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Datum der Disputation: 13 May 2014

D386



2



Acknowledgements

The life of a PhD student has never been easy but I have certainly relished
this experience. During this period I derived my inspiration from several
sources and now I want to express my deepest gratitude to all those sources.

Foremost, I owe thanks to my supervisor Prof. Dr. Axel Klar who has
not only encouraged me but has given his remarkable suggestions and in-
valuable supervision throughout my thesis. His support is invaluable.

Now I would like to express my sincere gratitude to Dr. Sudarshan Tiwari
for his advices, continuous encouragement and support right from the start
to the end which have always been the driving force towards the successful
completion of my thesis.

I express my sincere appreciation to Prof. Dr. Simone Göttlich for serv-
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Chapter 1

Introduction

A general overview of the present work is discussed in this chapter. We start
with the motivation behind the pedestrian modelling. We then proceed to
the general overview of pedestrian models along with the Eikonal equation.
A brief outline of the thesis is also given in this chapter.

1.1 Motivation

In recent years, research on pedestrian flow has become more popular and has
attracted the interest of an increasing number of scientists. The modelling
of pedestrian behaviour in a real-world environment is a complex problem,
mainly due to the unpredictable nature of human decision making. Knowl-
edge of pedestrian decision-making and movement is critical in a variety of
application domains.

Pedestrian models have many applications. For example, understand-
ing of pedestrian movement such as lane formation in uni-directional or bi-
directional flow, interaction with other pedestrians, attraction towards any
entertainment, behaviour near corners and in panic situations is important
for planning and designing public buildings such as train stations, shopping
malls, airports and theatres in terms of the capacity of such buildings and
also with respect to issues as safety, evacuation and navigation. While plan-
ning, the architectures of these buildings might be interested in how people
move around their intended design so that they can place shop entrances,
corridors, emergency exits and seating in useful locations. The dimensions
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2 CHAPTER 1. INTRODUCTION

(a) Crowd in Haneda airport, Japan. (b) Pedestrians in a Mall in Hamburg, Ger-
many.

Figure 1.1: Pedestrian flow in public buildings; Source : (a)
knoxnews.com (b) scabee.com

of public space influence the pedestrian movement and in turn have an im-
portant impact on the general atmosphere in pedestrianized areas.
Foot traffic is another area where pedestrian models have an application.
Analysing the pedestrian behaviour in city center and in busy areas or dur-
ing office hours is not only helpful in controlling foot traffic but also helps to
place the stores depending on the pedestrian movement patterns.

In addition to the above applications, pedestrian movement patterns are
critical in planning the large mass gatherings such as religious meetings and
new year celebrations. There have been many crowd disasters in recent times
because of poor planning. Few of the crowd disasters are presented in Table
1.1, more can be found in [77].

The exact knowledge of pedestrian behaviour plays an essential role in
the planning of big events, where high densities of pedestrians are expected.
The organisers require information on what areas are likely to be congested
so that management strategies can be developed and tested before event. It
is difficult to control and predict the dynamics of a large number of pedes-
trians, especially if panic appears and dominates the reactions of a crowd.
The main reason for any tragedy is mistakes in the planning phase for the
event and a combination of events leading to the development of local panic.
Especially in evacuation scenarios one needs to know the routes of the pedes-
trians to avoid jams and potential injuries. Many accidents where crowd of
pedestrians were involved, happened because of planning mistakes and not
because of mass panic.
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(a) Lane formation (b) Pedestrians in a Crowded area

Figure 1.2: Pedestrians on streets; Source: (a) chicagotribune.com
(b) farmeronamission.blogspot.com

Experiments are one way to know the behaviour of pedestrians in various
situations but experiments with many people are expensive and simulating
experimentally stress situations like crowd disasters is not possible. This is
where pedestrian models come into picture. Pedestrian models are useful in
analysing various situations through simulations.

1.2 Overview

In recent years a large number of models for pedestrian flow have appeared
on different levels of description from microscopic to macroscopic. On the
microscopic (individual based) level, the available models are benefit cost
cellular model [32], cellular automata models [6, 7, 8], magnetic force model
[63], queuing network model [86] and Social force model [35, 38]. Brief intro-
duction of these models is given in chapter 2.

Equations on the mesoscopic or kinetic level are discussed in Ref. [36, 25].
Hydrodynamic pedestrian flow equations involving equations for density and
mean velocity of the flow are derived in Refs. [36, 5]. In Refs. [43, 44, 31, 2]
modeling of pedestrian flow with scalar conservation laws coupled to the
solution of the Eikonal equation has been presented and investigated. The
first modeling attempt is due to Hughes [43] who defined the crowd as a
thinking fluid and described the time evolution of its density using a scalar
conversation law. Gas dynamic approach to the pedestrian flow is presented
by Bellomo and Dogbe [5] and Maury et.al [59] presented gradient flow type
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Year Place reason # deaths # injured
2000 Denmark Crowd surge and 9 -

crushing in mosh pit area
2001 South Africa Overcrowding 43 -
2001 Japan Stampede after 11 247

firework show
2004 China Stampede to see 37 15

fireworks display
2006 Saudi Arabia Stampede while 345 -

throwing stones at pillars
2010 India Stampede during 71 200

religious event
2010 Germany Overcrowding 21 510
2010 Cambodia Swaying bridge 347 -

causing panic
2013 India Roumer of bridge 115 110

falling
2014 India Religious stampede 18 40

Table 1.1: Crowd disasters; Source : en.wikipedia.org/wiki/List-of-human-
stampedes

model for pedestrian flow in macroscopic level. Finally, scalar equations
including a nonlocal interaction between pedestrians are presented in Refs.
[16, 17].

For a general recent review on pedestrian flow models we refer again to
Refs. [4, 21]. For further references, in particular, for the derivation of
kinetic and continuum models from microscopic models see Ref. [5] and also
the discussion in Ref. [21].

We choose a classical microscopic social force model for pedestrians Ref.
[40] and extend it with an optimal path computation as, for example, in Ref.
[43]. Thus, additionally to the local interaction between pedestrians, a non-
local term including a global knowledge of the physical setting is introduced.
These equations are approximated using a scaling assumption, see Ref. [11],
and a mean field equation with a convolution term is derived from the local
interaction in the microscopic model. This procedure is classical, but is in
contrast to the kinetic equations obtained, for example, in Refs. [36, 25],
where classical Boltzmann terms are used for the modelling on the kinetic
level. Derived models based on microscopic models with constant velocity
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(a) Crowd at macca (b) Crowd at Love parade dance festival in
Duisburg

Figure 1.3: Crowd gatherings; Source : (a) ramadan-karim.com (b)
rnw.nl

are discussed as well. We refer to Ref. [21] for a model hierarchy based on
a microscopic constant velocity models and a mean field approach for the so
called heuristic behavioural individual based model.

The usual hydrodynamic limit assumptions lead to macroscopic equations
for the density and mean velocity of the pedestrian flow, compare Ref. [11] for
the case of swarming models. The hydrodynamic equations obtained here still
contain a nonlocal interaction term due to the derivation from the mean field
equations with non local interaction terms. Finally, further simplifications
yield scalar limit equations with a non local term and an Eikonal equation
as in Refs. [16, 17, 18] and [43, 44]. Moreover, a local Eikonal equation to
model a local visibility of the flow for each pedestrian is discussed. This can
be viewed as an intermediate model between the global view via the global
solution of the Eikonal equation and the local interaction terms. Such an
approach requires a solution of Eikonal equation in a neighborhood of the
actual particle and is not pursued here further.

For the numerical simulations we use particle methods on the microscopic
and macroscopic level of the model hierarchy. These methods are straight-
forward for microscopic equations. In case of the macroscopic equations
particle methods are based on a Lagrangian formulation of these equations.
One approximates the spatial derivatives at the particle locations by a least
squares difference approximation. The integral over the interaction potential
is evaluated by a straightforward integration rule or in case the numerical
simulation is underresolved by a higher order approximation of the integral.
The models and methods are compared from the point of view of qualitative
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behaviour and computation time and the advantages of using macroscopic
models and the associated particle methods compared to a microscopic simu-
lation is pointed out. We refer to Ref. [83] for a related but simpler approach.

We present and use a mesh free method to solve the Eikonal equation.
The most popular methods to solve the Eikonal equation are fast marching
methods [73, 74] and fast sweeping methods [92, 47, 87]. In realistic grids and
complex geometries fast marching method is best suited than fast sweeping
method in terms of time complexity, see Ref . [33]. However, fast marching
method is only applicable for orthogonal grids and triangular grids. In case
of triangular grid, it is complicated to use when the triangles are not acute.
We present a mesh free method, which follows the idea of front marching
in fast marching method but differs from it in approximating derivatives in
the Eikonal equation. We use the least square method to approximate the
derivatives. Our method is simple to implement and can be applied on any
arbitrary grid and in complex geometries.

The parts of the present work have been published in [28, 29, 52]. Particle
methods for pedestrian flow models from microscopic to non-local continuum
models is published in [28]. Mesh free method to solve the Eikonal equation is
published in [52] and a macroscopic model for pedestrian flow and comparison
with the experimental results is published in [29].

1.3 Outline of Contents

Chapter 2 presents the hierarchy of pedestrian models from microscopic to
non local continuum. In Section 2.1, we give brief overview of the exist-
ing models in microscopic and macroscopic cases. We present a microscopic
model with optimal path computation using the Eikonal equation in Section
2.2. In Section 2.3, we derive the mean field equation and hydrodynamic
model is presented in Section 2.4. Section 2.5 provides the derivation of
scalar model.

Chapter 3 discusses about the Eikonal equation. We start with a brief in-
troduction of the Eikonal equation in Section 3.1 . In Section 3.2, existing
methods to solve the Eikonal equation are discussed briefly. In Section 3.3, a
mesh free method to solve the Eikonal equation along with the algorithm is
given. Time complexity and few numerical examples to validate our method
are also presented in Section 3.3 .

In Chapter 4, we explain the numerical methods to solve the governing equa-
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tions in the microscopic, hydrodynamic and scalar models. The finite point
set method is presented in Section 4.1 .

In Chapter 5, we present two numerical examples. In first numerical example
we investigate the microscopic, hydrodynamic and scalar models. We con-
sider the example of pedestrian flow in a railway platform with obstruction as
a test case and compare microscopic, hydrodynamic and scalar models. We
present various patterns for different obstructions and for different parame-
ters for this example. In the second numerical example we are interested in
comparing our results with the experimental results. We consider the exper-
imental results of uni and bi directional pedestrian flow in straight corridor
and pedestrian flow through T-junction and we compare our results with the
experimental results.

Finally, Chapter 6 concludes the present work.
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Chapter 2

Hierarchy of Pedestrian Flow
Models

In this chapter, we start with an overview of the existing models for pedes-
trian flow in micro and macro scale. Then a hierarchy of models for pedes-
trian flow is presented. It includes microscopic models based on interacting
particle system coupled to the Eikonal equation, hydrodynamic models using
equations for density and mean velocity, nonlocal continuum equations for
the density and diffusive Hughes equations.

2.1 Overview

In this section, we give an overview of the existing pedestrian models on
microscopic and macroscopic scales.

2.1.1 Microscopic

In microscopic models pedestrians are represented by their position and ve-
locity. Most of the mathematical models at the microscopic scale have a
structure similar to that of Newtonian dynamics. The structure of models is
as follows:

dxi

dt
= vi

dvi
dt

= Fi(x1, · · · , xN , v1, · · · , vN),

9
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where xi is the position, vi the velocity and Fi the total force of ith particle.
The solution of the above system provides the time evolution of position
and velocity of pedestrians. Different modeling approaches correspond to
different ways of describing the acceleration term on the basis of a detailed
interpretation of individual behaviors.

Benefit Cost Cellular Model

This model is proposed by Gipps and Marksjo [32] . It simulates the pedes-
trian as particle in a cell. The computational domain is divided into rect-
angular cells with each side equal to 0.5m and each cell can be occupied by
at most one pedestrian and a score is assigned to each cell on the basis of
proximity to pedestrians. This score represents the repulsive effects of nearby
pedestrians and has to be balanced against the gains made by the pedestri-
ans in moving towards his destination. When the fields of two pedestrians
overlap, the score is the sum of the score generated by each pedestrian indi-
vidually.

In this model, the pedestrians do not take account of the directions in
which other pedestrians are travelling, the scores would be symmetric around
a pedestrian. The cell occupied by a pedestrian is given a score of 1000, the
cells with a side in common a score of 40, the cells with a corner in com-
mon a score of 13 and lower values to the more distant cells. The very high
repulsive score in the cell occupied by a pedestrian serves as barrier to an-
other pedestrian joining him in the cell. The scores in the surrounding cells
are approximately inversely proportional to the square of the separation of
pedestrians in the two cells. The formula for repulsive force is 1

(∆−α)2+β
,

where ∆ is the distance separating the centres of the two cells, α is the con-
stant less than the diameter of the pedestrian and β is an arbitrary constant
to moderate fluctuations in scores.

If the measure of the gain obtained by moving to a particular cell is a
function of the change in separation of the pedestrian from his destination,
the longer step length associated with diagonal moves will cause the pedes-
trian to move diagonally in the absence of other pedestrians. The tendency
towards diagonal moves can be overcome by making the gain from move de-
pendent on the angle of deviation from the desired path. The function for the
gain has to be positive when the deviation is less than 90 degrees and nega-
tive when the deviation is greater than 90 degrees. The formula for the gain
is K.cos(σ).|cos(σ)|, where K is a constant of proportionality to enable gain
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of moving in a straight line, to be balanced against the cost of approaching
other pedestrian closely and σ is the angle by which the pedestrian deviates
from a straight line to his destination. From elementary geometry, we have

cos(σ) =
(xi − s)(d− s)

|xi − s||d− s| (2.1.1)

where xi is the location of target cell, s is the location of the pedestrian and
d is the location of the destination. The formula for net score is given by
subtracting the cost of moving closer to other pedestrians from the gain the
pedestrian obtains by moving closer to the destination.

Score =
K(xi − s)(d− s)|(xi − s)(d− s)|

|xi − s|2|d− s|2 − 1

(∆− α)2 + β
. (2.1.2)

The cell which the pedestrian moves is determined by calculating a net benefit
for the move to each of the accessible cells and selecting the cell with the
maximum benefit. The pedestrian has to select the cell with the maximum
net benefit from the set of nine neighboring cells.

Being simple is the advantage with this model but the model has a draw-
back due to the arbitrary scoring of the cells and the pedestrians. The scoring
system makes the model difficult to be calibrated with the real world phe-
nomena.

Magnetic Force Model

This Model is developed by Okazaki and Matsushita [63]. Pedestrian move-
ment is caused by the application of magnetic models and equation of motion
in the magnetic field. Each pedestrian and obstacles such as walls have pos-
itive pole. The destination of the pedestrians has negative pole. Pedestrians
moves to their goals and avoid collisions. Two forces work on each pedestrian.
First, magnetic force as formulated by Coulomb’s law, which depends on the
intensity of magnetic load of a pedestrian and distance between pedestrians,
given by

F =
kq1q2r

|r|3 , (2.1.3)

where

• F is a magnetic force vector

• k is a constant
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• q1 is intensity of magnetic load of a pedestrian

• q2 is intensity of a magnetic pole

• r is a vector from a pedestrian to a magnetic pole

Another force, which acts on a pedestrian to avoid the collision with an-
other pedestrian or obstacle. For example, in Figure 2.1 where Pedestrian i
tries to avoid the collision with pedestrian j, the force exerts acceleration on
pedestrian i. Acceleration is calculated by

a = vi.cos(p).tan(q), (2.1.4)

where

• a is the acceleration acting on pedestrian i to modify the direction of
vij to the direction of line ik.

• vi is the velocity of pedestrian i

• p is the angle between vij and vi

• q is the angle between vij and ik

• vij is the relative velocity of pedestrian i to pedestrian j.

i

jk

vijvi

vj

p q

Figure 2.1: Additional repulsive force on magnetic force model.

In Figure 2.1, acceleration a acts on pedestrian i to modify the direction
of vij to the direction of line ik. Line ik is a contacting line from the position
of pedestrian i to the circle around pedestrian j. Totality of forces from
goals, walls and other pedestrians act on each pedestrian and it decides the
velocity of each pedestrian each time.
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As in the benefit cost cellular model, this model also has the same prob-
lem of arbitrary setting up of the magnetic intensity values. Due to those
arbitrary setting of the magnetic load, the validation of the model can only be
done merely by visual inspection. No real world phenomena can be validated
using this model.

Cellular Automata Model

Cellular Automata models have been applied for simulating car traffic and
validate adequately with the real traffic data. Recently, cellular automation
model has been used for pedestrians [6, 7, 8].

The model simulates pedestrians as entities in cells. The walkway is mod-
elled as grid cells and a pedestrian is represented by a circle that occupies a
cell.The grid has to be regular, which means that it is made of any sort of
regular polygons. Three possible types of grids are triangular, rectangular
and hexagonal grid. Since pedestrians are represented by circle, hexagonal
grid is best choice of grid cell. But it is difficult to implement in computation
and also it is not ideal to represent straight walls and obstacles. Similarly,
triangular grids are also not suitable for straight walls but best suited in
representing complex geometries. A rectangular grid is perfectly suited for
walls, because most rooms are rectangular.

The computational domain is divided into cells. Each cell can be empty
or occupied by exact one pedestrian. The size of a cell corresponds to ap-
proximately 0.4m × 0.4m. The update is done in parallel for all particles.
Each pedestrian is given a direction of preference i.e., his destination. From
this direction a 3× 3 matrix of preference is constructed which contains the
probabilities for a move of the pedestrian. The central element of the ma-
trix describes the probability for the pedestrian to take no move at all, the
remaining eight correspond to a move to the neighboring cells. The prob-
abilities can be related to the velocity and the longitudinal and transversal
standard deviations. In each time step, for each pedestrian a desired move
is chosen according to these probabilities. This is done in parallel for all
pedestrians. If the target cell is occupied, the pedestrian does not move. If
it is not occupied and no other pedestrian targets the same cell, the move is
executed. If more than one pedestrian share the same target cell, one is cho-
sen according to the relative probabilities with which each pedestrian chose
their target. This pedestrian moves while its rivals for the same target keep
their position. The speed to pedestrians is assigned based on the available
gap and advanced forward by this speed. A gap is the number of empty
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cells ahead. The range of allowable movement is equal to minimum of one
of gap or maximum walking speed. Though the cellular automata model is
also simple to develop and fast to update the data, the heuristic approach of
the updating rules is undesirable since it does not reflect the real behavior
of the pedestrian. The inherent grid cells of the cellular based model make
the behavior of pedestrians seems rough visually. The pedestrian gives the
impression of jumping from one cell to another.

Queuing Network Model

Queuing Network Model is used for the pedestrian simulation for evacuation
purposes [79, 80, 58]. The approach is a discrete event Monte Carlo simula-
tion, where each room is denoted as a node and the door between rooms as
links. Each person departs from one node, queues in a link, and arrives at
another node. A number of pedestrians move from one node to another in
search for the exit door. Each pedestrian has a location goal. Each person
has to move from its present position to an exit as quickly and safely as
possible. Route, which each person use and the evacuation time is recorded
in each node. When a pedestrian arrives in a node, he makes a weighted-
random choice to choose a link among all possible links. The weight is a
function of actual population density in the room. If the link cannot be
used, a pedestrian will wait or find another route to follow. In the source
node, a person needs a certain time to react before movement begins, while
in the final destination node he will stop the movement process. Pedestrian
crossing has a similar goal to the evacuation where the pedestrians have to
move from their original position to the other side of the road as quickly
and safely as possible. The evacuation time, as one of the performance mea-
surements will be used in the proposed model. The queuing network model
has implicit visual interaction. The behavior of the pedestrians is not clearly
shown and the collisions among pedestrians are not clearly guaranteed. The
first in first out priority rule that is inherent in the model is not very realistic
especially in a crowded situation.

Social Force Model

Social Force Model is developed by Helbing [35, 36, 38]. According to Hel-
bing, a pedestrian is subject to social forces that motivate the pedestrian.
The mathematical formulation of the model read as

dvi
dt

=
1

τ
(voi ei − vi) +

∑

j

Fij(xi, xj) +
∑

k

Fik(xi) + fluctuations (2.1.5)
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The first term in the right hand side represents the force that motivates
the pedestrian to reach the goal. Each pedestrian wants to reach a certain
destination xo

i as comfortable as possible. Therefore, pedestrian normally
takes the shortest possible way. ei is the unit vector in the direction of the
destination which is given by

ei =
xo
i − xi

‖xo
i − xi‖

. (2.1.6)

voi is the intended velocity with which pedestrians tend to move in the ab-
sence of interaction. A deviation of the actual velocity vi(t) from the intended
velocity vi(t) = voi ei due to necessary deceleration processes or avoidance pro-
cesses leads to a tendency to approach vi(t) again within a certain relaxation
time τ .

The second term in the right hand side of eqn (2.1.5) represents the
interaction force of a pedestrian with other pedestrians. The motion of a
pedestrian influenced by other pedestrians. In particular, pedestrian keeps
a certain distance from other pedestrians that depends on the pedestrian
density and the desired speed voi . Each pedestrian has a comfortable radius.
A pedestrian feels increasingly uncomfortable the closer he/she gets to a
strange person, who may react in an aggressive way. This results in repulsive
effects of the other pedestrians that can be represented by

Fij(xi, xj) = −∇V (B(rij)). (2.1.7)

The repulsive potential V (B(rij)) is a monotonic decreasing function and rij
is the distance between pedestrians i and j.

A pedestrian also keeps a certain distance from borders of buildings, walls,
obstacles. He/she feels more uncomfortable the closer to a border he/she
walks since he/she has to pay more attention to avoid the danger of getting
hurt. The third term in the right hand side of (2.1.5) reflects this repulsive
force, which can be described by

Fik(xi) = −∇U(‖rik‖), (2.1.8)

where U is a monotonic decreasing potential and rik denotes the shortest
distance between pedestrian and wall or obstacle.

The social force model is the best among all microscopic models that has
been developed so far. The variables are not arbitrary because they have
physical meaning that can be measured.
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2.1.2 Macroscopic

Macroscopic description treats the crowd as a continuum medium character-
ized by averaged quantities such as density and mean velocity.

Hughes Model

Hughes [43] considered a two dimensional connected domain Ω ∈ R2 corre-
sponding to some walking facility. It is equipped with an exit which models
the destination of the crowd motion and can contain obstacles. The bound-
ary of the continuum Γ, comprises three segments, inflow boundary Γo, exits
Γd and walls/obstacles Γh.
Let ρ be the pedestrian density, u be the velocity of the pedestrian flow, thus
similar to many physical systems, conservation of pedestrians implies

ρt + div(ρu) = 0 (2.1.9)

Hughes defined a potential function Φ(x, y, t) and proposed that the motion
of any pedestrian is in the direction to this potential, that is, in the direction
for which







Φ̂x = −Φx√
Φ2

x+Φ2
y

Φ̂y =
−Φy√
Φ2

x+Φ2
y

Therefore,
u1 = f(ρ).Φ̂x and u2 = f(ρ).Φ̂y (2.1.10)

where f(ρ) is the speed. Pedestrians seek to minimize their estimated travel
time, but temper this behavior to avoid extremely high densities. This tem-
pering is assumed to be separable such that pedestrian minimize the product
of their travel time and a function of the density. Two pedestrians on a
given potential must not be at the same new potential as each other at some
later time. Thus the distance between potentials must be proportional to
pedestrian speed irrespective of the initial position of a pedestrian. Thus,

1
√

Φ2
x + Φ2

y

= g(ρ)
√

u2
1 + u2

2 (2.1.11)

where g(ρ) is a factor to allow for discomfort at very high densities. The
factor g(ρ) is equal to unity for most densities but rises for high densities.
Finally, the governing equations for pedestrian flow,

ρt − div(ρf 2(ρ)g(ρ)∇Φ) = 0 (2.1.12)
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and

g(ρ)f(ρ) =
1

√

Φ2
x + Φ2

y

(2.1.13)

Hughes’ model is useful for describing the movement of large crowds, as a
crowd generally moves as an entity and individual differences are less impor-
tant. In this method, it is assumed that tall pedestrians have a clear view of
the operating conditions of the whole walking facility and that short pedestri-
ans obtain such information from/or follow the route decisions of neighboring
tall pedestrians. The model intends to describe the aggregate behavior of a
homogeneous crowd with a common goal, such as crowd movement in a rail-
way platform or at a sporting event, holy site, or political demonstration,
rather than the heterogeneous behavior of individuals.

Gas Dynamics Approach

This approach is presented by Bellomo and Dogbe [5]. Consider the crowd
in a bounded domain Ω ∈ R2 where ∂Ω is its boundary. The overall descrip-
tion of the system is delivered by the equation of conservation of mass and
equilibrium of linear momentum defined by the following system of partial
differential equations:

{

∂tρ+∇x.(ρu) = 0

∂tu+ (u.∇x)u = F (ρ, u)
(2.1.14)

where F models the average acceleration that acts over the elementary block
of individuals in volume dxdy. Bellomo et al presented three different classes
for various F .
Class one refers to systems where the pedestrians move along straight lines
towards the target objective.

{

∂tρ+∇x.(ρu) = 0

∂tu+ (u.∇x)u = α(U(ρ)e0 − u)− K2(ρ)
ρ

∇e0ρ
(2.1.15)

where α > 0 is the inverse of the relaxation time, e0 is a unit vector pointing
towards the target and U(ρ) is an equilibrium speed of pedestrians. The
second class of models refers to walkers that still move towards the target
objective, but are also attracted by paths with small density gradients.

{

∂tρ+∇x.(ρu) = 0

∂tu+ (u.∇x)u = α(U(ρ)e− u)− K2(ρ)
ρ

∇eρ
(2.1.16)
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where direction of motion is given by e = e0+e1, with e1 being the correction
term related to the attraction towards small density gradients.

The third class of models contains a pressure term which enables the
momentum equation to predict the expected response of crowd behavior as
time and space changes.

{

∂tρ+∇x.(ρu) = 0

∂t(u+ P (ρ, u)u0) + (u.∇x)(u+ P (ρ, u)u0) = α(U(ρ)e0 − u)ρ
(2.1.17)

where P = P (ρ, u) is some pressure that pedestrians feel along the preferred
path, depending on pointwise crowding of the domain and on their current
velocity.

Gradient Flow Type

This approach is presented by Maury, Roundneff and Santabrogio [59]. The
model is based on a strong expression of the congestion constraint. It rests
on the following two principles.

• The principle population is described by a density ρ which is subjected
to remain below a certain maximal value, this density follows an ad-
vection equation.

• The advecting field is the closet among the admissible fields, to some
spontaneous field L, which corresponds to the strategy people would
follow in the absence of others.

If we denote by Cρ the cone of admissible velocities, the model takes the
following form

{

∂tρ+∇.(ρu) = 0

u = PCρ
L

(2.1.18)

where the projection is meant in the L2 sense. The spontaneous velocity field
has a gradient structure L = −∇D, where D is the geodesic distance to the
exit.

2.2 The Microscopic Model

We consider a microscopic social force model for pedestrian flow including
an optimal path computation. It is developed by coupling the classical social
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force models, see for example Ref. [40, 39], with a optimal path computation
as in the Hughes approach to pedestrian flow, see Ref. [43]. We obtain a two-
dimensional interacting particle system with locations xi ∈ R

2, i = 1, · · ·N
and velocity vi ∈ R

2. The equations of motion are

dxi = vidt

dvi =
∑

i 6=j

F (xi − xj , vi − vj)dt+G(xi, vi, ρi)dt−
A2

2
vidt+ AdW

(i)
t .

The desired velocity and direction force is given by

G(x, v, ρ) =
1

T

(

−U(ρ)
∇Φ(x)

‖∇Φ(x)‖ − v

)

, (2.2.1)

where

ρ = ρ(x) =
1

NR
max

∑

j,‖x−xj‖<R

1

and ρi = ρ(xi). Here NR
max is the maximal number of particles in a ball of

radius R and T denotes the reaction time describing how fast pedestrians
can correct their current velocity to the desired velocity. The function U :
[0, 1] → [0, Umax] describes the speed-density relationship.

The interaction force is given by

F (x, v) = Fint(x) + Fdiss(x, v) (2.2.2)

with the interaction force Fint given by

Fint = Fint(x) = −∇xV (‖x‖)

where V is an interaction potential given by

V = V (x) = kn

(

2R2 − ‖x‖(2R− ‖x‖
2

)

)

H(2R− ‖x‖)

where H is the Heaviside function. This yields

Fint(x) = knn(x)(2R − ‖x‖)H(2R− ‖x‖)

where
n = n(x) =

x

‖x‖
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is the normal unit vector. This force is complemented by a dissipative force,
compare e.g. Ref. [40]. The dissipative force is given by

Fdiss =
(

F n
diss + F t

diss

)

H(2R− ‖x‖).

Here, the normal dissipative force is given by

F n
diss(x, v) = −γn < v, n > n.

The tangential friction force is

F t
diss(x, v) = −γtv

t = −γt < v, n⊥ > n⊥

where
vt = v− < v, n > n

is the tangential unit vector pointing into the direction of the tangential
component of the relative velocity and n⊥ is the normal to n. R denotes the
radius of interaction of the pedestrians, kn is the interaction constant and γn
and γt are suitable positive friction constants.

Finally, W
(i)
t are independent Brownian motions in R

2 and A ≥ 0 is a
constant.

Remark 2.2.1 Optimal Path

Let Φ be the travel costs for pedestrians to reach their destination. As one
might expect, pedestrians intend to minimize these travel costs. Hughes [43,
44] proposed that pedestrians move in opposite to the gradient of the scalar
potential Φ, that is

− ∇Φ

‖∇Φ‖ . (2.2.3)

The potential Φ is determined by the nonlinear Eikonal equation

|∇Φ| = g(ρ) in Ω, (2.2.4)

Φ = 0 on Ωd (2.2.5)

where Ωd is the destination for pedestrians and g(ρ) is a density-dependent
cost function increasing in ρ. Pedestrians want to minimize the path length
towards their destination but temper the estimated travel time by avoiding
high densities. This behavior can be expressed by the ’density driven’ rear-
rangement of the equipotential curves of Φ using the cost function [43]

g(ρ) =
1

U(ρ)
.
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Remark 2.2.2 A model with constant velocities which might be a more ap-
propriate way to describe the actual movement of pedestrians is easily con-
structed in the following way. We define v = cτ with τ = (cos(α), sin(α)) ∈
S1 and assume that c > 0 is constant. Then using dτ = τ⊥dα we obtain the
equations

dxi = cτi dt (2.2.6)

cdαi =
∑

i 6=j

τ⊥i · F (xi − xj , c(τi − τj))dt−
U(ρi)

T‖∇Φ(xi)‖
τ⊥i · ∇Φ(xi)dt+ A dW

(i)
t ,

where W
(i)
t are Brownian motions in R. Compare Refs. [22, 12] for constant

velocity models in a biological context. In this model the direction of the
pedestrians is changed according to the projection of the direction given by
the gradient of the potential Φ determined from the Eikonal equation and the
projection of the interaction force onto the orthogonal direction of the motion.
An individual based model with constant speed and the inclusion of a desired
direction into an interaction potential can be found in Ref. [21].

Remark 2.2.3 Finite size effects with a minimal radius around a pedestrian
could be included using interaction potentials with a singularity. Other vari-
ants are given by an elliptical interaction force

fn
int(x, v) = −∇xV (x, v)

with a potential
V (x, v) = V (b(x, v))

with
b(x, v) = ‖x‖+ ‖x− vTe‖

or by a force including the human vision cone.

Remark 2.2.4 A local visibility model can be set up as follows. For each
x ∈ Ω, Φ is given by the solution of the Eikonal equation

U(ρ(y))‖∇Φ‖ − 1 = 0, y ∈ BV (x)

where BV (x) is a given circle around x. Boundary conditions on this circle
are chosen for example as

Φ(y) = dist(y,ΩD), y ∈ ∂BV (x).

This would give a preference towards the desired direction. We refer to Ref.
[5] for a local visibility model without using an Eikonal equation.



22 CHAPTER 2. HIERARCHY OF PEDESTRIAN FLOW MODELS

2.3 Mean Field Equation

Using the so-called ’weak coupling scaling’ assumption [62, 9, 78] one rescales
the interaction potential with the factor 1

N
where N denotes the total number

of particles. Neglecting the stochastic force our scaled microscopic model
states

dxi

dt
= vi (2.3.1)

dvi
dt

=
1

N

∑

i 6=j

F (xi − xj , vi − vj) +G(xi, vi, ρi).

Letting N to infinity, one can derive in the limit of a large number of particles
the associated mean field equation [78, 11, 10]. For completeness we briefly
sketch the idea of the derivation. Let us denote by f (N)(xi, vi, t) the N-
particle probability density function, so that the probability of finding each
of the i particles at position xi and velocity vi within a volume dxidvi in
phase space is f (N)(xi, vi, t)Πidxidvi. Conservation of mass allows to write
the time evolution of f (N) according to the Liouville equation

∂tf
(N) +

N
∑

i=1

(

divxi
(ẋif

(N)) + divvi(v̇if
(N))

)

= 0 (2.3.2)

The one-particle distribution function f (1)(x1, v1, t) is defined as

f (1)(x1, v1, t) =

∫

f (N)dx2 · · · dxNdv2 · · · dvN . (2.3.3)

Integrating Liouville eqn(2.3.2) over dΩ1 = dx2 · · ·dxNdv2 · · ·dvN one ob-
tains

∂tf
(1) +

∫

divx1
(ẋ1f

(N))dΩ1 +

∫

divv1(v̇1f
(N))dΩ1 = 0 (2.3.4)

The spatial divergence term reduces to v1·∇x1
f (1). For the velocity divergence

term one obtains the two contributions

divv1
(

G(x1, v1, ρ(x1))f
(1)
)

(2.3.5)

with

ρ(x1) :=

∫

f (1)(x1, v)dv
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and

divv1

∫

1

N

∑

j 6=1

F (x1 − xj , v1 − vj)f
(N)dΩ1 (2.3.6)

Since particles are indistinguishable we obtain for the last term

divv1
N − 1

N

∫

F (x1 − x2, v1 − v2)f
(2)dx2dv2 (2.3.7)

with

f (2) =

∫

f (N)dx3 · · · dxNdv3 · · · dvN .

is the pair correlation function. Using a chaos assumption f (2)(x1, v1, x2, v2) =
f (1)(x1, v1)f

(1)(x2, v2) we obtain finally the term

divv1
N − 1

N

∫

F (x1 − x2, v1 − v2)f
(1)(x2, v2)dx2dv2f

(1)(x1, v1). (2.3.8)

Thus, for N going to infinity one obtains for the distribution function
f = f(x, v, t) of the particles the mean field equation

∂tf + v · ∇xf + Sf = 0 (2.3.9)

with force term

Sf = ∇v · (G(x, v, ρ(x))f(x, v)) +∇v ·
(
∫ ∫

F (x− y, v − w)f(y, w)dwdyf(x, v)

)

where

ρ(x, t) :=

∫

f(x, v, t)dv.

Adding the stochastic force gives an additional diffusion term on the right
hand side, i.e.

∂tf + v · ∇xf + Sf = Lf (2.3.10)

with

Lf =
A2

2
∇v · (vf +∇vf)
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Remark 2.3.1 In case of the constant velocity model the mean field equation
reads

∂tf + cτ · ∇xf + Sαf = Lαf (2.3.11)

with force term

Sαf = −∂α

(

U(ρ(x))

cT‖∇Φ(x)‖τ
⊥ · ∇Φ(x)f

)

+
1

c
∂α

(

τ⊥ ·
∫ ∫

F (x− y, c(τ − τ ′))f(y, α′)dα′dyf

)

and diffusion term

Lαf =
A2

2c2
∂ααf

For the following we define the momentum of f by

ρu(x, t) :=

∫

vf(x, v, t)dv.

Let us mention that the rigorous passage from microscopic particle systems
towards the kinetic mean-field equation as N → ∞ has been treated for
example in Ref. [10] or Ref. [78] for deterministic and stochastic case.

2.4 Hydrodynamic Models

Hydrodynamic limits for similar equations have been derived in Ref. [15, 11].
We consider the mean field equation

∂tf + v · ∇xf + Sf = Lf

and derive different limit equations. Integrating against dv and v dv gives
the continuity equation

∂tρ+∇x · (ρu) = 0 (2.4.1)

and

∂tu+ u · ∇xu+
1

ρ
∇x

∫

(v − u)⊗ (v − u)f(x, v)dv =
1

ρ

∫

G(x, v)f(x, v)dv

(2.4.2)
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+
1

ρ

∫ ∫ ∫

F (x− y, v − w)f(y, w)dwdyf(x, v)dv− A2u

Considering an equation without diffusion, i.e. neglecting fluctuations and
setting A = 0, it makes sense to use a moment closure approach with a
mono-kinetic closure function

f ∼ ρ(x)δu(x)(v).

One obtains
∫ ∫ ∫

F (x− y, v − w)f(y, w)dwdyf(x, v)dv

=

∫ ∫ ∫

F (x− y, v − w)ρ(y)δu(y)(w)dwdyρ(x)δu(x)(v)dv

= ρ(x)F̂ (ρ, u)

with

F̂ (ρ, u) =

∫

F (x− y, u(x)− u(y))ρ(y)dy.

Neglecting the velocity dependence of F one has

F̂ (ρ, u)(x) =

∫

F (x− y)ρ(y)dy = F ⋆ ρ (x).

Alltogether

∂tu+ (u · ∇x)u = G(x, u, ρ) + F̂ (ρ, u). (2.4.3)

with

G(x, u, ρ) =
1

T

(

−U(ρ(x))
∇Φ(x)

‖∇Φ(x)‖ − u

)

This is coupled to
f(ρ(x))‖∇Φ(x)‖ = 1.

Using other functions to close the equation with A 6= 0 results in equations
including a pressure term. One could for example use a closure with a stan-
dard Maxwellian as closure function leading to

∂tu+
1

ρ
∇xρ = G(x, u, ρ) + F ⋆ ρ− A2u. (2.4.4)

Compare this model to the second order models in Ref. [5].
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Remark 2.4.1 In the constant velocity case the balance equations read after
integrating the mean field equation

∂t

∫ 2π

0

fdα+ c∇x ·
∫ 2π

0

τfdα = 0.

With ρ =
∫ 2π

0
fdα and ρu = c

∫ 2π

0
τfdα this gives

∂tρ+∇x · (ρu) = 0 (2.4.5)

as before. Multiplying the mean field equation with cτ and integrating one
obtains

∂t(ρu) +∇x · P +
U(ρ)

T‖∇Φ‖

∫

τ⊥∇Φ · τ⊥fdα

−
∫

τ⊥
(
∫ ∫

F (x− y, c(τ − τ ′))f(y, α′)dα′dy
)

· τ⊥fdα = −A2

2c2
ρu

with

P = c2
∫

τ ⊗ τfdα.

Assuming that F does not depend on the velocity and using τ⊥⊗τ⊥ = I−τ⊗τ
this simplifies to

∂t(ρu) +∇x · P +
(

ρI − 1

c2
P
)

(

U(ρ)

T‖∇Φ‖∇Φ− F ⋆ ρ

)

= −A2

2c2
ρu. (2.4.6)

Considering again the case A = 0 and using the monokinetic closure
ρδu(τ) one obtains

∂tu+ (u · ∇x)u+
(

I − 1

c2
u⊗ u

)

(

U(ρ)

T‖∇Φ‖∇Φ− F ⋆ ρ

)

= 0. (2.4.7)

Using for the case A 6= 0 a constant function ρ
2π

as closure gives

∂tu+
1

2ρ
∇xρ+

1

2

(

U(ρ)

T‖∇Φ‖∇Φ− F ⋆ ρ

)

= −A2

2c2
u. (2.4.8)

In the constant velocity case there are other classical choices for a closure
function if A 6= 0, for example, a so called maximum entropy closure using
as closure function the function

f = a exp(b · τ)
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where a and b are determined from ρ and u by the moment conditions on f .
We refer to Refs. [19, 57] for the classical case of radiative transfer. We note
that this distribution is sometimes called the van Mises Fisher distribution.
This yields

P = ρD(u) (2.4.9)

with

ρ =< a exp(b · τ) > (2.4.10)

ρu = c < aτ exp(b · τ) > (2.4.11)

u = u(b) = c
< τ exp(b · τ) >
< exp(b · τ) > (2.4.12)

D = D(b) = c2
< τ ⊗ τ exp(b · τ) >

< exp(b · τ) > (2.4.13)

D and u can be written explicitly as functions of b:

u = c
I1(|b|)

|b| I0(|b|)
b (2.4.14)

|u| = c
I1(|b|)
I0(|b|)

(2.4.15)

D = c2(1− χ) Id+c2
(2χ− 1)

|b|2
b⊗ b (2.4.16)

χ =
1

2πρ

∫ (

τ · b

|b|

)2

a exp(b · τ)dα =
1

2

(

1 +
I2(|b|)
I0(|b|)

)

, (2.4.17)

where Iν is again the ν-th modified Bessel function of the first kind. One
inverts the relation between |u| and |b| which can be proven to define a bijec-
tion. Then, one uses |b| (|u|) in the definition of χ(|b|) to obtain D(|b| (u)).
Together one obtains the model

∂tρ+∇x · (ρu) = 0 (2.4.18)

∂t(ρu) +∇x · (D(u)ρ) +
(

I − 1

c2
D(u)

)

(

U(ρ)

T‖∇Φ‖∇Φ− F ⋆ ρ

)

ρ = −A2

2c2
ρu

For a discussions of similar closures for other pedestrian models we refer
to Ref. [21]. Moreover, we note that for small u one has D(u) ∼ c2

2
I. Using

this in (2.4.18) one obtains again equation (2.4.8).



28 CHAPTER 2. HIERARCHY OF PEDESTRIAN FLOW MODELS

2.5 Scalar Models

In this section, we reduce the hydrodynamic description deriving scalar mod-
els. We assume again an interaction potential depending only on x and
neglect the dissipative forces. Starting from the hydrodynamic momen-
tum equation derived from the standard Maxwellian closure we neglect time
changes in this equation and obtain an equation for u. Solving for u the
result is used to close the continuity equation. This procedure gives

1

ρ
∇xρ+ U(ρ)

∇Φ(x)

‖∇Φ(x)‖ − TF ⋆ ρ = −(1 + A2T )u

The resulting scalar equation for ρ is after rescaling the time with 1/(1+A2T )

∂tρ−∇x

(

U(ρ(x))
∇Φ(x)

‖∇Φ(x)‖ρ
)

+∇x (T (F ⋆ ρ)ρ) = T∆xρ. (2.5.1)

Remark 2.5.1 For the constant velocity model the same procedure gives for
the hydrodynamic model derived from the mono kinetic closure a trivial ve-
locity. We start from the hydrodynamic model with constant closure function
and obtain

1

ρ
∇xρ+

1

2

(

U(ρ)

T‖∇Φ‖∇Φ− F ⋆ ρ

)

= −A2

c2
u (2.5.2)

The resulting scalar equation is after rescaling the time with c2/(TA2)

∂tρ−∇x

(

U(ρ(x))
∇Φ(x)

‖∇Φ(x)‖ρ
)

+∇x (T (F ⋆ ρ)ρ) = c2T∆xρ (2.5.3)

that means the same equation as before up to a scaling of the diffusion term.

Remark 2.5.2 To derive an associated diffusive equation we write the force
F as a gradient field with F = −∇V . Assuming that we are in a dense
situation we approximate the potential V by

V (y) ∼ Dδ0(y)

with the constant D > 0 given by

D =

∫

V (y)dy.
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The symmetry of the convolution

∫

∇xV (x− y)ρ(y)dy = −
∫

∇yV (x− y)ρ(y)dy =

∫

V (x− y)∇yρdy

and the above localization gives

F ⋆ ρ = −
∫

V (x− y)∇yρdy ∼ −D∇xρ

and therefore neglecting inertia effects

∂tρ−∇x(U(ρ(x))
∇Φ(x)

‖∇Φ(x)‖ρ) = DT∇x(ρ∇ρ) (2.5.4)

This is combined with the Eikonal equation

U(ρ(x))‖∇Φ(x)‖ = 1.

Thus, we have obtained a diffusive version of the Hughes equation, see Ref.
[43].

Remark 2.5.3 We note that (2.5.3) is similar to an equation considered in
Refs. [16, 17]. There the equation

∂tρ−∇x

(

U(ρ(x))
∇Φ(x)

‖∇Φ(x)‖ρ
)

+ ǫ∇x

(

U(ρ)
∇η ⋆ ρ

√

1 + ‖∇η ⋆ ρ‖2
ρ

)

= 0(2.5.5)

has been considered, where Φ is the solution of the homogeneous Eikonal
equation and η is a mollifier. This is equivalent to (2.5.3) if η is identified
with V and

T (ρ) =
ǫU(ρ)

√

1 + ‖∇η ⋆ ρ‖2
.
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Chapter 3

The Eikonal Equation

This chapter is devoted for the detailed discussion of the Eikonal equation.
This chapter is organized as follows. We start with a brief introduction
about the Eikonal equation followed by summarizing the existing numerical
methods to solve this equation. After that we present a mesh free method
to solve the Eikonal equation. Finally we discuss few numerical examples in
order to validate our method.

3.1 Introduction

The Eikonal equation

‖∇Φ(x)‖ = F (x), x ∈ Ω F (x) > 0 (3.1.1)

subject to the boundary condition

Φ = g(x), x ∈ Γ

is a non linear first order hyperbolic partial differential equation, where Ω is
a domain in R

2, Φ the Eikonal, F (x) the slowness field and g(x) a Lipschitz
continuous function and is given.

The Eikonal equation is of significant interest in the field of numerical
analysis. This equation has got many applications in differential games [45],
image processing and computer vision [42, 64, 72], optimal control [3], robotic
path planning [84], shape from shading [49] and segmentation [27].

We may apply the classical method of characteristics to solve the Eikonal
equation in phase space. Although the characteristics may never intersect

31
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in phase space, their projection into physical space may intersect so that
the solution in physical space is not uniquely defined at these intersections.
Crandall and Lions [20] introduced the concept of viscosity solutions for
Hamilton-Jacobi equations so that a unique weak solution can be defined for
such first order non linear equations.

The main aspect of any numerical algorithm for the Eikonal equation is
the derivation of consistent and accurate discretization scheme. The method
has to satisfy the causality condition of the Eikonal equation and has to
deal the non-differentiability at intersections of characteristics properly. The
other main aspect of a numerical method is that it has to be efficient to solve
a large system of non linear equations.

There are mainly two approaches for solving the Eikonal equation. The
first approach of numerical methods is based on reformulating the equation
into suitable time-dependent problem. Osher[66] provides a natural link be-
tween static and time-dependent Hamilton-Jacobi equations by using the
level set idea and thus raising the problem one-dimension higher. However
many time steps may be needed for the convergence of the solution in the
entire domain due to finite speed of propagation and CFL condition for sta-
bility. The other approach is to treat the problem as a stationary boundary
value problem and design an efficient numerical algorithm to solve the system
of non linear equations after discretization.

Several methods have been proposed to solve the Eikonal equation [1,
85, 68, 48, 30, 73, 74, 92, 46, 69]. The most stable methods among those
are the fast marching method and the fast sweeping method. The fast
sweeping method [92, 47, 87] is an iterative algorithm with optimal com-
plexity that finds the numerical solution by using the non linear upwind
method and Gauss-seidel type iterations with alternating sweepings in pre-
determined directions. The fast marching method [1, 73, 50, 74] combines
entropy-satisfying upwind schemes and a fast sorting technique to find the
solution in one-pass algorithm.

A recent computational study [33] of the fast marching and fast sweep-
ing methods for solving the Eikonal equation has shown that on realistic
grids, the fast sweeping method is faster than the fast marching method for
problems with simple geometry. However, on a fixed grid, for non-uniform
problems and for complex geometry, the fast marching method is faster.

In the fast marching method, the update of the solution follows the causal-
ity in a sequential way i.e., the solution is updated one grid point by one grid
point in the order that the solution is strictly increasing. Hence an upwind
difference scheme and a heap sort algorithm is needed. The complexity is of
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order O(NlogN) for N grid points, where the logN factor comes from the
heap sort algorithm. The fast marching methods are applicable to cartesian
domains [1, 73] and triangulated surfaces [50, 74]. But it is not applicable to
the domain, where the grid points are randomly distributed. Also, in case of
triangulated surfaces, if the triangles are not acute, then the fast marching
method is complicated to use. We present a mesh free method, which is
simple to implement and applicable to any arbitrary grid distribution and
complex geometries.

We used the least square approximation to approximate the derivatives
in the Eikonal equation as in the finite point-set method [81, 82] and we
combine it with the idea of front marching in the fast marching method.
The time complexity of the method is of order O(NlogN) for N grid points
same as in the fast marching method. The advantage of our method over the
fast marching method is that it is simple to use and it will work with any
arbitrary grid structure.

3.2 Existing Methods

Many numerical methods are available to solve the Eikonal equation, but
fast marching method and fast sweeping method are the popular methods
among them. We present a brief overview of these methods in this section.

3.2.1 Upwind Approximation of the Eikonal Equation

Consider the finite difference approximation introduced in [65] namely

Φ2
x = (max(D−x

i Φ, 0)2 +min(D+x
i Φ, 0)2) (3.2.1)

where D+x
i and D−x

i are standard finite difference notations that

D−x
i =

Φi − Φi−1

h
(3.2.2)

and

D+x
i =

Φi+1 − Φi

h
(3.2.3)

Here Φi is the value of Φ on a grid at the point ih with grid spacing h.
Eqn (3.2.1) is an upwind scheme; it chooses grid points in the approximation
in terms of the direction of the flow of information. Extending this idea
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of upwind approximation for the gradient to two dimensions, we have the
scheme for the Eikonal equation,

[

(max(D−x
ij Φ, 0)2 +min(D+x

ij Φ, 0)2) + (max(D−y
ij Φ, 0)2 +min(D+y

ij Φ, 0)2)
]1/2

= Fij

The forward and backward operators D−y and D+y in the y coordinate direc-
tion are similar to the one defined for the x direction in (3.2.2) and (3.2.3).
A slightly different upwind scheme [71], which will turn out to be more con-
venient is given by

[max(Φ−x
ij ,−Φ+x

ij , 0)2 +max(Φ−y
ij ,−Φ+y

ij , 0)2]1/2 = Fij (3.2.4)

To solve the Eqn (3.2.4), one approach is through iteration[71]. Consider a
stencil of a grid point and its four neighbors, as shown in Fig 3.1. Eqn (3.2.4)
is a piece wise quadratic equation for Φij , assuming that the neighbouring
grid values for Φ are given. If we assume N points in the domain and this
method takes roughly N steps to converge, then the operation count for this
method is O(N2), which is expensive.

Figure 3.1: Grid stencil.

3.2.2 Fast Marching Method

Fast marching method is based on two key components. First by exploit-
ing upwind viscosity schemes, it automatically select solutions which include
non-differentiability in natural ways. Second, by coupling the causality of
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these schemes to fast sorting methods, it becomes extremely efficient compu-
tationally. The complexity of fast marching method algorithm is O(NlogN),
where N is the total number of points in the domain Ω.

The central idea behind the Fast marching method is to systematically
construct the solution in a ”downwind” fashion to produce the solution and
to reduce the time complexity. The upwind difference structure of Eqn (3.2.4)
means that the information propagates one way, that is from smaller values
to larger values of Φ. Hence, the Fast marching algorithm rests on solving
Eqn (3.2.4) by building the solution outwards from the smallest value of Φ.
The algorithm is made fast by confining the ”building zone” to a narrow band
around the front. This approach is motivated by the narrow band technology
[14] used in recovering shapes in images. The idea is to sweep the front ahead
in a downward fashion by considering a set of points in narrow band around
the existing front and to march this narrow band forward, freezing the values
of existing points and bringing new ones into the narrow band structure. The
key is in the selection of which grid point in the narrow band to update first.

Consider the problem to solve the Eikonal equation where the boundary
value is known at the origin. It is represented in Fig 3.2 where the black
sphere at (0, 0) represents a grid point where the value of Φ is known and
the light grey spheres are grid points where the solution is unknown. Fast

Figure 3.2: Beginning of the Fast marching method.

marching method algorithm starts by marching ”downward” from the known
value, computing new values at each of four neighboring grid points. This
provides possible values for Φ at each grid point (−1, 0),(1, 0),(0,−1) and
(0, 1). To proceed further, the question is which one of these four grid points
to choose. The answer lies in the observation that the smallest Φ value at
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these four grids must be correct. Because of upwinding, no point can be
affected by grid points containing larger values of Φ. Thus one can freeze the
value of Φ at this smallest grid point and proceed ahead with the algorithm.

Another way to look at this technique is that each minimum trial value
begins an application of Huygens’ principle and the expanding wave front
touches and updates all others. The speed of the algorithm comes from a
heap sort technique to efficiently locate the smallest element in narrow band.

The Fast marching method algorithm is as follows: First, tag points in
the initial conditions as Accepted. Then tag Narrow band for all points one
grid point away from Accepted. Finally all of the remaining grid points are
tagged as Far away. Then the loop is

• Begin loop: Let Trial be the point in Narrow band with the smallest
value of Φ.

• Tag as Narrow band all neighbors of Trial that are not Accepted. If the
neighbor is in Far away, remove it from that list and add it to the set
Narrow band.

• Recompute the values of Φ at all Narrow band neighbors of Trial by
solving the piecewise quadratic equation according to eqn (3.2.4).

• Add the point Trial to Accepted, remove it from Narrow band.

• Return to top of the loop.

Heap sort and computational efficiency

The key to an efficient version of the above technique lies in the fast way of
locating grid point in the narrow band with the smallest value for Φ. There
are several ways to store the Trial elements so that one can easily find the
smallest element. In Fast marching method, suppose that there is a ordered
structure of the elements in Trial. When a point is updated, its neighbors
get updated and their Φ values may change. Thus only a small subset of the
structure must be re-ordered in order to regain the ordering.

This leads quite naturally to a variation on a heap algorithm with back
pointers to store the Φ values. Specifically fast marching method use a min-
heap data structure, see Remark 3.2.1 . The values of Φ are stored, together
with the indices which give their location in the grid structure. The march-
ing algorithm works by first looking for the smallest element in the Narrow
band, this operation involves deleting the root and one sweep of Downheap
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to ensure that the remaining elements satisfy the heap property. The al-
gorithm proceeds by tagging the neighboring points that are not Accepted.
The Far away neighbors are added to the heap using an Insert operation and
values at the remaining points are updated using Eqn (3.2.4). Insert works
by increasing the heap size by one and trickling the new element upward
to its correct location using an Upheap operation. lastly, to ensure that the
updated Φ values do not violate the heap property, we need to perform an
Upheap operation starting at the location and proceeding up to the tree. The
Downheap and Upheap operations carry an element all the way from root to
bottom or vice versa in worst case. Therefore, this takes (O(logM)) time
assuming there are M elements in the heap. Note that the heap, which is
a complete binary tree, is always guaranteed to remain balanced. All that
remains is the operation of searching for the Narrow band neighbors of the
smallest element in the heap. This can be done in O(1) by maintaining back
pointers from the grid to the heap array.

Since the total work in changing the value of one element of the heap and
bubbling its value upwards is O(logM), where M is the size of the heap and
M is bounded by N , this produces a total operation count of NlogN for the
fast marching method on a grid of N points. Thus, if there are N points in
total domain, the Fast marching method reduces the total operation count
from N2 to NlogN . Essentially, each grid point is visited once to compute
the solution.

Remark 3.2.1 A min-heap is a complete binary tree with a property that
the value at any given node is less than or equal to the values at its children.
It is more efficient to represent a heap sequentially as an array by storing
a node at location k and its children at locations 2k and 2k + 1. From the
definition, the parent of a given node at k is located at k/2. Therefore, the
root which contains the smallest element is stored at locations k = 1 in the
array. Finding the parent or children of a given element are simple array
accesses which take O(1) time. The Upheap operation is used to add a node
to a heap. When you upheap a node, you compare its value to its parent node;
if its value is less than its parent node, then you switch the two nodes and
continue the process. Otherwise the condition is met that the parent node
is less than the child node and so you can stop the process. Once you find
a parent node that is less than the node being upheaped, you know that the
heap is correct if the node being upheaped is greater than its parent, and its
parent is greater than its own parent, all the way up to the root.The Downheap
process is similar to the upheaping process. When you downheap a node, you
compare its value with its two children. If the node is less than both of its
children, it remains in place; otherwise, if it is greater than one or both of



38 CHAPTER 3. THE EIKONAL EQUATION

its children, then we switch it with the child of lowest value, thereby ensuring
that, of the three nodes being compared, the new parent node is lowest. The
node being downheaped is in its proper position, it may be greater than one
or both of its new children; the downheap process must be repeated until the
node is less than both of its children.

3.2.3 Fast Sweeping Method

Consider the Eikonal equation (3.1.1) with boundary condition Φ(x) = 0
for x ∈ Γ. Let m and n be the number of grid points in x and y direction
respectively. Fast sweeping method aims at improving on the Gauss-Jacobi
method by using a Gauss-Seidel type update process. It avoids the ordering
step of fast marching method, instead it considers sweeps in predetermined
directions. Fast sweeping method also uses the upwind difference scheme [71]
to discretize the Eikonal equation, given in eqn (3.2.4) at the interior grid
points to enforce the causality. One sided difference is used at the boundary
of the computational domain.
To enforce the boundary condition Φ(x) = 0 for x ∈ Γ, assign exact values
or interpolated values at grid points in or near Γ. These values are fixed
in later calculations. For all other grid points assign large positive values.
Fast sweeping method proceeds with Gauss-Seidel iterations with alternative
sweeping orders.
At each grid point xij whose value is not fixed during the initialization,
compute the solution denoted by Φ̄ from the current values of its neighbors
using the eqn (3.2.4) and then update Φij to be the smaller one between Φ̄
and its current value. i.e.,

Φnew
ij = min(Φold

ij , Φ̄) (3.2.5)

Sweep the whole domain with four alternating orderings repeatedly:

1. i=1: m, j=1:n (upper left to lower right)

2. i=m:1, j=1: n (lower left to upper right)

3. i=m:1, j=n:1 (lower right to upper left)

4. i=1:m, j=n:1 (upper right to lower left)

Stopping criteria for the fast sweeping method is for given δ > 0, |Φnew
ij −

Φold
ij |∞ < δ. If all grid points can be ordered according to the causality

along characteristics, one iteration of the Gauss-Seidel iteration is enough
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for convergence. The key point behind Gauss-Seidel iterations with different
sweeping ordering is that each sweep will follow the causality of a group of
characteristics in certain directions simultaneously and all characteristics can
be divided into a finite number of such groups according to their directions.
The value at each grid point is always non increasing during the iterations
due to the updating rule. Whenever a grid point obtains the minimal value
it can reach, the value is the correct value and the value will not be changed
in later iterations.

Since fast sweeping method avoids the ordering process of grid points, the
complexity of the algorithm is of order O(N). However, in case of complex
geometries or for non uniform problems it is computationally expensive then
the fast marching method [33].

3.3 Finite Pointset Method

In this section, we present a mesh free method to solve the Eikonal equation.
Let N be the number of nodes in the domain Ω. Let A be the set of nodes,
where the solution is already computed and B be the set of nodes where the
solution yet to compute, see Fig 3.3

Let {X1, X2, ..., XN} be arbitrarily distributed points in Ω. Let X̃ be the
node in B, where the solution is to be computed. For a given radius h, as-
sume Nx is the set of neighbours of X̃ and Nxa is the intersection of Nx and
A.

Figure 3.3: Domain.



40 CHAPTER 3. THE EIKONAL EQUATION

We will now approximate the solution at X̃ for three cases.

3.3.1 If cardinality of the set Nxa is 1

If Nxa = {X1}, then we compute the solution at ’X̃ ’ directly by

ΦX̃ = ΦX1
+ F (X̃)d(X̃,X1) (3.3.1)

where d(X̃,X1) is the distance from X̃ to X1.

3.3.2 If cardinality of the set Nxa is 2

Assume Nxa = {X1, X2}. Let Φ1 and Φ2 be the solutions at X1 and X2

respectively.
Consider the Taylor series expansion of Φ around X̃ with respect to X1 and
X2,

Φi = Φ + dxiΦx + dyiΦy + ei, i = 1, 2 (3.3.2)

where ei is the truncation error in the Taylor series expansion.

Expansion of the equation 3.3.2 gives,

Φ1 = Φ + dx1Φx + dy1Φy

Φ2 = Φ + dx2Φx + dy2Φy (3.3.3)

Equation (3.3.3) can be written as,

Φ1 − Φ = dx1Φx + dy1Φy

Φ2 − Φ = dx2Φx + dy2Φy (3.3.4)

M.a = b (3.3.5)

where

M =

(

dx1 dy1
dx2 dy2

)

; b =

(

Φ1 − Φ
Φ2 − Φ

)

; a =

(

Φx

Φy

)

By letting Q = M−1,
(

Φx

Φy

)

= Q2×2.

(

Φ1 − Φ
Φ2 − Φ

)

(3.3.6)

(

Φx

Φy

)

=

(

q11 q12
q21 q22

)(

Φ1 − Φ
Φ2 − Φ

)

(3.3.7)
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(

Φx

Φy

)

=

(

q11Φ1 + q12Φ2 − Φ(q11 + q12)
q21Φ1 + q22Φ2 − Φ(q21 + q22)

)

(3.3.8)

By comparing both sides row wise, we have

Φx = q11Φ1 + q12Φ2 − Φ(q11 + q12) (3.3.9)

and

Φy = q21Φ1 + q22Φ2 − Φ(q21 + q22) (3.3.10)

Now consider the equation (3.3.9)

Φx = q11Φ1 + q12Φ2 − Φ(q11 + q12) (3.3.11)

This can be written as
Φx = a1 + Φa2 (3.3.12)

with
a1 = q11Φ1 + q12Φ2

and
a2 = −(q11 + q12)

Similarly from the equation (3.3.10), we get

Φy = b1 + Φb2 (3.3.13)

with
b1 = q21Φ1 + q22Φ2

and
b2 = −(q21 + q22)

From the Eikonal equation (3.1.1), we have

Φ2
x + Φ2

y = F 2. (3.3.14)

If we substitute (3.3.12) and (3.3.13) in (3.3.14), we get

(a22 + b22)Φ
2 + 2(a1a2 + b1b2)Φ + a21 + b21 = F 2 (3.3.15)

which is a quadratic equation in Φ, which yields two solutions.
The problem here is to determine which of these two solutions do we take as
the appropriate one. The upwind difference structure of the Eikonal equation
means that the information propagates from smaller values to larger values
of Φ, i.e, we take as the computed value of Φ the larger. We also need to
check whether the approximated solution at X̃ satisfies causality condition:

the characteristic passing through X̃ is in between the two vectors
−−→
X̃X1 and−−→

X̃X2. This is a crucial condition for the monotonicity of the scheme.
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3.3.3 If cardinality of the set Nxa is greater than 2

Assume Nxa = {X1, X2, ...Xn}. If there are more than two elements in Nxa,
then we use least square approximation to approximate the solution at X̃ .

First, we sort all the elements from Nxa with respect to the angles from

e1 = (1, 0) to
−−→
X̃Xi. Let Nup

xa be a subset of Nxa, which consists of elements
from Nxa with angles between 0 and 180 degrees in the ascending order. Let
Ndown

xa be a subset of Nxa, which consists of elements from Nxa with angles
between 180 and 360 degrees in the ascending order. Let k1 and k2 be the
number of elements in Nup

xa and Ndown
xa , respectively.

We approximate the solution at X̃ in four steps.

• In first step, we approximate the solution by considering two end points
of Nup

xa by the method explained in subsection 3.3.2. If the computed
solution follows the causality condition, then we approximate the solu-
tion by using all elements from Nup

xa by the least square approximation
explained below.

• Next, we approximate the solution by considering the last element of
Nup

xa and the first element of Ndown
xa .

• In third step, we approximate the solution by considering two end
points of Ndown

xa and if it follows causality condition, then we compute
the solution using all the elements from Ndown

xa .

• In final step, we consider the last element from Ndown
xa and the first

element from Nup
xa and approximate the solution.

Depending on the size of Nup
xa and Ndown

xa , we skip some steps in the above
procedure. If there are multiple possible solutions, we chose the minimum
among them.

Least square approximation of the Eikonal equation:

Suppose we have to approximate the solution at X̃ and {X1, X2, ..., Xn} is
the set of neighbours of X̃ within the radius of h.
Consider the Taylor series expansion of Φ around X̃

Φ(Xi) = Φ + dxiΦx + dyiΦy + ei, i = 1, 2, ..., n, (3.3.16)
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where ei is the truncation error in the Taylor series expansion.

Expansion of the equation (3.3.16) gives,

Φ1 − Φ = dx1Φx + dy1Φy

Φ2 − Φ = dx2Φx + dy2Φy

. .

. .

Φn − Φ = dxnΦx + dynΦy (3.3.17)

If we write the equation (3.3.17) in matrix form,

M.a = b, (3.3.18)

where

M =













dx1 dy1
dx2 dy2
. .
. .

dxn dyn













; b =













Φ1 − Φ
Φ2 − Φ

.

.
Φn − Φ













; a =

(

Φx

Φy

)

.

Now, multiply both sides of the equation (3.3.18) with MTW , where

W =









w1 . . 0
0 w2 . 0
. . . .
0 . . wn









is the weight matrix with Gaussian weight wi = exp−6.25
−‖X̃−Xi‖

2

h2 . Then
equation (3.3.18) is equivalent to

(
∑

i widx
2
i

∑

i widxidyi
∑

i widxidyi
∑

i widy
2
i

)(

Φx

Φy

)

=

(
∑

iwidxi(Φi − Φ)
∑

i widyi(Φi − Φ)

)

(3.3.19)

This can be written as,

P2×2

(

Φx

Φy

)

=

(
∑

i widxi(Φi − Φ)
∑

i widyi(Φi − Φ)

)

with

P2×2 =

(
∑

iwidx
2
i

∑

widxidyi
∑

i widxidyi
∑

widy
2
i

)

. (3.3.20)
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By letting Q = P−1,

(

Φx

Φy

)

= Q.

(
∑

i widxi(Φi − Φ)
∑

i widyi(Φi − Φ)

)

(3.3.21)

(

Φx

Φy

)

=

(

q11 q12
q21 q22

)(
∑

iwidxi(Φi − Φ)
∑

iwidyi(Φi − Φ)

)

(3.3.22)

(

Φx

Φy

)

=

(

q11
∑

iwidxi(Φi − Φ) + q12
∑

i widyi(Φi − Φ)
q21
∑

iwidxi(Φi − Φ) + q22
∑

i widyi(Φi − Φ)

)

. (3.3.23)

By comparing both sides row wise, we have

Φx = q11
∑

i

widxi(Φi − Φ) + q12
∑

i

widyi(Φi − Φ), (3.3.24)

Φy = q21
∑

i

widxi(Φi − Φ) + q22
∑

i

widyi(Φi − Φ). (3.3.25)

Now consider the equation (3.3.24)

Φx = q11
∑

i

widxi(Φi − Φ) + q12
∑

i

widyi(Φi − Φ)

Φx =
∑

i

wi(q11dxi + q12dyi)Φi −
∑

i

wi(q11dxi + q12dyi)Φ (3.3.26)

Equation (3.3.26) can be written as

Φx = a1 + Φa2 (3.3.27)

with
a1 =

∑

i

wi(q11dxi + q12dyi)Φi

and
a2 = −

∑

i

wi(q11dxi + q12dyi).

Similarly from the equation (3.3.25), we get

Φy = b1 + Φb2 (3.3.28)
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with
b1 =

∑

i

wi(q21dxi + q22dyi)Φi

and
b2 = −

∑

i

wi(q21dxi + q22dyi).

From the Eikonal equation (3.1.1), we have

Φ2
x + Φ2

y = F 2. (3.3.29)

If we substitute (3.3.27) and (3.3.28) in (3.3.29), we get

(a22 + b22)Φ
2 + 2(a1a2 + b1b2)Φ + a21 + b21 = F 2 (3.3.30)

which is a quadratic equation in Φ, which yields two solutions for Φ. As
explained in Section 3.3.2, we choose the appropriate solution among them.

3.3.4 Algorithm

In this section, we present a detailed algorithm to solve the Eikonal equation.
We follow the idea of front marching from fast marching method [73], but
our method differs from fast marching method in approximating the solution.
As in the fast marching method, divide all nodes in the domain into three
categories, namely Accepted, Narrow band and Far away . Nodes, where
the solution is known are named as Accepted nodes, all close neighbours of
Accepted nodes in the range of radius h are named as Narrow band nodes
and remaining nodes are named as Far away nodes.
Assume that, there are N number of nodes in the domain Ω distributed
randomly or uniformly. Given the initial front Γ, the algorithm to find the
solution of the Eikonal equation in Ω is explained below:

1. Initialization : Tag all nodes in the initial front as Accepted. Tag all
neighbors of the initial front nodes as Narrow band. Tag all other nodes
as Far away.

2. Assign Φ = 0 for all nodes in the initial front.

3. For each node in the Narrow band, compute Φ using the method ex-
plained above.
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4. Determine Xmin such that Φ has minimum value at Xmin in Narrow
band.

5. For each neighbour ’Xi’ of Xmin:

• If Xi is in Far away, then compute Φ(Xi) and add Xi to Narrow
band

• If Xi is already in Narrow band, then recompute Φ(Xi)

6. Remove Xmin from Narrow band and add it to Accepted.

7. Repeat the steps 4-6 till all the nodes are Accepted.

3.3.5 Time Complexity

Let N be the number of nodes in the domain Ω and n be the maximum
number of Accepted neighbors for any node for given radius h.
Call the process from step 4 to step 6 in the above algorithm as an iteration.
During the algorithm, there will be maximum N iterations, since exactly one
node is removed from the Narrow band for each iteration. For each iteration,
during step 4, a search is performed for the smallest value of Φ in the Narrow
band. We use binary heap to store the Narrow band nodes and corresponding
solution values as in fast marching method. So if there are M elements in
Narrow band, then the process of finding minimum and ordering heap can be
done in O(logM) steps in worst case. Since M is bounded by N , the search
is bounded by O(logN). For each iteration, step 5 will be performed for
each neighbour, so step 5 will run at most n times. While approximating the
solution, sorting of the Accepted neighbors with respect to the angles takes
O(nlogn) in worst case, so the time complexity for step 5 will be O(n2logn).
The total computational cost is bounded by N(log(N) + n2logn).

Since n is smaller compared to N , computational cost to approximate the
solution in the whole domain is O(NlogN).

3.3.6 Numerical Examples

In this section, we demonstrate the performance of the our proposed method
through few typical two dimensional examples, taken from the literature
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Figure 3.4: Randomly generated grid points

[55, 13]. To measure the accuracy, the following error functions are defined
as in [26]

Root Mean square error: RMS =
1

N

√

√

√

√

N
∑

i=1

(

Φc(i)− Φa(i)

Φa(i)

)2

(3.3.31)

Average absolute error: aerr =

√

√

√

√

1

N

N
∑

i=1

(

Φc(i)− Φa(i)

)2

(3.3.32)

Relative error: rerr =

√

√

√

√

∑N
i=1

(

Φc(i)− Φa(i)
)2

∑N
i=1

(

Φa(i)
)2 (3.3.33)

where N is the number of nodes in the domain and Φa is analytical solution
and Φc is the solution computed from the proposed method. In our numerical
examples, we computed the solution for both cartesian and unstructured
grids and compared with the analytical solution. We also presented error
values for both cartesian and unstructured grids. A sample random grid is
presented in Fig 3.4.
In case of the cartesian grid, the radius h is taken as 2.5 × dx, where dx

is the step size in x and y directions. In case of the unstructured grid, by
altering the radius ’h’ , we generate approximately same number of random
points as in the cartesian grid.
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Example 1

As the first example, we consider the Eikonal equation (3.1.1) with Ω =
[−1, 1]× [−1, 1], Γ = {(0, 0)} and F (x, y) = 1. The exact solution

Φ(x, y) =
√

x2 + y2 (3.3.34)

is the distance function from Γ.
In Table 3.1 , the RMS error, the relative error and the average error for
cartesian grid are presented. For unstructured grid, the error values are
presented in Table 3.2. In Fig 3.5, the numerical solution for cartesian and
unstructured grids and exact solution are presented. The Tables 3.1 and 3.2
show that accuracy improves as the number of nodes increases.

Table 3.1: Error values for Example 1: Cartesian Grid

dx N RMS rerr aerr

0.1 441 7.93E-05 1.30E-03 1.17E-03
0.05 1681 2.65E-05 8.51E-04 7.16E-04
0.025 6561 8.57E-06 5.32E-04 4.42E-04
0.0125 25921 2.67E-06 3.23E-04 2.61E-04

Table 3.2: Error values for Example 1: Unstructured Grid

h N RMS rerr aerr

0.28 492 8.56E-05 1.43E-03 1.30E-03
0.14 1743 3.28E-05 1.05E-03 5.73E-04
0.07 6413 1.24E-05 6.73E-04 3.02E-04
0.035 24786 4.05E-06 4.34E-04 1.91E-04

Example 2:

For the second example, consider the Eikonal equation (3.1.1) with Ω =
[−1, 1] × [−1, 1], F (x, y) = 1. Γ is circle with center(0, 0) and the radius
R = 0.5. The exact solution of this problem is the distance function from Γ,

Φ(x, y) = ‖
√

x2 + y2 − R‖ (3.3.35)

The error values are presented in Table 3.3 and Table 3.4 for cartesian and
unstructured grids respectively. The graph of the numerical and the analyt-
ical solutions are plotted in Fig 3.6.
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Figure 3.5: Solution description of Example 1
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Figure 3.6: Solution description of Example 2
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Table 3.3: Error values for Example 2: Cartesian Grid

dx N RMS rerr aerr

0.1 441 9.34E-03 1.45E-02 5.95E-03
0.05 1681 3.82E-03 1.05E-02 4.24E-03
0.025 6561 1.29E-03 6.37E-03 2.57E-03
0.0125 25921 9.03E-04 2.02E-03 8.02E-04

Table 3.4: Error values for Example 2: Unstructured Grid

h N RMS rerr aerr

0.28 492 9.82E-03 1.83E-02 8.19E-03
0.14 1743 5.66E-03 1.14E-02 2.31E-03
0.07 6413 1.39E-03 6.46E-03 2.07E-03
0.035 24786 9.53E-04 1.66E-03 6.72E-04

Example 3

Consider the Eikonal equation (3.1.1) when Ω = [−1, 1] × [−1, 1], Γ = ∂Ω
and

F (x, y) = 2
√

x2(1− y2) + y2(1− x2). (3.3.36)

The exact solution is

Φ(x, y) = (1− x2)(1− y2). (3.3.37)

The RMS, relative and average errors are presented in Table 3.5 and Table 3.6
for cartesian and unstructured grids respectively. The plot of the numerical
solutions and the analytical solution are depicted in Fig 3.7.

Table 3.5: Error values for Example 3: Cartesian Grid

dx N RMS rerr aerr

0.1 441 1.61E-03 9.04E-03 5.87E-03
0.05 1681 8.60E-04 6.46E-03 5.45E-03
0.025 6561 4.54E-04 1.07E-03 5.03E-03
0.0125 25921 2.32E-04 9.06E-04 4.24E-03
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Figure 3.7: Solution description of Example 3
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Table 3.6: Error values for Example 3: Unstructured Grid

h N RMS rerr aerr

0.28 492 3.39E-03 2.64E-02 1.46E-02
0.14 1743 1.29E-03 1.15E-02 6.05E-03
0.07 6413 6.18E-04 8.61E-03 4.56E-03
0.035 24786 2.87E-04 7.49E-03 4.42E-03

Figure 3.8: Computational Domain

Example 4: Path Planning

In this example, an application of the solution of the Eikonal equation in
path planning is presented. We consider a two-dimensional path planning
problem with constraints in a domain Ω = [0, 1] × [0, 1] with obstacles as
shown in Fig 3.8. Given starting points B(0.95, 0.6) and C(0.4, 0.2) and end
point A(0.1, 0.9), our goal is to find the shortest path.
The function F (x, y) = 1/f(x, y), where

f(x, y) =

{

0, if (x, y) ∈ Z

1 otherwise

with Z = ([0.7, 1.0]×[0.7, 0.9])∪([0.65, 0.75]×[0, 0.3])∪([0.35, 0.6]×[0.3, 0.7])∪
([0.25, 0.35]× [0.8, 1.0]) ∪ ([0.1, 0.3]× [0.2, 0.6]) ∪ ([0.7, 0.8]× [0.4, 0.7]). We
first approximate the solution of the Eikonal equation with Γ = {A}, then
we backtrack the shortest path from the starting points B and C along with
the direction of negative gradient of Φ. The contour plot of the solution of
Eikonal equation and shortest paths from points B and C to point A are
presented in Fig 3.9.
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Figure 3.9: Path Planning

In all the test problems presented here, the values of RMS, relative and
average errors showed that the proposed method is accurate with different
number of node points for both cartesian and unstructured grids.



Chapter 4

Numerical Method

This chapter demonstrates the simulation procedure of micro, hydro as well
as scalar models and the numerical scheme we used. The microscopic flow
simulation is explained in Section 4.1 and in section 4.2 the simulation of
hydro and scalar models are explained. The particle method we used to
solve the governing equations is presented briefly in section 4.3 .

4.1 Microscopic Simulation

The microscopic equations (2.3.1) are solved by explicit Euler method for
system of ordinary differential equations. For a straightforward implementa-
tion, the complete distance matrix (dij) = |xi − xj | has to be computed in
order to evaluate the interaction potential of the microscopic equations. If
there are many particles in the system, then computing the distance matrix is
computationally expensive. To overcome this, one can use nearest neighbor
lists for short range interactions or Greengard-Rohklin type algorithms for
long range interactions. Since pedestrians interact with only pedestrians who
are nearby we use an implementation with a nearest neighbor list reducing
the computational cost considerably.

We divide the computational domain into cells. Each cell is of same area
and is represented by its centre. The macroscopic quantities ρ, u are eval-
uated at these cell centres. Density ρ is the number of pedestrians in the
cell divided by Nmax, where Nmax is the maximum number of pedestrians
in one cell and u is average velocity of pedestrians in the cell. Pedestrians
in each cell will interact with only pedestrians in the neighboring cells. The

55
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grid containing all cell centres is used to compute the solution of the Eikonal
equation.

4.2 Hydrodynamic and Scalar Simulation

The hydrodynamic limit equations are considered in detail numerically using
a macroscopic particle method see Ref. [81]. The particle method is based
on a Lagrangian formulation of the hydrodynamic equations (2.4.1, 2.4.3).
We consider

dx

dt
= u

dρ

dt
= −ρ

∂u

∂x
du

dt
= Ĝ(ρ,Φ, u) + F̂ (ρ, u),

One evaluates these quantities at the particle locations and approximates
the spatial derivatives of u by a difference approximation, explained in the
section (4.3). The integral over the interaction potential is evaluated by a
straightforward integration rule:

F̂ (ρ, u) ∼
∑

j

F (x− xj , u(x)− uj)ρjdVj,

where dVj is the local area around a particle determined by a nearest neigh-
bour search. The resulting equations are then solved by a time discretization
of arbitrary order. Diffusive terms can be included as well in a straightfor-
ward way. Obviously, this shows that the actual macroscopic computations
are very similar to the microscopic ones. The difference lies in the way the
interaction term is evaluated. In the microscopic case we compute

1

N

∑

j

F (x− xj , v − vj)

instead of the above expression. If the values of ρj and dVj are all equal then
using

1 =

∫

ρ(x)dx ∼
∑

j

ρjdVj

it is easy to see that both simulations are equivalent to each other. However,
in the macroscopic situation the particles are not physical particles as in the
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microscopic case. They play the role of discretization points. In particular,
if the number of ’real’ particles is very large, that does not mean that the
number of macroscopic particles in the particle method has to be increased in
the same way. The number of macroscopic particles is only chosen according
to accuracy considerations. On the other hand, the macroscopic equations
considered here are derived under the assumption of a mono-kinetic distri-
bution function. Thus, they are not able to capture all microscopic patterns.

Finally, the diffusive equations are solved as well with a particle method.
In this case the so called diffusion velocity methods is used, i.e., the convec-
tion diffusion equation are written as a pure transport problem

∂tρ+∇x.(aρ) = 0 (4.2.1)

with

a = −f(ρ(x))
∇Φ(x)

‖∇Φ(x)‖ + TF ⋆ ρ

and then solved in a Lagrangian way as usual.

In all cases the solution of the Eikonal equation is coupled to the flow simula-
tion. The Eikonal equation is solved on separate structured or unstructured
grid. The data obtained from this simulation are then interpolated onto
particle locations used for flow simulation. On the other hand, to solve the
Eikonal equation the density data from the flow simulation are needed and
have to be interpolated onto the fixed grid for the Eikonal equation. We
update the Eikonal equation in every tenth time step in order to save com-
putational time.

4.3 Finite Pointset Method (FPM)

The basis of the computations in FPM is point cloud, which represents the
flow field. The points of the cloud are referred to as particles or numerical
grids. They are carriers of all relevant physical information. The particles
have to completely cover the whole domain, i.e. the point cloud has to
fulfil certain quality criteria (particles are not allowed to form holes which
means particles have to find sufficiently many neighbors; also, particles are
not allowed to cluster; etc.). The point cloud is a geometrical basis, which
allows for a numerical formulation making FPM a general finite difference
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idea applied to continuum mechanics. That especially means, if the point
cloud would receive to a classical finite difference method. The idea of general
finite difference also means that FPM is not based on a weak formulation like
the Galerkin’s approach. Rather, FPM is a strong formulation which models
differential equations by direct approximation of the occurring differential
operators. The method used is a moving least square idea which was specially
developed for FPM.

4.3.1 Least Square Approximation

In this section, we present the least square approximation of a function at
an arbitrary position from the surrounding cluster of points.

Consider the computational domain Ω ⊂ Rn, n = 1, 2, 3. Consider a set
of clouds, grids or particles P (x, h) = {xi : xi ∈ Ω, i = 1, . . . , N}. The distri-
bution of particles does not necessarily have to be uniform and can be quite
arbitrary. A typical distribution of particles, for example in 2D, looks like in
Fig. 4.1.
Let f(x) be a scalar function and fi its values at xi for i = 1, 2, . . . , N .

Figure 4.1: Flow domain with non-structured grid

Consider the problem to approximate f(x) and its spatial derivatives at x
in terms of the values of a set of neighbouring points. In order to limit the
number of points we associate a weight function w = w(xi−x; h) with a small
compact support, where h determines the size of the support, as shown in
Fig. 4.1 . In FPM, h is known as a smoothing length. The smoothing length
defines a set of neighbouring particles around x. The weight function can
be quite arbitrary but in our computations, we consider a Gaussian weight
function in the following form

w(xi − x; h) =







exp(−C
||xi − x||2

h2
), if

||xi − x||
h

≤ 1

0, otherwise



4.3. FINITE POINTSET METHOD (FPM) 59

where C a positive constant is considered to be in the range of 2 to 6 and
depends upon the users.

For consistency reasons some obvious restrictions are required, namely for
example, in 2D, if we want the second order approximation there should be
at least 6 neighbour particles including the central particle and they should
neither be on the same line nor on the same circle. Hence we define the
size of h such that the minimum number of neighbours is guaranteed for the
approximation of derivatives. Hence new particles will have to be introduced
into the simulations as the particle distribution becomes too sparse or parti-
cles will have to be removed from the computation as they become too dense.

Let N(x, h) = {xi : i = 1, 2, . . . , m} be the set of m neighbouring points
of x. We approximate the function f(x) by fh(x) as fh(x) =

∑N
i=1 fiφ(xi, x),

where the shape function φ(xi, x) is computed at each point x by the least
square method over its own compact support. We note that φi = 0 for all
i /∈ N(x, h). It is important to stress that this expression is consistent only
if the function φ is 1 at xi, namely φ(xi, xj) = δij for all i, j = 1, 2, . . . , N .

The approximation of the first and second order derivatives can be com-
puted directly from fh(x) or directly by using the least square method. The
first method is known in literature as moving least square method [24], [54].
Usually the function fh(x) and its derivatives fkh(x) are not smooth enough
to be differentiable and therefore the second order derivatives can not be
properly computed. We approximate the derivatives ∂f(x)/∂xk by fkh(x) =
∑N

i=1 fiηk(xi, x) for k = 1, 2, 3, where ηk(xi, x) is directly computed by the
least squares interpolation. In a similar manner we define the approximation
for the second order derivatives ∂2f(x)/∂xl∂xk by fklh(x) =

∑N
i=1 fiΨkl(xi, x)

for k, l = 1, 2, 3. The determination of the function f(x), fkh(x) and flkh(x)
for k, l = 1, 2, 3 can be computed easily and accurately by using the Taylor
series expansion and the least square approximation. We write a Taylor’s
expansion around the point x with unknown coefficients by minimizing a
weighted error over the neighbouring points. The optimization is constrained
to satisfy φ(x1, x1) = 1 where x1 is the closest point, namely the approxima-
tion must interpolate the closest point.

In order to approximate the function and its derivatives at x by using a
quadratic approximation through the m neighboring points sorted with re-
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spect to its distance from x we let

f(xi) = fh(x) +

3
∑

k=1

fkh(x)(xki − xk)

+
1

2

3
∑

k,l=1

fklh(x)(xki − xk)(xli − xk) + ei, (4.3.1)

where ei is the error in the Taylor’s expansion at the point xi. The un-
knowns fh, fkh and fklh for k, l = 1, 2, 3 are computed by minimizing the
error ei for i = 2, 3, . . . , m and setting the constraint e1 = 0. By subtract-
ing the first equation with e1 = 0 to all the other equations the system
can be written as e = Ma − b, where M is the m × 9 geometrical ma-
trix, in 3D, whose components consist of the directional distances from the
m−neighbours to the central particle x. The other vectors are denoted by a =
[f1h, f2h, f3h, f11h, f12h, f13h, f22h, f23h, f33h]

T ,b = [f2−f1, f3−f1, . . . , fm−f1]
T ,

e = [e2, e3, . . . , em]
T . For m > 9, this system is over-determined for the nine

unknowns fkh and fklh for k, l = 1, 2, 3.

The unknowns a are obtained from a weighted least squares method by min-
imizing the quadratic form

J =
m
∑

i=1

wie
2
i . (4.3.2)

The above equations can be expressed in the form

J = (Ma− b)TW (Ma− b), (4.3.3)

where W = δijwi. The minimization of J formally yields

a = (MTWM)−1(MTW )b. (4.3.4)

Now from the equation for the closest point x1 we can compute the value of
Ψ(x) at x as

fh(x) = f(x1)−
3
∑

k=1

fkh(x)(xk1−xk)−
1

2

3
∑

k,l=1

flkh(x)(xk1−xk
)(xl1−xk) (4.3.5)

since fkh and fklh for k, l = 1, 2, 3 are now known. The solution of the
constrained least squares problem is straightforward and more sophisticated
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techniques can be used. For example, the minimization or singular decom-
position techniques can be very helpful to determine efficiently the unknowns.

We note that if the approximation is computed at xi we have fh(xi) = fi
which implies φ(xi, xj) = δij can be approximated very closely performing
the unconstrained least squares minimization over all the m equations.
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Chapter 5

Numerical Results

In this chapter, we present two numerical examples. In the first numerical
example, we present a series of numerical experiments on microscopic, hydro-
dynamic and scalar models. We compare our models for different parameters
and for different types of obstacles. In the second numerical example, we are
interested in comparing our results with the experimental results.

5.1 Numerical Example 1

In this section we present few numerical experiments on the microscopic
equations (2.3.1), as well as the hydrodynamic (2.4.1, 2.4.3) and scalar limit
(2.5.3). Different situations are studied and various patterns are investigated.

5.1.1 Initialization

We investigate the models numerically for a configuration defined in Ref.
[56]. Consider a railway platform of 100m length and 50m width with an
obstruction in the middle. We consider two types of obstructions in our
simulations, circular and square obstacles as shown in Figures 5.1 and 5.2,
respectively.

Pedestrians enter the platform from the left boundary and leave at the
either of the two exits of 15m width on the right boundary. Initially the
platform is empty. The density of the pedestrians increases from linearly
from zero to a peak at t = 60sec, and then drops linearly back to zero at
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obstacle
50m Entrance

15mExit

15mExit

10m

20m

20m

100m

40m 20m 40m

Figure 5.1: The railway platform with a square obstruction.

obstacle
50m Entrance

15mExit

15mExit

100m

Figure 5.2: The railway platform with a circular obstruction.

t = 120sec, and no pedestrians enter the platform thereafter. It is given by

ρ =







2.5 t
60
, if 0 ≤ t ≤ 60

−2.5
60
(t− 120), if 60 ≤ t ≤ 120

0, else
. (5.1.1)

We use two types of grid points, one for solving the pedestrian flow model
and another for solving the Eikonal equation. Therefore, we establish two
clusters of grid points, which are decoupled from each other, however, we
interchange the necessary information from one cluster grid to another and
vice-versa. For solving the Eikonal equation, we use a fixed grid in case of
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both square and circle obstructions.

In microscopic model, we divide the computational domain into N cells
and each cell is represented by its centre. We define Nmax as the maximum
number of pedestrians in each cell. The density in the microscopic model at
each cell is calculated by dividing the number of pedestrians in that cell by
Nmax, i.e.,

ρ =
N

Nmax

(5.1.2)

where N is the number of pedestrians in the cell. In our simulations, we gen-
erate ρNmax pedestrians in the cells containing the left boundary, where ρ is
defined as in (5.1.1). By altering Nmax, we control the number of pedestrians
in the simulation.

In hydrodynamic and scalar models, we initiate pedestrians on the left
boundary with a distance 2.1× R, such that they do not interact with each
other in the initial stages. Here R is the interaction radius.

5.1.2 Boundary Conditions for the Eikonal equation

The computational domain [0, 100]m× [0, 50]m is covered with a fixed grid
to solve the Eikonal equation. The grid points inside the obstruction are
excluded from the computation. The boundary conditions for the Eikonal
equation are as follows.

• On the inflow boundary, the value of Φ is not specified.

• On the solid wall boundary namely, the top, bottom and part of the
right boundary and the boundary of the obstruction, the values of Φ
set as infinity.

• On the outflow boundary, namely at x = 100, 5 ≤ y ≤ 20 and 30 ≤
y ≤ 45, we set Φ as zero.

5.1.3 Parameters

We choose the inflow velocity as (U(ρ), 0), where U(ρ) is the speed-density
relation is given by a linear dependence

U(ρ) = umax(1− ρ/ρmax), (5.1.3)
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where umax is the free flow velocity and ρmax is the maximum density of
pedestrians in dense areas. The other parameter values are taken as in Table
5.1.

Name of the paramter Notation Value
Relaxation parameter T 0.001

Interaction radius R 0.35
Interaction constant kn 3e5
Friction co-efficient γn 10

Tangential co-efficient γt 2
Free flow velocity umax 2m/s
Maximum density ρmax 10ped/m2

Table 5.1: Parameters

We use an explicit time integration for solving the hydrodynamic and
scalar models with the constant time step ∆t = 0.00125 for all cases.

5.1.4 Results

Computational Time

The computation times for a simulation of the microscopic model up to t =
150s are given for different numbers of particles in Table 5.2. We chose

Nmax RUN TIME # Pedestrians
1 05:19 22300
2 08:25 37000
3 16:46 53400
4 23:48 67600
5 38:29 83100

Table 5.2: Microscopic model: Particles per cell Nmax, computing times for
t = 150s and maximal total number of pedestrians.

the cell size in microscopic model approximately same as the size of the
macroscopic particle. i.e., the microscopic density is evaluated with a cell
size given by dx = 0.7143. This ”cell size” is also used on the average
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Model dx = 1.0 dx = 0.7143
Hydro 04:15 06:23
Scalar 04:44 07:36

Table 5.3: Hydrodynamic and scalar model: Computing times for t = 150s
for dx = 1.0 and dx = 0.7143.

for the macroscopic computation, which gives approximately N = 22000
macroscopic particles.

The computational time for a simulation of hydrodynamic and scalar
model up to t = 150s are presented in Table 5.3 for different dx. The
macroscopic models give a good approximation of the microscopic problem,
if at least 3 microscopic particles per cell are used, see Figure 5.3. This
corresponds to a total number N = 53400 of particles for the microscopic
simulation. The results in Tables 5.2 and 5.3 show that the computation
times for the macroscopic simulation are considerably smaller than for the
microscopic one if 3 or more microscopic particles per cell are used.

Comparison between Micro, Hydro and Scalar models

For t = 120s the plots of the density are shown for microscopic, hydrody-
namic and scalar model in Figure 5.4.

Figures 5.5, 5.6, 5.7 and 5.8 show the time evolution of the microscopic,
the macroscopic and the scalar particles for time t = 25s, t = 50s, t = 100s
and t = 150s, respectively. All three solutions show a very similar behaviour
for the set of parameters chosen here.

Figure 5.9 shows the density in the hydrodynamic model and solution of
the Eikonal equation for time t = 25s, t = 50s, t = 100s and t = 150s.
Figure 5.9 illustrates the evolution of the congestion pattern on the railway
platform. From the density plots in Figure 5.9, it is observed that two shocks
are seen before the obstruction as density of pedestrians increase at time
t = 100s. These kind of shocks are frequently observed in a walking facility
with large crowds when pedestrians queue up to walk through a bottleneck
with reduced capacity. Three triangular vacuum regions on two sides of
obstacle and between the two exits are also observed which is because of
travel cost minimization strategy of the pedestrians.

For a different set of parameters one can observe larger deviations between
the hydrodynamic and scalar models. Choose, for example, T = 0.001,
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Figure 5.3: Density at t = 120 along x = 36 and y = 33 for hydro-
dynamic, scalar and microscopic models.
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Figure 5.4: Density of hydrodynamic and scalar models at t = 120s.
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Figure 5.5: Distribution of particles for microscopic, hydrodynamic
and simplified models at t = 25s.
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Figure 5.6: Distribution of particles for microscopic, hydrodynamic
and simplified models at t = 50s.
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Figure 5.7: Distribution of particles for microscopic, hydrodynamic
and simplified models at t = 100s.
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Figure 5.8: Distribution of particles for microscopic, hydrodynamic
and simplified models at t = 150s.



74 CHAPTER 5. NUMERICAL RESULTS

0 20 40 60 80 100
0

10

20

30

40

50
Solution of Eikonal eqn at Time=25sec

 

 

0

20

40

60

80

100

(a) t=25s

0 20 40 60 80 100
0

10

20

30

40

50
Density at Time=25sec

 

 

0

2

4

6

8

10

(b) t=25s

0 20 40 60 80 100
0

10

20

30

40

50
Solution of Eikonal eqn at Time=50sec

 

 

0

20

40

60

80

100

(c) t=50s

0 20 40 60 80 100
0

10

20

30

40

50
Density at Time=50sec

 

 

0

2

4

6

8

10

(d) t=50s

0 20 40 60 80 100
0

10

20

30

40

50
Solution of Eikonal eqn at Time=100sec

 

 

0

20

40

60

80

100

(e) t=100s

0 20 40 60 80 100
0

10

20

30

40

50
Density at Time=100sec

 

 

0

2

4

6

8

10

(f) t=100s

0 20 40 60 80 100
0

10

20

30

40

50
Solution of Eikonal eqn at Time=150sec

 

 

0

20

40

60

80

100

(g) t=150s

0 20 40 60 80 100
0

10

20

30

40

50
Density at Time=150sec

 

 

0

2

4

6

8

10

(h) t=150s

Figure 5.9: Solution of the Eikonal equation and density for t = 25s,
t = 50s, t = 100s and t = 150s .
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Figure 5.10: Distribution of particles for hydrodynamic and scalar
model at t = 100s for relaxation time T = 0.001.

T = 0.01,T = 0.1 and T = 1.0 and the other parameters as kn = 1000,
γn = 1.0 and γt = 0.2. This leads to the distribution of particles at t = 100s
shown in Figures 5.10, 5.11, 5.12 and 5.13.

Comparison with square and circle obstacles

Now, we investigate obstacles with smooth boundaries, e.g. a circular obsta-
cle and compare it with square obstacle. We consider a circular and rectan-
gular obstacles of equal area. We present the distribution of pedestrians at
t = 150s and t = 175s obtained from the hydrodynamic model in Figures
5.14 and 5.15 respectively. The solution of the Eikonal equation for the two
obstructions for t = 25s, t = 50s, t = 100s and t = 150s are presented in
Figure 5.16 and comparison of density for two cases is presented in Figure
5.17 for t = 25s, t = 50s, t = 100s and t = 150s. From all these results,
we observe that, even if the area of the obstacles is equal, a smooth obsta-
cle leads to smaller evacuation times than a rectangular obstacle. Smooth
obstacle yield smoother and lower density distribution and provides a better
walking environment.

Multiple obstacles

Finally, to study the pedestrian flow in complex geometry, we consider a rail-
way platform with multiple obstacles. Consider the railway platform with
multiple obstacles as shown in Figure 5.18. Pedestrians enter from the en-
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Figure 5.11: Distribution of particles for hydrodynamic and scalar
model at t = 100s for relaxation time T = 0.01.
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Figure 5.12: Distribution of particles for hydrodynamic and scalar
model at t = 100s for relaxation time T = 0.1.
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Figure 5.13: Distribution of particles for hydrodynamic and scalar
model at t = 100s for relaxation time T = 1.0.
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Figure 5.14: Comparison of circular and rectangular obstacles for
t = 150s for relaxation time T = 0.001.
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Figure 5.15: Comparison of circular and rectangular obstacles for
t = 175s for relaxation time T = 0.001.

trance {y = [35, 45], x = 0} at the left boundary and leave the platform
through the door {y = [35, 45], x = 100} at the right boundary. The density
of the pedestrians increases from linearly from zero to a peak at t = 60sec,
and then drops linearly back to zero at t = 120sec, and no pedestrians enter
the platform thereafter. The density on inflow boundary is given by

ρ =







2.5 t
60
, if 0 ≤ t ≤ 60

−2.5
60
(t− 120), if 60 ≤ t ≤ 120

0, else
(5.1.4)

We used other parameters same as in the square obstacle. We use a fixed
random grid to solve the Eikonal equation. The grid distribution is given
in the Figure 5.19. The pedestrian distribution along with the solution of
the Eikonal equation for time t = 25s, t = 50s and t = 100s are presented
in Figures 5.20, 5.21 and 5.22, respectively. Though we do not have any
benchmark to compare our results in this case, it is observed that the results
from Figures 5.20, 5.21 and 5.22 appears to be following the pattern.

5.2 Numerical Example 2

In this section, we demonstrate the numerical example where the experimen-
tal results of pedestrian flow in a corridor and through T-junction are consid-
ered as our test case. We are interested to reproduce the experimental results
of pedestrian flows in straight corridor [90, 89] and through T-junctions [91],
i.e. our numerical results are compared to the experimental data.
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Figure 5.16: Solution of the Eikonal eqn for t = 25s, t = 50s, t = 100s
and t = 150s
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Figure 5.17: Density for t = 25s, t = 50s, t = 100s and t = 150s
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Figure 5.18: The railway platform with three obstacles.

We consider the Hydrodynamic equations (2.4.1, 2.4.3).For this example,
we choose the following speed density relation[53]

U(ρ(x)) = umax

(

1−
( ρ

ρmax

)n1
)n2

(5.2.1)

for some real values n1 and n2, the maximum velocity umax and the maximum
density ρmax.

5.2.1 Initial and Boundary Conditions

For our simulations, we consider the following initial conditions for the den-
sity and velocity

ρ0(x) =

{

ρ0, if x ∈ Ω0

0, otherwise

and
u = 0, (5.2.2)

where ρ0 is a positive constant and Ω0 describes a waiting area.

The boundary conditions for the Eikonal equation are

Φ(x) = 0, if x ∈ Ωd (5.2.3)

Φ(x) = ∞, if x ∈ Ωw

where Ωd is the destination for pedestrians and Ωw is the wall or obstacle in
the domain.



82 CHAPTER 5. NUMERICAL RESULTS

Figure 5.19: Randomly generated grid points.

5.2.2 Parameters

We choose the desired speed and maximal density as in the experiments[90,
91]. The free flow velocity is 1.55ms−1 and the maximum density is 3.7
pedestrians for m2. Furthermore, we fix the time step size to be 0.0001 and
set the relaxation parameter T as 0.001. The interaction constant kn is 1000.
The coefficient of friction γn and tangential coefficient γt are 10.0 and 2.0,
respectively. The constants n1 and n2 in the speed-density relationship(5.2.1)
are set to 0.4 and 0.8, respectively.

5.2.3 Results

Uni-directional pedestrian flow in a corridor

In the first case, we consider the uni-directional pedestrian flow in a straight
corridor. The experimental set up from [89] is shown in Fig. 5.23. The
corridor is of length 8m. Initially, participants stay in the waiting area. There
is a 4m passage between the waiting area and the corridor to minimize the
effect of ben. In the experiments, the participants once they reach the exit
of the corridor they will come back to the waiting area for another run. To
emulate this behavior in our simulations, we provide the continuous stream
of pedestrians. In Fig. 5.24, the trajectories of uni-directional pedestrian
flow for high and low densities are shown. Fig.5.24(a) shows the trajectory
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(a) Pedestrians distribution (b) Solution of the Eikonal equation

Figure 5.20: Distribution of pedestrians and solution of the Eikonal
equation at t = 25s.

(a) Pedestrians distribution (b) Solution of the Eikonal equation

Figure 5.21: Distribution of pedestrians and solution of the Eikonal
equation at t = 50s.
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(a) Pedestrians distribution (b) Solution of the Eikonal equation

Figure 5.22: Distribution of pedestrians and solution of the Eikonal
equation at t = 100s.

5m ben bcor bex

4m 4m 8m

waiting area

Figure 5.23: Straight corridor: sketch of the experimental setup where bcor
is the width of the corridor, ben is the width of the entrance of the waiting
area and bex is the width of the exit of the corridor.

of a uni-directional flow at high density and Fig. 5.24(b) shows the trajectory
at low density. High density flow is obtained by ben > bex and low density
flow is obtained by ben < bex. We investigate the influence of the corridor
width on the fundamental diagram. Fig. 5.25 shows the relationship between
density, velocity and flow for different sizes of corridor widths bcor = 1.8m,
bcor = 2.4m and bcor = 3.0m. In Fig. 5.25 it can be observed that the width
of the corridor has no effect on the fundamental diagram.
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(b) Low density: ben < bex.

Figure 5.24: Trajectories of pedestrians inside the corridor.
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(b) Fundamental diagram: density vs. flow.

Figure 5.25: Comparison of fundamental diagrams for different cor-
ridor widths.
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Bidirectional pedestrian flow in Corridor

In the second case, we consider the bi-directional pedestrian flow in a straight
corridor. The experimental set up from [90] is shown in Fig. 5.26.

5m 5mbl bcor br

4m 4m 8m 4m 4m

w. area w. area

Figure 5.26: Straight corridor: sketch of the experimental setup where bl and
br are the width of the entrances of the waiting areas on the left and right
side of the corridor.

The corridor is of length 8m and bcor is the width of the corridor. Ini-
tially, pedestrians stand in the waiting areas stationed at both sides of the
corridor. There is a 4m passage between the waiting area and the corridor to
minimize the effect of bl and br. In the experiments, when the participants
arrive at the other side of the corridor, they leave the corridor and return to
the waiting area for another run. In our simulations, we provide continuous
stream of pedestrians in the waiting area to match with the experiments. To
vary the form of the ordering, the participants get different instructions that
result in different types of flows [90].
BFR-SSL flow: This type of flow is observed by using the same entrance
width for both directions (bl = br) and giving no instructions to the partici-
pants about which exit they have to choose.
BFR-DML flow: In this case also bl is same as br, but the instruction to
the participants is changed. The participants were asked to choose an exit
at the end of the corridor according to a number given to them in advance.
UFR-DML flow: In this case the widths of entrances bl and br are differ-
ent and the participants are instructed to choose an exit at the end of the
corridor according to a number given at the beginning.

In our simulations, to emulate the BFR-SSL flow, we solve the Eikonal
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equation two times with different boundary conditions. Since for the pedes-
trians in left waiting area, the destination is the right end of the corridor and
for pedestrians in right waiting area, the left end of the corridor is the desti-
nation. We solve the Eikonal equation with right and left ends of the corridor
as boundary conditions and the corresponding Eikonal solutions are Φ1 and
Φ2, respectively. The velocity of left stream pedestrians is updated using Φ1

and the velocity of right stream pedestrians is updated using Φ2. Similarly, to
emulate the BFR-DML and UFR-DML flows, we solve the Eikonal equation
four times with right-bottom, right-top, left-bottom and left-top corners of
the corridor as boundary conditions and Φ1,Φ2,Φ3 and Φ4 present the corre-
sponding solutions of the Eikonal equations. The velocity of odd-numbered
left stream pedestrians will be updated by using Φ1, even-numbered left
stream pedestrians will be updated using Φ2. The velocity of odd-numbered
right stream velocity is updated by using Φ3 and finally the velocity of even-
numbered right stream pedestrians is updated by using Φ4. In Fig. 5.27, the
trajectories of all these three flows are presented.

Lane formation: Lane formation is an important phenomenon in bi-
directional flow. In Fig. 5.27, lane formation of pedestrians can be seen. In
case of SSL flow, the pedestrians form two separate lanes and in case of DML
flows, pedestrians form multiple lanes. In Figure 5.28, we plot the velocity
profiles of BFR-DML flow for bcor = 3.6m and bl = br = 1.6m at t = 13sec
and t = 51sec. We calculate the density in classical way. Our density profiles
match with the experimental results [90].

Fundamental diagram: For the analysis of fundamental diagrams, a
rectangle with a length of 2m is chosen, see Fig. 5.26. To determine the fun-
damental diagram, we use the data from stationary flow. First, the influence
of the corridor width on the fundamental diagram is studied. We consider
bcor = 3.6m and bcor = 3.0m as two different widths of the corridor. Figure
5.29 shows the relationship between the density versus velocity and density
versus specific flows. It can observed that the fundamental diagrams provide
good results compared to the experimental data.

To investigate the influence of head-on conflicts and cross-directional con-
flicts in DML types of flow, numerical comparisons between the fundamental
diagrams of SSL and DML flow for bcor = 3.6m are performed. The compar-
isons are presented in Fig. 5.30 and obviously both are consistent with each
other. This means, head-on conflicts in multilanes have the same influence on
the fundamental diagram as conflicts at the borders in stable separated lane
flow. Due to limited computational time resources, the fundamental diagram
is computed only for density values less than 2.0m−2 in the experiments for
bcor = 3.0.
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(c) UFR-DML flow.

Figure 5.27: Trajectories of pedestrians inside the corridor.
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(a) Density at t = 13sec. (b) Density at t = 51sec.

Figure 5.28: Density profiles at time t = 13 and t = 51 seconds.
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(a) Fundamental diagram: density vs. ve-
locity.
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(b) Fundamental diagram: density vs. flow.

Figure 5.29: Comparison of fundamental diagrams of DML flow for
different corridor widths.
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(a) Fundamental diagram: density vs. ve-
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(b) Fundamental diagram: density vs. flow.

Figure 5.30: Comparison of fundamental diagrams for SSL and DML
flow.

Finally, the influence of flow ratio of opposing streams on the fundamental
diagram is studied. We compare the fundamental diagrams of BFR and UFR
flow in Figure 5.31. It can be seen that the asymmetry in the flows does not
affect the fundamental diagrams. In all three cases, our numerical results are
consistent with the experimental data.

Pedestrian flow in T-junction

In the third case, the pedestrian flow through a T-junction is considered.
The experimental set up for the T-junction [91] is shown in Fig. 5.32.

Initially, the pedestrians are located in the waiting areas stationed at the
left and right sides of the T-junction. Pedestrians move from two branches
oppositely and then merge into the main stream at the T-junction. Here, bcor1
is the width of the corridor where pedestrians enter and bcor2 is the width of
the corridor where pedestrians exit the T-junction, as shown in Fig. 5.32. To
emulate the experiments, we provide the continuous pedestrian streams from
both directions. As in the corridor example, there is a 4m passage between
the T-junction and the waiting areas to minimize the effect of entrance. In
this way, the flow in the corridor was nearly homogeneous over its entire
width. Fig. 5.33 shows the pedestrian trajectories through the T-junction.

In Fig 5.34, density profiles for low density and high density situations are
presented. Density of the flow is varied by changing the width of the entrance
of the waiting areas. For low density flow situation, the widths of the waiting
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(b) Fundamental diagram: density vs. flow.

Figure 5.31: Comparison of fundamental diagrams for BFR and UFR
flow.
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w. area w. area

Figure 5.32: T-junction: sketch of the experimental setup where ben is the
width of the entrances of waiting areas at the left and right sides of the
T-junction.

area are set as ben = 2.4m and for high density flow situation, the widths of
the waiting area are set as ben = 0.5m. The density distribution in T-junction
is not homogeneous both for low and high density situations. For low density
situation, the higher density region locates at the main stream after merging
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Figure 5.33: Trajectory of pedestrians through a T-junction.

and for the high density situation, high density region locates at junction. In
Fig. 5.35, we compare the fundamental diagrams. The data assigned with ’T-
left’ and ’T-right’ are measured in the areas before the streams merge, while
the data assigned with ’T-front’ are measured in the region where the streams
have already merged. The locations of these measurements can be seen in the
Fig. 5.32. In the experimental results by [91], the velocities of the pedestrians
after merging is higher than the velocities of pedestrian before merging. This
is because, before the merging pedestrians slow down near the corner when
approaching pedestrians from the opposite stream. Another reason might be
the fact that, when the destination is visible, pedestrians tend to walk fast.
In our model, this idea is not included and can be considered as future work.
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(a) low density profile (b) high density profile

Figure 5.34: Density profiles for low and high density situations.
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(b) Fundamental diagram: density vs. flow.

Figure 5.35: Fundamental diagrams of pedestrian flow at different
measurement locations at a T-junction.
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Chapter 6

Conclusions

Pedestrian models have variety of applications in many areas. In this the-
sis a hierarchy of models for pedestrian flow from microscopic to non-local
continuum models is presented. We started with the microscopic model for
pedestrian flow and then proceeded to derive the hydrodynamic as well as
scalar models from the microscopic model. Optimal path for pedestrians is
computed using the solution of the non linear Eikonal equation. The particle
methods we used to solve the governing equations are presented.

The new mesh free method we presented to solve the Eikonal equation has
got the advantage that it is applicable for any arbitrary grid and on complex
geometries. The validation of our method is done by presenting some nu-
merical examples taken from literature. We have discussed these examples
for both structured and random grid and it is observed that our method is
converging for both kinds of grids.

We have presented two numerical examples in pedestrian modelling. In
our first numerical example, we consider the pedestrian flow in a railway
platform with an obstacle in the middle. We compared microscopic, hydro-
dynamic and scalar models for this configuration and these three models are
in good agreement. We analysed this configuration for different parameters
such as relaxation time, interaction coefficient. We have also analysed pedes-
trian flow for different types of obstacles such as square, circle and multiple
obstacles.

In the second numerical example, we compared our results with the exper-
imental results. We consider experimental results of pedestrian flow in a
straight corridor as well as through T-junction. In straight corridor case,
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we studied the lane formation, fundamental diagrams for different situations
in unidirectional and bidirectional pedestrian flow and compared our results
with experimental results. In the pedestrian flow through T-junction situ-
ation, we have studied the fundamental diagrams for various cases. In all
these cases, our simulation results are in good agreement with the experi-
mental results.
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