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Abstract

In this paper we first give an overview on the system of rehabilitation clin-
ics in Germany in general and the literature on patient scheduling applied to
rehabilitation facilities in particular.

We apply a class-teacher model developed by [10] to this environment and
then generalize it to meet some of the specific constraints of inpatient rehabilita-
tion clinics. To this end we introduce a restricted edge coloring on undirected
bipartite graphs which is called group-wise balanced. The problem considered is
called patient-therapist-timetable problem with group-wise balanced constraints
(PTTPg). In order to specify weekly schedules further such that they produce
a reasonable allocation to morning/afternoon (second level decision) and to the
single periods (third level decision) we introduce (hierarchical PTTPg). For the
corresponding model, the hierarchical edge coloring problem, we present some first
feasibility results.
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1 Introduction

In this paper we consider Operations
Research models for rehabilitation therapy.
We focus on the German rehabilitation
system, since it deviates partially in large
areas from those in other countries. One
reason for this discrepancy are the social
law and the different cost objects [23], an-
other one is the nonexistence of stationary
rehabilitation clinics in those countries, for
example in the Scandinavian countries or
Great Britain [16]. These countries link re-
habilitation measures more strongly with
acute care [23, 16]. However, there are
also countries, e.g. in Central Europe or
in Eastern Europe, whose systems resem-
ble the German system [16], such that the
approach presented in this paper will be
applicable in a larger context than the title
of the paper may indicate.

In the following, we summarize some
data which is extracted from [6] and which
show that there is a large market for suit-
able Operations Research methods in re-
habilitation. Germany had in 2010 1.237
facilities, which offered inpatient preven-
tive or rehabilitation measures. This was a
growth of approximately 5% in comparison
to 1991. 26% of these facilities accommo-
dated 200 and more beds. In total, there
were 1,97 million patients treated, which
corresponds to an increase of 500.000 pa-
tients in comparison to 1991. [6] assume
that this increasing trend will continue
due to the demographic development in
Germany (see for comparison [23], p.5f.).
The average residence time of a patient
in such a facility was in 2010 about 25,4
days, which is a decrease of residence time
of 18% in comparison to 1991. [6] suggest
that a reason for this decrease could be
seen in new increased extra payments for
rehabilitation measures and a shortening

of the general periods (see for comparison
[6]).

The Rehab-Report 2012 of the German
statutory pension insurance [13] gives an
overview of the costs and achievements
of the rehabilitation measures that they
funded. In 2010, they had 1,6 million re-
quests for medical and 412.966 requests
for vocational rehabilitation. Only 12% of
the measures in the area of medical reha-
bilitation were ambulant treatments, thus,
88% were inpatient treatments. On av-
erage, such an inpatient treatment costs
2.469 €, if it is caused by a physical ill-
ness. Addictive disorders cost on average
6.042 €. Patients which participate in in-
patient medical rehabilitation measures be-
cause of a physical illness stay on average
23-25 days (without neurological diseases).
Patients which suffer from an addictive dis-
order have to stay usually longer. In total,
the German statutory pension insurance
had to spend 5,38 billion after tax in 2010.

About 86% of the patients participating
in a medical rehabilitation treatment are
able to work again after at most two years
following their treatment. [13] reports that,
because of the demographic change, there
will be more demand on rehabilitation mea-
sures in the future.

Rehabilitation clinics are economic en-
terprises, thus, they compete against each
other for the restricted budgets of the cost
objects. On top, they have to ensure meet-
ing the legal rules which means increas-
ing quality requirements, e.g. they have
to participate in certification procedures
(see [26]). Moreover, also the patients
themselves can decide which clinic they
prefer [24, 26]. Hence, rehabilitation clin-
ics have to work competitively, economi-
cally, quality-oriented and patient-oriented.



Based on this data, it should be obvious
that there is a big chance for Operations
Research to help rehabilitation clinics to
reach these goals.

Although (regular!) hospitals and re-
habilitation clinics have several common
issues which need to be tackled efficiently,
like

e the treatment of both in- and outpa-
tients [30, 32, 14, 17],

e the decentralized organizational
structure [7, 2, 20],

o the self-management of wards and de-
partments of therapists [20, 27, 33],
or

e the pick-up and delivery service for
immobile patients [31, 22, 3],

there are many differences between the
two clinic types.

First, there are fewer uncertainties in re-
habilitation hospitals than in regular hos-
pitals with acute care [30]. Rehabilitation
clinics house patients that already over-
came the acute phase of their illness [7, 30].
Thus, the diagnoses are known when they
arrive at a rehabilitation clinic. This also
includes that there are in general very few
emergencies in rehabilitation clinics [30].
Only some rehabilitation clinics have wards
with acute care and sometimes even inten-
sive care. But even then there is a differ-
ence between the two clinic types, as these
rehabilitation clinics are then mostly spe-
cialized on certain kinds of illnesses [30],
e.g. neurological sicknesses. In such clinics
there can be emergencies disturbing the
usual appointment planning. However, if
this is not the case, it is simpler to estimate
how long the stay of a patient will be. It
also cannot happen in such a clinic, that a
patient arrives without appointment as it
can be the case in regular hospitals [15].

Secondly, human resources are at the
center of all planning in rehabilitation clin-
ics, while regular hospitals focus their plan-
ning attention on technical resources (op-
erating theaters, MRTs, CTs, etc.), see for
comparison [17, 30].

The success of individual therapies is de-
pending on continuity - much more so than
in regular hospitals. During his stay in a
rehabilitation clinic, a patient participates
in different types of therapies (e.g. phys-
iotherapy, occupational therapy etc.) and
occasional examinations, which all have
to be coordinated. For the planning, the
distinction between group and individual
therapies is important. It is best that the
therapist responsible for a certain type of
individual therapy does not change during
the time of stay (see [7, 30]), such that
each therapist knows exactly where he fin-
ished the last time with his patient and
can pick up working again from there on.
This saves time [30].

Although the planning of the therapies
takes place in teams, this does not transfer
to the planning of appointments for thera-
pies in general (see for comparison [7]). It
is the decentralized structure which takes
effect here. Each therapist department, or
even each therapist, plans alone without
knowing the appointment planning of the
other departments (only the already fixed
appointments of the patient are known at
this point of time and this does not hold
for changes later on). This procedure using
pen and paper (see for comparison [30]) is
inefficient, especially when appointments
have to be canceled on short notice.

The remainder of this paper is organized
as follows: Section 2 gives an overview of
the literature on appointment planning in
rehabilitation clinics and related topics. In
Section 3 we present a model called patient-
therapist-timetable which is based on re-
stricting assumptions and derived from a



model presented in [10]. Section 4 general-
izes this model even further to hierarchi-
cal edge colorings for bipartite graphs and

2 Literature

This section gives an overview of litera-
ture on the topic of patient scheduling for
rehabilitation clinics. We focus on schedul-
ing of appointments for inpatients. For
a more thorough review we refer to the
forthcoming dissertation [28].

[4] is a very early article investigating
what happens in terms of efficiency and ef-
fectivity if computer based procedures are
applied in a clinic offering acute care and
rehabilitation measures. The authors only
consider inpatients. The examined pro-
cedure has standardized treatment plans
for specific disease patterns, which can
be altered if need be. The single depart-
ments obtain the information what they
have to do with a patient on a certain
day. However, they do not investigate
how the appointment planning really takes
place. The authors are more interested in
whether computer based scheduling does
make sense in a clinical environment or if
it doesn’t.

In [29] the author works on the ques-
tion how to design and implement a cost-
efficient medical information system for
rehabilitation clinics. He first focuses on
rehabilitation patients with heart problems.
The author explains why the environment
of rehabilitation is interesting for system
developers and what could be gained by
such a system. He then describes the neces-
sary ingredients for such an administration
tool, e.g. guidelines in the field of reha-
bilitation and patient health records, and
how they could be realized. In the end he
explains why such systems were then not

Section 5 gives a short summary of the
discussed results as well as a formulation
of open problems.

yet realized.

The authors of [25] develop a hierar-
chically built, integer optimization model
to be able to conduct a weekly personnel
scheduling for physical therapists. The en-
vironment of the case study is the physical
therapy and rehabilitation department of
a university medical center. Thus, here a
physiotherapy department inside a regu-
lar hospital with acute care is considered.
The goal of the presented model is to be
able to take care of a maximum number of
patients, to minimize their waiting times
and to divide the load of work as equally
as possible among the staff. The model
works in three phases: selection of max-
imum number of patients not exceeding
the capacity of staff, allocation of the pa-
tients to therapists, distribution of the pa-
tients through the day. The authors take
into consideration that different patients
can have different urgencies and that treat-
ment time can vary. The model is weekly
adapted and newly calculated. The au-
thors do not directly consider emergencies,
however, they say, if capacity is free, they
can be squeezed in. Although the authors
do not explicitly say whether they con-
sider in- or outpatients, minimization of
waiting time suggests that outpatients are
considered. Preferences of the patients
themselves are not considered.

Also [9] investigates scheduling of phys-
iotherapy appointments in a rehabilitation
department inside of a regular hospital.
The goals are the minimization of the pa-
tients’ waiting times and an optimal op-



erating grade of existing resources to in-
crease patient contentment while efficiently
using the resources. The authors attach
special importance to the partial prece-
dence constraints. Because of the existence
of these constraints, they argue, that the
problem can be considered as a hybrid shop
scheduling problem. Since this problem is
strongly NP-hard, they suggest a solution
approach with a genetic algorithm. They
compare this approach to a mixed inte-
ger problem formulation for small problem
instances. Finally, the authors deduce a
decision support system which has been
applied in a hospital.

The same problem, scheduling of phys-
iotherapy appointments in a rehabilitation
department inside of a regular hospital,
is considered in [8]. The authors’ goal
is to minimize the patient waiting times
to increase service quality. They explain,
that the difference between the considered
scheduling problem and other scheduling
problems is, that besides the therapists
there is also need for therapeutic devices.
As in the previous article, the problem is
formulated as a hybrid shop scheduling
problem. The mixed approach combines a
genetic algorithm with data mining. They
present two learning rules for the data min-
ing and performed numerical tests.

The reference mostly related to this pa-
per, is [30]. The authors present a mixed
integer program to coordinate appoint-
ments of patients in an inpatient rehabili-
tation clinic. The German health system
is considered and they also point out com-
mon and diverging features of rehabilita-
tion clinics compared with regular hospi-
tals with acute care. Moreover, they dis-
tinguish between individual therapy and

group therapy and take into consideration
that patients need to have time to recover
between treatments. The authors describe
the procedure which clinics apply so far
and then build a monolithic optimization
model which is replaced by a hierarchic
model consisting of three phases. The
model is presented as part of a potential de-
cision support system that can offer a plan-
ner different alternatives of choice. They
also present numeric results.

[14] investigates again the scheduling of
physiotherapy appointments. They only
consider the case of inpatients. The goal of
this article is to show, that computer based
scheduling is more efficient and effective
than planning by hand. The problem is
formulated as a multicriteria combinatorial
optimization problem. As a solution ap-
proach, the authors suggest a local search
procedure in three phases. They consider
steepest descent, tabu search and simu-
lated annealing. Different types of ther-
apies are considered: individual therapy,
small groups, groups, several therapists
necessary, single therapist. The suggested
approach is applied in a neurological reha-
bilitation facility and leads to a significant
reduction in planning time.

The unpublished article [7] examines ap-
pointment planning for rehabilitation pa-
tients in an outpatient environment. The
authors focus on the coordination of ap-
pointments in different departments of
a certain rehabilitation outpatient clinic.
For this problem they develop an integer
programming formulation. Five different
performance-indicators are developed in
co-operation with a specific clinic and the
procedure is tested.

3 Patient-Therapist-Timetable



In this section a patient-therapist-
timetable model for an inpatient rehabili-
tation clinic is presented. It focuses solely
on individual therapies based on the as-
sumption that they will always have pri-
ority compared to group therapies. The
reason for this prioritization is quite intu-
itive when thinking about the higher value
of an individual supervision by a thera-
pist for a patient. Except lunch breaks we
do not consider any breaks for patients or
therapists and we assume that each ther-
apy session has for each patient the same
duration.

In the design of the therapy plan it is
required, that

e patients should, in general, not have
the same therapy twice a day,

e if - for medical reasons - a double
therapy is necessary on some days,
the two sessions should have suffi-
cient temporal distance for the pa-
tient to recover, and

e the sessions should be lead to an even
distribution of work and therapy load
for therapists and patients, respec-
tively.

We start with the requirement that a
patient should not have the same kind of
therapy twice a day, have a single thera-
pist per type of therapy and the goal of
an evenly distributed daily workload for
patients and therapists during a week. We
adapt the class-teacher model of [10] to
tackle this problem, and identify the set of
classes and the set of teachers in the school
environment with the set P of patients and
the set T of therapists in the rehabilitation
environment, respectively. The distinction
between daily and weekly problems in [10]

obviously makes sense in our case as well.
We denote with p;; the number of ther-
apy sessions of patient P; with therapist

T; per week, i.e., we set P = (Pij )N x M
where N' = {1,...,n} is the index set of
patients and M = {1,...,m} is the index
set of therapists. We denote by | DpW/| the

number of working days considered per
week and set

y, patient P; and therapist T
Tijk = meet y-times on day k;
0, else.

Using [10], the following model, coined

weekly problem (WP), gives a solution for
the allocation of therapy sessions during a
week under the condition of an even dis-
tribution over the week: find x;;x, such
that

|[DpW |
Z Tijk = Dij, fOI‘aHiEN,jEM

k=1
Dij
| DpW |

(2)

(1)

n

Z |DIZ€/VJ Zx”k = {Z

forallj e M,k=1,...,
] ]

2 DpW|| 2 {Z Dpwﬁ

foralli e N k=1

| DpW 1,

yees [IDPW, (3)

Dij J <z < ’V Dij —‘
> Lijk > )
L|DpW| Y |DpW|
forallie N,j e M,k=1,...,|DpW|, (4)
Tk € 23,
foralli € N,j € M,k=1,...,|DpW|. (5)

Constraints (2) and (3) ensure an evenly
distributed daily workload for patients and
therapists during a week. (4) guarantees a
balanced distribution of therapy sessions of
P; and Tj during a week, especially satisfy-
ing that a patient will not have twice a day
the same kind of therapy if p;; < |DpW|.

(WP) can be interpreted as an edge
coloring model on an undirected, bipar-
tite graph G = (V, E), where V = PUT
and E contains p;; parallel edges con-
necting P; and 7j. A coloring of the
edges using k colors is a partition of
E = f()UFf(2)U...Uf (k) (see, for instance,



[18]). In the following, we use the denota-
tions f(i)(v) for the set of edges incident
with v having color i, and f(4)(u,v) for
the set of edges connecting u and v with
color i. If we choose k = |[DpW|, then the
k colors coincide with the | DpW| working
days of the week. Consequently, colorings
with the property that none of the parallel
edges have the same color are in one-to-one
correspondence with (WP)s, in which no
patient is treated by the same therapist
twice on any single day of the week.

It can be shown [28] that (2) and (3)
are equivalent to the constraints of an eq-
uitable coloring and (2), (3), and (4) are
equivalent to the constraints of a balanced
coloring, where the latter notions are de-
fined according to [18, 19, 21] as follows:

Definition 3.1
An edge coloring of an undirected bipartite

graph G = (V, E) with k colors is
1) equitable, if for all v € V|
max__{[|f(1)(v)] = [f(H) ()] < 1.

1<i<j<k

(6)

2) balanced, if it is equitable and for all
u,v €V, u#w,

1@ (u, v)| = [f () (w, )] < 1. (7)

max _
1<i<j<k

<

Example 3.2

Consider the following bipartite graph
G = (V,E), where V = PUT with P =
{Pl,PQ,Pg} and T = {Tl,TQ}I

The subsequent edge coloring satisfies (6)
for all nodes, however, it violates (7) for
node combination P, Ty, i.e., it is equi-
table, but not balanced.

In contrast to the above edge coloring, the
next one satisfies both (6) and (7), so that
it is balanced and thus also equitable.

<

Notice that the extensions of edge-coloring
general graphs equitably or balanced are
NP-complete in their decision versions
[28].

Using the following result on the exis-
tence of a balanced coloring, which, accord-
ing to [18] is due to de Werra, the weekly
problem (WP) has for any given |DpW| a
feasible solution and can thus be solved as
integer program. [10] even sketches a pos-
sible solution concept with network flow
techniques to solve (WP) in polynomial
time.

Proposition 3.3
For k > 1, each finite undirected bipartite

graph has a balanced edge coloring with k
colors. <

Based on the results of [10] and assum-
ing some feasible solution x;;;, of (WP), we



next tackle the daily problem (DP*). Let

1, patient P; and therapist T}

z?js = meet in period s on day k;

0, else;

fori e N,j € Mand k =1,....|DpW|.

For each day k = 1,...,|DpW|, the z;j
define a new matrix Ay = (af;) which
specifies how often T; and P; meet on day
k. Then, (DP¥) is given as follows.

Find 2%

1789

such that

|PpD|

Z xfjszafj, foralli e N,j € M (8)
s=1

zF. <1, forall j € M,s=1,...,|PpD],

ijs
9)

NE

1

o
Il

zF <1, forallie N,s=1,...,|PpD|,

ijs

NE

1

<.
Il

(10)
al;, €B, foralli€ N,j € M,s=1,...,|PpD|.
(11)

A day consists of a certain number of
periods per day (|PpD|). Assuming usual
working hours from 8am till 5pm, a lunch
break of one hour, and periods of a half
hour, this results in 2 - 8 = 16 periods
each day. The total amount of periods
per week is [DpW| - |PpD|. (DPF) can
be formulated as an ordinary edge color-
ing problem, where no two adjacent edges
are allowed to have the same color. [10]
uses Konig’s Theorem to obtain that the
following proposition holds.

Proposition 3.4
(DP¥) is solvable for day k, if and only if

afj < |PpD|, for all j € M,

-

=1

afj < |PpD]|, for alli e N.

WE

1

<.
Il

If the condition in Proposition 3.4 is sat-
isfied, (DP*) can be solved e.g. by an
O(|E| - log(|E|)) algorithm (see [1]).

Based on ([10], [12]) a stronger state-
ment is proved in [28].

Proposition 3.5
Each solution of (WP) implies a solvable

system of (DP¥), for all k = 1,..., | DpW|,
if and only if

n
Zpij < |DpW| - |PpD], for all j € M, and
=1

m
> pij < |DpW| - |PpD], for all i € N.
j=1

<

Next, the problem is considered in which
a patient needs to have for some specific
kind of therapy two, but not more, therapy
sessions on some days. Note that if the
patient has a single therapist assigned to
him, any solution of the weekly schedule
(WP) still works fine, since the property of
balancedness guarantees that it can never
happen, assuming at most a double ther-
apy, that a patient has a day without a
certain planned therapy and another one
with more than two sessions. This would
contradict the coloring property (see Defi-
nition 3.1). If he has two therapists, one
who does the major part and the other
the minor, we can also apply (WP), by
assigning the first therapist five times a
week and the second one the rest. Their
meetings will clearly all be balanced out.

A complicating condition is the one
where none of the two therapists involved
in this particular therapy has the full
weekly load of, say, five meetings. In order
to deal with this situation - and an even
more general one of more than two ther-
apists - we introduce a new type of edge
coloring.



Definition 3.6

Given an undirected, bipartite graph G =
(V,E) with V. = PUT, where T =
T1UT2U...UT,, with edge coloring f. Let
(u,Ts) := {e € Ele = (u,v),v € T}, for
any u € P, and let f(i)(u, T5) be the set of
all edges, that connect u with some vertex
v € Ts having color 3.

A balanced edge coloring of G with k
colors is called group-wise balanced (with
respect to T), if for all u € P,

1 @) (w, Tl = 1£ () (u, T £ 1,
foralll1<i<j< lfc,s: 1,...,q.

<

This definition does, indeed, model, the
modified patient-therapist planning prob-
lem, since it ensures an even distribution
between a patient, corresponding to node
u, and the group of therapists represented
by the set T;. As decision version on gen-
eral graphs, this problem is N'P-complete
[28]. For a better understanding consider
the following example.

Example 3.7
In this example we have that ' = {1, 2, 3},
M = {1,2,3}, the number of colors is

2 21
|IDpW| = 3 and (p;;) = [2 0 0
0 2 0

Then we obtain the corresponding graph
G as

physical therapist

physical therapist

occupational therapist

The therapists 77 and T, are supposed
to be physical therapists (77), whereas T3
(72) is an occupational therapist. Thus,
by considering (p;;), we see that patient

P, should have four times physical ther-
apy in three days where the workload is
distributed between T; and T5. Let us
consider the following edge coloring

[ ,.@ physical therapist
o @ physical therapist
@ occupational therapist

The above edge coloring is equitable and
balanced, but patient P; would only have
physical therapy sessions on two out of
three days. However, the next edge col-
oring, which is equitable and balanced as
well, does also satisfy the constraint of
physical therapy at least once a day. It is
group-wise balanced.

EECERPEEERRES "@ physical therapist
o @ physical therapist

@ occupational therapist

Theorem 3.8

Let kK > 1, G = (V, E) be a finite, undi-
rected, bipartite graph with V = PUT,
T = T1UT2U..UT,, where ¢ < |T|. Then
there exists for G a group-wise balanced
edge coloring with k colors wr.t. 7. <

Proof. As described in [11, 12, 21], the
edge coloring problem associated with
(WP) can be formulated as node coloring
problem on a hypergraph (see [5] for a def-
inition). Moreover, it can be shown [28§]
that finding a group-wise balanced edge col-
oring corresponds to finding an equitable
node coloring in a unimodular hypergraph.



|[PpD|

Since any unimodular hypergraph H has we assume that |P;| = 5=, and discuss
for every k > 2 an equitable node coloring the more general case in the subsequent
with & colors (de Werra, 1971, according section.

o [21]), the result follows. O

Thus, we solve (WP;), succeeded by

Network flow techniques can be used to another problem of the same type called
find the group-wise balanced edge coloring  phase of day (PDPI;b)7 in which we only
of Theorem 3.8 [21]. A pseudocode can be allow two colors.

found in [28].

One can extend the (IP) formulation of

the (WP) problem formulation by includ-
ing the condition of group-wise balanced-
ness to obtain (WPy,) as follows.

|DpW|

Z Tijk = pij, foralli e N, j e M (12)
k=1
i

Z; |DpW|J Zm”k = {Z Dle]’
for all j € M,k =1,...,|DpW]|, (13)
Z DL Z =

= IDpW\ = [DpW|
for alli e Nk = ,...,|DpW\, (14)

Dij J B <[ Dij ]
LIDpW 1] =" = [ Topw] |
foralli e N,j € M,k =1,...,|DpW|, (15)

Pij
< E T;j
pW| = ik

D
L{JIT; €75} | 1T €T}

<

e
uiteny PPV
foralli e N, k=1,...|DpW|,s =1,...,q (16)
zijk € Zg,

forallie N,j e M,k=1,...,|DpW]|. (17)

Since it is not desirable to have two ther-
apy sessions of the same type directly suc-
ceeding each other, it is necessary to mod-
ify the daily plans (DP¥). This is done by
first splitting the total number of periods
per day in half, i.e., by considering morning
and afternoon periods where we assume
that |[PpD| = |P1| + |P2|. In this section,

10

Find xfjl, for [ = 1,2, such that

k k k
z1 + Tije = by,

foralli e N,j € M, k=1,..,|DpW]|, (18)
n_ pk. n n_pk
7 k 2
B v
i1 i—1 i=1
for all j € M,k =1,...,|DpW|, (19)
m pk m m bk
1 k K2
S << %]
Li=1 j=1 j=1
foralli € N,k =1,...,|DpW/|, (20)

bl bk
J k ij
2J < Tij1 < ’72 s

foralli e N,j € M,k =1,...,|DpW|, (21)

bk
> };]J< > T

L{GIT;€Ts GIT; €T}

< Y
— ) Z 2 b
{51T;€Ts}

foralli e N,k =1,..,|DpW|,s =1,....q (22)
k +

Ty € Zg

foralli e N,j € M,k=1,..,|DpW|,  (23)

with b, := ;;; obtained by (WP,) and

1, patient P; meets therapist T

k

Ty = on day k in phase [;

0, else.

We then pass the solution of this problem



to (DP}), I =1,2. Find st, such that
[Py
Z%s = ;s
forallie N,j e M,k =1,...,|DpW|, (24)
n
k,l
2T S L,
i=1
forall j € M,s=1,...|P|,k=1,..., | DpW]|,
(25)
m
k.l
D T S L,
j=1
foralli e N,s=1,...,|P|,k=1,...,|DpW]|,
(26)
Lkl
T;is € B,
forallie N,j € M,s =1,....|P],
k=1,..,|DpW|, (27)
: k.l . _ k : k
with a;;" 1= z7;; obtained by (PDP(,) and

if patient P; meets therapist T}
on day k in phase [ in period s;
else.

Note that (PDP’g“b) can be solved similar
to (WPyy), whereas (DPF) is again an ordi-
nary edge coloring problem. We denote the
resulting problem by (PTTP;). Further-
more, we say that in (PTTPg,) a solution
of (WPgy) is aligned with (PDP’g“b), if this
solution is used to build the corresponding
(PDP’;b) and then a feasible solution of
(PDP’;b) is considered further. Thus, we
call this process in the following alignment.

Theorem 3.9
Let [PpD| = [Pi| + [Paf, with [P1| =
|P2|. Each solution of (WPg,) aligned

with (PDP’;b), k = 1,...,|DpW]|, implies
a solvable system of (DP¥), for [ = 1,2,
k=1,...|DpW|, if and only if

Zpij < |DpW| - |PpD|, for all j € M, and

=1

m
Zpij < |DpW| - |PpD|, for all i € N.
j=1

11

<

Proof. “«<*: Let a solution of (WPg,)
be given together with a, from this solu-
tion obtained, feasible solution of (PDP’;b),
k=1,...,|DpW|. This is possible by Theo-
rem 3.8. By Proposition 3.4 we know, that
(DPF), is feasible for | = 1,2, if and only
if

n
P
Za]li‘ pDI , forall j € M,
1

Z
k=1,..,|DpW| and
m
P
Za]l | p D , for all i € NV,
j=1
k=1,..,|DpW]|,

and we have, for k,[, j arbitrary, that

Za = gt z]l (28)

M n k

< Zﬂ (29)
=1

=[S =[5 S|
(1 Di

< 2 ’V DpifV|-H (31)
[1 [|DpW]|-|PpD|

S|z [ Dpiv| H (32)

=[5 neopn| = |5 1Po01| 39

= L. |Ppp| (34)

Here (28) holds by definition of aU , the
first inequality (29) is correct by (PDP gb),
(30) by definition of bf;, the second inequal-
ity (31) by (WPg) and (32) by assumption.
The last equality (34) holds true, since

[PpD|
|PpD]| is an even number. E a b< B2l

j=
k,l,i arbitrary, can be shown analogously.

“=“. Now we assume, that each so-
lution of (WPg;) with an arbitrary from
it originated solution of (PDP’g“b) implies
a solvable system of (DPF), I = 1,2,
k =1,...,|DpW]|. Let such a solution be



given. Its existence is ensured by The- PN
orem 3.8. Thus, by (12)-(13), (18), for ‘nalogously for J;p”’ LEN. =

j € M arbitrary,

n n |DpW| |[DpW| n
PITES S ST S e
=1 =1 k=1 k=1 =1
|[DpW| n [DpW| n
k k k
= > D= D Y +ali)
k=1 i=1 k=1 i=1
|DpW| n
k,1 k,2
= 2 D (e +ay?)
k=1 =1
[ DpW | n . n .
1 2
S DN S
k=1 1i=1 =1
| DpW |
|PpD|  |PpD]
s 2 )
k=1
= |DpW| - |PpD]|.

4 Hierarchical Edge Colorings on Bipartite Graphs

The problem sequence (WP y,), (PDP’;b), sidering three levels Ly, Lo, L3 and three
(DPF) of a patient-therapist-timetable required (maximum) numbers of colors
problem (PTTP,;) considered in the pre- £1,f2, I3 for each of these levels (see Fig-
vious section can be interpreted as special ure 1), where F3 depends on the previous
case of hierarchical edge colorings, by con- level for |P1| # | P2l

/ SRt \

day 1 day 2 day 3 day 4 day 5

— T

morning 4 afternoon 4

Figure 1: Levels of (PTTP).

In the general problem, each level L;, by solving a coloring problem on the pre-
i =1,...,z, corresponds to a partition of vious level L;, i = 1,...,z — 1. Thus, in
the edge set FE, where 1 = F and each Figure 1 L; = E corresponds to the node
L;+1 is a partition of F into a family of patient-therapist pairs, Lo corresponds to
subsets, each of which has been obtained the nodes day i, i = 1,...,5, and L3 to the

12



nodes morning i, afternoon i, i = 1,...,5.
L3 = L, is the last level where an (or-
dinary) edge coloring problem has to be
solved.

Example 4.1
The problem sequence (WPy,), (PDP’;b),
(DPF) from the previous section, the

patient-therapist-timetable problem with
group-wise balanced constraints (PTTP ),

is a hierarchical edge coloring problem, (hi-
erarchical PTTPg;,), where:

Ly : group-wise balanced edge coloring,

Fy = |DpW;
Lo : group-wise balanced edge coloring,
Fy =2;

L3 : ordinary edge coloring,
F3(4) =Py, for j = 1,2.

Note that F3 depends on color j chosen
on level 2. <

Note further, that only hierarchical edge
coloring problems with at least one level
requesting an ordinary coloring are inter-
esting in terms of feasibility considerations,
since we know by the proof of Theorem 3.8
that feasibility is always ensured in the
other cases.

Using the concept of hierarchical color-
ings, we can drop in the (PTTP,) of Sec-
tion 3 the assumption |P;| = |P2|. It can
be seen [28], that Theorem 3.9 is no longer
correct without this assumption. However,
the following more general result [28] can
be shown.

Theorem 4.2

Let (PTTPg) be defined by |DpW|,
|PpD| = [P1| + |P2|, |P1],|P2| arbitrary,
and P = (p;j )~ xm-. Then

1) If
n
> _pij <2 min [Py] - [DpW|,¥j € M, and
i=1 7

m
D> piy <2 Juin [Py - |DpW|, Vi EN,
j=1 -

13

then each solution of (WP;,) aligned
with (PDP’g“b), k=1,..,|DpW|, gives
a feasible system of (DP¥), I = 1,2,
k=1,...,|DpW]|. This bound is tight.

2) If each solution of (WP;) aligned with
(PDP’;b), k=1,..,|DpW]| gives a fea-
sible system of (DP}), | = 1,2, k =
1,...,|DpW]|, then

n
Zpij < |DpW| - |PpD|,Vj € M,

=1

m
> " pij <|DpW|-|PpD|,Vi € N.
j=1

<

Proof. 1) Let an arbitrary solution for
(WP) be given, together with an from
it originated arbitrary feasible solution
of (PDP’;b), by Theorem 3.8. By Propo-

sition 3.4 we have that (DPF) is feasible,
for I = 1,2, if and only if

n

k,l
> aj <IPil,
i=1

forallj e M, k=1,..,|DpW|, 1 =1,2,

Skl
Zaij < ‘,Pl|:
j=1
forallie N, k=1,..,|DpW|,1=1,2,
and for arbitrary j, k,1,

n o n n bk:
7,
doay =) wiy < {Z ;—‘

i=1 i= i=1

[ n

. Tijk
“ 2
i=

2 | & |DpW|

M1 2
el . mi 1D
2 [\me iy ”W'H

-

IN

IN

= | min \'Pl|—‘
1=1,2

= mi <Py
[oin, [Pr] < [Pl



Analogously it holds that > afjfl <
j=1

|Py|, for all i« € N, k = 1,...,|DpW|,

I=1,2.

That this bound is tight, is shown in
an Example in [28], where we have

3

Ypi; = 3, forall i € N, and 2 -
j=1

pin [Py] - [DpW| = 2.

2) Assume that each solution of (WP;)
with a from it originated arbitrary fea-
sible solution of (PDP’;b) gives a fea-
sible system of (DP}), | = 1,2, k =
1,...,|DpW|. By Theorem 3.8 such a
solution exists. Thus, the correspond-

ing (DPF), 1 = 1,2, k = 1,...,|DpW|,
are feasible, i.e., by Proposition 3.4 we
have, for [ =1, 2,

n

k,l
Zaij < |7)l‘a

=1

forallj e M, k=1,...,|DpW|, 1 =1,2,

n
k,l

Z a’i]Z S ‘Pllv

j=1

foralli e N, k=1,...,|DpW|, | = 1,2.

Now consider, for j € M,

n |DPW| n o1 n b2
dopii= . Qg+ i)
i=1 k=1 1i=1 =1
|[DpW |
< > (1Pl +1P2))
k=1
= |DpW |- (|P1] + |P2])
= |DpW|-|PpD|.

m

Analogously for > p;j, i € N. O
j=1

For (PTTP,g), the patient-therapist-
timetable problem without group-wise bal-
anced constraints, the following theorem
can be shown [28] (the proof is omitted,
since it is quite technical and lengthy).

Theorem 4.3

Let (PTTP,4) be defined by |[DpW|, let
|PpD| = |P1| + | P2, such that ||Pi| —
|P2|| =1, and let pP= (Pij )M x M be satis-
fying

n
> " pij < |DpW| - |PpDI|,Vj € M,

=1

> pij <|DpW|- |PpD|,Vi € N

j=1
Furthermore, consider a particular solu-
tion for Ly, i.e., a feasible edge coloring of
L.

If there are two different solutions for
Lo, where one is feasible for L3z and the
other is not, then the one that is infeasi-
ble can be transfered into the feasible one
by redying a finite sequence of alternating
(in terms of color), elementary paths and
cycles. <

Unfortunately, the condition in Theorem
4.3 is not sufficient to guarantee the feasi-
bility of the complete problem. One can
find examples [28] showing that no such se-
quence exists starting from a fixed solution
for L1, while a modification of this solution
can yield a feasible solution. Hence, only
the following corollary can be established
[28].

Corollary 4.4

Let (PTTP,q) be defined by |DpW|, let
|PpD| = |P1| + |Pal, such that ||P:i| —
|Pa|| = 1, and let P = (p;j)nxa be satis-
fying

n
> “pij < |[DpW| - |PpD|,Vj € M,
i=1

> " pij < |DpW|-|PpD|,Vi € N,
j=1
If an edge coloring for Ly and Lo is given,
where the latter is infeasible for L3, it holds
that either a finite sequence of alternating
elementary paths can be redyed in Lo, such

14



that the edge coloring is still balanced and
becomes feasible for L3 or there is no fea-
sible solution with that edge coloring for
Ly of (PTTPg). <

Algorithm 1 shows a pseudocode using the
result of Corollary 4.4. Its proof of correct-
ness can be found in [28].

Note that the feasibility constraint
(FCs) in Algorithm 1 corresponds to

n

> ait <[Py, for all j € M,
i=1
k=1,..,|DpW| 1 =1,2,

n
Za%l <[Py, for all i € N,
=1

J
k=1,..,|[DpW|, 1 =1,2,

5 Conclusion

In this paper, we gave an overview on
rehabilitation clinics in Germany. We
pointed out the differences between the
facilities in Germany and other countries
and focused on the fact that inpatient re-
habilitation clinics differ very much from
regular hospitals with acute care, both in
their structure and in their focus.

We presented a survey on patient
scheduling related to rehabilitation clin-
ics and gave further reference to similar
areas of research.

Then we showed how a simple class-
teacher model can be modified to meet
a first set of constraints which are typical
in a rehabilitation environment. With the
concept of group-wise coloring, we intro-
duced a kind of edge coloring, which has to
the best of out knowledge so far not been
considered in the literature. We noticed,
that for bipartite graphs it can be seen
as searching for an equitable node color-

kl Lk
i = Ty

where a;; is the solution of

(PDP’g“b).

Furthermore, cand along W in line 10
of Algorithm 1 means, that in particular
u € VUV has to hold, if (.,u) € E(W) has
color jo = 1 and u € V, if (.,u) € E(W)
has color jo = 2. Thus, cand along W is
the set of candidate nodes along an ele-
mentary alternating path W. A candidate
being a node which can be the last node
on such a path W, such that W can be
redyed without destroying any of the de-
sired properties.

ing on a hypergraph using an argument
of [21]. To obtain an even better balanc-
ing of therapy sessions for the considered
patients, we introduced a coloring in hier-
archies and made some first attempts to
approach a special case of this problem
algorithmically.

Current research deals with the devel-
opment of lifting procedures if line 19 of
Algorithm 1 comes to pass. We want to
be able to modify the coloring of the first
level based on information obtained on the
second level without needing to compute
all possible edge colorings of the first level.
The latter is, in general, impossible, since
it can be shown [28], that there can be
exponentially many balanced edge color-
ings for an undirected bipartite graph G,
even if | DpW/| is assumed to be constant.
Another immediate research topic is the
determination of the complexity status for
hierarchical edge coloring problems on bi-

15



Algorithm 1 Pseudocode (Alternating Paths)

Input: |[DpW|, |PpD| = |P1|+]|Pal|, with |Pa| = [P1|+1, >_ pij < |DpW|-|PpD|,¥j €
i=1

M, > pij < |DpW]|-|PpD|Yi e N, edge coloring for L, and aligned one of Ly
=1

j=
Output: W = (W, ..., Wppw|) as in Corollary 4.4 demanded or the result, that for

1:
2:
3:
4:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

L1 non-existent
for all j; =1,...,|DpW| do

Wi, 0

V+—{veV] degH(h,l)(v) > |P1|}

V « {v e V\V|f(1)(v) can be reduced by 1, without destroying equitability of the
edge coloring of Ly in v} = {v € V' \ V|f(2)(v) can be increased by 1, without
destroying equitability of the edge coloring of Ly in v}

V + {v € V|f(1)(v) can be increased by 1, without destroying the equitability
of the edge coloring of Ly in v or (FCs)}

Hyyy = (V. E(H,))

E(ﬁ(jl)) +{e € E(H;,)) \ {parallel edges of even number with half of the edges

in E(H;, 1)) and half in E(Hj, 2))}}
8:
9:
10:

while V # 0 do
choose v € V
if 3 alt. el. v-u-path W in f{(jl): u € (cand along W), starting with jo =1
then
if u € V then
V+ V\ {u}
end if
Er(]&) — E[(jl)’ where W is redyed
le «— le uw
V<V {v}
update V, V
else
break there is no solution with this edge coloring of L existent
end if
end while
reconstruct a new H; ) based on H (
i+l
end for

Ji)
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partite graphs.

We further aim to approach the topic of
therapy sessions of different lengths and
to model the problem that patients could
need sometimes more breaks in between
therapy sessions if their health status de-

mands it. We also plan to investigate
the underlying polyhedra of our problems
and perhaps also introduce LP-relaxations.
The final goal would be to work with a
rehabilitation clinic to be able to obtain
computational results on real data.
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