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Abstract

Cancer research is not only a fast growing field involving many branches of science, but also an
intricate and diversified field rife with anomalies. One such anomaly is the consistent reliance
of cancer cells on glucose metabolism for energy production even in a normoxic environment.
Glycolysis is an inefficient pathway for energy production and normally is used during hypoxic
conditions. Since cancer cells have a high demand for energy (e.g. for proliferation) it is somehow
paradoxical for them to rely on such a mechanism. An emerging conjecture aiming to explain this
behavior is that cancer cells preserve this aerobic glycolytic phenotype for its use in invasion and
metastasis. We follow this hypothesis and propose a new model for cancer invasion, depending
on the dynamics of extra- and intracellular protons, by building upon the existing ones. We
incorporate random perturbations in the intracellular proton dynamics to account for uncertainties
affecting the cellular machinery. Finally, we address the well-posedness of our setting and use
numerical simulations to illustrate the model predictions.

1 Introduction

A recent approach in cancer therapy is to consider the role of tumor microenvironment in the onset
of malignancy in tumors. Gatenby & Gillies [12] suggested that environmental conditions may drive
the selection of the cancerous phenotype. Hypoxia and acidity, for instance, are factors that can
trigger the progression from benign to malignant growth [9, 44]. To survive in their environment,
tumor cells upregulate certain proton extrusion mechanisms. This boosts apoptosis in normal cells,
thereby allowing the neoplastic tissue to extend into the available space. Tumour acidification was
recognised as an intrinsic property of both poor vasculature and altered cancer cell metabolism.
Moreover, the pH directly influences the metastatic potential of tumor cells [1, 30].

Starting from these facts, Gatenby & Gawlinski [8] proposed a model for the acid-mediated tu-
mor invasion which uses reaction-diffusion partial differential equations (RD-PDEs) to describe the
interaction between the density of normal cells, tumor cells, and the concentration of H+ ions pro-
duced by the latter. Traveling waves were used in this framework to explain the aggressive action
of cancer cells on their surroundings [7]. Further developments of Gatenby & Gawlinski’s model
involve both vascular and avascular growth of multicellular tumor spheroids, assuming rotational
symmetry, for which existence and qualitative properties of the solutions were investigated [36]. In
[28] the model in [8] for acid-mediated tumor invasion was reconsidered, wherein crowding effects
(due to competition with cancer cells) in the growth of normal cells was taken into account. The
global existence of a unique solution was proved via an iteration argument.

All the models mentioned above consider macroscopic dynamics of cancer and normal cell pop-
ulations which are coupled – still on the macrolevel – with the evolution of extracellular H+

concentration and possibly also with the concentration of MDEs [29]. It is clear, however, that
subcellular, microlevel proton dynamics are actually regulating and are influenced significantly by
the events on the higher (i.e., macroscopic and mesoscopic) levels [27, 38, 44]. Mathematical mod-
els studying the interdependence between the activity of several membrane ion transport systems
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and the changes in the peritumoral space were proposed by Webb et al. [46, 45]. They also involve
intracellular proton buffering, effects on the expression/activation of MMPs and proton removal
by vasculature. [45] also accounts for the influence of alkaline intracellular pH on the growth of
tumor cells. Such a model can thus be seen as a first step towards a multiscale setting. The actual
invasive behavior, however, can only be assessed when spatial dependence is taken into account.
This requires a higher dimensional and more complex modeling framework that couples the sub-
cellular dynamics at microscopic scale with the population dynamics at the macroscopic scale.
Micro-macro models of this type (in a different, but related context) were proposed and analysed
e.g., in [32, 31, 37].

Stochasticity is a relevant feature inherent to many biological processes occurring on all model-
ing levels. In particular, it seems to greatly influence subcellular dynamics and individual cell
behavior. Models taking this into account were proposed and analysed in various contexts (cell
dispersal, intracellular signaling, radio-oncological treatment) in [39, 40, 41]. In the framework of
acid-mediated tumor invasion, too, experiments suggest stochasticity in pH dynamics; this refers
to variations and uncertainties (essentially due to a random environment) in the behavior of each
cell even though they all follow the same biochemical mechanisms. The distribution of intracel-
lular pH (pHi) at any value of extracellular pH (pHe) was found to be broader than what was
predicted by theoretical models based on machine noise and stochastic variation in the activity of
membrane-based mechanisms regulating pHi [27]. Moreover, excess current fluctuations have been
observed in the gating of the ion channels [19].

Motivated by these facts we propose here a stochastic multiscale model for cancer invasion, to be
developed in Section 2 and analysed w.r.t. well posedness in Section 3. Further, in Section 4 we
perform some simulation results to illustrate its performance and eventually discuss in Section 5
the results and comment on the potential of this new model class.

2 Model set-up

In this section we set up a phenomenological model for the acid mediated tumor invasion. To
this aim we indentify four main quantities and account for their dynamics: H denotes the proton
concentration and refers only to cancer cells, as we are interested in the effect of tumor-induced
acidity. Thereby, we take into account both the intracellular protons (whose concentration we
denote with Hi) and the extracellular ones, having concentration He. The other two quantities are
the tumor cell density C and the normal cell density N .

2.1 Microscopic dynamics: the intracellular proton concentration

The dynamics of intracellular protons is described by the following random differential equation:

∂tHi = −T1(Hi, He)− T2(Hi, He) + T3(Hi) + S1(v)−Q(Hi) + F (χt, Hi) (1)

T1, T2, and T3 are real valued functions representing NDCBE, NHE, and AE transporters, respec-
tively. 1 To acquire a concrete form for these transporter terms – in the absence of numerical data
– we followed e.g., [46] and tried to mimic for T1 and T2 functions the qualitative curves obtained
experimentally in [4] for the efflux of protons by NDCBE and NHE in MGU-1 cell lines. For the T3

function we adopted the approach in [46] and made it a monotone decreasing function of Hi, since
the AE acts as a counter-mechanism for the alkalinization of cytoplasm. Furthermore, Q denotes
the function representing the loss of free protons due to intracellular buffering (e.g., by organelles).
The function S1 in (1) represents the observed constant acid production rate in cancer cells due
to aerobic glycolysis. It is parameterized by tissue vasculature (v). The qualitative features of all
these functions are depicted in Figure 1 and Figure 2.

As a cell is a complex machinery influenced by a plethora of biochemical and background pro-
cesses, a phenomenological deterministic model is prone to be highly idealized and fails to account
for the complex behavior of the intracellular environment and its interactions with the cell’s sur-
roundings. One approach of remove this drawback would be to use random terms serving as an

1NDCBE (Na+ dependent Cl−-HCO−3 exchanger), NHE (Na+ and H+ exchanger) and AE (Cl−-HCO−3 or anion
exchanger) are specific transporters present on the cell membrane.
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Figure 1: Functions representing NDCBE and NHE transporters

Figure 2: Functions representing AE transporter and proton production and loss terms

ensemble of uncertainties influencing the proton dynamics. Here we consider a state dependent
noise of the following form:2

F (χt, Hi) := F1(Hi)F2(Ba,bt ) := ϑHiB
a,b
t , (2)

where Ba,bt is a Bownian bridge process starting at a and ending at b. Thereby, a, b ∈ R and ϑ are
some independent parameters.

2.2 Extracellular proton concentration

The next quantity of interest in our model is the extracellular proton concentration He(t, x), which
is modeled to satisfy the following equation:

∂tHe = T1(Hi, He) + T2(Hi, He)− T3(Hi)− S2(v)He +D1∆He (3)

The transport functions T1, T2 and T3 are as mentioned above. The function S2 is used to describe
the removal of acid (protons) from the extracellular (interstitial) space by vasculature and takes
the form

S2(v) := a5 κ v. (4)

We include diffusion as a way to describe acidity patterns in the peritumoral region. The parameter
D1 > 0 represents the diffusion coefficient of the extracellular protons. To shorten the notation,
we denote by T (Hi, He) the efflux of protons as a combined effect of T1, T2, and T3 i.e.

T (Hi, He) := T1(Hi, He) + T2(Hi, He)− T3(Hi). (5)

We collect the parameters involved in the dynamics of Hi and He into the vector Ξ := (v, κ)T .
Their values are chosen with the aim of achieving the long time behavior of a reverse pH gradient.

2.3 Cell dynamics on the macroscale

Since we want to study the effect of proton concentrations on cancer cell invasion we need to
characterise the dynamics of tumor cell density C(t, x) and normal cell density N(t, x). The

2other choices involving e.g., an Ornstein-Uhlenbeck process or a bounded function of a Brownian motion are
conceivable as well
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Figure 3: Cancer proliferation function as a function of Hi.

former is supposed to satisfy the reaction-diffusion equation

∂tC = ω1Λ1(Hi)C
(

1− ηC
C

KC

)
− ω1Λ+

1 (Hi)ηN
CN

KN
+∇ ·

(
D2(C,N)∇C

)
, (6)

where Λ+
1 (Hi) := max(Λ1(Hi), 0) is the positive part of Λ1(Hi). We use a (modified) Lotka-

Volterra type reaction term to model inter- and intra-species competition between cancer cells

and normal cells. This can be explicitly written as ω1C
(

1 − ηC C
KC
− ηN N

KN

)
. The proliferation

function Λ1(Hi) represents the influence of intracellular proton concentration on the growth of
cancer cells. According to [44, 35], relatively high pHi fosters cell division and provides resistance
to cell apoptosis. Hence (see [44]), higher pHi may cause a reentry of the cell into the mitotic phase
or suppression of mitotic arrest. These features are incorporated by introducing a rate function
(also termed proliferation or switching function) Λ1 for the damped logistic growth above.

According to [5], low pHi activates DNase II 3 which in turn leads to cell apoptosis. However, there
seems to be also a positive correlation between (too) high pHi values and cell apoptosis [5]. Thus,
though not true in every sense, it is interesting to study the effect of Λ1 which takes positive values
for all but toxic values of Hi. The form of the function is show in Figure 3. Since Λ1(Hi) ∈ R,
for the negative part of Λ1(Hi) the influence of normal cell population is ignored. This means
that when Λ1(Hi) is negative only intra-specie competition is prevalent, as a result the normal cell
density has no influence during decay of cancer density. Consequently, the Lotka-Volterra reaction
term is modified as in the equation (6).

Cancer cells can spread through space and start affecting different areas of the tissue. For modeling
cancer dispersal within a selected region of tissue we use a nonlinear operator of the form ∇ ·
(D2(C,N) · ∇). The diffusion coefficient is chosen to be inversely proportional to the normal cell
density and the cancer cell density, since they act as obstacles and impede each other’s movement:

D2(C,N) :=
γ

1 + CN
KCKN

.

To complete the model we still need to describe the evolution of the normal cell density, which is
supposed to decay during the tumor invasion. This decay, on the one hand, is directly proportional
to the probability of the interaction between the two cell populations and, on the other hand, is
accelerated by the increased acidity of the extracellular region. We introduce a decay function
Λ2 := log2.15(1 + He) to capture the influence of extracellular proton concentration. The rate of
decay is a monotone function of He and is chosen in such a way that -qualitatively- the decay is
slow and quantitatively Λ2(He) > 1, for all He > 1.15. In particular, Λ2(He) > 1 for He = 1.2
hence for pHe = 6.92081.
The growth term is ignored, since replication or regeneration of normal cells happen on a much

3DNase stands for DeoxyriboNuclease, an enzyme that causes DNA fragmentation. DNase II is a type of DNase
which becomes active in acidic conditions.
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larger time scale, thus having nearly zero overall influence on the time scale of interest in this work.
Hence, the equation characterising the dynamics of normal cell density takes the form

∂tN = −ω2Λ2(He)
C

KC

N

KN
, (7)

where ω2 denotes the death rate of normal cells. A detailed explanation for the choice of the
functions and a detailed reasoning for all equations proposed above can be found in [15].

Now let I = (0, T ] ⊂ R+ be a finite time interval and Ω ⊂ Rd, d ∈ {1, 2, 3} be an open bounded
spatial domain. Furthermore, let (Σ,A,P) be a complete probability space and let χ : I × Σ →
S := R be a P-a.s. continuous real-valued stochastic process. By At we denote the filtration
generated by the processes χt and N denotes the system of all P-nullsets that are A0 measurable.

Then using the dimensionless identities in (94) and (95) and dropping the overhead lines therein
we get for each ς ∈ Σ\N the following non-dimensionalized system:

(SPDM)



∂tHi(ς) = −T (Hi, He) + S1 −Q(Hi) + F (χt(ς), Hi) in I × Ω

Hi(0, ς) = Hi,0(ς) in Ω (8a)

∂tHe(ς) = T (Hi, He)− S2He + ∆He in I × Ω (8b)

He(0, ς) = He,0(ς), in Ω

∇He(ς) · n̂ = 0 in ∈ I × ∂Ω

(CPDM)



∂tC(ς) = ω1Λ1(Hi)C
(

1− ηC
C

KC

)
− ω1Λ+

1 (Hi)ηN
CN

KN
(9a)

+∇ · (D(C,N)∇C) in I × Ω

C(0, ς) = C0(ς) in Ω (9b)

∇C(ς) · n̂ = 0 in I × ∂Ω

∂tN(ς) = −Λ2ω2CN in I × Ω (9c)

N(0, ς) = N0(ς) in Ω.

Thereby, SPDM stands for stochastic proton dynamics model and CPDM denotes the cell popu-
lation dynamics model. Due to the presence of the stochastic term in the microscopic equation
(8a) and through the coupling with the rest of the equations, the result is a stochastic multiscale
model (abbreviated as SMSM). Nonetheless, for fixed ς ∈ Σ\N we have a deterministic system
of equations, to which the standard theory of ODE and PDE is applicable. Next we prove the
well-posedness of our model and finally perform numerical simulations to assess its qualitative
behavior.

3 Analysis of the stochastic multiscale model

In this chapter we analyze the well posedness of the stochastic multiscale model for acid mediated
cancer invasion. The analysis of (SPDM) and (CPDM) can be handled sequentially, since only the
latter is coupled with the former and not the other way round. For simplicity of writing we denote

Notation 1.

R1(Hi, He) := −T (Hi, He) + S1 −Q(Hi), (10)

R2(Hi, He) := T (Hi, He), (11)

R3(Hi, C,N) := ω1Λ1(Hi)C
(

1− ηC
C

KC

)
− ω1Λ+

1 (Hi)ηN
CN

KN
, (12)

R4(He, C,N) := −Λ2(He)CN, (13)

where T (Hi, He) is given in equation (5). (For notational convenience the growth rate ω1 and the
decay rate ω2 are moved into the function Λ1(Hi) and Λ2(H2), respectively.)

3.1 Preliminaries

Our first step here is to we refine the probability space to accommodate only a.s. bounded processes.
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3.1.1 Boundedness of the random component F2(χt) in the noise term F (see (2))

Definition 1 (ε-acceptance set). Let CF > 0 be a fixed constant. The set

G(ε) :=

{
ς : P

(
sup
t∈[0,T ]

∣∣F2

(
χt(ς)

)∣∣ > CF

)
< ε

}
is defined to be the ε-acceptance set.

Definition 2 (ε-exception set). The set

E(ε) := Σ\G(ε)

is called the ε-exception set.

Further assume F2(χt) is a semi-martingale, i.e., it can be written as

F2(χt) = At +Mt,

where Mt is a right continuous martingale and At is a càdlàg process locally adapted and with
bounded variation. By Doob’s martingale inequality it follows then that

P
(

sup
t∈[0,T ]

∣∣F2(χt)
∣∣ > CF

)
≤ E(M2

T )

C̃2
F

, (14)

where C̃F := CF − sup
t∈[0,T ]

|At|.

It is important to note that on the set G(ε), F2(χt) ≤ CF with the probability 1− ε. As a result
by choosing ε � 1 one can achieve ”nearly” P-a.s. boundedness. This motivates us to exclude
the exception set, E(ε), from Σ, so that we can obtain a.s. boundedness. Following this idea we
define a (sub)probability space (Σε,Aε,Pε), such that:

1. Σε := Σ\E(ε) is the new event space.

2. Aε ⊂ A is the corresponding σ-algebra of Σε.

3. Pε � P is the new probability measure which is absolutely continuous with respect to P. The
requirement of absolute continuity ensures the property that all P−null sets are also Pε-null
sets.

This new probability space now contains only those sample paths of the process (F2(χt))t∈[0,T ]

that are Pε-a.s. bounded. Thus in this sense, we define CεF to be the uniform upper bound for the
process (F2(χt))t∈[0,T ].

Lemma 3.1. For a given small exception probability ε such that 1� ε > 0 and T <∞, if there
exists of a non-empty (sub) probability space (Σε,Aε,Pε), then there exists a constant CεF < ∞
such that the semimartingale process (F2(χt))t∈[0,T ] restricted to Σε (denoted as (F ε2 (χt))t∈[0,T ])
is Pε-a.s. uniformly bounded, such that

F ε2 (χt(ς)) ≤ CεF , ∀t ∈ [0, T ], ∀ς ∈ Σε.

Proof. Clear from the construction procedure for (Σε,Aε,Pε) illustrated above. �

Remark 1. An immediate consequence is that the noise term F2(χt) := ϑχt, with χt := Ba,bt and

Ba,bt := a+ (b− a)
t

T
+Wt −WT

t

T
(t ∈ [0, T ])

is a Pε-a.s. uniformly bounded process. Indeed, (Ba,bt ) is a semimartingale, which can be seen
from the following Itô integral definition of a Brownian bridge process

Ba,bt := a+ (b− a)
t

T
+ (T − t)

∫ t

0

1

T − s
dWs = At +Mt,
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where Mt := (T − t)
∫ t

0
1

T−sdWs is a martingale and At := a+ (b− a) tT is a deterministic function.

Since the Gaussian process Ba,bt can be endowed with a complete probability space (Σ,A,P), for
any 0 < ε � 1 one can extract a measurable space (Σε,Ae) satisfying the above properties and
endow it with a probability measure for e.g. Pε := P/P(Σε) (just a renormalization of P). Thus by
above lemma the claim holds.

Next we introduce the function spaces in which we expect our solution processes Hi, He, C and
N to lie in.

3.1.2 Function spaces

Consider Hi(t) and He(t) to be Hilbert space valued processes, i.e., Hi(t, ς) and He(t, ς) are func-
tions in appropriate Hilbert spaces. Moreover, we take the processes themselves to be in some
Hilbert space. From this perspective we define the following function spaces:

X :=

(
L2
(

Σε;H
1,0
)
, ‖.‖X

)
; ‖u‖X :=

(
Eε(‖u(ς)‖2H1,0)

) 1
2

, (15)

Y :=

(
L2
(

Σε;H
1,1
)
, ‖.‖Y

)
; Z :=

(
L2
(

Σε;H
1,2
)
, ‖.‖Z

)
(16)

‖u‖Y :=
(
Eε(‖u(ς)‖2L2(0,T ;H1(Ω)) + ‖∂tu(ς)‖2L2(0,T ;L2(Ω)))

) 1
2

,

‖u‖Z :=
(
Eε(‖u(ς)‖2L2(0,T ;H2(Ω) + ‖∂tu(ς)‖2L2(0,T ;(H1(Ω))∗)

) 1
2

,

where
H1,0 :=

{
u ∈ L2(0, T ;L2(Ω)), ∂tu ∈ L2(0, T ;L2(Ω))

}
,

H1,1 :=
{
u ∈ L2(0, T ;H1(Ω)), ∂tu ∈ L2(0, T ;L2(Ω))

}
,

H1,2 :=
{
u ∈ L2(0, T ;H2(Ω)), ∂tu ∈ L2(0, T ; (H1(Ω))∗)

}
.

The Bochner spaces L2(0, T ;L2(Ω)) (shortly LΩ,T ), L2(0, T ;H1(Ω)), L2(0, T ;H2(Ω)) and L2(0, T ; (H1(Ω))∗))
are all endowed with their respective standard norm. Finally, we also need the space

LΣ := L2
(

Σε;L
2(0, T ;L2(Ω))

)
, ‖u‖LΣ

:=

(
Eε
(
‖u(ς)‖2LΩ,T

)) 1
2

.

Here Eε is the expectation operator on the refined probability space (Σε,Aε,Pε).
We want the solution Hi and N to the equations (8a) and (9c), respectively, to lie in the space
X. This means that the processes (Hi(t))t∈[0,T ] and (N(t))t∈[0,T ] lie in L2(Σε) and take values in
L2(Ω) for each fixed t ∈ [0, T ]. Moreover, due to the embedding H1,0 ↪→ C(0, T ;L2(Ω)), Hi(t) and
N(t) are continuous as functions of t ∈ [0, T ] if Hi(ς) ∈ H1,0 and N(ς) ∈ H1,0. Thus, Hi ∈ X and
N ∈ X imply that, for almost all ς ∈ Σε, the function Hi(t, ς) is continuous in L2(Ω) with respect
to t ∈ [0, T ].

Similarly, we want the solutions He and C to the equations (8b) and (9b), respectively, to lie in
the space Y and Z respectively. This means that the processes (He(t))t∈[0,T ] and (C(t))t∈[0,T ] take
values in H1(Ω) and belong to L2(Σε). Moreover, He(t) and C(t) are weakly differentiable as
functions of t ∈ [0, T ], i.e., He(ς) ∈ H1,1 and C(ς) ∈ H1,2. Since H1,2, H1,1 ↪→ C([0, T ];L2(Ω)),
we notice that He ∈ Y and C ∈ Z implies that, for almost all ς ∈ Σε, the functions He(t, ς) and
C(t, ς) are continuous in L2(Ω) with respect to t ∈ [0, T ].

3.2 Analysis of the stochastic proton dynamics model (SPDM)

Prior to existence and uniqueness theorems, we make the following

Remark 2.

• The reaction terms in (8a) and (8b) are uniformly bounded and Lipschitz continuous.
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• From Lemma 3.1 the noise term F ε(χt, Hi) := HiF
ε
2 (χt) in (2) is Lipschitz continuous.

Moreover, the following result can be easily verified:

Lemma 3.2. For a fixed parameter vector Ξ the reaction terms R1

(
Hi(t, x, ς), He(t, x, ς)

)
and

R2

(
Hi(t, x, ς), He(t, x, ς)

)
in (10) and (11) are uniformly bounded for all t ∈ [0, T ], x ∈ Ω, ς ∈ Σε.

Hence for p ∈ [1,∞], R1, R2 ∈ Lp
(

Σε;L
p
(
[0, T ]× Ω

))
.

The main aim of this section is to show the existence of the weak solution to (SPDM) and prove its
uniqueness. The idea is to find the pathwise weak solution of (SPDM), i.e., for each ς ∈ Σε to find
Hi(ς) ∈ H1,0 and He(ς) ∈ H1,1. From this perspective, equations (8a) and (8b) are transformed
into the following convenient form:

∂tHe(t, x, ς)−∆He = −S2He +R2(Hi, He) (17a)

He(0, x, ς) = He,0(x, ς), for each x ∈ Ω, ς ∈ Σε

d

dt
Hi(t, x, ς) = R1(Hi, He) +HiF2(χt), for each x ∈ Ω, ς ∈ Σε (17b)

Hi(0, x, ς) = Hi,0(x, ς)

In order to prove the uniqueness and existence of the pathwise weak solution we first construct a
sequence of solutions and then show that it converges in some appropriate sense. This will occupy
the rest of this section.

3.2.1 Iterative construction of a solution sequence for (SPDM)

We start constructing a sequence of weak solutions for the equations (8a) and (8b). First we
introduce some abbreviations.

Notation 2. Let Hm
e ∈ (Hm

e )m∈N∗ and Hm
i ∈ (Hm

i )m∈N∗ . For the reaction term R1(Hm
i , H

m
e )

we use the short notation
Rm1 := R1(Hm

i , H
m
e ), ∀m ∈ N∗

and for the reaction term R2(Hm
i , H

m−1
e ) we denote

Rm2 := R2(Hm
i , H

m−1
e ), ∀m ∈ N∗.

Approximate problem for (SPDM): Let (Hm
i (ς))m≥0 ⊂ H1,0 be such that for each x ∈ Ω

and ς ∈ Σε

d

dt
H0
i (t) = R1(Hi,0, He,0) +H0

i F
ε
2 (χt)

d

dt
Hm
i (t) = Rm−1

1 (t) +Hm
i F

ε
2 (χt) a.e. x ∈ Ω, m ≥ 1 (18)

Hm
i (0, x, ς) = Hi,0(x, ς), for each x ∈ Ω, ς ∈ Σε.

Let (Hm
e (ς))m≥0 ⊂ H1,1 be the weak solution of

∂tH
0
e −∆H0

e = −S2H
0
e +R2(H0

i , He,0)

∂tH
m
e −∆Hm

e = −S2H
m
e +Rm2 , a.e. x ∈ Ω, m ≥ 1 (19)

Hm
e (0, x, ς) = He,0(x, ς), for each x ∈ Ω, ς ∈ Σε.

Now we show that for almost all ς ∈ Σε and for each (not just almost all) fixed x ∈ Ω, the function
Hm
i (t) is the solution to the corresponding m-th equation (18).

Lemma 3.3. For a.e. ς ∈ Σε and for each x ∈ Ω, if there exists T <∞ such that Hm−1
e (ς) ∈ H1,1

uniquely solves (19) and if Hi,0(ς) ∈ L2(Ω), then there exists Hm
i ∈ X (m ≥ 1) such that for each

ς ∈ Σε the function Hm
i (ς) ∈ H1,0 solves uniquely the corresponding m-th equation (18).
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Proof. Let m ≥ 1. Since F2(χt) is Pε-a.s. uniformly bounded and we assume the existence of
the function Hm−1

e , i.e., the unique solution to equation (19), we get that for fixed ς ∈ Σε, x ∈ Ω,
equations (18) define linear inhomogeneous initial value problems. Thus, the unique solution to
the m-th equation is given by

Hm
i (t) = e

∫ t
0
F ε2 (χs) ds

(
Hi,0 +

∫ t

0

e−
∫ s
0
F ε2 (χr) drRm−1

1 (s) ds
)
. (20)

More precisely, for each fixed x ∈ Ω and ς ∈ Σε, we get

Hm
i (t, x, ς) = e

∫ t
0
F ε2 (χs) ds

(
Hi,0(x) +

∫ t

0

e−
∫ s
0
F ε2 (χr) drRm−1

1 (s, x, ς) ds

)
.

Moreover, because of uniform boundedness of the reaction term R1 we get

|Hm
i (t, x, ς)| ≤ e

∫ t
0
F ε2 (χs) ds

∣∣∣∣Hi,0 +

∫ t

0

e−
∫ s
0
F ε2 (χr) drRm−1

1 (s, x, ς) ds

∣∣∣∣
≤ eC

ε
F t|Hi,0(x)|+ eC

ε
F t|CR1t|, ∀ x ∈ Ω, ς ∈ Σε

with CR1
denoting the bound for R1.

Similarly, for each x ∈ Ω and almost all ς ∈ Σε, we get that

|∂tHm
i (t, x, ς)| = |Rm−1

1 +Hm
i (t, x, ς)F ε2 (χt)| ≤ CR1

+Hm
i (t, ·, ς)CεF , ∀t ∈ [0, T ],

hence
|∂t(Hm

i )| ≤ |CR1 + CεFH
m
i |.

As Hi,0 ∈ L2(Ω), we get upon integrating

‖Hm
i (ς)‖2LΩ,T

≤ 2Te2CεFT ‖Hi,0‖2L2(Ω) + 2e2CεFTC2
R1
T 2|Ω|2 <∞ (21)

and
‖∂tHm

i (ς)‖2LΩ,T
≤ 2TC2

R1
|Ω|2 + 2(CεF )2‖Hm

i (ς)‖2LΩ,T
<∞. (22)

From (21) and (22) we obtain

‖Hm
i (ς)‖2H1,0 ≤ ‖Hm

i (ς)‖2LΩ,T
+ ‖∂tHm

i (ς)‖2LΩ,T

≤ 2
(

1 + 2(CεF )2
)
Te2CεFT

(
‖Hi,0‖2L2(Ω) + C2

R1
T |Ω|2

)
+ 2TC2

R1
|Ω|2.

Taking the expectation Eε we get

‖Hm
i ‖2X ≤ 2T

(
(1 + (CεF )2)e2CεFT

(
‖Hi,0‖2LΣ,Ω

+ C2
RT |Ω|2

)
+ C2

R|Ω|2
)
, (23)

hence we obtain Hm
i ∈ X, such that for almost all ς ∈ Σε, it is Hm

i (ς) ∈ H1,0. Moreover, for each
x ∈ Ω fixed, Hm

i (t, x, ς) uniquely solves the corresponding m-th equation (18). �

Observe that with a similar argument (under even less restrictive conditions) it can be shown that
H0
i (t, x, ς) exists as a (unique) solution to the first equation in (18) (with m = 0). Moreover,

H0
e (t, x, ς) obviously exists as a (unique) solution to the first equation in (19). These facts allow

us to start the following induction procedure:

• Start with H0
i , H0

e .

• For m ≥ 1 assume Hm
i ∈ H1,0 solves (18), which implies (due to Lemma 3.4 below) the

existence of a unique Hm
e ∈ H1,1 solving (19).

• Use Hm
e found above to prove the existence of Hm+1

i satisfying (18) for m m+ 1, followed
by the existence of Hm+1

e as solution to (19).

Now we can consider the equation (19) in general for m ∈ N.
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Lemma 3.4. If for each ς ∈ Σε, He,0 ∈ H1(Ω), then there exists some T > 0 such that Hm
e (ς) as

an element of H1,1 uniquely solves the corresponding m-th equation (19). Furthermore, Hm
e ∈ Y

and it satisfies the following inequality:

‖Hm
e ‖2L2(0,T ;H1(Ω)) + ‖∂tHm

e ‖2LΩ,T
≤ q1‖Rm2 (ς)‖2LΩ,T

+ q2‖He,0‖2H1(Ω),

‖Hm
e ‖2Y ≤ q1‖Rm2 ‖2LΣ

+ q2‖He,0‖2L2(Σε;H1(Ω)),

where q1 := 1 +
(

1 + cε

)
TeS2T , q2 := q1 and

L2
(
Σε;H

1(Ω)
)

:=
{
u ∈ L2(Σε) such that u(ς) ∈ H1(Ω) a.e. ς ∈ Σε

}
.

Proof. The proof is obtained by following the lines of Theorem 7.1.1 in [6]. A detailed proof in-
volving similar arguments will be presented during the existence and uniqueness proof for (CPDM)
(in particular for the solution of(9b)). �

Remark 3. We note here that one can actually even get higher regularity for Hm
e . For ∂Ω ∈ C2

and He,0 ∈ W 2,p(Ω) with p > d + 2, since Rm2 ∈ L∞(0, T ;L∞(Ω)) (see Lemma 3.2) we can apply
Theorem 9.1 (Chapter 4 of [25]) and get that for each ς ∈ Σε,

Hm
e (ς) ∈W (p, T,Ω) :=

{
u ∈ Lp(0, T ;W 2,p(Ω)) : ∂tu ∈ Lp(0, T ;Lp(Ω))

}
.

Moreover, Hm
e satisfies the following inequality:

‖Hm
e ‖W (p,T,Ω) ≤ c(|Ω|, T, p)

(
‖Rm2 ‖L∞(Ω) + ‖He,0‖W 2,p(Ω)

)
.

Thus we get that (Hm
e )m∈N∗ is a bounded sequence in W (p, T,Ω). Hence there exists a subsequence

(H
mj
e )j ⊂ (Hm

e )m∈N∗ such that

Hmj
e

j→∞
⇀ He in Lp

(
0, T ;W 2,p(Ω)

)
∂tH

mj
e

j→∞
⇀ ∂tHe in Lp

(
0, T ;Lp(Ω)

)
.

Moreover, due to the Sobolev embedding W 2,p(Ω) ↪→↪→ Lp(Ω) ↪→↪→ L2(Ω) we can apply the
Lions-Aubin embedding theorem to get W (p, T,Ω) ↪→↪→ Lp

(
0, T ;Lp(Ω)

)
↪→ L2(0, T ;L2(Ω)).

Hence the subsequence (H
mj
e )j∈N ⊂W (p, T,Ω) converges strongly in Lp

(
0, T ;Lp(Ω)

)
and L2(0, T ;L2(Ω)).

For ease of notation, in the L2(0, T ;L2(Ω)) convergence proof below we shall ignore the subscript
j and just refer the subsequence by (Hm

e )m∈N∗ itself.
Finally, we get that the limit He(ς) ∈W (p, T,Ω)∩H1,1, for each ς ∈ Σε. This in turn gives us that

He(ς) ∈ C1,0([0, T ]× Ω) and ∇He(ς) ∈ C([0, T ]× Ω).

In particular the uniform continuity of ∇He(ς) is used later in the proof of the H2(Ω) regularity
for the solution to (CPDM).

Next we are concerned with the existence of the solution sequences (Hm
i )m∈N ⊂ X and

(Hm
e )m∈N ⊂ Y.

Theorem 3.5. Let CεF be such that F ε2 (χt) satisfies Lemma 3.1. Then for each ς ∈ Σε and
m ∈ N∗ we have that Hm

i (ς) ∈ H1,0 solves uniquely the m-th equation specified by (18) and
Hm
e (ς) ∈ H1,1 solves uniquely the m-th equation specified by (19). Furthermore, the sequences

(Hm
i )m∈N ⊂ X and (Hm

e )m∈N ⊂ Y.

Proof. Follows from lemmas (3.3), (3.4), and the induction procedure. �
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3.2.2 Existence and uniqueness of the solution to (SPDM)

Consider (Hm
e )m∈N ⊂ Y, such that for fixed ς ∈ Σε,

Hm
e (ς) := (Hm

e (ς))m∈N ⊂ H1,1 (24)

denotes the sequence of solutions to the corresponding m-th equation specified by (19).
Similarly, consider (Hm

i )m∈N ⊂ X, such that for fixed ς ∈ Σε,

Hm
i (ς) := (Hm

i (ς))m∈N ⊂ H1,0 (25)

denotes the sequence of solutions to the corresponding m-th equation specified by (18).
Next we collect some estimates for the terms in the sequence Hm

e .

Lemma 3.6. For each fixed ς ∈ Σε, let Hm
e , Hn

e be any two elements of the sequence (Hm
e )m

(see (24)). Then the following inequality holds:

‖Hn
e (ς)−Hm

e (ς)‖2L2(0,T ;H1(Ω)) + ‖∂tHn
e (ς)− ∂tHm

e (ς)‖2LΩ,T

≤ Q1
He‖H

n
i (ς)−Hm

i (ς)‖2LΩ,T
+Q2

He‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΩ,T
.

By taking the Eε expectation this leads to

‖Hn
e −Hm

e ‖2Y ≤ Q1
He‖H

n
i −Hm

i ‖2LΣ
+Q2

He‖H
n−1
e −Hm−1

e ‖2LΣ

where

Q1
He

:= q1(T )C2
Hi
, Q2

He
:= q1(T )C2

He
, and q1(T ) := 1 +

(
1 + 2

ε

)
TeS2T

are constants for all fixed 0 < T <∞.

Proof. Equation (19) applied to the difference Wm,n
e := Hm

e −Hn
e results in

∂tW
m,n
e −∆Wm,n

e + S2W
m,n
e = Rm2 −Rn2 .

Thus the inequality of Lemma 3.4 can be applied to Wm,n
e . Consequently, with Wm,n

e,0 = 0 we get

‖Hm
e (ς)−Hn

e (ς)‖2L2(0,T ;H1(Ω)) + ‖∂tHn
e (ς)− ∂tHm

e (ς)‖2LΩ,T

≤ q1‖Rm2 −Rn2 ‖2LΩ,T
.

Applying the Lipschitz continuity of the reaction term R2 (see Remark 2) we get

‖Hm
e (ς)−Hn

e (ς)‖2L2(0,T ;H1(Ω)) + ‖∂tHn
e (ς)− ∂tHm

e (ς)‖2LΩ,T

≤ q1

(
C2
Hi‖H

n
i (ς)−Hm

i (ς)‖2LΩ,T
+ C2

He‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΩ,T

)
= Q1

He‖H
n
i (ς)−Hm

i (ς)‖2LΩ,T
+Q2

He‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΩ,T

By taking the Eε expectation it follows that

‖Hn
e −Hm

e ‖2Y ≤ Q1
He‖H

n
i −Hm

i ‖2LΩ,T
+Q2

He‖H
n−1
e −Hm−1

e ‖2LΩ,T
.

�

Lemma 3.7. Let Hn
e , H

m
e be any two arbitrary terms of the sequence (Hm

e )m. Then it holds that

‖Hn
e (ς)−Hm

e (ς)‖2LΩ,T
≤ Q3

He‖H
n
i (ς)−Hm

i (ς)‖2LΩ,T
+Q4

He‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΩ,T
,

‖Hn
e −Hm

e ‖2LΣ
≤ Q3

He‖H
n
i −Hm

i ‖2LΣ
+Q4

He‖H
n−1
e −Hm−1

e ‖2LΣ
, (26)

where
Q3
He

:= TeTC2
Hi

and Q4
He

:= TeTC2
He

are constants for all fixed 0 < T <∞.
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Proof. From (19) we have that for a.e. ς ∈ Σε∫
Ω

∂t(H
n
e −Hm

e ) φ dx+

∫
Ω

∇(Hn
e −Hm

e ) φ dx+

∫
Ω

S2(Hn
e −Hm

e ) φ dx

=

∫
Ω

(Rn2 −Rm2 ) φ dx ∀φ ∈ H1(Ω).

In particular, for φ = Hn
e −Hm

e we get

1

2

d

dt
‖Hn

e −Hm
e ‖2L2(Ω) + ‖∇(Hn

e −Hm
e )‖2L2(Ω) + S2‖Hn

e −Hm
e ‖2L2(Ω)

=

∫
Ω

(Rn2 −Rm2 )(Hn
e −Hm

e ) dx,

from which
d

dt
‖Hn

e −Hm
e ‖2L2(Ω) ≤ ‖R

n
2 −Rm2 ‖2L2(Ω) + ‖Hn

e −Hm
e ‖2L2(Ω) (27)

and hence by integrating with respect to t and using the properties of R2

sup
t∈[0,T ]

‖Hn
e −Hm

e ‖2L2(Ω) ≤ e
T
(
C2
Hi‖H

n
i −Hm

i ‖2LΩ,T
+ C2

He‖H
n
e −Hm

e ‖2LΩ,T

)
,

Thus, by integrating with respect to t and taking the Eε expectation

‖Hn
e −Hm

e ‖2LΩ,T
≤ TeT

(
C2
Hi‖H

n
i −Hm

i ‖2LΩ,T
+ C2

He‖H
n−1
e −Hm−1

e ‖2LΩ,T

)
(28)

‖Hn
e −Hm

e ‖2LΣ
≤ TeT

(
C2
Hi‖H

n
i −Hm

i ‖2LΣ
+ C2

He‖H
n−1
e −Hm−1

e ‖2LΣ

)
,

which proves the claim. �

Lemma 3.8. Let Hn
i , Hm

i be any two elements of the sequence (Hm
i )m. Then the difference

Hn
i −Hm

i satisfies the following inequalities:

‖Hn
i (ς)−Hm

i (ς)‖2LΩ,T
≤ Q3

Hi‖H
n−1
i (ς)−Hm−1

i (ς)‖2LΩ,T
+Q4

Hi‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΩ,T

‖Hn
i −Hm

i ‖2LΣ
≤ Q3

Hi‖H
n−1
i −Hm−1

i ‖2LΣ
+Q4

Hi‖H
n−1
e −Hm−1

e ‖2LΣ

and

‖Hn
i (ς)−Hm

i (ς)‖2H1,0 ≤ Q1
Hi‖H

n−1
i (ς)−Hm−1

i (ς)‖2LΩ,T
+Q2

Hi‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΩ,T
,

‖Hn
i −Hm

i ‖2X ≤ Q1
Hi‖H

n−1
i −Hm−1

i ‖2L∞Σ +Q2
Hi‖H

n−1
e −Hm−1

e ‖2LΣ
, (29)

where

r1 := e4T 2(CεF )2

, Q3
Hi

:= 4Tr1C
2
Hi
, Q4

Hi
:= 4Tr1C

2
He
,

Q1
Hi

:= 4
(

1 + (CεF )2
)
Q3
Hi

+ 4C2
Hi
, Q2

Hi
:= 4

(
1 + (CεF )2

)
Q4
Hi

+ 4C2
He
.

are constants and T > 0 is the right end of a fixed time interval [0, T ].

Proof. Since the elements of the sequence (Hm
i (ς))m are solutions to the respective m-th

equation specified by (18), for each fixed x ∈ Ω and a.e. ς ∈ Σε we have that

|Hn
i (t, x, ς)−Hm

i (t, x, ς)| =
∣∣∣∣ ∫ t

0

(Rn−1
1 −Rm−1

1 ) dt+

∫ t

0

F ε2 (χt)(H
n
i −Hm

i ) dt

∣∣∣∣,
from which, by using the Lipschitz continuity of the reaction term R1 (see Remark 2), we get

|Hn
i −Hm

i | ≤
∫ t

0

(
CHi |Hn−1

i −Hm−1
i |+ CHe |Hn−1

e −Hm−1
e |+ CεF |Hn

i −Hm
i |
)
dt,

from which

|Hn
i −Hm

i |2 ≤ a(T ) + 4T (CεF )2

∫ t

0

|Hn
i −Hm

i |2 dt,
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where

a(T ) := 4

∫ T

0

C2
Hi |H

n−1
i −Hm−1

i |2 dt+ 4

∫ T

0

C2
He |H

n−1
e −Hm−1

e |2 dt.

Applying Gronwall’s inequality and integrating with respect to x it follows

‖Hn
i −Hm

i ‖2L2(Ω) ≤
(
e4T (CεF )2T

)∫
Ω

a(T )dx.

This implies

‖Hn
i −Hm

i ‖2L2(Ω) ≤ 4r1C
2
Hi‖H

n−1
i −Hm−1

i ‖2LΩ,T
+ 4r1C

2
He‖H

n−1
e −Hm−1

e ‖2LΩ,T
,

hence

‖Hn
i −Hm

i ‖2LΩ,T
≤ 4r1T

(
C2
Hi‖H

n−1
i −Hm−1

i ‖2LΩ,T
+ C2

He‖H
n−1
e −Hm−1

e ‖2L2(0,T ;L2(Ω))

)
= Q3

Hi‖H
n−1
i −Hm−1

i ‖2LΩ,T
+Q4

Hi‖H
n−1
e −Hm−1

e ‖2LΩ,T
(30)

with r1 := exp(4T 2(CεF )2), Q3
Hi

:= 4Tr1C
2
Hi

, Q4
Hi

:= 4Tr1C
2
He

.
For each fixed x ∈ Ω and ς ∈ Σε the derivative can be estimated in a similar way to yield:

‖∂t(Hn
i −Hm

i )‖2LΩ,T
≤ 4C2

Hi‖H
n−1
i −Hm−1

i ‖2LΩ,T
+ 4C2

He‖H
n−1
e −Hm−1

e ‖2LΩ,T

+ 4(CεF )2‖Hn
i −Hm

i ‖2LΩ,T

Substituting (30) in the above equation results in

≤
(

4(CεF )2Q3
Hi + 4C2

Hi

)
‖Hn−1

i −Hm−1
i ‖2LΩ,T

+
(

4(CεF )2Q4
Hi + 4C2

He

)
‖Hn−1

e −Hm−1
e ‖2LΩ,T

Altogether, we have that

‖Hn
i −Hm

i ‖2H1,0 ≤ ‖Hn
i −Hm

i ‖2LΩ,T
+ ‖∂tHn

i −Hm
i ‖2LΩ,T

≤ Q1
Hi‖H

n−1
i −Hm−1

i ‖2LΩ,T
+Q2

Hi‖H
n−1
e −Hm−1

e ‖2LΩ,T

with
Q1
Hi := 4

(
1 + (CεF )2

)
Q3
Hi + 4C2

Hi and Q2
Hi := 4

(
1 + (CεF )2

)
Q4
Hi + 4C2

He .

The last two inequalities prove the claim. �

The immediate consequence of Lemmas 3.7 and 3.8 is the following sufficient condition for the
convergence of the sequence (Hm

i , H
m
e ) in X× Y.

Lemma 3.9 (SPDM time condition). For the sequence (Hm
i (ς), Hm

e (ς))m to be a Cauchy
sequence in H1,0 × H1,1, the time T has to fulfill the following condition:

(TSPDM )


τ1 := sup

{
τ : τ

(
4e4τ2(CεF )2

C2
Hi + eτC2

Hi

)
< 1
}

τ2 := sup
{
τ : τ

(
4e4τ2(CεF )2

C2
He + eτC2

He

)
< 1
}

T = min{τ1, τ2} (31)

Proof. Since for a fixed T > 0 the constants Q1
Hi

, Q2
Hi

, Q1
He

and Q2
He

occurring in Lemmas 3.7
and 3.8, respectively, are all bounded, we get that the sequence (Hm

i , H
m
e ) converges in X× Y if

and only if (Hm
i , H

m
e ) converges in LΣ × LΣ. Hence it is sufficient to find a condition for the

latter.

‖Hn
i −Hm

i ‖2LΣ
+ ‖Hn

e −Hm
e ‖LΣ ≤ (Q3

Hi +Q3
He)‖H

n−1
i (ς)−Hm−1

i (ς)‖2LΣ

+ (Q4
Hi +Q4

He)‖H
n−1
e (ς)−Hm−1

e (ς)‖2LΣ
.

with Q3
Hi

:= 4Te4T 2(CεF )2

C2
Hi

, Q3
He

:= TeTC2
Hi

, Q4
Hi

:= 4Te4T 2(CεF )2

C2
He

, and Q4
He

:= TeTC2
He

.
Consequently, we have the condition (TSPDM ) for the time T . �
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Finally, we are in a position to formulate the existence theorem.

Theorem 3.10. For each parameter vector Ξ, there exists a time interval [0, T ) with T > 0
satisfying the time condition (TSPDM ) (see (31)), such that (SPDM) has a unique weak solution
Hi(t, x, ς), He(t, x, ς) for almost every ς ∈ Σε. Furthermore Hi(·, ·, ς) and He(·, ·, ς) are the
sample paths of the processes (Hi(t))t∈[0,T ] ∈ X and (He(t))t∈[0,T ] ∈ Y, and these processes are
a.s. unique in X and Y, respectively.
In addition, if Ω ⊂ Rd with ∂Ω being C2 and He,0(ς) ∈W 2,p(Ω) with p > d+ 2, then (due to
Remark 3) He ∈W (p, T,Ω).

Proof. From Lemma 3.9 we have that (Hm
i (ς), Hm

e (ς))m is a Cauchy sequence in H1,0 × H1,1,
thus it converges to a unique element (Hi(ς), He(ς)) in H1,0 × H1,1 for a.e. ς ∈ Σε. Then by
dominated convergence we obtain that (Hm

i , H
m
e ) converges to (Hi, He) in X× Y.

For uniqueness let Hi,1, Hi,2 ∈ X be such that almost every corresponding sample path is a weak
solution to (8a). Then for a fixed ς ∈ Σε we obtain ‖Hi,1 −Hi,2‖2LΣ

= 0 by employing the usual
estimates and taking the Eε expectation and due to the Lipschitz continuity of R1 . Therefore,
Hi,1, Hi,2 ∈ X are a.s. identical in LΣ. Now from the estimate (29) in Lemma 3.8, the uniqueness
of He in LΣ (shown below) and since X ⊂ LΣ, we can conclude that Hi,1 and Hi,2 are also a.s.
identical in X.
For the uniqueness of He ∈ Y, let He,1, He,2 ∈ X be such that almost every sample path is a
weak solution to (8b). Then for every fixed ς ∈ Σε and due to the Lipschitz continuity of R2 we
obtain in the usual way (after also taking the Eε expectation) that ‖He,1 −He,2‖2LΣ

= 0. Hence
He,1, He,2 ∈ Y are a.s. identical in LΣ. Moreover, due to (26), the uniqueness of Hi in LΣ and
the fact that Y ⊂ LΣ we can conclude that He,1 and He,2 are also a.s. identical in Y. �

3.2.3 Measurability of the solution to (SPDM)

Now we show that the processes Hi ∈ X and He ∈ Y are adapted to the filtration Aεt generated
by the noise process

(
F ε2 (χt)

)
t∈[0,T ]

, with T satisfying the condition (31).

Lemma 3.11. Let t ∈ [0, T ] with T > 0 satisfying (31). If Hm−1
i ∈ (Hm

i )m is an a.s. Aεt
adapted process and Hm−1

e ∈ (He)m is an Aεt adapted process, then Hm
i ∈ (Hm

i )m is an a.s. Aεt
adapted process.

Proof. Let Hm
i be an arbitrary element of the sequence (Hm

i )m. Due to Lemma 3.3, for each
x ∈ Ω and almost all ς ∈ Σε

d

dt
Hm
i (t) = R1(Hm−1

i , Hm−1
e ) +Hm

i (t)F ε2 (χt),

hence

Hm
i (t) = exp

(∫ t

0

F ε2 (χs)ds
)(

Hi,0 +

∫ t

0

e−
∫ t
s
F ε2 (χr)drRm−1

1 (s)ds

)
.

Thus for every fixed x ∈ Ω and for almost all ς ∈ Σε, H
m
i (t) depends on Hm−1

i (s), Hm−1
e (s), and

F ε2 (χs) for s ∈ [0, t]. So if Hm−1
i (t) and Hm−1

e (t) are Aεt measurable then so is Hm
i (t). Since this

holds for each x ∈ Ω and almost all ς ∈ Σε, we find that Hm
i ∈ X is a.s. an Aεt adapted

process. �

In particular, we readily see that H0
i is an a.s. Aεt adapted process, due the linear inhomogeneous

equation it satisfies. This indicates us to invoke the induction procedure so that the a.s. Aεt
adaptability of an arbitrary process Hm

e ∈ (Hm
e )m can be obtained by assuming that Hm

i and
Hm−1
e are a.s. Aεt adapted processes. Next lemma verifies the latter half of the previous

statement.

Lemma 3.12. Let t ∈ [0, T ] with T > 0 satisfying (31). If Hm
i ∈ (Hm

i )m is an a.s. Aεt adapted
process and Hm−1

e ∈ (Hm
e )m is an Aεt adapted process, then Hm

e ∈ (Hm
e )m is an a.s. Aεt adapted

process.
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Proof. By the hypothesis it follows that Hm
i (t), Hm−1

e (t) are Aεt measurable, for t ∈ [0, T ] and
T satisfying (31). Recalling equation (19) for m ∈ N0 we have that∫

Ω

Hm
e φ dx+

∫
Ω

∇Hm
e · ∇φ dx+ S2

∫
Ω

Hm
e φ dx = R2(Hm

i , H
m−1
e ), ∀φ ∈ H1(Ω).

For fixed ς ∈ Σε, the function Hm
e (ς) ∈ H1

(
[0, T ];H1(Ω)

)
can be written as

Hm
e (t, x, ς) :=

∞∑
k=0

dmk (t, ς)wk(x),

∞∑
k=0

|dmk (t, ς)|2 <∞ (32)

where (wk)k∈N0
is a complete orthogonal basis of the Hilbert space H1(Ω).

Due to the embedding H1 ⊂ L2 ⊂ (H1(Ω))∗, the function (Hm
e )′(t) ∈ (H1(Ω))∗ ∩L2(Ω) can also

be characterized by using the same (now orthonormal) basis in L2 as

(Hm
e )′(t, x, ς) :=

∞∑
k=0

(dmk )′(t, ς)wk(x),

∞∑
k=0

|(dmk )′(t, ς)|2 <∞. (33)

By the same argument we can represent R2(Xm, Y m−1) as

Rm2 (t, x, ς) :=

∞∑
k=0

fm,m−1
k (t, ς)wk(x),

∞∑
k=0

|fm,m−1
k (t, ς)|2 <∞. (34)

Using this representation for Hm
e (ς), we get the following equation :

∞∑
j=0

(dmj )′(t)

∫
Ω

wj(x)φ dx +

∞∑
j=0

dmj (t)

∫
Ω

∇wj(x) · ∇φ dx (35)

+S2

∞∑
j=0

dmj (t)

∫
Ω

wj(x) φ dx =

∞∑
j=0

fm,m−1
j (t)

∫
Ω

wj(x) φ dx.

In particular for φ = wk we get

(dmk )′(t) +

∞∑
j=0

dmj (t)

∫
Ω

∇wj(x) · ∇wk(x) dx + S2d
m
k (t) = fm,m−1

k (t). (36)

Define aj,k =
∫

Ω
∇wj · ∇wk dx; then we get

(dmk )′(t) +

∞∑
j=0

dmj (t)aj,k + S2d
m
k (t) = fm,m−1

k (t). (37)

Since
|(dmk )′(t)| = |

(
(Hm

e )′(t), wk
)
| <∞ and |dmk (t)| = |(Hm

e (t), wk)| <∞

and
|(Rm,m−1

2 (t), wk)| <∞,

we get that

|
∞∑
j=0

dmj (t)aj,k| = |fm,m−1
k (t)− (dmk )′(t)− S2d

m
k (t)| <∞.

Thus equation (37) with infinite sum makes sense and we can represent the solution using the
exponential of a matrix.
Let dm = (dm0 , . . . , d

m
k , . . . , )T , fm,m−1 = (fm,m−1

0 , . . . , fm,m−1
k , . . . , )T , k ∈ N, and

A = ((ai,j)i,j∈N), then (37) can be represented in vector form as:

(dm)′(t) = −(A + S2I)dm(t) + fm,m−1(t),
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whose solution is given as

dm(t) = e−(A+S2I)t
(
dm(0) +

∫ t

0

e(A+S2I)s
(
fm,m−1(s)

)
ds
)

This implies that each dmk (t) depends on fm,m−1
k (s), s ∈ [0, t]. Consequently, Hm

e (t) also depends

on fm,m−1
k (s), s ∈ [0, t] for almost all ς ∈ Σε. Because R2(Hm

i , H
m−1
e ) is a smooth function of

Hm
i , H

m−1
e it is also an Aεt -adapted process. Since the pathwise characterization (34) preserves

this property, we can conclude that Hm
e (t) ∈ Y is an a.s. Aεt adapted process. �

Combining lemmas 3.11 and 3.12 along with the induction argument, we get that the elements of
the sequence (Hm

i )m, (Hm
e )m are a.s. Aεt -adapted processes. Thus, the corresponding limit

processes Hi ∈ X and He ∈ Y are also a.s. Aεt adapted.

3.2.4 Uniform boundedness of the solution to (SPDM)

In this section we prove the boundedness and nonnegativity of the solutions to (SPDM), which
will be used in the proof for the well posedness of the macroscopic model.

Theorem 3.13. Let T̂ > 0 be the maximum time value satisfying the time condition TSPDM (see
(31) below). Then for every parameter vector Ξ there exists a time T̃ > 0 such that for

T := min(T̃ , T̂ ), (38)

the solution sequences (Hm
i )m and (Hm

e )m are uniformly bounded with the following upper and
lower bounds:

1. If Hm
i (0, x, ς) ≥ 0 ∀x ∈ Ω then for each m ∈ N

0 ≤ Hm
i (t, x, ς) ≤ CHi(T ) ∀x ∈ Ω, t ∈ [0, T ), ς ∈ Σε (39)

CHi(T ) := eC
ε
FT
(

sup
x∈Ω

Hi,0(x) + CR1
T
)
.

2. If Hm
e (0, x, ς) ≥ 0 ∀x ∈ Ω then for each m ∈ N

cHe(T ) ≤ Hm
e (t, x, ς) ≤ CHe(T ) ∀x ∈ Ω, t ∈[0, T ), ς ∈ Σε (40)

cHe(T ) := ae−b1 T , CHe(T ) := eb1 T ,

where the constants b1 and b2 will be specified in the proof.

Proof. Let Hm
e ∈ (Hm

e )m and Hm
i ∈ (Hm

i )m. Observe that the assertions are obviously verified
for H0

i and H0
e . Consider the equation

∂tH
m
i (t) = Rm−1

1 (t) + F (χt, H
m
i ),

with F (χt, H
m
i ) = Hm

i F
ε
2 (χt) and whose solution is given as in (20). Assume the assertions of

the theorem hold for Hm−1
i and Hm−1

e . Then they also hold for Hm
i , by the estimates in Lemma

3.3 and the announced choice of CHi(T ).

Now consider the equation

∂tH
m
e (t, x, ς) = Rm2 − S2H

m
e + ∆Hm

e .

For each fixed ς ∈ Σε, let H̃m
e (t, x) := Hm

e (t, x)− ae−b1t. Then

∂tH̃
m
e −∆H̃m

e + S2H̃
m
e = Rm2 + ae−b1t(q − S2)

≥ qR2
+ ae−b1t(b1 − S2), since Rm2 ≥ qR2

with 0 > qR2

= a(q̂e−(b̂1+S2)t − 1), with a := |qR2 |, b̂1 = b1 − S2.

For each q̂ > 1 there exists T̃ > 0 such that

b̂1e
−(b̂1+S2)T̃ > 1. (41)
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Therefore,
∂tH̃

m
e −∆H̃m

e + S2H̃
m
e ≥ 0 ∀t ∈ [0, T̃ ).

So if He,0 ≥ ae−b1t then H̃m
e (0, x) ≥ 0, hence e.g., from the nonnegativity theorem in [26] we get

that H̃m
e (t, x) ≥ 0 for all t ∈ [0, T̃ ), x ∈ Ω. This in turn implies that for

T := min(T̂ , T̃ )

Hm
e (t, x) ≥ cHe(T ) for all t ∈ [0, T ), x ∈ Ω, and ς ∈ Σε, with cHe(T ) := ae−qT .

Now for each fixed ς ∈ Σε, let
Ĥm
e (t, x) := eb2t −Hm

e (t, x),

then

∂tĤ
m
e −∆Ĥm

e + S2Ĥ
m
e = b2e

b2t + S2e
b2t −Rm2

≥ eb2t(S2 + b2)−QR2
,

since Rm2 ≤ QR2
with QR2

> 0. Thus, for b2 ≥ QR2
it follows that

∂tĤ
m
e −∆Ĥm

e + S2Ĥ
m
e ≥ 0, ∀t ∈ [0, T ), x ∈ Ω, ς ∈ Σε.

Hence, once again by the nonnegativity theorem in [26] we get Ĥm
e (t, x) ≥ 0 for all t ∈ [0, T ) and

x ∈ Ω. This in turn implies that Hm
e (t, x) ≤ CHe(T ) := eb2T for all t ∈ [0, T ) and x ∈ Ω. (Take

b2 > max{1 + S2, QR2
}.) Altogether we obtain that 0 ≤ Hm

e (t, x, ς) ≤ CHe(T ) ∀t ∈ [0, T ), x ∈ Ω,
ς ∈ Σε. �

This completes the proof for the uniform boundedness of the solutions to (SPDM). The next step
is to analyze the wellposedness of CPDM. This shall be the topic of next section.

3.3 Analysis of the cell population dynamics model (CPDM)

The goal of this section is to prove the local existence of a unique solution to (CPDM), from
which we get a new condition for the maximum time interval [0, T ) for the existence of a unique
solution to the full stochastic multiscale model.
The following lemma is directly obtained by applying Theorem 3.13.

Lemma 3.14. (Boundedness of Λ1, Λ2 and D) Let T > 0 satisfy the condition (38) and let C,N
be non-negative and bounded. Then the proliferation (or switching) function Λ1(Hi), the decay
function Λ2(He) and the diffusion coefficient D(C,N) are uniformly bounded:

0 ≤ Λ1(Hi) ≤ CΛ1 := ω1c3 exp(c1(1 + CHi)), (42)

0 ≤ Λ2(Hi) ≤ CΛ2
:= ω2 log2.15(1 + CHe), (43)

0 < cD ≤ D(C,N) ≤ γ (44)

for all x ∈ Ω, t ∈ [0, T ], and ς ∈ Σε.

3.3.1 Iterative solution sequence for (CPDM)

In order to find the pathwise weak solution to (CPDM), that is for each ς ∈ Σε find N(ς) ∈ H1,0

and C(ς) ∈ H1,2, we rewrite the equations (9b) and (9c) in the following convenient form:

∂tC(t, x, ς) = R3(Hi, C,N) +∇ · (D(C,N)∇C) (45a)

C(0, x, ς) = C0(x, ς) for each ς ∈ Σε

∇C(t, x, ς) · n̂ = 0 for each ς ∈ Σε, x ∈ ∂Ω (45b)

d

dt
N(t, x, ς) = R4(He, C,N), for each x ∈ Ω, ς ∈ Σε (45c)

N(0, x, ς) = N0(x, ς)
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Analogous to the analysis of (SPDM), we first construct a sequence (Cm, Nm)m of solutions to

∂tC
m = R3(Hi, C

m−1, Nm) +∇ · (D(Cm−1, Nm)∇Cm) (m ≥ 1) (46a)

∂tC
0 = R3(Hi, C0, N

0) +∇ · (D(C0, N
0)∇C0) (46b)

Cm(0, x, ς) = C0(x, ς) for each x ∈ Ω, ς ∈ Σε (m ≥ 0)

∇Cm · n̂ = 0 for each ς ∈ Σε, x ∈ ∂Ω (m ≥ 0) (46c)

d

dt
Nm(t, x, ς) = R4(He, C

m−1, Nm), (m ≥ 1) for each x ∈ Ω, ς ∈ Σε (47)

d

dt
N0(t, x, ς) = R4(He, C0, N

0), (m ≥ 1) (48)

Nm(0, x, ς) = N0(x, ς), (m ≥ 0),

where we use

Notation 3.

Rm3 := R3(Hi, C
m−1, Nm), ∀m ≥ 1,

R0
3 := R3(Hi, C0, N

0),

Rm4 := R4(He, C
m−1, Nm), ∀m ≥ 0,

Dm := D(Cm−1, Nm), ∀m ≥ 1.

and then show that the sequence converges in some appropriate sense. This will occupy the rest
of the section.
First we easily note that the function R3(Hi, C,N) is an element of LΣ:

Lemma 3.15. Let 0 < C(t, x, ς) ≤ CC(T ) and 0 < N(t, x, ς) ≤ CN , where CN and CC(T ) are as
in Theorem 3.16. Then for an open bounded domain Ω and a finite time T > 0

‖R3(Hi, C,N)‖LΣ
< CR3

|Ω|T, (49)

where CR3 := CΛ1CC(1 + ηNCN + ηCCCCN ).

Theorem 3.16. For each ς ∈ Σε let (Hi(ς), He(ς)) be the unique weak solution to (SPDM) and
let Ω ⊂ Rd with ∂Ω ∈ C2 and C0 ∈W 2,p(Ω), N0 ∈W 2,p(Ω) with p > d+ 2 such that the uniform
bounds 0 < C0 ≤MC0 and 0 < N0 ≤ CN exist. Then,

(
Cm(ς)

)
m∈N∗ ⊂ H1,2 ∩W (p, T,Ω) is the

sequence of unique weak solutions to the corresponding m-equations (46a) and (46b), respectively,
and

(
Nm(ς)

)
m∈N∗ ⊂ H1,0 is the sequence of unique solutions to the m-equations (47). Moreover,

these sequences satisfy the following inequalities:

‖Nm‖2X ≤ (1 + C2
Λ2

)‖N0‖2L2(Σε;L2(Ω)) ∀m ∈ N (50)

‖Cm‖2Z ≤ r5‖Rm3 ‖2LΣ
+ r6‖C0‖2L2(Σε;H1(Ω)) ∀m ∈ N (51)

with

r5 := q8 + q7 + 1, r6 := q9 + (q7 + 1)cD, q8 := q5 + (q6 + 1)q3,

q3 = q4 := Te
T
2

(
1 + 2

cDε

)
, q9 := (q6 + 1)q4, r2 := cD + Te

T
2

(
1 + 2

cDε

)
,

r3 := 1 + Te
T
2

(
1 + 2

cDε

)
, q7 = q5 :=

(
16C2

f

c2D

)
, q6 :=

(
max{ cD4 ,

2CdCf
cD
} 4
cD

)
1
cD
.

Furthermore, if T̂ > 0 is the time satisfying the condition (38) then there exists a time T with

T ≤ T̂ , (52)

such that each Cm(ς) ∈
(
Cm(ς)

)
m∈N∗ is uniformly bounded with

0 <Cm(t, x, ς) ≤ CC(T ), ∀m ∈ N∗, t ∈ [0, T ), x ∈ Ω, (53)

CC(T ) := KC0 + exp(−T )− exp(−b3 T ) < KC0 + 1︸ ︷︷ ︸
KC

, 0 < KC0 ≤ 1, b3 > 0,
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and each Nm(ς) ∈
(
Nm(ς)

)
m∈N∗ is uniformly bounded with

0 < Nm(t, x, ς) ≤ CN , ∀m ∈ N∗, t ∈ [0, T ), x ∈ Ω. (54)

Proof. Due to the iterative coupling of equations (46a) (respectively (46b)) and (47), we use as
before an induction argument to show the existence of a sequence of uniqueness of their solutions.
Induction start m = 0:
The induction start is verified by performing the following steps:

1. Show that N0(x, t, ς) is uniformly bounded ∀x ∈ Ω, t ∈ [0, T ], ς ∈ Σε.

2. Observe that N0 ∈ X is the unique solution to (47) for m = 0.

3. Show that C0(x, t, ς) is uniformly bounded ∀x ∈ Ω, t ∈ [0, T ], ς ∈ Σε.

4. Use 1., 2. and 3. to show that C0 ∈ Z is the unique solution to (46b).

Note that once the above steps are verified then due to Lemma 3.15 an analogous proof can be
applied for the induction step, i.e., assume the claim holds for m and prove it for m+ 1.
For each x ∈ Ω and ς ∈ Σε we have by (47) for m = 0 that

N0(t, x, ς) = N0(x, ς) exp

(
−
∫ t

0

Λ2(He)C0(s, x, ς) ds

)
, (55)

from which immediately follows the bound (by the maximum principle C0 is nonnegative):

0 < N0(t, x, ς) ≤ CN ∀ς ∈ Σε, x ∈ Ω, t ∈ [0, T ], (56)

as 0 < N0(x, ς) ≤ CN , and Λ2(He) ≥ 0 ∀t ∈ [0, T ], x ∈ Ω, ς ∈ Σε. It is straightforward to verify
that N0(ς) ∈ H1,0 for each ς ∈ Σε and N0 ∈ X. This completes steps 1 and 2.
To ensure an upper bound for C0, consider equation (46b) and use the following auxiliary
function (like in [28]):

%0 := − exp(−qt) + exp(−t) +MC0
− C0.

Then
∂t%

0 −∇ · (D(C0, N
0)∇%0) = b3 exp(−b3t)− exp(−t)−R0

3. (57)

Since C0(x) ≤MC0
∀x ∈ Ω by construction %0(0, x) ≥ 0 ∀x ∈ Ω. Thus by choosing q > 0 such that

b3 exp(−b3t) ≥ exp(−t) + |R0
3| (58)

we can apply the non-negativity theorem in [26] to get that %0(t, x) ≥ 0 ∀x ∈ Ω, ∀t ∈ (0, T ),
T <∞. This in turn implies that C0(t, x) ≤ CC(t) with

CC(t) := MC0 + exp(−t)− exp(−b3t) ≤MC0 + 1− exp(−b3 T )︸ ︷︷ ︸
CC(T )

< MC0 + 1︸ ︷︷ ︸
MC

.

Moreover, from the non-negativity theorem in [26] it immediately follows that C0 > 0 for all
x ∈ Ω and t ∈ (0, T ). This completes step 3.
For a.e. ς ∈ Σε, let

C0
n(t, x, ς) =

n∑
k=0

dk(t, ς)wk(x),

where
{wk}k∈N∗ is an orthogonal basis of H1(Ω)

and
{wk}k∈N∗ is also an orthonormal basis of L2(Ω)

and dk(t, ς) are chosen such that

dk(0) = (C0, wk) and (
d

dt
C0
n, wk) = (R0

3, wk)−
∫

Ω

D(C0, N
0)∇C0

n∇wkdx. (59)
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Also let us note that, since C0, N
0 are uniformly bounded, Lemma 3.15 is applicable and hence

the reaction term R0
3 ∈ L2(0, T ;L2(Ω)) for all ς ∈ Σε.

Now multiply the weak formulation (59) above with dk and sum. This leads to

1

2

d

dt
‖C0

n‖2L2(Ω) + cD‖∇C0
n‖2L2(Ω) ≤ ‖R

0
3‖L2(Ω)‖C0

n‖L2(Ω), (60)

from which by using Lemma 3.15 and Gronwall’s inequality we obtain the bound

‖C0
n‖2L2(Ω) ≤ e

T
2

(
‖C0‖2L2(Ω) +

1

2
‖R0

3‖2LΩ,T

)
≤ C(T, |Ω|)‖C0‖2L2(Ω), (61)

with C(T, |Ω|) = eT/2(1 + 1
2C

2
R3
|Ω|2T 2).

For a sufficiently small ε > 0, we also get that for each t ∈ [0, T ]

1

2

d

dt
‖C0

n‖2L2(Ω) ≤
1

ε
‖C0

n‖2L2(Ω), hence ‖C0
n‖2L2(Ω) ≤ e

2T
ε ‖C0‖2L2(Ω) (62)

and

cD‖∇C0
n‖2L2(Ω) ≤

1

ε
‖C0

n‖2L2(Ω) −
1

2

d

dt
‖C0

n‖2L2(Ω) <∞. (63)

Integrating w.r.t. t leads to

‖∇C0
n‖2LΩ,T

≤ 2

cDε
‖C0

n‖2LΩ,T
. (64)

Altogether, from (61) and (64) we get that

‖C0
n‖2L2(0,T ;H1(Ω)) ≤ Te

T
2

(
‖C0‖2H1(Ω) + ‖R0

3‖2LΩ,T

)(
1 +

2

cDε

)
= q3‖R0

3‖2LΩ,T
+ q4‖C0‖2H1(Ω), (65)

where q3 := Te
T
2

(
1 + 2

cDε

)
and q4 := q3.

Similarly, multiply the weak formulation (59) by d′k and sum to obtain

〈∂tC0
n, ∂tC

0
n〉 = (R0

3, ∂tC
0
n)− (D(C0, N

0)∇C0
n,∇∂tC0

n) (66)

‖∂tC0
n‖2L2(Ω) +

1

2
cD

d

dt
‖∇C0

n‖2L2(Ω) ≤
1

2
‖R0

3‖2L2(Ω) +
1

2
‖∂tC0

n‖2L2(Ω)

‖∂tC0
n‖2L2(Ω) + cD

d

dt
‖∇C0

n‖2L2(Ω) ≤ ‖R
0
3‖2L2(Ω) (67)

from which by integration w.r.t. t we get

‖∂tC0
n‖2LΩ,T

+ cD‖∇C0
n‖2L2(Ω) ≤ ‖R

0
3‖2LΩ,T

+ cD‖C0‖2H1(Ω). (68)

Hence from (61), (65), (68) we obtain that

max
0≤t≤T

‖C0
n(t)‖2L2(Ω) ≤ e

T/2
(
‖C0‖2H1(Ω) +

1

2
‖R0

3‖2LΩ,T

)
<∞ (69)

‖C0
n‖2L2(0,T ;H1(Ω)) ≤ q3‖R0

3‖2LΩ,T
+ q4‖C0‖2H1(Ω) <∞

‖∂tC0
n‖2LΩ,T

≤ ‖R0
3‖2LΩ,T

+ cD‖C0‖2H1(Ω) <∞ (70)

max
0≤t≤T

‖∇C0
n(t)‖2L2(Ω) ≤

1

cD

(
‖R0

3‖2LΩ,T
+ cD‖C0‖2H1(Ω)

)
<∞

Hence there exist some subsequences (C0
mk

)k and (∂tC
0
mk

)k which converge weakly to
C0 ∈ L2(0, T ;H1(Ω)) and (C0)′ ∈ L2(0, T ;L2(Ω)); it is easy to see that (C0)′ = ∂tC

0.
Altogether we have with the usual passage to limits in the corresponding weak formulations

‖C0‖2L2(0,T ;H1(Ω)) + ‖∂tC0‖2LΩ,T
≤
(
cD + q4

)
‖C0‖2H1(Ω) +

(
1 + q3

)
‖R0

3‖2LΩ,T

≤ r3‖R0
3‖2LΩ,T

+ r2‖C0‖2H1(Ω)
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from which by taking the Eε-expectation we get

‖C0‖2Y ≤ r3‖R0
3‖2LΣ

+ r2‖C0‖2H1(Ω) <∞, (71)

where r3 := 1 + q3 = 1 + Te
T
2

(
1 + 2

cDε

)
and r2 := cD + q4 = cD + Te

T
2

(
1 + 2

cDε

)
.

Remark 4. From the hypothesis we have that Ω ⊂ Rd, ∂Ω ∈ C2 and C0, N0 ∈W 2,p(Ω) ↪→ C1(Ω)
for p > d+ 2. Also by Remark 3 we have that He ∈W 2,p(Ω), hence N0(t) ∈W 2,p(Ω). Thus we
get that D(C0, N

0(t)) ∈W 2,p(Ω) for each t ∈ [0, T ) and a.e. ς ∈ Σε. This in turn implies that

D(C0, N
0) ∈ C1([0, T ]× Ω), ∇D(C0, N

0) ∈ C([0, T ]× Ω).

Since D(C0, N
0) ∈W (p, T,Ω) ↪→ L2p(0, T ;W 1,2p(Ω)) and ∇D0 ∈ L2p(0, T ;L2p(Ω)) (Lemma 3.3,

Chapter 2 of [25]) we can again apply Theorem 9.1 (Chapter 4 of [25]) to get that
C0 ∈W (p, T,Ω). We use this to claim the continuity ∇D(C0, N1). Thus, the induction
procedure yields the uniform continuity of ∇D(Cm−1, Nm).

For the convergence of the sequence (Cm)m∈N∗ we use again the compact embedding
W (p, T,Ω) ↪→↪→ Lp(0, T ;Lp(Ω)) ↪→ L2(0, T ;L2(Ω)) (see Remark 3) and get that the subsequence
(Cmj )j∈N converging weakly in W (p, T,Ω) also converges strongly in Lp

(
0, T ;Lp(Ω)

)
and

L2(0, T ;L2(Ω)). However, for the ease of notation we ignore the subscript j and still refer the
subsequence (Cmj )j∈N as (Cm)m∈N∗ .

By the regularity theorem (Theorem 7.1.5) in [6] we get the following estimate for the H2 norm:

‖∆C0‖2LΩ,T
≤ q5‖R0

3‖2LΩ,T
+ q6‖C0‖2

L2
(

0,T ;H1(Ω)
) + q7‖∂tC0(ς)‖2LΩ,T

‖C0‖2
L2
(

0,T ;H1(Ω)
) + ‖∆C0‖2LΩ,T

≤ q8‖R0
3‖2LΩ,T

+ q9‖C0‖2H1(Ω) + q7‖∂tC0‖2LΩ,T

‖C0‖2
L2
(

0,T ;H2(Ω)
) + ‖∂tC0‖2LΩ,T

≤ r5‖R0
3‖2LΩ,T

+ r6‖C0‖2H1(Ω)

where

q7 = q5 :=
(

16C2
f

c2D

)
, q6 :=

(
max{ cD4 ,

2CdCf
cD
} 4
cD

)
, q8 := q5 + (q6 + 1)q3,

q9 := (q6 + 1)q4, r5 := q8 + q7 + 1, r6 := q9 + (q7 + 1)cD.

This completes the induction start m = 0.
Induction step m: Assume the claim holds for the mth term in the sequence and show that
this also implies the claim for the m+ 1st term.
The proof is exactly the same as for induction start, therefore it holds that Cm ∈ Z and Nm ∈ X
are the unique solution sequence to the corresponding m-th equations (46a) and (47),
respectively. �

3.3.2 Existence and uniqueness of the solution to (CPDM)

We consider the sequence (Cm)m∈N∗ ⊂ Z, such that for fixed ς ∈ Σε, the sequence
(Cm(ς))m∈N∗ ⊂ H1,2 contains the solutions to the corresponding m-th equation specified by (46a).
Similarly, we take (Nm)m∈N∗ ⊂ X, such that for fixed ς ∈ Σε, the sequence (Nm(ς))m∈N∗ ⊂ H1,0

features the solutions to the corresponding m-th equation specified by (47).
In order to prove the existence of a solution we need to show that the sequences (Cm)m and
(Nm)m converge in Z and X, respectively. To this end let us collect some inequalities. The
following lemma is easily verified:

Lemma 3.17. Let Cn, Cm ∈ (Cm)m and Nn, Nm ∈ (Nm)m be some arbitrary elements of the
respective solution sequences. Then the following inequalities hold:

‖Rm3 −Rn3 ‖2LΣ
≤ QC1

‖Cm−1 − Cn−1‖2LΣ
+QC2

‖Nm −Nn‖2LΣ
, (72)

with QC1
:= 2C2

Λ1

(
1 + 2ηCCC + ηNCN

)2
and QC2 := 2C2

Λ1
(ηNCC)2.

‖Rm4 −Rn4 ‖2LΣ
≤ 2C2

Λ2

(
C2
C‖Nm −Nn‖2LΣ

+ C2
N‖Cm−1 − Cn−1‖2LΣ

)
(73)
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Now we prove a sufficient condition for the sequence (Nm)m to converge in X.

Lemma 3.18. Let Cm(ς), Cn(ς) ∈ H1,2 and Nm(ς), Nn(ς) ∈ H1,0 be arbitrary elements of the
solution sequences (Cm)m and (Nm)m, respectively. Then (Nm)m converges in X if and only if
(Cm)m converges in LΣ. Moreover, the difference ‖Nm −Nn‖X satisfies the following inequality:

‖Nm −Nn‖2X ≤ QN1
(1 +QN2

) +QN3
‖Cm−1 − Cn−1‖2LΣ

, (74)

with QN1
:= Te2CΛ2CCTC4

Λ2
C2
CC

2
N , QN2

:= 2C2
Λ2
C2
C and QN3

:= 2C2
Λ2
C2
N .

Proof. From (47) we get

|Nm(t)−Nn(t)| ≤ CΛ2CC

∫ t

0

|Nm(s)−Nn(s)|ds+ CΛ2CN

∫ T

0

|Cm−1(s)− Cn−1(s)|ds,

from which by Gronwall’s inequality

|Nm(t)−Nn(t)| ≤ eCΛ2
CCTC2

Λ2
CCCN

∫ T

0

|Cm−1(s)− Cn−1(s)|ds.

Thus,

‖Nm(t)−Nn(t)‖2L2(Ω) ≤ e
2CΛ2CCT

(
C4

Λ2
C2
CC

2
N

)
‖Cm−1 − Cn−1‖2LΩ,T

(75)

‖Nm −Nn‖2LΩ,T
≤ QN1

‖Cm−1 − Cn−1‖2LΩ,T
(76)

Again from (47) we have that

|∂t(Nm(t)−Nn(t))| ≤ CΛ2
CC |Nm(t)−Nn(t))|+ CΛ2

CN |Cm−1(t)− Cn−1(t)|

hence

‖∂t(Nm)− ∂t(Nn)‖2LΩ,T
≤ 2(CΛ2

CC)2‖Nm −Nn‖2LΩ,T
+ 2(CΛ2

CN )2‖Cm−1 − Cn−1‖2LΩ,T
. (77)

Thus from (76) and (77) we have that

‖Nm −Nn‖2LΩ,T
+ ‖∂tNm − ∂tNn‖2LΩ,T

≤ QN1(1 + 2C2
Λ2
C2
C)‖Cm−1 − Cn−1‖2LΩ,T

+ 2C2
Λ2
C2
N‖Cm−1 − Cn−1‖2LΩ,T

and taking the Eε-expectation we arrive at

‖Nm −Nn‖2X ≤
(
QN1(1 +QN2) +QN3

)
‖Cm−1 − Cn−1‖2LΣ

. (78)

�

Similarly, using the inequality (53) from Theorem 3.16 we get the following sufficient condition
for the convergence of (Cm)m ⊂ Z.

Lemma 3.19. Let Cm(ς), Cn(ς) ∈ H1,2 and Nm(ς), Nn(ς) ∈ H1,0 be arbitrary elements of the
respective solution sequences, then (Cm)m converges in Z if and only if (Cm)m converges in LΣ,
because the difference ‖Cm − Cn‖ satisfies the following inequality

‖Cm − Cn‖2Z ≤ QC11‖Cm−1 − Cn−1‖2LΣ
+QC12‖Cm−1 − Cn−1‖LΣ , (79)

with

QC3
:= QC1

+QC2
QN1

, QC4
:= rCC

√
QN1

+ a1C̃N

QC5
:=

QC1

cD
+QN1

QC2

cD
+

TeTQC3

cD
, QC6

:=
TeTQC4

cD
+ a1C̃C

cD
+ a1C̃N

cD

√
QN1

QC7
:= 4Q2

C1
+ 4QN1

(Q2
C2

+ 4a2
1C̃

2
C) + 4a2

1C̃
N , QC8

:= 4C2
D

QC9
:= q5Q

2
C1

+ q7QC7
+ q7QC8

QC5
+ q5Q

2
C2
QN1

, QC10
:= q7QC8

QC6

QC11
:= TeTQC3

+ (QC8
+ 1)QC5

+QC7
+QC9

, QC12
:= TeTQC4

+QC6
(QC8

+ 1) +QC10

and a1 such that

8(
1

cD
+ r5)C4

R3
|Ω|4T + (1 + r6)‖C0‖4H1(Ω) < a1 <∞.
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Proof. Let Cm(ς), Cn(ς) ∈ (Cm(ς))m; then by Theorem 3.16 Cm(ς), Cn(ς) ∈ H1,2. In
particular, Cm(t, ., ς) ∈ H2(Ω) for any fixed t ∈ [0, T ] and m ∈ N∗. Consequently, we can set
v := Cm(t, ., ς)− Cn(t, ., ς) in (46a), from which we get for fixed t ∈ [0, T ] and ς ∈ Σε (remember
Notation 3):

〈∂t(Cm − Cn), Cm − Cn〉 = (Rm3 −Rn3 , Cm − Cn)−
(
Dm∇Cm −Dn∇Cn,∇(Cm − Cn)

)
1

2

d

dt
‖Cm − Cn‖2L2(Ω) =

(
Rm3 −Rn3 , Cm − Cn

)
−
(
Dm∇Cm −Dn∇Cn,∇(Cm − Cn)

)
=
(
Rm3 −Rn3 , Cm − Cn

)
−Dn

(
∇(Cm − Cn),∇(Cm − Cn)

)
−∇Cm

(
Dm −Dn,∇(Cm − Cn)

)
≤ ‖Rm3 −Rn3 ‖L2(Ω)‖Cm − Cn‖L2(Ω) − cD‖∇(Cm − Cn)‖2L2(Ω)

+ ‖Dm −Dn‖L2(Ω)‖∇Cm‖2L4(Ω)‖∇C
m −∇Cn‖2L4(Ω)

Since Cm, Cn ∈ H2(Ω) it implies that ∇Cm, ∇Cn ∈ H1(Ω) and we obtain

1

2

d

dt
‖Cm − Cn‖2L2(Ω) + cD‖∇(Cm − Cn)‖2L2(Ω) ≤ ‖R

m
3 −Rn3 ‖L2(Ω)‖Cm − Cn‖L2(Ω) (80)

+ C̃‖Dm −Dn‖L2(Ω)‖∇Cm‖2H1(Ω)‖∇C
m −∇Cn‖2H1(Ω),

Using the Lipschitz continuity of R3 and D we get

d

dt
‖Cm − Cn‖2L2(Ω) ≤ ‖R

m
3 −Rn3 ‖2L2(Ω) + ‖Cm − Cn‖2L2(Ω) + a1C̃C‖Nn −Nm‖L2(Ω)

+ a1C̃N‖Cn−1 − Cm−1‖L2(Ω)

≤ QC1‖Cm−1 − Cn−1‖2L2(Ω) +QC2‖Nm −Nn‖2L2(Ω) + ‖Cm − Cn‖2L2(Ω)

+ a1C̃C‖Nn −Nm‖L2(Ω) + a1C̃N‖Cn−1 − Cm−1‖L2(Ω)

with a1 such that

a := sup
t∈[0,T )

4‖∇Cm(t)‖4H1(Ω) ≤ sup
t∈[0,T )

8‖∇Cm(t)‖4L2(Ω) + ‖∆Cm(t)‖4L2(Ω)

≤ 8(
1

cD
+ r5)‖Rm3 ‖4LΩ,T

+ (1 + r6)‖C0‖4H1(Ω)

(49)

≤ 8(
1

cD
+ r5)C4

R3
|Ω|4T + (1 + r6)‖C0‖4H1(Ω) < a1 <∞.

Applying Gronwall’s inequality and integrating with respect to time we get

‖Cm − Cn‖2LΩ,T
≤ TeT

(
QC1‖Cm−1 − Cn−1‖2LΩ,T

+QC2‖Nm −Nn‖2LΩ,T

+ a1C̃C‖Nn −Nn‖LΩ,T
+ a1C̃N‖Cm−1 − Cn−1‖LΩ,T

)
.

Using (76) we get

‖Cm − Cn‖2LΩ,T
≤ TeT

(
QC3
‖Cm−1 − Cn−1‖2LΩ,T

+QC4
‖Cm−1 − Cn−1‖LΩ,T

)
, (81)

where QC3 := QC1 +QC2QN1 , QC4 := a1C̃C
√
QN1

+ a1C̃N , C̃C := C̃CC and C̃N := C̃CN .

From (80) we also get

‖∇(Cm − Cn)‖2LΩ,T
≤ QC1

cD
‖Cm−1 − Cn−1‖2LΩ,T

+
QC2

cD
‖Nm −Nn‖2LΩ,T

+
1

cD
‖Cm − Cn‖2LΩ,T

+
a1C̃C
cD
‖Cm−1 − Cn−1‖LΩ,T

+
a1C̃N
cD
‖Nm −Nn‖LΩ,T

.

Using (76) we get

‖∇(Cm − Cn)‖2LΩ,T
≤ QC5

‖Cm−1 − Cn−1‖2LΩ,T
+QC6

‖Cm−1 − Cn−1‖LΩ,T
(82)
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where QC5
:=

QC1

cD
+QN1

QC2

cD
+

TeTQC3

cD
and QC6

:=
TeTQC4

cD
+ a1C̃C

cD
+ a1C̃N

cD

√
QN1

.

Now for all v ∈ H1(Ω) with ‖v‖H1(Ω) ≤ 1 we have that

sup
v
|〈∂t(Cm − Cn), v〉| ≤ ‖Rm3 −Rn3 ‖L2(Ω)‖v‖L2(Ω) + CD‖∇Cm −∇Cn‖L2(Ω)‖v‖L2(Ω)

+ ‖Dm −Dn‖L2(Ω)‖∇Cm‖L4(Ω)‖v‖L4(Ω)

⇒ ‖∂t(Cm − Cn)‖(H1(Ω))∗ ≤ ‖Rm3 −Rn3 ‖L2(Ω)‖v‖H1(Ω) + CD‖∇Cm −∇Cn‖L2(Ω)‖v‖H1(Ω)

+ C̃‖Dm −Dn‖L2(Ω)‖∇Cm‖H1(Ω)‖v‖H1(Ω)

≤ ‖Rm3 −Rn3 ‖L2(Ω) + CD‖∇Cm −∇Cn‖L2(Ω) + a1C̃‖Dm −Dn‖L2(Ω)

(83)∫ T
0⇒ ‖∂t(Cm − Cn)‖

L2
(

0,T ;(H1(Ω))∗
) ≤ ‖Rm3 −Rn3 ‖LΩ,T

+ CD‖∇Cm −∇Cn‖LΩ,T
+ a1C̃‖Dm −Dn‖LΩ,T

(84)

Using the Lipschitz continuity of R3 and D we get that

‖∂t(Cm − Cn)‖2
L2
(

0,T ;(H1(Ω))∗
) ≤ 4Q2

C1
‖Cm−1 − Cn−1‖2LΩ,T

+ 4Q2
C2
‖Nm −Nn‖2LΩ,T

+ 4C2
D‖∇(Cm − Cn)‖2LΩ,T

4a2
1C̃

2
C‖Nm −Nn‖2LΩ,T

+ 4a2
1C̃

2
N‖Cm−1 − Cn−1‖2LΩ,T

Using (76) we get

‖∂t(Cm − Cn)‖2
L2
(

0,T ;(H1(Ω))∗
) ≤ QC7‖Cm−1 − Cn−1‖2LΩ,T

+QC8‖∇(Cm − Cn)‖2LΩ,T
(85)

where QC7
:= 4Q2

C1
+ 4QN1

(Q2
C2

+ 4a2
1C̃

2
C) + 4a2

1C̃
2
N , QC8

:= 4C2
D.

For the second weak derivative we have that

‖∆(Cm − Cn)‖2LΩ,T
≤ q5‖Rm3 −Rn3 ‖2LΩ,T

+ q7‖∂t(Cm − Cn)‖2LΩ,T

≤ q5‖Rm3 −Rn3 ‖2LΩ,T
+ q7‖∂t(Cm − Cn)‖2

L2
(

0,T ;(H1(Ω))∗
)

(85)

≤ (q5Q
2
C1

+ q7QC7)‖Cm−1 − Cn−1‖2LΩ,T
+ q5Q

2
C2
‖Nm −Nn‖2LΩ,T

+ q7QC8
‖∇(Cm − Cn)‖2LΩ,T

(82)

≤ (q5Q
2
C1

+ q7QC7
+ q7QC8

QC5
)‖Cm−1 − Cn−1‖2LΩ,T

+ q7QC8
QC6
‖Cm−1 − Cn−1‖LΩ,T

+ q5Q
2
C2
‖Nm −Nn‖2LΩ,T

(76)

≤ QC9
‖Cm−1 − Cn−1‖2LΩ,T

+QC10
‖Cm−1 − Cn−1‖LΩ,T

(86)

where QC9 := (q5Q
2
C1

+ q7QC7 + q7QC8QC5 + q5Q
2
C2
QN1) and QC10 := q7QC8QC6 .

So from (81), (82), (86) and (85) we get

‖Cm − Cn‖2H1,2 ≤ QC11
‖Cm−1 − Cn−1‖2L2(Ω) +QC12

‖Cm−1 − Cn−1‖LΩ,T
(87)

where
QC11

:= TeTQC3
+ (QC8

+ 1)QC5
+QC7

+QC9
and QC12

:= TeTQC4
+QC6

(QC8
+ 1) +QC10

.

Now taking Eε-expectation we get

‖Cm − Cn‖2Z ≤ QC11‖Cm−1 − Cn−1‖2LΣ
+QC12‖Cm−1 − Cn−1‖LΣ (88)

Thus if (Cm)m is Cauchy in LΣ then (Cm)m is also Cauchy in Z, since QC9 and QC10 are
bounded for any fixed time T . �

Thereby, it is sufficient to find a condition for the sequence (Cm)m to be Cauchy in LΣ.
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Theorem 3.20 (CPDM time condition and existence). Let T̂ > 0 satisfy the condition (52) then
there exists 0 < T̃ <∞ and T > 0 satisfying

(TCPDM )


T̃ eT̃ <

1

max
{
QC3

12(C2
R3

+ C2
C), QC4

} ,
T = min(T̂ , T̃ ). (89)

be such that (CPDM) has an unique solution.

Proof. From (81) we see that

‖Cm − Cn‖2LΩ,T
≤ T̃ eT̃ (QC3‖Cm−1 − Cn− 1‖LΩ,T

+QC4)‖Cm−1 − Cn−1‖LΩ,T

≤ T̃ eT̃ max
{
QC3
‖Cm−1‖LΩ,T

+ ‖Cn−1‖LΩ,T
, QC4

}
‖Cm−1 − Cn−1‖LΩ,T

.

Using (69) and the uniform boundedness of R3 (see (49)) and C0 we get

‖Cm − Cn‖2LΩ,T
≤ T̃ eT̃ max

{
QC3

2eT̃ /2T̃ (C2
R3

+ C2
C), QC4

}
‖Cm−1 − Cn−1‖LΩ,T

Thus, we have that for

T̃ eT̃ <
1

max
{

12QC3
(C2

R3
+ C2

C), QC4

} (90)

then (Cm)m is a Cauchy sequence in LΣ. So, due to completeness of LΣ we get that (Cm)m
converges to C in LΣ. From Lemma 3.19 we in turn have that (Cm)m converges to C in Z. Now
by invoking Lemma 3.18 we get that Nm converges to N in X.
Furthermore, we get that (Cm)m(ς) and Nm(ς) are Cauchy sequences in L2(0, T ;L2(Ω)). So
(Cm)m(ς) and Nm(ς) converge to C(ς) and N(ς) in L2(0, T ;L2(Ω)) respectively. In particular, for

(Cm)m(ς) due to (79) we get that sequence also converges in H1,2. Thus the vector
(
C(ς), N(ς)

)
solves the macroscopic model in a weak sense for a.e. ς ∈ Σε. Moreover, the solution is unique as
proven below. �

Theorem 3.21 (Uniqueness). (C,N) ∈ Z× X is the unique solution to (CPDM).

Proof. Let N1 and N2 be two solutions to (9c), then it holds that∫
Ω

∂t(N1 −N2) υ dx =

∫
Ω

R4(C1, N1)−R4(C2, N2) υ ds

Letting υ := N1 −N2 and using the Lipschitz continuity of R4 we get

d

dt
‖N1 −N2‖2L2(Ω) ≤ 2CΛ2

(
KC‖N1 −N2‖2L2(Ω) +KN ε‖C1 − C2‖2L2(Ω) +

‖N1 −N2‖2L2(Ω)

ε

)
≤ 2CΛ2

(
KC‖N1 −N2‖2L2(Ω) +

2KN‖N1 −N2‖2

ε

)
= 2CΛ2

(
KC +

2KN

ε

)
‖N1 −N2‖2L2(Ω)

This implies that

‖N1 −N2‖2L2(Ω) ≤

0︷ ︸︸ ︷
‖N1(0)−N2(0)‖2L2(Ω) exp

(
2CΛ2

ω2

(
KC +

2KN

ε

)
t

)
⇒ ‖N1 −N2‖2LΩ,T

≤ 0
3.18⇒
(92)
‖N1 −N2‖2H1,0 ≤ 0 ⇒ ‖N1 −N2‖2X ≤ 0. (91)

Hence N1, N2 ∈ X are a.s. identical.

Now for the uniqueness of C ∈ Y, let C1, C2 ∈ Y be such that almost every sample path is a
weak solution to (9b). Also, let Di := D(Ci, N, Y ) and Ri3 := R3(Ci, N,X), i ∈ {1, 2} , where
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X ∈ X, N ∈ XandY ∈ Y are unique weak solutions to (8a), (9c) and (8b) respectively. Then we
have that∫

Ω

∂t(C1 − C2)υ dx =

∫
Ω

(R1
3 −R2

3)υ dx−
∫

Ω

(D1∇C1)−D2∇C2).∇υ dx

1

2

d

dt
‖C1 − C2‖2L2(Ω) =

∫
Ω

(R1
3 −R2

3)(C1 − C2) dx−
∫

Ω

(D1∇C1 −D2∇C2).∇(C1 − C2) dx

≤ ‖R1
3 −R2

3‖L2(Ω)‖C1 − C2‖L2(Ω) − cD‖∇C1 − C2‖2L2(Ω)

+ ‖D1 −D2‖L2(Ω)‖∇C1‖2H1(Ω)‖∇C1 −∇C2‖2H1(Ω)

≤ ‖R1
3 −R2

3‖L2(Ω)‖C1 − C2‖L2(Ω) + ‖D1 −D2‖L2(Ω)‖∇C1‖2H1(Ω)‖∇C1 −∇C2‖2H1(Ω)

≤ 1

ε1
‖C1 − C2‖2L2(Ω) +

1

ε2
‖D1 −D2‖2L2(Ω)

+ ε1 ‖R1
3 −R2

3‖2L2(Ω)︸ ︷︷ ︸
uniformly bounded

+ε2 ‖∇C1‖4H1(Ω)‖∇C1 −∇C2‖4H1(Ω).︸ ︷︷ ︸
uniformly bounded

So for ε1, ε2 > 0 sufficiently small we get

1

2

d

dt
‖C1 − C2‖2L2(Ω) ≤

1

ε1
‖C1 − C2‖2L2(Ω) +

CN
ε2
‖C1 − C2‖2L2(Ω) +

CC
ε2
‖N1 −N2‖2L2(Ω)︸ ︷︷ ︸

=0

≤
( 1

ε1
+
CN
ε2

)
‖C1 − C2‖2L2(Ω)

⇒ ‖C1 − C2‖2L2(Ω) ≤ 0 ⇒ ‖C1 − C2‖2LΩ,T
≤ 0 ⇒ ‖C1 − C2‖2LΣ

≤ 0. (92)

Hence C1, C2 ∈ Z are a.s. identical in LΣ. They are also a.s. identical in Z due to Lemma 3.19
and since Z ⊂ LΣ

�

3.3.3 Measurability of the solution to (CPDM)

The proof goes similarly to the measurablity proof for the solution of (SPDM).

3.4 Local and global existence for the solution to the multiscale model

Theorem 3.22. Local solution: From the existence and uniqueness theorem for (SPDM)
(3.10) and (CPDM) (3.20) and the measurability lemmas we get that for the time interval [0, T )
with T > 0 and satisfying the condition TCPDM (see (89)) there exists a unique solution

W = (Hi, He, C,N) ∈ X× Y× Z× X

to the full stochastic multiscale system.

Theorem 3.23. Global solution: For any finite time T and 0 < ε� 1, we can apply the local
existence and uniqueness theorem for the intervals [0, T ), [T − ε, 2T ) . . . [T− T − ε,T).

Proof. In order to apply the local existence proof for the new time interval [T − ε, 2T ), the
functions He(ς), C(ς), and D(C,N) need to be in W (p, T,Ω), so that He(T − ε, ς) and
C(T − ε, ς) , the initial conditions for the new time interval, are in W 2,p(Ω). This can be achieved
in the following way. Repeating the argument of Remarks 3 and 4 we get that
(Hm

e )m∈N ∈W (p, T,Ω) and (Cm)m∈N ∈W (p, T,Ω) are bounded sequences. Also, due to the
reflexivity of W (p, T,Ω) there exists a weakly convergent subsequence (H

mj
e )j∈N ⊂ (Hm

e )m∈N and
(Cmj )j∈N ⊂ (Cm)m∈N such that

Hmj
e ⇀ He ∈W (p, T,Ω) and Cmj ⇀ C ∈W (p, T,Ω).

Now, we claim that for a.e. t ∈ (0, T ) and a.e.ς ∈ Σε, He(t, ς) and C(t, ς) solve the equations∫
Ω

∂tHe φ dx−
∫

Ω

∇He · ∇ φ dx+

∫
Ω

Heφ =

∫
Ω

T (Hi, He) φ dx, ∀φ ∈ H1(Ω),
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and ∫
Ω

∂tC φ dx−
∫

Ω

D(C,N)∇C · ∇ φ dx =

∫
Ω

R3(C,N) φ dx, ∀φ ∈ H1(Ω),

respectively.
For p > d+ 2, the above claim can be proved using the following facts and assertions:

1. W (p, T,Ω) ↪→↪→ Lp
(
0, T ;Lp(Ω)

)
↪→ L2(0, T ;L2(Ω)),

2. R2(Hm
i , H

m
e ), R3(Hi, C

m, Nm+1) ∈ Lp
(
0, T ;Lp(Ω)

)
,

3. D(Cm, Nm+1) ∈W (p, T,Ω),

4.∇Cm ∈ Lp
(
0, T ;W 1,p(Ω)

)
and ∂t∇Cm ∈ L2

(
0, T ; (H1(Ω))∗

)
5. Assertion 4. and the Lions-Aubin lemma

⇒
{
φ ∈ Lp

(
0, T ;W 1,p(Ω)

)
; φ′ ∈ L2(0, T ; (H1(Ω))∗)

}
↪→↪→ Lp

(
0, T ;Lp(Ω)

)
Assertion 4. can be shown in the following way:
From (66) we have that

cD(∇Cmn , ∂t∇Cmn ) = (Rm3 , ∂tC
m
n )− 〈∂tCmn , ∂tCmn 〉

cD〈∂t∇Cmn ,∇Cmn 〉 = (Rm3 , ∂tC
m
n )− 〈∂tCmn , ∂tCmn 〉

cD〈∂t∇Cmn ,∇Cmn 〉2 ≤ 2‖Rm3 ‖2L2(Ω)‖∂tC
m
n ‖2L2(Ω) +

d

dt
‖Cmn ‖4L2(Ω)∫ T

0⇒
∫ T

0

cD〈∂t∇Cmn ,∇Cmn 〉2 dt ≤ ‖Rm3 ‖4L2(0,T ;L2(Ω)) + ‖∂tCmn ‖4L2(0,T ;L2(Ω)) + ‖Cmn ‖4L2(Ω) + ‖C0‖4L2(Ω)

(69),(70)

≤ K(‖Rm3 ‖4L2(0,T ;L2(Ω)) + ‖C0‖4L2(Ω)) <∞.

Consider the space

W :=
{
φ ∈ L2(0, T ;H2(Ω)); φ′ ∈ L2(0, T ;L2(Ω)) such that φ solves the equation (46a) weakly

}
.

Due to the existence theorem for (46a) the space W 6= ∅. Also, since one can impose several
boundary conditions to (46a) the set W is not a singleton. Clearly, W ⊂ H1,2.
For all φ ∈W its gradient φ̃ := ∇φ is in L2(0, T ;H1(Ω)). So∫ T

0

〈∂t∇Cmn , φ̃〉2 dt ≤ K(‖Rm3 ‖4L2(0,T ;L2(Ω)) + ‖C0‖4L2(Ω)) <∞. (93)

Since
W ⊂ H1,2 ⊂ L2

(
0, T ;H1(Ω)

)
⇒ L2

(
0, T ; (H1(Ω))∗

)
⊂ (H1,2)∗ ⊂W∗

we get that ∂t∇Cmn ∈ L2
(
0, T ; (H1(Ω))∗

)
.

From equation (93) we have that (∂t∇Cmn )n∈N is an uniformly bounded sequence, hence there
exists a subsequence (∂t∇Cmnk)k∈N ⊂ (∂t∇Cmn )n∈N and v ∈ L2

(
0, T ; (H1(Ω))∗

)
such

∂t∇Cmnk
l→∞
⇀ v in L2

(
0, T ; (H1(Ω))∗

)
and ‖v‖ ≤ lim inf

k∈N
‖∂t∇Cmnk‖.

It is clear that the limit v = ∂t∇Cm. Thus assertion 4. holds.

Using the above five assertions we get that:

Cmj ⇀ C in W (p, T,Ω)⇒ Cmj → C in Lp
(
0, T ;Lp(Ω)

)
,

Hmj
e ⇀ He in W (p, T,Ω)⇒ Hmj

e → He in Lp
(
0, T ;Lp(Ω)

)
,

∇Cmj ⇀ ∇Cm in Lp
(
0, T ;W 1,p(Ω)

)
⇒ Cmj → C in Lp

(
0, T ;Lp(Ω)

)
.

By dominated convergence and the above Lipschitz estimates for Hi and N the claim follows.
With He, C ∈W (p, T,Ω) the local existence and uniqueness proof is applicable to every bounded
time sub-intervals of [0,T). �
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4 Numerical simulations

In this section we present some simulation results for the stochastic multiscale model (abbreviated
as SMSM) introduced above. We use a RODE-Taylor scheme [21] for discretizing the intracellular
proton equation (1) and implicit finite difference schemes for the rest of the equations.

4.1 Simulations with a proliferation function switching between
growth and decay

Here we present only the results obtained for SMSM by choosing a Λ1(Hi) function that takes
both positive and negative values, since other cases are less interesting. Typically, a proliferation
function is a nonnegative function influencing the rate of growth. However, as mentioned in
Section 2.3, extreme values of Hi can induce death even for cancer cells. Since Λ1 is a function of
Hi we carry out simulations for the cancer proliferation function Λ1(Hi) which is positive for Hi

in an appropriate interval of the real line.

Figure 4 illustrates the expectation (averaged over 428 sample paths) of the solution to SMSM at
different fixed time points. A sequence of increasing time points is chosen to highlight the
temporal trend.

Further, in order to easily observe the effects of stochasticity we plot the time evolution graphs at
fixed spatial points. To see the spatial trend we choose four equidistantly spaced spatial points.
For each of these fixed spatial points, Figures 5 and 6 depict the time evolution of 15 (out of 428)
sample paths. In all these figures the average of the sample paths of the solution to (SMSM) is
represented by a dashed line.

Figure 5 contains the simulation results for (SMSM) with a Brownian bridge driven noise term.
The proliferation function Λ1(Hi) is as shown in Figure 3. It is positive for Hi approximately in
the interval [0.290785, 0.40278] and negative for all other positive values of Hi. Also, it attains its
maximum value of 1.4 when Hi ≈ 0.3513. The rate constant ω1 (which we call proliferation
sensitivity parameter) was assigned a relatively high value to represent a tumor that is sensitive
to changes (positive or negative) induced by Hi. To contrast this behavior, we performed
simulations for a less sensitive (in the above mentioned sense) type of tumor by downscaling the
value of ω1 by a factor of 100. The corresponding simulation results are shown in Figure 6.
Altogether, these figures illustrate the following salient features of the (SMSM) model:

1. The (SMSM) model predicts under certain conditions time decay for the cancer cell density
C(t, x). This is due to the particular choice of the proliferation function Λ1(Hi) which
switches between growth and decay. Thus, if the proton dynamics induced by the noise
term results in values of Hi consistently outside the interval of the positive part of Λ1

(representing cytotoxicity due to high acidity levels), it then induces a consistent decay in
cancer cell density.

2. The observation made in 1. can be easily verified by inspecting Figure 5, where some
sample paths C(t, .) (cancer cell density) decay to zero and stay there, while some approach
zero and after a while increase (or start to increase) towards the value 1.

3. From Figure 5 we observe that though some of the sample paths of C(t, x) show consistent
decay, its expected behavior (averaged over 428 sample paths ) shows indeed a very slow
invasive behavior. The rate of invasion is drastically slowed down due to the decay of C in
a certain time span. Another crucial insight that comes to light when Figure 6 is compared
with Figure 5 is that a smaller proliferation sensitivity parameter (ω1) actually results in
higher expected density of cancer cells. This might seem counterintuitive, but it makes
sense, as the reduction of ω1 diminishes the effect of the negative values of the switching
function; thereby less sample paths undergo decay and as a result the expected density of
cancer cells is relatively high.

4. The effect of a switching type of Λ1(Hi) function on normal cells is that their apparent
extinction time is delayed significantly.

28



Figure 4: Plots for expected values of cell densities and proton concentration over the spatial
interval [0, 1.9] corresponding to different fixed time points. Hi is represented by a vertical bar
(|||) curve, He by a dashed (- - -) curve, C by the continuous (—) curve and N by a dot-dash

(-·-·-) curve.
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5 Conclusion

In this work we proposed and studied a new multiscale model for acid mediated cancer invasion,
a topic which has attracted increased attention over the last decade. Since the source and decay
terms in our model for the proton dynamics were constructed based on experimental data, the
resulting behavior is to some extent reliable. Moreover, the model accounts for the noise and
uncertainties at the microscopic level. We proved the wellposedness of the model, thus clearing
the way for numerical simulations. From the results we can conclude the following:

1. For a non-negative proliferation function Λ1(Hi) (simulations not shown), our stochastic
multiscale model predicts sustained tumor invasion. The cancer population density reaches
its carrying capacity, the normal cell population density reaches extinction, and its
extinction rate is intensified as the cancer cell density approaches its carrying capacity.

2. For a growth function Λ1(Hi) taking both positive and negative values, the model exhibits
a richer dynamics, especially for the cancer population. If the noise term induces toxic Hi

values, then Λ1(Hi) can become negative, thus leading to a decay in cancer cell density.
Hence, the model not only can predict a persistent invasive behavior of cancer cells, but
also put in evidence the following interesting features:

• Quiescent and active phases of cancer cells: In the dormant phase, cancer cells are
unable to proliferate and are diminishing in number, hence their density may become nearly
zero and remain that way until the intracellular acidity (Hi) is suitable for proliferation. In
the active phase, cancer cells resume their replication cycle due to a conducive intracellular
pH level. Consequently, their cell density begins to increase, which in turn enhances
migration, thereby intensifying the decay of normal cells. Because this phase switching is
prominent for relatively high values of ω1 we infer that such behavior is typical for cancer
cells sensitive to change induced by Hi. Since for positively induced changes of Hi the
proliferation sensitivity parameter is a measure of tumor aggressiveness, we hypothesize
that aggressive tumors are sensitive to cytotoxic values of Hi and they diminish or surge
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quite rapidly. However, their declining trend may be a transient behavior, i.e. just an entry
into a quiescent phase, and they are very well capable of resuming their active phase unless
completely eradicated.

• Extinction of cancer cells: If the noise term in (SPDM) induces an intracellular
dynamics for which Λ1(Hi) is negative for sufficiently long time, then the cancer cell
population can approach extinction.

The crucial conclusions here are:

1. As cancer is an ecosystem of various cell types, different types of cancer cells exhibit
different phases of behavior (for e.g., quiescent phase, active phase, extinction phase, and
invasive phase) at different time moments, such that as a colony they are able to
compensate individual deficits and achieve the expected invasive behavior.

2. Aggressive cancers 4 are illusive in behavior, in the sense that they show signs of rapid
depletion in a non-conducive environment, but revert to their true invasive nature as soon
as the odds are favorable.

Altogether, the model endowed with a noise term F (χt, Hi), proliferation function Λ1(Hi)
switching between phases of growth and decay and a relatively high proliferation sensitivity
parameter, can achieve a robust and tight coupling of the macro- and microscales, thereby
allowing for a realistic and collaborative ecosystem type dynamics of cancer cells.
Given the fact that cancer migration is a complex process influenced by its proximal environment
and several random cellular mechanisms, deterministic models are too idealistic and sometimes
fail to make sufficiently reliable predictions, while stochastic models are not only capable of
overcoming this gap, but may also bring to light some rare and interesting features.

6 Appendix

6.1 Nondimensionalisation

Let τ := 10−7 (measured in min) be a time normalizing constant and Kw := 10−7 (measured in
Mvol
cells ) be the molar concentration of protons in water per cells per vol. Let the dependent

variables Hi and He (both measured in Mvol
cells ) be represented in a non-dimensional form as

Hi := Hi
Kw

, He := He
Kw

. Similarly, the time variable t (measured in min) and spatial variable x

(measured in dist5) are non-dimensionalized as t = t
τ , x = x√

D1τ
, where D1 (measured in dist2

min ) is

the apparent diffusion coefficient of extracellular protons.

The non-dimensional formulation can be deduced using the following rescaling relations:

T 1 := τ
Kw

T1, T 2 := τ
Kw

T2, T 3 := τ
Kw

T3,

S1 := τ
Kw

S1, S2 := τS2, Q := τ
Kw

Q,

∆ := D1τ∆, τ
Kw

:= 1, t := t
τ .

 (94)

For the cell population dynamics we have N, C, KN , KC ∝ cells
vol , ω1 ∝ 1

sec , γ ∝
dist
sec2 . So we

define the new unitless variables

C := C
KC

, N := N
KN

, γ := γ
D1
, ω1 := τω1,

D := D2(C,N,He)
D1

, x := x√
τD1

, ∇ :=
√
τD1∇, ω2 := KCτω2

}
(95)

6.2 Parameters used in the simulations

We set Ξ (the parameter vector used in the microscopic model) to value (.04, 108.5)T . This choice
was made after the stability analysis of (SPDM) without the noise term (i.e., for a deterministic
proton dynamics model). The aim of the stability analysis was to choose the parameters so that

4From the perspective of the proliferation sensitivity parameter ω1 being a measure of aggressiveness of the
tumor for positively induced changes by Hi.

5dist refers to some unit of distance suitable for the macroscopic scale of tissues
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Table 1: Simulation parameters

Noise parameters
ϑ 7.3× 10−5

a 1
b 2

Macroscopic parameters
ω2 .001
γ .001
ηC 1
ηN .3

Numerical parameters
T (Total time) 500

M (# Monte Carlo simulations) 428
τ (Temporal step size) .1

hx1 (Spatial step size along x1) .1
Nx1

(Grid resolution along x1) 20

Table 2: Parameters for sensitive and less-sensitive type of cancer driven by Brownian Bridge
(BB) noise:

Sensitive: Less-sensitive:

ω1 =

{
.5 if Λ1 ≥ 0

.05 if Λ1 < 0
ω1 =

{
.005 if Λ1 ≥ 0

.0005 if Λ1 < 0

the long term behavior of the deterministic proton model has a stable fixed point whose Hi, He

value represents a reverse pH gradient. Initial conditions were taken as:

Hi(0, x) = 0.4 exp
(
− ‖x‖

2
2

.3

)
+ .7z(x), z(x) ∼ U([0, 1]), He(0, x) = 0.8 exp

(
− ‖x‖

2
2

.3

)
,

C(0, x) = exp
(
− ‖x‖

2
2

.3

)
, N(0, x) = 1− exp

(
− ‖x‖

2
2

.3

)
.
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Figure 5: Time evolution plots of SMSM with Brownian bridge noise for 4 different spatial points.
The top left subfigure corresponds to the spatial point x = 0, the top right to the spatial point
x = .5, bottom left to the spatial point x = 1, and bottom right to the spatial point x = 1.5.
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Figure 6: Time evolution plots of SMSM with Brownian bridge noise with small proliferation
sensitivity parameter for 4 different spatial points. The top left subfigure corresponds to the
spatial point x = 0, the top right to the spatial point x = .5, bottom left to the spatial point

x = 1, and bottom right to the spatial point x = 1.5.
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