this

aA(f) =
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a:Mild noisy signal level b:Steady unsteady noisy signal
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Figure 3.4: Hybrid noisy sound level measurements by an A-weighting filter
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frequency at specific index k is obtained by equation (3.3) for f, = kAf = fﬁ =
ﬁ. fs is the sampling frequency, N is the length of the interval. Here we have
chosen N = 256. The DFT is computed at each N interval. T is the sampling
period T = % The frequency resolution denoted by Af is ﬁ The A-weighted
signal level measurement denoted by S4(k) is computed by the multiplication of
the A-weighting filter frequency response and the noisy signal spectrum S(k) in
equation (3.3).

Sa(k) = aalfi)S(k) (3.3)

Then the signal energy ¢ shown in equation (3.4) is computed by squaring the
spectrum of Su(k) for 0 to & —1 because of the symmetry property of the Fourier
transform.

C=1)_ Salk? (3.4)

Next the signal level in dBA is computed by equation (3.5) where (s is
reference pressure and its value is 0.000204 dynes/cm®.

Signal level in dBA = 10log;, CL = 101log;o ¢ — 1010gy Grey (3.5)
ref

In equation (3.5), s is a constant which is replaced by a calibration constant
in its real application.

Signal level in dBA = 10log,, ¢ + C (3.6)

In our measurements, we use a calibration constant of 55 dBA because in a
noisy environment a human being can perceive sounds in the range of 50 to 90
dBA [91].

In figure 3.5, the signal level is computed on the frame (defined in chapter
12) of the signal using an A-weighting filter. In this 3-D figure, we see the sound
level, time and frequency information of the hybrid noisy signal.

3.4.2 Box Plot Evaluation

The box plot shows the distribution of data in general. This represents the data
using their lowest value, highest value, median value and the size of the first and
the third quartile. The median is counted by equation (3.7) and is denoted by
d(m) where m denotes the median and n is the number of data points in the
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observation.
n+1

2

The depth dg; of the quartile is shown in equation (3.8). There n is the number
of data points in the observation, ¢ takes the value based on the quartile depth
i.e. i takes the value of [. In equation (3.8), dg; denotes the first quartile. i can
be 2, 3, or 4 which indicates the corresponding quartile.

d(m) = (3.7)

mn+ 2
4

dgy = (3.8)

In figure 3.6, we see a number of noisy signals denoted by datl, dat2, dat3, -- -,

dat10 on the boxplot. We see there the noisy signals and their samples values
and signal level in a box plot.

b1: Boxplot of some Collected Speech Signal
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Figure 3.6: Hybrid Noisy Signals : Sound level in Box plot

The part between the lowest adjacent limit and the bottom of the box rep-
resents one-fourth of the data. One-fourth of the data falls between the bottom
of the box and the median and another one-fourth between the median and the
top of the box. The part between the top of the box and the upper adjacent
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limit represents the final one-fourth of the data observations. This opens up the
pattern for the data and their variations [138].

3.4.3 Signal Energy and Kernel Density Estimation

In figure 3.7 we see the energy information of the noisy signals in the signal frame
(defined in chapters 8, 12) and in b, we see the probability distribution of the
samples values computed by probability density function (pdf) of the noisy sig-

nals. The energy of the signal is computed in figure 3.7 by Ei:[_

) s[n]?® where
n is an integer i.e. Z and s, is a signal of finite length N. The probability
density function of the random variable X is calculated using the kernel proba-
bility density estimation (k-pdf). We assume n independent measurements such
as r1,r — 2, -+ ,x, from the random variable X is considered. The kernel den-
sity function approximates the probability density function of p(.) of the random
variable X. The computation is available in matlab. For this we have used the
matlab "kdf” function. The calculation is followed by the formulation given in
equation (3.9). In this equation, py(z) is the pdf as a function of z. h is a normal-
ization factor; h > 0 but less than 1 and dependent on the available information
of z. Here x is independent and identically distributed (iid). Here K(.) denotes

kernel function, x is any value and z; is a sample of the x [18], [137].

pula) = - SR

(3.9)

3.4.4 Signal to Noise Ratio (SNR)

We judge the speech intelligibility by the signal to noise ratio (SNR). The speech
intelligibility says if the speech is audible or not. The signal strength and noise
strength are primarily measured by the signal to noise ratio (SNR) in dB. This
gives a relative performance of the signal with respect to noise. If the signal
strength is higher than the noise strength, the ratio is positive. If the noise
strength is higher than the signal strength, then the SNR is negative.

The SNR is computed by equation (3.10). There the SNR is denoted by ¢,
P; is the power of the signal and P, is the power of the noise. The whole signal
is divided into M segments such that m = 1,2,--- , M. There N is the number
of samples in each m. y,,[n] is noisy speech, b,,[n] is the noise collected from the
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Figure 3.7: Hybrid noisy signal : Signal energy in signal frames and pdf of noisy
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environment without speaking commands to the microphone.
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3 = 1010g;y 5 = 10logyy -~ Z;Vn__lo Yo [1]
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3.5 Overview of DANSR

(3.10)

The different kinds of noises characterize the situation as hybrid. As said, we
need a hybrid solution consisting of different elements. A major problem is the
integration because these elements influence each other and cannot be combined
in an arbitrary order.

Figure 3.8 shows the DANSR system. This gives a rough overview. Details
of the approaches and their motivations are discussed in the subsequent chapters
in the thesis. In the figure we see, first we focus on reducing the noise, then we
apply the perceptual feature extraction consisting of spectral shaping, spectral
analysis and perceptional feature transformation, and finally the GMM model,
evaluation, searching and learning in the classification and recognition stage to
obtain the most likely result. Details of the approaches represented in figure 3.8
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are in the subsequent chapters.
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Figure 3.8: Hybrid Noisy Speech Recognition: Framework of DANSR

Above we have introduced active and passive processes. Now we extend these
notions to tasks and they will be discussed now.

Passive Tasks Data collection and their proper management, noisy signal eval-

uation.

Active Tasks Pre-emphasizing the collected data, active noise reduction ap-
proaches, perceptual feature extraction and classification and recognition of the

features.

3.5.1 DANSR’s Hybrid Noise Treatments

The noise treatments of the DANSR are introduced next.
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3.5.1.1 Noisy Speech Pre-emphasizing

According to our plan to maintain a precise 3 second speaking time for the data
collection was sometimes difficult. Despite the noise, the speaker’s speaking style,
accent and non-speech or silence in between added more redundancy in the data.
Therefore we smoothened the data prior to its processing. We termed this pre-
emphasizing. This is discussed in chapter 4. We collected spoken commands.
These collected spoken commands are our data. We present a short overview
over the considered noise types that will be detailed in the following chapters.

3.5.1.2 Strong Noise

As mentioned, this noise occurs rarely, randomly for a short time period. We call
a very short pulse with very high amplitude strong noise. We are not accurate
about its occurrence but it happen stochastically and we are not certain about
its effect on the spoken commands. For the strong noise there are no absolute
numbers given. Our sizes have a qualitative character. They are defined in
relation to the average noise. For this purpose we choose a threshold. A noise
signal is considered as strong if its amplitude exceeds the threshold. The strong
noise is handled first by detecting it as an outlier. This is an abnormal quantity
in an observation. The identification of outliers is a standard difficult problem in
data analysis. In chapter 5 we will discuss strong noise in detail. Here we just
mention that it is modeled by a Poisson statistics. We see in figure 3.9 a signal
that is modeled by Poisson process. This says the Poisson process x; generates
the strong noise 5 times in a time period of duration ¢ = 2. A is the occurrence
of the event which is the strong noise and ¢ is the time interval.

3.5.1.3 Mild Noise

The mild noise is modeled as white noise. This noise is characterized by a Gaus-
sian process. This is commonly known as white Gaussian noise (WGN). There
the mean denoted by pu is zero and variance denoted by ¢ is 1. For instance, take
a Gaussian process x for time instants n and n = 0,1,2,--- | N — 1. Then z[n|
and x[n+1] are independent and uncorrelated. This indicates E{z[n+I|z[n+m]|}
is zero for [ # m and [,m € Z. The mild noise is shown in figure 3.10 where we
see the time domain plot of WGN, autocorrelation of two WGN sequence is 1.
The variance of white noise is 1 and mean 0. The frequency information of WGN
is also shown. These plots are generated using matlab functions rand, xcorr and

36



Distribution of X for Poisson(A = 5)
0.25 T T

0.2f « : ~ 1

0.1} 4

Figure 3.9: Strong noise modeled by Poisson process

ftt. The rand generates uniformly distributed random sequences, fft gives the
frequency information of of the WGN and xcorr computes the auto-correlation
between the two random squence at time n 4+ [ and n + m.
This Gaussian process is also known as normal standard distribution process.
The probability density function (pdf) of this noise is shown in equation (3.11).
1 (x — p)? 1 x?

p(ﬂf)ZWeXp(— 52 )Z\/%exp(—g) (3.11)

The model of mild noise is characterized by white Gaussian process is used in eq
(3.12).

0® = B{[2*[n]]} (3.12)

3.5.1.4 Steady-unsteady Time Varying Noise

This noise comes from a running machine. This is characterized as a Gaussian
process but its mean p is not zero and the variance o may not be always 1 as
it is the case for the white Gaussian noise. If x is a Gaussian process for time
instants n and n =0,1,2,--- , N — 1, and its mean is p and variance o, then the
pdf of the noise is characterized by equation (3.13) where p(z) is the pdf of .
The colored noise modeled by the Gaussian process is pictured here in figure 3.11

37



a: White Gaussian Noise (WGN)

Time (s)
> b: Autocorrelation of WGN noise
[©] 1 T T T T
=
k]
c 05 i
il
k]
q:) od I e e
Q
o
£ s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
< 50 -40 -30 -20 -10 0 10 20 30 40 50
Lag [samples]
c: Frequency information of WGN
0.2 T T T T T
0151

=z
5% 0.1

0.05 il i i ‘ I

| i h | i
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 3.10: Mild noise modeled by white Gaussian noise (WGN)

where we see the random Gaussian noise, its auto-correlation and the frequency
information computed by matlab fft and corr functions.

_ 1 (z — p)?
p(z) = WGXP(—T

The noise model shown in equation (3.14) is an AR model but its parameters
are obtained by the linear prediction namely the Yule-Walker approach. In equa-
tion (3.14), the noise d[n| is a linear combination of past ¢ many [ coefficients
and a disturbance w[n]. This is assumed to be a white noise and it is weighted
by gp.-

) (3.13)

d[n] = Z Bid[n — 1] + gyw(n] (3.14)

For treating this noise, the signal is first divided into sub-bands using a cosine
modulated quadrature mirror filter bank (QMF) and then the noise is minimized
from each sub-band by a spectral minimization technique. Afterwards the signal
is enhanced in each band by Kalman filter. In this noise reduction, noise is
varying in each sub-band. The solution of this is discussed in details in chapter
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Figure 3.11: Time varying steady-unsteady noise modeled by Gaussian process

10.
Next we present the framework of our DANSR approach.

3.5.2 Framework of DANSR

The architecture of a typical ASR was introduced first in chapter 2 in section 2.3.1.
The DANSR is a small vocabulary speech recognition system. The DANSR uses
basically the HMM. The frame work has the equation written below as a central
element. This is repeated here but it is discussed in detail in chapter 14. In the
equation p(ol|q, \) is called an acoustic model where the likelihood of the features
given the model A has to be obtained. o is the feature vectors, q is the sequence
of states. The equation is discussed in chapter 14 in section 14.1.

p(olq, \)p(q, \)
p(o)

p(qlo, \) = arg max = arg m3XP(0|q, A)p(a, A)

If we look at figure 3.8, then we see that the main key tasks of the DANSR
are:

e Data collection

e Noise reduction or removal
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e Feature extraction
e (lassification and recognition

These tasks give a guide for the dissertation.
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Chapter 4

Pre-emphasizing of DANSR

Outline of the Chapter In this chapter we describe our data collection, their
preparation and their pre-emphasizing. We realize our data preparation and data
pre-emphasizing by pre-filtering. This reduces the redundancy and smoothens
the data in two steps: i) Redundancy removal, and ii) Pre-emphasizing by pre-
emphasis filter. In the reduction step, it removes silence and then it uses the pre-
filtering to smoothen the data. The reduction step makes the data size smaller.
How this is performed is explained in this chapter.

4.1 Data Collection

The speech is a random process. The statistical properties such as mean, variance,
correlation, probability density function (pdf), power spectral density are used
primarily to describe the signals. For the processing and recognition we need a
huge number of data in order to capture certain patterns and the statistics of the
data.

We have a predefined list with small spoken commands. The list has 20 small
German spoken commands. We collected data according to our predefined list
(see Appendix).

We have used the digital recorder Zoom 4 Samsung Handy Recorder to collect
our data and noise taking place in the industrial environment. Our selected data
type is in "Wave’ format and we have used single channel only. We collected data
using 48000 Hz sampling rate at 16 bits per sample. We positioned the recorder
about 3 to 5 meters from the speaker for our data collection. We did this to
avoid flappy sound or any clicking sounds generated in the mouth. The length
of the data is 3 sec for each command. Therefore sometimes the speaking time
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limit was exceeded. Furthermore in the noisy stage, the speaker’s speaking style,
accent and non-speech or silence in between added additional redundancy in the
data.

4.1.1 Location and Data Collection

The data are collected from the mechanical assembling and manufacturing labora-
tory of the university of Kaiserslautern, the environmental maintenance company
Zoeller-Kipper Gmbh located in Mainz and the assembling and manufacturing
company MM Packaging located in Kaiserslautern. In figure 4.1, we see the data
we collected from the hybrid noisy environment. We collected the data from
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Figure 4.1: Data at first look at 48 kHz sampling rate

German speaking people. Each command is collected 100 times for training and
25 times for testing. The speaker is selected randomly from the environment. In
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some cases the same speaker repeated the commands several times for the train-
ing. On the other hand, for the testing the speaker is not necessarily always the
same. For our data processing, we are mainly concerned about the noise in the
range of 200 to 5000 Hz for certainty at a speech bandwidth 200 Hz to 3500 Hz.
In an industrial environment, a communication can take place if the background
sound level is 70 dBA [23]. The noise we encounter has different extremity. This
ranges from 50 dB to 110 dB.

Reducing the redundancy and then using a pre-emphasis filter to smooth and
emphasize the signal is so far new in this area. We applied this at the very first
step to prepare our data for their further processing. Our focus for the speech
enhancement is 70 dBA sound level. We then use this speech for the speech
pattern recognition processing.

We are concerned about building an acoustic model. To build such a model
related to a speaker dependent system, a recognizer needs several hundreds of
data. On the contrary, for a speaker independent system, a recognizer needs
several thousands of data [120]. A collection of several thousands of data is not
possible at the current scope of our research studies, therefore we consider a
system that will be speaker dependent.

In figure 4.2, one sees how the same speech is different for the same speaker.
This variability is one of the main reasons among others that makes this research
very challenging.

We reduced some redundancies by applying an application dependent thresh-
old. In order to prepare the data for the processing, we first decimated the data
to a 16 kHz sampling rate, then we reduced non-speech pause, silence in the
redundancy removal stage. How these are done is discussed below.

4.2 Data Preparation

The redundancy of the collected data is handled in removing and pre-emphasizing
by the following steps:

e Decimation: This is a process that reduces the sampling rate by a factor.
This process has two steps: i) Antialiasing filtering and ii) Down-sampling.
The anti-aliasing filtering is used to avoid aliasing. For the anti-alising
filter, we have used a low pass filter. This is designed using the windowing
method. For the windowing, we used the Kaiser window function because
of its controlling parameters. The Kaiser window has a shape controlling
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Figure 4.2: Variability of the same word spoken by the same speaker in the time
and frequency domain at 48 kHz sampling rate in a relatively quiet residential
environment
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Figure 4.3: Decimator: Data is downsampled from 48 kHz sampling rate to 16kHz
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parameter such as width of the main lobe and side lobe. Then we have used
down-sampling by the factor 3. Here the sampling rate is reduced from 48
kHz to 16 kHz.

e Redundancy removal: This has several sub steps in order to remove the
pauses in the speech or silence or non-speech sound of the speech signal.
The sub-steps are: i) Compute the signal envelop by using the Hilbert
transform and ii) Select the threshold. This reduces the redundancy and
shortens the signal. It has a computational benefit due to less samples in
the signal processing.

Next the decimation process is described.

4.2.1 Decimation

For the decimation, we first down sample from 48,000 to 16,000 Hz. This has a
computational benefit and is explained below. For this we do not loose informa-
tion because the speech signal is band-limited 200 to 3500 Hz. The human audible
signal frequency lies between 20 Hz to 20 kHz. Yet most of the speech energy lies
under 7 kHz [19]. Figure 4.3 shows the decimation process which has an antialias-
ing filter before down-sampling the signal. The antialiasing filter is a 64 length
finite impulse response (FIR) low pass filter based on the Kaiser window, the cut-
off frequency is 5 kHz,the Nyquist sampling rate is 8 kHz. The down-sampling
factor is 3. In matlab, the resample function also does this down-sampling but
we used the Kaiser window based low pass FIR filter for the decimation.

Computational Benefit Here we explain how the decimation is computation-
ally beneficiary. If the speech recording time has a maximum of 3 sec, and if the
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speech signal is sampled at 48 kHz at 16 bits per sample (bps) i.e. 16 bps, then
the storage space for the sampled speech is 3.16.48 = 2304 kilo bits per sample
(kbps) or % = 288.5 kilo byte per sample or %’_11%';12 = 0.282 mega byte per
sample (mbps). . denotes the muliplication. This is doubled for the stereo typed

two channels recorded samples. Therefore we selected the single channel stereo
typed data where both channels record the similar information. If the sampling
rate is 16 kHz at 16 bits per sample, then the required space for the sample is
3.16.16 = 768 kbps. So the down sampling in our scenario will save a huge
computational cost and a lot of processing time.

4.2.2 Envelope Detection

The envelop of a signal is a boundary within which the signal is contained. The
envelop of a signal is also an estimate of the signal level. The pause or any
clicking distortion or the silence in the speech signal is detected by the envelop
of the speech segment [108]. One way of doing this is computing the envelop
of the signal by the Hilbert transform of the signal. We have not investigated
the Hilbert transform in details. We reviewed this only in order to compute the
signal envelop.

The basic goal of the Hilbert transform in the time domain signal is to get
another time domain signal. The Hilbert transform shifts the frequency compo-
nents of the signal by —90 degree but it does not change the amplitude. The
Hilbert transform acts as a differentiator to a constant signal. This means if the
signal has any constant component, the Hilbert transformation of the signal can-
cels this. This is equivalent to getting the zero mean of the signal. The speech
signal is processed under the assumption that it is an ergodic process. In this
process, the time average of the signal is equivalent to the ensemble average of
the signal. The importance of this is that the time average of the signal can be
computed easily but the ensemble average can not. This time average processing
and more about the speech ergodic process we will see in chapter 7 and 8.

In order to compute the envelope of the signal, we first take the Hilbert
transform of the signal. The envelope signal has a frequency that is much lower
than the measured signal. The problem is that the envelope makes the signal
rough [106]. On the other hand the pre-emphasis filter increases the frequencies
from low to high smoothly.

The computation of the envelop using the Hilbert transform also maintains a
representation of the signal. The envelop of the signal using the Hilbert transform
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sets a qualitative boundary around the silence. We have used this computation to
obtain the envelop of the signal. Then we have selected the threshold. We exclude
all the data that fall below the threshold and remove pause, silence typed redun-
dant data. The advantage of the smoothing is that we get less computational
costs due to reduced amount of data because of the non-speech signal removal.

4.2.2.1 Formulations

Below we mention the relevant formulations for these computations. For this we
follow the formulations mentioned in [106].

The Hilbert transform of the signal s[n] is denoted by sg[n]. How we computed
this is given in equation (4.1). This says the convolution of the signal s[n] with %
gives the Hilbert transform of s[n] denoted by sy[n]. ® denotes the convolution

operation.
1
= — 4.1
suln] = — @ s{n] (4.1)
In equation (4.2), we see how the envelop is computed using the real valued

signal s[n| and the Hilbert transformed signal sg[n].

| saln] [= v/{s[n]* + suln)’} (4.2)

In figure 4.4, in a we see the spectrum of oeffne die Tuer computed by FFT
where frequency along the x-axis and amplitude of the frequency information of
the signal along the y-axis. In the same figure in b, we see the spectral envelop
of the oeffne die Tiir. The spectral envelop shows the signal amplitudes versus
frequency in the plot. In b, we see the FF'T spectrum of the envelop computed
by Hilbert transform. For implementation, we used the existing matlab function
hilbert to compute the Hilbert transformation.

4.2.3 Adaptive Threshold Selection

The silence intervals from the speech are removed using a threshold. One com-
monly takes for the threshold one fourth of a median of the envelop for removing
speech silence or pause or clicking sounds from spoken speech. There is again
no precise reason for doing so. Then the speech samples with amplitudes below
the threshold are detected similar to literature [4]. This literature detected these
samples and deleted the non-speech sound from the speech. Thus the removal of
the pauses shortened the time and thus the length of the signal.
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Figure 4.4: Spectrum of hybrid noisy speech and spectrum of envelop computed
by Hilbert transform

In figure 4.5 we can see how the redundancy of the data is removed by applying
decimation, envelop detection and then the threshold selection. The recorded
samples in a are reduced from 85056 times 2 to 26287 times 1, in b 61697 times
2 to 17908, in ¢ 84096 times 2 to 25142 times 1. These data are easier to process
than the originally recorded data. 2 means two channels. We have used only one
channel but the information on the two channels are about the same. The two
channels record data in two directions such as left and right. One channel can be
selected only for the right or for the left direction.

Alternative Recommendation An alternative to this redundancy removal
approach is to apply Savitzky Golay filters to the raw signal envelope before
computing the phase and its derivative [108]. But we have not yet investigated
this approach.

4.3 Pre-emphasizing and Pre-emphasis Filter

The purpose of the pre-emphasis filtering and its effect is discussed here. In the
speech processing literature equation (4.3) is seen as pre-emphasizing the signal
and the filter in equation (4.3) is known as pre-emphasis filter [80]. A common
way of seeing the application of a pre-emphasis filter is to emphasize the frequency
component by considering both the low and high frequency components of the
signal. The formants lie in the frequency range from 200 to 3500 Hz. The speech
signal is a relatively low frequency signal.
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The redundancy removed signal denoted by s'[n] is then used to pre-emphasize
the high frequency of the speech signal prior to its analysis. The pre-emphasis
follows 6 dB per octave rate. This means if the frequency is doubled, then the
amplitude increases by 6 dB. The speech sound has normally higher amplitudes
in the low frequencies than in the high frequencies.

The pre-emphasize filter is identical to the filter that is used to model the lip
radiation filter discussed in chapter 6. The pre-emphasis filter cancels the effect
of the glottis. The system difference equation is presented in equation (4.3). The
system is shown in figure 4.6. We see the result of the pre-emphasis filter is the
emphasized signal s[n] if the input signal is s'[n]. This pre-emphasis filter reduces

s [n] s[n]

Z_l

s[n—1]

Figure 4.6: Pre-emphasis filter

the effect of 6dB/octave loss occurring by the glottal source and lip-radiation.

s[n] = §'[n] — aems’[n — 1] (4.3)

Equation (4.3) can be rewritten in equation (4.4) in the z-domain by replacing
s'n—1]=5(z)z"".

S(z) =8'(2)(1 —azt) = S (2)Hom(2) (4.4)

The transfer function of the pre-emphasize filter shown in equation (4.5) is
just a high pass filter where we have approximately a.,, close to 1, for example
0.97. The determination of the coefficient a.,, is an empirical adjustment. This
is again not precisely defined.

The z-transform of equation (4.3) results in equation (4.5) .

Hep(2) =1 — oz (4.5)
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In this equation, if a., > 0, the pre-filter acts as a low-pass filter and if
aem > 0, the filter is a high-pass filter. The frequency response of this filter
increases slowly from low to high, therefore it sets up a balance between the high
and low pass frequencies [114]. The parameter a,, controls the slope of the curve
[147]. Therefore, this pre-filter may be called a pre-emphasis filter. In figure 4.7,
we see the amplitude and phase response of the pre-filter for a.,, = 0.97. This
response also shows that it is a high pass filter.

a: Amplitude Response b: Phase Response
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Figure 4.7: Amplitude and phase response of the pre-emphasis filter

In figure 4.8, a shows the noisy signal which is pre-filtered as it is shown in
b. In the same figure ¢ shows the spectrum of the noisy speech and d is the
spectrum of the pre-filtered speech. In figure 4.9, a.,, is the redundancy removed
speech signal which is pre-filtered in b. In the same figure ¢ shows the spectrum
of the redundancy removed signal and d shows the spectrum of the redundancy
removed pre-filtered speech. In both figures 4.8 and 4.9, we see the frequency is
flattened by the employment of the pre-filter. This amplifies the high frequency
components and attenuates the low frequency components.

In figure ?7, the industrial noisy speech and its pre-emphasized signal is
shown. We can see in the figure a substantial amount of non-speech typed samples
are removed. For this visualization , we have used Praat software [102].
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Chapter 5

Strong Noise Solution

Outline of the Chapter We have provided our solution to the strong noise
problem in this chapter. For this first we describe the strong noise as an outlier.
To detect the outliers we select an adaptive threshold. This will then be used
to remove them. First we describe this approach in general. Because our overall
approach is based on a probabilistic basis we need to introduce such a basis here
too. For dealing with strong noise we selected the Poisson distribution for our
purpose and we describe its basic properties first. Then we draw the connections
to our problem and design a matched filter for the treatment.

5.1 Basic Steps

We have described strong noise as something where human beings cannot under-
stand the speech due to its loudness. For us, this happens for a very short time
only and occurs randomly distributed. Using our own intuition and our own real
life experience, we see a strong noise interrupts understanding a speech clearly.
Therefore our approach considers the strong noise as outliers occurring in a larger
speech process. First we describe the outlier definition, its detection and then its
removal.

An outlier is an abnormal quantity in an observation that is often marked as
an perturbation in the observation. Detection and removal of this outliers need a
careful analysis so that the remedy of the outliers does not affect the signal. The
remedy most often begins with the statistical information of the data such as the
probability distribution of the data, a histogram or a boxplot of the data.

Next we say what strong noise is for us. As said, intuitively, strong noise
makes it even for humans almost impossible to undertand the speech.
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First we introduce a basic assumption about strong noise. It says that strong
noise occurs at small intervals only. However, these intervals are not regular but
are randomly distributed. Below we will give a closer description saying what
strong is. Basically, a noise signal is considered as strong if its amplitude exceeds
some threshold and it lasts for a very short time.

The handling of outliers now proceeds in two steps:

e Identifying outliers.
e Removing outliers.

The identification of the outliers has an essential step to identify the intervals
in which they occur. Removal means to remove these intervals from the speech
signals. After the outlier removal there are two possibilities:

e The speech is not affected by the removal. In particular, the understanding
is not disturbed because in the removed intervals no speech took place.

e Some part of the speech is removed too. As a consequence, the speech is
incompletely delivered what affects the understanding.

In the first case one can proceed in the ordinary way. The second case is more
difficult. For handling it the system needs an additional possibility for giving
a feedback message from the receiver (machine) to the user (a human). This
message is:

”Repeat the speech”

Such message is necessary because the given speech could anyway not be
understood because of the strong noise. This also does not help if the statement
is not understood properly because of the noise. The realization of the feedback
provides no problems. It can be done in many ways that we will not discuss here.

5.2 Outlier Detection

The identification of outliers is a common difficult problem in data analysis. In
addition, the definition is user and context dependent.

For the outlier identification we follow our previously given arguments. There-
fore we need to determine :

e Underlying probability.
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e The average loudness.

e The threshold above which noise is considered as strong. This is application
dependent.

The threshold is adaptive as it depends on the expectation of the segment of the
speech signal. This operation is carried out in the time domain. For our purpose
we consider the following steps where we assume a noisy observation z[n]. We
assume for the moment that a probabilistic environment has been defined.

e Determine a threshold § where 0 < 6 < 1.
e Compute the expectation z., = E{|z[n]|}.
o Identify set of the ”outlier” samples z[n] as |z., — z[n]| > 6.

e Remove these identified ”outliers” obtained in the previous stage from the
noisy signal.

In the probabilistic description this will be made precise.

5.3 Stochastic Process

Before we make the steps precise we need to represent the noise as a stochastic
process. The process representation will be somewhat different than before, in
particular with respect to the underlying probability. For this we define a ho-
mogeneous Poisson model (defined in section 5.3.1) for the strong noise and its
detection by matched filtering. Here we look at the notion of a shot. A strong
noise event will be handled as a shot.

5.3.1 Poisson Distributions

First we consider Poisson distributions of events in general. A stochastic process
of events with a random variable x is a Poisson process with a parameter \ |
A > 0 and with functions indexed by k as the density functions:

Meg=A
FlkX) = =

We assume for non-overlapping intervals (1, t2) and (¢3,t4), the random vari-

for k=0,1,2,--- (5.1)

ables n(ty,ts) and n(ts,t,) counting the occurrences of events in the intervals are
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independent. The parameter \ represents the average number of events in a unit
length interval.

For any fixed ¢ > 0, we consider a Poisson random variable x(¢) with the
parameter \. Here the expectation is E[x(t)] = A for t > 0. The autocorrelation
function is R(ty,t2) = E[x(t1)x(t2)] for t; > 0 and t5 > 0.

If the expected number of occurrences of events in an interval is k, then the
probability that there are exactly k occurrences is equal to equation (5.1).

For a time interval of length ¢ we have the probability that k£ events take place
in this interval is given by equation (5.2).

k
Py(t, k) = %é—m fork=0,1,2,--- (5.2)

5.3.1.1 Homogeneous Poisson Model

Given an arbitrary impulse waveform d(¢) and a set of Poisson points t; the
homogeneous Poisson model is shown in equation (5.3) [141]. In equation (5.3),
0 appears at random times ¢; governed by a Poisson distribution and it has an
amplitude a;.

X(t) =) ai(t—t) (5.3)

i=1
Each time an arriving of strong noise is detected, it causes a small impulse shaped
noise as a shot in the signal. This means the arrival rate denoted by A of strong
noise is described by equation (5.2).
Next we define the shots for the strong noise.

5.4 Shots

An event will now be a shot and the process model describes the shots. Shots are
randomly, rarely, large valued events that occur at Poisson points. It is defined in
equation (5.4) where d[n] is the shot noise at the time instants n, a; is amplitude,
n; is Poisson points. At a short time interval, the shots may occur or may not
occur. The probability of the occurrence of the shots at short time interval is 0
or 1.

dln] = a;d[n — nj] (5.4)

3

The response to d[n] is called an impulse response and it is denoted by h[n|. If
the arrival rate of the shorts is constant, then equation (5.4) can be rewritten by
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equation (5.5):

d[n] = Z a;hln —n;] (5.5)

If the time interval denoted by An and An << 1 and the shot may not occur in
each interval, then its probable events can be confined by equation (5.6).

Vo {O, if no impulse occurs in the time interval nAn <n < (n+ 1)An

1, if impulse occurs in the time intervalnAn < n < (n+ 1)An
(5.6)
Similar to the Poisson distribution assumption, if we assume there is only one
impulse occur in each time interval An and the events are independent, then the
probability of the event occurrence can be desribed by equation (5.7).

p(V, =0) = exp(—AAn) = 1 — A\An (5.7
p(V, = 1) = Mnexp(—AAn) ~ AAn '

5.5 Matched Filter

If the input signal is in a finite time and mixed with noise, there is a filter which
can be designed to maximize the signal to noise ratio (SNR). This type of filter
is generally called the matched filter. The matched filter can be used to detect
the shot noise. First we define the matched filter. The definition and derivation
is mainly based on [5].

First we consider a more general setting. If a signal x is mixed with noise v,
then we can formulate the resulting signal as

2(t) = f(t) + (1) (5.8)

In equation (5.8), the signal v(t) is a signal with known power spectrum S(w).
We assume that f(¢) is known and we wish to establish its present location. To
do so, we apply the process z(t) to a linear filter with a response h(t) and Fourier
transform H(w). The resulting output y(t) is

y(t) = z(t) ® h(t) (5.9)

Now equation (5.9) can be rewritten by equation (5.10).
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We see y(t) which is expressed as y(t) and v, (¢).

y(t) = /_Oo z(t — a)h(o)do = ys(t) + yu (1) (5.10)

By taking FF'T, equation (5.10) can be rewritten by (5.11). Here F(w), S(w), H(w)
are the spectrum of the f(¢), v(t) and the filter h(t).

y(t) = /_ T at— ah(@)da =+ [ F@H@Edw  (5.11)

[e.e] B % —00
Now we describe the Fourier transformed of y,(¢) by equation (5.12).

1 o0
B0} = o [ SlH@)Pds (.12
Since y,(t) is due to v(t) and E{v(t)} = 0, then E{y,(t)} = 0 and E{ys(t)} =
yr(t). The objective is to find H(w) so as to maximize the signal to noise ratio
2 such that at a specific time ¢, is written in equation (5.13).

o= AUl (5.13)

VE{yi(to)}

Now if S(w) = Sp, by applying Schwarz’s inequality we find equation (5.14).
In the equation Ef = (5-) [ |F(w)[?dw is the energy of f(t).

2 < JIP@ePde [ 1) ldo _ Ey

= 5.14
21Sy [ |H(w)|?dw So (5.14)

Equation (5.14) is an equality if equation (5.15) is taking place.
H(w) = kF*(w)e ¥t (5.15)

Now the time domain of H(w) in equation (5.15) is written in equation (5.16).

ht) = kf(to — 1) (5.16)

This determines the optimum H (w) within a constant factor k. The whole sys-
tem when these elements are combined is called the matched filter. The resulting

) . . . . E;
signal to noise ratio is maximum and it equals 5
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5.6 Strong Noise and Matched Filter

Here we apply the results of the last section to our shot problem. Now in order to
detect the presence of shots, we apply the detection formalisms that is discussed
in [36]. One common approach is to insert a filter between the input and the
matched filter so that the transfer function of the inserted filter is chosen such
that the input is transformed into white noise and this is known as the whitening
the process [141].

In order to apply the matched filter:

e We assume the signal is mixed with some noise which is shots.
e We use the linear prediction analysis for the signal model.

e We apply the whitening approach.

5.6.1 Analysis

Now the signal s is mixed with a shot noise d such that equation (5.17) holds. In
this equation, we assume that a; can be only 0 or 1 for a signal interval and n;
is unknown since shots are occurring randomly and rarely. The derivation of the
analysis is discussed in details in [36].

o[n] = s[n] + d[n] (5.17)

Here we assume that s includes the true speech and all other noises in our mod-
elling. We would like to detect the presence and location of shots d in the signal
0. Now the signal o is a p'* order AR process modeled as linear predictor shown
in equation (5.18) using least squares approach. Here «; is unknown and solved
by using the Burg or Yule-Walker orthe unconstrained least squares (ULS) ap-
/s where [ is length of the vocal tract, ¢

proach. The order of the model is p = =I=
is the speed of the light and f, is the sampling rate. It is discussed in chapter 8.
Since shots occur rarely, thus we can say 6[n| = $[n|. This is written in equation

(5.18).
$[n] = aqs[n — 1] + aas[n — 2] + - - - + aps[n — p| = Zais[n — 1] (5.18)

This says that the influence of the shots to the estimates is neglegible despite
the fact that the size of the shots are individually quite large. As a consequence,
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the difference o — §[n] consists essentially of the shots only. That means we have
to analyze this difference for identifying the shots. First we look at the estimation
error in equation (5.19). bn] is a white noise and it has variance 0.

bn] = s[n] — 8[n] = s[n] — Z as[n — ] (5.19)

Now we have the parameters «; and we can design a FIR filter F'(z) such that
equation (5.20) holds.

Fz)=1+az "+ +az? (5.20)

e Now b and d are the input to the filter F'(z) and we are trying to detect
d[n].

The next idea is to design a filter that suppresses the signals with size less that
the threshold. For this we define a filter that gives a maximum ratio of d and b.
This will be a linear filter g[n| that generates z[n]. Now suppose,

y[n] = b[n] + d[n] = b[n] + Z a;0[n — ny] (5.21)
Now following the hypothesis of the statistical detection of the matched filter, we
have only two cases:
e Hy: b[n].
e Hi: bn] + d[n]

In equation (5.21), if a; is 0, then input to filter F' is b only which supports the
hypothesis i.e. Hj noise is present only. If a; # 0, then the shots denoted as
0 is located in m;. This supports hypothesis H;. If we are under Hj, then the
output of filter F' is (b ® h)[n| where h is the impulse response. Thus, for the
white noise with zero-mean i.e. ¢ = 0 and standard deviation o, the threshold 6
can be written by equation (5.22).

0:0\/(1+a%+a3+---+a12)) (5.22)

Since the filter is linear, the output of the filter F'(z) can be written as equation
(5.23). There z[n] is white noise and z4[n] = a;hln — ny]

z[n] = zq[n] + 2[n] (5.23)
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This is visualized in figure 5.1. There, the impulse response of the matched
filter G(2) is g[n] Now, a signal greater than 6 is shot. This is an outlier.

d[n]
s(n] ol [ k) z[n}=z n}+z yn] Too | nlznbez o
Whitening filter Matched Filter

(Linear Prediction(LLP))
Figure 5.1: Signal whitening and matched filtering for shot noise
Applying the Schwarz inequality that is applied in matched filter we receive

the signal to noise ratio r in equation (5.24). We consider the signal has a finite
length that isn=1,2,---, V.

zaln]? 130 [glk]dln — K]
= o = L e (5.24)
{|Zb[n]| } g Zk:l |g[/€”
Now applying the Schwarz inequality we get
N N N
1Y glkldin — k][> <> g*[m]>_ d*[K] (5.25)
k=1 k=1 k=1
Now in equation (5.25), s < % where E; = ]kvzl d*[k]. The resulting upper

bound is reached when we assume g[k] = d[n — k|. It is therefore the maximum
for g[k]. Now the optimum solution is the reversed copy of g[n] for the hypothesis
Hy. In this case d[n] has a finite duration N that is g[k] = d[n — k] in order for
the filter g[n| to be causal. Hence, the matched filter for our shots is in equation
(5.26). This says G(z) is the reverse version of F'(z).

G(z) = F(—Z) = apz_l + ap_lz_2 + .o+ alz—P (5.26)

In figure 5.2, we see the noisy observation o in the first row, whitened trans-
formation of the signal s in the second row and third row shows the success of the
matched filter in detecting the shots. In the signal, we see a detection of shots,
one is close to sample 100 and another one is close to sample 500.
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Whitened signal and the shots
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Figure 5.2: Strong noisy signal and matched filtered output

5.7 Actions

Now we find the treatment of the strong noise. If the speech is affected by the
omission of the shots, this means that also some speech occurred in the interval
may have been omitted. In this case, the system gives a feedback as indicated in

section 5.1 to the speaker ”Repeat”.

64



Chapter 6

Source Excitation Model

Outline of the Chapter Here we see a relation between the physical and
the numerical interpretation of the speech production model. This regards the
human body as a machine and provides a computational model. We describe the
model from an acoustics point of view. This is also known as a source excitation
model. We find how the acoustic filter mainly consists of some cavities, namely
the vocal tract, the nasal tract, the mouth and the lips but finally it is simplified
to a vocal tract model only. This can represent three different excitation types,
namely voiced, unvoiced and plosive. It is a linear model which is excited by a
white noise. In order to make this complicated speech process simpler by reducing
many variables, this model has some approximations and assumptions. These are
discussed here. The model is a standard speech production model. The model
analysis is based on the discrete time.

6.1 General Aspects

The speech is produced by an excitation source which is later transformed into
different shapes by the actions of the vocal and articulatory organs. The vocal
organs are vocal tract i.e. the glottis, pharyngeal tract, the vocal folds and the
articulatory organs are palete, nasal tract, tongue, mouth, lips. These are mainly
some cavities which generate resonances for the human speech sound production
[69]. A pictorial representation of these organs can be seen in figure 6.1. We
have included this figure in order to make an impression of the position and the
participation of these organs. The number of parameters such as the poles and
zeros are used in general for an efficient tractability. The all pole model appears
to be simplest in the parametric typed vocal tract modeling and the details of
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Figure 6.1: Human vocal and articulation organs [52]
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this is explained in this chapter. Therefore the purpose is here to use the all pole
model in order to capture the human speech production for its modeling. This
chapter explains the background of the speech production modeling. Further
discussions of this model and the use of this model will be seen in chapters 7, 8,
9, 10.

The analysis of the model is discussed using two approaches:

e Difference equation: To emphasize and manipulate the system using the
input and output.

e Z-transform: To analyze and provide the transfer function of the vocal tract
model. This is used to represent the speech production system.

More details about the difference equation and the z-transformation for the dis-
crete time system analysis can be found in [60].

6.2 Analysis Speech Production Model

As mentioned initially the speech is produced by the excitation source supplied by
the lungs. This then goes to the larynx. It shows preliminary acoustical shapes,
namely voiced or unvoiced shapes of the source. This then goes to the vocal
tract. This in combination with articulatory organs transforms the acoustical
source into a speech waveform [131]. The main cavities, the vocal tract, the nasal
tract, the mouth and the lips generate the speech waveform.

In the analysis the source excitation model is a discrete time speech pro-
duction model. How the continuous time speech waveform s(t) is converted to
discrete time signals s[n]| is discussed in Appendix. This discrete time speech
representation s[n] is now our starting speech processing point. We assume that
if the continuous time to discrete time (C/D) conversion is processed properly
(see Appendix). The information we lose in the C/D conversion is negligible.
Properly means if we follow the Nyquist theorem for sampling the signal, then
the signal can be reconstructed to its original form.

The major aspects of the speech production model are listed below. All these
concepts in the model are intended to describe the model in reality.

e The speech is first excited by some source and this source is a white noise.

e The final element of the source excitation model is the vocal-tract model.

67



e In the vocal-tract system, the speech sound is produced by opening and
closing of the vocal folds. This introduces a vibration in the system. The
opening and closing rate of the vocal folds varies from person to person.

e The articulatory features and events associated with the production of the
sequence facilitates the continuous-time acoustic speech waveform in the
discrete-time source excitation model.

There is one difference between the model provided in figure 2.1 and the source
excitation model provided next. In figure 2.1, the vocal-tract has a continuous
input and output while the excitation model has discrete input and output. The
purpose of this is to reconstruct the speech and to make the manipulations and
computations easier. The discrete speech production model is efficient to repre-
sent the physical speech production process [80]. We have used it in our study.

The vocal tract system takes a continuous input which comes from the
excitation source and produces a periodic airflow as an output that is not linear.
The reason is that the glottis is not linear. If the glottis were a linear system,
then a constant input would yield a constant output and all the speech sounds
would always be same. We have followed a linear signal model to capture the
vocal tract information.

6.2.1 Assumptions

First we list some facts of the speech production model. They are taken from the
literature and not questioned here [80], [131], [69], [30].

e The excitation mechanism of the speech production system: There is an
input to initiate a process and this is the excitation.

e The operation of the vocal-tract system: The vocal-tract is playing a sig-
nificant role in deciding what to keep or discard to generate the speech.

e The lip and the nasal radiation process: The lips and the nasal radiation
process give the final emphasis on the speech generation.

e Voiced and unvoiced speech: The vocal-tract changes its shape at a short
time interval to generate different phonemes or finally the speech. If the
vocal-tract had not changed its shape to generate the speech, all the phonemes
or the speech would have been the same. The question is how to decide the
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time interval where the shape of the vocal-tract changes. These change at
every 10 to 30 ms [66], [30]. The interval should not be too small that we
can not capture the dynamic behavior of the speech signal and the interval
should not be too large that we miss the dynamic changes of the speech.

e For the voiced speech, the excitation source is periodic: The excitation
source for the voiced speech is a train of pulses modified by some factor
which may be seen gain for the volume controller for the voiced speech and
the transformation or the modification of this source is taking place in the
vocal tract associated with the articulatory organs.

e The excitation is small or close to zero at its time period except at the
beginning of the pitch period: The excitation is actually originated at the
beginning of each pitch period to keep the process going and in between
the pulses, the excitation is assumably zero.

e The excitation takes place in the lungs and generates speech waveforms
when it passes through the vocal-tract. The speech signal is globally non
stationary but it is locally stationary or quasi-stationary.

e The excitation source u is a random white Gaussian process. The weight
or the gain in the model is the loudness of the sound. This depends on the
amount of the air pressure or the excitation source coming out the lungs.
The gain factor is unique for a speaker and for a speech. Some other basic
terms used in the model are for example pitch period and formant.

e The formant is the resonant frequency of the vocal-tract. The formants
help to signify the opening and closing phenomena of the vocal folds. It
is denoted as the fundamental frequency in the speech production model.
The pitch period is reciprocal to the formant frequency.

6.3 Source Excitation Types and Formulations

The source excitation model initially considers an excitation source for three
different types that are sometimes named differently: The excitation source can
be periodic or voiced, or random or unvoiced, or plosive or impulsive.

In figure 6.2, each source namely voiced, unvoiced and plosive source is mul-
tiplied by a factor. This changes the loudness of the speech. It varies and it
changes according to the speaker and the speech spoken by the speaker. In figure
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Figure 6.2: Source-excitation speech production model

6.2, the source u[n] where n € Z is the excitation source for the voiced, unvoiced
and plosive speech. The source denoted by w is characterized by following three
main excitation types :

e Periodic Pulse: This produces the voiced speech
e Random Pulse: This generates the unvoiced speech
e Impulsive Pulse: This produces the plosive speech.

In the following explanation, the source is always denoted by the same notation
u. Because the source can be only one typed. This means, the source u can be
either voiced, or the unvoiced or the plosive. Therefore, in our consideration, a
single source notation u is reasonable.

6.3.1 Voiced Speech Source

The source of the voiced speech is essentially periodically patterned. This means
the pattern of the voiced speech does not have a precise periodic pattern. This
is termed as a quasi-periodic The voiced speech mainly the English vowel such
as "a”, 7e” ”1”. The excitation source is formulated in equation (6.1) and shown
in figure 6.3. In equation (6.1), unit pulse denoted by d[n] is delayed by k. The
pitch period k is a difference between two pulses. In the equation, i € Z and Z
denotes integer number. The notations n and k£ should not be confused with the

notations used using the same in other chapters.

uln| = Z d[n —ik] for the voiced case (6.1)

The voiced typed signal flow is shown in figure 6.4. The excitation source u[n] in
equation (6.1) goes to the glottal filter f;[n]. This is then modified by the factor
gs and generates the output g,[n]. This then goes to the vocal-tract filter f,[n]
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and generates vy[n]. Then it goes to the lip radiation filter f,[n] and generates
the voiced speech s[n|. The process is shown also in figure 6.2. The formulation
of the periodic pulse source and its voiced speech production is shown in equation
(6.2). In figure 6.2, each line at the left corner indicates a unit pulse which is
weighted by a factor gs. In equation (6.1), ”.” denotes mulitplication. In figure

u[n]

Figure 6.3: Excitation source of the voiced speech

6.4, the vertical lines are the pulses. There it is assumed to be periodic and they
are repeated in a periodic manner. wu[n| is the function of n on the x-axis and
the amplitude of u[n] is on the y-axis where n = 0,1,2,3,---. The downward
vertical arrow g is a weight. The circle with ”x” denotes the multiplication sign.
The sign ”®” is the symbol of the convolution sum.

u[n]

8

s
v, [n]
_ » | Glottal filter % gg[n] Vocal tract filter| Lip radiation s[n]
E— | | —
f g[n] fy[n] filter f I_[n]

Figure 6.4: Voiced speech in source-excitation model

gg[n] = gs-(fg ® u)[n]
vr[n] = (fo @ g4)[n] (6.2)
sln] = (fr ® vy)[n]
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6.3.2 Unvoiced Speech Source

The excitation source of an unvoiced speech is a random white Gaussian noise
formulated in equation (6.3). In the equation, w(n] is the white Gaussian noise.
Its mean is zero and its variance is one. The English alphabet "F”, "V” are
some examples of the unvoiced speech. Here, the excitation source u[n]| defined
in equation (6.3) comes from the lungs and the larynx. Then a multiplication of
the source by a factor g5 goes to the vocal-tract and the lip radiation filter and
generates the unvoiced speech s[n].

u[n] =wln] for unvoiced case (6.3)

The transformation of the unvoiced speech is shown in figure 6.5. The figure 6.5

u[n]

8s
/\ /\ /\ . Vocal tract filter Vf[n] Lip radiation s[n]
Y N X filter f [n] |/
n fv[n] r

Figure 6.5: Unvoiced speech in source-excitation model

shows the source u[n] is multiplied by gs. This is then the input to the vocal-tract
filter and generates v¢[n] and the lip radiation filter f,.[n] to generate the unvoiced
speech s[n]. The formulation of the unvoiced speech is shown in equation (6.4).
The glottal filter has no influence on the generation of the unvoiced speech. In
equation (6.4), the unvoiced speech s[n] is the output of the vocal-tract filter and
the lip radiation filter for the weighted source u[n].

vpln] = (gs-u ® f,)[n]

i) = (£, © op)[n) &4)

6.3.3 Plosive Speech Source

As mentioned in section 6.2, the excitation source u[n] is generated from the
lungs. It is weighted by the gain g, and then goes to the vocal-tract filter and
the lip radiation to generate plosive speech. Examples of such speech are "B”,
"P”. The plosive source is an impulse formulated in equation (6.5) and it is 1 at
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n = 0. With the use of d[n] as the unit pulse we get:

uln] = d[n]
This says:
_Jonl=1 forn=0
uln] = {O forn # 0 (6:5)

In figure 6.6, also shown in figure 6.2, the source is influenced by g, which is a
volume controller and produces vs[n] when it goes through the vocal-tract filter
fv[n]. Finally, s[n] is the response of v¢[n] of the lip radiation filter f,.[n].

&
u [n] g Vocal tract filter] V"] _| Lip radiation s[n]
> fv [n] | filter f_[n]

Figure 6.6: Plosive speech in source-excitation model

In figure 6.6, the only horizontal line at the left is the impulse signal. This is
denoted by u[n]. This is weighted by the factor g5 and goes to the vocal tract filter
and lip radiation filter in order to generate the plosive speech. The mathematical
formulation of this in equation (6.6).

Uf[n] = (gsu ® fv)[n]

slnl = (f, ® vy) (&)

Next we will explain the vocal tract filter, glottal filter and the lip radiation filter
in order to explain the simple speech production model.

6.4 Systems of the Source Excitation Model

In this section we define the glottal filter, the vocal tract filter and the lip radiation
filter. These are used in defining the source excitation model using the vocal tract
only. The definitions are given in z-domain in order to emphasize the system
design using pole and zero as well as the transfer function.

73



In figure 6.7, we see the source is going through the glottal filter, vocal tract
filter and lip radiation filter. These filters are shown here.

u4> Glottal filter »| Vocal-tract filter Lip-radiation filter |
F, @) F, () K@

Figure 6.7: Speech Production Systems

6.4.1 Glottal Filter

In equation (6.7), F,(z) is the transfer function in the z-domain and this represents
the glottal filter f,[n]. In equation (6.7), 8 = =" and c is the speed of the sound
and 7' is the sampling interval length or sampling period. The concept behind
this is ¢TI’ << 1 and thus =T ~ 1.
The glottal filter given in equation (6.7) is a second order low pass filter, F,(z).
1 1 1 1

T P T P R (= R e DR

6.4.2 Vocal-tract Filter

The shape of the vocal-tract changes slowly when it produces different kinds of
sounds. This filter varies according to a speaker and the speech sounds spoken by
the speaker. The transfer function of the vocal-tract system is given in equation
(6.8). We see equation (6.8) is an all pole filter with p many poles.

1

B e e

(6.8)

6.4.3 Lip Radiation Filter

In equation (6.9), F,.(z) is the z-transform of f,[n]. It is responsible for the speech
sound that comes through the lips. In equation (6.9), the lip radiation filter has
a single zero. and a, takes the value close to 1. The role of pre-emphasis filter
discussed in chapter 4 in section 4.3. This takes over by the lip radiation filter.

F.(z)=1-az" (6.9)
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Next we will explain how the speech production model is represented by using
only the vocal-tract system.

6.5 Source Excitation Model using Vocal-tract

In the source excitation model the excitations for the voiced, and unvoiced are
considered. The excitation source for the unvoiced speech and plosive speech are
considered as white random noise. Therefore the source excitation model has
only two main excitation types: i) A train of pulses for the voiced speech and ii)
White noise for the unvoiced speech.

In figure 6.8 we see that the excitation source responsible for the voiced or
the unvoiced speech is going through a time varying linear filter to generate the
speech output which can be a voiced speech or an unvoiced speech. The time
varying linear filter is a combination of the glottal filter, the vocal tract filter and
the lip radiation filter but all these are represented by by a transfer function and
this is known as the vocal model. How all these filters namely the glottal filter,
the vocal tract filter and the lip radiation filter are manipulated to replace these
by only the vocal tract filter is the discussion of this section. The vocal tract
filter is the most common speech production model used in the speech research.
This conventional speech production model is an all pole model. In this model,
the system for the voiced and unvoiced speech output is modeled by poles only.

Voiced

linear filter (voiced/unvoiced)

Time-varying Speech output
IE—

Unvoiced

(Speech input : voiced or unvoiced)

Figure 6.8: Stochastic source-excitation model

The lip radiation filter has a zero. Then the glottal filter modeled by two first
order low pass filters has two poles. The lip radiation represented by the high
pass filter has one zero and this cancels the spectral effect of one of the glottal
poles in case they are matched.
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A presence of a second zero near z = 1 would effectively eliminate the spectral
effects of the larynx and the lips. In such a case, the analysis could mainly be
focussed on the coefficients of the vocal-tract parameters only. The pre-emphasis
filter discussed in chapter 4 in section 4.3 is a first order high pass filter and it
has only one zero. This has one coefficient for the zero which is less than 1. The
pre-emphasis filter boosts the high frequency of the formants which have been
suppressed in the high frequency region by the glottis. The glottis is a vocal
organ which contains the vocal folds and the opening space in between the vocal
folds.

We use U(z) and S(z). These are the z-transforms of u[n| and s[n|. The
glottal filter (F}(z)) has no contribution in generating the unvoiced and the plosive
speech. Therefore, different from figure 6.2, the effect of the glottal filter is not
considered.

Voiced Case The voiced speech is generated when the vocal-tract is excited
by a series of periodic pulses. The variation in the voiced speech is very smooth
within a period. For this reason, it is analyzed as an essentially periodic signal.
The vocal tract filter for the voiced source given in equation (6.10) is a multi-
plication of the gain g, and the transfer functions of the glottal filter F(z), the
vocal-tract filter F,(z), and the lip radiation filter F,.(z). As mentioned a, is
close to 1. Thus we simplified equation (6.10) to equation (6.11) which has p+ 1
number of poles.

H) = 50 = 0 F (R
: , y (6.10)

H(z) = gs. A= TS5 (1—a2z7")
H(2) Is (6.11)

- 1
1=23200 aiz

Unvoiced Case The vocal-tract filter for the unvoiced source is formulated in
equation (6.12). We used the z-transformation of the system and replaced the
values of the system discussed above in equation (6.12). The glottal filter remains
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open which means it is not participating in generating the unvoiced speech.

HE:) = 5 = 0B
(6.12)
H(z) = go———— (1 —a,27)

1— Zz 1 aiz

For the unvoiced sound there is an effect from the nasal sound which is realized
mainly by several zeros. In this manipulation, the zeros are replaced by placing
more poles in order to make the model all pole only [10].

A zero can be replaced by two poles if the magnitude of the zero is small
enough for example less than 1. This assumption is used in equation (6.13) to
avoid the zero in the modeling. Thus equation (6.12) is simplified to equation
(6.13) .

S(z) 1

H(z) = U(z) N — S g 1 =az)

H(z) =

. (6.13)

Zp+2l+2 i

In equation (6.13), we have 2[ poles for [ € Z and we have [ many zeros for

an effect of the nasal source. In equation (6.13), 2 is used for the zero in the lip
radiation filter. By replacing all zeros with poles, we arrive at equation (6.13).
This is now the vocal-tract system with poles only. Therefore, it is called an all
pole filter. The all pole model is a simple parameter estimation model between
an all zero and a pole zero model because the relation of the pole coefficients and
the autocorrelation function yields a set of simultaneous linear equations and the
estimation of the parameters of the all pole model can be performed by computing
the estimates of the autocorrelation terms [10]. This is discussed in chapter 8.
By taking a sufficient number of poles, the overall transfer function shown in
equation (6.16) for the voiced and unvoiced case is rewritten in equation (6.15).
S(=) _ gs

HE =50 = 1oy, o (6.14)

Equation (6.15) is now the speech production system that represents the vo-
cal tract in order to generate voiced and unvoiced speech. Thus we obtain a
single transfer function with poles only and this includes the voiced, unvoiced
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and plosive speech.

Js
H(z) = . 6.15
()= 15 o (6.15)

This is an all pole filter and the pictorial definition is in figure 6.9. There we see
that the weighted source gsu generates s through the system Y 7 | a;27".

u[n] a e S [n]

Figure 6.9: Simplified speech production model

_5() _ gs
H(Z> - U(Z) zp+2l+2 C—i

(6.16)

Equation (6.15) is known as auto-regressive (AR) model. It is most commonly
used for a parametric signal modeling. This is the background of the speech
production model by the AR process. This is described in chapter 7.

In equation (6.15), a; are unknown. We need a technique to find out the values

of a;. For this, we use a linear prediction (LP). This is discussed in chapters 8
and 9.
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Chapter 7
Vocal- tract Model: AR Model

Outline of the chapter In this chapter we discuss auto-regressive (AR) para-
metric signal modeling. It contains mainly known facts and relations. We repeat
them here because they are used several times in this thesis. In chapter 6 we have
seen that the source excitation model is modeled by an AR process. This model
can be stochastic and deterministic. The source excitation model is in fact the
stochastic typed AR model. We introduce this here. The model parameters have
to be solved and this is discussed in the next chapters 7 and 8.

We first introduce the notion of parametric signal modeling. For this we read
namely|[109], [63], [92], [8], [10].

7.1  Analysis of Parametric Signal Modeling

A non-stationary signal such as the speech signal is generally analyzed in a small
segment. This small section can be modeled by using a parametric signal model
or by a non-parametric signal model. In a parametric signal modeling this small
segment is modeled by some parameters. These parameters may change from seg-
ment to segment. This generally happens when a non-stationary signal such as
one from speech is modeled. In this modeling, most often a complicated process
such as a speech signal can be represented by a smaller number of parameters
than the actual samples in the signal. The parameters capture changes or dy-
namics of the signal. That means the signal parameters reflect the changes of
the signal. The reduction of the parameters often requires an approximation,
estimation and some constraints or some additional information. A common ap-
proximation is that the system is driven by some known input where the input
is most often assumed as a unit sample signal or white Gaussian noise. On the
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other hand, in the non-parametric signal modeling, the signal is most often char-
acterized by the measurements of the frequency response and this may be a large
number of frequencies. Examples of such type of modeling approach are overlap-
add and the overlap-save methods [9]. The optimal spectrum of the excitation in
the parametric case will be different from that in the non-parametric case: this
is principally because the parametric model combines the information available
from all frequencies in only a few parameters. In a direct non-parametric fre-
quency response measurement there is no relation between the measurements at
the various frequencies and therefore the excitation should be designed to achieve
a predefined accuracy in the frequency bands of interest. An example is maxi-
mizing the absolute or relative accuracy of the measurements. In a parametric
approach, the energy will be concentrated on the frequencies where it contributes
most to the knowledge about the model parameters. We paraphrased the above
based on our studies given in [109], [63], [92], [8], [10]. For this some factors are
[63]:

e Model type
e Model order
e Approach to estimate model parameters

According to the list we specify our parametric model as: The AR typed
model is discussed next in this chapter, the model order is discussed in chapter 2
in section 8.1.1 and least squares (LS) approach is discussed in chapter 8.

The AR parametric signal modeling assumes that some excitation source, for
example the white Gaussian Noise (WGN) u generates some random output s
through some system h. The goal is now to estimate the parameters of the system
h which has the input u and the estimated output s. We want that the difference
between s and § is minimal.

The AR parametric signal model can be stochastic and deterministic. We
only discuss the stochastic AR parametric signal model for the speech production
model.

7.2 Overview: Auto-regressive (AR) Model

The basic AR parametric modeling is based on the auto-regressive moving av-
erage (ARMA) parametric modeling. This is visualized in figure 7.1 The basic
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parametric modeling, namely the auto-regressive (AR) model, the moving aver-
age (MA) model and the ARMA model uses mostly the least squares criteria
in order to estimate the model parameters. Here we briefly introduce the AR,
MA and ARMA parametric modeling in an overview but we have used only the
AR parametric modeling and this is mainly discussed in this chapter. The AR
modeling is commonly used for the signal modeling because it is easily tractable
for the parameter estimation [10]. This is also discussed in chapter 6. In the
parametric modeling, given a set of time series observations, we determine the
parameters that generate the series. For this we need to obtain the best estimate
of the parameters that can closely replicate the process. The best estimation of
this modeling most commonly uses the least squares criteria. The details can be
found in [92], [10].

Suppose the speech s[n] is a response of a system h[n| which has the excitation
u[n]. This means u[n] is the input, s[n] is the output and h[n] is the system. If
we assume u[n| is white Gaussian noise and h[n] is modeled by the ARMA model
defined in equation (7.1). The model has two parts: One is for AR model which
order is p and another is for MA model which orderis ¢q. For the white noise as
input u, the system h generates s. We describe this now in the z-domain where
S(z), U(z) and H(z) are the z-domain representation of s[n], u[n] and h[n].

B(z) 14371, bz~

H(z) = = ‘ 7.1
(2) Alz)  1437F jaz? (7.1)
The expansions of B(z) and A(z) are given in equations (7.2) and (7.3)
B(2)=1+4biz" "+ bz 4+ bz * (7.2)
AZ)=14+az7 4+ +ayz? (7.3)

The input-output relation is given in equation (7.4).

sln] +aysln — 1]+ - + aps;n — p| = u[n] + byu[n — 1] + - - + byu[n — q| (7.4)

s[n] + Z a;s[n — i) = uln] + Z buln — i (7.5)
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Figure 7.1: Moving average autoregressive ( ARMA) filter and perceptional site
[121]

Taking the z-transform of equation (7.5), we arrive at equation (7.6).

S(z) + Z a;8(2)2 = U(2) + Z bU(z)z"" (7.6)

S(2)(1+ Z a;iz”") =U(2)(1+ Z biz™") (7.7)

S(Z) . 1+ 23:1 biz*"
U(z) 1+ Y aizT (7.8)

U(z)  1+37 a2

Thus we have the following equation which is the same that is shown in
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equation (7.1). B S0
z) 1+ bz
A(z)  1+57 a;zi

If b; equals zero for all 7, then the ARMA system given in equation (7.1)

H(z) =

represents the system of the all pole model written in equation (7.10), but if a;
equals zero for all i, then the ARMA system represents the system of the all
zero model written in equation (7.11). Thus the ARMA modeling can be seen
as a combination of the MA and the AR modeling even one can make use of the
AR, MA and ARMA model independently for the signal model. An overview of
ARMA is shown in figure 7.1 where we see s is reposed of the ARMA system to
the random white noise input. The s is corrupted by some observation noise and
generates s

1 1
H(z) = = - for b; = 1
(2) A5 TS e or 0 (7.10)
p .
H(z)=B(z)=1+ E biz™" for a;=0 (7.11)
i=1

The polynomials of A(z) and B(z) given in equations (7.2) and (7.3) are
characterized by the location of the poles and the zeros in the z-domain, then the
ARMA model has p and ¢ many poles and zeros in A(z) and in B(z). Therefore,
A(z) and B(z) are called an all-pole model and all-zero model. This gives a
background and an overview of AR modeling.

An overview is shown in figure 7.1. On the top of figure 7.1 we see a very
general description. The upper half describes MA and the lower half describes
AR. The individual section of the ARMA filter is shown in figure 7.2. As said we
use the AR model for our signal modeling, we explain this in details next.

7.3 Analysis of Stochastic AR Process

The speech signal changes with time and its different phonemes have different
characteristics in the waveform. The phoneme is the fundamental unit of the
sound. In equation (7.12), we see that the speech signal s[n] is a linear com-
bination of its past p samples and the excitation u[n] multiplied by a weight
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Figure 7.2: Moving average (all-zero MA filter) and auto-regressive (all-pole AR
filter) [121]
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9s-

s[n] = Zais[n — 1] + gsuln] (7.12)

Now if we take a z-transform of equation (7.12), we arrive at equation (7.15).

S(z) = Z a;S(2)27" + g.U(2) (7.13)
S(z)(1— Z a;z"") = g,U(2) (7.14)
S(z) 9s 9s

= (7.15)

When we compare equation (7.10) and equation (7.15), we see the difference
between the two equations is the factor g,. A difference is also in the sign between
equation (7.10) and equation (7.15); that is the plus (+) or minus (—). This is
not making any big difference because the response is mainly depending on the
value of the coefficients. This says that the input and output are not the same
in the two equatiosn (7.10) and in equation (7.15). In the later equation there is
an additional factor. Equation (7.15) is a stochastic AR modeling. We can say
equation (7.10) is a deterministic AR modeling.

In equation (7.12), we see that the speech signal s[n] is equal to the linear
combination of its past p samples and the excitation u[n] is multiplied by a weight
gs- In the stochastic sense, the second term in the equation (7.12) is a disturbance
or error. The first term i.e. the sum in equation (7.12) is a linear estimate of s
denoted by §[n]. But if gsu[n] is zero in equation (7.12), then s[n| is equal to its
approximated prediction §[n]. In such case if we know the coefficients a;, then
s[n] is equal to §[n].

According to the source excitation model described in chapter 6 in section
6.2.1, at the beginning of the pitch period between the pitch pulses, the excitation
is zero, therefore in equation (7.12) gsu[n] is zero and s[n] can be approximately
equal to its predicted value §[n].

p

sln] =Y " aisln — i] = 3[n] (7.16)

=1

But the value of the a; is unknown and we need to find the solutions of a;. We
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obtained the value of a; by using linear prediction(LP) analysis. This is discussed
in chapter 8.

In equation (7.16), it is shown that the actual value of s[n| is equal to the
approximated §[n| because there is no excitation between the pitch pulses and
the approximate §[n] is the linearly weighted summation of the past p samples.
From equation (7.12) and equation (7.16), we find equation (7.17).

s[n] = 3[n] + gsuln]

gsu[n] = s[n] — 3[n] (7.17)

Now we can say if the prediction of s[n] is correct, then in equation (7.17)
gsu[n] is zero. That means we have the best prediction. In the linear prediction
sense, gsu[n| is termed as the error e[n]. Therefore, equation (7.17) can be rewrit-
ten by equation (7.18). This says the error is the difference between the actual
sample and the predicted sample.

eln| = s[n] — §[n] (7.18)

In the least squares criterion, the total error is minimized by taking the expec-
tation of the square errors. It is described in defined in chapter 8 in section
8.2.

7.4 Analysis between AR and LP filters

The AR coefficients ai,aq,- - ,a, are the parameters of the vocal tract. One
common approach to estimate these unknown AR parameters is by using the
linear prediction (LP). Thus the LP can be seen here as a synthesis filter or
an inverse filter and the AR modelling in the vocal tract can be seen as an
analysis filter. This relation is shown in figure 7.3 and this relation is known as
deconvolution.

If a system is cascaded by two systems, the second system often can recover
the first system; the action of the cascaded system is called deconvolution [96].
The output of the all pole filter s[n] is the input to the LP filter. The output of
the LP filter is then the error signal e[n]. This is shown in figure 7.3 where the
LP filter H;(z) is acting as an inverse filter of the AR filter H(z). This is again
discussed in chapter 8 in section 8.2.1 and the H(z) and H,(z) are shown again
in that chapter in figure 8.2.

In figure 7.3, the deconvolution happens between the AR filter H(z) and the
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Figure 7.3: Analysis AR filter and Inverse LP filter: Deconvolution

LP filter H;(z) where the input u of the AR filter generates the output s and the
output of the AR filter goes to the LP filter to generate the excitation input u
which is indirectly equal to the error e signal defined in section 7.3, the output
of the LP filter. The relation of u and e is shown in equation (7.17).

In figure 7.3, by the synthesis we mean that the original input of the system
can again be estimated by the LP filter. In this synthesis or recovery process, the
LP filter as a synthesis filter recovers the input of the analysis filter which is the
AR filter.

The AR filter is known as an all pole filter. Conversely, we may say the LP
filter is an all zero filter. But this is not a standard term. A detailed architectural
view of this deconvolution process in shown in figure 7.4. This also says that the
input u is modified by g; and generates s through the all pole filter and this
output as input goes to the all zero filter and generates u.

87



I 1
eyl gl i~y
I
cy
T
GNYA S =

Figure 7.4: All-pole AR filter and all-zero LP filter: Deconvolution

38

€ =gu
S



Chapter 8

Estimation of AR Parameters:
Linear Prediction (LP)

Outline of the chapter In this chapter we give a formulation of the linear
prediction(LP) for the all pole modeling described in chapter 7. The LP approach
uses a least squares approximation that gives a set of linear equations in order
to find an approximate solution for the AR parameters. The LP approach is
derived using an auto-correation approach. This is also known as the Yule-Walker
approach.

The parameters of the AR process that are used for the speech production
model are unknown. The relation between the AR and the LP is shown in section
7.4. The statistical properties such as mean, correlation, variance of the speech
signal are used for the LP analysis to approximate the best speech parameters.
The best means the predicted outcome is closest to the desired one such that the
difference between the two is least. This is explained in section 8.2.

In the LP analysis the current speech sample is modeled by linear combina-
tions of its p most recent past samples. p is the prediction model order. The LP
analysis uses mean squared error criteria for the best predicted samples such that
it is closest to the real sample.

A major part of the chapter is devoted to description of the mean squared
error and its computational aspects.

Some assumptions of using LP First we mention the assumptions used in the
LP based speech signal modeling.

e The excitation source and the vocal-tract system are independent from each
other.

e Each excitation actuates at the beginning of each segment and remains
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active until the end of the segment.

e The vocal tract system is modeled using the AR process where the excitation
source is white noise.

e The vocal-tract changes its shape slowly. Its characteristics changes at every
10 to 30 ms time interval.

e The parameters are computed at each short time interval at each 10 to 30
ms intervals.

8.1 Signal Analysis

L \ \ L |
0 1 2 1 L2 L-1
Sampled signal: s[0], s[1], ....... s[1],.....s[L-1]

e
2 3

1 m M-1 M 0 . . N-1
Signal segments: ----- Sglnl oo Spn] = yln! Window Function
01 3 15 n N2 N-1
Sampled Signal in each block: s[0],s[1].....,s[n],...,s[N-1]
12 i p-2 p-lp
A
Predicted Sample: s[n] considers p many past samples : s[1],s[2]....,s[il......s[p]

(In forward prediction)

Figure 8.1: Short time speech signal processing

Figure 8.1 explains how the signal is processed for the analysis. Initially, the
analog speech waveform s(t) is digitized into s[l] and | = 0,1,2,3,--- , L — 1.
These are blocked into segments s,,, and m = 1,2,--- , M. Each block s,, has N
many samples as n = 0,1,2,--- , N — 1 and each current sample s[n| is modeled
by linear combinations of its previous p many samples. p is prediction or model
order. The decision of the number of model parameters is discussed in section
8.1.1. It is indexed by i and ¢ = 1,2,--- ,p. Thus in equation (8.1), s is M x N
dimensional. Generally a signal is blocked using a window function. In such case
the signal is multiplied by a window function. This is shown in figure 8.1. The
windowing is generally used to control the effect of the sidelobes in the spectral

90



estimation [121]. A typical length of the window function is equal to the length
of the signal block. However, in a covariance or Burg or ULS based LP approach,
a windowing of a signal is not necessarily needed.

S0 ] 31[0]---31[71]'---51[]\7— 1]
s|1 :
[: | sk[0] -+ sp[n] -+ 5p [N — 1]
s[n] — Segemented Signals — : (8.1)
f Sml0] -+ - sm[n] -+ spu[N — 1]
s[L =111, sal0] - sarln] - -su NV - 1]

Next we give a physical explanation of the order of the model.

8.1.1 Order of the Model

The order of the model is equal to the number of the parameters that represent
the speech. We explain here the relation between the model order and vocal tract
tube and how the model order and parameters are related. This is formulated in
equation (8.2) [87].

The order has to be large enough to represent each formant. Similarly, the
number of the coefficients needs to be sufficient to approximate the parameters
of the voice articulator. Important numbers are the length of the vocal-tract, the
joined structure of the nasal and oral cavities, and the excitation sources. Each
formant is represented by a complex conjugate pole pair. Therefore there is the
number 2 in equation (8.2) [87]. Additionally 4 represents the number of vocal
tract sections. In equation (8.2), ~ is used because this is an approximation of
the model order p and the precise number of involved coefficients may not be
known.

p =~ 2 x (Number of Formants) + 4 (8.2)

The number of formants is the division of the Nyquist rate f,/2 where f, is the
sampling frequency by the average spacing of the neighboring formants f,,; and
fn where n denotes the formant number.The average distance between neighbor-
ing formants is approximated by g7 (see chapter 2, section 2.4.1).

The order of the model plays an important role in the modeling problem.
It determines the number of parameters to be estimated and the computational
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complexity of the estimation algorithm. The quality of the spectral analysis is
also influenced by the order of the model. If the order of the model is too low, it
will display poor resolutions and if the model order is too large, it creates false
spectral peaks known as spectral splittings in the spectral analysis. In such case,
one single peak may be divided into two separate ones and generate some alias
or misleading spectral peaks in the frequency spectrum.

8.2 Derivation of LP and Errors

The LP predictor coefficients are «; for ¢ for © = 1,2,--- ,p. This is shown in
equation (8.3); there the predicted signal of the actual s is denoted by s.

sln] = Z a;s[n — i (8.3)

Now if we take the z-transforms of the terms in equation (8.3), we have equation
(8.4). The symbols used in this equation are introduced in chapter 6 in section
7.3

p
S(z) = ZaiS(z)z_i (8.4)
i=1
An expanded form of equation (8.3) is:
§[n] = aqs[n — 1] + aas[n — 2] + - - - + aps[n — p| (8.5)

Equation (8.5) is an expansion of equation (8.3) where it shows that the estimated
speech signal is equal to the summation of the past p samples which are multiplied
by the weighted coefficients. Equation (8.5) is known as forward linear prediction
(FLP). The backward linear prediction (BLP) is predicted using p many future
samples; it is defined in the next chapter. Now from equation (8.3), equation
(8.5), and equation (8.7) we obtain the error in equation (8.6).

e[n] = s[n] — 8[n] = s[n] —Zais[n—i] (8.6)

Now equation (8.7) is telling us that if the prediction is almost correct, then the
actual speech sample is equivalent to the predicted speech samples.

s[n] = aqs[n — 1] + aas[n — 2] + - - - 4+ aps[n — p) (8.7)
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In fact, the error may not be exactly zero since the process is stochastic but the
goal is to get this error to a very close proximity to zero. It changes over time
even if the signal is a quasi-stationary process.

Thus the equations (equation (8.3), equation (8.5) and equation (8.7)) are
only approximately true because they use the estimated coefficients «;.

The error signal in equation (8.6) is the error for a single true signal and a
single estimated one. The mean error and the mean squared error are given in
equation (8.8) and equation (8.9). For the mean error, we take the expectation
of the difference between the true sample and the predicted samples and it is
computed for n =0,1,--- , N — 1 and the mean squared error is the expectation
of the squared error given by equation (8.9).

Blel) = D (sln] = st~ )} 53

B = D (sl = Yo~ 1)7) (59

8.2.1 Deconvolution phenomenon

The output or the response of a system will be known if we know the input and
impulse response of a system. In such cases the output will be the sum of the
multiplication of the inputs with the time shifted version of the impulse responses
of the system or the sum of the multiplication of the impulse responses of the
system with the time shifted versions. This is the convolution. It is expressed in
equation (8.10). There, ® is a convolution symbol.

sin) = ) uln}hln — k] = ufn] @ hn] (8.10)

k=—o00

The deconvolution is the action that recovers the effect of the convolution i.e.
the deconvolution does the opposite task of the convolution. With respect to
equation (8.10), the deconvolution will restore u[n] when we have h[n] and s[n].
When we are trying to find the source excitation u by having the output s and
the system coefficients «, this action is also be called a deconvolution operation.

In figure 8.2 the vocal-tract filter is expressed by the AR process shown in
equation (8.11). In the same figure, the LP filter is expressed by equation (8.12).
In figure 8.2, the AR model denoted by H(z) at the left side is modeled by
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Figure 8.2: Speech production system and linear prediction analysis

equation (8.11) and the LP system denoted by H;(z) at the right side is modeled
by equation (8.12). The a; parameters where i = 1,2,--- p in the left side of
figure 8.2 are unknown and are solved using the LP system on the right side.
The LP provides the solution to the unknown a; parameters where : = 1,2,--- ,p
of the vocal-tract system on the left side. The symbols used in eq (8.12) are
introduced in chapter 7 in section 7.3. The relation between H(z) and H;(z) are
discussed in chapter 7 in section 7.4 and shown in figure 7.3 in that chapter.

S() _ gs
Ulz) 1-=>Faz"?

H(z) = (8.11)

The solution to a; parameters is estimated by the «; and incorporated in eq
(8.12) where the running index 7 in our case is same for the both systems H(z)
and Hy(z). i =1,2,--- ,p. The goal is to estimate «a; so that it is a close capture
of Q;.

Hy(z) = g((;) —1- Z ;2 (8.12)

The terms gain and error in the mean squared sense that come up in the LP
prediction are introduced next.

8.2.1.1 Gain and Errors

A physical explanation of the gain in the LP analysis comes from the volume
controller which is different for each speech and for each speaker. Analytically
this may come from an energy level for the frames and it may not be the same
for each frame. Multiplying equation (8.11) and equation (8.12), we find g, as
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shown by equation (8.13). If the coefficients are correct, then we get o; = a;.

. R D
U(z) S(z)  U(z) 1= Fa;z

(8.13)

E(z)
U(z)
signal written in equation (8.14) by using equation (8.13). Equation (8.14) is the

Taking an inverse z-transform of = ¢s (equation (8.13)), we find the error

time domain representation of equation (8.13).
eln| = gsuln] (8.14)

Now we extend the error term to the minimum mean squared error in the next
section.

8.3 Mean Squared Error (MSE) and its Mini-
mization

We want to find the LP coefficients which are closest to the AR coeflicients.
These coefficients are the vocal-tract parameters to represent the true speech.
The computational aspects of MSE in the LP case discussed next.

The mean squared error criterion emphasizes the effect of large errors much
more than the absolute error criterion and MSE is more sensitive to outliers than
the absolute error criterion [24].

8.3.1 Computational Aspects

When the Euclidean distance describes a distribution and the squared Euclidean
errors are considered, then the underlying distribution of the process is presum-
ably a Gaussian distribution. The zero mean signal can be obtained by taking
the mean of the signal and then subtracting the mean from the signal.

The mean of the discrete random process is the average summation of the
ensemble. Applying the concept of the ergodic mean convergence in the stochastic
process, we compute the mean squared of the error of the speech signal. This
is shown in equation (8.15). There we see for the time interval the difference
between the time averaged mean pu,, and ensemble averaged mean pu, the time
averaged correlation r, and the ensemble averaged autocorrelation r converges to
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lim E(u, —p) =0
e (8.15)
lim E(r, —7)=0

n—oo
The mean squared error is denoted by n(n) for each speech signal s[n].

To find the minimum mean squared error, we need to differentiate E{e?*} in
equation (8.16) with respect to «ay for & € Z. The error e is computed for n
where n = 0,1,2,--- /N — 1. We have to differentiate equation (8.16) p many
times with respect to «j, hence there are p many equations. It is formulated in
equation (8.17).

The derivation is given in the following equations. There, 7, = 8801 for n =
0,1,---,Nand k=1,2,--- |p.

n=E{) =1 Z[s[n] ~ 4l (316

=2 aik}v[su—zsums[n} (5.17)

Equation (8.17) tells us the expected value of the summation of the squared error
signal for N many speech samples. We can think of using the N many samples
in a segment for a short time interval.

For minimizing the mean squared error, we set equation (8.17) equals to 0

and compute the partial derivative with respect to ay for k =1,2,---  p times.
O[E{e?}]
= ———==0 8.18

From equation (8.17) and equation (8.18) we arrive at equation (8.19).
~2 _
3%{;% n] — 2s[n]s[n] + 5°[n]]} =0

N-1
—2 nz_% st 8ak 2 Z 8ak

(8.19)
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By rearranging equation (8.19), we find equation (8.20).

Z_ s[n]%.[z] = Z_ é[n]%.[z] (8.20)
aiz] = s[n — k] (8.21)

The derivation of § with respect to oy is written in equation (8.22). § is shown
in equation (8.3).

: slns[n — k] = - S[n|sin — k| = Z_ } a;s[n —i)s[n — k] (8.22)

Now substituting the value of § (shown in equation (8.3) ) in equation (8.20) we
arrive at equation (8.23). In equation (8.19), index k is dummy variable of the
differentiation of equation (8.16) with respect to ay.

N-1 N—-1 p

> slnlsin— k] =) aysln — i]s[n — k] (8.23)

Equation (8.23) says s[n] can be obtained by taking ¢ many past « coefficients and
we solve the minimal average error problem by solving the above equations. There
are many standard methods for this. The smaller the number of coefficients is the
faster the solutions are obtained. That would indicate one should use only very
few coefficients. On the other hand, however, reducing the number of coefficients
is also limited because with a very small number of coefficients we cannot expect
a good approximation. In the speech signal, these coefficients are real valued
numbers.

Suppose 7[i] denotes the autocorrelation between s[n] and s[n — ] as shown
in equation (8.24). There the autocorrelation function measures the similarity
between the process s at time instances n and n—i. The autocorrelation function
for a real valued wide sense stationary process is a symmetric function. Therefore,
for fixed n, r[i] = r[—i] and we can say r[—i] = E{s[n|s[n—i]}. In equation (8.24),
1=1,2,--- ;)pandn=20,1,2,--- N — 1.

rli] = E{s[n|s[n —i]} (8.24)

In equation (8.25), r[i, k] denotes the autocorrelation between s[n—i] and s[n—k].
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In equation (8.25) by symmetry we have r[i, k| = r[k,i].
rli, k] = E{s[n —i]s[n — k]} (8.25)

From the equations (8.23), (8.24) and (8.25), we obtain (8.26)

r(i] =) onr[i, k] (8.26)

Expanding equation (8.26), we arrive at p many linear equations shown in equa-

tion (8.27).

arr[0] + aor[l] + agr[2] + -+ - - + aprlp — 1] = r[1]

arr[1] + aor[0] + agr[l] + -+ - - + aprlp — 2] = 1[2]

arr[2] + aor[l] + agr[0] + - -+ - - + apr[p — 3] = r[3] (8.27)
aurlp — 1]+ aarlp — 2] + ayrlp — 3] 4 -+~ -+ ayr(0] =

r[0] rd] e e =2) rlp = 1)) [en il
L e I L B
=1 rp—2 - 1] 0] | la] [

In equation (8.28), ® is a p X p dimensional matrix, r is p x 1 dimensional
vector and the coefficients « is p x 1 dimensional vector.

o] [l e =2 -1 o ]
I I A | I L I L
=1 rlp=2 - 1] o] % i

In equation (8.28), ® is symmetric and Toeplitz. Equation (8.28) is called the
Yule-Walker equation.
®ba=r (8.29)

A direct solution of the equation (8.29) is the solution for the «; coefficients
for = 1,2,--- ,p. The solution to (8.29) is obtained multiplying both sides of
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equation (8.29) by the inverse of ® matrix shown in equation (8.30).
a=& ' (8.30)

At lag 0, equation (8.31) r is the mean squared value of the s[n|. This is
actually the energy of the signal.

r[0] = E{s[n]s[n]} = E{s[n]’} (8.31)

How many coefficients are enough in equation (8.29) is discussed in section
8.1.1.

For the sampling frequency is 16 kHz, the model order is 12. The solutions
to the «; in equation (8.29) is obtained using the Levinson-Durbin recursion ap-
proach [80]. The AR parameters can be approximated by using different types of
LP approaches. Some of them including our LP approach for the AR parameters
approximation are discussed in the next chapter.
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Chapter 9
LPC Solution Approaches

Outline of the chapter This chapter is a continuation of the investi-
gations in the last one. The linear prediction (LP) can be approached using
auto-correlation, auto-covariance, Burg and unconstrained least squares (ULS)
approaches. These approaches are briefly discussed in this chapter. We have
applied the ULS approach for parametric signal modeling.

First we list some LP parametric approaches that have partially been intro-
duced in the last chapter.

e Autocorrelation Approach: This approach uses the Yule-Walker equation
to extract the parameters. The Levinson-Durbin algorithm is used for the
parametric solution.

e Covariance Approach: The covariance approach uses the Cholesky decom-
position for its parametric solution.

e Burg Approach: The Burg method is an order and time recursive approach.
This also uses the Levinson Durbin algorithm.

e ULS Approach: The unconstrained parametric solution is an order and time
recursive approach. Both order and time are used to extract and update the
parameters. This does not use the Levinson-Durbin algorithm to extract
the parameters.

Next we introduce the above listed approaches.
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9.1 Autocorrelation Approach

In autocorrelation approach, the number N of non-zero samples of a certain
length [ is nonzero and zero outside of the length [. The averaged autocorrelation
function is replaced by the time averaged autocorrelation function.

This method is the most straight forward one for the AR model parameters.
In this approach, the ensemble autocorrelation r[i] is replaced by the correspond-
ing time-averaged autocorrelation computed from a given block of data. In the
previous chapter 8 we have discussed errors and the minimization of the mean
squared error and the use of a windowed signal. This is an important use of
auto-correlation that we will not repeat here.

In chapter 8, we have explained how we have p many linear equations by
equation (8.21). The LP solution using this approach needs the inversion of the
® matrix and the multiplication of a p X p matrix with a p x 1 length r vector.
Here @ is a Toeplitz matrix and in this matrix, the diagonal entries are identical.
® is also a symmetric matrix and thus we have r(i, k) = r(k, ). The solution for
the parameters can be obtained by using a Gaussian elimination approach or by
the Levinson-Durbin recursion. This algorithm is discussed in [80]. The Levinson
approach is efficient to solve the parameters and it uses the properties of Toeplitz
matrix.

In figure 9.1, fig a is a single speech frame in the time domain, fig b shows the
pole-zero plot using LP analysis which shows the stability of the model because
its poles are inside the unit circle. fig ¢ is the log based FFT spectrum of the LP
coefficients. fig d is the spectrum of the residual signal obtained by LP analysis
and the input that is the random white Gaussian noise and is again obtained
by the deconvolution i.e. the spectral analysis of the deconvolution of the LP
parameters. fig e is the spectral analysis of the residual signal and fig f is the
verification of the excitation of the signal. The implementation in figure 9.1 has
a close replication that is given in [127] but we modify the implementation using
our own data for our own experiments.

The advantage of the autocorrelation approach is that it ensures the stability
of the system model. The Levinson-Durbin recursion makes the computations
efficient. We have introduced the computations of the LPC autocorrelation prob-
lem solving approach using Levinson-Durbin recursion algorithm in chapter 8 but
a detailed computational aspect of this algorithm is not discussed in the thesis.
The disadvantage of the autocorrelation approach is that it uses windowing in
the segmentation process and therefore the true spectrum might not be obtained
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in the spectral analysis.

In figure 9.2, we see the analysis of the signal model using auto-correlation
approach. In a, we see the segment of the speech signal. In b, we see the frequency
response of the LP filter which parameters extracted by auto-correlation approach
or Yule-Walker equation. In ¢, we wee the pole position of the covariance approach
and in d, we see the excitation which is the output of the filter and this is
white noise. Here the peak values in figure b indicate the coefficients of the AR
parameter approximation. These are normally called the formant of the speech
signal. The order of the model is 12. Therefore, in figure b, we see six peaks.
These peaks are smaller as frequency increases. This is because the speech signal
is a low frequency signal.

a: Speech segment b: Frequency response of auto—correlation(Yule-Walker) approach
1 40
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c: Pole position of Yule-Walker approach d: Output of Yule-Walker model:Excitation
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Figure 9.2: Signal model: Auto-correlation (Yule-Walker) approach

9.2 Covariance Approach

In the covariance approach, the minimum mean squared error is computed us-
ing the the derivative of equation (9.1) with respect to a; for k € Z and k =
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1,2,--- ,p. The starting point is mean squared error.

D= B = % 3 (shil = mstn — i)’ (9.1

The summation limit can be any point starting from n = p to n = N. Here
the truncation of the signal is not essential and an explicit signal windowing is
not done. Therefore, in this approach the spectral distortions from the rectnular
windowed signal do not occur.

Instead of when using a correlation approach applying the Yule-Walker is
to obtain the auto-correlation matrix ® described in section 8.3.1 in equation
(8.30). Here in the covariance approach, the covariance matrix C in equation
(9.5) derived from equation (9.3) is positive definite and symmetric but it is not
Toeplitz. In equation (9.2),n =0,1,--- ,N—1landi,j=1,2,---.,p

P
Zalcn i, 7] (9.2)

7=1
An extended equation (9.2) for ¢,[i, k] is shown in equation (9.3). In the
equation we take i,k =1,2,--- , p.

I+N-1
calik] = ) sln—ilsn—k ;Viez (9.3)
n=l
ali, k] in equation (9.3) reflects p many linear equations that can be written
in a matrix vector form similar to equation (8.27) as it is shown in equation (9.5)

c1,1] c[1,2] --- ¢l,p—1] ¢[1,p]| [ c[1,0]
0[2., 1] 0[27 2] - 0[2,? —1] 0[2., ] Ofg _ 0[2:, 0] 0.4)
C[ 71] C[ 72] C[pap_ 1] C[pvp] Ay C[ 70]

Equation (9.4) has p many linear equations in a matrix form denoted by C.
The LP coefficient vector in the covariance method is denoted by « and the
covariance vector is denoted by c. These notations are used in equation (9.5). C
in equation (9.5) is symmetric and positive definite but not Toeplitz as it is in
the auto-correlation approach discussed in the previous chapter 7.
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cl1,1] el,2] --- ¢l,p—1] ¢[1,p] o c[1,0]

c2,1] ¢[2,2] --- ¢2,p—1] ¢[2,p] (% [2,0]

C= ;oa= | |; c=| " "[(9.5)

cp, 1] cp2] - clpp=1] cppl ap c[p, 0]
Equation (9.4) in a compact form is now written in equation (9.6).
c = Co (9.6)

The solution to the LP parameters is then rewritten using equation (9.6) in
equation (9.7). Finding the solution to the LP parameters a in equation(9.7)
requires computing the inverse matrix i.e. C~'. The covariance matrix C is
symmetric, positive definite but not Toeplitz, therefore Levinson Durbin recursion
is not used, instead the Cholesky decomposition is used in equation (9.7) for the
parametric solution. In Cholesky decomposition, the covariance matrix denoted
by C is divided into lower and upper triangular matrix [24]. We have not shown
the derivation of the Cholesky decomposition approach in the text.

a=C""'c (9.7)

The covariance approach works on the the whole data set or on the segments of
the signal. The autocorrelation approach is applied on the finite length signal and
any signal beyond the finite length is zero. The covariance approach is not quite
practical for implementing the model using real time data because this works
on the whole signal or on the blocks and the samples are not zero outside the
processed block while the speech signal is generally processed as a finite length
signal.

Similar to figure 9.2, in figure 9.3, we see the analysis of the signal model using
covariance approach. In a, we see the segment of the speech signal. In b, we see
the frequency response of the LP filter which parameters extracted by covariance
approach. In ¢, we wee the pole position of the covariance approach and in d, we
see the excitation which is the output of the filter and this is white noise.
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9.3 The Burg Approach

The Burg approach is an order recursive least-squares linear predictor. There
order recursive means that if the model is of p th order, we can compute the
model parameters of the model order p + 1. The autocorrelation and covariance
approach are fixed order algorithms meaning that they are not order recursive.
This says if we change the order of the model, we need to repeat the whole
computations. The Burg approach uses both the forward and backward error
minimization approach. We have introduced the forward prediction and its error,
now we will introduce the backward prediction (BP) and its error. The order
recursive algorithm interconnects the optimum filtering and the FLP and the
BLP problems. The optimum filtering refers to the system which response is
closest to the desired response. The Burg approach needs to consider the time
instance n and the order p such that : =1,2,--- ,p.

Some terminologies of the Burg approach as the excitation, the speech input
and the forward and backward prediction errors are shown in figure 9.4. In figure
9.4, we observe how the forward and backward predicted value are estimated
from the same observation using the same amount of samples. We name now the
forward prediction error e[n] as e/[n] for an easier manipulation and it is written
in equation (9.8) where f denotes forward.

ef[n] = s[n] — 8[n] = s[n] — Zais[n — 1] (9.8)

Backward Prediction In the backward prediction shown in equation (9.9)
the current sample is computed from p many future samples. The equation
is expanded in equation (9.10). f; is the backward prediction coefficient for
i:1727"' » D-

Sn—p| = Zﬁis[n—i+1] (9.9)

§[n—p| = Brs[n—p+1]+Pas[n—p+2|+Lssin—p+3]+- - -+ Fps[n] = Zﬁis[n—i—i-l]
i=1

(9.10)
Now if we write the signal s[n — p| using backward prediction we arrive at
equation (9.11). There €’ is backward prediction error where b denotes backward.
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In forward prediction: s[n] is to be predicted
In backward prediction: s[n-p] is to be predicted
a iis AR parameters which are unknown

s[n-i]
s[n-p] s[n]
n-p n-(p-1) n-i n-1 n Time
Time
ap ap-] oAy aj ag ‘
! True speech parameters
s[n]
Predicted speech samples:
,,,,,,, . _ f
Op  Gp O 4 o=l e
A ¢ Forward linear prediction (FLP)
s[n]
1 b
Bp1 - By e B B ¢ [n]
i Backward linear prediction(BLP)

Figure 9.4: Visualization of the forward and backward linear prediction [24]
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§[n — p)] :Z@s[n—z‘+1]+eb[n] (9.11)

Now the backward prediction error in equation (9.12) is the difference between
the current sample and the current backward predicted sample. In equation
(9.12), " denotes transpose. We have used T" as a time frame in chapter 13 even
though T' is a conventional transpose notation. For fixed order, we simply write
e®[n).

¢’[n] = s[n — p] — 8[n — p] = sln — p] — B's[n — p] (9.12)

The backward prediction gives rise to the following linear equations in equa-
tion (9.13). By rearranging equation (9.13) we arrive at equation (9.14). Here r
is again autocorrelation function.

Borlp — 1] + Birlp — 2] + Bar[p = 3] + -+ - -+ + Bp-17[0] = r[p]

Borlp — 2] + Burlpl + Barlp — 4] + -+ - + Bp-1r[l] = rlp — 1]
Borlp — 3| + Birlp — 4] + Bor[p — 5] + -+ -+ + Bp-1r[2] = r[p — 2] (9.13)

Bor[0] + Sar[1] + Bor(2] + -+ -+ + Bp-1rlp — 1] = r[1]

Bp-1r[0] + Bp—or[1] + Bpsr[2] + -+ + Borlp — 1] = rp]

Bp-1r[1] + Bpor[0] + Bpsr[1] +--- - + Borlp — 2] = rp— 1]
Bp-17[2] + Bp—or[1] + Bp—sr[0] + - - - + Borlp — 3] =rlp — 2] (9.14)

Bp-1r[p — 1 + Bpor[p — 2] + Bpsr[p = 3] + -+ + Bor[0] = r(1]

Now we can write the backward prediction by equation (9.15) similar to the
forward prediction equation (8.27) derived in chapter 8.

r[0] (1] orlp=2] rlp=1]] [A r(p]
7“[.1] r:[()] - rlp :— 1] rlp — 2] /8:2 _ rlp — 1] (9.15)
rlp—=1] rp—=2] - r[1] r[0] By r[1]

Now if we compare equation (9.15) with equation (8.27), we obtain the matrix
®, the backward prediction coefficients 8 and the vector r’ in a matrix and vector
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form.

r[0 r[1] rlp—2] rlp—1] ol r[p]
o — r(l r[0] rlp—1] rlp — 2] 8= Ba b rlp —1]
rlp=1] rlp—2] -~ r[1] r[0] By r[1]

Since the matrix ® is Toeplitz and symmetric in equation (8.27), we can
rearrange this equation (8.27). Now if we compare equation (9.15) with equa-
tion (8.27), and rewrite equation (8.27) by equation (9.16), we find the relation
between backward prediction coefficients 8 and forward prediction coefficients a.

r[0] r[1] coorlp=2] rlp—1] a, r(p]
7"[‘1] r:[O] - rlp :— 1] rlp — 2] ap‘,l _ r[p — 1] (9.16)
rlp=1] rlp—2] - r[l] r[0] o r(1]

From equation (9.15), equation (9.16) and equation (8.21) given in chapter 8,
we interconnect the BLP coefficients. (3 is the reverse version of FLP coefficients
« which is also shown in equation (9.17).

61 Oép
B 5:2 — | = (9.17)
ﬂp aq

In equation (9.10), r[i] = E[s[n|s[n—i]] fori =1,2,--- ;pand n =0,1,--- ,N—1

Thus the solution to the BLP is written in equation (9.18).
=27 (9.18)
ot =@ 'r '

In the Burg level approach, the prediction coefficients are achieved by minimizing
the average of the forward and backward errors shown in equation (9.19). e/ and
e’ are defined in equation (9.8) and equation (9.12). Here we used the forward
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and backward quadratic errors.

,_.
S

= LN S iy 4 e, i) (9.19)
Nz o
As mentioned, the quality of the error is depending on the selection of the co-
efficients .. These are obtained by equation (9.20) Levinonson-Durbin recursion
approach [80]. In equation (9.20), x is the reflection coefficients. One way to find
this is lattice filter realization. Thus the error interpretation can be done using
lattice filtering. Next we have briefly discussed this.

a;[n] = a;_1[n] + K1 [t — n] (9.20)

Benefits of FLP and BLP Error Computations: The BLP and FPL
convey the same statistical information of the signal but a combination of both
BLP error and FLP error generate more error points. The results in improved
estimate of the AR parameters [121]. Thus (N —p) forward and (N —p) backward
LP errors may summarized as :

b 635 b Sy b [ 1
e’ = Lg] el’ = [S J] eft = _agjb] (9.21)
[slp+1]  slp) sl | [ slp+1] ]
slp+2 p+1] s[2] slp + 2]
Sp = : : : : ; os= ; (9.22)
sIN —1] s[N —2] [N —p+1] s|N —1]
| s[N] s[N —1] sIN — p| | s[N] ]
[0 0 1]
00 0 ... 0
J=1|. ... (9.23)
10 0
10 0 0]
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Similarly,

s[1] s[2] slp+1] s[N]
s[2] s(1] s[p] s(N — 1]
S,J = : : : Loy os=] (929
SIN—=p+1] s[N—p+2] s[N — p] slp + 2]
sIN —p]  s[N—p+1] sIN| | | slp+1] |
ellp+1] eblp+1] a1
elp+2] eplp + 2] ap[2]
e = L ey= | | = : (9.25)
el N —1] eON — 1] ap[p — 1]
I el[N] | I el [N] | | oyp)

9.3.1 Lattice FIR Filter

The lattice structure is useful in modeling the layer or the cross section of the tube.
Each section or the stage of the lattice filter indicates the cross sectional area of
the vocal tract tube. The lattice predictor combines the forward prediction (FP)
error and backward prediction (BP) error in a single cascaded structure. This
gives the lattice prediction coefficient. Figure 9.5 is a p order lattice structured
filter. Each rectangular box in the figure is embedded with the backward and
forward error formulation and a computation of the reflection coefficients which
are known as PARCOR coefficients. Changing the filter length leads to a com-
pletely new set of filter coefficients. The order of the predictions and the stages
of the lattice predictor are the same. If the prediction order is p, then the lattice
structure has p many stages. The the prediction coefficients o can be directly
computed from the lattice filtering. Reflection coefficients and its relation to the
vocal tract model are introduced in chapter 2 in section 2.4.2. We show here how
the reflection coefficients can be computed from the LP coefficients. A detailed
description of the lattice filter and its structure can be found in [60], [24].

9.3.2 Reflection Coefficients and Linear Prediction Coef-
ficients

Here we show how reflection coefficients x can be derived from the LP coefficients.
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For the order and time recursive case, we consider the model order and the
time thus we have seen 8[n] = 3'_, a,[i]s[n —i] for i = 1,2,--- | p. Now we look
at figure 9.6, we say equation (9.26) holds for the input and output relation as
input is denoted as s and output denoted as y.

f f _
e [n] € [n] =y[n]

S[l’l] / Kl
j\_» "
-1

b b (- b
eO [n] el [n-1] e1 [n]

Figure 9.7: Ist order lattice structure

y[n] = s[n] + aq[1]s[n — 1] (9.26)
We see figure 9.7, we rewrite equation (9.26) as equation (9.27).

egln] = ejln] = s[n]

elln] = el[n] + rk1el[n — 1] = s[n] + Kys[n — 1]

eb[n] = krel[n] + eb[n — 1] = kys[n] + s[n — 1] (9.27)

Now equation (9.26) and equation (9.27) allow us to say the first order reflec-
tion coefficient x; is a;[1] and this is shown in equation (9.28).

K1 = aq[1] (9.28)

Similarly for the order p = 2, we have

y[n] = s[n] + as[l]s[n — 1] + az[2]s[n — 2] = s[n] + Z aslilsln —i]  (9.29)

y[n] = s[n] + as[1]s[n — 1] + az[2]s[n — 2] (9.30)
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Now we arrive at equation (9.31)
ed[n] = s[n] + k(1 + ka)s[n — 1] + kas[n — 2 (9.31)

The first stage lattice filter is just discussed in equation (9.28), similarly the
second order reflection coefficients can be obtained lattice filter gives equations
(9.33) and (9.31).

as[2] = ko and as[l] = K1(1 + Ka) (9.32)
Ko = ap|2]
o as[1]
e

Similar to the reflection coefficients k1 and ks, k,, can be computed for the p”
ordered lattice structured filter shown in figure 9.5. The output of the (p — 1)
stage corresponds to output of (p — 1) order lattice filter. Thus if y[n] is the
output then y[n| = eg_l[n]

n] = ki [n — 1] (9.33)
b In—1] = kel |[n] (9.34)

Now from equation (9.34), figure 9.5 and figure 9.6, we can define the reflection
coefficient k; by equation (9.35). This gives the reflection coefficients for the

lattice filter. N—1( p f
i, = > o {e]\z[—_ll[nf_ lle;_y[n]} (9.35)
> n—o 1€i1[n]}

Applying equation (9.35), we get the error of the Burg approach in terms of

forward and backward error prediction in equation (9.36).

N—-1 p
1

=SS el ] = w1+ (1 = miel )] (9.36)
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Finally minimization of equation (9.36) gives us the optimum coefficients that is
the reflection coefficients in equation (9.37).

2N el — el ]}
SNl Cn] + et *n]]

Now substituting x in equation (9.20), we obtain the coefficients of signal

(9.37)

Ri

model using the Burg approach.

In figure 9.8, we see the analysis of the signal model using Burg approach. In
a, we see the segment of the speech signal. In b, we see the frequency response
of the LP filter. In ¢, we see the pole position of the Burg approach which says
the system is stable. In d, we see the output of the filter and this is white noise.

a: Speech segment b: Frequency response of Burg model
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c: Pole position of Burg model d: Output of Burg model:Excitation
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Figure 9.8: Signal model: Burg approach
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9.4 ULS Approach

In this approach the error in equation (9.42) is minimized by computing the
average of the sum of the squares of the estimated forward and backward linear
prediction errors.The forward and backward prediction errors are computed in
order to compute their combined error. In equation (9.17), we have seen the
backward prediction coefficients are the reverse version of the forward prediction
coefficients. The ULS approach is described in details [122], [121]. The ULS
approach is modified covariance method. This is based on optimization with
respect to all the prediction coefficients, whereas the Burg method performs a
constrained least squares minimization with respect to only a single prediction
coefficient.

J introduced in equation (9.23). This represents p + 1 by p + 1 dimensional
reflection matrix and ’ denotes transpose. Using the reflection matrix, we get a
relation between forward linear prediction and backward linear prediction. This
is shown in equation (9.38).

’

182,60, - - ,5]1’)’]’ =[ab,ab .-+, of] = Ja (9.38)

We get the forward prediction error e/ [n] and backward prediction error €}[n]
in equations (9.39) and (9.40). The total N — p forward linear prediction error
elements and the N — p backward linear prediction error elements can be formed

from N data samples without searching through all the available data.

FLP error: e/[n] = s[n] — §[n] = S;[n]a;jb (9.39)
BLP error: eg[n] = s[n—p|] —3[n—p| = s;)[n]Jagb (9.40)

The vector notations of s, and agb are formulated in equation(9.41).

/

[ s[n] ] [ a,[1] ] [ ar |
S[n - 1] @p[Q] a{g_l
spln] = : ;Oégb = : s Joy, = : (9.41)
sln —p+1] aplp — 1] oy
sln — p] ] | O‘p[p] i i 1 ]

The sum of the forward and backward linear prediction squared error n/? is
written in equation (9.42). This generates p + 1 set of linear equations shown in
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equation (9.42).

W= 5 Sl lnll + elfnl ) (942

Substituting the values of the e/[n] and e’[n], we arrive at equation (9.43).

' = Z_[(S[n] - Z apli)sin —i))* + (s[n — p) = B,sln — pl)?] (9.43)

The error minimization ngb with respect to the prediction coefficients yields a
set of linear equations which can be formulated by equation (9.44) where j =
172737"' » D-

In equation (9.44), r[i, j] is computed by equation (9.45).
rli,j] = i{{s[n —isln = j]} +{sln —p +dlsln — p + j]}} (9.45)

Similar to equation (8.25) we have coefficient matrix ® obtained from r[i, j]
which is computed by equation (9.45). Thus we get matrix of the data vector
and compute the inverse of the matrix using fast modified QR factorization. This
is called an unconstrained model because the matrix ® of the data vector is not
Toeplitz and the inverse can not be solved by the Levinson-Durbin approach what
is the case in other standard signal models.

Equation (9.45) generates a set of (p + 1) times (p + 1) linear equations in a
matrix ® similar to equation (8.28) discussed in chapter 8.

Pa = néb (9.46)
= Y (splnls,[n] + Js,[nls, [n]) (9.47)
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where

sn] sln —pl
sln — 1] sin —p+1]
spln] = : s;)[n] = :
sjn —p+1] s[n —1]
sln—p] | | sl

We see the analysis of the signal model in figure 9.9 using ULS approach using
the same signal segment used in figures 9.2, 9.3, and 9.8. Similar to these figures,
in figure 9.9, we see the segment of the speech signal in a. In the same figure, b
is the frequency response of the LP filter, figure ¢ shows the pole position of the
ULS approach and the output of the filter is white noise in figure d. Here the
peak values in figure b are the coefficients of the AR parameter approximation
and this are better shown in the figure than figures 9.2, 9.3, and 9.8. In figure
b, we can clearly see the six peaks as representations of formants following the
model order 12 as each two poles represents each formant. Thus using the ULS
approach, we have six formants for 12 order LP model in b in figure 9.9.

In equation (9.46), 0 is a p x 1 length zero vector and 7]]’:” is a p x 1 length
vector.

The problem to the coefficients is then solved by fast covariance QR factor-
ization. For this we followed a reference [122]. The error 7 is not solved by using
Levinson-Durbin recursion, therefore it is called unconstrained [60].

Next we discuss a general analysis of different types of linear prediction solu-
tion approaches.

9.5 Analysis of the Signal Models

This analysis is collected from a number of literature that discusses the adaptive
signal analysis for the signal model. Non-stationary speech is managed to follow
the stationary in a mathematical sense for its analysis. The synonym of the
stationary is approximation. Therefore a statistical model is necessary for its
analysis. A stationary random process is not a realistic model for speech. As
mentioned earlier an approximation, one assumes that speech signals keep their
properties in intervals of about 20 ms duration. As a result, a prediction filter
for this speech signal has to be updated according to this time frame. Therefore,
an efficient algorithm for the inversion of the autocorrelation matrix is crucial for
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Figure 9.9: Signal model: ULS approach
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the application of a predictor.

In our noise solution, we have the Yule-Walker approach for model analysis
and the ULS approach for signal model. In figure 9.10, we have shown the
analysis between these two models and true AR parameters. We see the ULS
approach shows good AR parameters approximation than Yule-Walker approach.
The implementation is based on the reference [98].

AR spectral estimates

1 0 T T T T T
Yule-Walker
51 — ULS i
True Spectrum
0 -
5}

LN
o
T

Magnitude
|
o

-20
-251
=30
-35r
_40 LL 1 | 1
-3 -2 -1 0
Frequency

Figure 9.10: Signal model analysis: Yule-Walker approach and ULS approach

Both, the Burg approach and the modified covariance algorithm which is
called here as ULS approach are based on the minimization of the forward and
backward squared prediction errors. The ULS approach is based on the mini
mization of the prediction coefficients. The Burg approach sets constraints on
the LP coefficients so that this coefficients satisfy the Levinson recursion and
obtain least squares optimization using reflection coefficients in order to solve
AR parameters problems. Some problems such as spectral line splitting, bias
of the frequency estimates are eliminated in ULS approach. The only problem
applying the ULS approach is its weakened stability issue of the LP coefficients
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but mainly it does not appear when the ULS is structured following stable lattice
filters which is used here. Next we summarize some important aspects.

e The ULS approach and Burg approach can be analyzed using the lattice
structure. This is useful to capture the physical speech production process
efficiently.

e The Yule-Walker introduces poor estimated parameters [89].

e The problems such as line splitting, frequency bias, and spurious or false
peaks are observed in the Burg approach.

e The ULS approach may result in instability where the Yule-Walker ap-
proach and Burg approach may generate stable model analysis. In spectral
estimation, a model stability is not a major concern.
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Chapter 10

Steady-unsteady Noise Solution

Outline In this chapter we discuss how the steady-unsteady time-varying noisy
signal is treated for the solution to our noise problem. This is similar to the noisy
speech enhancement discussed in [34]. Here our signal model is based on the ULS
approach, and the noise is modeled by applying the Yule-Walker equation. The
noise is minimized in the sub-bands of the signal. The sub-bands are achieved by
an M-band cosine modulated quadrature mirror filter bank (QMF) developed in
[132] and the noise is minimized by the spectral minimization method proposed in
[38]. Afterwards the Colored Noised Kalman filtering is applied in each sub-band
in order to enhance the speech. The signal and the noise models for the Kalman
filtering are discussed in chapters 8, 9. This chapter first gives a short overview
about the structure of the sub-bands and how this is used, next the spectral
minimization algorithm, finally the Kalman filtering operation as a treatment
of the steady-unsteady time-varying noisy signal are discussed. We explain the
existing algorithms for a complete analysis of our noise problem and its solution.
Though the algorithm has already been applied in multimedia signal processing,
the explanation of the problem definitions and the explanations of each subparts
of the whole application are described in the chapter using our own terminology
and applying our own concepts based on the literature review.

10.1 The Scenario

The scenario is described first only in some overview. Details will come later. We
model the scenario in a natural way: We have noisy speech observations y[n| at
time indices n which are mixed by clean speech s[n] and background noise b[n].
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Therefore we have the observation y[n] given in equation (10.1).

y[n] = s[n| + b[n] (10.1)

The main probllem now is: To obtain the clean speech s[n| itself.

The major difficulty is that it is directly unaccessible. At the current situation,
one simple way we can obtain it is if we know b[n| and subtract this from the
observation but b[n| is unkown too. For this reason the only way out is to estimate
s[n]. Now the challenge is to provide at least a good or even the best estimate.
In the sequel we will approach this challenge.

Our starting point is to estimate y[n] and compare it with the obsevation.

yln]

For this we assume that we have a model of the situation that allows us to
compute the output y[n]. For getting this our model tries to reflect the partic-
ipating parts of the human body, in particular the vocal tract. While such a
model is available in its principle structure but it contains unknown parameters.
These parameters are approximately obtained in chapter 8 and 9 using the LPC.
For this reason, the computed g[n] will not coincide with the observed value. It
is only an approximation. The goal is to make the approximation as good as
possible. This can be done by changing the parameters that are underlying the
computation. There are different ways one can attain this unknown values.

First,we return to equation (10.1). Now suppose, we have two different esti-
mated values s,[n] and b,[n] as well as sp[n] and b,[n] from some a and b obtained
at some time index n. The best estimated value would be the one that would
provide less differences between the observed value and estimated value.

We look at the signal s and noise b in the following two equations.

s[n] = Z a;s[n — ] + gsus[n]

bin] = Brbln — k] + gus[n] (10.2)

k=1

The first term on the right side of the first equation ( this is first introduced in
chapter 7 in section 7.3, we maintain the same equation number for a convenience)
is a linear combination of some past values of s[n] with coefficients «; for i =
1,2,--- ,pthat have to be determined. The second term in this equation describes
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a weighted white noise. We have a linear combination of some past values of b[n|
with coefficients 5, for k = 1,2,--- , ¢ that have to be determined.

Here we have equation (10.2) for the speech s[n| and equation (10.1) for the
noise b[n|. These equations holds if we have the coefficients and we do the arith-
metic in the right way. As mentioned, initially the coefficients are not known and
we have to determine them.

The speech s[n] is modeled by the ULS approach discussed in chapter 9 in
section 9.4 and the noise b[n] is modeled by applying the standard Yule -Walker
equation discussed in chapter 8 in section 8.3. Both of them use the minimizing
the mean squared error (MSE) criteria of the least squares approach. In the
MSE criteria the minimum mean squared error between the observed value and
estimated value is investigated.

As said, a problem is that the computed ¢ is not exactly the observed y.
Thus we have an optimization problem which results when we make use of the
equations (7.12), (10.2) in equation (10.1) in a recursive way.

Given the background of the noisy situation, the handling of the situation is
taking place in three different steps that are described in [34].

e Sub-band decomposition
e Noise tracking in the sub-band by spectral noise minimization

e Colored Noise Kalman filtering

In the sub-band decomposition and synthesis stage, each sub-band is attached
with a noise tracking by spectral minimization and colored noisy Kalman filtering
operation as shown in figure 10.1. This says the signal is first decomposed into
m-bands using analysis filter h,, which z-transform is H,,. The sub-band signal
is then used first for noise suppression by a spectral minima tracking algoithm,.
Then an m-bands Kalman filters are used to enhanced the spectrally wighted
sub-band signals. After the enhancement, the decomposed signal is synthesized
to x using synthesis filter f,, which z-transform in F,,. Next, we describe first
signal decompositions, then the noise tracking and finally the Kalman filtering
operation.

10.2 Sub-band Analysis

A sub-band decomposition is a transformation that decomposes the signal into
some sub-bands. Each sub-band has the frequency of each band. This is useful to
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Figure 10.1: M-band Kalman filter for colored noise problem

manipulate the information of the signal and to analyze the signal in smaller sec-
tions rather than the whole signal. The sub-band decomposition is used in many
applications. A common application of sub-band decomposition is a speech cod-
ing. A signal can be split into sub-bands in different ways as for instance by
applying FFT based filter bank such as quadrature mirror filter (QMF) bank
or a wavelet transformation. Some common concepts such as decimation, inter-
polation, sub-band decomposition, sub-band synthesis are used in the sub-band
decomposition of a signal. The decimation is the process of decreasing the sam-
pling rate and the interpolation is the process of increasing the sampling rate.

A basic sub-band decomposition system has an analyzer and a synthesizer.
In the analysis, the sampling frequency fs of input signal s[n| is divided into sub-
bands via the analysis filter bank. For example, a two channel based sub-banded
signal may have the signal bands so[n] and s;[n]. Each sub-band is also known as
channel. Each sub-band is decimated at a decimated sampling rate for instance
%. In the synthesis section, the decimated signal bands are interpolated via a
synthesis filter bank [83], [84], [79].

We only investigate the M-band sub-band approach and do not discuss the
other methods. For this purpose we start with the concept of M-band filter banks.
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M-band Filter Banks We explain here how we apply the M-band quadratic
mirror filter band (QMF) to split the signal in to sub-bands. As mentioned
before, this is already applied in [34]. This QMF typed sub-band uses the cosine
modulated low pass prototype filter in the polyphase FIR filter structure to realize
the M-band filter banks with a nearly but not totally perfect reconstruction.
Therefore it is called pseudo typed QMF sub-band analysis [7], [6]. The properties
of this filter-bank are mentioned in [7] and a list of the main properties is given
next.

e The FIR filter is designed using the window method which uses the Kaiser
window function [119].

e The filter bank uses a polyphase FIR filter structure (see Appendix).
e The responses are uniform linear phases.

e This structure uses only a single prototype filter and a cosine modulation.
Therefore it is simple to design.

e The sampling rate is critical; that means the number of sub-bands is equal
to the decimation factor.

In figure 10.2 we see how the signal s[n] is decomposed in the analysis section
and regenerated in the sythesis section:

e In the analysis section, s[n] is decomposed into sub-bands v,,[n] for m =
0,1,---, M — 1. An analysis filter h,,[n] is used for signal decompositions.
This is shown in equation (10.3) (the analysis filter is defined in equation
(10.10)). The signal in each sub-band v,,[n] is then down sampled by some
factor i and generates u,,[n]. This is shown in equation (10.4). Here i = 32.
The QMF sub-band decomposition has a critical sampling rate. This means
that the number sub-bands, the down sampling and the up sampling has
same factor; if the sub-band

Um[n] = hp[n] @ s[n| (10.3)

alin] f — 0,40, 42, - --
w ] = {v [in] for n i, £2i (10.4)

0 Otherwise
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e In the synthesis section we have first the up-sampled sub-banded signal
wy[n] and the up-sample factor is j. Here ¢ and j are the same integer
valued numbers. This means j = 32. This is shown in equation (10.5).
The up-sampled sub-banded signals are then synthesized into x,,[n] by the
synthesis filter f,,[n] as it is shown in equation (10.6) (the synthesis filter is
defined in equation (10.8)). The synthesis signals x,,[n] are then summed

up to y[n| which is approximately equal to s[n]. This is shown in equation
(10.7).

vm[n] ‘ u [n] .

u [n] :

Figure 10.2: Pseudo Cosine Modulated M-Band QMF

Uy |5 for n=0,+5,+£27,---
wnfn] = 4 15 S5 (10.5)
0 Otherwise
Tmn| = fmn] @ wy,[n] (10.6)
M-1
ylnl = amln] = sln] (10.7)
m=0
Analysis filter bank Synthesis filter bank
. u [n w [n]
E vy [n] i : l[] i : 1 E
™ u,lnl it
V3 [n] : u3an : w_[n]
s[n] E E y[n] = s[n]
w[n]
Hm ’» 4% Fm
-

:

The basic elements and properties of QMF are now:

e [t uses only one prototype filter for the signal decomposition as the analysis
filter and the synthesis filter are mirror images of each other.
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e The sampling rate conversion in the analysis and synthesis case are equal
to the number of decomposition bands. This is called critical sampling. In
this case the up-sampling rate and the down-sampling rate are equal.

e The analysis and the synthesis filter are mirror images of each other. This
means if f,,[n] is a synthesis filter, then equation (10.8) is satisfied.

fm[n] = hp|L — 1 —n] (10.8)

Filter Coefficients The analysis and synthesis filters are carefully designed to
cancel aliasing and imaging distortions shown in equation (10.9). The coefficients
of the filters are real. They are derived by a cosine modulation instead of an ex-
ponential modulation that happens to be in the discrete time Fourier transform
(DFT) based filter banks. The adjacent sub-band aliasing is cancelled by estab-
lishing precise relationships between the analysis and synthesis filters h,,[n] and
fm[n]. These conditions are given in equations (10.10) and (10.11).

Sln] = i - sim|hp[IM — n) fi[l — Mn] (10.9)

=

Il
o
3
I

In equations (10.10) and (10.11), © = (—1)"% and w[n| corresponds to the L

sample length of the Kaiser window function.

holn] = 2w]n] cos{%(m +0.5)(n — %) + Q) (10.10)

fuln] = 2wl cos{ - (m + 0.5)(n ~ %) — 0, (10.11)
At the analysis stage, the input signal s[n] is processed by a (L — 1) order
FIR filter. The input is divided into M sub-bands in the analysis stages. In the
synthesis stage, y[n] is a combination of the sub-bands. The synthesis filter is the
mirror image of the analysis filter. Both the analysis and synthesis section uses
FIR filter based on Kaiser window function.

10.3 Spectral Minima Tracking in Sub-bands

Now the noise level in each band in the M-band signals is tracked down to its min-
imum following the spectral minimum tracking algorithm described in [38]. The
algorithm is based on the spectral amplitude estimation in the sub-bands. This
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estimation is based on the minimum mean squared error estimation (MMSE).
The goal is here to track the local minima of the noisy measurement signal by
computing the local minima of the speech signal by using some constants. These
are determined experimentally.

The spectral minima tracking is a type of spectral weighting. This is a spectral
amplitude estimator. This is a typed of minima tracking in each sub-band. This
attenuates different spectral regions of the mixed noisy speech signal and the
noise with different constant known factors. An aim of this is to obtain less noisy
signal. In this approach the noise estimate is updated continuously tracking the
minima of the noisy speech in each sub band. The concept is that ehe noise
estimate increases when ever the noisy speech power increases.

We use the power spectrum and first introduce the basic notions. In equation
(10.12), P, (k) denotes the power spectrum of the m' band signal S,,(k). It
is the k' spectral component of m* sub-band of the noisy speech signal. This
has some how similarity the spectral subtraction method. In the equations we
see first the smoothed power spectral density of the observation using smoothing
factor rho and the spectrum of the observation. The noise spectral density is
updated until it equals to power spectral density of the observation.

P, (k) is the noise power spectrum of the B,,(k). Here B is the noise vector.
It is the k" spectral component of the m sub-band. The short time noise power
spectrum is needed to estimate the spectral amplitude of the noisy signal. The
noise spectrum estimation performs some type of temporal minima tracking of
P, (k). This spectral estimator has a build-in minimum tracking 7 term in
equation (10.14).

In equation (10.12), P; (k) is smooth noisy signal power spectral density of &k
component at m band. This is also the local minima of the noisy speech signal.
Y. (k)] is noisy signal spectrum of k& component at m band. In equation (10.14),
P, (k) is noise power ppectral density of k& component at m band p is the smooth-
ing factor and typically it is from 0.7 to 0.9 which is selected experimentally. 7
is the look a head factor which controls the adaptation time of the local minima
P, (k). Typical parameter selections for p = 0.7, 7 = 0.96, and v = 0.998 in
order to adapt the noise in each sub-bands.

e Smoothed sub-band power spectrum is given in equation (10.12):
Py, (k) = pPy,_, (k) + (1 = p)|[Yu (k) (10.12)

e If noise power spectral density B, (k) at m band which has frequency com-
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ponent k is less than than the smoothen signal as shown in equation (10.13),
then it is updated by equation (10.14).

By,_i (k) < P, (k) (10.13)

e If P, (k) is equal to smoothed noisy speech power density spectrum P; (k)
i.e. eq (10.15), then it stops updating.

Pon (k) = 0By (1) 4 T (P (B) = 7P, (B)) (1014
e Else
b, (k) = P, (k) (10.15)

10.4 Kalman Filter

One can estimate something before an event has happened (priori) or after an
event has happened (posteriori). In our context this leads to the next concepts.
The detailed of this derivations can be found in [21], [127].

10.4.1 State space derivation

First we reformulate the equations formulated for y[n], s[n| and b[n] in terms of
vectors and matrices where we use bold face letters. The state information is
written in the state space form in equation (10.16). In the equation, n is the time
varying index and the state vector s at time n+1 is a p length vector of the linear
combination of p previous vectors using a p X p dimensional matrix A and some
additional disturbance vector u of length p that is modeled as zero mean random
white noise which is perpetrated by a p x 1 dimensional matrix g, at time n.

s[n + 1] = A[n]s[n] + gs[n]uln| (10.16)
Equation (10.16) is rewritten in equation (10.23).
s[n + 1] = v [n]s[n] (10.17)

The steady background noise defined by an AR process is written in equation
(10.18). In the equation, n is again the time index. The equation says if we
look at the noise vector b at time n + 1, then it is a linear combination of a
q x ¢ dimensional matrix D[n] and noise vector b at time n with an additional
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disturbance v which is perpetrated by a ¢ x 1 dimensional matrix g, at time n.
v is modeled as zero mean random white noise.

b[n + 1] = D[n]b[n] + gy [n]v[n] (10.18)

/

Using an abbreviation 1, equation (10.18) is rewritten in equation (10.19).

denotes a transpose symbol.
b[n + 1] = ¢ [n]b[n] (10.19)

The definitions of s[n], b[n], g , g, 7, ¥ as well as of the matrices A[n]| and D[n]
are given below:

s[n]=[sn—1],s[n—2],s[n—3],--- ,sln—p+ 1],s[n—pﬂpxl
b'[n] = [b[n — 1], b[n — 2],b[n — 3], ,b[n — g+ 1],b[n—q]]qx1
g. =0, 0, 0,1 s v =10,0,---,0, 1] .
g, = [0, 0,0, 1] 3 v = |0, 0, ,0,1]
[0 1 0] [0 1 0]
0 0 1 0 0 0 1 0
Anl=|. ... ... ... ... Dinl= | ... (10.20)
0 0 0 1 00 0 ... 1
Q1 Q2 az Yl p B Ba By oo DBl axq

The «; and (; are coefficients to be determined. How these coefficients are
determined using the ULS approach and the Yule-Walker equation are explained
in chapter 8 and chapter 9.

The observation equation is given in equation (10.21). In the equation, n is the
varying time index. The equation says if we look at the observation vector y at
time n, then we see that it is a linear combination using a ¢ x p dimensional matrix
C|[n] at time n from the previous ¢ states of the state s[n| and disturbance which
is modeled as a colored noise b. In this equation, a measurement disturbance
matrix G[n] times measurement disturbance w(n]. The noisy observation vector
given by y at time n + 1 is shown in a state space form in equation (10.21).

y[n + 1] = C[n]y[n] + Gn|w|n] (10.21)
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The detailed of equation (10.21) is:

_|A[n] O ~|s[n] _|lgs O _ {uln]
CW‘[ 0 D[n]] 2yl = [b[n]] Gl =14 gb] W = [V[n]]

u, and v, are zero-mean white noise sequences. The covariance of u,, is 2[n]

and the covariance of v, is oZ[n] such that equation (10.22) hold and summarized
W/{n] is covariance matrix of w(n|.

Win] = [U%n] Jg?n]] (10.22)

Now the The state s and the noise b are not correlated. The noisy observation
vector y at time n is a sum of speech s and noise b. Here we introduce a ma-
trix H[n| to rewrite the state space definition of the observation y. Now our
observation vector is written in equation (10.23).

Observation :y[n] = H[n] y[n] = [y[n] w[n]] [s[n]}] (10.23)

Given the model parameters, the computations of the M-band colored noisy
Kalman filtering operation is taking place in two steps. For this we read the
literature [31], [46], [127], [21], [10]. The computational steps are:

e Prediction of the measurement.
e Update the predicted estimation.

The computational steps are discussed next.

10.4.2 Prediction Estimates

The prediction estimate of y[n] at time n given the value for n — 1 is y[n|n — 1].
g[n|n — 4] is the predicted value of y[n] based on the observation samples up to
time [n —d]. In order to estimate the error, we have to consider the development
of the error over time.

The innovation or the error signal e[n|n] is given in equation (10.24).

e[n|n] = y[n] — g[n[n] (10.24)
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Similar to equation (10.24), we have equation (10.25).
e[n|n — 1] = y[n] — g[n|n — 1] (10.25)
The prediction equation is shown in equation (10.26).
yinjn —1] = C[n — 1]y[n — 1] (10.26)

By using equation (10.26), equation (10.25) can be derived as shown in equation
(10.27).

e[nn — 1] = y[n] — glnjn — 1]
e[njn — 1] = Cln — 1]y[n — 1] + Gln]w[n] — C[n — 1]y[[n — 1][[n — 1] (10.27)
efnjn — 1] = Cln — 1{[g[n — 1] = y[[n = 1[[n = 1]I} + G[n]w[n]

Equation (10.27) can be re-written as shown in equation (10.28).
elnln — 1] = Cln — 1]e[(n — 1jn — 1)] + G[n — 1]w[n — 1] (10.28)

The covariance matrix of the prediction error e[n|n — 1] is shown in equation
(10.29). In the equations " denotes the transpose.

P[n|n — 1] = E{e[n|n — 1]e[n|n — 1]/} (10.29)
Similar to equation (10.29), we have equation (10.30).
Pln|n] = E{e[n|n]e [n|n]} (10.30)

Substituting the value of the prediction error shown in equation (10.29), the
prediction error covariance matrix P[n|n — 1] is shown in equation (10.31) [21].

Pnln — 1] = Cln — 1JP[n — 1|n — 1]C'[n — 1] + GW[n]G’ (10.31)

10.4.3 Update Predicted Estimation by Correction

The next step is then to estimate the current estimate g[n|n] from g[n|n—1]. This
leads to the new state update estimation equation shown in equation (10.32).

!/

yln|n] = ylnjn — 1]+ K[n](y[n] = H[n = 1]§[n|n — 1)) (10.32)
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In equation (10.32), the Kalman gain matrix K[n] has to be computed and how
this is computed is shown in equation (10.33).

K([n] = P[n|n — 1JH[n — 1)(H [n — 1]P[n|n — 1]JH[n — 1]) (10.33)

The state variable estimation error, also called the innovation signal, is now
shown in equation (10.34). The innovation is a mixture of the signal and the
noise [127].

elnln] = (y[n] = H'[n])g[nln — 1] (10.34)

For the covariance matrix of estimation error we have equation (10.35) and I is
the identity matrix.

Pln|n] = (I — K[n]H [n])P[n|n — 1] (10.35)

Using the Kalman gain for the estimation of the prediction, we can estimate the
clean signal denoted as § by equation (10.36).

§[n] = H'y[n|n] (10.36)

In figure 10.3, we see the signal flow diagram of the Kalman prediction and
estimation for the color noisy speech signal. Here, we see the observation consists
of s and noise b. These are predicted first and then estimated using the Kalman
gain K in order to generate estimated s. In this diagram, we see the observation
consists of mixed speech and noise. Both of them are modeled by AR approaches.
The observation is estimated, updated and corrected by Kalman gain matrix K.

K[n] %\
Aln]
C[n] <—©‘7 7!

$ [n]

S[n+1]

Figure 10.3: Signal Flow in the Kalman filtering
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In figure 10.4, we see that time varying steady-unsteady noisy signal is en-
hanced. For this we used 32 sub-bands where each band is 1024 length. The noise
is minimized and the Kalman filter is applied in each sub-band. In this figure,
a is noisy spoken command Offne die Tuer and b is an enhanced version of this
in the time domain. The amplitude and sound level in ¢ and d of the noisy and
enhanced signal are then measured using A-weighting filter (discussed in chapter
3). This filter is used in practice for instance in the acoustic control. The spec-
trum of the noisy and enhanced signal are shown in e and f. We computed the
SNR of this experiment and it is 21.

10.5 Analysis and Evaluations

In this section, we analyze, investigate and compare some speech enhancement
approaches to evaluate our time varying noise treatment approach. These experi-
ments and comparisons are done using our own data. In the figures, the standard
enhanced speech means the application of standard pre-emphasis filter and the
corresponding technique, the specially enhanced signal means the applications of
the redundancy removal approach, the pre-emphasis filter, the mached filter and
the corresponding technique.

10.5.1 Wiener Filter

The Wiener fillter is a kind of competition to the present appoach and therefore
we consider it. In the Wiener filter, y[n] in equat (10.1) is mixed with the desired
signal s[n| and an additive noise b[n|. A common choice of bn] is an additive
white Gaussian noise. Then y[n| is estimated by the coefficients h;. The signal
s[n| is a short time signal. This means the signal is windowed by a Hamming
windowing (see chapter 8). This generates an estimate of y[n] which is denoted
by g[n] and the difference between y[n| and g[n] is an error e[n]. The error is
minimized by using mean squared error (MSE) shown in equation (10.39). The
accepted signal is the one which give the minimum mean squared error (10.39).
More on the Wiener filter can be found in [126]. (10.37).

gln] = Z hiy[n — i (10.37)
eln] = y[n] — g[n] (10.38)
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Figure 10.4: Hybrid noisy speech and M-band Kalman filter
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E{e*} = E{(y — 9)°} (10.39)
In figure 10.5 we see the result of applying the Wiener filter. In the figure, in
a we see the speech signal which is enhanced by using a standard pre-emphasis
filter (see chapter 4). In the same figure, in b, we see our approach that is
the redundancy removed signal is used for strong noise removal by applying the
matched filter and then this signal is enhanced by using the Wiener filter. The
enhanced signal created an additional noisy rhythmic sound. The Wiener filter is
not effective for our hybrid noisy signal. The SNR in this case is approximately
-1.04 (explained in chapter 3).
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Figure 10.5: Evaluation of Wiener filter and its output

10.5.2 Spectral Subtraction

One of the most commonly standard noise reduction methods is the spectral
subtraction. In this method the magnitude spectrum of the noise is subtracted
from the magnitude spectrum of the noisy speech signal. In equation (10.40),
Y (k), S(k) and B(k) are the Fourier transforms of y[n], s[n] and b[n].

Y (k) = S(k) + B(k) (10.40)
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An estimate of the enhanced magnitude spectrum of the signal S (f) can then
be found subtracting the magnitude spectrum of the noise spectrum from the
magnitude spectrum of the observation signal Y (k). The constants are ( = 1 and
0=1.

[S(k)[* = Y (k)| = 0| B(K)|* (10.41)

In figure 10.6, in a we see the noisy signal enhanced by the spectral subtraction
method and in b we see the noisy signal is specially enhanced. The spectral sub-
traction method did not enhance the speech signal rather this added an additional
noisy sound. The SNR is approximately -3.47.
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Figure 10.6: Evaluation of spectral subtraction and its output

10.5.3 White Noise Kalman Filtering

The Kalman filter is first applied to the speech signal assuming the speech is
corrupted by the white noise [72]. The model is shown in equation (10.42).
The system noise w[n| is a white Gaussian noise. This has zero mean and unit
variance. The measurement noise v[n] is an additive noise which is also zero
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mean and has known variances. Here the signal model is based on the Yule-
Walker equation and the transition matrix A is a p times p dimensional coefficient
matrix, system matrix units B, C is a p times 1 dimensional matrix and s is p
times 1 dimensional vector.

x[n + 1] = Aln|s[n] + B[n]w[n]

(10.42)
y[n] = Cln]x[n] + v|n]

Applying this Kalman filter to our hybrid noisy speech, we obtained a degraded
speech signal. We observed this when using the standard noise reduction tech-
nique and also using our approach which is a redundancy removal, pre-emphasizing
and strong noise removal and then applying Kalman filter. In figure 10.7, we see
the result of this type of Kalman filter in the hybrid noisy our speech. This filter
is not useful for our application. The SNR is approximately -1.187.
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Figure 10.7: Evaluation of white noise of the Kalman filter and its output
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10.5.4 KEM Filtering using White Noise

In equations (10.16) the system noise u[n] is white noise and in equation (10.23),
the measurement noise w[n| is a known additive noise. The signal model is based
on Yule-Walker equation. The states and parameters which are the coefficients of
the signal model are optimized by expectation-maximization approach in the E-
step and M-step. This is a similar approach that is described in [116] (introduced
next) except that the noise is white and additive. We see the application of this
approach to our signal. This is an inefficient approach for the hybrid noisy speech.
More over the computation time for a single speech signal which has about 26000
samples, this approach takes 2 minutes. The SNR is approximately -1.36.

b : Specially Enhanced Speech

x 10*a : Standard Enhanced Speech

-100

-110

1-10 1-120

4
0

1-130

Frequency (Hz)
Frequency (Hz)

-

1-140

-150

0.5
-160

-170

0
0 0.5 1 1.5
Time (sec) Time (sec)

Figure 10.8: Evaluation of white noise of the Kalman filter using EM approach
and its output

10.5.5 KEM Approach for Colored Noise

In [116], the colored noisy speech is enhanced by a Kalman filter using an expectation-
maximization (EM) approach. Considering our state space derivations in equa-
tions (10.16) and (10.23), the signal model is based on the Yule-Walker equation,
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the system noise u[n] is the colored noise.This is also modeled by the Yule-Walker
equation. The enhanced speech is then recognized by an HMM based speech
recognition system. Typical noise is computer fan noise, noise in the lab, typical
office environment. The type of the ASR system is single word speech recognition
system. The noisy speech is enhanced by the Kalman filter. The speech signal
modeled by using the standard Yule-Walker approach and the noise is consid-
ered as colored. The noise is modeled by the AR approach which parameters are
obtained by using the Yule-Walker approach. This enhances the speech using
EM approach iteratively and by estimating the state expectation and covariance
matrix in the E-step and parameters of the signal and noise model are estimated
in the M-step. This approach is also known as KEM. In figure 10.9, we see the
result of applying the KEM. This is an inefficient approach for our hybrid noisy
signal. More over it has a high computational time which is about 3 to 5 minutes
or more for a single speech signal which has a length of 25000 to 60000 samples.
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Figure 10.9: Evaluation of color noise of the Kalman filter using EM approach
and its output
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10.5.6 FFT based Suband Decomposition and Kalman Fil-
tering

In this approach with respect to our state space derivations in equations (10.16)
and (10.23), the signal model s[n| is based on the Burg approach and the noise
model b[n] is based on the Yule-Walker approach which is estimated in the sub-
band. The signal sub-bands are obtained by an FFT based filter bank. This
approach is described [46]. How the FFT based filterbank is used to decompose
the signal can be found in [140]. This enhances our hybrid noisy speech to some
extent. We see the result of its application to our noisy data in figure 10.10
where a shows the enhanced speech applying the pre-emphasized FFT based
sub-band decomposition and Kalman filter at each band and b shows our noise
reduction approach by redundancy removal, pre-emphasis, matched filter and
then the Kalman filtering on sub-band decomposed signals. The SNR is 6.09.
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Figure 10.10: Evaluation of color noise in the sub-band Kalman filter and its
output

10.5.7 Mband Colored Noise and Kalman Filtering

Here we see the result of spectral minimization of the noise and the Kalman filter
on each sub-band in the M-band signal in figure 10.11. This enhances the speech
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and we use this enhanced speech for the feature extraction. The SNR is 10.49.
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Figure 10.11: Evaluation of color noise of the Kalman filter using color noise
Mband filter bank and spectral minimization and its output

10.5.8 Principle Component Analysis (PCA) Approach

The de-noising operation of our noisy speech is done by applying PCA. The PCA
is an eigen value analysis tool. This extracts the meaningful basis of the noisy
redundant signal by searching for the principle components in a coordinate system
using the coordinates in order to simplify a complex expression to a simpler one.
The principal components (PC) are the linear combination of the basis vectors.
The detailed of this is described in [124]. Here the noisy signal is de-noised but the
signal loses its useful information. This is not an efficient noise reduction approach
for our hybrid noisy speech while feature extraction is used for the recognition.
There is an option to apply this PCA de-noised signal for the classification and
recognition. But we have not investigated this further. The result of this PCA
application is shown in figure 10.12.

In the Wiener filtering, spectral subtraction method, different versions of
Kalman filter such as an iterative Kalman filter for the colored noise or a Kalman
filter for the white noise or for an assumption of stationary color noise did not
solve our noise problem and rather degraded the spoken command.
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Figure 10.12: Evaluation of white noise applying PCA and its output
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Chapter 11

Psychoacoustics and DANSR
System

Outline of the Chapter We provide some essential psychoacoustics informa-
tion and basic definitions in this chapter. We explain their necessity and inclusion
in the feature extraction in order to extract perceptual features. We introduce the
psychoacoustics quantities that are adapted to the DANSR’s feature extraction
technique. We are not concerned with the human interpretation of psychoacous-
tic elements and we restricted ourselves to the basic quantities on top of which
the interpretation has to be built.

Speech contains more information then expressed in the meaning of the words.
Humans are often able to recognize this information when they obtain the sound
data. Our task is to identify these data quantities so that a machine is able to
process them further. For this purpose we discuss properties of the human ear.
This is a very complex device and we make the discussion as short as possible.
We mention only aspects where we have taken advantage of. Nevertheless, there
are quite many of them.

A major reason to adapt the psychoacoustic quantities to take the speech
signals that are perceptually relevant only. The collected data have redundan-
cies. In the percpetual feature extraction discussed in the following chapters, the
redundancies are avoided following the human speech perception by the ear. By
this we simply mean that speech we hear is analyzed, extracted and compressed
naturally in the human hear where the redundant irrelevant information are fil-
tered out and the speech is perceptually relevant and meaningfully audible. In the
perceptual feature extraction, the goal is to mimic the perception process of hu-
man hearing removing the redundant information but keep only the perceptually
meaningful relevant compact information for recognition.
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11.1 Psychoacoustics for DANSR

The speech sounds arrive in a random process and it shows variations both in the
spectral and temporal analysis. The human ear and brain together analyse the
frequency of the speech. The outer ears accept speech sound pressure waves and
send this through the middle ear to the inner ear. This transforms finally the
sound to the brain. Thus we hear and recognize the speech by their collaborative
work.

Spoken language contains more information than a written text. This infor-
mation is hidden in the speaking style but contained in the wave forms obtained
by the receiver. This information is not discovered by the speech recgnition dis-
cussed so far. It is the topic of psychoacoustics that is a bigger area in itself
in which we will not introduce and give only some general remarks. Instead we
will rather describe the quantities that need to be extracted. In this chapter we
mention a number equations from psychoacoustics area. We took them from the
literature without explanations. From the principle point of our approach, the
corresponding derivations, values of specific constants and explanations do not
play a role.

In the inner ear, the basilar membrane is working as a spectrum analyzer. By
responding to the temporal variation of the sound pressure wave and its localiza-
tions, the human ear responds to temporal variations of pressure and localizes the
sound. The frequency, timing, amplitude, loudness and phase information at dif-
ferent frequency ranges and the localization of the sound sources are determined
by the brain.

The study of the psychoacoustics is related to the perception of the sound and
related phenomena. The speech signal in the temporal and spectral intervals i.e.
between 100 to 1000 ms is generally analyzed by going through the audio sensation
and its variations as well as the loudness-time function of the psychoacoustics
[113]. In chapter 2 in section 2.2, we have introduced into the role of the human
ears in recognizing speech.

The purpose of using the psychoacoustics quantities is to approximate the
mapping of the signal in the auditory system. This type of auditory or perceptual
modeling approximates the use of the masking threshold, loudness scales, sound
pressure level etc. The masking threshold is the limit that makes one signal more
audible than the others. The perceptual measurement needs to be connected to
the feature extraction. To adopt some basic psychoacoustics quantities, we first
reviewed the human auditory system and its functioning, then the hearing model
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that is used in [12]. The temporal time-frequency resolution and the threshold
masking are common adaptations for the perceptual spectral analysis [42], [110].
The perceptual entropy is used for speech coding and multimedia application for
speech data compression in [90], [6], [105], [58], [130]. Based on the review of some
psychoacoustics literature such as [145], [105], [82], [28], [74], [143], [3], [139], we
have selected some basic psychoacoustics quantities such as frequency analysis
and masking properties, perception of loudness and perceptual entropy. Some
of them are also commonly used in the perceptual feature extraction techniques
discussed in the next chapter. Thus we have developed a special feature extraction
technique and it is discussed in chapter 13.

For perceptual adaptation we incorporated the auditory filter-bank to perceive
frequencies along the critical bands. This is defined later in the chapter. The
behaviors of the basilar membrane in the inner ear of the auditory system is
similar to the overlapping passbands of a bank of bandpass filters. This is called
an auditory filter. This influences the adaptation of some fundamental properties
such as frequency masking or the scaling of the loudness of the human auditory
system. An adaptation to the critical bandwidth is related to the bandwidth of
an auditory filter which is incorporated in masking, loudness, absolute threshold,
and phase sensitivity [12]. The processing time of the samples of the signal is
notified most often by the loudness. This is one of the basic information we at
first perceive. The human ear perceives sounds following its temporal pressure
variations [113]. The characteristics of the sound perception process of the human
ear and brain are non-linear. The response of the human brain and ears can be
quadratic or cubic or quantic. For example, two loud pure tones at corresponding
frequencies f; and f, are simultaneously sounded together to generate a third
difference tone |fy — fi| to be heard.

The difference between a standard sub-band analysis and a critical sub-band
analysis is that the standard sub-band is of equal width and the width of the
standard sub-band does not reflect the human auditory behavior where in the
critical band analysis, it works according to the function of frequency to approxi-
mate the human auditory behavior. The critical band based sub-band uses some
scales to follow the distance of the basilar membrane in the cochlea in the inner
ear. The critical band analysis is mapped to the critical band frequency scale
such as Mel, Bark or Erb scales that we discuss in section 11.6.

In order to model the human auditory system, the perceptual quantities such
as absolute threshold of hearing (ATH), sound pressure level (SPL), sensation
level (SL), masking frequency, temporal masking, the mapping of the non-linear
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frequency scale are considered. In the frequency analysis the signal is transformed
to a non-uniform logarithmic scale following some special frequency scale such as
Bark, Mel or ERB. The mapping process and the transformed non-uniform new
scale is called a critical band.

The sound pressure is measured in Pascal. In psychoacoustics, the values of
sound pressure lies between 1075 Pascals to 10? Pascals. It is measured by a
hearing threshold given by SPL. Then again in the perception stage, there is a
sensation level (SL) which indicates an intensity level of an acoustic events to be
heard by a listener. The SL may be used sometimes to determine which sound
to be heard regardless of the loudness of the sound. It is not the same as ATH.
The SPL and ATH are defined next.

11.1.1 Sound Pressure level (SPL)

The ratio between the reference sound pressure in Pascals and the threshold of
hearing in Pascals is the sound pressure level (SPL) [12], [145]. The SPL is
measured in dB. The absolute threshold of hearing is estimated as py = 2 x 107°
Pascals which is about 20uPa.

The intensity of the sound pressure in decibels relative to a given reference
level is computed by equation (11.1). In this equation, L, is the sound pressure
level, p is sound pressure of an event in pascal.

Ly = 201og,y = (11.1)
Do

The relation between dB and Pascal is shown below in equation (11.2) and dB
to Pascal transformation is shown in equation (11.3) where Pa stands for Pascal.
dBSPL means SPL is measured in dB.

L,(dBSPL) = 201log,, = (11.2)
Po

L, dBSPL)
p(Pa) = Po 0

The SPL is also measured with respect to sound intensity level(SIL). This is

(11.3)

equal to the sound power level(PWL) i.e. PW L = 10log,, P% and sound intensity
level(IL) i.e. 1L = 10log;, % [145]. The PWL is used to measure the perception
of loud mixed tonal sound.
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Figure 11.1: ATH in linear frequency scale in Hz, Bark, mel, and erb Scale

11.1.2 Absolute Threshold of Hearing (ATH)

The threshold of hearing is a listener’s ability to recognize a sound in a noise free

environment. It is expressed by a sound pressure level(SPL) and computed by

equation (11.4) where f is the frequency in hertz and T,(f) is expressed in dB,

see [105]. This is a standard formula used in psychoacoustics studies. We have

used the ATH in chapter 13 to compute the perceptual entropy (PE).
f S

T,(f) = 8.64(355) ™" = 6.5¢ 700w 4 1073 ()!

114
1000 ( )

In figure 11.1, we see the threshold of hearing is measured in SPL in dB in a
quiet environment as a function of frequency. The threshold is measured in SPL
in dB as a frequency of the linear frequency Hz in a, in b we see the threshold as
a function of Mel frequency scale, in ¢ we see that it is measured a function of
Bark frequency scale and in d we see the threshold measured as a function of Erb
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frequency sale. In figure 11.1, the frequency f is replaced with the Bark, Mel and
Erb frequency scale in equation (11.4). For this implementation we mainly used
the matlab toolbox given in [85]. In figure 11.1, the ATH measured by perceptual
scales namely the Bark, Mel and Erb in b,c and d have the similar looking but the
ATH shown in a some what different than the one shown in b,c and d. From this
figure, we can imagine that the standard frequency that is measured in Hertz
(Hz) may misinterpret the spectral analysis. The scales are defined in section
11.6. Therefore it is important for our purpose that the features are perceptually
transformed using the perceptual scale in the auditory filter.

11.2 Concepts of Perceptual Adaptation

The purpose of a perceptional model is to hear, interprete and understand the
sounds of spoken language. We concentrate on the first and partially on the
second issue. The speech sound signal contains a number of acoustic elements that
are used in the speech perception. These representations can then be combined
to be used in the word recognition and other language processing activities. This
is done particularly in the cochlea and in the basilar membrane.

The perceptual adaptation is managed by adopting several perceptual quan-
tities such as the critical bandwidth transformation, the intensity-loudness power
law transformation which is also the hearing law.

Next we introduce the hearing process of the human ear that we experience
in our daily life in order to recognize speech.

11.3 Auditory System and Hearing Model

The sound enters into the human ears as a pressure wave and the human ears
perceive the sound by its vibration. The human ears are also known as an auditory
system because this acts as a sensor for the human hearing. For this, the human
ears are the principle organ. Here first we explain how the human ear interprets
sounds for its perception. Then we introduce how the human ear is used in the
literature in order to model it.

Below this is illustrated by two figures. Figure 11.3 shows the human ear
which has three main parts. Figure 11.4 shows how it is modeled to capture its
perception processing.
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11.3.1 Human Auditory System

Here we first outline the anatomy of the human ears, then we describe how
these organs are used to perceive human speech. The human auditory system is
explained here in order to understand the human speech perception process and
to adopt some essential perceptional quantities to extract perceptional features
for our DANSR. If we look at figure 11.3 that is collected from [65], we see that
the human ear or the auditory system consists of major three components. These
are introduced below and for this we have followed the description of the auditory
system given by [13]. Figure 11.2 is a simple explanation of the components of
the human ears and the interactions of the components of human ears in order
to perceive speech.

Sensation +Cochlea ~— ¥

Malleus of hearing Basiler membrane
Sound Typmpanic / Hair cells /v
Pressure Outer ear membrane = Incus  —— Acoustic nerve  — Brain

wave \ .
Stapes Sensation Vestibular nerve 4f

of balance

Inner ear

Outer ear Middle ear

Figure 11.2: Simple View: Human ear and the interactions among the compo-
nents

e Outer ear: This is connected to the middle ear through an auditory or ear
channel via the tympanic membrane to the way to middle ear. The channel
has many small glands so that the canal is lubricated from the secretion of
the glands and the area is protected. The outer ear is also called pina.

e Middle ear: Three small parts, malleus, incus, stapes on the back side of
the tympanic membrane are the components of the middle ear. These three
bones can vibrate. The middle ear is again connected to the throat and
nasal system through the eustachian tube. There is a nerve connected in
the malleus and incus to the tongue. The middle ear is connected to the
inner ear through stapes.

e Inner ear: This is a cavity which has bones inside it. The inner ear has
two regions : i) Sensation of hearing which is the snail shell shaped cochlea
and ii) Sensation of balance which is semicircular shaped vestibular nerve.
The vestibular nerve is associated with many ducts and the middle ear is
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connected to the inner ear through stapes to vestibular. The ducts belong
to the vestibular nerve and has many fluid filled passage ways. The cochlea
is connected to the brain with different 12 pairs of auditory or acoustic
nerves. There are many fluid filled cavities in the vestibule as well as in the
cochlea. This is the place where frequency analysis is taking place.

pinna oval window
tympanic
membrane

\\/ &l L cochlear nerve

cochlea

vestibular

/ apperatus

malleus

stapes
outer middle inner
ear ear ear

Figure 11.3: Human Auditory System [65]

Next we have introduced how we have used these organs to perceive sounds for
its recognition.

11.3.2 Human Hearing Process

The sound wave travels from the outer ear through the ear channel to the tym-
panic membrane. The vibrations are transmitted to the hair cells connected to
a fluid filled passage in the inner ear. The vibrations generate signals which are
carried out to the brain for the sound interpretation through the auditory or
acoustic nerve. There are about 16000 to 20000 hair cells along the length of the
cochlea in 4 different rows. There is only one row in which the inner hair cells
are attached to nerves, and the rest third rows are outer hair cells. These hair
cells in the cochlea play a significant role in the properties of the sound i.e. pitch,
loudness and how these properties stimulate the hair cells and send a signal to
the brain.
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The idea of the fluid filled cavities is that a movement of the bones caused a
vibration wave in the fluid which stimulates the microscopic hair cells connected
to the nerve. Moving back and forth, the hair cells connected to the cavities in
the cochlea fire electrical signals or impulses that are carried out to the brain
through the auditory or acoustic nerves to the brain as an interpretation of the
sound. The vibration or firing of the hair cells at different rate helps the brain to
interpret the sound frequency one from the other.

The human ear is subjective to its response to different frequencies. This
characteristics is technically achieved by using the different types of scales namely
the Bark scale, Mel scale and the Erb scale. The peripheral auditory system acts
as a frequency analyzer. The basilar membrane of the inner ear plays a significant
role to locate and characterize the frequency. An auditory filter can measure the
neural tuning curve and neural impulse responses. The auditory filter is mapped
on the critical band to represent the frequency resolution of the auditory system.
The critical bandwidth is measured by comparing the masking and loudness [142].

11.3.3 Hearing Model

Now if we compare the human auditory system given in figure 11.3 with figure
11.4, we can see its approximation in figure 11.4. In this figure, we see in the hear-
ing model the capture of the sound wave, its entrance to the inner ears through
the outer and middle ear are estimated by the spectral shaping (this is explained
chapter 12). In the same figure the frequencies analysis of the sound wave and
their distinction by the different parts of the auditory organ shown in figure 11.3
as well as transportation of these to the brain through the auditory nerve are
estimated in figure 11.4 by spectral analysis and their parametric representations
(discussed in chapter 12). In the human hearing model approximated by the
auditory filter bank, a sound of a definite frequency does not actually vibrate
the membranes in the cochlea at one point. Rather, there is one point where
the vibration is biggest, and a range around that value where we have that the
vibration is big enough to be important. This range on the cochlea is called the
critical band excited by a sound. It covers frequencies about 10% to 15% higher
and lower than the tone which is played. The flexing which is the bending of the
cochlea falls away as the tone moves from the center of the band. Intensity is the
power per area and the power is the rate at which the energy is distributed. The
pitch is determined by a periodic sound’s frequency of one period of the wave
[37]. The resolution of a finite length signal is the minimum number of samples
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Figure 11.4: Approximated Human Auditory Filter bank [12]

that is required to represent it. Thus the resolution can be seen as information
container of the signal. This is approximated in the auditory filter-bank via each
filter used in the filter-bank. For these special perceptual frequency scale is used
for the spectral analysis discussed in section 11.5.

11.4 Auditory Masking and Masking Frequency

Auditory masking is a psychoacoustic effect that determines the mapping of the
frequency in the critical band. Frequency masking makes one sound inaudible
due to a presence of another sound. This gives the threshold of the audibility at
where one sound is raised by the presence of another sound [76]. The frequency
of the later sound may be higher [147]. The inaudible frequency of the sound is
called a masked frequency and the frequency of the sound which presence makes
masked frequency is called masker frequency. Two common masking types are 1)
Frequency masking or simultaneous masking excites multiple tones at the same
time and ii) Temporal masking excites a particular frequency zone in the cochlea
along the basilar membrane. Both types of maskings are carried over to the
human brain by the auditory nerve [145]. The auditory masking is related to the
SPL and the sensation level (SL) which is an intensity level of an acoustic event
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to be heard by a listener. The masking effect is the same when the power of the
tone and the power of noise spectrum is near that tone. However, the masking
effect outside this area of the tone does not interfere to that described area. Here,
if the characteristic frequency band has the same acoustic power for the tone and
the noise spectrum within that band, the tone is masked and this is the concept
of the critical bands defined in [41]. Further to this explanation, an assumption is
that the human hearing system processes sounds in relatively narrow frequency
bands. The hearing system produces masked threshold frequencies independent
of the frequency. The unmasked threshold is the quietest level of the signal
which can be perceived without masking the signal. In some literature, the total
masking threshold is approximated by a summation of the threshold produced
by an individual signal components following the power law.

The human sound perception i.e. the speech hearing is affected by masking
properties. The intensity the acoustic stimulation is measured by the standard
sound pressure level (SPL). The loudness remains constant for a narrow band
noise source at a constant SPL even as the noise bandwidth is increased up to
the critical bandwidth tends to remain constant about 100 Hz to 500 Hz and
increases approximately 20% of the center frequency above 500 Hz. The width of
the critical band is commonly referred to as one Bark scale which is a non-linear
function. It is often used to convert the frequency from the Hertz to the Bark
scale.

11.5 Frequency Analysis and Critical Bands

Here we refer to the parts of the ear described in figure 11.2 and describe its
functioning.The critical bands are some sub-divisions of a frequency domain. The
sub-divisions are some non-uniform sub-bands. These are used to understand the
frequency analysis of the human auditory system. The critical band introduced
by the scientist Harvey Fletcher in the 1940s, is the frequency bandwidth of the
"auditory filter” created by the cochlea which is a sense organ of hearing within
the inner ear. The critical bank is roughly the band of audio frequencies within
which a second tone will interfere with the perception of a first tone by auditory
masking [12]. The critical band denotes a constant distance on the cochlea and the
bandwidth where the signal intensities are added to decide whether the combined
signal exceeds a masked threshold [139]. The critical bands are continuous and
the audible frequency in each of the band has a tone in its centered position.
The critical band relates to the perception properties such as loudness, pitch,
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and tone. The auditory system performs a frequency analysis of sounds into their
component frequencies. The cochlea acts as a spectrum analyzer of the sounds
in the inner ear. The high frequency bands are wider than the low frequency
bands. A summation of a collection of the critical band responds is assumed
to be the loudness [61]. The human hearing system processes sounds in narrow
frequency bands. It produces a masked thresholds frequency below 500 Hz and
the range of the masked threshold is independent of the frequency. The critical
bandwidth has a constant width below 500 Hz but it increases 10 dB per decade
for the frequency bands. The bandwidth of the bands increases by a factor of 10
as the frequency increases by the same factor [41]. The critical bandwidth shows
a constant bandwidth at about 100 Hz, but the range of the critical bandwidth
increases proportional to the frequency above the frequencies of 500 Hz and the
increase rate is 20% of the center frequency.

The masking threshold is measured on the critical-band. Therefore the power
spectrum of the signal is partitioned into critical bands. The architecture of
the cochlear filter pass band is non-uniform which changes as a function of the
frequency non-linearly. There are many different formulations that have been
developed to calculate the critical bandwidth. One approach is to calculate the
critical bandwidth as shown in equation (11.5) where f is the linear frequency in
Hz and BW,(f) is the frequency of the critical band in f. This critical is later
transformed into perceptual spectral band when it is multiplied by a perceptional
feature scale such as the Mel, the Bark or the Erb scale.

BW,(f) = 25+ 75(1 + 1.4(f/1000)*)" (11.5)

The psychoacoustic model needs a delay in the time-frequency decomposition in
order to center the data in the audio frame within the psychoacoustic analysis
window. Critical bands and their band width distribution are shown in the next
table.

11.5.1 Perception of Loudness

The loudness is a physiological aspect and it considers the intensity of the sound.
Its sensation to an environment for a particular subject is difficult to measure.
The loudness is measured in sone or phone and the unit of the loudness level is
phone. The loudness is subjective and environmental. The definition of the loud-
ness in some literature paraphrased here is an intensive attribute of the auditory
sensation where the sound can be distinguished as loud and soft for being pro-
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Table 11.1: Critical bands and their band width distribution [143]

Band No | Lower Band(Hz) | Center(Hz) | Upper Band(Hz) | Band Width(Hz)
1 20 50 100
2 100 150 200 100
3 200 250 300 100
4 300 350 400 100
3 400 450 510 110
6 510 570 630 120
7 630 700 770 140
8 770 840 920 150
9 920 1000 1080 160
10 1080 1170 1270 190
11 1270 1370 1480 210
12 1480 1600 1720 240
13 1720 1850 2000 280
14 2000 2150 2320 320
15 2320 2500 2700 380
16 2700 2900 3150 450
17 3150 3400 3700 250
18 3700 4000 4400 700
19 4400 4800 5300 900
20 2300 5800 6400 1100
21 6400 7000 7700 1300
22 7700 8500 9500 1800
23 9500 10500 12000 2500
24 12000 13500 15500 3500
25 15500 18775 22050 6550
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cessed and recognized by the human hear and the brain. The perceived loudness
is not proportional to the intensity of the sound. It is more nearly proportional to
the logarithm of the intensity. This is what makes decibels such a useful measure.
The relationship between the loudness of a sound and a perceived loudness of the
human ear is captured by an estimation of the magnitude of the loudness and the
estimation of the production of the loudness of the sound [12].

Hearing of a sound has several effects. The environmental phenomena affect
the sound of hearing. For instance, if the environment is quiet or noisy, then the
perceived sound can be different but still there is a threshold at which level the
subject can perceive the sound regardless of an environmental effect. According
to my knowledge the environmental impact is not getting here a priority so far
in the literature on the perceived sound research.

About 150 dB SPL spans the dynamic range of the auditory system; an SPL
reference of a quiet environment is around 0 dB SPL while a stimulus of 140 dB
SPL approaches the threshold of a pain.

Here the human auditory system can select from loud or weak or soft sound
components. Without this ability all sounds would be the same. The loudness in
this sense may be a part of the frequency warping. Thus we realize the importance
of loudness and distinguish the sound according to this. Based on [129], [142],
the loudness is denoted as a power function of physical sound intensity.

Equation (11.6) is a non-linear equation where the loudness of the sound is
proportional to the intensity raised to the power of 0.3 [12]. In equation (11.6),
L is the perception of the magnitudes of the loudness, k is an arbitrary constant
determining the frequency scale unit, [ is the stimulus intensity, a is a power
exponent which is generally 0.3.

L =FkI* = kI%3 (11.6)

Equal Loudness Curves The human ear can distinct the frequencies well
and this is of interest for a machine too. The audibility of the human is variable
according to the frequency. The same SPL at different frequencies may not be
perceived as equally loud. This distinction is captured by a set of loudness curve
that compares SPL (sound pressure in db) with the phone scale. In the phone
scale, a sound with equal phone values is perceived equally loud at any frequency.
The value of SPL and loudness level is equal at f = 1KHz on the equal loudness
curves. This has a lower sensitivity at lower frequencies. These aspects are
sometimes termed as equal loudness pre-emaphasis [42].
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11.6 Analysis: Perceptual Scales

One purpose of psychoacoustic scales is to provide steps that correspond to equal
perceptual intervals [35]. In different contexts the same numerical distance can
be perceived in different ways what are reflected in the scales. We will discuss
the Mel, Bark and Erb scale in this section. These are measured in logarithmic
scales. These scales give different intervals for the linear frequencies. These
scales influence the way in which the speech is recognized and therefore present
information for the listener.

11.6.1 Mel Scale

The Mel scale (measured in Mel) is a non-linear scaling that is used to perceive
frequency characteristics of the human ear. In the Mel scale, the frequency ranges
are divided into four equal intervals. The frequency is adjusted there in such a
way that one half of this frequency scale is equivalent to a given linear frequency.
The pitch is a psychoacoustic variable is characterized by the frequency, loud-
ness, intensity or amplitude of the acoustic sound. The Mel scale shows a good
performance while discriminating the speech segments. In the mel scaled band,
the mel scale is used to represent the frequency in the critical band. One mel is
defined as one thousands of the pitch of a 1 kHz tone. The filter bank is a set of
triangular filter banks based on critical band scales at frequencies i.e organized
in the 2nd column in table 11.1. The frequency f is in Hertz. The spacing of
the critical bands is non-linear. The Mel scale is first used in ASR system for
perceptual speech feature extraction by [110].

Next we discuss the relation between Mel scale and linear frequency scale
measured by Hz. There are several different formulations of the Mel scale. Fach
of them is used differently in the literature. Below we present a definition in
equation (11.7) that we see frequently used. In equation (11.7), f is in Hz linear
scale and f,,¢(f) is in the Mel scale. According to [78], the cochlear position z
from 0 to the frequency is f in Hz where f = 165.4 x (10*!* — 1) and thus the
scaling at f = 1000 gives in the Mel scale at m = 512.18 x 1n(ﬁ + 1). Here
the break frequency is 165.4 Hz that separates the log-like high-frequency region
from the linear-like low-frequency region.

S

fmer(f) = 2595 log, (2 + 50

) (11.7)

The corresponding inverse expression from mel scale to the linear frequency
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scale Hz is shown in equation (11.8).

f = 700(100 " (m/259) _ 1) (11.8)

11.6.2 Bark Scale

In the Bark frequency scale an equal or uniform distance represents perceptually
equal distances. The Bark scale is linear below 500 Hz and non-linear above
500 Hz [15]. This non-linear spectral distance is measured using the logarithmic
frequency axis. There are several definitions of this concept. As mentioned in
section 11.5 they all give the same information about the relation between the
Hz and the Bark scale [25] , [56].

We state the formula that we have followed for the Bark scale and its inverse
transformation. We followed in this regard Bark scale’s recent formula. Among
the different Bark scale formulations we use the formula shown in equation (11.9).

——
B(f) = 6sinh™' (= 11.9
() = 6sinh! (1) (11.9)
The Bark scale to hertz scale is converted using equation (11.10).
B
hz = 600 x sinh % (11.10)

11.6.3 Erb Scale

The other commonly used perceptual frequency scale is the Erb scale. The Erb
scale is formulated in equation (11.11) where f is the center-frequency in Hz,
normally in the range 100 Hz to 10kHz. The Erb scale is generally narrower than
the classical critical bandwidth (CB) such as Bark or Mel scale and f is in Hz
[67].

Erb(f) = 21.410g,,(0.00437f + 1) (11.11)
The Erb warping is determined by scaling the inverse of eq (11.11), evaluated
along a uniform frequency rangning from zero to the number of Erbs at half of

the sampling rate, so that direct current (DC) maps to zero and half the sampling
rate maps to m [67].
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11.6.4 Comparison

We see in figure 11.5, the Mel scale in a, the Bark scale in ¢ and the Erb scale
in e. The basilar membrane which is situated in the cochlea is thin close to the
stapes but wider at the end. The thin section of this membrane responds to
high frequency and the wider section responds to low frequency. Following this
anatomical structure of the basilar membrane, the critical band is closely spaced
at the low frequency but widely spaced close to high frequency in figure 11.5. In
this figure, the critical band is mapped to the Mel scale in b, the Bark scale in d
and Erb scale in e. Each of these cases, we see the critical band is densely spaced
at low frequency and sparsely spaced at high frequency.

In figure 11.6, we see the comparison among the Bark, Erb and Mel perceptual
scales. The curves indicating the scales are generated using the equations (11.9),
(11.11) and (11.7). They all show the similar behaviors against linear scale Hz.
They are expanded at low frequencies below 1000 Hz and above this frequency
they are all compressed. For this implementation we mainly relied on the matlab
toolbox given in [85].

11.7 Analysis: Auditory Filter-bank

To capture the functions of the human auditory system and its hearing, a bank
of filters is arranged in such a way that the passbands of the filer-bank are over-
lapped. This is used to model the human auditory system, it is called the auditory
filter bank. The filter shape can be different such as triangular, trapezoidal. The
filter bank can be uniform or non-uniform. A set of transfer functions H,,(z) in
the analysis filter bank splits the input into M subband signals in the synthesis
filterbank. The shape of the filter bank can be triangular or trapezoidal.

For the speech feature extraction usually non-uniform spaced filter-bank is
used. In such a case, the part of the spectrum below 1kHz is processed by more
filters in the bank because it is assumed that the 1st formant lies in the lower
frequency range and there exists more vocal tract information.

The frequency resolution of the auditory filter bank largely determines which
portions of a signal are perceptually irrelevant. The auditory time-frequency
analysis that occurs in the critical band filter bank induces simultaneous and
non-simultaneous masking phenomena that are assumed to be the shape of the
distortion spectrum. A perceptual model exploits the masking thresholds for a
complex sound. The loudness scale is related to the sound level depending on the
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duration and frequency of the sound. It is variable with respect to the perceived
sound level.

In the following discussion of the filterbanks we refer to the scales introduced
above.

11.7.1 Mel Filterbank

In Mel frequency wrapping, the signal power is the input to the bank of filters
which has a bandwidth of the triangular band pass filters and gives the frequency
resolution at different frequency bands. The bandwidth of the triangular band
pass filter is positioned in the psychoacoustic frequency scale in particular in
the Mel scale. This is done by integrating the area of the bandwidth over this
frequency scale. The filters are overlapped in the filter bank such that the lower
boundary of one filter is at the center frequency of the previous filter and the upper
boundary of the filter is the center frequency of the next filter. The maximum
response of the filter is the top vertex of the triangular filter which is the center
frequency and is normalized to unity.
The frequency is given by Mel scale, then the corresponding frequency is

[ H(mel) = [700e™/M*T — 700]Hz

Suppose the number of filters is M and m =1,2,3,--- , M, where m denotes
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the triangular filter given by equation (11.12) and f is the frequency in each
bin which size is equal to the FFT size. Now the filter-bank H,,(k) is given

in equation (11.12). f(m — 1), f(m), f(m + 1) are the left, middle and right

boundary of the m!" filter. H,,(k) is the weight of energy at frequency k for m®"

filter.

(0 for k < fim—1)
2(k—f(m—1)) _
H, (k) = { TorD=1tm- D)7ty 1o fm =1) < k< f(m) (11.12)

2(f(m+1)—k)
T D= Fon—D) (P D—femy o8 [(m) <k < f(m+1)

\0fork>f(m—|—1)

Here f; and f, are the lowest and highest frequencies of the filter-bank in Hz,
and f, is the sampling frequency in Hz, M is the number of filters, and N is the
size of the FFT. Then the boundary points B are non-uniformly spaced in the
mel-scale. One bin has the same length as the size of the FFT.

_Npa B(fa) — B(fi)
f(m) = FB7(B() + m—F3—)

In equation (11.13), B is the acoustic scale which can be either Mel, or Bark

N

(11.13)

or Erb scale. We then compute the log-energy for m =0,1,--- , M.

11.7.2 Bark Critical-band

The relation between the Bark scale and the linear frequency scale is shown in
equation (11.14). There f is the frequency in Hz and f;, is the related Bark
frequency.

f f 2 0.5

fb:6ln(@+ ({@} +1)) (11.14)

In the critical band analysis shown in equation (11.15), the center frequencies

of the filters in the filter bank is spaced in the Bark scale and the distance between
the center frequencies of the filters in the critical band filter-bank is 1 Bark scale.
The first filter is placed at zero frequency and the last filter is placed at Nyquist
frequency. The lowest and highest frequencies in the filter bank are 0 and the
Nyquist frequency. This spacing is similar to the Mel scaled filter bank. In the

Bark scaled filter-bank given in equaation (11.15) f, is the bark frequency and
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feb 18 the center frequency of the filter in Bark scale [100].

(0, if (fy — f) < —2.5
10U Jert0-5) if —2.5<(fy— fa) <—0.5
P=<1 if —0.5< (fy— fa) <0.5 (11.15)
10725((fo=fe)=05) - if 0.5 < (fy, — fup) < 1.3
0, if (fy — fu) > 1.3

Again, we took over the equation from the literature [7].

11.8 Perceptual Adaptation in DANSR

In summary, the main adapted psychoacoustic quantities in this research are:
e Bark scaled Critical Band
e Pre-emphasis by Loudness Scale
e Perceptual Entropy

For the extension we have applied the similar formulation as given in section
11.7.2. Pre-emphasis by the loudness scale (12.20) is discussed in chapter 12
and the perceptual entropy is discussed in section 13.3.1 in chapter 13. The
purpose of the perceptual adaptation is as mentioned before to keep the relevant
perceptually meaningful information by removing the redundancy. In this line,
the perception of human auditory system is attempted to mimic by adapting
some basic perceptual quantities listed above in this section.

11.9 Psycho-acoustical Analysis of MP3

Here we would like to mention that the MP3 was developed by Karlheinz Bran-
denburg and his group and some explanation that can be found in [90] used the
spectral analysis and the compression done by the human ear. A reality is that
what the sound pressure waveform we perceive has redundancy and our ears an-
alyze the frequency of the perceived the waveform and process this. Only the
essential parts of this is that we need to perceive the semantic of the wave and
the rest is done by the brain. The purpose of the feature extraction discussed
in chapter 12 is to reduce the redundancy of the captured waveform and used
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this for recognition. The aim for the MP3 development by Brandenburg and his
group is to closely achieve the audio and psychoacoustics properties in order to
compress the real world signals. But we have not investigated these aspects of
the audio and psychoacoustics properties in details. The perception of human
hearing and the role of human ear is still an ongoing research and it is not yet
clear how human ears analyse the captured waveform.
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Chapter 12

Standard Features and Feature
Extraction Techniques

Outline of the chapter We discuss the feature extraction techniques in our
context. We start with a brief overview of the standard feature extraction tech-
niques, their effectivity and limitations. This includes in particular feature types
such as cepstrum, MFCC, LPC, LPCC, PLP, RASTA and SILTT. In case where
different notations and conceptual variations exist we make precise what we use.
This will also be used to take advantage for computer implementations when
studying the human ear. On these foundations we present our extraction process
in the next chapter. This is an essential part of our system. Although several
of the details are somehow known, the selection and integration of the individual
methods into DANSR are innovative.

12.1 Fundamentals: Feature Extraction

In the speech processing, the speech waveform is recorded by using some sensors or
transducers. They are not used directly for recognition purposes, they are rather
transformed into some lower dimensional vectors. These are the feature vectors.
These represent the input speech i.e. some acoustic phonetic information. From
this point on the information of the features can be analyzed on an acoustic,
a phonetic, or a linguistic, word or the language level. Distinctly the role of a
feature extraction technique is vital in order to perform the transformation of the
speech signals into feature vectors, then to authenticate the information of these
feature vectors in the classification and recognition stage.
The feature extraction has the following aspects that we will discuss next:
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e Feature extraction: This is a description of the approach that is used to
extract the features from the data collection.

e Feature subset generation: This describes how the features are distributed.

e Definition of the evaluation criteria: The criteria of the feature selection i.e.
entropy or energy or spectral envelope.

e Assessment of the evaluation criteria: This is to confirm the validity of the
evaluations in the classification and in the recognition stage.

12.2 Features and their Purpose

One of the main goals of the signal analysis used in the feature extraction is to
reveal information they contain. This type of signal analysis is also in the context
of the machine learning. In this context the signal analysis is mainly concerned
about the information of the signal and how that can be represented efficiently
in a compact form so that one can represent the original input on the machine.
This type of analysis transforms a large dimensional signal into some small finite
vectors of relatively smaller length than the original signal. These finite vectors
hold the essential signal information and can now be used as a representation of
the original signal in a compact manner. How the features are extracted and what
are they, can be intuited in figure 12.1. There discrete speech signal s is windowed
by a window function, then processed spectrally. then these are used for feature
extraction. The features are generated in vector. In figure 12.1, 01,09, -+, are
feature vectors and features are the elements in the each feature vector. These
will be detailed in this chapter.

Often, features that are not individually relevant may become relevant in cer-
tain contexts. One approach to feature selection is to use the rank of the features
according to their individual relevance. An example of this is the MFCC feature
extraction technique. In this technique, in order to capture the dynamic behav-
ior, there exist first the feature transformation, then derivative of the features,
then again second derivatives of the features. But these options are application
and user dependent. The MFCC feature extraction technique is discussed in the
text.

The next sections have mainly an overview character. Later we will be precise
when we discuss the methods that we use.

Now some common feature extraction methods are listed:

169



L \ |
0 ! 2 1 L2 L-1
Sampled signal: s[0], s[1], .......s[1],.....s[L-1]

1
Signal segments: -~~~ sgln] oo L ) B e o Window Function

Feature Extraction

01 3 15 n N2 N-

Signal in each block: s[0],s[1].....,s[n].,...,s[N-1]

o o
i t
Feature Vectors

Figure 12.1: Speech Features in Picture

e Non-parametric Fourier transform based speech features extraction: This
commonly uses spectral envelops of the speech in the transformation for
feature extraction.

e Non-parametric wavelet or local trigonometric transformation (LTT) types
of speech feature extraction: These extraction processes may be categorized
as non-parametric because they do not use a model. They rather decompose
the signal in a special manner and feature analysis is generally based on a
discrete cosine transformation.

e Parametric Fourier Transform based speech feature extraction: This uses
some parametric model such as linear prediction or a linear combination of
spectral envelops in the transformation to extract features.

Some feature extraction techniques incorporate perceptual properties of hu-
man hearing and human speech production. The requirements and the repre-
sentations can be different for different applications. One can not say in general
what is the best feature extraction method is. But an analysis of different types
of feature extraction techniques is given in section 12.12. For example, speech
feature extraction in the speech recognition application distinguishes between dif-
ferent phonemes of a language. Such representations vary according to the type
of the demand. In such cases, it raises a 