
Hypervolume Subset Selection in
Two Dimensions: Formulations and

Algorithms

Tobias Kuhn∗ Carlos M. Fonseca† Lúıs Paquete†
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Abstract. The hypervolume subset selection problem consists of find-
ing a subset, with a given cardinality k, of a set of nondominated points
that maximizes the hypervolume indicator. This problem arises in selection
procedures of evolutionary algorithms for multiobjective optimization, for
which practically efficient algorithms are required. In this article, two new
formulations are provided for the two-dimensional variant of this problem.
The first is a (linear) integer programming formulation that can be solved
by solving its linear programming relaxation. The second formulation is a k-
link shortest path formulation on a special digraph with the Monge property
that can be solved by dynamic programming in O(n(k + log n)) time. This
improves upon the O(n2k) result of Bader [4], and matches the recent result
of Bringmann et al. [10], which was developed independently from this work
using different techniques. Moreover, it is shown that these bounds may be
further improved under mild conditions on k.

1 Introduction

Given a set of nondominated points in objective space, the hypervolume indicator mea-
sures the dominated region of this space bounded by some reference point [24]. Due
to its properties [15, 25, 22], this indicator has been instrumental both in the assess-
ment of the performance of multiobjective evolutionary algorithms [18, 21] and in the
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§CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

1



development of multiobjective selection and archiving procedures for such algorithms
[12, 17, 16, 23, 7, 5].
The hypervolume subset selection problem (HSSP) consists of finding a subset of k

elements from a set of n nondominated points that maximizes the hypervolume indi-
cator. This has been considered computationally expensive for an arbitrary number of
objectives [5]. Therefore, the main focus has been on finding the n − k elements that
contribute the least in terms of hypervolume in a greedy manner, e.g. in [13, 7, 14]; see
also approximation results by Bringmann and Friedrich [8] and an asymptotically opti-
mal algorithm for finding all contributions of every element in the given set in Θ(n log n)
for two and three dimensions [11].
So far, the tightest time complexity bound for solving the HSSP to optimality for

d > 2 dimensions and arbitrary k is O(nd/2 log n + nk) [9]. For the particular case of
d = 2, to the best of our knowledge, only two approaches have been proposed. Bader [4]
introduced a dynamic programming algorithm with O(n2k) time complexity. This al-
gorithm is based on the fact that the contribution to the hypervolume indicator of the
left-most point of a given nondominated subset depends only on its immediate neighbor.
Very recently and independently from the present work, Bringmann et al. [10] proposed
another approach to the same problem with a time complexity of O(n(k+ log n)). This
algorithm computes, in the ℓ-th iteration, all maximal hypervolume indicator values us-
ing at most ℓ points with respect to n appropriately chosen reference points. This can
be done for each reference point by computing the maximum of O(n) different linear
function evaluations. The running time is achieved by using a linear time algorithm to
compute the upper envelope of lines.
In this article, we propose two different formulations for the two-dimensional case of

the HSSP: An integer programming formulation and a k-link shortest path formulation.
Both formulations are based on a preprocessing step, which makes a partition of the
dominated region into different areas induced by the set of nondominated points. We
show that the polyhedron of the linear programming relaxation of the first formulation
is integral, which allows linear programming methods, such as simplex and interior-point
methods, to solve the HSSP. In the k-link shortest path formulation, the arc costs have a
special property, called the Monge property. This property allows us to solve the HSSP
with a simple dynamic programming approach in O(n(k + log n)) time, which matches
the result of Bringmann et al. [10]. Moreover, by taking into account known results from
the literature about the k-link shortest path problem, in particular, the algorithms of
Aggarwal et al. [3] and Schieber [20], we show that it is even possible to improve this
bound under mild conditions on k. In addition, if a parallel environment is available,
the HSSP can be solved in O(n

√
k log n) [3].

The remainder of this article is organized as follows. In Section 2, we introduce con-
cepts, definitions, notation and some basic results. In Section 3, we explain the crucial
preprocessing step for calculating the weights used in the integer programming formu-
lation and for the introduction of the arc costs in the k-link shortest path formulation.
In Section 4, we introduce an integer programming formulation for the HSSP and prove
the integrality of the polyhedron of its linear programming relaxation. In Section 5, we
present the k-link shortest path formulation, which is used to achieve improved complex-
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ity bounds for the HSSP. Finally, in Section 6 we provide some conclusions and avenues
for future research.

2 Terminology and Basic Results

In the following, some concepts, definitions and the notation used in this article are
given. Let z1, z2 ∈ R

q. We define the following ordering relations on R
q:

z1 ≧ z2 :⇔ z1i > z2i for i = 1, 2, . . . , q ,

z1 ≥ z2 :⇔ z1 ≧ z2 and z1 6= z2 ,

z1 > z2 :⇔ z1i > z2i for i = 1, 2, . . . , q .

Definition 1 (Set of Nondominated Points):
A point z′′ ∈ R

q dominates z′ ∈ R
q if z′′ ≥ z′. Let N = {z1, . . . , zn} ⊆ R

q denote a set
of nondominated points, in which no point in N is dominating another point in N .

Definition 2 (Hypervolume Indicator):
Let N = {z1, . . . , zn} and let zref be a reference point satisfying zref < zi for all
i = 1, . . . , n. The set

D(N) :=
n
⋃

i=1

{

z ∈ R
q : zref ≦ z ≦ zi

}

is called the dominated region of N (w.r.t. zref ) and the hypervolume indicator of N
(w.r.t. zref ) is defined as S(N) := λ (D(N)) where λ(·) denotes the Lebesgue measure
in R

q.

The hypervolume indicator maps a set of nondominated points to the size of the region
in the corresponding space dominated by this set and bounded below by a reference
point.

Definition 3 (HSSP):
Let N = {z1, . . . , zn} and let k ∈ {1, . . . , n}. The hypervolume subset selection problem
(HSSP) consists of selecting a subset N ′ ⊆ N with |N ′| = k such that the value of the
hypervolume indicator S(N ′) on the subset is maximal, i.e.

S(N ′) = max
N ′′⊆N
|N ′′|=k

S(N ′′)

Definition 4 (Totally Unimodular Matrix):
A matrix A ∈ R

p×q is called totally unimodular if the determinant of each square sub-
matrix of A belongs to {0, 1,−1}.
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Figure 1: Partition of the dominated region for a given set N = {z1, z2, z3, z4}

Theorem 5 (Integrality [19]): Let b, b′ ∈ Z
p, d, d′ ∈ Z

q. If A ∈ R
p×q is totally

unimodular and P := {x ∈ R
q : b′ ≦ Ax ≦ b, d′ ≦ x ≦ d} 6= ∅, then P is an integral

polyhedron, i.e. each of its non-empty faces contains an integral point.

Definition 6 (Totally Monotone Matrix):
Consider a matrix A ∈ R

p×q. For a column 1 6 j 6 q, let min(j) denote the index of the
greatest row containing the minimum value of column j. Matrix A is called monotone
if 1 6 j1 < j2 6 q implies min(j1) 6 min(j2). Moreover, matrix A is called totally
monotone if each submatrix is monotone.

Theorem 7 (Matrix-Searching Algorithm [1]): Let A ∈ R
p×q, p > q, denote a

totally monotone matrix. Then the Matrix-Searching Algorithm in [1] finds the minimal
entries in all columns in O(p) time.

In the following sections, we assume a set of nondominated points N := {z1, . . . , zn} ⊆
R

2, some reference point zref and a desired cardinality k ∈ {1, . . . , n} to be given.
We further assume that the points in set N are sorted in increasing order of the first
component, i.e. zi1 < z

j
1 for i < j, which can be achieved in O(n log n) time.

3 Preprocessing: Decomposition of the Dominated

Region

This section describes the preprocessing step, which is crucial for the integer program-
ming formulation and the definition of the arc costs in the k-link shortest path formu-
lation. The dominated region D(N) can be partitioned into certain rectangles. Let Aij ,
i > j, be the rectangle defined by the subregion of D(N) which is exclusively dominated
by all points in {zj , . . . , zi} and no other point in N . An example of this partition is
given in Figure 1. For every such rectangle we define wij as the area λ (Aij) of rectangle

Aij. If we define z01 := z
ref
1 and zn+1

2 := z
ref
2 the rectangle Aij can be written as
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Aij =

{

z ∈ R
2 :

(

z
j−1
1

zi+1
2

)

≦ z ≦

(

z
j
1

zi2

)}

.

Hence, we get wij = (zj1 − z
j−1
1 ) · (zi2 − zi+1

2 ) and we can calculate all the weights wij,
i > j, in O(n2) time.

4 An Integer Programming Formulation

This section presents an integer programming (IP) formulation for the HSSP and shows
that we can efficiently solve this formulation by solving its linear programming relax-
ation. Following the notation in Section 3, we denote with Aij , i > j, the rectangle
defined by the subregion of D(N) which is exclusively dominated by {zj, . . . , zi} and no
other point in N . The following IP formulation models the corresponding HSSP:

(IPk) max
n
∑

i=1

i
∑

j=1

wijxij (1)

subject to
n
∑

ℓ=1

xℓℓ = k (2)

i
∑

ℓ=j

xℓℓ > xij i = 2, . . . , n; j = 1, . . . , i− 1 (3)

xij ∈ {0, 1} i = 1, . . . , n; j = 1, . . . , i

Thereby, variable xℓℓ is equal to 1 if and only if zℓ is selected and variable xij determines
whether the subregion Aij is covered by some point in {zj, . . . , zi}, which is guaranteed
by the constraints (3). Constraint (2) ensures the compliance of the selection of exactly
k points and the objective function (1) calculates the value of the current hypervolume
indicator, which has to be maximized.
Consider now the linear programming (LP) relaxation. We show that the constraint

matrix of this LP in some standard form is totally unimodular. The LP relaxation is
given by the following formulation:
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(LPk) max
n
∑

i=1

i
∑

j=1

wijxij (4)

subject to
n
∑

ℓ=1

xℓℓ = k (5)

i
∑

ℓ=j

xℓℓ − xij − sij = 0 i = 2, . . . , n; j = 1, . . . , i− 1 (6)

0 6 xij 6 1 i = 1, . . . , n; j = 1, . . . , i

sij > 0 i = 2, . . . , n; j = 1, . . . , i− 1

where the new variables sij are surplus variables [6].
If we rearrange the columns in a certain way, first the variables xℓℓ, ℓ = 1, . . . , n, and
then the variables xij and sij, i = 2, . . . , n, j = 1, . . . , i − 1, according to the ordering
of the constraints (6), the structure of the constraint matrix corresponding to (LPk) is
given by













1 . . . 1 0 . . . 0 0 . . . 0

C -I -I













where C is a n(n−1)
2

× n-matrix and −I is the negative of the n(n−1)
2

× n(n−1)
2

-identity-

matrix. Let us denote by C̃ the submatrix

(

e

C

)

, where e ∈ R
n is the vector of all

ones, and by D the submatrix





0 . . . 0 0 . . . 0

-I -I



.

Observe that D is obviously totally unimodular and C̃ has the consecutive ones property
[19] and thus is also totally unimodular.

Theorem 8: The constraint matrix of (LPk) is totally unimodular.

Proof:
Let B denote an arbitrary squared submatrix of the constraint matrix of (LPk).

Case 1: B is completely contained in C̃ or completely contained in D and therefore
det (B) ∈ {0,±1}, since both matrices are totally unimodular.
Case 2: B possesses s > 0 and t > 0 columns from matrix C̃ and matrix D, respectively,
w.l.o.g. no duplicate column from D.
Choose some column j > s from B belonging toD and expand the determinant of B with
respect to the j-th column (Laplace expansion). Since this column has only one nonzero
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entry, say bij, we get det (B) = (−1)i+j+1 ·det (Mij), where Mij is the minor of matrix B

formed by eliminating row i and column j from B. The minor Mij corresponds also to a
squared submatrix of the constraint matrix and if we follow the above Laplace expansion
after t steps, we get a submatrix B̃ of B matching Case 1, i.e., det (B̃) ∈ {0,±1}. Then,
by construction we get det (B) = ± det (B̃) ∈ {0,±1}.
Since B was an arbitrarily chosen squared submatrix, we have shown the totally

unimodular property of the constraint matrix. �

Corollary 9 (Integrality): The polyhedron corresponding to (LPk) is integral.

Proof:
This follows from theorems 5 and 8 and the following upper bound on the surplus
variables:

sij =
i
∑

ℓ=j

xℓℓ − xij 6 k − xij 6 k i = 2, . . . , n; j = 1, . . . , i− 1 . �

5 A k-link Shortest Path Formulation with the Monge

Property

In the following, we show that the HSSP can be modeled using a k-link shortest path
formulation in a directed graph (digraph). The corresponding shortest path problem
with a cardinality constraint can then be solved using a dynamic programming (DP)
approach. This digraph has a special structure, the Monge property, that allows us to
solve the HSSP in O(n(k + log n)) time.
We first explain the construction of the digraph G = (V,E) related to given set N .

The graph construction is based on the observation, that for every choice of a subset
{zs1 , . . . , zsk}, si 6 sj for i < j, the contribution to the hypervolume indicator of the
consecutive points {zsi+1, . . . , zsi+1−1} for two indices with si + 1 < si+1 only depends
on the coordinates of the points zsi and zsi+1 . For each element zc ∈ N we create a
node c ∈ V . In addition, we also add two other nodes 0 and n + 1 to V , as source and
target nodes, respectively. We add the arcs euv := (u, v), for all u, v ∈ {0, . . . , n + 1}
with u < v to E. According to the notation in the preprocessing step (see Section 3),
the cost cuv of an arc euv is defined as follows

cuv :=
v−1
∑

i=u+1

i
∑

j=u+1

wij

where cu,u+1 = 0 for all u ∈ {0, . . . , n}.
The cost cuv describes the contribution to the hypervolume indicator of the whole set

{zu+1, . . . , zv−1}, which will be called the exclusive volume of the set {zu+1, . . . , zv−1}
and denoted by EV (zu+1, zv−1). An example for the graph construction is depicted in
Figure 2.
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Figure 2: Example for the graph construction

Observation 10:
Each choice in the HSSP of a subset {zs1 , . . . , zsk−1} of N with cardinality k − 1 corre-
sponds to a path in our constructed digraph with exactly k arcs that starts in node 0,
visits the nodes s1 to sk−1, and ends in the node n + 1. Since the cost of an used arc
euv corresponds to the exclusive volume of the jumped over nodes u + 1 to v − 1, the
hypervolume contribution S(N) minus the total cost of the path corresponds then to the
hypervolume contribution of the corresponding subset of N . Hence, the k-link shortest
path problem on our constructed digraph models the HSSP with desired cardinality
k − 1.

Since in our special k-link shortest path problem the Bellman principle of optimality
is obviously valid, we can use a straightforward DP approach to solve this problem (see
Algorithm 1). In each iteration, the length D(ℓ, v) of the optimal path for the problem
of finding the ℓ-link shortest path from 0 to v is calculated. However, this would not lead
directly to a better running time than Bader’s DP algorithm, since finding the minimum
in line 4 is in a näıve way done in O(n), resulting in an overall running time in O(n2k).
In the following, we show that the time complexity can be improved by proving some

special structure for this digraph, the so called (concave) Monge property [3]:

Theorem 11 (Monge property): Consider the following arcs

eij, ei,j−1, ei+1,j, ei+1,j−1
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Algorithm 1 DP for the special k-link shortest path problem

Input: G = (V,E) from above, k ∈ {1, . . . , n}
Output: D(k, n+ 1) length of the optimal path from 0 to n+ 1 with k arcs
1: D(1, v) := c0v for all v ∈ {1, . . . , n− k + 2}
2: for ℓ = 2, . . . , k do
3: for v = ℓ, . . . , n+ 1− k + ℓ do
4: D(ℓ, v) := min

u=ℓ−1,...,v−1
{D(ℓ− 1, u) + cuv}

i+1i j-1 j

Figure 3: Selected arcs in Theorem 11

for some i, j with j > i+ 2 (see also Figure 3). Then we have:

cij > ci,j−1 + ci+1,j − ci+1,j−1

Proof:
For 0 6 f 6 h 6 g 6 n we define B(f,g)(zh) as the area of the rectangle induced by the

two corner points zh and the special reference point zref(f,g) :=

(

z
f−1
1

z
g+1
2

)

with z01 = z
ref
1

and zn+1
2 = z

ref
2 (compare Figure 4).

We immediately get the following three formulas:

EV (zi+1, zj−1) = EV (zi+2, zj−2) + B(i+1,j−2)(zi+1) +B(i+1,j−1)(zj−1)

EV (zi+1, zj−2) = EV (zi+2, zj−2) + B(i+1,j−2)(zi+1)

EV (zi+2, zj−1) = EV (zi+2, zj−2) + B(i+2,j−1)(zj−1)

Moreover, we know:

B(i+2,j−1)(zj−1) = B(i+1,j−1)(zj−1)−B(i+1,j−1)(zi+1) ∩ B(i+1,j−1)(zj−1)

= B(i+1,j−1)(zj−1)− wj−1,i+1
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Figure 4: Example for B(f,g)(zh) (shaded area)

With these we can state the following chain:

cij = EV (zi+1, zj−1)

= EV (zi+2, zj−2) + B(i+1,j−2)(zi+1) + B(i+1,j−1)(zj−1)

= EV (zi+2, zj−2) + B(i+1,j−2)(zi+1) + B(i+2,j−1)(zj−1) + wj−1,i+1

= EV (zi+1, zj−2) + EV (zi+2, zj−1)− EV (zi+2, zj−2) + wj−1,i+1

= ci,j−1 + ci+1,j − ci+1,j−1 + wj−1,i+1 (7)

> ci,j−1 + ci+1,j − ci+1,j−1 �

Adapting a proof of [2], we can state the following equivalent property.

Corollary 12: Consider the following arcs

est, esv, eut, euv

with s < u < v < t (see also Figure 5). Then we have:

cst > csv + cut − cuv

In particular, we get the following formula

cst = csv + cut − cuv + (zu1 − zs1) · (zv2 − zt2) (8)

with z01 = z
ref
1 and zn+1

2 = z
ref
2 .

Proof:
From formula (7) we get

cij + ci+1,j−1 = ci,j−1 + ci+1,j + wj−1,i+1

for all i, j ∈ {0, . . . , n+ 1} with j > i+ 2. Thus, for j > u+ 1,

u−1
∑

i=s

(cij + ci+1,j−1) =
u−1
∑

i=s

(ci,j−1 + ci+1,j + wj−1,i+1)
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Figure 5: Selected Arcs in Corollary 12

which will give us, by canceling identical terms,

csj + cu,j−1 = cs,j−1 + cuj +
u−1
∑

i=s

wj−1,i+1 .

Summation over j yields

t
∑

j=v+1

(csj + cu,j−1) =
t
∑

j=v+1

(

cs,j−1 + cuj +
u−1
∑

i=s

wj−1,i+1

)

implying

cst + cuv = csv + cut +
t
∑

j=v+1

u−1
∑

i=s

wj−1,i+1 .

Note that the summation index j fulfills j > v + 1 > u+ 1. The term

t
∑

j=v+1

u−1
∑

i=s

wj−1,i+1

is identical to the area of the rectangle

{

z ∈ R
2 :

(

zs1
zt2

)

≦ z ≦

(

zu1
zv2

)}

proving formula (8). �

Observation 13:
For our later algorithm we can use formula (8) to calculate each cost cuv on-the-fly. By
setting s = 0 and t = n+ 1, we get for 0 < u < v < n+ 1

cuv = c0v + cu,n+1 − c0,n+1 + (zu1 − z
ref
1 ) · (zv2 − z

ref
2 ) .

Hence, we only need to precompute all costs c0v and cu,n+1 for all 0 < u < v < n + 1,
which can be done in O(n) time (see Algorithm 2).

11



Algorithm 2 Calculation of the costs c0v and cv,n+1

Input: N = {z1, . . . , zn}
Output: The costs c0v and cv−1,n+1 for all nodes v ∈ {1, . . . , n+ 1}.
1: c01 := 0
2: cn,n+1 := 0
3: for v = 1, . . . , n do
4: c0,v+1 := c0v + (zv1 − z

ref
1 ) · (zv2 − zv+1

2 )

5: for v = n, . . . , 2 do
6: cv−1,n+1 = cv,n+1 + (zv1 − zv−1

1 ) · (zv2 − z
ref
2 )

Going back to Algorithm 1, to find for a fixed ℓ 6 k the new entries D(ℓ, v), v =
ℓ, . . . , n+ 1− k + ℓ, we have to find in a matrix M ℓ, where only the entries M ℓ(u, v) :=
M ℓ

uv := D(ℓ− 1, u) + cuv, v ∈ {ℓ, . . . , n+ 1− k + ℓ}, u ∈ {ℓ− 1, . . . , v − 1} are relevant,
for each column v the minimal value, which is then assigned to D(ℓ, v). Ignoring all
irrelevant columns and rows, matrix M ℓ is a square matrix in R

(n−k+2)×(n−k+2).

Theorem 14: M ℓ is totally monotone for a fixed ℓ ∈ {2, . . . , k}

Proof:
Choose some arbitrary submatrix with rows i1, i2, . . . , is, w.l.o.g. without empty columns.
Choose two columns from the submatrix j1 < j2. Suppose now that min(j1) > min(j2)
and let ig := min(j2) and ih := min(j1).
Then, we get the four entries:

M ℓ(ig, j1) = D(ℓ− 1, ig) + cig ,j1 , M ℓ(ig, j2) = D(ℓ− 1, ig) + cig ,j2 ,

M ℓ(ih, j1) = D(ℓ− 1, ih) + cih,j1 , M ℓ(ih, j2) = D(ℓ− 1, ih) + cih,j2

and due to our assumption we know M ℓ(ih, j2) > M ℓ(ig, j2) and moreover M ℓ(ig, j1) >
M ℓ(ih, j1), i.e. we have

D(ℓ− 1, ih) + cih,j2 > D(ℓ− 1, ig) + cig ,j2

−D(ℓ− 1, ih)− cih,j1 > −D(ℓ− 1, ig)− cig ,j1

which gives us summed up the result:

cig ,j2 − cig ,j1 < cih,j2 − cih,j1 (9)

Furthermore, we are now in the situation ig < ih < j1 < j2 and from Corollary 12 we
immediately get

cig ,j2 − cig ,j1 > cih,j2 − cih,j1

This leads together with (9) to a contradiction and we get min(j1) 6 min(j2). �
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Corollary 15: Using the Matrix-Searching Algorithm from Theorem 7 in the DP ap-
proach (see Algorithm 1), the k-link shortest path problem in the constructed digraph can
be solved in O(nk) time.

Hence, incorporating the idea from Observation 13 we can state the following result.

Theorem 16: The two-dimensional HSSP can be solved in O(n(k + log n)) time.

We remark that, by taking into account known results in the literature about the
k-link shortest path problem on our special constructed digraph, the following results
can also be stated.

Theorem 17: The two-dimensional HSSP can be solved in

1. O(n(logU+log n)) time, if the costs are integral and U denotes the largest cost [3].

2. n2O(
√
log k log logn) +O(n log n) time, if k = Ω(log n) [20].

Note that both results stated in the theorem above are an improvement over the bound
stated in Theorem 16 if k = Ω(logU) and k = Ω(log n), respectively. Finally, we state
the following result in case a parallel environment, as described in [3], is available.

Theorem 18: The two-dimensional HSSP can be solved in O(n
√
k log n) [3].

Observation 19:
Note that a simple modification of the algorithm induced from Theorem 16 can obtain
the solution of the HSSP for all k = 1, . . . , n in O(n2) time.

6 Conclusion

In this article, we considered the two-dimensional hypervolume subset selection prob-
lem. We have proposed a new integer programming formulation and showed that the
polyhedron of its linear programming relaxation is integral. Moreover, we have given
a k-link shortest path formulation on a simple, directed, acyclic graph. Exploiting the
special structure of the arc costs, we stated a dynamic programming approach which
solves the HSSP in O(n(k+ log n)). Further improvements can be achieved under some
particular conditions.
The developed methods cannot be used for more than two dimensions. The IP formu-

lation (IPk) from Section 4 can be extended to more than two dimensions, in particular
to the three-dimensional case for N ⊆ R

3. However, the corresponding LP will, in gen-
eral, not define an integral polyhedron and can therefore not be used to solve the IP.
This can be observed for example with the following four points

z1 =





1
2
3



 z2 =





2
1
3.1



 z3 =





2.1
2.1
2



 z4 =





2.2
3
1



 .
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Here, the linear programming relaxation (w.r.t. zref = 0) has objective value 11.31 and
the integer program 11.02. Nevertheless, the linear programming relaxation can be used
to obtain an upper bound on the optimal hypervolume indicator. Moreover, also the
whole graph construction from Section 5 cannot be applied to the three-dimensional
case, since there the problem cannot be easily transformed to a k-link shortest path
problem, which can be observed in the following example. Let us consider the following
three points

z1 =





1
2
2



 , z2 =





2
1
3



 and z3 =





3
3
1



 .

Looking at the corresponding dominated regions/boxes (w.r.t. zref = 0), one can imply
that each pair out of the three induced boxes possesses a non-empty intersection only
belonging to both considered boxes. Hence, there is no unique sorting of the points as
in the two-dimensional case. Nevertheless, suppose that we assign an arbitrary sorting
to the three nodes in the corresponding digraph with five nodes (including source and
target nodes). Clearly, to model the subset selection corresponding to all points except
one, the arc jumping over this node must have cost equal to the exclusive volume of the
corresponding point. Then, the path corresponding to the subset selection by choosing
only the mid-point (w.r.t. the digraph nodes) will have the wrong value, since we only
need two arcs, for jumping only over the second and second last node, respectively. We
would miss to subtract the volume of the exclusive intersection of the two not selected
points.
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