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I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I -
I took the one less traveled by,

And that has made all the di�erence.

— Robert Frost.
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Part I

A S Y M M E T R I C F L O W F I E L D F L O W F R A C T I O N AT I O N

We introduce Asymmetric Flow Field Flow Fractionation technique (denoted further as AF4),
which is a technique from Field Flow Fractionation (Field Flow Fractionation (FFF)) family.
We state problems to be solved in this thesis and give an overview of the results.





1
I N T R O D U C T I O N

Asymmetric Flow Field Flow Fractionation is a special case of the Field Flow Fractionation technique.
During the AF4 the particles get separated according to their size, more exactly to their hydrodynamic
radius ([12]). This technique has already proved its e�ciency in many applications in pharmaceutics,
biology, chemistry (see e. g. [24], [18], [57], [20]).

The fractionation relies on the interplay between laminar �ow and Brownian di�usion and occurs
in a thin channel equipped with inlet and outlet, and a special membrane as a bottom wall (see e. g.
sketch of Eclipse device on Figure1). A horizontal �ow of a solvent along the membrane is combined
with a strong cross �ow across the membrane. The membrane has pores about 1nm in diameter, so
it is impermeable for the particles while the solvent can �ow throughout it. The frit is a ceramic or
metallic composition situated under the membrane. It has a porous structure with pores about a micron
in diameter so the solvent can easily go through it.

AF4 consists of two main stages: a focusing–injection stage and an elution stage.

1.1 focusing–injection stage.

A sketch of �ow directions during the focusing–injection stage can be seen in Figure 27. During the
focusing–injection stage the solvent is entering the channel from both sides and leaves through the
membrane (see Figure 2).

The ratio between the left and the right volumetric �uxes determines the position of the focusing line.
In the real devices this ratio is usually considered as piecewise-constant function of time. Moreover, the
usual practice is to have number of switches as small as possible. The particles are injected from the
left side during a certain time interval (shorter than the total duration of the focusing–injection stage),
and they are transported towards the membrane due to the strong cross �ow. The injection can be
done either through a special injection port, or through the inlet. The Brownian di�usion, which acts
isotropically, prevents particles from resting at the membrane surface. The interplay between the force

Figure 1: Sketch of 3D channel of the Eclipse fractionation device.

3



4 introduction

Figure 2: Sketch of the focusing–injection stage of AF4.

induced by the cross �ow and the Brownian di�usion results in forming a boundary layer with average
distance from the membrane depending on the particle size (i. e. on the di�usion coe�cient) and on the
intensity of the cross �ow (see e. g. [12], [58]). Smaller particles with their larger di�usion coe�cient
form a layer which has a larger average distance to the membrane.

At the end of the focusing–injection stage the injected particles are located in a thin layer on the
membrane, within a focusing zone around the focusing line, and this marks the starting point of the
consecutive horizontal transport of the particles.

The main goals of the focusing-injection stage are:

A1. to concentrate almost all particles in a focusing zone by the end of the focusing stage;

A2. to avoid very high concentration of particles in a focusing zone; otherwise the particles will
start to interact with each other, which can lead to a poor separation or non-durable use of the
membrane (see section 1.3).

1.2 elution stage.

The actual separation of the particles by their size is done during the elution stage. The parabolic pro�le
of the horizontal �ow (see Figure 3) is exploited to govern the separation: smaller particles are trans-
ported faster than the bigger particles towards the channel outlet because they experience a higher
tangential �ow velocity. An essential characteristic for description of the transport of particles with
certain size and under given �ow conditions is the retention time. The retention time is a char-
acteristic time at which particles located at a prescribed point on the axis along the channel are expected
to leave the channel. From mathematical perspective, the retention time is the median of exit times dis-
tribution and is one of the most important measures in the practical use of the fractionation (separation)
devices along with the actual distribution of the exit times.

Distribution of exit times (sometimes also being called chromatogram or fractogram) and
consequently the retention time, are produced as the results of the elution stage. In cases, when there
is only one peak (or strictly speaking, when the distribution of exit times is unimodal), the retention
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Figure 3: Sketch of the Elution Stage of AF4.

time can be seen as the mean exit time for particles to leave the channel, with respect to their initial
position.

The main goal of the elution is to achieve the best possible separation of the particles, having in mind,
that the whole elution stage should be as fast as possible. In order to achieve these goals, one needs to
develop fast and reliable algorithms aimed to the problem of estimating the distribution function of exit
times.

For a more detailed description of AF4 process see, e. g. [24],[58].

1.3 overloading

In many cases of FFF it is implicitly assumed that the considered suspensions are perfectly dilute. Hence
one can assume that there is only one way coupling i. e. no back in�uence of particles on the �ow,
but the �ow velocities enter in the equations governing particles transport. It is also assumed, that the
particles do not interact with each other and do not change their hydrodynamic radius. In some cases,
this assumption is not ful�lled which can result in a shift of the retention time and perturbation of
chromatogram.

The phenomena of overloading was theoretically described and experimentally studied in [16]. Ba-
sically overloading means that there is a very high concentration of particles somewhere in the chan-
nel and consequently particles start to interact with each other (e. g. aggregation, additional repulsion
forces). Assume, that the geometry of the separation device is �xed, then one can avoid overloading
via controlling the cross�ow and the injected amount of the sample in the separation channel. This
is a challenging problem, and up to our knowledge, so far this problem has been approached only via
experiments rather than via the numerical approach.

The problem of overloading is especially crucial for the focusing stage, as one need to transport all
the particles into the focusing zone, so they experience the strong cross�ow with almost no horizontal
�ow near the focusing line. The problem of overloading can be avoided, if one does not inject solvent at
high speed, but on the other hand this can lead to the poor-focused concentration, which consequently
will impact the fractograms.

1.4 problems

The description of the AF4 brings up three distinct problems with both numerical and analytical chal-
lenges. We will state these problems, brie�y discuss challenges and provide relevant solutions:

a. Optimal �ow control for the focusing to avoid overloading (see Part ii)
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• one of the biggest challenges in this problem is the fact, that the governing convection-
di�usion equation for this problem has a hugely (up to 106 times) dominating convection
part;

• the geometry of the device is highly stretched (up to 103 times);
• the optimization algorithm should be fast and do not require high computational resources;
• the hard bounds on the �ow in�ow can be considered, but then the focusing zone can be

terribly large

b. Approximation of distribution function of exit times (see Part iii)
• the shape of the distribution function of the exit times is of great importance in this appli-

cation, so one needs algorithm, which can provide approximations for distribution function
with error estimate in L∞ norm

• complexity estimates are important for determining the e�ciency of the Monte Carlo algo-
rithm

c. Stochastic Di�erential Equation (SDE)-based model for the particles behavior in the channel (see
Part iv)

• most of the SDE-based are developed for �nancial applications
• model should take in the account, that the particles stay in the domain, with both re�ecting

and absorbing boundary
• Multi-level Monte Carlo (MLMC) approach requires results on the strong convergence for

exit times

d. Estimation of the retention time (see Part v)
• huge dominance (up to 106 times) of the �ow over the di�usion part;
• stretched geometries;
• the approximation algorithm should be fast and should not require high computational re-

sources;



Part II

O P T I M I Z AT I O N O F T H E F O C U S I N G S TA G E

We introduce a Partial Di�erential Equation (PDE)-based mathematical model for the focus-
ing stage modeling. We present a goal-oriented functional and algorithm for its minimiza-
tion. Numerical experiments are described in the end of this Part with a further discussion
of their results.





2
P D E - B A S E D M AT H E M AT I C A L M O D E L

The present chapter discusses an optimal control problem for the focusing-injection stage of the AF4
process, in which the distribution of particles suspended in a liquid needs to be controlled. In this
problem, as in many of similar applications, the evolution of the particle concentration can be in�uenced
only by the in�ow/out�ow of the liquid. From the mathematical perspective this leads to a constrained
optimal boundary control problem for a convection-di�usion equation coupled with the Stokes equation.
The theory to handle PDE constrained optimal problems is meanwhile well developed (see e. g. [36]).
In particular, optimal control problems for convection-di�usion problems were considered in [13], for
the Stokes and Navier-Stokes equations in [22, 60, 37, 33] and for the coupled problems in [3, 4, 45]. In
these works the necessary derivative information was mainly provided by the solution of the adjoint
equations.

Here, in contrast, we use the sensitivities approach due to the special structure of the objective func-
tional for this speci�c application. This allows for the construction of a fast optimization algorithm,
which is easy to parallelize. Parallelization is essential here, since the computing times for the forward
problem are large already for the two-dimensional problem. Despite the fact, that we use sensitivities
approach, we are able to provide explicit PDEs for each component of the gradient (see below).

2.1 coupled model

2.1.1 Motivation and Simpli�cations

The solvent is usually an incompressible liquid, the �ow is slow and therefore the Stokes equation can
be used to describe the �ow in the channel (see the sketch of the fractionation device geometry in
Figure 1), as well as the �ow in the free space under the membrane/frit region. The �ow through the
porous membrane and the underlying frit can either be described by the Darcy or the Brinkman model.
Based on our previous experience, we consider only the Stokes-Brinkman model (for details see [38]).
Further, the �ow simulations with the 3D Stokes-Brinkman problem demonstrate that for the regimes
that are relevant for the fractionation process, the velocity on the surface of the membrane is almost
constant, with zero tangential component and non-zero vertical component. Based on this, even the
Stokes-Brinkman equations can be replaced by the Stokes problem only in the channel. Numerical stud-
ies have also shown that even when we consider time-dependent Stokes equation with �xed boundary
conditions, then its solution stabilizes in few seconds ([38]).

Remark 2.1.1 Note, that this simpli�cation is used also by pioneers of AF4 [58]. Furthermore, because the
main objective of the research is the �ow control for optimization of the fractionation procedure, another
simpli�cation from [58] is considered: We reduce the 3D problem to an e�ective 2D one. Clearly, that this
simpli�es our simulations, but it does not change the core nature of the optimization algorithm derived
below.

9
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2.2 the state system

The state system is given by a convection-di�usion equation for the particle density, where the convec-
tive �ow velocity is given by the solution of the quasi-stationary Stokes system:

∆~V −∇p = 0, x ∈ Ω,

∇ · ~V = 0, x ∈ Ω,

~V = ~g(·, u(t)), x ∈ ∂Ω.

(1)

Here V is the velocity, p the pressure and ~g(x,u(t)) some prescribed spatial velocity distribution
along the boundary (see Figure 4), which can be adjusted with respect to time via the control variable
u(t).

Then, the convection-di�usion equation for the concentration of particles c(x, t) reads as:
∂tc+ ~V · ∇c = D∆c, (x, t) ∈ Ω× (0, T),

c(x, 0) = c0(x), x ∈ Ω,(
~Vc−D∇c

)
· ~n = 0, (x, t) ∈ ∂Ω× (0, T),

(2)

where the di�usion coe�cient D is constant and the velocity ~V is the solution of (1).

Remark 2.2.1 We assume, that the concentration is already injected of the domain. This assumption is
restrictive, but can be met in the application (if one introduce additional injection tube into the geometry).
Also, it allows us to consider simpler models for the modeling of AF4, which eventually leads to the faster
algorithms.

To state problem (2) in the weak form we introduce the spaces

W = L2
(
0, T ;H1(Ω)

)
, X = {φ ∈W : φt ∈W∗}

and the space-time cylinder Q = Ω× (0, T), as well as Σ = ∂Ω× (0, T).
Using the divergence theorem and the incompressibility of the vector �ow ~V (i.e.,∇ · ~V = 0), for any

ϕ ∈W we have

0 = 〈 ∂∂tc,ϕ〉L2(Q) + 〈∇ · (~Vc−D∇c),ϕ〉L2(Q)

= 〈 ∂∂tc,ϕ〉L2(Q) + 〈ϕ, (~Vc−D∇c) · ~n〉L2(∂Ω×(0,T)) − 〈~Vc−D∇c,∇ϕ〉L2(Q).

Applying the boundary conditions from (2), we obtain the following weak formulation:
Find c ∈ X such that c(x, 0) = c0 in L2(Ω) and

〈∂tc,ϕ〉W∗,W −
〈
~V · c−D · ∇c,∇ϕ

〉
L2(Q)

= 0 (3)

for all ϕ ∈W.

2.2.1 Properties of Stokes equation

First, we state a proposition for the existence and uniqueness of the Stokes system (1) (see [52]).
We de�ne

L20(∂Ω) =

~f ∈ L2(∂Ω) :

∫
∂Ω

~f · ~n = 0


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Figure 4: DomainΩ of the system, its subdomains and boundary conditions

for the boundary conditions (which have discontinuities at the corners ofΩ in our numerical tests), and

L20(Ω) =

p ∈ L2(Ω) :

∫
Ω

p = 0


for pressure functions.

By H1/2σ (Ω) we denote the subspace of H1/2(Ω) of all weakly divergence free vector �elds, that is,
~f ∈ H1/2σ (Ω) if

~f ∈ H1/2(Ω) and
∫
Ω

~f · ∇φ = 0 for any φ ∈ C∞0 (Ω).

Proposition 2.2.2 Let Ω be a bounded Lipschitz domain in Rd and let ~g ∈ L20(∂Ω). Then the system
(1) admits a solution

(~V ,p) ∈
[
H
1/2
σ (Ω)∩C∞(Ω)

]
×
[
L20(Ω)∩C∞(Ω)

]
and there exists a constant CΩ > 0 such that∥∥∥~V∥∥∥

H1/2(Ω)
6 CΩ · ‖~g‖L2(∂Ω) . (4)

Further we have ~g as a linear function of
(
u1
u2

)
∈ U ⊂ R2, where u1 and u2 are control parameters

(see Figure 4).
In this case the Stokes equation admits a linear with respect to

(
u1
u2

)
solution (~V ,p), that is,

~V = u1 · ~V(1,0) + u2 · ~V(0,1), p = u1 · p(1,0) + u2 · p(0,1).

where ~V(1,0) corresponds to boundary condition
(
u1
u2

)
=
(
1
0

)
and ~V(0,1) corresponds to boundary con-

dition
(
u1
u2

)
=
(
0
1

)
. The uniqueness provided by the formulated above proposition yields the following

result, which will be essential for the setup of our fast optimization algorithm.

Lemma 2.2.3 Consider the Stokes system (1) with a boundary function ~g = u1 · ~g(1,0) + u2 · ~g(0,1),
where ~g(1,0), ~g(0,1) ∈ L20(∂Ω) and u1,u2 ∈ R. Then the solution (~V ,p) depends linearly on (u1,u2)T ,
i.e.

~V = u1 · ~V(1,0) + u2 · ~V(0,1), p = u1 · p(1,0) + u2 · p(0,1),

where (~V(1,0),p(1,0)) and (~V(0,1),p(0,1)) correspond to the boundary conditions ~g(1,0) and ~g(0,1) re-
spectively.
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The lemma allows to compute the �nite element approximations (V,p) of exact solution (~V ,p) as a
linear combination of basis �nite element approximations

(V(1,0),p(1,0)) and (V(0,1),p(0,1)).

2.2.2 Existence, uniqueness and approximation of the convection-di�usion problem

The following theorem is a consequence of Theorem 11.1.1 in [50].

Theorem 2.2.4 LetΩ be a bounded Lipschitz domain in Rn. Further, let ~V ∈ L∞(Q) and c0 ∈ L2(Ω)

be given. Then, there exists a unique solution c ∈ X of problem (3).

Remark 2.2.5 Note that the bilinear form

a(u,w) =
〈
D · ∇u− ~V · u,∇w

〉
L2(Q)

is weakly coercive, i.e. there exist constants γ1,γ2 > 0 such that for all u ∈W it holds

a(u,u) > γ1 ‖u‖2W − γ2 ‖u‖2L2(Q) .

For our numerical experiments we consider controls, which are piecewise-constant in time controls.
Hence, we use the following backward Euler time discretization of the convection-di�usion equation
(3):

〈ĉ(tk) − ĉ(tk−1),ϕ〉L2(Ω) −

∆t ·
〈
~V(tk) · ĉ(tk) −D · ∇ĉ(tk),∇ϕ

〉
L2(Ω)

= 0 (5)

ĉ(0) = c0

for any ϕ ∈ H1(Ω), where ∆t =
T

m
, tk = k∆t, k = 1, . . . ,m.

Remark 2.2.6 Using the same argument as in Remark 2.2.5 one easily sees that the corresponding bilinear
form is only weakly coercive in H1(Ω) with respect to L2(Ω). Coercivity can only be ensured for small

time steps depending on
∥∥∥~V∥∥∥

L∞(Ω)
. Hence, either we choose such a small time step or we assume that the

Fredholm alternative holds.

Further we will employ a stable edge-averaged �nite element space discretization (see [9]) and obtain
a system of di�erential equations for ch(t) ∈ Vh:

〈 ddtch(t),ϕh〉L2(Ω) + bh(ch(t),ϕh) = 0, t ∈ (0, T) (6)
〈ch(0),ϕh〉L2(Ω) = 〈c0,ϕh〉L2(Ω)

for anyϕh ∈ Vh. Here Vh ⊂ H1(Ω) is a space of piecewise linear functions for a given mesh Th with
mesh size h.

Note that the backward Euler time discretization is unconditionally stable for this system of di�er-
ential equations. Denote corresponding solution (after backward Euler time discretization) by ĉh(tk),
tk = k∆t. Then using the Rothe function ĉ∆t(x, t) de�ned by

ĉh,∆t(x, t)|[tk,tk+1) = ĉh(tk),

where k = 0, . . . ,m− 1, we can formulate the following convergence result:

Proposition 2.2.7 For ∆t→ 0, h→ 0 it holds∥∥ĉh,∆t − c
∥∥
L2(Q)

→ 0.



3
T H E O P T I M A L C O N T R O L P R O B L E M

Now we state a speci�c optimal control problem on the domainΩ = (0,L)× (0,w) shown in Figure 4.

3.1 functional

We de�ne the subdomain Ω1 = (x
(1)
1 , x(2)1 )× (0,αw), where 0 < x(1)1 < x

(2)
1 < L and 0 < α < 0.5.

The functional we are going to minimize is de�ned as

J(c,u) =
1

2

x
(2)
1∫
x
(1)
1

([
αw∫
0

c(x1, x2, T) dx2 −K

]
+

)2
dx1

+
µ

2

( ∫
Ω\Ω1

c(x, T)dx

)2
, (7)

where c = c(u) is the concentration computed from (2) and ~V = ~V(u).
It holds (f)+ = max(f, 0) and K > 0 is a constant which gives the not to be exceeded average

concentration on the sets {x1}× [0,w].
The �rst term assures that the particles will end up in the focusing zone. Note that the focusing line

will shift with every change of the control. The second term in (7) penalizes amount of concentration
of the particles outside the focusing zone Ω1, in which we aim to accumulate them. Both aims can be
balanced by the positive constant µ.

3.2 problem statement

Consider the following linear operator

Bc =

αw∫
0

c(x1, x2) dx2, B : L2(Ω) 7→ L2(0,L) (8)

Then, the functional (7) can be rewritten in a more convenient operator form

J(c,u) =
1

2
〈(Bc−K)+, (Bc−K)+〉

L2([x
(1)
1 ,x(2)1 ])

+
µ

2
‖c(T)‖2L1(Ω\Ω1)

. (9)

Next, we formulate the constrained optimization problem. De�neZ =W×L2(Ω) and the nonlinear
operator e = (e1, e2) : X×U→ Z∗ by

〈e1(c,u),ϕ〉W∗,W = 〈∂tc,ϕ〉W∗,W −
〈
~V(u)c−D∇c,∇ϕ

〉
L2(Q)

〈e2(c,u),ϕ(x, 0)〉L2(Ω) = 〈c(x, 0) − c0(x),ϕ(x, 0)〉L2(Ω),
(10)

for all ϕ ∈W. Here ~V(u) is the (explicit) solution of the Stokes problem for a given boundary control
u = u(t).

13
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Then the constrained minimization problem over the control space U can be shortly written as

min J(c,u) over (c,u) ∈ X×U,

subject to e(c,u) = 0.

Let us introduce the solution operator c(u) : U 7→ X (see [36]) and the reduced cost functional Ĵ(u) =
J(c(u),u). Assume that the mapping ec(c,u) is a homeomorphism. Then, the implicit function theorem
implies the existence of the derivative of the mapping u 7→ c(u) with respect to u in a direction δu
which is given by

c ′(u)[δu] = −e−1c (c(u),u)eu(c(u),u)δu.

Noting that Ju = 0 one obtains by the chain rule

〈Ĵ ′(u), δu〉U∗,U = 〈Jc(c(u),u),−e−1c (c(u),u)eu(c(u),u)δu〉X∗,X.

Due to the special structure of our constraint and the upcoming choice of the control space, we are
going to use this sensitivity formulation instead of the adjoint one. Note, that due to the linearity of the
convection-di�usion equation the computation of c ′(u)[δu] requires the solution of the same equation
just with a di�erent right hand side and homogeneous initial condition.

Let fu,δu := c ′(u)[δu]. According to Lemma 2.2.3 the velocity ~V = ~V(u) depends linearly on u, i.e.
~Vu(u)[δu] = ~V(δu) . Hence, fu,δu ∈ X can be computed from


〈∂tfu,δu,ϕ〉W∗,W −

〈
~V(u)fu,δu −D∇fu,δu,∇ϕ

〉
L2(Q)

= 〈~V(δu)c,∇ϕ〉L2(Q)

〈fu,δu(0),ϕ(·, 0)〉L2(Ω) = 0, ∀ϕ ∈W
. (11)

Remark 3.2.1 Due to the special structure of our constraints, the cost functional and the upcoming choice
of the control space, we are going to use this sensitivity formulation instead of the adjoint one.
Since the left-hand side of the convection-di�usion equation is linear with respect to the control function,

the computation of c ′(u)[δu] requires the solution of the state equation of the same form, but with di�erent
right-hand sides and with homogeneous initial condition. Therefore, one can solve each system for the
component of the gradient independently and in parallel with the solution of the main state equation.
Another advantage of this approach is that there is no need to save previous values of the state c(x, t) to

compute the gradient, which already leads to great savings in memory in two-dimensional case.

3.3 selection of control space

By problem de�nition, functions u1(t), u2(t) that rule Stokes equation (1) are control parameters at
any time t. We impose natural box constraints on the control:

ua1 6 u1 6 ub1 , ua2 6 u2 6 ub2 .

Thus we obtain a parametric set U:

U =
{
(u1,u2) : u1 ∈ [ua1 ,ub1 ], u2 ∈ [ua2 ,ub2 ]

}
,

which is a convex polygon.
Based on the Proposition 2.2.4, we will choose control functions (u1(t),u2(t)) to be piecewise con-

tinuous, i.e. they have a �nite number of discontinuities of �rst kind on the interval [0, T ].
For the piecewise constant function we will need to evaluate derivatives with respect to an increment

of arguments ui1 = u1(τi−1), as well as of ui2 = u2(τi−1) (i = 1, . . . ,N).

For example, designating
∂

∂ui1
c(x, t) = fi1(x, t) and noting that

∂

∂ui1

~V(·,u(t)) = χi(t)~V(1,0),
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where χi(t) = I{t∈[τi−1,τi)}, we have〈
∂

∂t
fi1,ϕ〉W∗,W −

〈
~Vfi1 −D∇f

i
1,∇ϕ

〉
L2(Q)

= 〈~V(1,0)c,∇ϕ〉L2(Ω×[τi−1,τi])

〈fi1(0),ϕ(·, 0)〉L2(Ω) = 0

.

In the numerical implementation we need to solve system (11) for various control variations δu to
�nd the corresponding di�erential functional variation 〈Ĵ ′(u), δu〉U.

3.4 projection gradient method

As a result, after solving the systems for

c(x, t), fi1(x, t), fi2(x, t), i = 1, . . . ,N

we obtain a 2N-dimensional gradient vector of c(x, t):(
f11(x, t), . . . , fN1 (x, t), f12(x, t), . . . , fN2 (x, t)

)
=: du(x, t) ∈ [L2(Ω× (0, T))]2N.

Then we derive an expression for the gradient of the reduced cost functional Ĵ(u): the i-th component
of 2N-dimensional vector Ĵ ′(u) can be written as(

Ĵ ′(u)
)i

= 〈(Bc−K)+,Bdiu〉L2([x(1)1 ,x(2)1 ])

+ µ ‖c(T)‖L1(Ω\Ω1)

∫
Ω\Ω1

diu(x, T) dx,

where diu is i-th component of the gradient vector du(x, t).

Remark 3.4.1 Similarly to the case with derivative of the solution c ′(u), gradient Ĵ ′(u) is an approxi-
mation of Frechet derivative of functional Ĵ(u) with respect to control parameter u = u(t).

Using these results, we can formulate projection gradient (see [36]) method for minimization problem
(9) with control set

U =
{
(u11, . . . ,uN1 ,u12, . . . ,uN2 ) : (ui1,ui2) ∈ U

}
.

This control set is convex and closed (which follows from the convexity ofU), therefore, projection PU

is well-de�ned and unique.
Denote initial guessu0 be in the interior ofU. Calculate the corresponding gradient d0. The algorithm

has the following form.

1 : Set k := 0, σ ∈ (0, 1), γε, γ

2 : do
3 : Evaluate dk := −Ĵ ′(uk)

4 : Set uk+1 := PU(uk + γdk)
5 : Compute J(uk+1)
6 : If uk+1 satis�es Armijo’s rule,

set k := k+ 1 and Go to 3
7 : Else γ := γ · σ and Go to 4
8 : while ‖uk+1 − uk‖ / ‖u1 − u0‖ > γε





4
N U M E R I C A L E X P E R I M E N T S

4.1 time-space discretization of convection-diffusion eqation

Recall that we consider a backward Euler time discretization of the convection-di�usion equation (3).
For the resulting sequence of stationary convection-di�usion-reaction equations we apply an edge-
averaged �nite element (EAFE) scheme, following the articles [59], [9]. Note that this discretization we
use for evaluating both the concentration c(x, t) and derivatives fi1(x, t), fi2(x, t) (i = 1, . . . ,N).

We introduce the following notation thereby assuming that the triangulation Th is shape regular: for
a given Te ∈ Th denote by

• qj (1 6 j 6 3) the vertices of Te;

• Eij (or simply E) the edge connecting two vertices qi and qj;

• δEφ = φ(qi) −φ(qj) for any continuous function φ on E = Eij;

• τE = δEx = qi − qj the directional vector of E.

We set Vh ⊂ H1(Ω) to be the usual piecewise linear �nite element space.
De�ne sti�ness coe�cients (aTeij ) for any given Te ∈ Th:

∀ch, vh ∈ Vh :

∫
Te

D∇ch · ∇vh dx =
∑
i,j

aTeij ch(qi)vh(qj)

and the coe�cientsωTeE = −aTeij with E connecting the vertices qi and qj.
Besides that, given Te ∈ Th and an edge E ∈ Te, we de�ne a function ψTeE by

∂ψTeE
∂τE

= −
1

|τE|
(D−1~V · τE).

Let HTeE (~V) be the corresponding harmonic average of e−ψ
Te
E :

HTeE (~V) =

 1

|τE|

∫
E

eψ
Te
E ds

−1 .

Then the approximating bilinear form can be de�ned as

ah(ch, vh) = ∆t
∑
E∈Th

ωEHE(~V)δE(e
ψEch)δEvh + (ch, vh)Ω.

Here (·, ·)Ω =
∑

Te∈Th
(·, ·)L2(Te). Due to the continuity of ~V(x) inΩ we have HTeE ≡ HE.

For any time step tk (k = 1, . . . ,m) we consider the following �nite element scheme: Find ch(tk)
such that

ah[tk](ch(tk), vh) = (ch(tk−1), vh)Ω, (12)

17
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where ah[tk](ch(tk), vh) corresponds to the velocity �ow �eld ~V(·) = ~V(·, tk).
Approximation error estimates are also discussed in [59], [9].
At last we discuss some details of numerical implementation of the described scheme. Denote ψ̄E(s) =

ψ(|τE|s) for s ∈ [0, 1]. One can see that

∂ψ̄E

∂s
= −D−1(~V · τE).

Consider the part B of matrix A of the bilinear form ah(·, ·) such that A = ∆t · B+A0 which corre-
sponds to the representation

ah(ch, vh) = ∆t · bh(ch, vh) + (ch, vh)Ω.

Here A0 denotes a mass matrix.
Then the element of matrix B of the bilinear form bh(·, ·) corresponding the the edge E = (qi,qj)

can be computed as follows

bij = bh(ϕj,ϕi) = ωEHE(~V)δE(eψEϕj)δEϕi,

where ϕi(x) is a nodal basis function for a vertice qi. Denoting αE = (D−1~V · τE) and assuming that
in our discretization it is constant on any edge E, we have ψ̄E(s) = αE(1− s) and

bij = −ωE

1∫
0

eψ̄E(s)ds

−1 eψ̄E(1) = −ωE
αE

eαE − 1
. (13)

Similarly one obtains

bji = bh(ϕi,ϕj) = −ωE

1∫
0

eψ̄E(s)ds

−1 eψ̄E(0) = −ωE
αE

1− e−αE
. (14)

Also we have

bii = −
∑

E=(qi,qk)∈Th

bki, (15)

since
ωEHE(~V)δE(e

ψEϕi)δEϕi = −bki, ∀E = (qi,qk) ∈ Th.

One can see that the local parameter αE is a linear function of (u1,u2).
Note that the expression for bji has the same form as for bij since

bji = −ωE
−αE

e−αE − 1
, E = (qi,qj).

4.2 scaling of coordinates in the numerical simulations

Preliminary tests showed that we need to apply the scaling of coordinates to improve the accuracy of
the numerical results.

Recall the convection-di�usion problem (in di�erential form):

∂c

∂t
+ ~V · ∇c = D4c.

Consider the following scaling of coordinates:

t̂ = 0.1 · t, x̂ = 100 · x.
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These new coordinates are used in the numerical simulations.
We come to a new system:

∂c

∂t̂
+ ~̂V · ∇̂c = D̂4̂c.

Returning to old coordinates (t, x), we obtain

10
∂c

∂t
+ 10−2 ~̂V · ∇c = 10−4D̂4c

⇒ ∂c

∂t
+ 10−3 ~̂V · ∇c = 10−5D̂4c.

Recall that ~V = u1~V
(1,0) + u2~V

(0,1) and ~̂V = û1
~̂V
(1,0)

+ û2
~̂V
(0,1)

. The solutions of the Stokes
system satisfy the identities

~V(1,0) = ~̂V
(1,0)

and ~V(0,1) = ~̂V
(0,1)

(pointwise in the corresponding points x and x̂).
As a result, we can relate the scaled parameters via their corresponding real values:

D̂ = D · 105, û = u · 103.

Note that the boundary condition
(
~Vc−D∇c

)
· ~n = 0 transforms to the same form

(
~̂Vc− D̂∇̂c

)
·

~n = 0.
Next we consider the functional

J =
1

2

x
(2)
1∫
x
(1)
1

([∫αw
0

c(x1, x2, T) dx2 −K
]
+

)2
dx1 +

µ

2

( ∫
Ω\Ω1

c(x, T)dx
)2

.

For convenience denote the integrals I1, I2 such that J = I1 + µI2. Since the spacial domain is
two-dimensional, we have

Î1 = I1 · 106, Î2 = I2 · 108,

with K̂ = K · 102.
To achieve a relation Ĵ = J · 106, we switch to a new parameter µ̂ = µ · 10−2. Then due to an

expression for J ′ we also have Ĵ ′ = J ′ · 106.
Recall that the step in the gradient algorithm has the form

uk+1 := PU(uk + γdk)

with dk := −J ′(uk). To satisfy û = u · 103 for any step of this algorithm, we scale the length of the
step γ̂ = γ · 10−3.

The Armijo’s rule can be written as

J(uk+1) − J(uk) 6 ε〈J ′(uk),uk+1 − uk〉.

This inequality holds also for the scaled equivalents if εu = ε̂û. As a result, ε̂ = ε · 10−3.
In particular, the real parameters are the following:

L = 0.1, w = 0.00029, T = 100, ∆t = 0.05, D = 8 · 10−11,

u0 = (1.5 · 10−3, 8.5 · 10−3), µ = 104, ε = 0.005, γ = 104.

They correspond to the values of parameters used in the code:

L = 10.0, w = 0.029, T = 10, ∆t = 0.005, D = 8 · 10−6,

u0 = (1.5, 8.5), µ = 100, ε = 0.000005, γ = 10.
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4.3 numerical experiments

We present here some numerical results of minimization problem with simpli�ed (compared with prac-
tical tasks) parameters of PDE and control.

For evaluating c(x, t), fi1(x, t), fi2(x, t) (i = 1, . . . ,N) we applied edge-averaged �nite element
(EAFE) scheme, following the articles [59], [9].

At �rst we consider a certain case of boundary conditions for velocity �ow ~V shown on Figure 4. The
solution for the Stokes equation (1) will read as

V1 = −6(u1 + u2)
x1

L
·
x2

w

(
1−

x2

w

)
+ 6u1

x2

w

(
1−

x2

w

)
,

V2 = −(u1 + u2)

1− 3(x2
w

)2
+ 2

(
x2

w

)3 · w
L

Rectangular domain Ω has length L = 0.1 m and width w = 290 · 10−6 m. Subdomain Ω1 is
described as

Ω1 = {(x1, x2) : x1 ∈ [0.1 · L, 0.2 · L], x2 ∈ [0, 0.1 ·w]} .

We consider a di�usion coe�cientD = 8 · 10−11m2/sec, while the focusing time is T = 100 seconds.
Number of switching moments was selectedN = T/∆t with �xed switching time steps ∆t1 = 5 sec

and ∆t2 = 10 sec. Moreover, as an initial guess for optimization problem with ∆t2 = 5 we use the
answer of the optimization problem with ∆t1 = 10 sec.

Two cases of box constraints on u1 and u2 are considered. Corresponding constraining sets we
denote by U1 and U2. Then

U1 =

{
(v1, v2) : v2 ∈ [4.5 · 10−4, 10−2],

v1

v2
∈
[
1

9
,
1

4

]}
, (16)

U2 =

{
(v1, v2) : v2 > 4.5 · 10−4,

v1

v2
∈
[
0,
1

3

]}
. (17)

Triangular mesh Th of the domainΩ was selected uniform, with the numbers of partitions equal to

nx = 3960, ny = 350

along x-axis and y-axis respectively. Due to the box constraints on control u and initial condition c0(x)
accumulated on [0, 0.1 · L]× [0,w], only the part of the mesh Th on subdomain

Ωθ = [0, θ · L]× [0,w], θ = 0.3,

was used for computations of c(x, t) (since its values on the rest of the mesh are physically negligible).
Parameter µ in the functional (7) is set to be equal 104.

We have done tests for two di�erent K:

• K =
1

0.1 · L
∫
Ω

c0(x)dx — stands for ideally �at distribution. The value of (8) is presented on

Figures 5-6.

• K =
1.5
0.1 · L

∫
Ω

c0(x)dx — more weak constraint. The value of (8) is presented on Figures 7-8.



4.3 numerical experiments 21

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 

initial control
terminal control, N=10
terminal control, N=20
terminal control, N=40

Figure 5: Concentration inΩ1, integrated in y-direction (B(c(x, T))). K = 1, set U1
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Figure 6: Concentration inΩ1, integrated in y-direction (B(c(x, T))). K = 1, set U2
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Figure 7: Concentration inΩ1, integrated in y-direction (B(c(x, T))). K = 1.5, set U1
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Figure 8: Concentration inΩ1, integrated in y-direction (B(c(x, T))). K = 1.5, set U2



4.3 numerical experiments 23

0 5 10 15 20 25 30
−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

iterations

Values of log
10

 J 

 

 

Set U
1
, initial grid

Set U
2
, initial grid

Set U
1
, fine grid

Set U
2
, fine grid

Figure 9: Values of log10 J with N = 10, K = 1 for two di�erent grids.

The value of stopping criteria γε in the following experiments is set to γε = 5 · 10−3.
The �rst group of experiments were run with the lowest number N = 10 of switching points for

two types of grids. They are in some sense close to each other for a given K and control set U. For all 4
considered options for K and U the decay of the functional (7) is presented on the Figures 9-10.

After reaching a stopping criteria for N = 10 we turned to the case N = 20 choosing the initial
grid for the space discretization and taking the value of control u from the last meaningful iteration of
the corresponding experiment for N = 10 as an initial guess of u. Again reaching a stopping criteria
in this new case, we then turn again to a higher number of control switching points N = 40, in the
same manner choosing an initial guess of u from the last iteration of the corresponding experiment for
N = 20. For this group of numerical experiments withN taking values 10, 20 and 40, the decay of the
functional (7) is shown on the Figures 11-12.

In the next Figure 13 we depict the values of control u forN = 10 being compared for two di�erent
grids for the space discretization. Only for the last iterations (when stopping criteria is attained) the
value of u is drawn. Additionally for the coarser grid on the Figure 14 initial guess of u and its value on
the last iteration are compared. For the experiments with N = 20 which are already described above,
the values of control u are demonstrated on the Figure 15. These values of control are compared for the
�rst and last meaningful iterations of the same experiment.

In the last group of plot shown on the Figure 16, the values of control are depicted for the case of
N = 40. Here again the values of u are compared for the �rst and last meaningful iterations of the same
experiment.
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Figure 10: Values of log10 J with N = 10, K = 1.5 for two di�erent grids.
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Figure 11: Values of log10 J with N = 20 and N = 40, K = 1.
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Figure 12: Values of log10 J with N = 20 and N = 40, K = 1.5.

4.3.1 Discussion of the results.

Our �rst numerical results are very promising. For the realistic setting with K =
1.5
0.1 · L

∫
Ω

c0(x)dx the

functional value is su�ciently small for already 10 switches. Moreover, we have seen, that for some
cases, we do not bene�t from increasing number of switching points.
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Figure 13: Terminal values of u for N = 10 for two di�erent grids.
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Figure 14: Initial and terminal values of u for N = 10.
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Figure 15: Initial and terminal values of u for N = 20.
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Figure 16: Initial and terminal values of u for N = 40.





Part III

M O N T E C A R L O M E T H O D S F O R A P P R O X I M AT I O N O F
D I S T R I B U T I O N F U N C T I O N S

In this part of the thesis we present a short overview of MLMC method with applications
into �nance. Then we present new MLMC algorithm for Cumulative Distribution Function
(CDF) and Probability Density Function (PDF) approximations on a compact interval, and
CDF approximation at a single point.
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M O N T E C A R L O A N D M U L T I L E V E L M O N T E C A R L O M E T H O D S

5.1 introduction

Monte Carlo methods are a large family of algorithms based on repeated random sampling in order
to obtain numerical results. They are used in a variety of applications, where deterministic algorithms
can be infeasible (e. g. high-dimensional integration, solving PDEs in high dimensions) or where the
estimated quantity depends on a random variable with unknown distribution. Financial engineering is
one of the most important applications for Monte Carlo algorithms (see [30]), due to the typical high-
dimensionality of the problems arising in this �eld and their stochastic origin.

In this work we will focus on a concrete problem of estimating PDF and CDF, motivated initially
by the AF4 application. We introduce Single-level Monte Carlo (SMC) (Section 5.2) and MLMC (Section
5.3) methods for estimating a functionals and compare those methods in terms of convergence rates,
according to De�nition 1 below.

5.2 single-level monte carlo estimator

We start from the abstract setting, where we need to estimate

EP = E f (Y) ,

where Y is a random variable and f : R→ R is a given function. We don’t assume, that the distribution
of Y can be simulated exactly. Instead of that we assume, that the simulation is feasible for random
variables Y(`) that converge to Y in a suitable way, such that

lim
`→∞E f

(
Y(`)

)
= E f (Y) .

The standard Monte Carlo estimator based on N replications of Y(`) has the form

P̂ =
1

N

N∑
i=1

f
(
Y
(`)
i

)
. (18)

We are interested in the Mean Squared Error (MSE):

E
[(
P̂− EP

)2]
= E

[(
P̂+ E P̂− E P̂− EP

)2]
= E

[(
P̂− E P̂

)2]
+ E

[(
E P̂− EP

)2] (19)

As one can see the MSE has been decomposed into two errors:

• E
[(

E P̂− EP
)2] — bias error;

• E
[(
P̂− E P̂

)2] — Monte Carlo variance.

The Monte Carlo variance is proportional to N−1 as

Var P̂ = Var

(
1

N

N∑
i=1

f(Y
(`)
i )

)
=

1

N2
Var

(
N∑
i=1

f(Y
(`)
i )

)
=
1

N
Var

(
f(Y(`))

)
.

33
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5.3 multilevel monte carlo estimator

We will start from the simple observation:

E f
(
Y(L)

)
= E f

(
Y
(0)
i

)
+

L∑
l=1

E
[
f
(
Y(`)

)
− f
(
Y(`−1)

)]
. (20)

The idea behind MLMC is to independently estimate each of the expectations on the right-hand side of
(20) in a way, which minimises the overall variance for a given computational cost. The formal de�nition
of the cost will be given later. The �nal estimator P̂ can be seen as a sum of independent estimators

P̂ =

L∑
`=0

P`, (21)

where P0 is an estimator for E f
(
Y
(0)
i

)
based on N0 samples, and Y` are estimates for

E
[
f
(
Y(`)

)
− f
(
Y(`−1)

)]
based on N` samples. The simplest form for P0 and P` is a mean value of f over all samples:

P0 =
1

N0

N0∑
i=1

f
(
Y
(0)
i

)
,

P` =
1

N`

N∑̀
i=1

[
f
(
Y(`)

)
− f
(
Y(`−1)

)]
, ` = 1, . . . ,L.

For the variance and bias for P̂ we have

Var P̂ = Var

[
L∑
`=0

P`

]
=

L∑
`=0

VarP`,

E P̂ = E

[
L∑
`=0

P`

]
= E f

(
Y(L)

)
.

5.4 complexity estimators

De�nition 1 We say that a sequence of randomized algorithmsAn converges with order (γ,η) ∈ ]0,∞[×
R if

lim
n→∞ error (An) = 0

and if there exists a constant c > 0 such that

cost (An) 6 c · (error (An))
−γ · (− log error (An))

η .

By cost we will understand mathematical expectation of random number calls made during the algo-
rithm.

Remark 5.4.1 In our notation the low convergence rate means lower computational cost in order to achieve
given accuracy.

Now for MLMC the overall cost is proportional to
L∑
`=0

N`/h
`, h` is a time step discretization at the level

`.
The next two theorems will provide the complexity estimates for both methods.
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Theorem 5.4.2 Consider E Y = E(f(Y)) = E(f(ϕ(W))) and an approximation Y` = ϕ`(W), where
ϕ` is a discretization scheme with stepsize h = T/2`. Consider the estimator (18) and assume that the
following is true with some universal constant c:

• f : R→ R and
cost(f(x)) 6 c, ∀x ∈ R

• There existsM > 1 such that

cost(Y(`)) 6 c ·M`, ∀` ∈N0

• There exists α > 0 ∣∣∣E(f(Y) − f(Y(`)))∣∣∣ 6 c ·M−α`, ∀` ∈N0

• sup
`∈N0

Var(f(Y(`))) <∞
Then the SMC method achieves order of convergence

γ =
2 ·α+ 1

α
,η = 0.

Proof It is straightforward to verify, that N � ε−2 and h � εα, so

cost = N/h = ε−2−
1
α .

The next theorem was proved in [25].

Theorem 5.4.3 Consider E Y = E(f(Y)) = E(f(ϕ(W))) and an approximation Y` = ϕ`(W), where ϕ
is a discretization scheme with stepsize h` = T/2`. Consider

P̂ =
1

N0

N0∑
i=1

f
(
Y
(0)
i

)
+

L1∑
`=1

1

N`

N∑̀
i=1

(
f(Y

(`)
i ) − f(Y

(`−1)
i )

)
(22)

and assume that

• f ∈ Lip(R) and
cost(f(x)) 6 c, ∀x ∈ R

• There existsM > 1, such that

cost(Y(`), Y(`−1)) 6 c ·M`, ∀` ∈N0

• There exists α > 0, such that

|E(f(Y) − f(Y(`)))| 6 c ·M−α`, ∀` ∈N0

• There exists β ∈]0,α] such that

(E(Y − Y(`))2)1/2 6 c ·M−β`, ∀` ∈N0.

Then the convergence rate for MLMC algorithm is

γ =

2, β > 1
2

2(α−β)+1
α , β < 1

2

, η =

2, β = 1
2

0, β 6= 1
2

.
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Proof Due to the fact, that f ∈ Lip(R) we have

Var
(
f(Y) − f(Y(`))

)
6 E

(
f(Y) − f(Y(`))

)2
6 c · E

(
Y − Y(`)

)2
6M−2·β`.

So now we can write an optimization problem.
Find N`,L such that: 

g1(N`,L) =
L∑
`=0

N`
h`
→ min,

g2(N`,L) =
L∑
`=0

h
2·β
`

N`
� ε2,

g3(L) = h
2·α·L � ε2.

It is clear, that L > 1
α log2 ε

−1.
Now by di�erentiation we obtain:

∂g1
∂N`

=
1

h`
;

∂g2
∂N`

= −
h
2·β
`

N2`

Hence by the Lagrange principle

∂g1
∂N`

∣∣∣∣
N?

= λ
∂g2
∂N`

∣∣∣∣
N?

⇒ 1

h`
= −λ

h
2·β
`(
N?
`

)2 ⇔ (N?
`)
2 = −λh2·β+1`

⇓

N?
` = (−λ)

1
2 h

2·β+1
2

` .

Now we �nd λ from g2(N
?) � ε2:

L∑
`=1

h
2·β
`

N?
`

=

L∑
`=1

h
2·β
`

(−λ)
1
2h
2·β+1
2

`

= ε2 =⇒ λ = −


L∑
`=0

h
2·β−1
2

`

ε2


2

.

So, we have the number of experiments as given by

N?
` � ε

−2 · h
2·β+1
2

` ·

(
L∑
`=0

h
2·β−1
2

`

)

and complexity

cost =
L∑
`=1

N`
h`

= 2 · ε−2 ·

(
L∑
`=0

h
2·β−1
2

`

)2
.

So now we can consider three main cases:

(
L∑
`=0

h
2·β−1
2

`

)2
�


1, β > 1

2

(log2 ε)
2, β = 1

2

ε
2·β−1
α , β < 1

2

,

which concludes the proof.
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Let Y denote a real-valued random variable with distribution function F and density ρ. We study the
approximation of F and ρ with respect to the supremum norm on a compact interval [S0,S1], without
assuming that the distribution of Y is explicitly known or that the simulation of Y is feasible. Instead,
we suppose that a sequence of random variables Y(`) is at hand that converge to Y in a suitable way
and that are suited to simulation.

We present a general approach, which is later on applied in the context of stochastic di�erential equa-
tions (SDEs). In this speci�c setting we aim at the distribution of Lipschitz continuous, path-independent
or path-dependent functionals of the solution process, or the distribution of stopped exit times from
bounded domains.

In the general setting a naive Monte Carlo algorithm for the approximation of ρ works as follows:
Choose a level ` ∈ N and a replication number n ∈ N, generate n independent samples according
to Y(`), and apply a kernel density estimator, say, to these samples. For the approximation of F one
proceeds analogously, and here the empirical distribution function of the samples is the most elementary
choice.

In this chapter we develop the multi-level Monte Carlo approach, which relies on the coupled sim-
ulation of Y(`) and Y(`−1) on a �nite range of levels `. For the multi-level approach to work well for
the approximation of distribution functions or densities, a smoothing step is necessary on every level.
The smoothing is based on rescaled translates of a suitable function g, which is meant to approximate
either the indicator function of ]−∞, 0] or the Dirac functional at zero. In a �rst stage the multi-level
algorithm provides an approximation to F or ρ at discrete points, which is then extended to a function
on [S0,S1] in a standard and purely deterministic way.

For the approximation of F and ρ on [S0,S1] our assumptions are as follows:

(i) The density ρ of Y is r-times continuously di�erentiable,

(ii) The simulation of the joint distribution of Y(`) and Y(`−1) is possible at cost O(M`) for every
` ∈N, whereM > 1.

(iii) A weak error estimate

sup
s∈[S0,S1]

∣∣∣E(g((Y − s)/δ) − g((Y(`) − s)/δ))∣∣∣ 6
6 O

(
min

(
δ−α1 ·M−`·α2 ,M−`·α3

))
holds for all positive, su�ciently small δ and all ` ∈N0, where α1 > 0, α2 > 0, and α2 > α3 >
0.

(iv) A strong error estimate

E min((Y − Y(`))2/δ2, 1) 6 O
(
δ−β4 ·M−`·β5

)
holds for all positive, su�ciently small δ and all ` ∈N0, where β4 > 0 and β5 > 0.

37
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We also study the approximation of the distribution function F at a single point s ∈ [S0,S1], and here
(iv) is replaced by the following assumption:

(v) A strong error estimate

sup
s∈[S0,S1]

E
(
g((Y − s)/δ) − g((Y(`) − s)/δ)

)2
6

6 O
(

min
(
δ−β1 ·M−`·β2 ,M−`·β3

))
holds for all positive, su�ciently small δ and all ` ∈N0, where β1 > 0, β2 > 0, and β2 > β3 >
0.

The parameters of a multi-level algorithm A are the minimal and maximal level, the replication num-
bers per level, the smoothing parameter δ, and the number of discrete points to be used in the �rst stage.
We derive upper bounds for error(A), the root mean square error, and cost(A), the computational cost,
in terms of these parameters and the values of r, αi, and βi, and we present the asymptotically optimal
choice of the parameters with respect to our upper bounds. This leads to a �nal estimate of the form

cost(A) 6 O
(

error(A)−θ+ε
)

for every ε > 0, where θ > 0. Roughly speaking, θ is the order of convergence of the multi-level
algorithm. See Theorems 6.1.5–6.3.3 for the precise statements involving also powers of log error(A).

Here we only present a particular application of these theorems for functionals

ϕ : C([0, T ], Rd)→ R

of the solution process X of a d-dimensional system of SDEs, i.e., Y = ϕ(X). For simplicity we take the
Euler scheme with equidistant time-steps for the approximation of X in the construction of the multi-
level algorithm, and we assume that r > 1 for the rest of the introduction. Table 1 contains the values
of θ for the approximation of F and ρ on [S0,S1] as well as for the approximation of F at a single point
s ∈ [S0,S1]. In the �rst rowϕ is assumed to be Lipschitz continuous, and based on a well known upper
bound for the strong error of the Euler scheme we show that (iii)–(v) are satis�ed with

α1 = 0, α2 = 1/2− ε, α3 = 1/2− ε

and
β1 = 1+ ε, β2 = 1− ε, β3 = 1/2− ε, β4 = 2, β5 = 1− ε

for every ε > 0. In the second row

ϕ(x) = inf{t > 0 : x(t) ∈ ∂D} ∧ T

is a stopped exit time from a bounded domain D ⊂ Rd, and based on a recent result from [14] we
obtain

α1 = 1, α2 = 1/2, α3 = 1/4

and
β1 = 1, β2 = 1/2, β3 = 1/4, β4 = 1, β5 = 1/2.

We add that in every case represented in Table 1 proper multi-level algorithms turn out to be superior
to single-level algorithms, as far as our upper bounds are concerned. We do not achieve better upper
bounds if we restrict considerations to path-independent functionals, i.e., Y = ϕ(XT )withϕ : Rd → R

being Lipschitz continuous; here, however, the situation changes if the Euler scheme is replaced by the
Milstein scheme (in dimension d = 1 because of assumption (ii)), which yields θ = 2 + 1/(r + 1),
θ = 2+ 3/r, and θ = 2 for the approximation of F, ρ, and F(s), respectively.
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F ρ F(s)

smooth functional 2+ 2
r+1 2+ 4

r 2+ 1
r+1

stopped exit time 3+ 2
r+1 3+ 5

r 3+ 2
r+1

Table 1: Orders of convergence of the multi-level algorithm

Corresponding results are available for the approximation of the expectation of ϕ(X) by means of
multi-level Euler algorithms. It is well known that θ = 2, if ϕ is Lipschitz continuous, and θ = 3

holds for stopped exit times ϕ, see [35]. In the limit r → ∞ we achieve the same values of θ for the
approximation of the distribution function or the density of ϕ(X).

Multi-level algorithms, which have been introduced in [34] and [25], see also [42] for the two-level
construction, are meanwhile applied to rather di�erent computational problems. The approximation of
distribution functions and densities seems to be a new application, which exhibits, in particular, the
following features: a singularity, which is due to the presence of the indicator function or the Dirac
functional, and the fact that we approximate elements of function spaces instead of just real numbers.
The �rst issue is also investigated, without smoothing, in [5] and [27], and with implicit smoothing
through the use of conditional expectations in [26] and [28]. Furthermore, Altmayer, Neuenkirch in
[2] combine smoothing by Malliavin integration by parts with the multi-level approach to approximate
expectations of discontinuous payo�s in the Heston model. The second issue has already been worked
out by Heinrich (see [34]) in the general setting of algorithms taking values in Banach spaces.

We stress that a two-level construction for the approximation of densities in the SDE setting with
Y = XT has already been proposed and analyzed by Kebaier, Kohatsu-Higa (see [43]) in the case r =∞,
and their analysis yields θ = 5/2.

Optimality results, which do not just concern upper bounds for the error and cost of speci�c families
of algorithms, seem to be unknown for the problems studied in the present work. The situation is
di�erent for the approximation of expectations of Lipschitz continuous functionals, and here suitable
multi-level algorithms are almost worst case optimal in the class of all randomized algorithms, see [19].

The rest of the chapter is organized as follows. In Sections 6.1–6.3 we provide the general analysis
of the three approximation problem, namely, for distribution functions and densities on compact inter-
vals and for distribution functions at a single point. The structure and the approach in each of these
sections is similar: we discuss, in particular, the assumptions on the weak and the strong convergence,
and we construct and analyze the respective multi-level algorithms. Section 7.1 contains, in particular,
the application of the results from Sections 6.1–6.3 to functionals of the solutions of SDEs, which is
complemented by numerical experiments for simple test cases in Section 7.2.

6.1 approximation of distribution functions on compact intervals

We consider a random variable Y, and we study the approximation of its distribution function F on a
compact interval [S0,S1], with S0 < S1 being �xed throughout this section. We do not assume that the
distribution of Y can be simulated exactly. Instead, we assume that the simulation is feasible for random
variables Y(`) that converge to Y in a suitable way.

6.1.1 Smoothing

For the approximation of F a straight-forward application of the multi-level Monte Carlo approach
based on

F(s) = E(1]−∞,s](Y))

could su�er from the discontinuity of 1]−∞,s], see Remark 7 below. This can be avoided by a smoothing
step, provided that a density exists and is su�ciently smooth. Speci�cally, we assume that
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(A1) the random variable Y has a density ρ on R that is r-times continuously di�erentiable on [S0 −

δ0,S1 + δ0] for some r ∈N0 and δ0 > 0.

The smoothing is based on rescaled translates of a function g : R→ R with the following properties:

(S1) The cost of computing g(s) is bounded by a constant, uniformly in s ∈ R.

(S2) g is Lipschitz continuous.

(S3) g(s) = 1 for s < −1 and g(s) = 0 for s > 1.

(S4)
∫1
−1 s

j · (1]−∞,0](s) − g(s))ds = 0 for j = 0, . . . , r− 1.

Obviously, g is bounded due to (S2) and (S3).

Remark 1 Such a function g is easily constructed as follows. There exists a uniquely determined polyno-
mial p of degree at most r+ 1 such that∫1

−1
sj · p(s)ds = (−1)j/(j+ 1), j = 0, . . . , r− 1,

as well as p(1) = 0 and p(−1) = 1. The extension g of p with g(s) = 1 for s < −1 and g(s) = 0 for
s > 1 has the properties as claimed. Since g− 1/2 is an odd function, the same function g arises in this
way for r and r+ 1, if r is even.
For example, consider r = 5 and put

p(s) = p0 + p1s+ p2s
2 + p3s

3 + p4s
4 + p5s

5 + p6s
6.

To �nd the coe�cients pi, we need 7 equations. From the conditions p(1) = 0 and p(−1) = 1 we immedi-
ately obtain

6∑
i=0

pi = 0, and
6∑
i=0

(−1)ipi = 1.

Futher, using ∫1
−1
sjpis

i ds =
1

1+ i+ j

(
1− (−1)i+j+1

)
(23)

we arrive to the system of equations for pi:

1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1

2 0 2
3 0 2

5 0 2
7

0 2
3 0 2

5 0 2
7 0

2
3 0 2

5 0 2
7 0 2

9

0 2
5 0 2

7 0 2
9 0

2
5 0 2

7 0 2
9 0 2

11





p0

p1

p2

p3

p4

p5

p6


=



c0

1

1

−12
1
3

−14
1
5


and obtain the solution vector (

1
2 −225128 0 175

64 0 −189128 0

)
.

We have the following estimate for the bias that is induced by smoothing with parameter δ, i.e., by
approximation of 1]−∞,s] by g((·− s)/δ).
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Lemma 6.1.1 There exists a constant c > 0 such that

sup
s∈[S0,S1]

|F(s) − E(g((Y − s)/δ))| 6 c · δr+1

holds for all δ ∈ ]0, δ0].

Proof Clearly

F(s) − E(g((Y − s)/δ)) =
∫∞
−∞ ρ(u) · (1]−∞,s](u) − g((u− s)/δ))du

= δ ·
∫1
−1
ρ(δu+ s) · (1]−∞,0](u) − g(u))du,

so that the statement follows in the case r = 0. For r > 1 the Taylor expansion

ρ(δu+ s) =

r−1∑
j=0

ρ(j)(s) · (δu)j/j! + R(δu, s)

yields

|F(s) − E(g((Y − s)/δ))| 6 δ ·
∫1
−1

|R(δu, s)| · |1]−∞,0](u) − g(u)|du 6 c · δr+1.

6.1.2 Assumptions on Weak and Strong Convergence

Our multi-level Monte Carlo construction is based on a sequence (Y(`))`∈N0
of random variables, de-

�ned on a common probability space together with Y, with the following properties for some constant
c > 0:

(A2) There exists a constant M > 1 such that the simulation of the joint distribution of Y(`) and
Y(`−1) is possible at cost at most c ·M` for every ` ∈N.

(A3) There exist constants α1 > 0, α2 > 0, and α2 > α3 > 0 such that the weak error estimate

sup
s∈[S0,S1]

∣∣∣E(g((Y − s)/δ) − g((Y(`) − s)/δ))∣∣∣ 6
6 c ·min

(
δ−α1 ·M−`·α2 ,M−`·α3

)
holds for all δ ∈ ]0, δ0] and ` ∈N0.

(A4) There exist constants β4 > 0 and β5 > 0 such that the strong error estimate

E min((Y − Y(`))2/δ2, 1) 6 c · δ−β4 ·M−`·β5

holds for all δ ∈ ]0, δ0] and ` ∈N0.

For speci�c applications we present suitable approximations Y(`) and corresponding values of the
parametersM, αi and βi in Section 7.1. Here we proceed with a general discussion of (A3) and (A4).

Lemma 6.1.2 Let g satisfy (S2) and (S3). Then (A4) implies (A3) with α1 = β4/2, α2 = β5/2, and
α3 = 0.
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Proof

sup
s∈[S0,S1]

∣∣∣E(g((Y − s)/δ) − g((Y(`) − s)/δ))∣∣∣ 6
6 sup
s∈[S0,S1]

E
∣∣∣g ((Y − s)/δ) − g((Y(`) − s)/δ)∣∣∣

Due to (S2) the following is true:∣∣∣g((Y − s)/δ) − g((Y(`) − s)/δ)∣∣∣ 6 cL
∣∣∣∣∣Y − sδ −

Y(`) − s

δ

∣∣∣∣∣ = cL
∣∣∣∣∣Y − Y(`)δ

∣∣∣∣∣ .
At the same time, (S3) and (S2) together yield boundedness of g, and the same expression can be esti-
mated in the following way:∣∣∣g((Y − s)/δ) − g((Y(`) − s)/δ)∣∣∣ 6 ∣∣∣g((Y − s)/δ)∣∣∣+ ∣∣∣g((Y(`) − s)/δ)∣∣∣ 6 2cB.

Both estimating expressions do not depend on s, thus

sup
s∈[S0,S1]

E
∣∣∣g((Y − s)/δ) − g((Y(`) − s)/δ)∣∣∣ 6

6 cL E min

(
Y − Y(`)

δ
, 2
cB
cL

)
6

{
Jensen’s inequality

(
E(x2)

)1
2 6 E(x2)

1
2

}

6 E min

(
(Y − Y(`))2

δ2
, 4
c2B
c2L

)
.

The second argument of the minimum is a constant and can be replaced by one. We thus arrive to

sup
s∈[S0,S1]

∣∣∣E(g((Y − s)/δ) − g((Y(`) − s)/δ))∣∣∣ 6
6 E min

(
(Y − Y(`))2

δ2
, 1

)
6 {(A4)} 6 c · δ−β4 ·M−`·β5

With α1 = β4/2, α2 = β5/2, and α3 = 0 the latter yields (A3).

Often better estimates for the weak error are known, see Sections 6.3.2 and 7.1. The presence of α1
and β4 in these assumptions is motivated by weak and strong error estimates for SDEs or SPDEs, which
often scale with some power of δ. See, however, Sections 7.1.1 and 7.1.2

Let ‖Z‖p = (E |Z|p)1/p for any random variableZ and 1 6 p <∞. Typically, strong error estimates
for Y−Y(`) instead of min(|Y−Y(`)|, δ) are available in the literature. Straightforward relations to (A3)
and (A4) are provided by

sup
s∈[S0,S1]

∣∣∣E(g((Y − s)/δ) − g((Y(`) − s)/δ))∣∣∣ 6 cL · δ−1 · ‖Y − Y(`)‖1, (24)

where cL denotes a Lipschitz constant for g, as well as

E min((Y − Y(`))2, δ2) 6 min(‖Y − Y(`)‖22, δ2) (25)

and
E min((Y − Y(`))2, δ2) 6 E(δ ·min(|Y − Y(`)|, δ)) 6 min(δ · ‖Y − Y(`)‖1, δ2). (26)

In the following case of equivalence of norms the upper bound in (25) is sharp, and then we have
β4 = 2 in (A4), while the optimal value of β5 is determined by the asymptotic behavior of ‖Y− Y(`)‖22.
See Sections 7.1.1 and 7.1.2 for examples.
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Lemma 6.1.3 Suppose that there exist c1 > 0 and p > 2 such that

0 < ‖Y − Y(`)‖p 6 c1 · ‖Y − Y(`)‖2

for all ` ∈N0. Then there exists c2 > 0 such that

E min((Y − Y(`))2, δ2) > c2 ·min(‖Y − Y(`)‖22, δ2)

for all δ ∈ ]0, δ0] and ` ∈N0.

Proof Put
Z` =

(Y − Y(`))2

‖Y − Y(`)‖22
.

We show that there exists a constant c2 > 0 such that

E min(Z`, δ) > c2 ·min(1, δ)

for all ` ∈N0 and δ > 0.
Clearly E(Z`) = 1 and E(Zp/2` ) 6 cp1 . It follows that

P({Z` > u}) 6
c
p
1

up/2
.

Put
d` = P({Z` > 1/2}).

We claim that
d = inf

`∈N0

d` > 0.

Assume that d = 0. Use

1 = E(Z`) =
∫∞
0
P({Z` > u})du 6 1/2+

∫∞
1/2

min(d`, c
p
1/u

p/2)du

and dominated convergence to conclude that, for a minimizing subsequence,

lim
k→∞

∫∞
1/2

min(d`k , cp1/u
p/2)du = 0,

which leads to a contradiction. Therefore

E min(Z`, δ) =
∫δ
0
P({Z` > u})du > min(δ, 1/2) · d > d/2 ·min(1, δ).

On the other hand, if ‖Y − Y(`)‖22 and ‖Y − Y(`)‖1 are asymptotically equivalent, then (26) is prefer-
able to (25). See Section 7.1.3 for examples.

Assumption (A4) and the Lipschitz continuity and boundedness of g immediately yield the following
fact.

Lemma 6.1.4 There exists a constant c > 0 such that

E sup
s∈[S0,S1]

(
g((Y − s)/δ) − g((Y(`) − s)/δ)

)2
6 c ·min(δ−β4 ·M−`·β5 , 1)

holds for all δ ∈ ]0, δ0] and ` ∈N0.

Proof See the proof of Lemma 6.1.2.
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6.1.3 The Multi-level Algorithm

The approximation of F on the interval [S0,S1] is based on its approximation at �nitely many points

S0 6 s1 < · · · < sk 6 S1, (27)

followed by a suitable extension to [S0,S1].
For notational convenience we put

gk,δ(t) = (g((t− s1)/δ), . . . ,g((t− sk)/δ)) ∈ Rk, t ∈ R,

as well as Z(0)
i = Y(−1) = 0.

We choose L0,L1 ∈ N0 with L0 6 L1 as the minimal and the maximal level, respectively, and we
choose replication numbersN` ∈N for all levels ` = L0, . . . ,L1, as well as k ∈N and δ ∈ ]0, δ0]. The
corresponding multi-level algorithm for the approximation at the points si is de�ned by

M
k,δ,L0,L1
NL0 ,...,NL1

=
1

NL0
·
NL0∑
i=1

gk,δ(Y
(L0)
i )+

L1∑
`=L0+1

1

N`
·
N∑̀
i=1

(
gk,δ(Y

(`)
i ) − gk,δ(Z

(`)
i )
)

(28)

with an independent family of R2-valued random variables (Y
(`)
i ,Z(`)

i ) for ` = L0, . . . ,L1 and i =
1, . . . ,N` such that equality in distribution holds for (Y(`)i ,Z(`)

i ) and (Y(`), Y(`−1)).

Remark 2 In the particular case L = L0 = L1, i.e., in the single-level case, we actually have a classical
Monte Carlo algorithm, based on independent copies of Y(L) only. In addition to

M
k,δ,L,L
N =

1

N
·
N∑
i=1

gk,δ(Y
(L)
i )

with δ > 0, we also consider the single-level algorithm without smoothing. Hence we put

gk,0(t) =
(
1]−,∞,s1](t), . . . , 1]−,∞,sk](t)

)
∈ Rk, t ∈ R,

to obtain

M
k,0,L,L
N =

1

N
·
N∑
i=1

gk,0(Y
(L)
i ).

For the analysis of the single-level algorithm it su�ces to assume that the simulation of the distribution
of Y(`) is possible at cost at most c ·M` for every ` ∈N, cf. (A2). Furthermore, there is no need for a strong
error estimate like (A4), and if we do not employ smoothing, then (A3) may be replaced by the following
assumption. There exist a constant α > 0 such that the weak error estimate

sup
s∈[S0,S1]

∣∣∣E(1]−∞,s](Y) − 1]−∞,s](Y
(`))
)∣∣∣ 6 c ·M−`·α (29)

holds for all ` ∈N0. It turns out that the analysis of single-level algorithms without smoothing is formally
reduced to the case δ > 0 if we take

α1 = 0, α2 = α, α3 = α. (30)
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In the sequel ‖ · ‖∞ denotes the supremum norm on C([S0,S1]) and | · |∞ denotes the `∞-norm on
Rk.

For the extension we take a sequence of linear mappingsQrk : Rk → C([S0,S1]) with the following
properties for some constant c > 0:

(E1) For all k∈N and x ∈ Rk the cost for computing Qrk(x) is bounded by c · k.

(E2) For all k∈N and x ∈ Rk

‖Qrk(x)‖∞ 6 c · |x|∞.

(E3) For all k∈N

‖F−Qrk(F(s1), . . . , F(sk))‖∞ 6 c · k−(r+1).

These properties are achieved, e.g., by piecewise polynomial interpolation with degree max(r, 1) at
equidistant points si = S0 + (i− 1) · (S1 − S0)/(k− 1) with k > 2.

We employQrk(M)withM = M
k,δ,L0,L1
NL0 ,...,NL1

as a randomized algorithm for the approximation of F on
[S0,S1]. Observe thatM is square-integrable, since g is bounded, so that (E2) yields E ‖Qrk(M)‖2∞ <∞.
The error of Qrk(M) is de�ned by

error(Qrk(M)) =
(

E ‖F−Qrk(M)‖2∞)1/2 .

Since the error is based on the supremum norm, error(Qrk(M)) does not increase if we replaceQrk(x)
by s 7→ supu∈[S0,s](Q

r
k(x))(u) to get a non-decreasing approximation on [S0,S1].

The variance of any square-integrable Rk-valued random variable M is de�ned by

Var(M) = E |M− E(M)|2∞,

and
E |x−M|2∞ 6 2 · (|x− E(M)|2∞ + Var(M))

holds for x ∈ Rk. Furthermore,
Var(M) 6 4 · E(|M|2∞).

The Bienaymé formula for real-valued random variables turns into the inequality

Var(M) 6 c · logk ·
n∑
i=1

Var(Mi), (31)

if M =
∑n
i=1Mi with independent square-integrable random variables Mi taking values in Rk. Here

c is a universal constant. In the context of multi-level algorithms this is exploited in [34].
We put

q = min
(
r+ 1+α1

α2
,
r+ 1

α3

)
. (32)

Theorem 6.1.5 The following order, with η = 1, is achieved by algorithms
Qrk(M

k,δ,L0,L1
NL0 ,...,NL1

) with suitably chosen parameters:

q 6 max(1,β4/β5) ⇒ γ = 2+
max(1,q)
r+ 1

, (33)

q > max(1,β4/β5) ∧ β5 > 1 ⇒ γ = 2+
max(1,β4/β5)

r+ 1
, (34)

q > 1 > β4 ∧ β5 = 1 ⇒ γ = 2+
1

r+ 1
, (35)

q > max(1,β4/β5) ∧ β5 < 1 ⇒ γ = 2+
max(1,β4 + (1−β5) · q)

r+ 1
. (36)
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Moreover, with η = 3,

q > β4 > 1 ∧ β5 = 1 ⇒ γ = 2+
β4
r+ 1

. (37)

Proof Let M denote any square-integrable random variable with values in Rk. For the error ofQrk(M)

we have

error(Qrk(M)) 6 ‖F−Qrk(F(s1), . . . , F(sk))‖∞+
+
(

E ‖Qrk((F(s1), . . . F(sk)) −M)‖2∞)1/2
6 c ·

(
k−(r+1) +

(
E |(F(s1), . . . F(sk)) −M|2∞)1/2)

6 2c ·
(
k−2(r+1) + |(F(s1), . . . F(sk)) − E(M)|2∞ + Var(M)

)1/2
with a constant c > 0 according to (E2) and (E3).

Now we consider the algorithm M = M
k,δ,L0,L1
NL0 ,...,NL1

with δ > 0. We write a � b if there exists a
constant c > 0 that does not depend on the parameters k, δ, L0, L1, NL0 , . . . ,NL1 such that a 6 c ·b.
Moreover, a � b means b � a, and a � b stands for a � b and a � b.

Note that E(M) = E(gk,δ(Y(L1))). Hence the bias term is estimated by

|(F(s1), . . . , F(sk)) − E(M)|∞ = sup
i=1,...,k

|F(si) − E(g((Y(L1) − si)/δ))|

� δr+1 + min
(
δ−α1 ·M−L1·α2 ,M−L1·α3

)
,

see Lemma 6.1.1 and (A3).
The variance of M is estimated as follows. From (31) we obtain

Var(M) � logk ·

Var
(
gk,δ(Y(L0))

)
NL0

+

L1∑
`=L0+1

Var
(
gk,δ(Y(`)) − gk,δ(Y(`−1))

)
N`

 .

Moreover,

Var
(
gk,δ(Y(`)) − gk,δ(Y(`−1))

)
6

6 4 · E sup
i=1,...,k

(
g((Y(`) − si)/δ) − g((Y

(`−1) − si)/δ)
)2
�

� min(δ−β4 ·M−`·β5 , 1)

for ` = L0 + 1, . . . ,L1, see Lemma 6.1.4, and

Var(gk,δ(Y(L0))) � 1,

since g is bounded. Therefore

Var(M) � logk ·

 1

NL0
+

L1∑
`=L0+1

min(δ−β4 ·M−`·β5 , 1)
N`

 .

Combining these estimates we �nally get

error2(Qrk(M)) � k−2(r+1) + δ2(r+1) + min
(
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

)
(38)

+ logk ·

 1

NL0
+

L1∑
`=L0+1

min(δ−β4 ·M−`·β5 , 1)
N`

 .
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Now we analyze the computational cost of the algorithm M. For ` = L0, . . . ,L1 and i = 1, . . . ,N`
the cost of computing gk,δ(Y

(`)
i ) or gk,δ(Y

(`)
i ) − gk,δ(Z

(`)
i ) is bounded by M` + k, up to a constant,

see (S1) and (A2). Use (E1) to obtain

cost(Qrk(M)) � c(k,L0,L1,NL0 , . . . ,NL1) (39)

with

c(k,L0,L1,NL0 , . . . ,NL1) =
L1∑
`=L0

N` · (M` + k). (40)

Note that for every k the cost per replication is essentially constant on all levels ` 6 L∗, where

L∗ = logM k. (41)

Observe that the estimates (38) and (39) are valid, too, for single-level algorithms without smoothing,
i.e., for L0 = L1 and δ = 0, if we formally de�ne the parametersαi by (30), which leads toq = (r+1)/α.

We determine parameters of the algorithmQrk(M) such that an error of about ε ∈
]
0, min(1, δr+10 )

[
is achieved at a small cost. More precisely, we minimize the upper bound (39) for the cost, subject to the
constraint that the upper bound (38) for the squared error is at most ε2, up to multiplicative constants
for both quantities.

First of all we consider the case δ > 0, and we choose

δ = ε1/(r+1) (42)

and, up to integer rounding,
k = ε−1/(r+1) (43)

and
NL0 = ε

−2 · logM ε−1. (44)

This yields

error2(Qrk(M)) � ε2 + a2(L1) + log ε−1 ·
L1∑

`=L0+1

min(δ−β4 ·M−`·β5 , 1)
N`

with
a(L1) = min

(
δ−α1 ·M−L1·α2 ,M−L1·α3

)
. (45)

Furthermore,
L∗ =

1

r+ 1
· logM ε−1. (46)

Due to the dependence of (39) on k and the decay of a(L1) and min(δ−β4 ·M−`·β5 , 1) as functions
of L1 and `, respectively, it su�ces to study

L0 > L∗. (47)

Moreover, a(L1) 6 ε requires L1 > q · L∗. Consequently, we choose

L1 = max(1,q) · L∗, (48)

up to integer rounding.
For a single-level algorithm with smoothing, i.e., for L0 = L1 and δ > 0, all parameters have thus

been determined, and we obtain error(Qrk(M)) � ε as well as

c(k,L1,L1,NL1) � ε
−2 · log ε−1 ·ML

∗
= ε−2−1/(r+1) · log ε−1 (49)
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if q 6 1, and

c(k,L1,L1,NL1) � ε
−2 · log ε−1 ·Mq·L

∗
= ε−2−q/(r+1) · log ε−1, (50)

if q > 1. For a single-level algorithm without smoothing we obtain the same result.
For a proper multi-level algorithm with

L∗ 6 L0 < L1

we obtain

error2(Qrk(M)) � ε2 + log ε−1 ·
L1∑

`=L0+1

v`
N`

with
v` = min(ML

∗·β4 ·M−`·β5 , 1)

as well as

c(k,L0,L1,NL0 , . . . ,NL1) � ε
−2 · log ε−1 ·ML0 +

L1∑
`=L0+1

N` ·M`.

Observing
c(k,L0,L1,NL0 , . . . ,NL1) � ε

−2 · log ε−1 ·ML
∗

and (49), we get (33) in the case q 6 1 already by single-level algorithms.
To establish the theorem in the case

q > 1

we �x L0 for the moment, and we minimize

h(L0,NL0+1, . . . ,NL1) = ε
−2 · log ε−1 ·ML0 +

L1∑
`=L0+1

N` ·M`

subject to
L1∑

`=L0+1

v`
N`

6 ε2/ log ε−1.

A Lagrange multiplier leads to

N` = ε
−2 · log ε−1 ·G(L0) ·

(
v` ·M−`

)1/2
, (51)

up to integer rounding, which satis�es the constraint with

G(L0) =

L1∑
`=L0+1

(
v` ·M`

)1/2
=

L1∑
`=L0+1

(
min(ML

∗·β4 ·M−`·β5 , 1) ·M`
)1/2

.

Moreover, this choice of NL0+1, . . . ,NL1 yields

h(L0,NL0+1, . . . ,NL1) = ε
−2 · log ε−1 ·

(
ML0 +G2(L0)

)
. (52)

Put
L† =

β4
β5
· L∗.

Consider the case
1 < q 6 β4/β5.
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Then we have L1 6 L†, and therefore

ML0 +G2(L0) =M
L0 +

 L1∑
`=L0+1

M`/2

2 �ML0 +ML1 �ML∗·q.

Observing (50) we get (33) in the present case already by single-level algorithms.
From now on we consider the case

q > max(1,β4/β5).

Suppose that L0 < L†, which requires β4/β5 > 1 to hold. Then we get

ML0 +G2(L0) �ML0 +

 L†∑
`=L0+1

M`/2

2 +ML∗·β4 ·
 L1∑
`=L†+1

M`·(1−β5)/2

2

�ML
†
+ML

∗·β4 ·

 L1∑
`=L†+1

M`·(1−β5)/2

2 �ML† +G2(L†).
It therefore su�ces to study the case

L0 > L†,

where we have

ML0 +G2(L0) =M
L0 +ML

∗·β4 ·

 L1∑
`=L0+1

M`·(1−β5)/2

2 .

If β5 = 1 then
ML0 +G2(L0) �ML0 +ML

∗·β4 · (L1 − L0)2.

If β5 > 1 then
ML0 +G2(L0) �ML0 +ML

∗·β4 ·ML0·(1−β5) �ML0 .

If β5 < 1 then
ML0 +G2(L0) �ML0 +ML

∗·β4 ·ML1·(1−β5).

Hence we choose
L0 = max(1,β4/β5) · L∗ (53)

in all these cases. Hereby we obtain

ML0 +G2(L0) �ML
∗·max(1,β4/β5) ·

(L∗)2 , if β5 = 1 and β4 > 1,

1, if β5 > 1 or β5 = 1 and β4 < 1,

as well as
ML0 +G2(L0) �Mmax(1,β4/β5,β4+(1−β5)·q)·L∗

if β5 < 1. In any case these estimates are superior to ML∗·q, cf. (50). Use (52) and ML∗ = ε−1/(r+1)
to derive (34)–(37).

Remark 3 Theorem 6.1.5 is based on the upper bounds (38) and (39) for the error and the cost, respectively,
of the algorithms Qrk(M

k,δ,L0,L1
NL0 ,...,NL1

). The parameters that we have determined in the proof of Theorem
6.1.5 are optimal in the following sense: they minimize the upper bound for the cost, subject to the constraint
that the upper bound for the error is at most ε, up to multiplicative constants for both quantities.
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Obviously, this optimality holds true for the choice of δ, k,NL0 , and L1 according to (42), (43), (44), and
(48). Moreover, the constraint (47) is without loss of generality, so that the minimal level L0 slowly increases
with decreasing ε.
This completes, in particular, the optimization of the parameters of single-level algorithms, where L0 =

L1. For proper multi-level algorithms the optimal values ofN` for ` = L0+ 1, . . . ,L1 are presented in (51)
and the optimal value of L0 is presented in (53), if q > max(1,β4/β5). It is straightforward to verify

N` = ε
−2−β4/(r+1) · log ε−1 ·M−`·(1+β5)/2 ·K, (54)

where

K =


L∗, if β5 = 1,

ML
∗·max(1,β4/β5)·(1−β5)/2 if β5 > 1,

ML
∗·q·(1−β5)/2, if β5 < 1.

Furthermore, we have carried out the comparison of multi-level and single-level algorithms in the proof
of Theorem 6.1.5. This comparison, too, is merely based on the upper bounds for the error and the cost, and
on the assumption that α = α3. In this sense we have a superiority of proper multi-level algorithms over
single-level algorithms if and only if

q > max(1,β4/β5), (55)

which corresponds to (34)–(37) in Theorem 6.1.5. The lack of superiority, which is present in (33) in Theorem
6.1.5, is explained as follows. For q 6 1 the maximal level can be chosen so small that the computational
cost on all levels is dominated by the number k of discretization points that is needed to achieve a good
approximation of F even from exact data F(s1), . . . , F(sk). For 1 < q 6 β4/β5 the negative impact
of smoothing on the variances leads to variances min(δ−β4 ·M−`·β5 , 1) of order one on all levels ` =
L0 + 1, . . . ,L1.
Single-level algorithms with smoothing are never inferior to single-level algorithms without smoothing,

and they are superior if and only if
r+ 1

α3
> max(1,q). (56)

For large values of r the latter holds true if and only if α2 > α3; see Section 7.1.3 for an example.

6.2 approximation of densities on compact intervals

In this section we study the approximation of the density ρ of Y on an interval [S0,S1] for some �xed
S0 < S1. The construction and analysis closely follows the approach from Section 6.1.

6.2.1 Smoothing

We employ assumption (A1) with r > 1, and g : R → R is assumed to satisfy the properties (S1) and
(S2), while (S3) and (S4) are replaced by:

(S5) g(s) = 0 if |s| > 1.

(S6)
∫1
−1 g(s)ds = 1 and

∫1
−1 s

j · g(s)ds = 0 for j = 1, . . . , r− 1.

Obviously, g is bounded due to (S2) and (S5). Moreover, if g ∈ C1(R) satis�es (S3) and (S4) and g ′
is Lipschitz continuous, then −g ′, instead of g, satis�es (S5) and (S6). In kernel density estimation, a
function gwith integral one and vanishing moments up to order r− 1 is called a kernel of order at least
r.
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Remark 4 We modify the construction from Remark 1 as follows. There exists a uniquely determined
polynomial p of degree at most r+ 1 such that∫1

−1
p(s)ds = 1

and ∫1
−1
sj · p(s)ds = 0, j = 0, . . . , r− 1,

as well as p(1) = p(−1) = 0. Extend p by zero to obtain g with the properties as claimed. Since g is an
even function, the same function g arises in this way for r and r+ 1, if r is odd.

We have the following estimate for the bias that is induced by smoothing with parameter δ, i.e., by
approximation of the Dirac functional at s by 1/δ · g((·− s)/δ).

Lemma 6.2.1 There exists a constant c > 0 such that

sup
s∈[S0,S1]

|ρ(s) − 1/δ · E(g((Y − s)/δ))| 6 c · δr

holds for all δ ∈ ]0, δ0].

Proof Due to

ρ(s) =

∫1
−1
ρ(s)g(u)du, and 1

δ
E(g((Y − s)/δ)) =

1

δ

∫δ
−δ
g((x− s)/δ)ρ(x)dx =

=

{
change of variable u =

x− s

δ
, x = uδ+ s

}
=

∫1
−1
g(u)ρ(δu+ s)du

the following is true:

ρ(s) − 1/δ · E(g((Y − s)/δ)) =
∫1
−1
g(u) · (ρ(s) − ρ(δu+ s))du = { expand ρ(δu+ s)} =

=

∫1
−1
g(u)

(
−

r−1∑
i=1

ρ(i)(s)

i!
(δu)i +O((δu)r)

)
du = {properties of g from Remark 4} =

=

∫1
−1
g(u)O(δr)ur du 6 cδr.

6.2.2 Assumptions on Weak and Strong Convergence

We employ the assumptions (A2)–(A4) from Section 6.1.2 with possibly di�erent values ofαi in the weak
error estimate (A3). We make use of Lemma 6.1.4, and we refer to Section 7.1 for speci�c examples with
corresponding values of αi.

6.2.3 The Multi-level Algorithm

The de�nition (28) of the algorithmsMk,δ,L0,L1
NL0 ,...,NL1

also applies for the approximation of densities, except
for gk,δ, which is now de�ned by

gk,δ(t) =
1

δ
· (g((t− s1)/δ), . . . ,g((t− sk)/δ)) ∈ Rk, t ∈ R.

In the present setting we have δ > 0 also for single-level algorithms.
Hereby we obtain approximations to ρ at the points (27), which are extended to functions on [S0,S1]

by means of linear mappings Qrk : Rk → C([S0,S1]). We assume that (E1) and (E2) are satis�ed, but
instead of (E3) the following property is assumed to hold with some constant c > 0:
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(E4) For all k∈N

‖ρ−Qrk(ρ(s1), . . . , ρ(sk))‖∞ 6 c · k−r.

As before, piecewise polynomial interpolation at equidistant points, now of degree max(r− 1, 1), might
be used for this purpose.

We employ Qrk(M) with M = M
k,δ,L0,L1
NL0 ,...,NL1

as a randomized algorithm for the approximation of ρ
on [S0,S1], and the error of Qrk(M) is de�ned by

error(Qrk(M)) =
(

E ‖ρ−Qrk(M)‖2∞)1/2 .

Clearly the error does not increase if we replace Qrk(x) by max(Qrk(x), 0).
Recall the de�nition of q from (32).

Theorem 6.2.2 The following order, with η = 1, is achieved by algorithms
Qrk(M

k,δ,L0,L1
NL0 ,...,NL1

) with suitably chosen parameters:

q 6 max(1,β4/β5) ⇒ γ = 2+
max(1,q) + 2

r
, (57)

q > max(1,β4/β5) ∧ β5 > 1 ⇒ γ = 2+
max(1,β4/β5) + 2

r
, (58)

q > 1 > β4 ∧ β5 = 1 ⇒ γ = 2+
3

r
, (59)

q > max(1,β4/β5) ∧ β5 < 1 ⇒ γ = 2+
max(1,β4 + (1−β5) · q) + 2

r
. (60)

Moreover, with η = 3,

q > β4 > 1 ∧ β5 = 1 ⇒ γ = 2+
β4 + 2

r
. (61)

Proof We mimic the proof of Theorem 6.1.5. We use (A3), (E2) and (E4), Lemma 6.1.4 and Lemma 6.2.1,
and the boundedness of g to obtain

error2(Qrk(M)) � k−2r + δ2r + 1/δ2 ·min
(
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

)
(62)

+ logk/δ2 ·

 1

NL0
+

L1∑
`=L0+1

min(δ−β4 ·M−`·β5 , 1)
N`

 ,

where M = M
k,δ,L0,L1
NL0 ,...,NL1

. The upper bound (39) for the computational cost is also valid in the present
case. We minimize (39), subject to the constraint that the upper bound (62) for the squared error is at
most ε2, up to multiplicative constants for both quantities.

Put
ε̃ = ε1+1/r.

First of all we choose
δ = ε1/r = ε̃1/(r+1) (63)

and, up to integer rounding,
k = ε−1/r = ε̃−1/(r+1) (64)

and
NL0 = ε

−2−2/r · logM ε−1 � ε̃−2 · logM ε̃−1. (65)
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This yields

error2(Qrk(M)) �

� ε2 + 1/δ2 ·

a2(L1) + log ε̃−1 ·
L1∑

`=L0+1

min(δ−β4 ·M−`·β5 , 1)
N`

 ,

where a(L1) is given by (45). Furthermore,

L∗ =
1

r
· logM ε−1 =

1

r+ 1
· logM ε̃−1, (66)

see (41), and it su�ces to study L0 > L∗.
Since δ · ε = ε̃, the proof of Theorem 6.1.5 is applicable with ε being replaced by ε̃. We obtain the

same values for η, but γ must be replaced by γ · (1+ 1/r).

Remark 5 The following comments on optimality etc. are meant in the sense of Remark 3. We have a supe-
riority of proper multi-level algorithms over single-level algorithms if and only if (55) holds true. Moreover,
the optimal values of δ, k, and NL0 , and L1 are given by (63), (64), (65), and

L1 =
max(1,q)

r
· logM ε−1,

see (48). In particular, this completes the optimization of the parameters of single-level algorithms, where
L0 = L1.
Suppose that q > max(1,β4/β5), so that we consider proper multi-level algorithms. The optimal value

of L0 is given by

L0 =
max(1,β4/β5)

r
· logM ε−1,

see (53), The optimality of

N` = ε
−2−(β4+2)/r · log ε−1 ·M−`·(1+β5)/2 ·K,

where

K =


L∗, if β5 = 1,

ML
∗·max(1,β4/β5)·(1−β5)/2 if β5 > 1,

ML
∗·q·(1−β5)/2, if β5 < 1.

for ` = L0 + 1, . . . ,L1, with L∗ given by (66), is derived from (51) in a straightforward way.

6.3 approximation of distribution functions at a single point

Now we study the approximation of the distribution function F of Y at a single �xed point s ∈ [S0,S1].

6.3.1 Smoothing

We employ assumption (A1) and the smoothing approach from Section 6.1.1, which involves the as-
sumptions (S1)–(S4). In particular, we make use of Lemma 6.1.1.

6.3.2 Assumptions on Weak and Strong Convergence

We consider the setting from Section 6.1.2, and we assume (A2) and (A3) while, instead of (A4), the
following property is assumed to hold with a constant c > 0:
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(A5) There exist constants β1 > 0 and β2 > β3 > 0 such that the strong error estimate

sup
s∈[S0,S1]

E
(
g((Y − s)/δ) − g((Y(`) − s)/δ)

)2
6

6 c ·min
(
δ−β1 ·M−`·β2 ,M−`·β3

)
holds for all δ ∈ ]0, δ0] and ` ∈N0.

See Section 7.1 for speci�c applications and approximations Y(`) with corresponding values of the
parameters βi.

We use di�erent assumptions on the strong error for approximation of F on compact intervals and at
a single point, namely (A4) with Lemma 6.1.4 as an immediate consequence in the �rst case and (A5) in
the second case. Clearly, (A4) implies (A5) for every bounded and Lipschitz continuous function g with

β1 = β4, β2 = β5, β3 = 0, (67)

which is used in Section 7.1.3, but better values of β1,β2, and β3 may be available. See Section 7.1 for
examples where β1 < β4 and β3 > 0. Note that (A5) corresponds directly to the weak error estimate
(A3), and it yields the latter for every bounded and measurable function g with

αi = βi/2 (68)

for i = 1, 2, 3. See Section 7.1 for applications.
Strong error estimates for Y − Y(`) or 1]−∞,s](Y) − 1]−∞,s](Y

(`)) may be used to establish (A5) and
(A3). From the Lipschitz continuity of g we immediately get (A5) with β1 = 2 and β3 = 0, while
the value of β2 is determined by the asymptotic behavior of ‖Y − Y(`)‖22. A re�ned analysis, which
merely requires Y to have a bounded density, yields the following results, which are applicable under
the assumptions (S2) and (S3) or (S2) and (S5) on g.

Lemma 6.3.1 (Avikainen (2009)) There exists a constant c > 0 such that

sup
s∈[S0,S1]

‖g((Y − s)/δ) − g((Y(`) − s)/δ)‖qq 6

6 cq · sup
s∈[S0−δ0,S1+δ0]

‖1]−∞,s](Y) − 1]−∞,s](Y
(`))‖1

and
sup

s∈[S0−δ,S1+δ]
‖1]−∞,s](Y) − 1]−∞,s](Y

(`))‖1 6 c · ‖Y − Y(`)‖p/(p+1)p

holds for all p,q > 1, δ ∈ ]0, δ0], and ` ∈N0.

Proof See in [5] at p.387 for the proof of the �rst estimate and Lemma 3.4 for the second estimate.

Lemma 6.3.2 For every 1 6 q 6 p <∞ there exists a constant c > 0 such that

sup
s∈[S0,S1]

‖g((Y − s)/δ) − g((Y(`) − s)/δ)‖qq 6 c · δ1−q−q/p · ‖Y − Y(`)‖qp

holds for all δ ∈ ]0, δ0/2] and ` ∈N0.

Proof Put
∆ = g((Y − s)/δ) − g((Y(`) − s)/δ).

In the sequel, we adopt the notation� from the proof of Theorem 6.1.5, where now the hidden constant
must not depend on δ, ` or s.
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Because of assumption (A1), the density ρ of Y is bounded on [S0 − δ0,S1 + δ0]. By Lemma 6.3.1,

E∆q � ‖Y − Y(`)‖p/(p+1)p ,

so all that remains is to establish

E∆q � δ1−q−q/p · ‖Y − Y(`)‖qp

in the case δ1−q−q/p · ‖Y − Y(`)‖qp 6 ‖Y − Y(`)‖p/(p+1)p , i.e., for

‖Y − Y(`)‖p 6 δ1+1/p. (69)

If |Y − s| > 2δ and |Y − Y(`)| < δ, then |Y(`) − s| > δ and hence ∆ = 0 follows, since g is constant
on ]−∞,−1[ as well as on ]1,∞[. Accordingly, we consider

A1 = {|Y − s| 6 2δ} ,

A2 = {|Y − s| > 2δ}∩
{
|Y − Y(`)| > δ

}
,

A3 = {|Y − s| > 2δ}∩
{
|Y − Y(`)| < δ

}
,

and we then have
E∆q = E(∆q · 1A1) + E(∆q · 1A2).

Provided that p1 = P(A1) > 0,

E(∆q |A1) 6
{

Jensen’s inequality in the form E (∆p)
q
p 6 (E∆p)

q
p due to q < p

}
6 (E(∆p |A1))

q/p �
{∣∣∣g((Y − s)/δ) − g((Y(l) − s)/δ)∣∣∣ 6 cL

δ

∣∣∣Y − Y(l)∣∣∣}
� δ−q p−q/p1 · ‖Y − Y(`)‖qp.

Conditional probability formula delivers

E(∆q · 1A1) = p1 E(∆q | 1A1) � δ
−q p

1−q/p
1 · ‖Y − Y(`)‖qp.

From the boundedness of the density of Y we have

p1 =

∫s+2δ
s−2δ

ρ(ξ)dξ 6 4cρδ.

From the latter we �nally obtain

δ−qp
1−q/p
1 · ‖Y − Y(`)‖qp � δ1−q−q/p · ‖Y − Y(`)‖qp.

Turning now to A2, Markov’s inequality gives the estimate for p2:

p2 6 P
({

|Y − Y(`)| > δ
})

6 δ−p · ‖Y − Y(`)‖pp.

and hence, using the boundedness of g,

E(∆q · 1A2) � p2 6 δ−p‖Y − Y(`)‖pp = δ−p‖Y − Y(`)‖p−qp ‖Y − Y(`)‖qp 6

{apply (69) to the term with power p− q} 6 δ1−q−q/p‖Y − Y(`)‖qp.

If ‖Y − Y(`)‖p and ‖Y − Y(`)‖1 are asymptotically equivalent for every 1 6 p < ∞, then Lemma
6.3.1 and Lemma 6.3.2 should be applied with large values of p, and this yields (A5) with β1 arbitrarily
close to 1 and (A3) with α1 arbitrarily close to 0. See Sections 7.1.1 and 7.1.2 for examples.
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6.3.3 The Multi-level Algorithm

We study multi-level algorithms

M
δ,L0,L1
NL0 ,...,NL1

=
1

NL0
·
NL0∑
i=1

gδ(Y
(L0)
i ) +

L1∑
`=L0+1

1

N`
·
N∑̀
i=1

(
gδ(Y

(`)
i ) − gδ(Z

(`)
i )
)

with
gδ(t) = g((t− s)/δ), t ∈ R,

which form a particular instance of (28). The error of M = M
δ,L0,L1
NL0 ,...,NL1

is de�ned by

error(M) =
(

E |F(s) −M|2
)1/2

,

and Remark 2 applies to single-level algorithms.
Put

β† =
β1

β2 −β3
,

and recall the de�nition of q from (32).

Theorem 6.3.3 The following order, with η = 0, is achieved by algorithms
M
δ,L0,L1
NL0 ,...,NL1

with suitably chosen parameters:

q 6 β† ∧ β3 6= 1 ⇒ γ = 2+
(1−β3)+ · q

r+ 1
, (70)

q > β† ∧ β3 6= 1 ∧ β2 > 1 ⇒ γ = 2+
(1−β3)+ ·β†

r+ 1
, (71)

q > β† ∧ β2 < 1 ⇒ γ = 2+
β1 + (1−β2) · q

r+ 1
. (72)

Moreover, with η = 2,

β3 = 1 ⇒ γ = 2, (73)

q > β† ∧ β2 = 1 ⇒ γ = 2+
β1
r+ 1

. (74)

Proof We proceed analogously to the proof of Theorem 6.1.5. Use Lemma 6.1.1, the assumptions (A3)
and (A5), and the boundedness of g to obtain

error2(M) � δ2(r+1) + min
(
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

)
(75)

+
1

NL0
+

L1∑
`=L0+1

min
(
δ−β1 ·M−`·β2 ,M−`·β3

)
N` · δ2

for M = M
δ,L0,L1
NL0 ,...,NL1

. Furthermore, by (S1) and (A2),

cost(M) � c(L0,L1,NL0 , . . . ,NL1) (76)

with

c(L0,L1,NL0 , . . . ,NL1) =
L1∑
`=L0

N` ·M`.

We minimize the upper bound (76) for the cost, subject to the constraint that the upper bound (75) for
the squared error is at most ε2, up to multiplicative constants for both quantities.
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To this end we choose δ according to (42), and, up to integer rounding,

NL0 = ε
−2 (77)

as well as
L1 = q · L∗ (78)

with L∗ given by (46).
For a single-level algorithm, i.e., L0 = L1, this yields error(M) � ε and

c(L1,L1,NL1) � ε
−2−q/(r+1). (79)

For a proper multi-level algorithm, i.e., L0 < L1, we obtain

error2(M) � ε2 +
L1∑

`=L0+1

v`
N`

with
v` = min

(
ML

∗·β1 ·M−`·β2 ,M−`·β3
)

as well as

c(L0,L1,NL0 , . . . ,NL1) � ε
−2 ·ML0 +

L1∑
`=L0+1

N` ·M`.

Fix L0 for the moment. We minimize

h(L0,NL0+1, . . . ,NL1) = ε
−2 ·ML0 +

L1∑
`=L0+1

N` ·M`

subject to
L1∑

`=L0+1

v`
N`

6 ε2.

A Lagrange multiplier method leads to

N` = ε
−2 ·G(L0) ·

(
v` ·M−`

)1/2
, (80)

up to integer rounding, which satis�es the constraint with

G(L0) =

L1∑
`=L0+1

(
v` ·M`

)1/2
=

L1∑
`=L0+1

(
min(ML

∗·β1 ·M−`·β2 ,M−`·β3) ·M`
)1/2

.

Moreover, this choice of NL0+1, . . . ,NL1 yields

h(L0,NL0+1, . . . ,NL1) = ε
−2 ·

(
ML0 +G2(L0)

)
.

Put
L† = β† · L∗.

In the case q 6 β† we have L1 6 L†, and therefore

ML0 +G2(L0) =M
L0 +

 L1∑
`=L0+1

M`·(1−β3)/2

2 .
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In the case q > β† we have L† < L1, and therefore

ML0 +G2(L0) =M
L0 +

 L†∑
`=L0+1

M`·(1−β3)/2 +ML
∗·β1/2 ·

L1∑
`=L†+1

M`·(1−β2)/2

2 .

Since

ML0 +

 L∑
`=L0+1

M`·(1−β3)/2

2 �

ML0 , if β3 > 1,

ML0 + (L− L0)
2, if β3 = 1,

ML0 +ML·(1−β3), if β3 < 1,

for L = L1 and L = L†, we take
L0 = 0

in both cases.
This leads to

ML0 +G2(L0) �


1, if β3 > 1,

L21, if β3 = 1,

ML1·(1−β3), if β3 < 1,

if q 6 β†. Moreover, it is straightforward to verify

ML0 +G2(L0) �



1, if β3 > 1,

(L†)2, if β3 = 1,

ML
†·(1−β3), if β3 < 1 and β2 > 1,

ML
∗·β1 · (L1 − L†)2, if β2 = 1,

ML
∗·(β1+q(1−β2)), if β2 < 1,

if q > β†. Except for the case β3 = 0 and q 6 β† these estimates are superior to ML1 , which
corresponds to (79).

Remark 6 The following comments on optimality etc. are meant in the sense of Remark 3. The optimal
values of δ, NL0 , and L1 are given by (42), (77), and (78), which completes the optimization of the pa-
rameters of single-level algorithms. For proper multi-level algorithms, L0 = 0 is optimal, and the optimal
replication numbers NL0+1, . . . ,NL1 and L0 can be easily derived from (80).
Proper multi-level algorithms are superior to single-level algorithms if and only if

β3 6= 0 ∨ q > β1/β2.

In the case β3 = 0 and q 6 β1/β2 the lack of superiority is caused by the negative impact of smoothing,
which leads to variances of order one on all levels level ` = 0, . . . ,L1.
Single-level algorithms with smoothing are superior to single-level algorithms without smoothing if and

only if
r+ 1

α3
>
r+ 1+α1

α2
. (81)
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7.1 applications

At �rst we consider a general situation, where all we have at hand is (A1), (A2), and an upper bound
on the order of the strong error of Y − Y(`), which does not depend on p. Speci�cally, we assume that
there exists a constant

0 < β 6 2

with the following property. For every 1 6 p <∞ there exists a constant cp > 0 such that

‖Y − Y(`)‖p 6 cp ·M−`·β/2 (82)

for every ` ∈N. In the sequel ε > 0 may be chosen arbitrarily small.
From (82) we obtain (A4) with

β4 = 2, β5 = β, (83)

see (25), and Lemma 6.3.1 and Lemma 6.3.2 yield (A5) with

β1 = 1+ ε, β2 = β, β3 = β/2− ε (84)

under the assumptions (S2) and (S3) or (S2) and (S5). Using Lemma 6.3.1 and Lemma 6.3.2 again we get
(A3) under both sets of assumptions on g with

α1 = ε, α2 = β/2, α3 = β/2− ε, (85)

and (29) holds with
α = β/2− ε. (86)

It follows that
q =

2 · (r+ 1)
β

+ ε

and
max(1,β4/β5) = 2/β,

so that (34), (36), and (37) in Theorem 6.1.5 yield

1 6 β 6 2 ⇒ γ = 2+
2

β · (r+ 1)
, (87)

0 < β < 1 ⇒ γ =
2

β
+

2

r+ 1
+ ε (88)

for the approximation of F on [S0,S1]. Likewise, (58), (60), and (61) in Theorem 6.2.2 yield

1 6 β 6 2 ⇒ γ = 2+
2 · (1+β)
β · r

, (89)

0 < β < 1 ⇒ γ =
2

β
+
2 · (1+β)
β · r

+ ε, (90)

59
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for the approximation of ρ on [S0,S1]. Moreover,

β† = 2/β+ ε,

so that (71), (72), and (74) in Theorem 6.3.3 yield

1 6 β 6 2 ⇒ γ = 2+
2−β

β · (r+ 1)
+ ε, (91)

0 < β < 1 ⇒ γ =
2

β
+

1

r+ 1
+ ε (92)

for the approximation of F at a single point s ∈ [S0,S1]. For all three problems we get γ = max(2, 2/β)
in the limit r → ∞, and proper multi-level algorithms are always superior to single-level algorithms,
see Remarks 3, 5, and 6.

Remark 7 We compare the smoothing approach for the approximation of F at a single point with a direct
approach, which only requires that Y has a bounded density ρ (see [5]), see Lemma 6.3.1.
We study multi-level algorithms

M
L0,L1
NL0 ,...,NL1

=

=
1

NL0
·
NL0∑
i=1

1]−∞,s](Y
(L0)
i ) +

L1∑
`=L0+1

1

N`
·
N∑̀
i=1

(
1]−∞,s](Y

(`)
i ) − 1]−∞,s](Z

(`)
i )
)

for the approximation of F(s). As previously, we assume that (82) with 0 < β 6 2 is all we have at hand.
The analysis from Theorem 6.3.3 directly applies, if we take

β1 = 0, β2 = β/2− ε, β3 = β/2− ε,

and
α1 = 0, α2 = β/2− ε, α3 = β/2− ε.

We achieve the order (γ ′,η ′) with

γ′ =
2+β

β
+ ε,

so that the smoothing approach is superior to the direct approach i� β < 2 and r > 1.

In the sequel we consider three speci�c settings in the context of stochastic di�erential equations
(SDEs). We let X denote the solution process of the SDE, which is supposed to take values in Rd. For
simplicity, we alway take the Euler scheme with equidistant time-steps for approximation of X, and we
do not discuss results on the existence and smoothness of densities. As previously, ε > 0may be chosen
arbitrarily small.

7.1.1 Smooth Path-independent Functionals for SDEs

Let
Y = ϕ(XT ),

where ϕ : Rd → R is Lipschitz continuous. We assume that the cost of computing ϕ(x) is uniformly
bounded for x ∈ Rd, and for approximation of Y we use Y(`) = ϕ(X(`)

T ), where X(`) denotes the Euler
scheme with 2` equidistant time-steps. Obviously, (A2) holds withM = 2. For weak error estimates we
refer to [7]. Hereby we obtain (A3) with

α1 = 0, α2 = 1, α3 = 1 (93)
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under the assumptions (S2) and (S3) or (S2) and (S5) on g and the smoothness and non-degeneracy
assumptions (C) and (UH) on the coe�cients of the SDE. Furthermore, (29) holds with

α = 1.

It is well-known that (82) holds with
β = 1

already under standard assumptions on the coe�cients of the SDE. Hence we get (A4) with

β4 = 2, β5 = 1, (94)

see (83), and (A5) with
β1 = 1+ ε, β2 = 1, β3 = 1/2− ε,

see (84).
We therefore have q = r+ 1 and max(1,β4/β5) = 2, and (33) and (37) in Theorem 6.1.5 yield

(γ,η) =

(3, 1), if r 6 1,

(2+ 2/(r+ 1), 3), if r > 2,

for the approximation of F on [S0,S1]. Likewise, (57) and (61) in Theorem 6.2.2 yield

(γ,η) =

(6, 1), if r = 1,

(2+ 4/r, 3), if r > 2,

for the approximation of ρ on [S0,S1]. For both problems, proper multi-level algorithms are superior
to single-level algorithms if and only if r > 2, see Remarks 3 and 5. Moreover, β† = 2+ ε, so that (70)
and (74) in Theorem 6.3.3 yield

γ =

5/2+ ε, if r = 0,

2+ 1/(r+ 1) + ε, if r > 1,

for the approximation of F at a single point s ∈ [S0,S1]. For this problem, proper multi-level algorithms
are superior to single-level algorithms for every r ∈ N0, see Remark 6. For all three problems we get
γ = 2 in the limit r→∞.

If the coe�cients of the SDE merely satisfy the standard assumptions, instead of (C) and (UH) from
[7], we may apply (85) to obtainα1 = ε,α2 = 1/2, andα3 = 1/2− ε, see also Section 2.2 in [42]. While
the latter is inferior to (93), it leads to essentially the same orders of convergence for approximation of
densities or distribution functions if r > 1, see (87), (89), and (91).

Remark 8 A two-level construction of the form

M
δ,L0,L1
NL0 ,NL1

=
1

NL0
·
NL0∑
i=1

gδ(Y
(L0)
i ) +

1

NL1
·
NL1∑
i=1

(
gδ(Y

(L1)
i ) − gδ(Z

(L1)
i )

)
,

which is the counterpart of the two-level construction from [42] for the approximation of E(ϕ(XT )), is
employed in [43] for the approximation of the density ρ of Y = XT at a single point s. Here the sequence
(Y(`))`∈N consists of suitably regularized Euler schemes with ` equidistant time-steps. By assumption,
ρ ∈ C∞b (Rd, R), i.e., the multi-dimensional counterpart to (A1) is satis�ed for every r ∈ N0. Using
Malliavin calculus techniques, the authors derive a central limit theorem for L1 · (Mδ,L0,L1

NL0 ,NL1
− ρ(x))

with properly chosen parameters L0, NL0 , NL1 , and δ as L1 tends to in�nity. For every dimension d the
order γ = 5/2+ ε is achieved in this way, while the multi-level approach achieves the order γ = 2+ ε (at
least for d = 1).
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Remark 9 Consider the problem of approximating a quantile of Y, which is studied in [56] in the partic-
ular case of a projection ϕ(x) = xi. By assumption, ρ ∈ C∞b (R, R). The authors employ a single-level
algorithm that is based on a suitably regularized Euler scheme, cf. Remark 8. The approximation to the
quantile is given as the corresponding empirical quantile, and an error of order γ = 3 is achieved, if ρ is
bounded away from zero in a neighborhood of the quantile.
Under the latter assumption, the order of approximation to F in the supremum norm and to the quantile

coincide, and given (A1) for every r ∈ N0 we expect our multi-level algorithm to achieve the order γ =

2+ ε also for quantile approximation and every Lipschitz continuous function ϕ. Furthermore, the multi-
level algorithm may be used to approximate the distribution function F and the density ρ in parallel, which
allows to control the impact of inverting the approximation to F.

Remark 10 We comment on the optimality of the parameters αi and βi according to (93) and (94) in
(A3) and (A4). Due to [7], the estimate (A3) with (93) is sharp under the assumptions (C) and (UH). Under
standard assumptions, 2`/2 · (X−X(`)) converges in distribution to a stochastic processU withUT being
non-degenerate in general, see [41]. In the latter case we have a projection ϕ(x) = xi such that (82) with
M = 2 and p = 1 does not hold for any β > 1. A slight generalization of Lemma 6.1.3 shows that (A4)
does not hold for any β4 < 2 or β5 > 1. Hence the estimate (A4) with (94) cannot be improved in general
for the Euler scheme.

The approximation of marginal densities of SDE in studied in a number of papers under di�erent
aspects. The convergence rate of the density of the Euler approximation X(`)

T towards ρ is studied in,
e.g., [6] and [31]. In the paper [47], authors construct a forward-reverse kernel estimator and provide
an upper bound for its variance.

7.1.2 Smooth Path-dependent Functionals for SDEs

Let
Y = ϕ(X)

withϕ : C([0, T ], Rd)→ R being Lipschitz continuous. We assume that the cost of computingϕ(x) for
a piecewise linear path x ∈ C([0, T ], Rd) withm breakpoints is bounded by a constant timesm, and for
approximation of Y we use Y(`) = ϕ(X(`)), where X(`) denotes the Euler scheme with 2` equidistant
time-steps and piecewise linear interpolation. Then (A2) holds with M = 2, and the following fact is
well-known under standard assumptions on the coe�cients of the SDE. For every 1 6 p < ∞ there
exists a constant cp > 0 such that

‖Y − Y(`)‖p 6 cp ·
(
` ·M−`

)1/2
for every ` ∈N. Consequently, (82) holds with

β = 1− ε,

and we get (A4) with
β4 = 2, β5 = 1− ε (95)

see (83), (A5) with
β1 = 1+ ε, β2 = 1− ε, β3 = 1/2− ε

under the assumptions (S2) and (S3) or (S2) and (S5), see (84), as well as (A3) with

α1 = 0, α2 = 1/2− ε, α3 = 1/2− ε, (96)

see (85). Furthermore, (29) holds with
α = 1/2− ε,

see (86).
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We therefore have q = 2 · (r+ 1) + ε and max(1,β4/β5) = 2+ ε, and (36) in Theorem 6.1.5 yields

γ = 2+ 2/(r+ 1) + ε

for the approximation of F on [S0,S1]. Likewise, (60) in Theorem 6.2.2 yields

γ = 2+ 4/r+ ε

for the approximation of ρ on [S0,S1]. Moreover, β† = 2+ ε, so that (72) in Theorem 6.3.3 yields

γ = 2+ 1/(r+ 1) + ε

for the approximation of F at a single point s ∈ [S0,S1]. For all three problems proper multi-level
algorithms are always superior to single-level algorithms, see Remarks 3, 5, and 6.

Note that Section 7.1.1 is dealing with a particular instance of the functionals studied here. We achieve
essentially the same order of convergence for the problems studied in Sections 7.1.1 and 7.1.2, if r > 1,
and we always get γ = 2 in the limit r→∞.

Remark 11 We comment on the optimality of the parameters αi and βi according to (96) and (95) in
(A3) and (A4). Due to Remark 10 the estimate (A4) with (95) cannot be improved in general for the Euler
scheme. Concerning (A3) we are not aware of an optimality result. We refer, however, to [1], where authors
study processes Y(`) that coincide with the Euler scheme X(`) at the discretization points, but instead of
2` Brownian increments the whole trajectory of the Brownian motion is employed. They provide an upper
bound of the order 2/3− ε for Wasserstein distance of X and Y(`) in the case d = 1.

7.1.3 Stopped Exit Times for SDEs

Consider a bounded domain D ⊂ Rd such that X0 ∈ D, and let

Y = ϕ(X)

be the corresponding exit time, stopped at T > 0, i.e.,

ϕ(x) = inf{t > 0 : x(t) ∈ ∂D} ∧ T

for x ∈ C([0, T ], Rd). We assume that the cost of computing ϕ(x) for a piecewise linear path x ∈
C([0, T ], Rd) with m breakpoints is bounded by a constant times m, and as in the previous section
Y(`) is the Euler scheme X(`) composed with ϕ. Then (A2) holds with M = 2. For every 1 6 p < ∞
there exists a constant cp > 0 such that

‖Y − Y(`)‖p 6 cp ·M−`/(2p) (97)

for every ` ∈N, see [14]. From (26) we get (A4) with

β4 = 1, β5 = 1/2,

and (67) and Lemma 6.3.1 yield (A5) with

β1 = 1, β2 = 1/2, β3 = 1/4.

Furthermore, (24) and Lemma 6.3.1 yield (A3) with

α1 = 1, α2 = 1/2, α3 = 1/4

under the assumptions (S2) and (S3) or (S2) and (S5), while (29) holds with

α = 1/4.
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We therefore have q = 2r+ 4 and max(1,β4/β5) = 2, and (36) in Theorem 6.1.5 yields

(γ,η) = (3+ 2/(r+ 1), 1)

for the approximation of F on [S0,S1]. Likewise, (60) in Theorem 6.2.2 yields

(γ,η) = (3+ 5/r, 1)

for the approximation of ρ on [S0,S1]. Moreover, β† = 3, so that (72) in Theorem 6.3.3 yields

(γ,η) = (3+ 2/(r+ 1), 0) (98)

for the approximation of F at a single point s ∈ [S0,S1]. For all three problems, proper multi-level
algorithms are superior to single-level algorithms for every r ∈ N0, see Remarks 3, 5, and 6, but we
only get γ = 3 in the limit r → ∞. The latter is in contrast to the results from Sections 7.1.1 and
7.1.2, and it is basically due to the fact that the upper bound (97) for strong approximation of Y by Y(`)
depends on p in the most unfavorable way. We add that numerical experiments suggest that the upper
bound (97) cannot be improved, in general. Furthermore, observe that for stopped exit times the same
order γ is achieved for the approximation of F on a compact interval and at a single point.

We add that (56) and (81) are satis�ed for every r > 1, and therefore smoothing already help for the
single-level algorithm to approximate the distribution function of the stopped exit time.

Remark 12 For the approximation of the mean E(Y) of the stopped exit time amulti-level Euler algorithm
has been constructed and analyzed in [35]. It is shown that the order γ = 3+ ε is achieved under standard
smoothness assumptions on the coe�cients of the SDE and on the domain D.

7.2 numerical experiments

The main goal of our numerical experiments is to demonstrate the potential of the new multi-level al-
gorithm. We consider three benchmark problems according to Sections 7.1.1–7.1.3 for a simple, scalar
SDE, where the solutions are known analytically. We present results only for the approximation of dis-
tribution functions on a compact interval [S0,S1], as the main numerical di�erence to the other two
problems studied in this paper is in the deterministic interpolation part. Our numerical experiments
show the computational gain in terms of upper bounds, achieved by the multi-level Monte Carlo ap-
proach with smoothing in comparison to the single-level Monte Carlo approach without smoothing.
Furthermore, we compare the error of the multi-level algorithm with the accuracy demand ε, which
serves as an input to the algorithm. An extensive numerical study of our algorithm is out of the scope
of the current paper and will be presented in a subsequent paper.

Consider a geometric Brownian motion X, given by

dXt = µ ·Xt dt+ σ ·Xt dWt, t ∈ [0, T ],

X0 = 1,

whereW denotes a scalar Brownian motion. For the approximation of X we use the Euler scheme with
equidistant time-steps, so that M = 2. The corresponding values of the parameters αi and βi are
presented in Sections 7.1.1–7.1.3.

In the examples from this section, the assumption (A1) holds for every r ∈N, but typically we think
of r being unknown. Hence we choose r̃ ∈ N0, instead, and a particular purpose of the numerical
experiments is to illustrate the impact of r̃. In all our experiments we take

r̃ = 3, 5, 7, 9, 11,

and the corresponding smoothing polynomials g according to Remark 1 can be seen in Figure 17.
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Figure 17: Smoothing polynomials g.

Given ε and r̃, we basically choose the remaining parameters of the multi-level (single-level) algo-
rithm such that all four (three) terms in the upper bound (38) are of the order ε2. For the multi-level
algorithm with smoothing we choose the parameters L0, L1, and N` according to (53), (48), (44), and
(54), with r replaced by r̃, while

δ = 2−1/(r̃+1) · ε1/(r̃+1),

cf. (42). For the single-level algorithm without smoothing, see Remark 2, we choose L = L0 = L1 and
NL according to (48) and (44), too, however observing (30), which leads to q = (r̃+ 1)/α.

In the second stage of the algorithm we employ piecewise polynomial interpolation Q3k of degree 3
with equidistant knots for any r̃. Due to the Lebesgue constants involved, this is preferable toQr̃k with
a large value of r̃ if the overall number k of interpolation points is comparatively small. Furthermore,
it is convenient if k− 1 is a multiple of 3 and proportional to the length of the interval [S0,S1]. In both
cases, single-level and multi-level, we therefore take

k = 3 ·
⌈
5 · ε−1/(r̃+1) · (S1 − S0)/3

⌉
+ 1, (99)

cf. (43).
To specify the computational gain we compare the upper bound (40) for the cost of the multi-level

Monte Carlo algorithm with smoothing and the corresponding upper bound

c(k,L,N) = N · (2L + k),

for the cost of the single-level algorithm. The ratio
c(k,L0,L1,NL0 , . . . ,NL1)/c(k,L,N), which is a function of the desired accuracy ε, is used to describe
the computational gain.

To assess the accuracy of the multi-level algorithm, error(Q3k(M)), which depends on ε and r̃, should
be compared with the desired accuracy ε. Since error(Q3k(M)) is not known exactly, we employ a simple
Monte Carlo experiment with 25 independent replications for each of the values of r̃ and each of the
values ε = 2−i for i = 3, . . . , 11. The estimate is denoted by RMSE(ε, r̃).

7.2.1 Smooth Path-independent Functionals for SDEs

In this section we set
µ = 0.05, σ = 0.2, T = 1,

and we approximate the distribution function F(s) = E(1]∞,s](Y)) of

Y = XT
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Figure 18: Replication numbers per level (left) and computational gain (right).

on the interval
[S0,S1] = [0, 2].

Note that Y is lognormally distributed with parameters µ− σ2/2 and σ2.
The computational gain as well as the replication numbers N` for the multi-level algorithm with

ε = 2−11 are presented in Figure 18. The maximal level L1 of the multi-level algorithm coincides with
the level chosen by the single-level algorithm, and this level does not depend on r̃. For smaller values
of r̃ the multi-level algorithm start on a higher level L0, and therefore the computational gain in the
case r̃ = 3 is only about a factor two. For large values of r̃ we observe a reasonable computational gain
already for moderate values of ε. In Figure 19 we compare the estimate RMSE(ε, r̃) for the error of the
multi-level algorithm and the accuracy demand ε. Note that RMSE(ε, r̃) is in the range of ε; actually,
it is less that ε in almost all cases.

7.2.2 Smooth Path-dependent Functionals for SDEs

For this test case we use the same parameters for the SDE and the same interval [S0,S1] as in Section
7.2.1. We approximate the function

F(s) = E
(
e−µ·T ·max(XT −X0, 0) · 1]−∞,s](Y)

)
,

where
Y = max

t∈[0,T ]
Xt.

See p.207 in [54] for the analytical solution. Note that this problem does not exactly �t into our frame-
work, due the the presence of max(XT −X0, 0) in the de�nition of the functional. Still, the multi-level
smoothing approach is applicable.

See Figures 20, with replication numbers for ε = 2−10, and 21 for the results. As the main di�erence,
compared to the previous section, the computational gain is substantially larger for the path-dependent
functional. This is due to the following facts. The orders of strong convergence are essentially the same
for both problems. However, the maximal level, which once more coincide with the level chosen by the
single-level algorithm, is essentially twice as large as in the previous case, due to the slower decay of the
bias. This results in a larger value of L1 − L0, which provides an advantage to the multi-level approach.
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Figure 21: Error vs. accuracy demand ε.

7.2.3 Stopped Exit Times for SDEs

In this section we set
µ = 0.01, σ = 0.2, T = 2,

and we approximate the distribution function F(s) = E(1]∞,s](Y)) of

Y = inf{t > 0 : Xt = b} ∧ T

with b = 0.8 on the interval
[S0,S1] = [0, 1].

The distribution of inf{t > 0 : Xt = b} is an inverse Gaussian distribution with parameters lnb/(µ−

σ2/2) and (lnb)2/σ2, and this yields an explicit formula for F since T > S1.
See Figures 22, with replication numbers for ε = 2−9, and 23 for the results. Observe that the compu-

tational gain is even larger than in the previous section. This di�erence is due to the fact that smoothing
already yields an improved weak error estimate for the present problem. Consequently,

L1 =

(
2+

2

r̃+ 1

)
· log2 ε

−1

is the maximal level for the multi-level algorithm, up to integer rounding, but for the single-level algo-
rithm without smoothing we have to take

L = 4 · log2 ε
−1.
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We will start with a short description of mathematical tools, used during the modeling of AF4. As men-
tioned in the Section 1.3, we assume that the particles do not interact with each other and do not change
their hydrodynamic radius. And their drift at any point in the channel is equal to the velocity of the
solvent at that point. Based on these assumptions we will build an SDE based model for the particles
motion in the channel.

We �rst present a stochastic model that describes the motion of a particle in a bounded convex domain
D ⊂ Rd with aC2-boundary. In the sequel,n(x) denotes the unique inward normal vector at any point
x ∈ ∂D, and π(x) denotes the projection of any point x ∈ Rd onto D w.r.t. the Euclidean distance.

Consider a d-dimensional standard Brownian motion (W(t))t>0 on a �ltered probability space that
satis�es the usual conditions, an initial value x0 ∈ D, and Lipschitz continuous mappings µ : D →
Rd and σ : D → Rd×d. A strong solution to the associated Skorohod problem is a pair of adapted
continuous processes X = (X(t))t>0 and φ = (φ(t))t>0 taking values in D and Rd, respectively,
with the following properties. The process φ is locally of bounded variation with φ(0) = 0, and with
|φ|(t) denoting the total variation of φ on [0, t] we have

|φ|(t) =

t∫
0

1∂D(X(s))d|φ|(s), (100)

φ(t) =

t∫
0

n(X(s))d|φ|(s) =

t∫
0

n(X(s))dξ(s), (101)

X(t) = x0 +

t∫
0

µ(X(s))ds+

t∫
0

σ(X(s))dW(s) +φ(t) (102)

for t > 0.

De�nition 2 A pair (X, φ) = (X(t),φ(t))t∈[0,∞[ of continuous adapted processes with values in D
and Rd, respectively, is a strong solutions of the Skorohod equation (100)-(101), if X(0) ∈ D, φ(0) = 0

and (100)-(101) hold true.

For stochastic Skorohod problems the existence and uniqueness of solutions is studied under various
assumptions on the domainD and on the driving process. We will state the standard result from Saisho
(1979) for an existence and uniqueness result, which covers in particular the present case. In addition,
we will state thatX is a strong Markov process, which actually holds for more general driving processes,
see Kohatsu-Higa (2001).

8.0.4 Boundary

De�ne the set Nx of inward normal unit vectors at x ∈ ∂D by

Nx = ∪r>0Nx, r,

73
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Figure 24: Example of the domain, satisfying Conditions 1 and 2.

Nx, r =
{
n ∈ R2 : |n| = 1, B(x− rn, r)∩D = ∅

}
,

where B(x, r) =
{
y ∈ R2 : |x− y| < r

}
, r > 0.

Remark 8.0.1 Nx can be empty, for example in the case of “non convex angle”.

Condition 1 (Uniform exterior sphere condition) Following Lions and Sznitman [44], we introduce
two conditions on the domain D.
There exists a constant r0 such that

Nx = Nx, r0 6= ∅, ∀ x ∈ ∂D

Remark 8.0.2 Some general comments on Condition 1

• Condition 1 means that we can touch every x ∈ ∂D from outside with a ball with radius r0 without
intersection with domain D (see Figure 24)

• Condition 1 does not necessarily mean, that ∂D is smooth (see Figure 24)

• If D is convex, then r0 can be set equal to∞.

• If dist(x,D) < r0, x /∈ D then there exists the unique projection π(x) such that

|x− π(x)| = dist(x,D)

Condition 2 There exist constants δ > 0 and β ∈ [1, ∞) with the following property: for any x ∈ ∂D
there exists a unique vector lx such that

〈lx, n〉 > β−1, ∀n ∈ ∪y∈B(x,δ)∩∂DNy

Remark 8.0.3 Condition 2 means that the normal vectors do not �uctuate widely.

Remark 8.0.4 If D is convex or has a C2 boundary, then Conditions 1 and 2 are veri�ed.
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8.0.5 Existence and Uniqueness

Theorem 8.0.5 (Saisho [53]) If Conditions 1, 2 for domain D are veri�ed and b and σ are uniformly
Lipschitz continuous in space functions, then there exists a unique strong solution of the Skorohod problem
(100)-(101).

Remark 13 By (100), the randommeasure corresponding to |φ| is concentrated on the set of time instances
s ∈ [0, t] such that X(s) ∈ ∂D. Moreover, for any continuous function f of bounded variation on [0, t] we
have

f(t) =

t∫
0

m(s)d|f|(s)

for some functionmwith values in the unit sphere in Rd, andm is uniquely determined almost everywhere
w.r.t. the measure associated with the total variation |f| of f. By (101), the corresponding representation of
the process φ is given by the inward normal vectors at the points X(s) ∈ ∂D. The formal counterpart

dX(t) = µ(X(t))dt+ σ(X(t))dW(t) + dφ(t) (103)

of (102) is therefore called a stochastic di�erential equation with normal re�ection at the boundary of
D.

Instead of re�ection we actually have absorption in a part of the boundary, which is denoted by ∂aD

and which is assumed to be an open set

∅ 6= ∂aD ( ∂D,

and we consider the hitting time

τ = inf{t > 0 : X(t) ∈ ∂aD}.

The computational problem is to determine the distribution function

F(t) = P(1(τ6t)), t > 0,

on a compact time interval [0, T ]. Put
∂rD = ∂D \ ∂aD.

In the application described below, the Skorohod problem together with τ is used to model the motion
of a particle that is re�ected at ∂rD, while it leaves the domain D via ∂aD.

Remark 14 Numerical problems for SDEs with re�ection and for exit times of solutions of SDEs have been
studied in a number of papers, a few of which will be presented here and used subsequently.
For an SDE without re�ection let τ denote the exit time from the domain D ⊂ Rd. [32] and [35] study

weak and strong approximation, respectively, of the so called stopped hitting time τ ∧ T via the Euler
scheme. Furthermore, the multi-level Monte Carlo approach is used in [35] to compute the expectation
E(τ∧ T).
For SDEs with normal re�ection, variants of the Euler scheme are employed, for instance, in the following

papers. For strong approximation of (X(t))t∈[0,T ] [55] establishes upper bounds of order almost 1/4 for
convex domains and of order almost 1/2 for convex polyhedra, where the error is based on the L∞-distance
of corresponding paths. Weak approximation for a class of functionals of X and φ is studied in [49], where
they derive upper bounds of order (almost) 1/2 under suitable regularity assumptions. For recent work on
weak approximation on stopped and re�ected di�usions and for further references, see [8]; in particular, an
adaptive weak approximation scheme is constructed there, and the application of the multi-level approach
is proposed in this context.
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8.1 pde representation

Further everywhere where it’s important all vectors are by default meant to be columns.
We consider d-dimensional stochastic equation

dX(t) = b(X(t))dt+ σ(X(t))dWt +n(t)dξt (104)

with initial value X0 = x ∈ D, ξ0 = 0 ∈ R. n(t) is assumed to be an adapted process taking values in
the set of inward pointing normal vectors of ∂D = D \D at X(t), provided that X(t) ∈ ∂D.

Let L denote the in�nitesimal generator of the SDE (104):

Lv(x) = 〈µ(x),∇v(x)〉+ 1

2
tr
(
σσTH(v(x))

)
.

H(v(x)) stands for Hessian matrix of function v. We consider the following boundary value problem:

∂

∂t
u(t, x) + Lu(t, x) = 0, x ∈ D,

u(T , x) = f(x), x ∈ D,

u(t, x) = g(x), x ∈ ∂aD,
∂

∂n
u(t, x) = h(x), x ∈ ∂rD,

(105)

where t ∈ [0, T ], f : D→ R, g : ∂aD→ R and h : ∂rD→ R are su�ciently regular functions, n(x)
is assumed to be unique inward normal vector at x ∈ ∂D and we denote

∂

∂n
u(t, x)

the normal derivative of u(t, x) at x ∈ ∂D.
The following theorem is the special case of Theorem II.5.1 in [21].

Theorem 8.1.1 Assume that the solution u(t, x) of problem (105) has bounded time-derivative, gradient
and Hessian matrix for all (t, x) ∈ [0, T ]×D. Then we have the stochastic representation.

u(t, x) = E

f(XT )1τ>T + g(Xτ)1τ<T −

τ∧T∫
t

h(X(s))dξs

∣∣∣∣ X(t) = x


where τ = inf{s > t|X(s) ∈ ∂Ds} and x∧ y = min(x,y).

Proof

du(t,X(t)) =

(
∂u

∂t
+ 〈µ,∇u〉+

1

2
tr
(
σσTH(u)

))
dt+

+ (∇u)TσdW + (∇u)Tn(t)dξ

Fixing T > t > 0 and the stopping time τ, we apply Itô’s formula to u(s,X(s)) and obtain

u(T ∧ τ,XT∧τ) =u(t,X(t)) +

T∧τ∫
t

(
Lu(s,X(s)) +

∂u

∂t
(s,X(s))

)
ds

+

T∧τ∫
t

(∇u(s,X(s)))TσdWs

+

T∧τ∫
t

〈∇u(s,X(s)),n(X(s))〉 dξs.
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Taking conditional expectation on X(t) = x yields

E [u(T ∧ τ,XT∧τ)|X(t) = x] = E [u(t,X(t))|X(t) = x] +

+ E

T∧τ∫
t

(
Lu(s,X(s)) +

∂u

∂t
(s,X(s))

)
ds

∣∣∣∣ X(t) = x
+

+ E

T∧τ∫
t

(∇u(s,X(s)))TσdWs
∣∣∣∣ X(t) = x

+

+ E

T∧τ∫
t

〈∇u(s,X(s)),n(X(s))〉 dξs
∣∣∣∣ X(t) = x

 .

(106)

The term on the left can be represented as sum:

E [u(T ∧ τ,XT∧τ)|X(t) = x] =

= E
[
1τ>Tu(T ∧ τ,XT∧τ) + 1τ<Tu(T ∧ τ,XT∧τ)|X(t) = x

]
=

= E
[
1τ>T f(XT ) + 1τ<Tg(Xτ)|X(t) = x

]
,

because when τ > T , u(T ∧ τ,XT∧τ) = u(T ,XT ) = f(XT ), else XT∧τ = Xτ and this implies Xτ ∈
∂aD what yields u(τ,Xτ) = g(Xτ).

The �rst term on the right is actually u(t, x) itself:

E [u(t,X(t))|X(t) = x] = u(t, x).

Due to PDE in problem (105)

Lu(s,X(s)) +
∂u

∂t
(s,X(s)) = 0

and the second term on the right in (106) vanishes.
Under conditions of the theorem the process

T∧τ∫
t

(∇u(s,X(s)))TσdWs

is a martingale, thus

E

T∧τ∫
t

(∇u(s,X(s)))TσdWs
∣∣∣∣X(t) = x

 =

t∫
t

(∇u(s,X(s)))TσdWs = 0.

Since dξs is concentrated on {X(s) ∈ ∂rD}, in the integral

T∧τ∫
t

〈∇u(s,X(s)),n(X(s))〉 dξs

〈∇u(s,X(s)),n(X(s))〉 can be replaced by h(X(s)) and we get

E

T∧τ∫
t

〈∇u(s,X(s)),n(X(s))〉 dξs
∣∣∣∣ X(t) = x

 = E

T∧τ∫
t

h(X(s))dξs

∣∣∣∣ X(t) = x
 .

Gathering these things altogether, we �nally obtain

E
[
1τ>T f(XT ) + 1τ<Tg(Xτ)|X(t) = x

]
= u(t, x) + E

T∧τ∫
t

h(X(s))dξs

∣∣∣∣ X(t) = x


and this concludes the proof.
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8.2 strong approximation of stopped hitting times

In this section we consider a non-empty setD ⊆ Rd as well as a time-homogeneous strong Markov pro-
cess (X(t))t>0with càdlàg paths and a sequence of time-homogeneous Markov processes (Xn(tk))k∈N0

,
where tk = k · T/n for T > 0 and n ∈ N. The latter processes are extended to continuous-time pro-
cesses by Xn(t) = Xn(tk) for t ∈ ]tk, tk+1[. All these processes take values inD, and they are de�ned
on a common �ltered probability space that satis�es the usual conditions. Let

τ = inf{t > 0 : X(t) ∈ Da}

and
τn = inf{t > 0 : Xn(t) ∈ Da}

denote the corresponding hitting times for an open set Da ⊂ D. Throughout this section we assume
that

P(1(τ<∞)) = 1 (107)

and
P(1(τn<∞)) = 1 (108)

for every n ∈N.
To study the strong approximation of τ∧ T by τn ∧ T we put

an = E

(
sup
t∈[0,T ]

|X(t) −Xn(t)|

)
,

which is the error of strong approximation of X by Xn on [0, T ]. Furthermore, we de�ne

u(s, x) = Ex((τ+ s)∧ T) (109)

as well as
un(s, x) = Ex((τn + s)∧ T)

for s ∈ [0, T ] and x ∈ D. Thus u(s, x) − un(s, x) is the bias of τn ∧ (T − s) as an approximation to
τ∧ (T − s) with initial value x in both cases. We put

bn = sup
s∈[0,T ],x∈D

|u(s, x) − un(s, x)|.

We follow the approach from Higham et al. (2011) to derive the following result on strong approximation
of the stopped hitting time τ∧ T .

Theorem 8.2.1 Assume that there exists a constant c > 0 such that

|u(s, x) − u(s,y)| 6 c · |x− y|, s ∈ [0, T ], x,y ∈ D. (110)

Then
E |τ∧ T − τn ∧ T |p 6 2 · Tp−1 · (c an + bn)

holds for all n ∈N and 1 6 p <∞.

Proof At �rst we study the case p = 1. Let (Ft)t∈[0,T ] denote the underlying �ltration, and put
ã = a∧ T .

To control the case τ̃ > τ̃n, i.e., τ̃ > τn, we use

E((τ̃− τn) · 1{τ̃>τn}) = E(E((τ̃− τn) · 1{τ̃>τn} | Fτn)).

Note that {τ̃ > τn} ∈ Fτn . The strong Markov property of X yields

E((τ̃− τn) · 1{τ̃>τn} | Fτn) = 1{τ̃>τn} · (u(τ̃n,X(τn)) − τn).
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Use u(s, x) = s for x ∈ Da and (108) to derive

1{τ̃>τn} · τn = 1{τ̃>τn} · u(τ̃n,Xn(τn))

and
u(τ̃n,X(τn)) > u(τ̃n,Xn(τn)).

It follows that

E((τ̃− τn) · 1{τ̃>τn} | Fτn) 6 u(τ̃n,X(τn)) − u(τ̃n,Xn(τn))

= u(τ̃n,X(τ̃n)) − u(τ̃n,Xn(τ̃n)),

and therefore (110) implies

E((τ̃− τn) · 1{τ̃>τn}) 6 c · E |X(τ̃n) −Xn(τ̃n)| 6 c an. (111)

To control the case τ̃n > τ̃ we apply the same consideration to Xn. Use un(s, x) = s for x ∈ Da
and (107) to derive

E((τ̃n − τ) · 1{τ̃n>τ} | Fτ) 6 un(τ̃,Xn(τ̃)) − un(τ̃,X(τ̃))

= A1 +A2 +A3

with

A1 = un(τ̃,Xn(τ̃)) − u(τ̃,Xn(τ̃)),

A2 = u(τ̃,Xn(τ̃)) − u(τ̃,X(τ̃)),

A3 = u(τ̃,X(τ̃)) − un(τ̃,X(τ̃)).

As previously, E |A2| 6 c an follows from (110), and by de�nition |E(Ai)| 6 bn for i = 1, 3. Hence

E((τ̃n − τ) · 1{τ̃n>τ}) 6 c an + 2 bn. (112)

Combine (111) and (112) to complete the proof in the case p = 1.
Use |τ̃− τ̃n|

p 6 |τ̃− τ̃n| · Tp−1 to extend this result to the case p > 1.

Now we consider the setting of Section 5.1, and we put Da = ∂aD. For the approximation of X on
[0, T ] we employ the Euler scheme Xn with a constant step-size T/n and with the projection π to take
care of the re�ection. By de�nition, Xn(0) = x0 and

Xn(tk+1) = π
(
Xn(tk) + T/n · µ(Xn(tk)) + σ(Xn(tk)) · (W(tk+1) −W(tk))

)
.

We combine Theorem 8.2.1 with upper bounds for an and bn in the case of the projected Euler scheme,
which are due to Słomiński (2001) and Costantini et al. (1998).

Corollary 1 Consider the projected Euler scheme Xn for a stochastic di�erential equation with normal
re�ection. In addition to (107) and (108), assume that

(A1) u ∈ C1,2([0, T ]×D),

(A2) ∂
∂su is Hölder continuous with exponent 1/2,

(A3) ∂2

∂xi∂xj
u is Lipschitz continuous for all 1 6 i, j 6 d.

Let 1 6 p <∞. Then there exists a constant c > 0 such that

(E |τ∧ T − τn ∧ T |p)1/p 6 c · (lnn/n)1/(4p)

holds for every n > 2.
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Proof Clearly (A1) implies (110). Moreover,

an 6 c · (lnn/n)1/4

for every n > 2 with a constant c > 0, see Słomiński (2001, Thm. 3.2). Let 0 < ε < 1/2. Under the
assumptions (A1)-(A3),

bn 6 c · 1/n1/2−ε

for every n > 2 with a constant c > 0, see Costantini et al. (1998, Thm. 3.6). Apply Theorem 8.2.1.

Let us comment on the assumptions that are imposed in Corollary 1.

Remark 15 A su�cient condition for (108) to hold is

detσ(x) 6= 0

for every x ∈ D and
λ(π−1(∂aD)) > 0,

where λ denotes the d-dimensional Lebesgue measure. In this case the probability to reach ∂aD in one step
of the projected Euler scheme is bounded away from zero, uniformly over all starting points x ∈ D.

Remark 16 Nowwe turn to the assumptions (A1)-(A3). Let L denote the in�nitesimal generator associated
to dX(t) = µ(X(t))dt+ σ(X(t))dW(t), and let ∂

∂n denote the normal derivative at any point in ∂rD.
Consider the mixed boundary value problem

∂
∂tu+ Lu = 0 on [0, T [×D,

u(t, ·) = t on ∂aD for t ∈ [0, T [,
∂
∂nu(t, ·) = 0 on ∂rD for t ∈ [0, T [,

u(T , ·) = T on D.

(113)

For any classical solution to (113) in C1,2([0, T ]×D) we have the representation (109), see Costantini et
al. (1998, Thm. 2.5). We therefore have (A1)-(A3), if a classical solution exists and is su�ciently smooth.

8.3 mathematical model

The Navier-Stokes-Brinkman system is governing the �ow in the channel and in the porous membrane.
The equations read as follows:

∂~V

∂t
−∇ ·

(
ν∇~V

)
+
(
~V ,∇

)
~V + νK−1 +

1

ρ
∇p = ~f

∇ · ~V = 0

(114)

Here ~V = (V1,V2), p, ν and ρ are the velocity, the pressure, the viscosity and the density of the
�uid, respectively. Further on, K is the permeability of the membrane, which is considered as a porous
medium here. In the pure �uid region K is set to in�nity, which cancels the corresponding term, and
(114) reduces to the Navier-Stokes system. On the other hand, due to the slow �ow in the domainD, we
will consider Stokes system (1) instead of system (114). This simpli�cation does not change the nature
of our numerical simulations, but in the future we may consider approach with (114) too.

The particle transport in the pure �uid region D ⊂ R2 or D ⊂ R3 is governed by the velocity �eld
and by a stochastic term involving a 2-dimensional (3-dimensional) Brownian motion ~W = (W1,W2)
( ~W = (W1,W2,W3)). The particle position ~X = (X1,X2) (~X = (X1,X2,X3)) is a stochastic process
with continuous paths taking values in D. This process is described by an SDE (100)-(101), driven by
~W, with drift coe�cient µ = ~V and with a constant di�usion coe�cient σ̂ = diag(σ) ∈ R2×2 or
σ̂ = diag(σ) ∈ R3×3 for some di�usion parameter σ > 0. Since particles cannot penetrate the
membrane, we consider all boundaries of the channel to be re�ecting ones, except the in�ow and the
out�ow boundaries.
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N U M E R I C A L S I M U L AT I O N S

In this chapter we will present results of our numerical experiments for di�erent AF4 devices. From one
side, only setting from Section 9.1 satisfy all the requirements from the Part iii and Chapter 8. Also we
have analytical results only in the setting of the Section 9.1. On the other hand, the main goal of our
experiments in Section 9.2 and 9.3 was to obtain qualitative results, which would allow the reduce the
number of the Lab experiments.

9.1 rectangular geometry

We will repeat the solution for (1) in a rectangular domain (see Figure 4):

V1 = −6(u1 + u2)
x1
L ·

x2
w

(
1− x2

w

)
+ 6u1

x2
w

(
1− x2

w

)
, (115)

V2 = −(u1 + u2)
(
1− 3

(x2
w

)2
+ 2

(x2
w

)3) · wL (116)

The streamlines of the solution (115)-(116) can be seen on �gure 25.
Consider an SDE (100)-(101) with V(X) given by (115)-(116), σ =

√
2 ·D, initial position X(0) =(

0.01, u1+u2D · wL
)
. Domain D is chosen as a rectangle with length L = 0.174 and width w = 290 ·

10−6 meters. Di�usion coe�cient is D = 72.4 · 10−12 meters2 per second and corresponds to the
particles with a hydrodynamic radius 3.2 nanometers.

Now one can derive an estimate for the median of exit times distribution (see [58]) as:

tr =
1−exp

{
−
u0w
D

}
exp
{
−
u0w
D

}(
1+

2D
u0w

)
+1−

2D
u0w

· w26D · ln

(
z0
L −
〈v〉w
u0L

1−
〈v〉w
u0L

)
, (117)

where u0 = (u1 + u2) · wL and 〈v〉 = u1. For u0 = 2 · 10−5 and 〈v〉 = 18.7 · 10−3 we have tr =

186.8022 seconds, while our numerical experiments with ε = 10−2 give us result tr = 186.9410. The
cumulative distribution for this case can be seen on Figure 26.

9.2 hollow fiber device

Now we will consider a hollow �ber (HF) device. We will estimate the retention time, with respect to
the �ow parameters and estimate the fractogram.
Focusing-injection stage.An HF geometry and a sketch of �ow directions during the focusing-injection

stage can be seen in Figure 27. It should be noted that di�erent scales for di�erent parts of the device
are used in the sketch. The axisymmetric HF, which is considered here, is 173 mm long itself (see the
middle of the sketch), while the left capillary (serving to connect the HF to the sample reservoir) is 1300
mm long. During the focusing-injection stage, the solvent is entering the Hollow Fiber from both sides,
and leaves through the membrane (see Figure 27). The ratio between the left and the right volumetric
�uxes determines the position of the focusing line. The particles are injected from the left side during

81
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Figure 25: Domain D of the system and the streamlines of the velocity.
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Figure 26: CDF for exit times

Figure 27: Hollow Fiber device during the focusing-injection stage for AFFFF.
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Figure 28: Hollow Fiber device during the Elution Stage for AFFFF.

Figure 29: Particle injection, size r = 3.2 nm.

a certain time interval (shorter than the total duration of the focusing-injection stage), and they are
transported towards the membrane due to the strong cross �ow.
Elution stage. A sketch of �ow directions during the elution stage can be seen in Figure 28. Due to

the parabolic pro�le of the horizontal velocity, a horizontal separation of the particles is achieved at a
certain distance from the focusing line. During the elution stage, smaller particles are transported faster
than the bigger particles towards the channel outlet, because they experience a higher tangential �ow
velocity.

Simulation of the focusing-injection stage. The goal of the simulations, as de�ned by our industrial
partner, is to study the dynamics of the injection of the particles, as well as the in�uence of the in�ow
control on the size and the shape of the focusing zone. Two snapshots of the injection process are shown
here. Injection of smaller particles (r = 3.2 nm, Figure 29) and of larger particles (r = 32 nm, Figure
30) is simulated under the same �ow conditions, and the snapshots are taken at the same time instance.
Figure 29 and Figure 30 only show half of the HF cross section, due to symmetry. The �nal shape of the
focusing zone, which is not shown here, can be controlled by the in�ow velocity.
MLMC for restoring the di�usion coe�cient at the focusing-elution stage. Let X̂2 denote the distance

of a particle from the walls of the channel at the end of the focusing-injection stage. The cross �ow V̂

near the walls of the channel is almost a constant, so the distribution of the random variable X̂2 is well
approximated by an exponential distribution with parameter V̂/D (see [12]), where D = σ2/2 with

Figure 30: Particle injection, size r = 32 nm.
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Figure 31: Fractogram for r = 3.2 nm and r = 4.05 nm, HF device

σ denoting the di�usion parameter of the SDE. Recall that D depends on the particle size. The latter
distribution is also known as a barometric distribution.

In order to check the consistency of our approach, we have employed the MLMC algorithm to obtain
an empirical distribution of X̂2, which is then used to provide an estimate for D. The estimate is com-
pared to the known value of D, which is calculated based on particles radius (see [12]). Results from
numerical experiments with the MLMC algorithm from Section 5.3 are presented in Table 2. Elution

Desired accuracy Absolute error for D Relative error for D
of MLMC simulation

ε = 10−3 4.0 · 10−1 5.7 · 10−3

ε = 10−4 9.8 · 10−2 1.4 · 10−3

ε = 10−5 4.2 · 10−2 5.9 · 10−4

Table 2: Multilevel Monte Carlo method for restoring the coe�cientD = 76.2micron2/sec. Cross �ow equal to 30
micron/sec.

stage. The horizontal separation of the particles is done actually during the elution stage, and in prac-
tice the separation is evaluated from fractograms. Fractograms (see Figure 31) are a measure for the
mass of particles that exit the outlet per unit time, and they serve as an approximation to the density of
the distribution of the exit time of ~X from the channel. Ideally, the fractograms of particles of di�erent
size should be ‘well separated’. Additionally, the so-called retention times, which are the medians of
the fractograms, should be ‘small’, as this indicates that the total duration of the separation process is
small. We have employed a Monte Carlo algorithm to obtain fractograms via simulation. A particular
goal of our simulations is to study the properties of the fractograms depending on di�erent focusing
and elution regimes. The results are summarized in Table 3. The retention time is computed for parti-
cles with r = 3.2 nm (�fth column) and r = 4.05 nm (last column) under di�erent focusing regimes
(�rst and third columns) and di�erent elution regimes (fourth column). These results and the respective
fractograms, which are not shown here, allow to conclude whether the retention time can be reduced
while keeping the fractograms well separated.
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Parameter Focusing [ml/min] Elution [ml/min] tr=3.2 tr=4.05

inlet 0.085 1.2
outlet 0.765 0.35 308 387

cross�ow 0.85 0.85
inlet 0.17 1.2

outlet 0.68 0.35 291 366
cross�ow 0.85 0.85

inlet 0.34 1.2
outlet 0.51 0.35 255 322

cross�ow 0.85 0.85
inlet 0.17 0.775

outlet 0.255 0.35 160 201
cross�ow 0.425 0.425

Table 3: Parameters of simulation (absolute values). Retention times (sec) of particles with radius 3.2 and 4.05
nanometers after 180 seconds of focusing.

Figure 32: Sketch of the Eclipse device

9.3 eclipse device

We consider now 3D geometries of the type, like one on the Figures 1 and 32. We intentionally do not
present all the parameters from the simulation, except the ones, which are needed for the comparison
with the analytical results.

Focusing-injection stage. A sketch of the focusing stage was presented on the Figure 2. In our experi-
ments we assume, that the particles are initially situated in the domain, which is an intersection of the
top wall and the inlet pipe. We distributed evenly 12000 particles in that domain.

We start the numerical simulations with injection of the particles, which last for either 4 seconds,
either 120 seconds. After all the particles have been injected we continue the focusing stage, until the
total time of the Focusing-injection stage is equal to 180 seconds.
Elution stage. Elution stage lasts until all the particles enter the outlet pipe. In general, one expect the

average time to leave the channel to be well approximated by the retention time formula (117), which
was derived for the simpli�ed geometry. The goal of our experiment is to check if this is true and to
check if retention time is a�ected by the length of the injection stage.

Remark 9.3.1 We consider also another Eclipse geometry, but for the same experiments for the Focusing-
injection and Elution stages. This geometry can be seen on Figure 33, and is very similar to the geometry
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Figure 33: Sketch of the Eclipse device

Figure 34: 90 degree geometry. 4 seconds injection.

on the Figure 32, despite the inlet and outlet pipes being under the angle of 30 degrees, with respect to the
top wall.

Resulting Fractograms can be seen on Figures 34-37 .
Based on the we can deduce, that

• For a su�ciently long focusing time, the retention time practically does not depend on the angle

• In the case of angle 30 degrees, more particles stay close to side wall according to the current
simulations, which results in a heavier tails at the fractograms.
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Figure 35: 90 degree geometry. 120 seconds injection.

Figure 36: 30 degree geometry. 4 seconds injection.



88 numerical simulations

Figure 37: 30 degree geometry. 120 seconds injection.



Part V

R E D U C E D B A S I S A P P R O A C H F O R R E T E N T I O N T I M E
E S T I M AT I O N

In this part of the thesis we present a model for AF4 based on SDE with re�ections, or com-
monly known as Skorohod SDE, and numerical simulations, based on this model.
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P D E A P P R O A C H F O R R E T E N T I O N T I M E E S T I M AT I O N

Our long term goal is shape optimization of AFFFF device and optimal control of the fractionation
process. In Chapter ii we have presented optimization for the focusing stage. In the future we will do
the optimization of the elution stage, according to the requirements of our industrial partner, as well.
At the end, the main goal is to have the best separation possible under the given constraints on the �ow.
The �rst step in that direction is to have the biggest di�erence in retention time for di�erent particles.
The goal of this chapter is to present important ingredients for optimization algorithms. More precisely,
to present e�cient two-grid �nite volume reduced basis algorithm for retention time estimation.

We choose �nite volume discretization, as most of the industrial codes, written for computational �ow
dynamics problems is written based on it. Another restriction is that most of those codes are locked,
so one can not access and modify it, which means that our algorithm should also be of the "black-box"
type.

10.1 mean exit time pde

Let us denote by u(x) the Mean Exit Time (MET) for the particle with respect to its initial position x.
Then for a given �ow ~V the equation for MET is (see [23])

Lu+ 1 = 0, x ∈ A

u (x) = 0, x ∈ ∂aA,
∂u

∂n
= 0, x ∈ ∂rA,

, (118)

where Lu = D∆u+
〈
~V ,∇u

〉
, A is a channel domain (see Figure 1), ∂rA is the re�ection part of the

boundary (blue color on the Figure 38), ∂aA is an absorbing part of the boundary (red part on the Figure
38), and ~V is the solution of the Stokes system (1).

Figure 38: Domain and boundary types

91



92 pde approach for retention time estimation

10.2 reduced basis method

Let X be a closed subspace of the Sobolev spaceH1 (A) in a bounded domain A ∈ Rn and B is a set of
parameters. We consider the following problem: given µ ∈ B �nd η ∈ X such that for ∀v ∈ X

a (η (µ) , v; µ) = (f, v) , (119)

where f ∈ L2 (A) and a is a bilinear form, corresponding to (118), continuous and coercive over X that
depends additionally on a parameter µ ∈ B. We assume, that for any µ, we can calculate η (µ) very
accurate, but with very high computational cost. So instead of this, we will precalculate very accurately
η for {µ1, . . . ,µn}, where n is small and then for any other µ̂ ∈ B, we will approximate η (µ̂) by
the linear combination of η (µ1) , . . . ,η (µn). Due to the fact, that we want to build low-dimensional
subspace Kn to approximate the solutions set K ⊂ X, we need to have some regularity of the η (µ) in
µ or hope that K has some kind of simple structure.

For more detailed explanation of Reduced Basis Method idea, we refer to e.g. [17], [46] and [51].
The usual Reduced basis method consists of two stages - o�ine and online. During the o�ine stage

we prepare a basis — a set of solutions η1, . . . ,ηn of the equation (119) calculated for a small number
of parameters µ1, . . . ,µn, which will be used to approximate η(µ) for µ 6= µ1, . . . ,µn

Remark 10.2.1 As we have mentioned before, "black-box" type algorithms are often used in the industrial
purposes. Two-grid reduced basis method allows to build such an algorithm, as it does not use the knowledge
about the code, but operates only with the solutions.

10.2.1 Two-grid Reduced basis

10.2.1.1 O�ine stage. Pure greedy version.

Let ηh be the solution of (119) calculated on a �ne grid, where h denotes the grid step. Denote by Bbasis
the set of parameters µ, which has been chosen as a basis for future estimations, and by Btrial ⊂ B,
with high cardinality (#Btrial � 1), the set of parameters, from which Bbasis will be chosen. At the end,
Bbasis should provide us a possibility to estimate any η (µ) ∈ K with accuracy ε.

• The basis is constructed iteratively. Assume, that we have already chosen the �rst k parame-
ters Bkbasis = {µ1, . . . ,µk} from the Btrial. Assume, that we have also calculated the �ne so-
lutions ηh1 , . . . ,ηhk corresponding to {µ1, . . . ,µk}. Then we orthonormalize1 the set of vectors
{ηh1 , . . . ,ηhk } and denote these elements as {η̂h1 , . . . , η̂hk }.

• Then ∀µj ∈ Btrial\Bbasis, �nd α = {α1, . . . ,αk} such that:∥∥∥∥∥ηh (µj)−
k∑
i=1

αi · η̂hi

∥∥∥∥∥
L2

→ min, (120)

After solving #Btrial − k minimization problems (120), we have errors ε1, . . .,ε#Btrial−k.

• If max
j=1,...,#Btrial−k

εj 6 ε, then stop. Else add µk+1 to Bbasis where

µk+1 = Argmax{ε1, . . . , ε#Btrial−k}.

Then calculate ηhk+1, corresponding to µk+1, along with η̂hk+1.

1 Note, that we do not solve here an eigenvalue problem as we orthogonalize elements in L2 norm. This is a key di�erence from
the method, proposed in [17]
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10.2.1.2 Two-grid online stage

Two-grid online stage has been presented in [17] for the �rst time, but in the �nite element setting.
Here we will present it for a nonvariational setting. Let us denote by ηH the solution calculated on a
coarse grid. Assume, that we have n basis elements in total: (η̂h1 , . . . , η̂hn).

• Choose µ ∈ B for which a computation is demanded.

• Calculate ηH (µ) and then �nd αi, i = 1, . . . ,n:

α(µ) = (α1(µ), . . . ,αn(µ)) = Argmin

∥∥∥∥∥ηH (µ) −

n∑
i=1

αi · η̂hi

∥∥∥∥∥
L2

. (121)

• Set ηhRB (µ) =
n∑
i=1

αi(µ) · η̂hi

10.2.1.3 Postprocessing with the recti�cation matrix

Let us denote by αH(µ) = (αH1 (µ), . . . ,α
H
n (µ)) a vector of coe�cients, which we obtain as a result of

two-grid online stage. It is clear that these coe�cients di�er from the ones we could obtain, if we were
mapping our basis directly to the solution on the �ne grid.

So let us consider basis elements η̂h1 , . . . , η̂hn and corresponding them initial vectors ηh1 , . . . ,ηhn. Then
we build matricesAh,AH ∈ Rn×n, such that the column i has the mapping coe�cients of ηhi and ηHi
respectively on basis elements. Now we can de�ne a recti�cation matrix R = Ah

(
AH
)−1 and present

a postprocessing algorithm:

• De�ne β = Rα

• Set ηhRB (µ) =
n∑
i=1

βi · η̂hi

Remark 10.2.2 This is so far an empirical approach, proposed at �rst in [17], which leads to great im-
provements in practice. One can notice, that the matrix R is built in the way, that

RAH = Ah,

and can be seen as a linear approximation of the certain operator B :

B : BαH(µ)→ αh,

where αH are coe�cients, obtained as the result of the two-grid online stage, and αh are the true ones.

Remark 10.2.3 The problem (121) can be solved in many ways. In this particular paper, we have imple-
mented cell-centered Finite volume discretization. Coarse grids were considered to be embedded into a �ne
grid, so the problem (121) was solved via aggressive coarsening (see Figure 39) of η̂hi onto a coarse grid. For
our problem this approach has shown very good results (see the Section 10.3). On the other hand, di�erent
approach may be preferable for other problems.

10.3 numerical results

In this section we will discuss RB method for (118). Consider the same geometry as in Section 9.1 We
have set the following parameters (see Figure 38):

A1. Length - L = 0.1 meters

A2. Width - w = 300 · 10−6 meters
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Figure 39: Initial and coarsened grids.

A3. u0 ∈ [2, 2.5] · 10−5 meters per second

A4. 〈v〉 ∈ [2, 5] · 10−2 meters per second.

Parameters u0 and 〈v〉 are used to de�ne the velocity ~V

V1 (x1, x2) = 6 ·
x2

w
·

(
1−

x2

w

)
· 〈v〉 ·

(
1−

u0L

w 〈v〉
x1

L

)
. (122)

V2 (x2) = −u0 ·

1− 3 ·(x2
w

)2
+ 2 ·

(
x2

w

)3 . (123)

One should notice, that (122)-(123) is the same velocity as (115)-(116), but written in the more conve-
nient for this chapter way. The parameter 〈v〉 controls the in�ow rate, while the parameter u0, called
cross�ow, controls the out�ow from the bottom of the channel.

In our numerical experiments, the �ne grid contains 5625× 450 elements.

10.3.1 Numerical results for the o�ine stage

We have chosen 31 uniformly distributed parameters from in�ow parameter 〈v〉 and 16 parameters from
out�ow rate u0. So this makes the number of parameters in Btrial set equal to 496 elements.

10.3.1.1 Kolmogorov n-width

Let K be a set of solutions u (µ) of (118), where µ ∈ B. It is clear that K is a subset of some normed
space X, where X is L2, H1 or our variational space V . Assume, that we want to approximate K with
Kn, which is the n-dimensional subspace of L2. Then the Kolmogorov n-width (see [15]) is given by

dn (K,Kn) = inf
Kn

sup
x∈K

inf
y∈Kn

‖x− y‖L2

and is a measure of the best possible approximation of the K with some n-dimensional subspace of L2.
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Figure 40: Kolmogorov n-width decay.

In order to estimate the decay of the Kolmogorov n-width we have built matrix S = {si,j}, i, j =
1, . . . 496, where si,j =

〈
u (µi) ,u

(
µj
)〉
L2

and plotted scaled eigenvalues.
As one can see on Figure 40, the scaled eigenvalues decay very fast, which means that the solution

set K can be approximated very well by the �nite dimensional space of low order.

10.3.1.2 Pure greedy o�ine stage

The error decay on Btrial depending on number of basis elements in the case of pure greedy o�ine stage
can be seen in the Figure 41. The parameters and chosen according to the greedy algorithm from the
Section 10.2.1.1 basis parameters can be seen on Figure 42. Red and green squares stand for the whole
Btrial parameter space, while green squares correspond to the parameters, chosen for the Bbasis

10.3.2 Numerical results for the online stage

For the tests for online stage we have chosen 30 uniformly distributed values for in�ow parameter 〈v〉
and 15 values for out�ow parameter u0. This gives us in total 450 elements to test, which do not overlap
with Btrial.

We have tested our 2-grid RB algorithm on 5 di�erent grids: 625× 450, 625× 150, 375× 450, 375×
150 and 375× 90 points with di�erent number of basis elements.

10.3.3 Retention time

As it was explained in the Section 9.2, at the end of the focusing stage we have particles, which form
boundary layer at the bottom of the channel. The distance X̂ from the bottom of the channel is well
approximated by an exponential distribution with parameter u0/D. In [58] it was shown, that so-called
retention time, which is the median for the distribution of exit times for the particle situated at the point
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# basis

∣∣∣u− uhRB,rect

∣∣∣
L2

∣∣u− uhRB
∣∣
L2

|u−uhRB|L2∣∣∣u−uhRB,rect

∣∣∣
L2with postprocessing with no postprocessing

10 2.409e− 04 2.409e− 04 1.0

20 9.264e− 06 9.298e− 06 1.005

30 1.202e− 06 1.510e− 06 1.378

40 2.122e− 07 1.310e− 06 6.25604

Table 4: Online stage test for coarse grid with 625× 450 points

# basis

∣∣∣u− uhRB,rect

∣∣∣
L2

∣∣u− uhRB
∣∣
L2

|u−uhRB|L2∣∣∣u−uhRB,rect

∣∣∣
L2with postprocessing with no postprocessing

10 2.412e− 04 2.837e− 04 1.35

20 9.338e− 06 1.233e− 04 18.44

30 5.917e− 07 1.232e− 04 225.44

40 3.386e− 07 1.232e− 04 376.52

Table 5: Online stage test for coarse grid with 625× 150 points

x =

(
z0,

u0

D

)
has the exact representation (117). So, in 2D case in the rectangular geometry, in order

to �nd the retention time from the initial distribution, one should �nd its center of the mass, which

for the well focused concentration has the form x =

(
z0,

u0

D

)
and then calculate the retention time,

according to (117). Due to the fact, that retention time and mean exit time in the 2D case are close to
each other, we will compare their values.

First of all, we will compare two di�erent estimations of the mean exit for the center of the mass

situated at the point
(
z0,

u0

D

)
, where z0 ∈ [0,L].

A1. Let us use the following parameters:
• L = 0.17 meters
• w = 290 · 10−6 meters
• u0 = 23 · 10−5 meters per second
• 〈v〉 = 33 · 10−2 meters per second
• D = 72.4 · 10−12 meters per squared seconds.

A2. The mean exit time for di�erent z0 is estimated via the reduced basis method, while the retention
time is obtained from (117). We will compare those values for any z0 ∈ [0,L].
The results can be seen in Figure 43.

We can see, that there is a perfect match between the result of RB calculation and estimator, derived in
[58]. On the other hand, we can obtain the same information using MET equation in di�erent geometries
(see f.e. a sketch of hollow �ber device on Figure 28) in 2D and in 3D.
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# basis

∣∣∣u− uhRB,rect

∣∣∣
L2

∣∣∣u− uhRB,rect

∣∣∣
L2

|u−uhRB|L2
|u−uhRB|L2with postprocessing with no postprocessing

10 2.409e− 04 2.409e− 04 1.00008

20 9.308e− 06 9.392e− 06 1.01038

30 1.515e− 06 1.962e− 06 1.21532

40 1.054e− 06 2.357e− 06 1.91325

Table 6: Online stage test for coarse grid with 375× 450 points

# basis

∣∣∣u− uhRB,rect

∣∣∣
L2

∣∣u− uhRB
∣∣
L2

|u−uhRB|L2∣∣∣u−uhRB,rect

∣∣∣
L2with postprocessing with no postprocessing

10 2.411e− 04 2.836e− 04 1.351

20 9.359e− 06 1.230e− 04 18.056

30 1.519e− 06 1.229e− 04 83.657

40 1.150e− 06 1.230e− 04 114.416

Table 7: Online stage test for coarse grid with 375× 150 points

10.3.4 Future work on the optimization of the elution stage

Optimization problems for AFFFF are of the great interest and Reduced Basis technique can dramati-
cally reduce numerical complexity of these types of problems. There are di�erent works devoted for
optimization of AFFFF technique (see [10], [11]).

The estimation of the MET can also help for optimizing the elution stage, if the �ow regime is consid-
ered to be constant. Also it can provide the guess for the initial control, if the control is considered to
be time-dependent. To illustrate this idea we will consider a three dimensional problem, where we will
solve (118), distribute particles in some zone and estimate a distribution of MET.

Assume that we have two types of particles with the same initial distribution with di�usion coe�-
cientsD1 andD2, such thatD1 > D2. Let us de�ne by κDiα (u0, 〈v〉) a time instance t as the �rst time,
when α percent of the particle with di�usion coe�cients Di will leave the channel, if the velocity has
parameters (u0, 〈v〉). It is clear, that for the particles with the same initial distribution andD1 > D2, we
have κD1α (u0, 〈v〉) < κD2α (u0, 〈v〉). So now we can present the following functional with optimization
parameter u = (u0, 〈v〉):
Minimize

J(u) = (κD250 (u) −κD150 (u))
2 + γ1 · (κD225 (u) −κD175 (u))

2 → max

Subject to
κD25 (u) −κD195 (u) > γ2,

where γ and γ2 are certain coe�cients.
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# basis

∣∣∣u− uhRB,rect

∣∣∣
L2

∣∣u− uhRB
∣∣
L2

|u−uhRB|L2∣∣∣u−uhRB,rect

∣∣∣
L2with postprocessing with no postprocessing

10 2.429e− 04 4.618e− 04 2.55709

20 9.840e− 06 3.686e− 04 51.0933

30 1.691e− 06 3.695e− 04 230.118

40 2.317e− 06 3.697e− 04 165.596

Table 8: Online stage test for coarse grid with 375× 90 points
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C O N C L U S I O N

In Section 1.4 we have stated main problems, to cover in this work. Here is the short overview of the
strategies, we used to resolve them.

Optimization of the focusing stage

Part ii of this dissertation is devoted to solving the optimization problem for the focusing stage of AF4.
We introduced an optimization algorithm, which takes into the account the speci�cs of our problem
and a goal-oriented functional, which assures, that the concentration is well focused by the end of the
focusing process. We used sensitivity formulation instead of the adjoint one due to the special structure
of our problem, but provided an explicit PDE for each component of the gradient. Our approach allows us
to calculate each component of the gradient independently and in parallel with the solution of the main
state equation. Another advantage of this approach is that there is no need to save previous values
of the state c(x, t) to compute the gradient, which already leads to great savings in memory in two-
dimensional case. The results of this part have been published in [10] and [11].

Estimation of distribution function for exit times

Part iii introduces new Multilevel Monte Carlo algorithm for distribution functions approximation.
While till now the standard task for Multilevel Monte Carlo algorithm was to compute the expecta-
tion of a real-valued functional, we discuss how to approximate a distribution or density function on
a compact interval. In this part a general technique is proposed which is not restricted to the speci�cs
of the AF4, and thus can be useful to a broader range of problems. We give a full description of the
algorithm along with error and complexity analysis and numerical experiments. The results of this part
will be published in [29].

SDE-based model for particles evolution in the separation channel

In Part iv we present a model for AF4 based on Stochastic di�erential equation with re�ections, or com-
monly known as Skorohod SDE, and numerical simulations for di�erent geometries. We prove strong
convergence result for the exit times of the processes, driven by SDE with re�ection. The model at �rst
has been presented in [40]. Numerical experiments have been partially presented in [48]. Results from
Chapter 8 will be presented in [39].

PDE based approach for retention time estimation

In Part v we present one-way coupled Stokes equation for the �ow and PDE for the Mean Exit time and
a modi�cation of the modern two-grid reduced basis approach to the Finite Volume case. This approach
allows us to build a black-box type computational scheme, which is important for our application, as in
many cases one can not access the code of the industrial software, developed for computational �uid
dynamics problems. Our numerical experiments suggest, that two-grid reduced basis method can be
a very useful ingredient for the future work on the optimization of the Elution stage, as it is simple,
reliable and fast.
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