
Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation

Algorithms in Singular:
Parallelization, Syzygies, and Singularities

Andreas Steenpaß

1. Gutachter: Prof. Dr. Wolfram Decker
2. Gutachter: Prof. Dr. Dorin Popescu

Vollzug der Promotion: 24. Juli 2014

D 386

Preface

The subject of this thesis is located in the field of algorithmic commutative
algebra and algebraic geometry. This area offers a rich interplay between
the mathematical theory on the one hand and the implementation of the
derived algorithms on the other hand. By the use of computers, the theory
has become accessible for experiments and, in turn, the demand for faster
algorithms has triggered new theoretical developments. The aim of this
thesis is to provide a substantial progress on both, the theoretical and the
implementational side.

The theoretical results of this thesis include, to mention a few highlights:

• a new local-to-global approach to normalization, see Section 2.3;

• a new method to verify that a given ideal is indeed the intersection of
a given set of ideals, see Proposition 3.2.7 and Corollary 3.2.8;

• an in-depth analysis of Schreyer’s syzygy algorithm, see Sections 4.2
and 4.3;

• the algorithmic classification of the simple real singularities, see Sec-
tion 5.4;

• a theorem on the shape of the automorphisms between the normal
forms of certain unimodal real singularities, see Theorem 6.4.3;

• an explicit description of the structure of the equivalence classes for
the unimodal real singularities of corank 2, see Section 6.6.

There are more than twenty algorithms discussed in this thesis, see the
List of Algorithms on page xvii. All of them are implemented in the open
source computer algebra system Singular [39]. In fact, a multitude of Sin-
gular libraries have been written or rewritten as part of or in the context of
this thesis. For details, please refer to the List of Contributions on page vii.
Together, these libraries contain more than 6400 lines of code. One high-
light of the implementational part of this thesis is Singular’s new parallel
framework which allows Singular users and authors of libraries to take
advantage of the computational power of modern multicore processors via a
technique called parallelization.

Most chapters of this thesis have emerged from joint research projects
with various colleagues. This is also reflected in the variety of the discussed

iii

iv Preface

topics. Several chapters are, or will be, published separately in a slightly
different form, see the List of Contributions for details. Some of the research
projects have led to new open problems and will thus be continued, based
on the results presented here.

This thesis consists of three parts: The first part is devoted to paralleliza-
tion. New algorithms for the computation of syzygies are presented in the
second part. Finally, the third part deals with the algorithmic classification
of real singularities.

Part I comprises the first three chapters. Singular’s parallel framework,
which is discussed in Chapter 1, is a sophisticated tool for parallelization
and has been developed as part of this thesis. It is specifically designed for
applications in mathematical research and serves as the technical basis for the
implementation of the parallel algorithms in the two subsequent chapters.
After a general introduction to parallelization in Section 1.1, the features
of this framework are described in Section 1.2. The parallel framework has
proven to be stable and of great benefit for applications in research. However,
we plan to improve it even further. An outlook on future plans is given in
Subsection 1.2.8.

Parallel algorithms for the normalization of a reduced affine algebra A
over a perfect field are presented in Chapter 2. Starting from the algorithm
of Greuel et al. [17], we propose two approaches which can also be com-
bined. For the local-to-global approach presented in Section 2.3, we stratify
the singular locus Sing(A) of A, compute the normalization locally at each
stratum and finally reconstruct the normalization of A from the local results.
Modular methods, which have proven to be a powerful tool for the compu-
tation of standard bases (cf. [2, 22]), are applied to both the global and the
local-to-global normalization algorithm in Section 2.4. The timings given in
Section 2.5 show that, in most examples, the new algorithms outperform the
algorithm of Greuel et al. by far, even if they are not run in parallel.

In Chapter 3, we present a parallel version of the algorithm of Gianni,
Trager, and Zacharias [14] for primary decomposition. For the parallelization
of this algorithm, we combine four different approaches. First, whenever we
encounter a zero-dimensional ideal, we use the modular algorithm of Idrees,
Pfister, and Steidel [22] to compute the associated primes. The correspond-
ing primary ideals are then extracted from these via saturation. Second,
we also use modular methods for the computations of standard bases which
occur at the intermediate steps. Third, we use an innovative fast method to
verify that the result is indeed a primary decomposition of the input ideal,
see Proposition 3.2.7 and Corollary 3.2.8. This allows us to skip the ver-
ification step at each of the intermediate modular computations. Finally,
we parallelize the trivially parallelizable parts such as the extraction of the
primary components mentioned above. These four approaches are described
in detail in Section 3.2. Timings are given in Section 3.3. Especially for large
examples, the parallel algorithm is faster then the sequential one and scales

v

well with the number of processor cores. However, we also found examples
where we could not achieve a considerable speedup. We therefore intend to
continue this project with an investigation of these examples.

Part II of this thesis consists of Chapter 4 only. Based on an in-depth
analysis of Schreyer’s algorithm [34, 33, 11] which is stated in Section 4.2,
we propose new algorithms for the computation of syzygies. Here, the main
ideas are that we may leave out so-called “lower order terms” which do not
contribute to the result of the algorithm, that we do not need to order the
terms of certain module elements which occur at intermediate steps, and that
some partial results can be cached and reused. These ideas are explained in
detail in Section 4.3. An extensive example is given in Section 4.4. We expect
that the new algorithms are considerably faster, especially for large examples.
However, this research project is still ongoing because the implementation
of the new algorithms is not yet completely finished, so we do not present
any timings here.

The last two chapters make up Part III which treats the algorithmic
classification of singularities over the real numbers, based on the classifica-
tion theorems of Arnold et al. [4]. Chapter 5 covers the Splitting Lemma
and the simple singularities. Section 5.2 contains some prerequisites for the
classification. In particular, we prove two results regarding the factoriza-
tion of homogeneous polynomials over R and Q (see Proposition 5.2.8 and
Lemma 5.2.9) which are important for the algorithmic aspect. Hereafter, we
present a real version of the Splitting Lemma in Section 5.3. By applying the
Splitting Lemma, the classification of a given real singularity can be reduced
to the classification of the residual part which, for the simple singularities, is
treated in Section 5.4. In addition to the algorithms, we also provide insights
into how real and complex singularities are related geometrically such as in
Remark 5.4.1.

For the unimodal real singularities, the situation is more complex because
the normal forms given by Arnold et al. [4] are not always uniquely deter-
mined. In Chapter 6, we explicitly describe the structure of the equivalence
classes of the unimodal real singularities of corank 2. The equivalences are
given by automorphisms whose shape is restricted by a theorem proven in
Section 6.4. Based on this theorem, we explain in detail how the structure
of the equivalence classes can be computed using Singular in Section 6.5.
The results are presented in concise form in Section 6.6. Finally, we point out
some interesting aspects of these results in Section 6.7. The probably most
surprising outcome is that the real singularity type J−10 is actually redundant.

Financial Support

This thesis was partly supported by the German National Academic Foun-
dation (Studienstiftung des deutschen Volkes) via a PhD scholarship.

vi Acknowledgements

Acknowledgements

There is a variety of persons to whom I am indebted for supporting the work
on this thesis. In particular, I would like to thank, in alphabetical order:

Petra Bäsell
Mohamed Barakat
Reimer Behrends
Wolfram Decker
Christian Eder
Claus Fieker
Gert-Martin Greuel
Christoph Lossen
Magdaleen Marais
Gerhard Pfister
Hans Schönemann
Frank-Olaf Schreyer
Christa Schulte

List of Contributions

Chapter 1 has been written exclusively by the author of this thesis.

Chapter 2 is the result of a joint project with J. Böhm, W. Decker, S. La-
plagne, G. Pfister, and S. Steidel. A slightly different version of this
chapter has been published in the Journal of Symbolic Computation,
cf. [7].

Chapter 3 is the result of a joint project with G. Pfister. We intend to
publish this chapter separately.

Chapter 4 is the result of a joint project with B. Eröcal, O. Motsak, and
F.-O. Schreyer. We intend to publish this chapter separately.

Chapter 5 is the result of a joint project with M. Marais. It has been ac-
cepted for publication in the Journal of Symbolic Computation, cf. [30].

Chapter 6 is the result of a joint project with M. Marais. It has been
submitted to the Journal of Symbolic Computation, cf. [31].

The following Singular libraries have been written or rewritten in the
context of this thesis:

assprimeszerodim.lib [46] for computing the associated prime ideals of a
zero-dimensional ideal, with N. Idrees, G. Pfister, and S. Steidel;

locnormal.lib [42] for computing the normalization of affine domains us-
ing local methods, with J. Böhm, W. Decker, S. Laplagne, G. Pfister,
and S. Steidel;

modnormal.lib [43] for computing the normalization of affine domains us-
ing modular methods, with J. Böhm, W. Decker, S. Laplagne, G. Pfis-
ter, and S. Steidel;

modquotient.lib [51] for computing quotients and saturations of ideals us-
ing modular methods;

vii

viii List of Contributions

modstd.lib [45] for computing Gröbner bases using modular methods, with
A. Hashemi, G. Pfister, H. Schönemann, and S. Steidel;

modular.lib [52] providing abstraction layer for modular techniques;

parallel.lib [53] providing an abstraction layer for parallel skeletons;

primdec_parallel.lib [50] for parallel primary decomposition of ideals,
with code from primdec.lib [44];

realclassify.lib [48] for the classification of singularities over the real
numbers, with M. Marais;

resources.lib [54] for managing computational resources;

tasks.lib [55] providing a parallel framework based on tasks.

Together, these libraries contain more than 6400 lines of code. In ad-
dition to this, more than 1000 lines of code have been contributed to other
Singular libraries and to the Singular kernel by the author in the context
of this thesis.

Contents

Preface iii

List of Contributions vii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

I Parallelization 1

1 Singular’s Parallel Framework 3
1.1 General Introduction to Parallelization 3
1.2 Implementation in Singular 6

1.2.1 Task-Oriented Design 7
1.2.2 User Interface . 7
1.2.3 Transparency and Responsiveness 9
1.2.4 Recursive Usage . 10
1.2.5 Resource Management 10
1.2.6 Data Transfer . 11
1.2.7 Performance and Stability 12
1.2.8 Outlook . 14

2 Parallel Algorithms for Normalization 15
2.1 Introduction . 15
2.2 The GLS Normalization Algorithm 16
2.3 Normalization via Localization 20
2.4 Modular Methods . 26
2.5 Timings . 32

3 Parallel Primary Decomposition 37
3.1 The Algorithm of Gianni, Trager, and Zacharias 37

ix

x Contents

3.2 A Parallel Algorithm for Primary Decomposition 42
3.2.1 The Zero-Dimensional Case 44
3.2.2 Verification . 46
3.2.3 Modular Methods . 51
3.2.4 Trivially Parallelizable Parts 52

3.3 Timings . 52

II Syzygies 57

4 New Algorithms to Compute Syzygies 59
4.1 Introduction . 59
4.2 Schreyer’s Syzygy Algorithm 62

4.2.1 The Induced Ordering 62
4.2.2 Schreyer’s Theorem . 63
4.2.3 Schreyer Frame . 64

4.3 New Algorithms . 65
4.4 Example . 69

III Real Singularities 73

5 Algorithmic Classification of the Simple Real Singularities 75
5.1 Introduction . 75
5.2 Prerequisites . 76

5.2.1 Equivalence . 76
5.2.2 The Milnor Number 78
5.2.3 The Determinacy . 78
5.2.4 Results Regarding the Factorization of Homogeneous

Polynomials over R and Q 79
5.3 The Splitting Lemma . 81
5.4 The Real Classification of the Residual Part w.r.t. Stable

Equivalence . 82
5.4.1 A1 . 84
5.4.2 Ak, k > 1 . 84
5.4.3 D4 . 85
5.4.4 Dk, k > 4 . 86
5.4.5 E6 . 88

6 The Structure of the Equivalence Classes of the Unimodal
Real Singularities up to Corank 2 89
6.1 Introduction . 89
6.2 The Sets of Parameter Transformations P1, P2, and P3 92

Contents xi

6.3 Weighted Jets and Filtrations of Power Series and Transfor-
mations . 95

6.4 Sufficient Sets of Transformations 96
6.5 On the Computation of the Results 100

6.5.1 How to Compute P1(T1, T2) 101
6.5.2 How to Compute P2(T1, T2) 102
6.5.3 How to Compute P3(T1, T2) 103
6.5.4 The Special Type Ỹr 105

6.6 Results . 107
6.7 Interpretation of the Results 116

Bibliography 119

List of Figures

1.1 Dependencies in Singular’s parallel framework 6
1.2 Scheduling in a parallel tree 12

4.1 LiftReduce/LiftHybrid applied to y · e2 and x · e3 71
4.2 LiftTree applied to y · e2 72
4.3 LiftTree applied to x · e3 72

6.1 Equivalences between NF
(
Ỹ +
r

)
and NF

(
Y ++
r,r

)
. 106

xiii

List of Tables

1.1 Performance of Singular’s parallel framework 13

2.1 Timings for plane curves with many Ak singularities 33
2.2 Timings for plane curves with various types of singularities . 34
2.3 Timings for the normalization of surfaces in A3 34
2.4 Timings for curves in A3 and a surface in A4 35

3.1 Algebraic and geometric properties of the examples 54
3.2 Timings comparing primdecParallel, GTZ, and SY 54
3.3 Timings for the verification step of primdecParallel 55

5.1 Real normal forms of singularities of modality 0 84

6.1 Normal forms of singularities of modality 1 and corank 2 . . . 91
6.2 Sufficient sets for unimodal singularities of corank 2 97
6.3 P1, P2 and P3 for the X9 singularities 108
6.4 P1, P2 and P3 for the J10 singularities 110
6.5 P1, P2 and P3 for the J10+k singularities 110
6.6 P1, P2 and P3 for the X9+k singularities 111
6.7 P1, P2 and P3 for the Yr,s singularities 113
6.8 Additional equivalences for the Yr,s singularities in the special

case r = s . 113
6.9 P1, P2 and P3 for the Ỹr singularities 114
6.10 P1, P2 and P3 for the exceptional unimodal singularities . . . 115

xv

List of Algorithms

2.1 Normalizing the localizations 23
2.2 Normalization via localization 23
2.3 Modular normalization . 31

3.1 zeroDecomp . 40
3.2 reductionToZero . 42
3.3 decomp . 43
3.4 zeroDecompModular . 46
3.5 decompModular . 47
3.6 testPrimdec . 50
3.7 primdecParallel . 51

4.1 SyzSchreyer . 64
4.2 LeadSyz . 65
4.3 SyzLift . 66
4.4 LiftReduce . 67
4.5 LiftHybrid . 68
4.6 LiftTree . 68
4.7 LiftSubtree . 69

5.1 Determinacy . 79
5.2 Algorithm for the Splitting Lemma 83
5.3 Algorithm for the case Ak . 85
5.4 Algorithm for the case D4 . 86
5.5 Algorithm for the case Dk, k > 4 87
5.6 Algorithm for the case E6 . 88

xvii

Part I

Parallelization

1

Chapter 1

Singular’s Parallel Framework

1.1 General Introduction to Parallelization

In 1965, computer scientist Gordon E. Moore noticed that the development
of microelectronic devices had been exponential over the past few years, and
he predicted that the rate of increase would remain “nearly constant for at
least 10 years” [32]. This forecast has proven to be quite precise until today
and it is expected to remain valid in the near future.

For a long period, this development was partly achieved by increasing
the clock rate of microprocessors. The IBM PC introduced in 1981 was
shipped with the Intel 8088 microprocessor which ran at 4.77 MHz. Around
the year 2000, desktop computers reached the milestone of 1 GHz. When
higher clock rates became harder to attain in the middle of the 2000s due to
technical reasons, mainly evolution of heat, the performance improvement of
microprocessors continued by other means. One of these means are multicore
processors which were introduced to the mass consumer market at about this
time. As of 2014, most desktop computers and notebooks are shipped with
multicore processors.

In order to take advantage of the enormous potential of modern pro-
cessors with several cores, the software must split the calculation into parts
which can be run in parallel on the different cores and whose results are then
joined together. This technique is called parallelization. In some cases, such
as for video encoding software, there are obvious ways how this can be done.
A video can be split into parts which can be encoded (almost) independently
of each other.

For mathematical software, parallelization is often more challenging, but
it has also proven to be particularly fruitful for research. Some recent results
in computational mathematics such as the computation of a standard basis of
the ideal Cyclic 9 in characteristic 0 (cf. [22]) would not have been possible
without this technique. But the importance of the technical development
in this area for mathematical research goes beyond setting new benchmark

3

4 Chapter 1: Singular’s Parallel Framework

records. First of all, the question how a mathematical algorithm can be
parallelized is a research problem on its own. Which parts of the computation
are independent of each other? Which other methods yield the same result,
but are more suitable for parallelization? These questions have also triggered
new developments in adjacent areas of mathematical research such as the in-
depth analysis of modular methods. Two examples for this are highlighted
in Chapters 2 and 3. In some cases, the search for parallel algorithms led
to new approaches which are sometimes faster than the sequential approach,
even if they are not computed in parallel, see Section 2.5 for examples.

Parallelization allows us to tackle research problems which have been
previously unsolvable. Areas such as cryptography and phylogenetics provide
examples for computational challenges which are far out of reach without
parallel software. The technical development over the past few years makes
these areas of theoretical research accessible for experiments, provided that
the employed software can benefit from the power of multicore processors.

On the other hand, there are a few obstacles for the usage of paralleliza-
tion which should not be silently ignored. Parallel programming is generally
difficult to handle for end-users which have often very little or no knowledge
in this field. In order to prove the correctness of a parallel program, that is,
a program where different parts are run in parallel, one has to consider ev-
ery single branch and every possible interaction between those parts because
the program flow often depends on race conditions and is thus unpredictible.
This makes parallel programs in general by far more complex than sequential
ones. If errors occur, they are typically very difficult to track down. They
might only occur at one in a million times due to race conditions. Proba-
bly due to these difficulties, there is no well-established standard framework
for parallel programming which would provide simple ready-to-use high-level
directives. Thus parallelizing a sequential program generally requires deep
modifications. However, the software may also benefit from this process. In
writing parallel code, the programmer is obliged to modularize the software
such that every part plays a distinct role and interacts with the other parts
in a well-defined way.

Parallelization also has its limits. First, parallel programs always involve
a certain amount of overhead in comparison to sequential ones. This over-
head mainly consists in the communication between the concurrent parts and
in the scheduling of the computational tasks. Therefore the communication,
however it is done in practice, should be both kept to a minimum and be
very efficient. The scheduling should be simple, but still efficient enough to
yield a near-optimal allocation of the available resources.

Second, there are even theoretical limits for parallelization. The following
theorem, known as Amdahl’s law, describes the influence of non-parallel-
izable portions of a program on the maximum possible speedup:

Theorem 1.1.1 ([1]). If rs and rp denote the sequential and parallel portion

1.1. General Introduction to Parallelization 5

of a program, respectively, with rs + rp = 1, then the speedup S(N) which
can be achieved for a fixed problem size under ideal circumstances by using
N processor cores is

S(N) =
1

rs +
rp
N

.

Therefore the maximum possible speedup that can be achieved by using an
arbitrary number of processor cores is

S = lim
n→∞

S(N) =
1

rs
.

Although the proof of this theorem is straightforward, it has surprising
consequences: If 90 % of a program can be fully parallelized and scale arbi-
traryly well with the number of cores, but only 10 % remain sequential, then
the maximum possible speedup is 10. Even with eight processor cores, the
speedup is restricted to little more than 4.7, so we lose about 40 % compared
to a linear speedup of 8.

On the other hand, if we replace the condition that the problem size is
fixed by the assumption that the run time is constant, and if we additionally
assume that “the amount of work that can be done in parallel varies linearly
with the number of processors” [20], we get Gustafson’s law:

Theorem 1.1.2. If s and p represent the serial and parallel portion of time,
respectively, spent on a parallel system with N cores, with s + p = 1, then
a single processor core would require time s+ pN to perform the same task.
Therefore, the “scaled speedup” S′(N) is

S′(N) =
s+ pN

s+ p
= pN + s .

Since the serial time s can be neglected, we get S′(N) ≈ pN , that is, the
scaled speedup grows almost linearly for increasing N where the linear factor
is p. If we assume s = 0.1 and N = 8 as above, then Gustafson’s law predicts
a scaled speedup of 7.3. For the parallel framework and its applications
discussed in this thesis, we might expect speedups which lie somewhere in
the range between the predictions of Amdahl’s and Gustafson’s law.

On the technical level, we have to distinguish between parallelization
where the parallel parts are run in separate processes and parallelization
where they are run in different threads within the same process. On most
operating systems, the main difference between threads and processes is that
multiple threads may share the same memory while each process has its own
memory address space by default. Thus data does not need to be transferred
between threads within the same process. Because of this, thread-based par-
allelization is dominated by synchronisation overhead whereas parallelization
based on processes is dominated by copying overhead (cf. [26, 23]). While
the overhead can be neglegted for coarse-grained parallelization where the

6 Chapter 1: Singular’s Parallel Framework

Figure 1.1: Dependencies in Singular’s parallel framework

parallel.lib

tasks.lib

resources.lib

whole computation is split up into long-running tasks, it is especially impor-
tant for fine-grained parallelization where each parallel task takes only a few
milliseconds.

1.2 Implementation in Singular

The main goal of the framework described in this chapter is to provide par-
allel functionality for users of the software Singular.

Singular [39] is a computer algebra system for polynomial equations
whose main areas of application are commutative and non-commutative alge-
bra, algebraic geometry, and singularity theory. The software is open-source
under the GNU General Public Licence (version 2 or version 3). Singular
admits an interpreter which has its own programming language with a C-like
syntax. The mathematical functionality is provided at two different levels:
Core algorithms such as the standard basis algorithm or polynomial factor-
ization are implemented in the Singular kernel which is mainly written in
C and C++. The kernel can be extended by libraries written in Singular’s
own programming language. The functionality provided by the numerous
libraries includes normalization (see Chapter 2), primary decomposition (see
Chapter 3), and the classification of singularities (see Chapter 5).

Singular’s parallel framework has been developed as part of this the-
sis. It is specifically designed for applications in research and serves as the
technical basis for the implementation of the parallel algorithms discussed
in Chapters 2 and 3. The framework consists of the three Singular li-
braries resources.lib [54], tasks.lib [55], and parallel.lib [53]. Fig-
ure 1.1 shows how these libraries depend on each other.

We highlight the most important features of Singular’s parallel frame-
work in the following subsections. Please note that the current implemen-
tation of these features may change in the future due to changes in other
parts of Singular and is therefore not explained here. In particular, the
parallel parts are currently run in separate processes whereas in the future

1.2. Implementation in Singular 7

it will also be possible to run them in threads within the same process. For
technical details of the framework, please refer to the extensive comments in
the source code. Details on the user interface can be found in the Singular
manual.

1.2.1 Task-Oriented Design

The design of the parallel framework is strictly task-oriented, that is, in or-
der to parallelize a computation, it is divided into user-defined chunks called
tasks which are independent of each other and can be performed simulta-
neously. This is opposed to data parallelism where a single command is
executed on different data sets.

To reflect the task-oriented design in the Singular interpreter, a new
data type task has been introduced. An object of type task can be created
by a command given as a string and a list of arguments as in the following
example:

> task t = "intersect", list(I, J);

Here, an object t of type task is defined as the task to compute the inter-
section of I and J. Tasks may differ completely in both their running time
and the kind of computation. In particular, the granularity of the tasks is
left to the user.

1.2.2 User Interface

The user interface of the parallel framework provides easy-to-use single-line
commands for Singular users and authors of libraries who have often no or
very little knowledge about parallelization. Using this framework, they are
able to parallelize their code without having to consider issues such as data
formats, scheduling, and inter-process communication.

The library tasks.lib is an interface for the basic handling of parallel
tasks as in the following example:

> LIB "tasks.lib";
> ring R = 0, (x,y), lp;
> ideal I1 = x2-3y2, 2xy;
> ideal I2 = 3x2+y3, 3xy2;
> task t1 = "std", list(I1);
> task t2 = "std", list(I2);
> startTasks(t1, t2);
> waitAllTasks(t1, t2);
> getResult(t1);
_[1]=y3
_[2]=xy
_[3]=x2-3y2

8 Chapter 1: Singular’s Parallel Framework

> getResult(t2);
_[1]=y5
_[2]=xy2
_[3]=3x2+y3

Here, standard bases of the two ideals 〈x2 − 3y2, 2xy〉 and 〈3x2 + y3, 3xy2〉
in Q[x, y] are computed in parallel. The library tasks.lib provides, among
others, the following commands:

• copyTask, compareTask, and printTask;

• startTasks, stopTask, waitTasks, waitAllTasks, and pollTask;

• getCommand, getArguments, getResult, and getState.

For an exhaustive list of commands and for detailed information on their
usage, please refer to the manual.

Based on tasks.lib, the Singular library parallel.lib implements
several parallel skeletons. A parallel skeleton is a programming pattern for
performing several tasks in parallel. For example, it is a common program-
ming pattern to start some tasks in parallel and to wait for all of them to
finish as in the example above. Using the command parallelWaitAll from
parallel.lib, the example can be rewritten as follows:

> LIB "parallel.lib";
> ring R = 0, (x,y), lp;
> ideal I1 = x2-3y2, 2xy;
> ideal I2 = 3x2+y3, 3xy2;
> parallelWaitAll("std", list(list(I1), list(I2)));
[1]:

_[1]=y3
_[2]=xy
_[3]=x2-3y2

[2]:
_[1]=y5
_[2]=xy2
_[3]=3x2+y3

The following commands are implemented in the library parallel.lib
so far:

parallelWaitN perform several tasks in parallel and wait for a certain
number of them to finish

parallelWaitFirst perform several tasks in parallel and wait for the first
of them to finish

parallelWaitAll perform several tasks in parallel and wait for all of
them to finish

1.2. Implementation in Singular 9

parallelTestAND run several tests in parallel and determine if they all
succeed

parallelTestOR run several tests in parallel and determine if any of
them succeeds

This list might be extended in the future. Again, please refer to the manual
for detailed instructions on how to use these commands.

1.2.3 Transparency and Responsiveness

The parallel framework is transparent in the sense that performing tasks
in parallel yields the same results as executing them sequentially. In the
parallel examples above, we get the same standard bases as with the following
sequential code:

> ring R = 0, (x,y), lp;
> ideal I1 = x2-3y2, 2xy;
> ideal I2 = 3x2+y3, 3xy2;
> std(I1);
_[1]=y3
_[2]=xy
_[3]=x2-3y2
> std(I2);
_[1]=y5
_[2]=xy2
_[3]=3x2+y3

Transparency is especially important in view of the fact that Singular
is not state-less, that is, the same command may yield different results de-
pending on circumstances such as global options, defined variables, or the
current basering. For example, the result of the Singular command std()
depends on the option redSB: If this option is set, std() returns a reduced
standard basis whereas the result is not necessarily reduced if redSB is not
set.

For a task-based parallel framework, this has be taken into account.
When a task is started in the Singular interpreter, it waits in the back-
ground until enough computational resources become avaiblable. As soon
as this is the case, the parallel framework starts to execute the task. In
the meanwhile, the state of the Singular process may have changed in a
way which influences the result of the task. In the parallel framework, how-
ever, every task yields the same result as if it had been executed right at
the point where it was started in the Singular interpreter. In the paral-
lel examples above, this point is given by the commands startTasks and
parallelWaitAll, respectively.

10 Chapter 1: Singular’s Parallel Framework

Singular’s parallel framework is optimized for responsiveness in the
sense that each command finishes (almost) immediately if it does not require
to wait for a task to complete. Responsiveness is related to transparency be-
cause of implementational issues. For example, when some tasks are started
via the command startTasks, an easy possibility to achieve transparency
would be to block the execution of further interpreter commands until all
tasks are completed. However, such an implementation of startTasks would
not be responsive.

1.2.4 Recursive Usage

Singular’s parallel framework allows the user to define parallel tasks re-
cursively within other tasks. Algorithms can thus be parallelized even on
different levels. The scheduling of the tasks in the resulting tree structure
is handled by the framework and the user does not need to worry about
it. As an example for parallelization on different levels, the two standard
bases from the examples above can be computed using modular methods
(cf. Chapters 2 and 3) as follows:

> ring R = 0, (x,y), lp;
> ideal I1 = x2-3y2, 2xy;
> ideal I2 = 3x2+y3, 3xy2;
> parallelWaitAll("modStd", list(list(I1), list(I2)));
[1]:

_[1]=y3
_[2]=xy
_[3]=x2-3y2

[2]:
_[1]=y5
_[2]=xy2
_[3]=x2+1/3y3

In this Singular session, the command modStd from the library modstd.lib
[45] is applied to both ideals I1 and I2 in parallel, and both standard bases
computations are, in turn, further parallelized using commands from the
libraries tasks.lib and parallel.lib.

The recursive usage of the parallel framework is especially important for
parallelization within Singular libraries. Thanks to this feature, a library
can be parallelized regardless of whether or not other libraries depending on
that library use parallel functionality as well.

1.2.5 Resource Management

The parallel trees arising from recursive usage of the parallel framework
as explained in the previous subsection may grow very fast. However, the

1.2. Implementation in Singular 11

computational resources are limited. Too many tasks running at the same
time may overload the compute server and, in some cases, a Singular user
may want to restrict the computational resources taken up by Singular
explicitly. For this purpose, the library resources.lib allows the user to
set the maximal number of simultaneously running tasks as in the following
example:

> LIB "resources.lib";
> setcores(4);
4
> ; // [parallel computations on four processor cores]
> addcores(2);
6
> getcores();
6
> ; // [parallel computations on six processor cores]

Singular’s parallel framework respects these settings, that is, it does
not execute more tasks at the same time than permitted by these commands.
If the tasks are defined recursively, then this restriction applies to the whole
parallel tree. The default value for the maximal number of simultaneously
running tasks is the number of processor cores of the compute server which
Singular is running on. Again, please refer to the manual for a detailed
description of the commands provided by resources.lib. The functionality
of this library might be extended in the future to support, for example,
distributed parallel computing on several compute servers.

The parallel framework automatically decides in which order the tasks
are executed if there are not enough resources available to run all of them
at the same time. This scheduling tends to be optimal in the sense that the
concurrently running tasks are equally distributed to the main branches of
the parallel tree. For example, when the maximal number of simultaneously
running tasks is set to four, and the parallel tree looks like the graph in
Figure 1.2, then the parallel framework tends to execute the tasks along the
bold branches first.

1.2.6 Data Transfer

The handling of data within the parallel framework is optimized for keep-
ing the amount of transferred or copied data as little as possible. For this
purpose, the internal data structures of the Singular type task rely on a
pointer-like concept. That is, the data associated to objects of type task
such as the command, the arguments to that command, or the result of a
task, are stored in an internal list and only transferred or copied if necessary.
This is important because objects in Singular may become very large. In
the current implementation of the framework, tasks are executed in separate

12 Chapter 1: Singular’s Parallel Framework

Figure 1.2: Scheduling in a parallel tree

processes which are generated by forking (or, in other words, copying) the
parent process. Thus the input data for tasks does not need to be transferred
or copied.

The technical basis for data transfer within the parallel framework will
change in the future when tasks can be executed in threads within the same
process. This is expected to speed up the data transfer even further.

1.2.7 Performance and Stability

Parallel programs always involve a certain amount of overhead in compar-
ison to their sequential counterparts. In Singular’s parallel framework,
this overhead is kept to a minimum in order to maximize the performance.
This is achieved by optimizing the data transfer as explained in the previous
subsection and by keeping the scheduling as simple as possible. The perfor-
mance of the framework is especially crucial for fine-grained parallelization,
that is, for applications where the running time of the tasks is relatively
short. An efficient framework allows us to achieve considerable speedups
even in situations where the running time of each tasks is in the range of a
few milliseconds.

To measure the performance of the current implementation of Singu-
lar’s parallel framework, we use parallel trees where each task does nothing
else than to start a certain number of subtasks and to wrap the result of these
subtasks in a list. Thus the result of the task at the root node of the tree
is a nested list which reflects the tree’s structure. Table 1.1 shows timings
for several trees. The number of nodes and leaves in each tree is calculated
from the number of children per node and the number of levels. These exam-
ples were computed on a compute server with an eight-core Intelr CoreTM

i7 CPU (4 physical cores plus Hyper-threading) and 16 GB RAM running
under Linux 3.14.

The timings show that the parallel framework tends to perform better
on both, trees with more nodes and trees with more children per node. Only

1.2. Implementation in Singular 13

Table 1.1: Performance of Singular’s parallel framework

Parallel tree
Time in ms ms/nodeChildren

Levels Nodes Leavesper node

1 5 6 1 40 6.67

1 10 11 1 88 8.00

2 2 7 4 17 2.43

2 5 63 32 62 0.98

2 8 511 256 425 0.83

2 10 2047 1024 1762 0.86

2 12 8191 4096 7526 0.92

3 3 40 27 35 0.88

3 5 364 243 258 0.71

3 7 3280 2187 2089 0.64

5 2 31 25 27 0.87

5 4 781 625 450 0.58

5 6 19531 15625 10040 0.51

10 1 11 10 30 2.73

10 2 111 100 64 0.58

10 3 1111 1000 561 0.50

10 4 11111 10000 5256 0.47

14 Chapter 1: Singular’s Parallel Framework

for trees with only one or two children per node, increasing the number of
levels may have a negative impact on the average running time per node.
Note that there is no parallelization going on in the corner case with only
one child per node.

As a rule of thumb, using Singular’s parallel framework pays off for
applications where the average running time per task is about 10 ms or
more, provided that the compute server has several processor cores.

In addition, the framework has proven to be very stable. Experiments
have shown that it works reliably even for parallel trees with twenty levels
and two children per node, that is, with more than one million leaves and
two million nodes.

1.2.8 Outlook

In its current implementation, Singular’s parallel framework is already
a very sophisticated tool for parallelization which includes all the features
described in the previous subsections. It is thus well adapted to the needs
of Singular users as well as authors of Singular libraries and provides a
great benefit for applications in mathematical research, cf. Chapters 2 and 3.

However, there are plans to improve the framework even further in the
future. Its design is in principle compatible with other software systems
for mathematical research, notably GAP [40]. Thus both systems can be
connected for joint parallel computations.

Currently, parallel tasks run in separate processes. In the future, it will
be possible to run tasks in separate threads within the same process. This
yields a much better performance and is thus an important condition for
fine-grained parallelization as explained above. It also allows us to define
more explicit scheduling rules without performance impact.

Finally, the management of the computational resources will be extended
to distributed computing, that is, parallel computations running on several
compute servers.

Chapter 2

Parallel Algorithms for
Normalization

Given a reduced affine algebra A over a perfect field K, we present parallel
algorithms to compute the normalization A of A. Our starting point is the
algorithm of Greuel et al. [17], which is an improvement of de Jong’s algo-
rithm, see [24, 12]. First, we propose to stratify the singular locus Sing(A) in
a way which is compatible with normalization, apply a local version of the
normalization algorithm at each stratum, and find A by putting the local
results together. Second, in the case where K = Q is the field of rationals,
we propose modular versions of the global and local-to-global algorithms.
We have implemented our algorithms in the computer algebra system Sin-
gular and compare their performance with that of the algorithm of Greuel
et al. [17]. In the case where K = Q, we also discuss the use of modular com-
putations of Gröbner bases, radicals, and primary decompositions. We point
out that in most examples, the new algorithms outperform the algorithm of
Greuel et al. [17] by far, even if we do not run them in parallel.

2.1 Introduction

Normalization is an important concept in commutative algebra, with appli-
cations in algebraic geometry and singularity theory. We are interested in
computing the normalization A of a reduced affine K-algebra A, where K
is a perfect field. For this, a number of algorithms have been proposed, but
not all of them are of practical interest (see the historical account in [17]). A
milestone is de Jong’s algorithm, see [24, 12], which is based on the normal-
ity criterion of Grauert and Remmert [15], and which has been implemented
in Singular (see [39]), Macaulay2 (see [41]), and Magma (see [9]). The
algorithm of Greuel, Laplagne, and Seelisch [17] (GLS normalization algo-
rithm for short), which is also based on the Grauert and Remmert criterion,
is an improvement of de Jong’s algorithm. It is implemented in Singular.

15

16 Chapter 2: Parallel Algorithms for Normalization

The algorithm proposed in [29] and [37] is designed for the characteristic p
case. It is implemented in Singular and Macaulay2 and works well for
small p.

Our objective in this chapter is to present parallel versions of the GLS
normalization algorithm in that we reduce the general problem to computa-
tional problems which are easier and do not depend on each other. It turns
out that in most cases, the new algorithms outperform the GLS algorithm
by far, even if we do not run them in parallel.

We start in Section 2.2 by reviewing the basic ideas of the GLS algorithm.
In particular, we recall the normality criterion of Grauert and Remmert. In
Section 2.3, we present a local version of the normality criterion which applies
to a stratification of the singular locus Sing(A) of A. This allows us to find A
by a local-to-global approach. Section 2.4 contains a discussion of modular
methods for the GLS algorithm and its local-to-global version. Timings are
presented in Section 2.5.

2.2 The GLS Normalization Algorithm

Referring to [17] and [19] for details and proofs, we sketch the GLS normal-
ization algorithm. We begin with some general remarks. For these, A may
be any reduced Noetherian ring.

Definition 2.2.1. Let A be a reduced Noetherian ring. The normalization
of A, written A, is the integral closure of A in its total ring of fractions Q(A).
We call A normal if A = A.

We write
Spec(A) = {P ⊆ A | P prime ideal}

for the spectrum of A and V (J) = {P ∈ Spec(A) | P ⊇ J} for the vanishing
locus of an ideal J of A. If P ∈ Spec(A), then AP denotes the localization
of A at P . More generally, if S is a multiplicatively closed subset of A and
M is an A-module, then S−1M denotes the localization of M at S.

Taking into account that normality is a local property, we call

N(A) = {P ∈ Spec(A) | AP is not normal}

the non-normal locus of A. Furthermore, we write

Sing(A) = {P ∈ Spec(A) | AP is not regular}

for the singular locus of A. Then N(A) ⊆ Sing(A).

Remark 2.2.2. A Noetherian local ring of dimension one is normal if and
only if it is regular. See [25, Theorem 4.4.9].

2.2. The GLS Normalization Algorithm 17

Definition 2.2.3. Let A be a reduced Noetherian ring. The conductor of
A in A is the ideal

CA = AnnA(A/A) = {a ∈ A | aA ⊆ A}.

Lemma 2.2.4. Let A be a reduced Noetherian ring. Then N(A) ⊆ V (CA).
Furthermore, A is module-finite over A if and only if CA contains a non-
zerodivisor of A. In this case, N(A) = V (CA).

To state the aforementioned Grauert and Remmert criterion, we need:

Lemma 2.2.5. Let A be a reduced Noetherian ring, and let J ⊆ A be an
ideal containing a non-zerodivisor g of A. Then the following hold:

1. If ϕ ∈ HomA(J, J), then the fraction ϕ(g)/g ∈ A is independent of the
choice of g, and ϕ is multiplication by ϕ(g)/g.

2. There are natural inclusions of rings

A ⊆ HomA(J, J) ∼=
1

g
(gJ :A J) ⊆ A ⊆ Q(A), a 7→ ϕa, ϕ 7→

ϕ(g)

g
,

where ϕa : J → J denotes the multiplication by a ∈ A.

Proposition 2.2.6 ([15]). Let A be a reduced Noetherian ring, and let J ⊆ A
be an ideal satisfying the following conditions:

1. J contains a non-zerodivisor g of A,

2. J is a radical ideal,

3. V (CA) ⊆ V (J).

Then A is normal iff A ∼= HomA(J, J) via the map which sends a to ϕa.

Definition 2.2.7. A pair (J, g) as in Proposition 2.2.6 is called a test pair
for A, and J is called a test ideal for A.

By Lemma 2.2.4, test pairs exist iff A is module-finite over A. Given
such a pair (J, g), the idea of finding A is to successively enlarge A until
the normality criterion allows us to stop (since A is Noetherian, this will
eventually happen in the module-finite case). Starting from A0 = A, we get
a chain of extensions of reduced Noetherian rings

A = A0 ⊆ . . . ⊆ Ai−1 ⊆ Ai ⊆ . . . ⊆ Am = A.

Here, Ai+1 = HomAi(Ji, Ji)
∼= 1

g (gJi :Ai Ji), where Ji is the radical of the
extended ideal JAi, for i ≥ 1. Note that (Ji, g) is indeed a test pair for Ai:

18 Chapter 2: Parallel Algorithms for Normalization

Remark 2.2.8 ([17, Prop. 3.2]). Let A be a reduced Noetherian ring such
that A is module-finite over A, and let A ⊆ A′ ⊆ A be an intermediate
ring. Clearly, every non-zerodivisor g ∈ A of A is a non-zerodivisor of
Q(A). In particular, it is a non-zerodivisor of A′. Furthermore, if CA′ is
the conductor of A′ in A′ = A, then CA′ ⊇ CA. It follows that every prime
ideal Q ∈ N(A′) = V (CA′) contracts to a prime ideal P = Q ∩ A ∈ N(A) =
V (CA). Hence, if (J, g) is a test pair for A, then P ⊇ J , which implies that
Q ⊇

√
JA′ =: J ′. We conclude that (J ′, g) is a test pair for A′.

Explicit computations rely on explicit representations of the Ai as A-
algebras. These will be obtained as an application of Lemma 2.2.9 below.
To formulate the lemma, we use the following notation. Let J ⊆ A be
an ideal containing a non-zerodivisor g of A, and let A-module generators
u0 = g, u1, . . . , us for gJ :A J be given. Choose variables T1, . . . , Ts, and
consider the epimorphism

Φ : A[T1, . . . , Ts]→
1

g
(gJ :A J), Ti 7→

ui
g
.

The kernel of Φ describes the A-algebra relations on the ui/g. We single out
two types of relations:

• Each A-module syzygy

α0u0 + α1u1 + . . .+ αsus = 0, αi ∈ A,

gives an element α0 +α1T1 + . . .+αsTs ∈ ker Φ, which we call a linear
relation.

• Developing each product ui
g
uj
g , 1 ≤ i ≤ j ≤ s, as a sum ui

g
uj
g =∑

k βijk
uk
g , we get elements TiTj −

∑
k βijkTk in ker Φ, which we call

quadratic relations.

It is easy to see that these linear and quadratic relations already generate
ker Φ. We thus have:

Lemma 2.2.9. Let A be a reduced Noetherian ring, and let J ⊆ A be an
ideal containing a non-zerodivisor g of A. Then, given A-module generators
u0 = g, u1, . . . , us for gJ :A J , we have an isomorphism of A-algebras

A[T1, . . . , Ts]/R ∼=
1

g
(gJ :A J), Ti 7→

ui
g
,

where R is the ideal generated by the linear and quadratic relations described
above.

The following result from [17] will allow us to find the normalization in
a way such that all calculations except the computation of the radicals

√
Ji

can be carried through in the original ring A:

2.2. The GLS Normalization Algorithm 19

Theorem 2.2.10. Let A be a reduced Noetherian ring, let J ⊆ A be an ideal
containing a non-zerodivisor g of A, let A ⊆ A′ ⊆ Q(A) be an intermediate
ring such that A′ is module-finite over A, and let J ′ =

√
JA′. Let U and

H be ideals of A and d ∈ A such that A′ = 1
dU and J ′ = 1

dH, respectively.
Then

(gJ ′ :A′ J
′) =

1

d
(dgH :A H) ⊆ Q(A).

Remark 2.2.11. In the case where A = K[X1 . . . , Xn]/I is a reduced affine
algebra over a field K, let P1, . . . , Pr be the associated primes of the radical
ideal I. Then

A ∼= K[X1, . . . , Xn]/P1 × · · · ×K[X1, . . . , Xn]/Pr,

and A is module-finite over A by Emmy Noether’s finiteness theorem (see
[38]). Thus, using techniques for primary decomposition as in [17, Remark
4.6], the computation of normalization can be reduced to the case where A is
an affine domain (that is, I is a prime ideal). When writing our algorithms
in pseudocode, we will always start from a domain A. Talking about a
non-zerodivisor then just means to talk about a non-zero element.

Remark 2.2.12. If A is an affine domain over a perfect field K, we can apply
the Jacobian criterion (see [13]): If M is the Jacobian ideal1 of A, then M is
non-zero and contained in the conductor CA (see [17, Lemma 4.1]). Hence,
we may choose

√
M together with any non-zero element g of

√
M as an

initial test pair. Implementing all this, the GLS normalization algorithm
will find an ideal U ⊆ A and a denominator d ∈ CA such that

A =
1

d
U ⊆ Q(A).

Since M is contained in CA, any non-zero element of M is valid as a denom-
inator: If 0 6= c ∈M , then c · 1

dU =: U ′ is an ideal of A, so that 1
dU = 1

cU
′.

For the purpose of comparison with the local approach of the next section,
we illustrate the GLS algorithm by an example:

Example 2.2.13. For

A = K[x, y] = K[X,Y]/〈X4 + Y 2(Y − 1)3〉,

the radical of the Jacobian ideal is

J := 〈x, y(y − 1)〉A,

and we can take g := x ∈ J as a non-zerodivisor of A. In its first step,
starting with the initial test pair (J, x), the normalization algorithm produces

1The Jacobian ideal of A is generated by the images of the c×c minors of the Jacobian
matrix

(
∂fi
∂xj

)
, where c is the codimension, and f1, . . . , fr are polynomial generators for I.

20 Chapter 2: Parallel Algorithms for Normalization

the following data:

U (1) := (xJ :A J) =
〈
x, y(y − 1)2

〉
A

and

A1 := A[t1] := A[T1]/I1
∼=

1

x
U (1) ,

with relations and isomorphism given by

I1 =
〈
−T1x+ y(y − 1)2, T1y(y − 1) + x3, T 2

1 + x2(y − 1)
〉
A[T1]

and

t1 7→
y(y − 1)2

x
,

respectively. In the next step we find

J1 :=
√
〈x, y(y − 1)〉A1

= 〈x, y(y − 1), t1〉A1

=
1

x

〈
x2, xy(y − 1), y(y − 1)2

〉
A

=:
1

x
H1.

Using the test pair (J1, x) and applying Theorem 2.2.10 and Lemma 2.2.9,
we get

1

x
(xJ1 :A1 J1) =

1

x2
(x2H1 :A H1)

=
1

x2

〈
x2, xy(y − 1), y(y − 1)2

〉
A

=:
1

x2
U (2)

and
A2 := A[t2, t3] := A[T2, T3]/I2

∼=
1

x2
U (2),

with relations and isomorphism given by

I2 =
〈
T2x− T3(y − 1),−T3x+ y(y − 1), T2y(y − 1) + x2,

T2y
2(y − 1)2 + T3x

3, T 2
2 + (y − 1), T2T3 + x, T 2

3 − T2y
〉

and

t2 7→
y(y − 1)2

x2
, t3 7→

y(y − 1)

x
,

respectively. In the final step, we find that A2 is normal, so that A = A2.

2.3 Normalization via Localization

In this section, we discuss a local-to-global approach for computing normal-
ization. Our starting point is the following result:

2.3. Normalization via Localization 21

Proposition 2.3.1. Let A be a reduced Noetherian ring. Suppose that the
singular locus Sing(A) = {P1, . . . , Ps} of A is finite. For i = 1, . . . , s, let
Si = A \ Pi, and let an intermediate ring A ⊂ A(i) ⊂ A be given such that
S−1
i A(i) = S−1

i A. Then
s∑
i=1

A(i) = A.

Proof. We will show a more general result in Proposition 2.3.2 below.

That Sing(A) is finite is, for example, true if A is the coordinate ring of
a curve. Whenever Sing(A) = {P1, . . . , Ps} is finite, the proposition allows
us to find A by normalizing locally at each Pi using Proposition 2.3.3 below,
and putting the local results together. In the case where Sing(A) is not
finite, working just with the (finitely many) minimal primes in Sing(A) will
not give the correct result. However, it is still possible to obtain A as a finite
sum of local contributions: The idea is to stratify Sing(A) in a way which is
compatible with normalization. For this, if P ∈ Sing(A), set

LP =
⋂

P⊇P̃∈Sing(A)

P̃ .

We stratify Sing(A) according to the values of the function P 7→ LP . That
is, if

L = {LP | P ∈ Sing(A)}

denotes the set of all possible values, then the strata are the sets

VL = {P ∈ Sing(A) | LP = L}, L ∈ L.

We write Strata(A) = {VL | L ∈ L} for the set of all strata. If P1, ..., Pr
denote the minimal primes in Sing(A), we have

L ⊆
{⋂

i∈ΓPi | Γ ⊆ {1, ..., r}
}
.

Hence, the set of strata is finite. By construction, the singular locus is the
disjoint union of all strata. For V ∈ Strata(A), write LV for the constant
value of P 7→ LP on V .

We can now state and prove a result which is more general than Propo-
sition 2.3.1:

Proposition 2.3.2. Let A be a reduced Noetherian ring with stratification
of the singular locus Strata(A) = {V1, ..., Vs}. For i = 1, . . . , s, let an in-
termediate ring A ⊆ A(i) ⊆ A be given such that S−1A(i) = S−1A for each
S = A \ P , P ∈ Vi. Then

s∑
i=1

A(i) = A.

22 Chapter 2: Parallel Algorithms for Normalization

Proof. By construction, B :=
∑s

i=1A
(i) ⊆ A. We wish to show equality. It

suffices to show that if P ∈ Spec(A) is a prime ideal and S = A \ P , then
S−1B = S−1A. If P ∈ Sing(A), then P ∈ Vi for some i. Hence, S−1A(i) =
S−1A, and the local equality is obtained from the chain of inclusions

S−1A(i) ⊆ S−1B ⊆ S−1A = S−1A.

If P 6∈ Sing(A), then S−1A is normal, and the local equality follows likewise
from the chain of inclusions

S−1A ⊆ S−1B ⊆ S−1A = S−1A.

For a given stratum V = Vi, the modification of the Grauert and Rem-
mert criterion below will allow us to find a ring A(i) as above along the lines
of the previous section:

Proposition 2.3.3. Let A be a reduced Noetherian ring such that A is
module-finite over A, and let A ⊆ A′ ⊆ A be an intermediate ring. Let
V ∈ Strata(A), and let J ′ =

√
LVA′. Suppose that LV contains a non-

zerodivisor g of A. If
A′ ∼= HomA′(J

′, J ′)

via the map which sends a′ to ϕa′, then the localization S−1A′ with S = A\P
is normal for each P ∈ V .

Proof. The assumption and [13, Proposition 2.10] give

S−1A′ ∼= S−1(HomA′(J
′, J ′)) ∼= HomS−1A′(S

−1J ′, S−1J ′).

Hence, the result will follow from the Grauert and Remmert criterion (Propo-
sition 2.2.6) applied to S−1A′ once we show that the localized ideal S−1J ′

satisfies the three conditions of the criterion. First, since forming radicals
commutes with localization, S−1J ′ is a radical ideal. Second, the image of g
in S−1A′ is a non-zerodivisor of S−1A′ contained in S−1J ′. Third, we show
that V (CS−1A′) = N(S−1A′) ⊆ V (S−1J ′). For this, we first note that

V (CS−1A) = N(S−1A) = {S−1P̃ | P̃ ∈ N(A), P̃ ⊆ P}.

Indeed, prime ideals of S−1A correspond to prime ideals of A contained in
P . Let now Q ∈ N(S−1A′). Then, as shown in Remark 2.2.8, Q contracts
to some S−1P̃ ⊆ S−1A with P̃ ∈ N(A), P̃ ⊆ P . This implies that

Q ⊇
√

(S−1P̃)(S−1A′) =

√
S−1(P̃A′) = S−1(

√
P̃A′) ⊇ S−1J ′,

as desired.

2.3. Normalization via Localization 23

In the situation of Proposition 2.3.3, let a non-zerodivisor g ∈ LV of A
be known. Then, using (LV , g) instead of a test pair as in Definition 2.2.7,
and proceeding as in the previous section, we get a chain of rings

A ⊆ A1 ⊆ · · · ⊆ Am ⊆ A

such that S−1(Am) is normal and, hence, equal to S−1A = S−1A for all
S = A \ P , P ∈ V .

Summing up, we are led to Algorithms 2.1 and 2.2 below.

Algorithm 2.1 Normalizing the localizations
Input: An affine domain A = K[X1, . . . , Xn]/I over a perfect field K, a

stratum V ∈ Strata(A), and 0 6= g ∈ LV
Output: An ideal U ⊆ A and d ∈ A with 1

dU ⊆ A and S−1(1
dU) = S−1A

for all S = A \ P , P ∈ V
1: return the result of the GLS normalization algorithm applied to (LV , g)

Algorithm 2.2 Normalization via localization
Input: An affine domain A = K[X1, . . . , Xn]/I over a perfect field K
Output: An ideal U ⊆ A and d ∈ A such that A = 1

dU ⊆ Q(A)

1: J :=
√
M , where M is the Jacobian ideal of A

2: choose 0 6= g ∈ J
3: compute the strata of the singular locus Strata(A) = {V1, ..., Vs}
4: for all i do
5: apply Algorithm 2.1 to (Vi, g) to find an ideal Ui ⊆ A and a power

di = gmi with A ⊆ 1
di
Ui ⊆ A and S−1(1

di
Ui) = S−1A for all S = A\P ,

P ∈ Vi
6: m := max{m1, . . . ,ms}, d := gm, U :=

∑
i g
m−miUi

7: return (U, d)

Remark 2.3.4. In Algorithm 2.2, it may be more efficient to choose possibly
different non-zero elements gi ∈ LVi . In Step 5, the algorithm computes,
then, pairs (U ′i , di) with ideals U ′i ⊆ A and powers di = gmii . As explained
in [17, Remark 4.3], starting from the (U ′i , di), we may always find a denom-
inator d ∈ M and ideals Ui ⊆ A such that 1

dUi = 1
di
U ′i for all i. Then, the

desired result is (
∑

i Ui, d).

Remark 2.3.5. In Algorithm 2.2, it is sufficient to consider the minimal
strata, that is, the strata V such that LV is minimal with respect to in-
clusion. Denote, as above, the minimal primes of the singular locus of A
by P1, ..., Pr. We can obtain the minimal LV as all possible intersections⋂
i∈ΓPi, with subsets Γ ⊆ {1, ..., r} which are maximal with the property

that
∑

i∈ΓPi 6= 〈1〉.

24 Chapter 2: Parallel Algorithms for Normalization

Example 2.3.6. We come back to the coordinate ring A of the curve C with
defining polynomial f(X,Y) = X4 + Y 2(Y − 1)3 from Example 2.2.13 to
discuss normalization via localization. The curve C has a double point of
type A3 at (0, 0) and a triple point of type E6 at (0, 1). We illustrate Algo-
rithm 2.2, using for both singular points the non-zerodivisor g = x: For the
A3-singularity, consider

P1 = 〈x, y〉A and S1 = A \ P1.

The local normalization algorithm yields S−1
1 A = S−1

1 (1
d1
U1), where

d1 = x2 and U1 =
〈
x2, y(y − 1)3

〉
A
.

For the E6-singularity, considering

P2 = 〈x, y − 1〉A and S2 = A \ P2,

we get S−1
2 A = S−1

2 (1
d2
U2), where

d2 = x2 and U2 =
〈
x2, xy2(y − 1), y2(y − 1)2

〉
A
.

Combining the local contributions, we get

1

d
U =

1

d1
U1 +

1

d2
U2,

with d = x2 and

U =
〈
x2, xy2(y − 1), y(y − 1)3, y2(y − 1)2

〉
A
.

A moment’s thought shows that U coincides with the ideal U (2) found in
Example 2.2.13.

The local-to-global approach is usually much faster than the global algo-
rithm even when not run in parallel. The reason is that the minimal primes of
the singular locus are much simpler than the singular locus itself. Therefore,
in the local-to-global case, the intermediate rings are much easier to handle.
Most notably, the representations of the intermediate rings as affine rings
involve considerably less variables than in the global case. In the following
example, we exemplify this difference.
Example 2.3.7. Consider the projective plane curve defined by the polynomial

f1,4 = (X5 + Y 5 + Z5)2 − 4(X5Y 5 +X5Z5 + Y 5Z5) ∈ Q[X,Y, Z],

which will be reconsidered in Section 2.5 with respect to timings. After
the coordinate transformation Z 7→ 3X − 2Y + Z, all singularities of the
projective curve lie in the affine chart Z 6= 0. Write

f = f1,4(X,Y, 3X − 2Y + 1) ∈ Q[X,Y] =: W

2.3. Normalization via Localization 25

for the defining polynomial of the affine curve, and let A = Q[x, y] = W/〈f〉.
The curve has 15 singular points: the radical of the Jacobian ideal M

decomposes as
√
M = 〈y, 121x4 + 142x3 + 64x2 + 13x+ 1〉 ∩ 〈y, 2x+ 1〉
∩ 〈211y4 − 131y3 + 51y2 − 11y + 1, 3x− 2y + 1〉
∩ 〈11y4 − 23y3 + 19y2 − 7y + 1, x〉 ∩ 〈y + 1, x+ 1〉 ∩ 〈3y − 1, x〉.

We compare the global approach to the local strategy at the singularity
corresponding to the test ideal J = 〈y, 2x+ 1〉.

In the local setting, we use the non-zerodivisor g = y and compute the
ideal quotient

U1 = gJ : J

= 〈y, 29282x9 + 83369x8 + 105668x7 + 78296x6 + 37382x5 + 11926x4

+ 2542x3 + 349x2 + 28x+ 1〉.

We observe that in addition to y, the ideal U1 requires only one more gen-
erator. Hence, the representation of A1

∼= 1
g (gJ : J) as an affine ring

A1 = A[T1]/I1 requires only one additional variable T1. The ideal I1 is
generated by 10 linear relations and one quadratic relation. Next, we com-
pute the radical of the image of J in A1. Technically, this means to compute
the radical

√
J + I1 in the polynomial ringW [T1] (here, by abuse of notation,

we denote the preimage of J in the polynomial ring also by J). The ideal I1

is quite complicated. Since J is generated by linear polynomials, however,
the reduced Gröbner basis of J + I1 is very simple. It is easily computed as

J + I1 = 〈Y, 2X + 1, 16384T 2
1 − T1 + 625〉.

As a consequence, the computation of the radical

J1 =
√
J + I1 = 〈Y, 2X + 1, 128T1 − 25〉

is cheap as well. In the next step, A2 can be represented as an affine algebra
over A with, again, only one new variable. Hence, verifying that A2 is already
a local contribution to A at the singularity corresponding to J is also cheap.

In contrast, the global approach uses the test ideal J =
√
M , which

is generated by one polynomial of degree 3 and three polynomials of de-
gree 6. As a non-zerodivisor, we consider the lowest degree generator g =
3x2y − 2xy2 + xy. As in the local case, the first ideal quotient gJ : J is eas-
ily obtained. However, in addition to g, it requires three more generators.
Hence, as an affine algebra over A, it is represented as A1 = A[T1, T2, T3]/I1,
where the ideal of relations I1 ⊆ A[T1, T2, T3] is generated by 6 linear and 6
quadratic relations. No significant reduction occurs in J + I1 since J does

26 Chapter 2: Parallel Algorithms for Normalization

not contain any linear polynomial. The complexity of Buchberger’s algo-
rithm grows doubly-exponentially in the number of variables. Compared to
the local case, this increase in complexity makes the computation of

√
J + I1

considerably more expensive. In fact, Singular does not compute the cor-
responding Gröbner basis within 2000 seconds.

2.4 Modular Methods

Algorithm 2.2 from Section 2.3 is parallel in nature since the computations
of the local normalizations do not depend on each other. In this section,
we describe a modular way of parallelizing both the GLS normalization al-
gorithm from Section 2.2 and the local-to-global algorithm from Section 2.3
in the case where K = Q is the field of rationals. One possible approach is
to just replace all involved Gröbner basis respectively radical computations
by their modular variants as introduced in [2] and [22]. These variants are
either probabilistic or require rather expensive tests to verify the results at
the end. In order to reduce the number of verification tests, we provide a
direct modularization for the normalization algorithms. The approach we
propose requires, in principle, only one verification at the end. In the local-
to-global setup, however, it is reasonable to additionally handle the Gröbner
basis computation for the Jacobian ideal, the subsequent primary decompo-
sition, and the recombination of the local results by modular techniques. We
exemplarily describe the modularization of the GLS normalization algorithm
as outlined in Section 2.2. Each of the local normalizations in Algorithm 2.2
from Section 2.3 can be modularized similarly.

Fix a global monomial ordering > on the semigroup of monomials in
the set of variables X = {X1, . . . , Xn}. Consider the polynomial rings W =
Q[X] and, given an integer N ≥ 2,WN = (Z/NZ)[X]. If T ⊆W or T ⊆WN

is a set of polynomials, then denote by LM(T) := {LM(f) | f ∈ T} its set
of leading monomials. If a

b ∈ Q with gcd(a, b) = 1 and gcd(b,N) = 1, set(
a
b

)
N

:= (a+NZ)(b+NZ)−1 ∈ Z/NZ. If f ∈W is a polynomial such that
N is coprime to any denominator of a coefficient of f , then fN ∈WN is the
polynomial obtained by reducing each coefficient moduloN as just described.
If H = {h1, . . . , ht} is a Gröbner basis in W such that N is coprime to any
denominator in any hi, then write HN = {(h1)N , . . . , (ht)N}. Given an ideal
I ⊆W , set IN = 〈fN | f ∈ I ∩ Z[X]〉 ⊆WN and (W/I)N = WN/IN .
Remark 2.4.1. For practical purposes, the ideal I ⊆ W is given by a set of
generators f1, . . . , fr. Then for all but finitely many primes p, the ideal Ip
can be realized via the equality

Ip = 〈(f1)p, ..., (fr)p〉 ⊆Wp.

When performing the modular algorithm described below, we reject a prime
p if the ideal on the right hand side is not well-defined. Otherwise, we

2.4. Modular Methods 27

work with this ideal instead of Ip. The finitely many primes where the two
ideals differ will not influence the result if we apply error tolerant rational
reconstruction (see Remark 2.4.2).

From a practical point of view, we work with ideals of the polynomial ring
W containing I, but think of them as ideals of the quotient ring A = W/I.
Therefore, we simplify our notation as follows: If I ⊆ J ⊆W are ideals, then
we denote the ideal induced by J in A also by J . Vice versa, if J ⊆ A is an
ideal, then its preimage in W is also denoted by J . Similarly for WN .

From now on, I = 〈f1, . . . , fr〉 ⊆ W will be a prime ideal. We wish to
compute the normalization of the affine domain A = W/I using modular
methods. For this, we fix a polynomial d ∈ W which represents a non-zero
element in the Jacobian idealM of A. This element ofM will also be denoted
by d. It will serve as a “universal denominator” for all normalizations in
positive characteristic as well as for the final normalization in characteristic 0
(see Remark 2.2.12 for the choice of denominators). In characteristic 0, we
write U(0) for the ideal of A which satisfies 1

dU(0) = A, and G(0) for the
reduced Gröbner basis2 of U(0). Furthermore, we write V (0) ⊆ A[T1, . . . , Ts]
for the ideal3 of relations on the elements of 1

dG(0) which represents A as
an A-algebra as in Lemma 2.2.9. We denote the reduced Gröbner basis of
V (0) by R(0). In the same way, if p is a prime number which does not divide
any denominator in the reduced Gröbner basis of I and such that Ap is a
domain and dp is non-zero and contained in the conductor4 of Ap, we use
U(p), G(p), V (p), and R(p) in characteristic p.

Note that G(0)p is not necessarily equal to G(p). However, as we will
show in Lemma 2.4.5 below, equality holds for all but finitely many primes p.
Relying on this fact, the basic idea of the modular normalization algorithm
can be described as follows. First, compute the Jacobian ideal M of A
and choose a polynomial d ∈ W representing a non-zero element d ∈ M .
Second, choose a set P of prime numbers at random, and compute, for each
p ∈ P, reduced Gröbner bases G(p) ⊆ Wp such that 1

dp
〈G(p)〉 ⊆ Q(Ap) is

the normalization of Ap. Third, lift the modular Gröbner bases to a set of
polynomials G ⊆ W and define U := 〈G〉. We then expect that U = U(0)
and G = G(0).

The lifting process has two steps. First, assuming that all LM(G(p)),
p ∈ P, are equal, we can lift the Gröbner bases in the set GP := {G(p) |
p ∈ P} to a set of polynomials G(N) ⊆ WN , with N :=

∏
p∈P p. For this,

apply the Chinese remainder algorithm to the coefficients of the correspond-
ing polynomials occurring in the G(p), p ∈ P. Second, compute a set of

2Recall that reduced Gröbner bases are uniquely determined. For practical purposes,
however, we do not need to reduce the Gröbner bases involved since the lifting process
described below only requires that the result is uniquely determined by the algorithm.

3With respect to ideals of W [T1, . . . , Ts] and A[T1, . . . , Ts], we use the same setup and
notation as for ideals of W and A.

4From a practical point of view, we check whether dp is in the Jacobian ideal of Ap.

28 Chapter 2: Parallel Algorithms for Normalization

polynomials G ⊆W by lifting the modular coefficients occurring in G(N) to
rational coefficients as described in [8]:

Remark 2.4.2. Rational reconstruction via the Chinese remainder theorem
and Gaussian reduction is error-tolerant in the following sense: Let N1 and
N2 be integers with gcd(N1, N2) = 1, and let a

b ∈ Q with gcd(a, b) =
gcd(N1, b) = 1. Set r1 :=

(
a
b

)
N1
∈ Z/N1Z, let r2 ∈ Z/N2Z be arbitrary,

and denote by r the image of (r1, r2) under the isomorphism

Z/N1Z× Z/N2Z→ Z/(N1N2)Z.

Lifting r to a rational number via Gaussian reduction will generate, start-
ing from (a0, b0) = (N1N2, 0) and (a1, b1) = (r, 1), a sequence of rational
numbers (ai, bi) obtained by setting

(ai−2, bi−2) = qi(ai−1, bi−1) + (ai, bi),

where qi is chosen such that (ai, bi) has minimal Euclidean length. Comput-
ing this sequence until the Euclidean length does not decrease strictly any
more, we obtain a tuple (ai, bi) with ai

bi
= a

b , provided that N2 � N1. For
details, see [8].

Just as for GP, we proceed for the set of reduced Gröbner bases RP :=
{R(p) | p ∈ P} giving the modular algebra relations.

As for other modular algorithms based on Chinese remaindering, we need
suitably adapted notions of a lucky prime and a sufficiently large set of lucky
primes:

Definition 2.4.3. Using the notation introduced above, we define:

1. A prime number p is called lucky for A if U(0)p = U(p), V (0)p = V (p),
and the following hold:

(a) Ap is a domain.

(b) dp is a non-zero element in the conductor of Ap.

(c) LM(G(0)) = LM(G(p)).

(d) LM(R(0)) = LM(R(p)).

Otherwise p is called unlucky for A.

2. A finite set P of lucky primes for A is called sufficiently large for A if

∏
p∈P

p ≥ max

{
2 · |c|2

∣∣∣∣ c a denominator or numerator of a

coefficient occurring in G(0) or R(0)

}

2.4. Modular Methods 29

Remark 2.4.4. A modular algorithm for the basic task of computing Gröbner
bases is presented in [2] and [22]. In contrast to our situation here, where we
wish to find the ideal U(0) by computing its reduced Gröbner basis G(0),
Arnold’s algorithm starts from an ideal which is already given. If p is a prime
number, J ⊂ W is an ideal, H(0) is the reduced Gröbner basis of J , and
H(p) the reduced Gröbner basis of Jp, then p is lucky for J in the sense of
Arnold if LM(H(0)) = LM(H(p)). It is shown in [2, Thm. 5.12 and 6.2] that
if p is lucky for J in this sense, then H(0)p is well-defined and equal to H(p).
By [2, Cor. 5.4 and Thm. 5.13], all but finitely many primes are Arnold-
lucky for J . Moreover, if P is a set of primes satisfying Arnold’s condition
LM(H(0)) = LM(H(p)) for all p ∈ P, and such that P is sufficiently large
with respect to the coefficients occurring in H(0), then the H(p), p ∈ P, lift
to H(0).

In our situation, if p is a prime number, we find U(p) on our way, but
U(0)p is only known to us after U(0) has been computed. Therefore, the
condition U(0)p = U(p) in our definition of lucky can only be checked a
posteriori. Similarly for V (0)p = V (p). However, when performing our
modular algorithm, by part 1 of Lemma 2.4.5 below and Remark 2.4.2, there
are only finitely many primes not satisfying these conditions and these primes
will not influence the result of the algorithm.

Lemma 2.4.5. With notation as above, we have:

1. All but a finite number of primes are lucky for A.

2. If P is a sufficiently large set of lucky primes for A, then the reduced
Gröbner bases G(p), p ∈ P, lift to the reduced Gröbner basis G(0). In
the same way, the R(p), p ∈ P, lift to R(0).

Proof. With respect to part 1, it is clear that conditions (1a) and (1b) in
our definition of lucky are true for all but finitely many primes. Moreover,
1
dp
U(0)p is integral over Ap for all but finitely many p. Since testing nor-

mality via the Grauert and Remmert criterion amounts to a Gröbner basis
computation, and since reducing a Gröbner basis modulo a sufficiently gen-
eral prime p gives a Gröbner basis of the reduced ideal, we conclude that
U(0)p = U(p) for all but finitely many primes. Furthermore, if U(0)p = U(p),
condition (1c) from our definition of lucky is equivalent to asking that p is
lucky for U(0) in the sense of Arnold, so that also this condition holds for all
but finitely many primes. For V (0)p = V (p) and condition (1d), we may ar-
gue similarly since finding the ideal of algebra relations amounts to another
Gröbner basis computation.

For part 2, let P be a sufficiently large set of lucky primes for A. Then,
as pointed out above, G(0)p is well-defined and equal to G(p) for all p ∈ P.
Furthermore, since P is sufficiently large, the G(0)p, p ∈ P, lift to G(0). In
the same way, we may argue for the relations.

30 Chapter 2: Parallel Algorithms for Normalization

From a theoretical point of view, the idea of the algorithm is now as
follows: Consider a sufficiently large set P of lucky primes for A, compute
the reduced Gröbner bases G(p), p ∈ P, and lift the results to the reduced
Gröbner basis G(0) as described above.

From a practical point of view, we face the problem that the conditions
(1c), (1d), and (2) from Definition 2.4.3 cannot be tested a priori. To remedy
the situation, we proceed in a randomized way. First, we fix an integer t ≥ 1
and choose a set of t primes P at random. Second, we delete all primes p
from P which do not satisfy conditions (1a) and (1b). Third, we compute
GP = {G(p) | p ∈ P} and RP = {R(p) | p ∈ P}, and use the following
test to modify P so that all primes in P satisfy (1c) and (1d) with high
probability:

deleteUnluckyPrimesNormal: Define an equivalence relation on P by
setting p ∼ q :⇐⇒

(
LM(G(p)) = LM(G(q)) and LM(R(p)) = LM(R(q))

)
.

Then replace P by an equivalence class of largest5 cardinality, and change
GP and RP accordingly.

Only now, we lift the Gröbner bases in GP andRP to sets of polynomials
G and R, respectively. Since we do not know whether all primes in the chosen
equivalence class are indeed lucky and whether the class is sufficiently large,
a final verification step is needed: We have to check whether 1

d〈G〉 is integral
over A and normal. Since this can be expensive, especially if the result is
false, we test the result at first in positive characteristic:

pTestNormal: Randomly choose a prime number p /∈ P such that Ap is
a domain, dp is a non-zero element in the conductor of Ap, and p does not
divide the numerator and denominator of any coefficient occurring in a poly-
nomial in G, R, or {f1, . . . , fr}. Return true if 1

dp
〈Gp〉 is the normalization

of Ap and satisfies the relations Rp, and false otherwise.

If pTestNormal returns false, then P is not sufficiently large for A or
not all primes in P are lucky (or the extra prime chosen in pTestNormal
is unlucky). In this case, we enlarge the set P by t primes not used so far
and repeat the whole process. On the other hand, if pTestNormal returns
true, then most likely G = G(0) and, thus, 1

d〈G〉 = A. It makes, then, sense
to verify the result over the rationals by applying the following lemma. If
the verification fails, we enlarge P and repeat the process.

Lemma 2.4.6. With notation as above, the ring 1
d〈G〉 ⊆ Q(A) is the nor-

malization of A if and only if the following two conditions hold:

1. The ring 1
d〈G〉 is integral over A. This holds if G and R are Gröbner

bases, and the elements of 1
dG satisfy the relations R.

5If applicable, take Remark 2.4.7 below into account.

2.4. Modular Methods 31

2. The ring 1
d〈G〉 is normal. Equivalently, 1

d〈G〉 satisfies the conditions
of the Grauert and Remmert criterion.

Proof. If 1
d〈G〉 is integral over A, then

1
d〈G〉 ⊆ A. If

1
d〈G〉 is also normal, then

equality holds. Note that if R is a Gröbner basis, then dim〈R〉 = dim〈R(p)〉
for all p ∈ P. Hence, if the elements of 1

dG satisfy the relations R, and G is
a Gröbner basis, then 1

d〈G〉 is integral over A.

We summarize modular normalization in Algorithm 2.3.

Algorithm 2.3 Modular normalization
Input: A prime ideal I ⊆ Q[X]
Output: A Gröbner basis G ⊆ Q[X] and d ∈ Q[X] such that 1

d〈G〉 ⊆ Q(A)
is the normalization of A = Q[X]/I

1: compute M , the Jacobian ideal of A
2: choose a polynomial d ∈ Q[X] representing a non-zero element d ∈M
3: choose P, a list of random primes
4: GP = ∅, RP = ∅
5: loop
6: for p ∈ P do
7: if Ap is not a domain or dp ∈ Ap is zero or dp is not contained in

the conductor of Ap then
8: delete p
9: else

10: use the GLS algorithm to compute G(p), the reduced Gröbner
basis such that 1

dp
〈G(p)〉 ⊆ Q(Ap) is the normalization of Ap,

and R(p), the reduced Gröbner basis of the ideal of algebra
relations

11: GP = GP ∪ {G(p)}, RP = RP ∪ {R(p)}
12: (GP,RP,P) = deleteUnluckyPrimesNormal(GP,RP,P)
13: lift (GP,RP,P) to G ⊆ Q[X] and R ⊆W [T1, . . . , Ts] via Chinese

remaindering and the Farey rational map
14: if the lift succeeds and pTestNormal(I, d,G,R,P) then
15: if 1

d〈G〉 ⊆ Q(A) is integral over A then
16: if 1

d〈G〉 ⊆ Q(A) is normal then
17: return (G, d)

18: enlarge P

Remark 2.4.7. If the loop in Algorithm 2.3 requires more than one round, we
have to apply deleteUnluckyPrimesNormal in Step 12 with some care.
Otherwise, it may happen that always classes containing only unlucky primes
are selected. To avoid this problem, when determining the cardinality of the
classes considered in a certain round of the loop, we count all prime numbers

32 Chapter 2: Parallel Algorithms for Normalization

in the class selected in the previous round as just one element. Then P will
eventually contain lucky primes and termination of the algorithm is ensured
by Lemma 2.4.5 and Remark 2.4.2.
Remark 2.4.8. In Algorithm 2.3, the normalizations 1

dp
〈G(p)〉 can be com-

puted in parallel. Furthermore, we can parallelize the final verifications of
integrality and normality.
Remark 2.4.9. Algorithm 2.3 is also applicable without the final tests (that
is, without the verification that 1

d〈G〉 ⊆ Q(A) is integral over A and normal).
In this case, the algorithm is probabilistic, that is, the output 1

d〈G〉 ⊆ Q(A)
is the normalization of A only with high probability. This usually accelerates
the algorithm considerably.
Remark 2.4.10. The computation of the algebra structure R of the normal-
ization via lifting of the relations R(p) may require a large number of primes.
Hence, if the number of cores available is limited, a better choice is to obtain
just G by the modular approach and then compute the relations R(0) over
the rationals. For this approach, the initial ideals of the relations need not
be tested in deleteUnluckyPrimesNormal and pTestNormal.

2.5 Timings

We compare the GLS normalization algorithm6 (denoted in the tables below
by normal) with Algorithm 2.2 from Section 2.3 (locNormal) and Algo-
rithm 2.3 from Section 2.4 (modNormal)7. For all modular computations, we
use the simplified algorithm as specified in Remark 2.4.10. Note that at this
writing, modularized versions of locNormal have not yet been implemented.

In many cases, it turns out that the final verification is a time-consuming
step of modNormal. To quantify the improvement of computation times by
omitting the verification, we give timings for the resulting, now probabilis-
tic, version of Algorithm 2.3 (denoted by modNormal∗ in the tables). In all
examples computed so far, the result of the probabilistic algorithm is indeed
correct.

All timings are in seconds on an AMD Opteron 6174 machine with 48
cores, 2.2 GHz, and 128 GB of RAM, running a Linux operating system.
Computations which did not finish within 2000 seconds are marked by a
dash. The maximum number of cores used is written in square brackets. For
the single core version of modNormal, we indicate the number of primes used
by the algorithm in brackets.

The projective plane curves defined by the equations

f1,k =
(
Xk+1 + Y k+1 + Zk+1

)2
− 4
(
Xk+1Y k+1 + Y k+1Zk+1 + Zk+1Xk+1

)
6We use the implementation available in the Singular library normal.lib.
7To implement our algorithms, we have created the Singular libraries modnormal.lib

and locnormal.lib.

2.5. Timings 33

were constructed in [21]. They have 3(k + 1) singularities of type Ak, pro-
vided that k is even. If k is odd, the curves are reducible, in which case
the normalization algorithms still work in the same way as in the irreducible
case as long as they do not detect a zerodivisor. After the coordinate trans-
formation Z 7→ 3X − 2Y + Z, all singularities of the projective curves lie in
the affine chart Z 6= 0. We apply the algorithm to the affine curves. The
timings for k = 2, ..., 5 are shown in Table 2.1.

Table 2.1: Timings for plane curves with many Ak singularities

f1,2 f1,3 f1,4 f1,5

normal[1] .34 14 − −
locNormal[1] .57 2.0 2.1 38

locNormal[20] .42 1.3 1.4 11

modNormal[1] 4.4 (3) 73 (4) 250 (5) −
modNormal[10] 4.1 68 240 −
modNormal∗[1] .57 (3) 7.4 (4) 11 (5) −
modNormal∗[10] .31 2.1 2.5 −

Both the local and the probabilistic modular approach have a better
performance than the GLS algorithm, and they improve further in their
parallel versions. The modular algorithm with final verification is slower,
but can still handle much bigger examples than GLS.

Timings for the affine plane curves defined by

f2,k = ((X − 1)k − Y 3)((X + 1)k − Y 3)(Xk − Y 3)((X − 2)k − Y 3)

· ((X + 2)k − Y 3) + Y 15,

f3 = X10 + Y 10 + (X − 2Y + 1)10

+ 2(X5(X − 2Y + 1)5 −X5Y 5 + Y 5(X − 2Y + 1)5),

f4 = (Y 5 + 2X8)(Y 3 + 7(X − 1)4)((Y + 5)7 + 2X12) + Y 11,

f5 = 9127158539954X10 + 3212722859346X8Y 2 + 228715574724X6Y 4

− 34263110700X4Y 6 − 5431439286X2Y 8 − 201803238Y 10

− 134266087241X8 − 15052058268X6Y 2 + 12024807786X4Y 4

+ 506101284X2Y 6 − 202172841Y 8 + 761328152X6

− 128361096X4Y 2 + 47970216X2Y 4 − 6697080Y 6 − 2042158X4

+ 660492X2Y 2 − 84366Y 4 + 2494X2 − 474Y 2 − 1

are presented in Table 2.2.

34 Chapter 2: Parallel Algorithms for Normalization

Table 2.2: Timings for plane curves with various types of singularities

f2,7 f2,8 f2,9 f3 f4 f5

normal[1] 7.7 12 383 − 474 1620

locNormal[1] 4.4 13 118 1.9 19 1.2

locNormal[20] 1.4 3.3 31 1.4 18 .93

modNormal[1] 38 (3) 69 (3) 146 (3) 142(3) − 50 (8)

modNormal[10] 38 69 146 84 − 43

modNormal∗[1] .70 (3) 1.2 (3) 1.2 (3) 88 (3) 9.8 (3) 7.0 (8)

modNormal∗[10] .47 .70 .74 30 4.7 .98

Table 2.3: Timings for the normalization of surfaces in A3

f6,11 f6,12 f6,13 f7,2 f7,3 f8

normal[1] 2.6 11 6.4 − − −
locNormal[1] .25 .26 .29 80 113 70

locNormal[20] .21 .22 .24 80 113 70

modNormal∗[1] 2.2 (2) .60 (2) .78 (2) 12 (5) 17 (5) 2.3(2)

modNormal∗[10] 1.5 .52 .67 3.5 4.7 1.7

In Table 2.3, we consider surfaces in A3 cut out by

f6,k = XY (X − Y)(X + Y)(Y − 1)Z + (Xk − Y 2)(X10 − (Y − 1)2) ,

f7,k = Z2 − (Y 2 − 1234X3)k(15791X2 − Y 3)(1231Y 2 −X2(X + 158))

(1357Y 5 − 3X11) ,

f8 = Z5 − ((13X − 17Y)(5X2 − 7Y 3)(3X3 − 2Y 2)

(19Y 2 − 23X2(X + 29)))2 .

We omit the verification step in the modular algorithm, as this is too
time-consuming.

Timings for the curves in A3 defined by the ideals

I9,k =
〈
Z3 − (19Y 2 − 23X2(X + 29))2, X3 − (11Y 2 − 13Z2(Z + 1))k

〉
and the surface in A4 defined by

I10 =
〈
Z2 − (Y 3 − 123456W 2)(15791X2 − Y 3)2,

WZ − (1231Y 2 −X(111X + 158))
〉

2.5. Timings 35

Table 2.4: Timings for curves in A3 and a surface in A4

I9,1 I9,2 I10

normal[1] 3.2 − 150

locNormal[1] 4.2 36 83

locNormal[20] 4.1 35 82

modNormal[1] − − 28 (4)

modNormal[10] − − 14

modNormal∗[1] 8.9 (5) − 8.4 (4)

modNormal∗[10] 2.1 − 2.5

are given in Table 2.4.
To summarize, both the local and the probabilistic modular approach

provide a significant improvement over the GLS algorithm in computation
times and size of the examples covered. The probabilistic method is very
stable in the sense that it produces the correct result in all examples com-
puted so far. As usual, the verification step in the modular setup is the
most time-consuming task, and a refinement of this step will be the focus
of further research. The modular technique parallelizes completely, the local
approach parallelizes best if the complexity distributes evenly over the min-
imal strata of the singular locus. In general, the localization technique, even
when not run in parallel, is a major improvement to the GLS algorithm.
Note, that the local contribution can also be obtained by other means. See,
for example, [6] for a fast method in the case of curves, using Hensel lifting
and Puiseux series.

Chapter 3

Parallel Primary
Decomposition

We present a parallel version of the algorithm of Gianni, Trager, and Zacha-
rias [14] for primary decomposition which relies on four key ingredients:
First, we use the parallel algorithm of Idrees, Pfister, and Steidel [22] to com-
pute the associated primes whenever we encounter a zero-dimensional ideal.
Its primary components are then extracted from the associated primes via
saturation. Second, we use modular methods for computing standard bases
and ideal quotients at the intermediate steps, such as the reduction to the
zero-dimensional case. Third, we use fast tests to check the final result. In
particular, we use a new method to verify that the input ideal is indeed
the intersection of the computed primary ideals. Finally, we parallelize the
trivially parallelizable parts of the algorithm. For example, the saturations
mentioned above can be computed in parallel for each primary component.

In Section 3.1, we recall the original algorithm of Gianni, Trager, and
Zacharias [14] and the basic theory for primary decomposition. The proposed
parallel algorithm and its four key ingredients are described in detail in
Section 3.2. Timings are given in Section 3.3.

Using the proposed parallel algorithm, we are able to compute primary
decompositions for examples which have been up to now unsolvable. How-
ever, we have also found examples where the new algorithm is not faster
than the original one, or where it does not scale well with the number of
processor cores. These examples are especially challenging with respect to
parallelization and need further investigation.

3.1 The Algorithm of Gianni, Trager, and
Zacharias

In this section, we briefly outline the algorithm of Gianni, Trager, and Zacha-
rias [14] to compute a primary decomposition of a polynomial ideal. This

37

38 Chapter 3: Parallel Primary Decomposition

algorithm serves as a basis for the parallel algorithm for primary decompo-
sition which we introduce in Section 3.2. We closely follow the presentation
in [19], omitting the proofs and examples. Let us start with some basic
definitions and theorems.

Definition 3.1.1 ([19, Definition 4.1.1]). Let R be a ring.

1. A proper ideal Q ⊂ R is a primary ideal if, for any two elements
a, b ∈ R with ab ∈ Q, a /∈ Q implies b ∈

√
Q. In this case, the radical

P :=
√
Q of Q is a prime ideal, and Q is also called P -primary.

2. Let I ⊂ R be a proper ideal. A primary decomposition of I is an
expression of the form I = Q1 ∩ . . . ∩Qr with primary ideals Qi ⊂ R.

3. A primary decomposition I = Q1 ∩ . . . ∩ Qr is called irredundant if⋂
j 6=iQj 6⊂ Qi for all i and

√
Qi 6=

√
Qj for all i 6= j.

4. For an ideal I ⊂ R, the set of associated primes of I, denoted by
Ass(I), is defined as

Ass(I) := {P ⊂ R | P prime, P = I : 〈a〉 for some a ∈ R} .

5. Let I ⊂ R be an ideal and let P ∈ Ass(I) be an associated prime ideal
of I. If there exists an ideal P ′ ∈ Ass(I) with P ′ ⊂ P , then P is called
an embedded prime ideal of I, otherwise it is called an isolated prime
ideal of I.

6. An ideal I in R is called equidimensional if dim(P1) = dim(P2) for all
P1, P2 ∈ Ass(I).

Theorem 3.1.2 ([19, Theorem 4.1.4]). Let R be a Noetherian ring, and let I
be a proper ideal in R. Then I admits an irredundant primary decomposition
I = Q1 ∩ . . . ∩Qr with primary ideals Qi ⊂ R.

Theorem 3.1.3 (1st uniqueness theorem, [19, Theorem 4.1.5]). Let R be
a ring, and let I ⊂ R be an ideal which admits an irredundant primary
decomposition I = Q1 ∩ . . . ∩Qr. Then

Ass(I) =
{√

Q1, . . . ,
√
Qr

}
.

In particular, the set
{√

Q1, . . . ,
√
Qr
}
is uniquely determined by I and does

not depend on the particular primary decomposition.

Definition 3.1.4. Let R be a ring, and let I ⊂ R be an ideal. A subset
Σ ⊂ Ass(I) is called an isolated set of associated primes of I if, for all P ∈ Σ
and for all P ′ ∈ Ass(I), P ′ ⊂ P implies P ′ ∈ Σ.

3.1. The Algorithm of Gianni, Trager, and Zacharias 39

Theorem 3.1.5 (2nd uniqueness theorem, [5, Theorem 4.10]). Let R be
a ring, and let I ⊂ R be an ideal which admits an irredundant primary
decomposition I = Q1 ∩ . . . ∩ Qr. Denote the associated primes of I by
Pi :=

√
Qi, i = 1, . . . , r, and let {Pi1 , . . . , Pis} ⊂ Ass(I) be an isolated set of

associated primes of I.
Then Qi1 ∩ . . . ∩ Qis is independent of the primary decomposition. In

particular, the primary ideals Qi corresponding to isolated prime ideals Pi
are uniquely determined by I.

For the rest of this section, we consider primary decompositions of ideals
in the polynomial ring K[x1, . . . , xn] over some field K. Note that every
proper ideal in this ring admits an irredundant primary decomposition by
Theorem 3.1.2.

To start with the algorithmic aspect of primary decomposition, let us
recall the algorithm for zero-dimensional ideals. In this case, all associated
primes are maximal ideals. We first need the following notion.

Definition 3.1.6 ([19, Definition 4.1.1]).

1. A maximal ideal m ⊂ K[x1, . . . , xn] is called in general position w.r.t.
the lexicographical ordering with x1 > . . . > xn if there exist polyno-
mials g1, . . . , gn ∈ K[xn] with

m = 〈x1 + g1(xn), . . . , xn−1 + gn−1(xn), gn(xn)〉 .

2. A zero-dimensional ideal I ⊂ K[x1, . . . , xn] is called in general position
w.r.t. the lexicographical ordering with x1 > . . . > xn if all its asso-
ciated primes P1, . . . , Pk are in general position and if Pi ∩ K[xn] 6=
Pj ∩K[xn] for i 6= j.

In characteristic 0, a zero-dimensional ideal can be brought into general
position by a generic coordinate change according to the following statement.

Proposition 3.1.7 ([19, Proposition 4.2.2]). Let K be a field of characteris-
tic 0, and let I ⊂ K[x], x = (x1, . . . , xn), be a zero-dimensional ideal. Then
there exists a non-empty, Zariski-open subset U ⊂ Kn−1 such that for all
a = (a1, . . . , an−1) ∈ U , the coordinate change ϕa : K[x]→ K[x] defined by

ϕa(xi) := xi for i < n and

ϕa(xn) := xn +

n−1∑
i=1

aixi

has the property that ϕa(I) is in general position w.r.t. to the lexicographical
ordering defined by x1 > . . . > xn.

Once the zero-dimensional input ideal is in general position, the next
result gives a possibility to compute a primary decomposition thereof.

40 Chapter 3: Parallel Primary Decomposition

Proposition 3.1.8 ([19, Proposition 4.2.3]). Let I ⊂ K[x1, . . . , xn] be a
zero-dimensional ideal. Let g ∈ K[xn] be a generator of the principal ideal
〈g〉 = I∩K[xn], and let g = gν11 . . . gνss be a factorization of g into irreducible
factors gi ∈ K[xn] with gi 6= gj for i 6= j. Then

I =
s⋂
i=1

〈I, gνii 〉 .

If I is in general position w.r.t. to the lexicographical ordering defined by
x1 > . . . > xn, then the ideals 〈I, gνii 〉, i = 1, . . . , s, are primary ideals, and
I =

⋂s
i=1〈I, g

νi
i 〉 is an irredundant primary decomposition of I.

Based on this proposition, we get the algorithm zeroDecomp below
(Algorithm 3.1).

Algorithm 3.1 zeroDecomp ([19, Algorithm 4.2.7])

Input: a zero-dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn)
Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that

– I = Q1 ∩ . . . ∩Qr is a primary decomposition of I, and

– Pi =
√
Qi, i = 1, . . . , r

1: result := ∅
2: choose a random a ∈ Kn−1, and apply the coordinate change I ′ := ϕa(I)
3: compute a standard basis G of I ′ w.r.t. the lexicographical ordering with
x1 > . . . > xn, and let g ∈ G be the element with the smallest leading
monomial

4: factorize g = gν11 · . . . · gνss ∈ K[xn]
5: for i = 1, . . . , s do
6: Q′i := 〈I ′, gνii 〉
7: Qi := 〈I, ϕ−1

a (gi)
νi〉

8: if Q′i is primary and in general position then
9: Pi := ϕ−1

a
(√

Q′i
)

10: result := result ∪ {(Qi, Pi)}
11: else
12: result := result ∪ zeroDecomp(Qi)

13: return result

Remark 3.1.9. In positive characteristic, Algorithm 3.1 may run into an
infinite loop if it does not succeed in putting the input ideal in general
position. However, the result is still correct in case the algorithm terminates.

The primary decomposition of an arbitrary ideal in K[x1, . . . , xn] can be
reduced to the zero-dimensional case using maximal independent sets.

3.1. The Algorithm of Gianni, Trager, and Zacharias 41

Definition 3.1.10 ([19, Definition 3.5.3]). Let I ⊂ K[x1, . . . , xn] be an
ideal. Then a subset

u ⊂ x = {x1, . . . , xn}

is called an independent set (w.r.t. I) if I ∩K[u] = 0. An independent set
u ⊂ x (w.r.t. I) is called maximal if dim(K[x]/I) = #u.

Proposition 3.1.11 ([19, Proposition 4.3.1]). Let I ⊂ K[x1, . . . , xn] be an
ideal, and let u ⊂ x = {x1, . . . , xn} be a maximal independent set of variables
w.r.t. I. Then the following statements hold:

1. IK(u)[x \ u] ⊂ K(u)[x \ u] is a zero-dimensional ideal.

2. Let S = {g1, . . . , gs} ⊂ K(u)[x \u] be a standard basis of IK(u)[x \u],
and let q := LCM(LC(g1), . . . ,LC(gs)) ∈ K[u]. Then

IK(u)[x \ u] ∩K[x] = I : 〈q∞〉 ,

and this ideal is equidimensional of dimension dim(I).

3. Let IK(u)[x \ u] = Q1 ∩ . . . ∩Qr be an irredundant primary decompo-
sition. Then

IK(u)[x \ u] ∩K[x] = (Q1 ∩K[x]) ∩ . . . ∩ (Qr ∩K[x])

is also an irredundant primary decomposition.

With notation as above, let h := qm ∈ K[u], where m ∈ N is an integer
such that I : 〈qm〉 = I : 〈qm+1〉. Then this proposition gives an algorithm
to compute a primary decomposition of the ideal I : 〈h〉. On the other
hand, we have I = (I : 〈h〉) ∩ 〈I, h〉. Thus a primary decomposition of I
can be computed by recursively applying the same procedure to 〈I, h〉. This
process terminates because at each step either dim(〈I, h〉) < dim(I) or the
number of maximal independent sets w.r.t. 〈I, h〉 is smaller than the number
of maximal independent sets w.r.t. I.

The necessary data for reducing the general case to the zero-dimensional
case is computed in reductionToZero (Algorithm 3.2). Proceeding di-
mension by dimension as described above, the algorithm decomp (Algo-
rithm 3.3) computes a primary decomposition of an arbitrary ideal.

Remark 3.1.12 ([19, p. 276]). The intersections Q′ ∩K[x] in line 3 of Algo-
rithm 3.3 can be computed by saturation: Let Q′ be given by a standard
basis {g′1, . . . , g′s} ⊂ K[x], and let g′ :=

∏s
i=1 LC(g′i) ∈ K[u], then

Q′ ∩K[x] = 〈g′1, . . . , g′s〉 : 〈g′∞〉 ⊂ K[x] .

42 Chapter 3: Parallel Primary Decomposition

Algorithm 3.2 reductionToZero ([19, Algorithm 4.3.2])

Input: an ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn)
Output: a list (u,G, h), where

– u ⊂ x is a maximal independent set w.r.t. I,

– G = {g1, . . . , gs} ⊂ I is a standard basis of IK(u)[x \ u],

– h ∈ K[u] such that IK(u)[x \ u] ∩K[x] = I : 〈h〉 = I : 〈h∞〉

1: compute a maximal independent set u ⊂ x w.r.t. I
2: compute a standard basis G = {g1, . . . , gs} of I w.r.t. the lexicographical

ordering with xi > xj for all xi ∈ x \ u and xj ∈ u
3: set q :=

∏s
i=1 LC(gi) ∈ K[u], where the gi are considered as polynomials

in x \ u with coefficients in K(u)
4: compute m ∈ N such that 〈g1, . . . , gs〉 : 〈qm〉 = 〈g1, . . . , gs〉 : 〈qm+1〉
5: return (u,G, qm)

3.2 A Parallel Algorithm for Primary Decomposi-
tion

Modular methods have been successfully employed for computing standard
bases of certain types of polynomial ideals over rings of characteristic 0,
cf. [2] and [22]. The basic idea is to do the computation modulo several
primes, and to lift the results back to characteristic 0 using the Chinese
remainder theorem and the Farey rational map (cf. [16]). This approach
has two main benefits. First, it allows us to handle examples where huge
coefficients occur at the intermediate steps or in the result. This phenomenon
is called coefficient swell. Second, it gives a possibility to parallelize the
computation. However, a drawback of this method is that the final result
has to be tested for correctness, and in some cases, this final verification step
is computationally expensive.

Recently, modular methods have also been applied to the computation
of the associated primes of a zero-dimensional ideal (cf. [22]). For this, the
idea described above has to be slightly modified. Using modular methods for
this purpose in a naive way, by computing the associated prime ideals of a
given zero-dimensional ideal modulo several prime numbers, would yield two
inevitable problems: First, it is not clear how to relate the associated prime
ideals computed modulo some prime number p1 to those computed modulo
another prime number p2 in order to lift the results back to characteristic 0.
And second, even worse, the modular approach in [22] is build upon an al-
gorithm which relies on polynomial factorization. But this is not compatible
with modular methods in the following sense: Let f ∈ Q[x1, . . . , xn] be a
polynomial, and for two different prime numbers p1, p2, let f1 and f2 be the
images of f mapped to the corresponding polynomial rings of characteristic

3.2. A Parallel Algorithm for Primary Decomposition 43

Algorithm 3.3 decomp ([19, Algorithm 4.3.4])

Input: an ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn)
Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that

– I = Q1 ∩ . . . ∩Qr is a primary decomposition of I, and

– Pi =
√
Qi, i = 1, . . . , r

1: (u,G, h) := reductionToZero(I)
2: change ring to K(u)[x \ u] and compute

qprimary := zeroDecomp(〈G〉K(u)[x\u])
3: change ring to K[x] and compute

primary := {(Q′ ∩K[x], P ′ ∩K[x]) | (Q′, P ′) ∈ qprimary}
4: primary := primary ∪ decomp(〈I, h〉)
5: return primary

p1 and p2, respectively. Then f1 may have a different number of irreducible
factors than f2.

The algorithm proposed in [22] avoids these problems by dividing the
computation into two parts. The result of the first part is a certain uniquely
determined polynomial which can be obtained using modular methods. In
the second part, this polynomial is factorized in characteristic 0, and the
associated primes of the input ideal are derived from its factors.

Based on the modular algorithms for standard bases and associated prime
ideals, we propose a parallel algorithm for the primary decomposition of
polynomial ideals in general dimension. However, applying modular methods
to the algorithm of Gianni, Trager, and Zacharias (cf. Section 3.1, GTZ
algorithm for short) in a naive way would lead to the same problems as
described above for the computation of the associated primes. Additionally,
an irredundant primary decomposition of a given ideal is in general not
unique. In theory, it is possible to get rid of these problems in a way similar
to the solution proposed in [22] for computing the associated primes of a
zero-dimensional ideal. But since the GTZ algorithm is more complex and
requires, in general, several polynomial factorizations for a given input ideal,
this does not seem feasible in practice.

Instead, we base the new parallel algorithm for primary decomposition
on the following four key ingredients:

1. Whenever we encounter a zero-dimensional ideal, we use the modular
algorithm from [22] to compute the associated primes. The primary
ideals are extracted from the associated primes by saturation. This
replaces the algorithm zeroDecomp (Algorithm 3.1).

2. We use modular methods for the essential steps in the remaining parts
of the GTZ algorithm wherever they are applicable. This includes the

44 Chapter 3: Parallel Primary Decomposition

main standard basis computations and the ideal quotients which are
needed to compute the aforementioned saturations.

3. The final result is tested for correctness using fast, specific tests. Espe-
cially the test whether the input ideal is indeed the intersection of the
primary components is, for many examples, much faster than actually
intersecting the primary components. This allows us to skip the time-
consuming tests of the intermediate modular computations mentioned
above.

4. Trivially parallelizable parts of the algorithm are parallelized. An ex-
ample for this are the intersections in line 3 of Algorithm 3.3 which
can be computed in parallel for multiple primary components.

These aspects will be discussed in detail in the following sections.
An implementation of the new algorithm is available in the Singular

library primdec_parallel.lib [50]. It is based on the implementation of the
GTZ algorithm in Singular’s primdec.lib [44] which is highly optimized
and differs in many details from the algorithm described in Section 3.1.

The parallel functionality of the library primdec_parallel.lib is pro-
vided by Singular’s new parallel framework, see Chapter 1. This frame-
work comprises the three libraries resources.lib [54], tasks.lib [55], and
parallel.lib [53]. All modular computations in the new algorithm rely on
Singular’s modular.lib [52]. This library is an abstraction layer for mod-
ular methods which, in turn, is based on Singular’s parallel framework.
The crucial capability of this framework in view of the presented algorithm
is that the computation can be easily parallelized even on different levels.
That is, tasks running in parallel to other tasks can be further parallelized
in a recursive manner by dividing them into subtasks. The scheduling of the
resulting tree structure is handled within the parallel framework and thus
completely separated from the implementation of the parallel algorithm for
primary decomposition in primdec_parallel.lib. An example for paral-
lelization on different levels is the extraction of the primary ideals from the
associated primes mentioned above. The primary ideals can be computed in
parallel, and modular methods can be used for the saturation step which the
extraction of each component involves.

For the remaining part of this section, we work over the polynomial ring
Q[x1, . . . , xn].

3.2.1 The Zero-Dimensional Case

In order to parallelize the primary decomposition of zero-dimensional ideals,
we first compute the associated primes via the parallel algorithm assPrimes
from [22]. The corresponding primary ideals are then extracted from the
associated primes using a method of Shimoyama and Yokoyama [35]. Let us
first consider the theoretical background for the extraction step.

3.2. A Parallel Algorithm for Primary Decomposition 45

Definition 3.2.1. Let P1, . . . , Pr be ideals in Q[x1, . . . , xn]. A system of
separators for P1, . . . , Pr is an r-tuple (s1, . . . , sr) ∈ (Q[x1, . . . , xn])r of poly-
nomials such that

si ∈
⋂
j 6=i

Pj \ Pi

for all i = 1, . . . , r if r > 1, and s1 /∈ P1 for r = 1.

Remark 3.2.2. Let P1, . . . , Pr be the associated primes of a zero-dimensional
ideal in Q[x1, . . . , xn]. Then the Pi are maximal ideals and thus Pj \Pi 6= ∅
for j 6= i. For i, j = 1, . . . , r with j 6= i, let p(i)

j be an element in Pj \Pi 6= ∅,
and define

si :=
∏
j 6=i

p
(i)
j ∈ Q[x1, . . . , xn] .

For r = 1, set s1 := 1. Then si /∈ Pi and si ∈ Pj for all i, j = 1, . . . , r
with j 6= i, that is, (s1, . . . , sr) is a system of separators for P1, . . . , Pr. In
particular, such an r-tuple exists.

Proposition 3.2.3 (cf. [35, Theorem 2.7] and [10, Lemmata 26 and 28]).
Let I ⊂ Q[x1, . . . , xn] be a zero-dimensional ideal. Let P1, . . . , Pr be the
associated primes of I, and let s1, . . . , sr be a system of separators for the
prime ideals P1, . . . , Pr. Then

Qi := I : 〈s∞i 〉

is a Pi-primary ideal for i = 1, . . . , r, and

I = Q1 ∩ . . . ∩Qr

is an irredundant primary decomposition of I.

Using the result above for the extraction step, zeroDecompModular
(Algorithm 3.4) computes an irredundant primary decomposition of a zero-
dimensional ideal in Q[x1, . . . , xn].

Remark 3.2.4.

1. In line 1 of zeroDecompModular, we suggest to use the modular
algorithm assPrimes from [22] for the computation of the associated
primes. An implementation of assPrimes is available in the Singular
library assprimeszerodim.lib [46].

2. The saturations in line 9 of zeroDecompModular are independent
from each other and can thus be computed in parallel. The ideal
quotients required by each saturation can be computed in a modular
way. An implementation of modular ideal quotients can be found in
the Singular library modquotient.lib [51].

46 Chapter 3: Parallel Primary Decomposition

Algorithm 3.4 zeroDecompModular

Input: a zero-dimensional ideal I ⊂ Q[x], x = (x1, . . . , xn), and an al-
gorithm assPrimes to compute the associated prime ideals of a zero-
dimensional ideal

Output: a set of pairs (Qi, Pi) of ideals in Q[x], i = 1, . . . , r, such that

– I = Q1 ∩ . . . ∩Qr is a primary decomposition of I, and

– Pi =
√
Qi, i = 1, . . . , r

1: P1, . . . , Pr := assPrimes(I)
2: if r = 1 then
3: Q1 := I
4: return {(Q1, P1)}
5: for i = 1, . . . , r do
6: for j = 1, . . . , r with j 6= i do
7: choose p(i)

j ∈ Pj \ Pi
8: si :=

∏
j 6=i p

(i)
j

9: Qi := I : 〈s∞i 〉
10: return {(Q1, P1), . . . , (Qr, Pr)}

3. Modular methods perform particularly well at time-consuming exam-
ples where huge coefficients occur. For small examples, they are some-
times even slower than the corresponding straightforward methods due
to the additional overhead. In order to minimize this drawback, our im-
plementation tries both zeroDecompModular and zeroDecomp
in parallel and takes the result from whatever method finishes first.

In decomp, we replace zeroDecomp with zeroDecompModular and
thus get the algorithm decompModular (Algorithm 3.5) below.

3.2.2 Verification

At the end of the parallel algorithm for primary decomposition which we
propose, the result is tested for correctness. This allows us to skip the tests
for the numerous intermediate modular computations. For many examples,
testing just the final result of the primary decomposition is much faster than
testing all the intermediate steps.

Given an ideal I and pairs (Q1, P1), . . . , (Qr, Pr) of ideals inQ[x1, . . . , xn],
we would like to test whether I = Q1 ∩ . . . ∩Qr is indeed a primary decom-
position of I and if Pi =

√
Qi for i = 1, . . . , r. For this test, we proceed in

three steps and verify the following statements:

1. For i = 1, . . . , r, the ideal Qi is primary and Pi =
√
Qi.

3.2. A Parallel Algorithm for Primary Decomposition 47

Algorithm 3.5 decompModular

Input: an ideal I := 〈f1, . . . , fk〉 ⊂ Q[x], x = (x1, . . . , xn)
Output: a set of pairs (Qi, Pi) of ideals in Q[x], i = 1, . . . , r, such that

– I = Q1 ∩ . . . ∩Qr is a primary decomposition of I, and

– Pi =
√
Qi, i = 1, . . . , r

1: (u,G, h) := reductionToZero(I)
2: change ring to Q(u)[x \ u] and compute

qprimary := zeroDecompModular(〈G〉Q(u)[x\u])
3: change ring to Q[x] and compute

primary := {(Q′ ∩Q[x], P ′ ∩Q[x]) | (Q′, P ′) ∈ qprimary}
4: primary := primary ∪ decompModular(〈I, h〉)
5: return primary

2. I ⊂ Qi for i = 1, . . . , r.

3. Q1 ∩ . . . ∩Qr ⊂ I.

The first statement can be checked by simply computing a primary de-
composition of each ideal Qi using decomp. The statement is true if the
decomposition has only one primary component and if the associated prime
ideal coincides with Pi. While the second step is straightforward, comput-
ing the intersection in the third statement can be very time-consuming. We
therefore use a trick which we present in the following.

Throughout this subsection, let R be the polynomial ring Q[x1, . . . , xn]
and let > be a fixed monomial ordering on R.

Definition 3.2.5. Let F := Rs be the free R-module of rank s, and let
e1, . . . , es be the canonical basis of F . We define >c to be the (module)
monomial ordering on F given by

xα ei >c x
β ej :⇔

{
i < j, or
i = j and xα > xβ

for all monomials xα ei and xβ ej in F . That is, >c gives priority to the
component with the smaller index.

Notation 3.2.6. If I ⊂ R is an ideal given by generators f1, . . . , fk, that
is I = 〈f1, . . . , fk〉, then we use (− I −) as a shorthand notation for the
(1× k)-matrix (f1, . . . , fk).

The following proposition combines well-known methods for computing
ideal intersections, syzygies, and intersections with free submodules. It al-
lows us to reduce the computation of Q1∩ . . .∩Qr to a single standard basis
computation of a suitable R-module.

48 Chapter 3: Parallel Primary Decomposition

Proposition 3.2.7. Let Q1, . . . , Qr be ideals in R, let c1, . . . , cl denote the
columns of the matrix

M :=

1 −Q1−
...

. . .

1 −Qr−

1 0 · · · 0

 ,

and let J := 〈c1, . . . , cl〉R ⊂ Rr+1 =
⊕r+1

i=1 R · ei be the R-module generated
by these columns. Furthermore, let G be a standard basis of J w.r.t. >c, let
S := G ∩ (R · er+1) be the set of elements in G whose first r components
are zero, and let π : Rr+1 → R be the projection given by π(ei) := 0 for
i = 1, . . . , r and π(er+1) := 1. Then

〈π(S)〉R = Q1 ∩ . . . ∩Qr .

Proof. Let Mr×l be the upper (r × l)-submatrix of M , and let c′1, . . . , c′l be
the columns of Mr×l. Consider the first syzygy module of these columns,
Syz(c′1, . . . , c

′
l) ⊂ Rl =

⊕l
i=1R · ei, and let ψ : Rl → R be the projection

given by ψ(e1) := 1 and ψ(ei) := 0 for i = 2, . . . , l. Then

ψ(Syz(c′1, . . . , c
′
l)) = Q1 ∩ . . . ∩Qr

according to [19, Lemma 2.8.4].
To get a set of generators for Syz(c′1, . . . , c

′
l), let G

′ be a standard basis
of J ′ := 〈c′1 + er+1, . . . , c

′
l + er+l〉R w.r.t. the monomial ordering >c on Rr+l.

Moreover, let S′ := G′∩
⊕r+l

i=r+1R ·ei be the set of elements in G′ whose first
r components are zero, and let π′ : Rr+l → Rl be the canonical projection.
Then

Syz(c′1, . . . , c
′
l) = 〈π′(S′)〉R ,

cf. [19, Lemma 2.5.3].
Since the ordering >c gives priority to the component with the smaller

index, the elements in (ψ ◦ π′)(S′) are determined by the first (r + 1) com-
ponents of the generators of J ′. Therefore, replacing c′1 + er+1, . . . , c

′
l + er+l

by c1, . . . , cl and J ′ by J , we have

Q1 ∩ . . . ∩Qr = ψ(〈π′(S′)〉R) = 〈(ψ ◦ π′)(S′)〉R = 〈π(S)〉R

which proves the claim.

Proposition 3.2.7 gives a way to compute the intersection Q1∩ . . .∩Qr. If
we only want to test whether I = Q1∩. . .∩Qr for a given ideal I, this method
can be speeded up enormously by adding more columns to the matrixM as in
Corollary 3.2.8 below. The additional columns make the computation much
faster by anticipating the result while they do not influence its correctness.
Hence the following corollary is crucial for our purpose.

3.2. A Parallel Algorithm for Primary Decomposition 49

Corollary 3.2.8. With notation as above, let I = 〈f1, . . . , fk〉 be an ideal
in R such that I ⊂ Q1 ∩ . . . ∩ Qr. Then Proposition 3.2.7 still holds if the
matrix M is replaced by

M ′ :=

1 −Q1− 0
...

. . .
...

1 −Qr− 0

1 0 · · · 0 − I −

 .

Proof. Let cl+1, . . . , cl+k be the additional columns in M ′. Then

〈cl+1, . . . , cl+k〉R = I · er+1 ⊂ (Q1 ∩ . . . ∩Qr) · er+1 = 〈S〉R ⊂ J .

This implies that J , and thus G and S, do not change if the matrix M is
replaced by M ′.

Based on this result, the primary decomposition can be tested as in
testPrimdec (Algorithm 3.6).

Remark 3.2.9.

1. Various steps in the algorithm testPrimdec require computing stan-
dard bases of the input ideals I, Q1, . . . , Qr, P1, . . . , Pr. This applies
to the tests in lines 5, 8, and 12, as well as to the primary decompo-
sitions in line 2. Besides, the standard basis computation in line 11
is usually faster if the ideals Q1, . . . , Qr, and I are given as standard
bases. It is thus convenient to compute standard bases of these ideals
beforehand if necessary.

2. The tests in lines 5, 8, and 12 do not take much time in comparison
to the primary decomposition of I if the input ideals I, Q1, . . . , Qr,
P1, . . . , Pr are given as standard bases, and the primary decompositions
of the presumable primary ideals Qi in line 2 are usually fast, too. So
the computationally hardest part of testPrimdec is computing the
standard basis in line 11 in order to check that the intersection Q1 ∩
. . .∩Qr is contained in I. For this step, using the idea of Corollary 3.2.8
gives an enormous speedup.

3. Several parts of testPrimdec can be parallelized, in particular the
for-loops in line 1 and line 7. For the primary decompositions in line 2,
several methods can be tried in parallel if they are available. Finally,
we can use modular methods for the standard basis computation in
line 11.

50 Chapter 3: Parallel Primary Decomposition

Algorithm 3.6 testPrimdec

Input: an ideal I ⊂ R = Q[x1, . . . , xn] and a set of pairs (Qi, Pi) of ideals
in R, i = 1, . . . , r

Output: – true if I = Q1 ∩ . . . ∩ Qr is a primary decomposition of I and
Pi =

√
Qi for i = 1, . . . , r;

– false, otherwise

// Step 1: check that each ideal Qi is primary and that Pi =
√
Qi

1: for i = 1, . . . , r do
2: L := {(q1, p1), . . . , (qs, ps)} := decomp(Qi)
3: if L has more than one component (s > 1) then
4: return false
5: if p1 6= Pi then
6: return false

// Step 2: check that I ⊂ Q1 ∩ . . . ∩Qr
7: for i = 1, . . . , r do
8: if I 6⊂ Qi then
9: return false

// Step 3: check that Q1 ∩ . . . ∩Qr ⊂ I
10: let J be the submodule of the free module Rr+1 (with canonical basis

e1, . . . , er+1) generated by the columns of the matrix
1 −Q1− 0
...

. . .
...

1 −Qr− 0

1 0 · · · 0 − I −

11: compute a standard basis G of J w.r.t. >c
12: if G ∩ (R · er+1) 6⊂ I · er+1 then
13: return false

// all tests succeeded
14: return true

In the unlikely case that testPrimdec fails, we restart the parallel
primary decomposition, but this time, we do not skip the intermediate test.
That is, we test the result of each intermediate modular computation for
correctness and, if necessary, continue the computation with more prime
numbers until the test succeeds. Thus every intermediate result is correct and
we finally obtain a primary decomposition for sure. To achieve this, we call
decompModular with an optional argument “with/without intermediate
tests” as in primdecParallel (Algorithm 3.7) below.

3.2. A Parallel Algorithm for Primary Decomposition 51

Algorithm 3.7 primdecParallel

Input: an ideal I := 〈f1, . . . , fk〉 ⊂ Q[x], x = (x1, . . . , xn)
Output: a set of pairs (Qi, Pi) of ideals in Q[x], i = 1, . . . , r, such that

– I = Q1 ∩ . . . ∩Qr is a primary decomposition of I, and

– Pi =
√
Qi, i = 1, . . . , r

1: L := decompModular(I, “without intermediate tests”)
2: if testPrimdec(I, L) fails then
3: L := decompModular(I, “with intermediate tests”)
4: return L

3.2.3 Modular Methods

In this subsection, we summarize where modular methods are used in our
implementation of the proposed parallel algorithm:

• After reducing the general case to the zero-dimensional case if neces-
sary, modular methods are used to compute the associated primes of
the given ideal, cf. line 1 of the algorithm zeroDecompModular.

• We use the modular computation of ideal quotients from Singular’s
modquotient.lib for the required saturations. This applies to the
saturation in reductionToZero (line 4), to the extraction step in
zeroDecompModular (line 9), and to the intersections with Q[x]
in decompModular (line 3).

• Modular standard bases are used at the following places in our imple-
mentation of the proposed algorithm:

– within the modular computations of ideal quotients and of the
associated primes, see above;

– within the computation of independent sets in line 1 of the algo-
rithm reductionToZero;

– for the standard basis computation w.r.t. the lexicographical or-
dering in line 2 of reductionToZero;

– for various implementational tricks and shortcuts such as to keep
track of the dimension of the input ideal I at recursive calls of
decompModular, and to take advantage of generators which
are linear in one variable;

– for the standard basis computation in Step 3 of testPrimdec
(line 11).

52 Chapter 3: Parallel Primary Decomposition

All modular computations in our implementation rely on Singular’s
modular.lib and are thus automatically parallelized. As a further advan-
tage, the source code for the modular functionality such as the lifting to
characteristic 0 is separated from our code for primary decomposition.

3.2.4 Trivially Parallelizable Parts

Aside from the modular computations mentioned in the previous subsec-
tion, the following parts of the proposed algorithm are parallelized in our
implementation:

• The saturations in line 9 of zeroDecompModular are computed in
parallel for i = 1, . . . , r.

• In the algorithm decompModular, we try both zeroDecomp and
zeroDecompModular parallelly if enough computational resources
are available.

• The intersections with Q[x] in line 3 of decompModular are com-
puted in parallel for every component (Q′, P ′) ∈ qprimary.

• In testPrimdec, both Step 1 and Step 2 are done in parallel for
i = 1, . . . , r.

• For the primary decomposition in line 2 of testPrimdec, several
methods are tried at once.

The parallel computations mentioned above, including the modular com-
putations in the previous subsection, are based on Singular’ parallel frame-
work. This allows us to take advantage of Singular’s parallel functionality
without having to worry about the scheduling of the tasks, even if the par-
allelization is done on different levels as in our case and the tasks build up a
non-trivial tree structure.

3.3 Timings

We compare the algorithm primdecParallel (Algorithm 3.7) with the
original algorithm of Gianni, Trager, and Zacharias (GTZ, cf. [14]) and the
algorithm of Shimoyama and Yokoyama (SY, cf. [35]). For the GTZ and
the SY algorithm, we use the corresponding commands from the Singular
library primdec.lib. For primdecParallel, we use the implementation
from the library primdec_parallel.lib.

In order to show the parallel speedup, we run primdecParallel on 1,
4, 16, and 48 processor cores for each example. Note that the GTZ and the
SY algorithm are sequential, that is, these timings are computed on one core
only.

3.3. Timings 53

We compute primary decompositions of the following ideals:

1. Hawes2

f1 := 5d4 + 3d2f + 2cd+ 2de+ b ,

f2 := 5g4 + 3fg2 + 2cg + 2gh+ b ,

f3 := 20d3 + 6df + 2c+ 2e ,

f4 := 20g3 + 6fg + 2c+ 2h ,

f5 := d2 + 3e2 + a ,

I := 〈f1, . . . , f5〉 ⊂ Q[a, b, c, d, e, f, g] .

2. Huneke

f := x5 −
(
y − z2

)(
y − z3

)(
y − z4

)(
z − t2

)(
z − t3

)
∈ Q[t, x, y, z] ,

I :=

〈
∂

∂t
f,

∂

∂x
f,

∂

∂y
f,

∂

∂z
f

〉
⊂ Q[t, x, y, z] .

3. Laplagne4

z := x− 2y + 1 ∈ Q[x, y] ,

f := x18 + y18 + z18 + 2
(
x9z9 − x9y9 + y9z9

)
∈ Q[x, y] ,

I :=

〈
f,

∂

∂x
f,

∂

∂y
f

〉
⊂ Q[x, y] .

4. Random1

f1 := 411y5 + 654y4z + 371y2z3 − 854yz4 ,

f2 := −871xy4 − 490x4z + 112y2z3 + 940yz3 ,

f3 := 661y2z3 + 309xz4 + 607x2y2 ,

I := 〈f1, f2, f3〉 ⊂ Q[x, y, z] .

5. Random2

f1 := 37x1x2x4 + 3x1x
2
4 − 90x2x3 − 66x1x4 − 70x2

5 + 51x1 ,

f2 := −76x2
1x2 − 72x2x

2
4 − 62x2

1x5 + 59x2x4x5 + 53x1x
2
5 ,

f3 := 36x2
1x2 − 84x2

1x3 − 37x1x2x5 + 92x3x4x5 ,

f4 := 36x2x
2
3 + 75x1x2x4 − 98x3

4 − 77x1x3x5 + 46x3x4x5 − 94x2
4x5 ,

f5 := 59x3
1 − 21x2

2x4 + 86x3x
2
4 − 94x2x4x5 + 13x3x4x5 + 37x2x

2
5 − 89x2

1 ,

f6 := −59x2x3x4 + 50x2x
2
4 ,

I := 〈f1, . . . , f6〉 ⊂ Q[x1, x2, x3, x4, x5] .

54 Chapter 3: Parallel Primary Decomposition

Table 3.1: Algebraic and geometric properties of the examples

#Ass
Dimensions

radical
isolated embedded

Hawes2 3 3, 3, 3 – yes

Huneke 15 1, . . . , 1, 0, 0 0, 0 no

Laplagne4 9 0, . . . , 0 – no

Random1 4 1, 1, 0 0 no

Random2 3 1, 1 0 no

Table 3.2: Timings comparing primdecParallel, GTZ, and SY
(in seconds)

primdecParallel
GTZ SY

1 core 4 cores 16 cores 48 cores

Hawes2 20 9 9 12 148 2

Huneke 21938 8369 5210 1897 – –

Laplagne4 194 142 42 35 173 –

Random1 351 275 244 236 – –

Random2 26 8 9 12 249 –

Table 3.1 shows, for each of these ideals, the number of associated primes,
the dimensions of the isolated and embedded components, and if the ideal is
radical or not.

The timings (in seconds) for these ideals are shown in Table 3.2. They
were computed on an AMD Opteron 6174 machine with 128 GB of RAM
and 48 cores, each with 2.2 GHz, running a Linux operating system. A
dash (–) indicates that the computation does not finish within 24 hours.
For all examples, the monomial ordering is chosen to be the degree reverse
lexicographical ordering (dp in Singular).

In some cases, the final verification step takes a considerable amount of
time, and we therefore give separate timings for this step, see Table 3.3.
It is worth noting that the verification succeeds for all examples presented
here. Thus, a re-computation with intermediate test (cf. Algorithm 3.7) is
not necessary.

The proposed parallel algorithm is faster than the original GTZ algorithm
for all examples presented here. We are even able to crack examples in
less than one hour for which the GTZ and the SY algorithm do not finish
within a day. So far, the example named Huneke could not be solved at

3.3. Timings 55

Table 3.3: Timings for the verification step of primdecParallel
(in seconds)

primdecParallel

1 core 4 cores 16 cores 48 cores

Hawes2 4 3 4 5

Huneke 117 90 150 151

Laplagne4 7 6 6 8

Random1 167 166 167 165

Random2 3 2 2 4

all by either GTZ or SY. During the computation of this example, one of
the intermediate modular standard basis computations uses more than 2000
large prime numbers. This shows that primdecParallel performs and
scales particularly well for examples where very large coefficients occur at
either the intermediate steps or in the result. For medium-sized examples,
it still gives a speedup as the number of processor cores increases. For an
algorithm as complex as primary decomposition, we cannot expect that a
parallel approach scales linearly with the number of processor cores.

However, we also found examples where the parallel algorithm is slower
than GTZ. Especially for small examples, the overhead inherited by the
modular methods and the parallelization may even lead to longer running
times as the number of cores increases. Furthermore, the final verification
is a time-consuming step for some of the examples. The timings also show
that this step is not yet well parallelized.

We plan to continue this research project and to tackle these issues in
order to improve the proposed algorithm even further.

Part II

Syzygies

57

Chapter 4

New Algorithms to Compute
Syzygies

Based on Schreyer’s algorithm [34, 33, 11], we present two new algorithms
for the computation of syzygies. The two main ideas of the first algorithm,
called LiftHybrid, are the following: First, we may leave out certain terms
of module elements during the computation which do not contribute to the
result. These terms are called “lower order terms”, see Definition 4.3.2. Sec-
ond, we do not need to order the remaining terms of these module elements
during the computation. This significantly reduces the number of monomial
comparisons for the arithmetic operations. For the second algorithm, called
LiftTree, we additionally cache some partial results and reuse them at the
remaining steps.

In Section 4.1, we introduce some basic terminology. The induced order-
ing, Schreyer’s Theorem, and the corresponding algorithm are discussed in
Section 4.2. Based on an analysis of this algorithm, we present the two new
algorithms in Section 4.3. A detailed example is given in Section 4.4.

We expect the new algorithms to be considerably faster, especially for
large examples and for the computation of entire free resolutions. However,
the implementation is not yet completely finished, so we do not present any
timings here.

4.1 Introduction

Throughout this chapter, let K be a field, and let R := K[x1, . . . , xn] be the
polynomial ring in n variables over K. We denote the monoid of monomials
in x1, . . . , xn by Mon(x1, . . . , xn).

We briefly recall some terminology for dealing with R-module syzygies
and their computation.

Definition 4.1.1. Let F := Rr be the free R-module of rank r, and let
e1, . . . , er be the canonical basis of F .

59

60 Chapter 4: New Algorithms to Compute Syzygies

1. A monomial in F is the product of an element in Mon(x1, . . . , xn) with
a basis element ei. The set of monomials in F is denoted by Mon(F).

2. Accordingly, a term in F is the product of a monomial in F with a
scalar in K.

3. A monomial m1 ei divides a monomial m2 ej if i = j and m1 divides
m2; in this case, the quotient m2 ej /m1 ei is defined as m2/m1 ∈
Mon(x1, . . . , xn). We also say that m1 ∈ Mon(x1, . . . , xn) divides
m2 ej if m1 divides m2, and in this case m2 ej /m1 is defined to be
(m2/m1) ej ∈ Mon(F).

4. The least common multiple of two monomials m1 ei,m2 ej ∈ F is

lcm(m1 ei,m2 ej) :=

{
lcm(m1,m2) ei, if i = j,

0, otherwise.

5. A monomial ordering on F is a total ordering � on Mon(F) such that
if m1 ei and m2 ej are monomials in F , and m is a monomial in R, then

m1 ei � m2 ej =⇒ (m ·m1) ei � (m ·m2) ej .

In this chapter, we require in addition that

m1 ei � m2 ei ⇐⇒ m1 ej � m2 ej for all i, j .

6. Let � be a monomial ordering on F , let f ∈ F \ {0} be an element
of F , and let f = cm ei +f∗ be the unique decomposition of f with
c ∈ K \ {0}, m ei ∈ Mon(F), and m ei > m∗ ej for any non-zero term
c∗m∗ ej of f∗. We define the leading monomial, the leading coefficient,
the leading term, and the tail of f as

LM(f) := m ei ,

LC(f) := c ,

LT(f) := cm ei ,

tail(f) := f − LT(f) ,

respectively.

7. For any subset S ⊂ F , we call

L(S) := 〈LM(f) | f ∈ S \ {0}〉R ⊂ F

the leading module of S.

4.1. Introduction 61

Remark 4.1.2. Let � be a monomial ordering on the free R-module F := Rr

as defined above. Then there is a unique monomial ordering > on R which
is compatible with � in the obvious way, and we say that � is global if > is
global. In this chapter, all monomial orderings are supposed to be global.

Definition 4.1.3. Let M be an R-module, let G := {f1, . . . , fr} ⊂M be a
finite subset of M , and let F := Rr be the free R-module of rank r as above.
Consider the homomorphism

ψG : F →M ,

ei 7→ fi .

A syzygy of G = {f1, . . . , fr} is an element of kerψG. We call kerψG the
(first) syzygy module of G, written

Syz(G) := kerψG.

Definition 4.1.4. Let N be an R-module. A free resolution of N is an exact
sequence

F : . . . −→ Fi+1
φi+1−→ Fi

φi−→ Fi−1 −→ . . . −→ F1
φ1−→ F0 −→ N −→ 0

with free R-modules Fi, i ∈ N.

Remark 4.1.5. Let the notation be as in Definitions 4.1.3 and 4.1.4. In
this chapter, we only consider the case where M is a free module over the
polynomial ring R and where we wish to construct a free resolution of N =
M/〈G〉R. For this, with notation as in Definition 4.1.3, set F0 := M , F1 :=
F , and φ1 := ψG. Now, starting with G1 := G, let Gi+1 be a finite set
of generators for Syz(Gi) and, inductively, define φi to be the map ψGi for
i ∈ N \ {0}. We then have Syz(Gi) = kerφi, that is, F is obtained by
repeatingly computing the syzygies of finite subsets of free R-modules.

Definition 4.1.6. Let F0 := Rs be the free R-module of rank s, let > be a
monomial ordering on F0, and let G := {f1, . . . , fr} ⊂ F0 \ {0} be a set of
non-zero vectors in F0.

1. We define mji as

mji :=
lcm(LM(fj),LM(fi))

LT(fi)
∈ R .

2. For i, j ∈ {1, . . . , r}, we define the S-vector of fi and fj as

S(fi, fj) := mjifi −mijfj ∈ 〈G〉R ⊂ F0 .

62 Chapter 4: New Algorithms to Compute Syzygies

3. For g ∈ F0, we call an expression

g = g1f1 + . . .+ grfr + h

with gi ∈ R and h ∈ F0 a standard representation for g with remainder
h (and w.r.t. G and >) if the following conditions are satisfied:

(a) LM(g) ≥ LM(gifi) for all i = 1, . . . , r whenever both g and gifi
are non-zero.

(b) If h is non-zero, then LT(h) is not divisible by any LT(fi).

Remark 4.1.7. Standard representations can be computed by multivariate
division with remainder. With notation as above, let now G be a Gröbner
basis, and let g be an element of 〈G〉R. In this case, the remainder h is zero
by Buchberger’s criterion for Gröbner bases. For S-vectors of elements of G,
each standard representation

S(fi, fj) = mjifi −mijfj = g
(ij)
1 f1 + . . .+ g(ij)

r fr

yields an element mji ei−mij ej −
(
g

(ij)
1 e1 + . . .+ g

(ij)
r er

)
∈ Syz(G).

This gives one possibility to compute syzygies which we will now discuss
in detail.

4.2 Schreyer’s Syzygy Algorithm

4.2.1 The Induced Ordering

Definition 4.2.1. Given a monomial ordering > on F0 := Rs and a set of
non-zero vectors G := {f1, . . . , fr} ⊂ F0\{0}, we define the induced ordering
on F1 := Rr (w.r.t. > and G) as the monomial ordering � given by

m1 ei � m2 ej :⇔ LT(m1fi) > LT(m2fj)

or (LT(m1fi) = LT(m2fj) and i > j)

for all monomials m1,m2 ∈ Mon(x1 . . . , xn), and for all basis elements
ei, ej ∈ F1.

This definition implies that both > and � yield the same ordering on R
if restricted to one component.

Monomial comparisons w.r.t. induced orderings are computionally ex-
pensive and should therefore be avoided in practice. This holds in particular
in the case of chains (�i)i=1,...,k of orderings with �i+1 induced by �i which
appear in the computation of free resolutions.

4.2. Schreyer’s Syzygy Algorithm 63

4.2.2 Schreyer’s Theorem

Theorem 4.2.2 ([11, Corollary 2.3.19]). Let G = {f1, . . . , fr} ⊂ F0 := Rs

be a Gröbner basis w.r.t. a monomial ordering > on F0. For each pair (fi, fj)
with i, j ∈ {1, . . . , r}, let

S(fi, fj) = mjifi −mijfj = g
(ij)
1 f1 + . . .+ g(ij)

r fr

be a standard representation of the corresponding S-vector. Then the rela-
tions

mji ei−mij ej −
(
g

(ij)
1 e1 + . . .+ g(ij)

r er

)
∈ F1 := Rr

form a Gröbner basis of Syz(G) w.r.t. the monomial ordering on F1 in-
duced by > and G. In particular, these relations generate the syzygy module
Syz(G).

Based on this theorem, there is an obvious algorithm for the computa-
tion of syzygy modules: Given a Gröbner basis G as above, it suffices to
compute standard representations for all S-vectors S(fi, fj) by division with
remainder.

Of course, one can do much better. Since S(fi, fj) = −S(fj , fi), it is
sufficient to consider those pairs (fi, fj) with j < i. It is well-known that
even more pairs can be left out using the following notation (cf. [11]):

Notation 4.2.3. Let F0 := Rs be the free R-module of rank s, and let G :=
{f1, . . . , fr} ⊂ F0 \ {0} be a set of non-zero vectors in F0. For i = 2, . . . , r,
we define the monomial ideal Mi as

Mi := 〈LT(f1), . . . ,LT(fi−1)〉 : 〈LT(fi)〉 ⊆ R .

Remark 4.2.4. Recall that if N1 and N2 are submodules of an R-module M ,
then the module quotient N1 : N2 is defined to be the ideal

N1 : N2 := {a ∈ R | an ∈ N1 for all n ∈ N2} ⊆ R .

In particular, in the situation of Notation 4.2.3, we have 〈m1 e′i〉 : 〈m2 e′j〉 = 0
for any two monomials m1,m2 ∈ R and any two basis elements e′i, e′j of F0

with i 6= j.

Proposition 4.2.5 ([11, Theorem 2.3.10]). Let G = {f1, . . . , fr} ⊂ F0 be
as in Theorem 4.2.2. For each i = 2, . . . , r, and for each minimal generator
xα of the monomial ideal Mi ⊂ R, let j = j(i, α) < i be an index such that
mji divides xα. Then it is sufficient in Theorem 4.2.2 to consider only the
corresponding pairs (fi, fj).

Taking this proposition into account, we get Algorithm 4.1 below.

64 Chapter 4: New Algorithms to Compute Syzygies

Algorithm 4.1 SyzSchreyer

Input: A Gröbner basis G = {f1, . . . , fr} ⊂ F0 := Rs w.r.t. some monomial
ordering >

Output: A Gröbner basis of Syz(G) ⊂ F1 := Rr w.r.t. the monomial order-
ing induced by > and G

1: S := ∅
2: for i = 2, . . . , r do
3: for each minimal generator xα of the monomial ideal Mi do
4: choose an index j < i such that mji divides xα

5: h := S(fi, fj) = mjifi −mijfj ∈ F0

6: s := mji ei−mij ej ∈ F1

7: while h 6= 0 do
8: choose an index λ such that LT(fλ) divides LT(h)

9: h := h− LT(h)
LT(fλ)fλ

10: s := s− LT(h)
LT(fλ) eλ

11: S := S ∪ {s}
12: return S

4.2.3 Schreyer Frame

The leading module of the syzygy module will serve as a starting point for
the algorithms which we propose in Section 4.3. Its computation is based on
the following observation.

Remark 4.2.6. With notation as in Theorem 4.2.2, g(ij)
1 f1 + . . . + g

(ij)
r fr is

a standard representation of the S-vector S(fi, fj), and therefore we have
LM(mjifi) = LM(mijfj) > LM

(
g

(ij)
k fk

)
for all k = 1, . . . , r with g(ij)

k 6= 0,
cf. Definition 4.1.6(3). For i > j, this implies

mji ei � mij ej � LM
(
g

(ij)
k

)
ek ,

where � is the monomial ordering on F1 = Rr induced by > and G. There-
fore the leading syzygy module of G w.r.t. � is

L�(Syz(G)) =
⊕

i=2,...,r

Mi ei .

Thus, for a given Gröbner basis G, the leading module of Syz(G) w.r.t.
the induced ordering can be easily computed by throwing away superfluous
elements, see Algorithm 4.2.

In Algorithm 4.2, only the leading terms of the Gröbner basis G con-
tribute to the computation of the set S (via the term mji ∈ R, cf. Defini-
tion 4.1.6(2)). For a free resolution as constructed in Remark 4.1.5, we can

4.3. New Algorithms 65

Algorithm 4.2 LeadSyz

Input: A Gröbner basis G = {f1, . . . , fr} ⊂ F0 := Rs w.r.t. some monomial
ordering > on F0

Output: A minimal set of generators for the leading syzygy module
L�(Syz(G)) of G w.r.t. the monomial ordering � on F1 := Rr induced
by > and G

1: L := ∅
2: for 1 ≤ j < i ≤ r do
3: t := mji ei ∈ F1

4: for s ∈ L do
5: if s | t then
6: t := 0
7: break
8: else if t | s then
9: L := L \ {s}

10: if t 6= 0 then
11: L := L ∪ {t}
12: return L

thus, starting with the leading terms of G, inductively compute sets of gen-
erators for all leading syzygy modules. The sequence of these sets of leading
syzygy terms is called a Schreyer frame by La Scala and Stillman in [28].

It is worth noting that the algorithm to compute a minimal free reso-
lution by La Scala and Stillman is compatible with our algorithms for the
computation of syzygies in the sense that both approaches are based on the
Schreyer frame and can thus be combined.

Remark 4.2.7. In the computation of a free resolution, reordering the syzygies
after each step may yield smaller generators for higher syzygy modules. With
notation as in Remark 4.1.5, we expect that reordering Gi w.r.t. the negative
degree reverse lexicographical ordering on Fi−1 before computing Gi+1 is
generally the best choice.

4.3 New Algorithms

Throughout this section, let G := {f1, . . . , fr} ⊂ F0 := Rs be a Gröbner
basis w.r.t. some monomial ordering> and let� be the monomial ordering on
F1 := Rr induced by > and G. Furthermore, let L be the minimal generating
set of the monomial submodule L�(Syz(G)) ⊂ F1. We simply write ψ for
the map ψG : F1 → F0 defined by ψG(ei) := fi as in Definition 4.1.3.

By Remark 4.2.6, there is a one-to-one correspondence between the min-
imal generators of the monomial ideals Mi and the elements of L. Instead

66 Chapter 4: New Algorithms to Compute Syzygies

of processing S-pairs, we can therefore directly start with the minimal gen-
erating set of leading syzygy terms. This is equivalent to applying the chain
criterion for syzygies to the set of all S-pairs, cf. [19, Lemma 2.5.10].

The algorithmic idea is that each leading syzygy term s ∈ L gives rise
to a pair of indices (i, j) with s = mji ei, which, through a standard repre-
sentation of the corresponding S-vector S(fi, fj), gives rise to a syzygy s̄ of
G with LT�(s̄) = s. Note that both the pair of indices and the standard
representation obtained thereof are in general not unique.

This motivates the following definition.

Definition 4.3.1. Let s ∈ L�(Syz(G)) ⊂ F1 be a leading syzygy term. We
call s̄ ∈ F1 a lifting of s w.r.t. G and � if the following conditions hold:

1. LT�(s̄) = s, and

2. s̄ ∈ Syz(G).

If we know how to compute such a lifting, then we can use Algorithm 4.3
to obtain a generating set S of the syzygy module. Since L�(S) is equal to
L�(Syz(G)), this set is even a Gröbner basis of Syz(G) w.r.t. �. From the
computational point of view, Algorithm 4.1 can be regarded as the special
case of Algorithm 4.3 where the liftings are computed by the usual reduction.
This can be reformulated as in Algorithm 4.4.

Algorithm 4.3 SyzLift
Input: A Gröbner basis G ⊂ F0 w.r.t. > and an algorithm Lift to compute,

for a leading syzygy term s ∈ L�(Syz(G)), a lifting w.r.t. G and �
Output: A Gröbner basis of Syz(G) ⊂ F1 w.r.t. �

1: L := LeadSyz(G)
2: S := ∅
3: for s ∈ L do
4: s̄ := Lift(s)
5: S := S ∪ {s̄}
6: return S

Let us now discuss algorithms for lifting leading syzygy terms in detail.
LiftReduce (Algorithm 4.4) computes a lifting of a given leading syzygy
term s ∈ L�(Syz(G)) via multivariate division of the polynomial g := ψ(s) ∈
〈G〉 ⊂ F0 by the elements of G. This is computationally the same as the
division of h w.r.t. G in the while-loop of SyzSchreyer (Algorithm 4.1). At
each step, the leading term of g is reduced, and this process finally reaches
g = 0 since G is a Gröbner basis.

Let g1, . . . , gk ∈ F0 be the sequence of values which g takes when the al-
gorithm LiftReduce is applied to a leading syzygy term s ∈ L�(Syz(G)).

4.3. New Algorithms 67

Algorithm 4.4 LiftReduce

Input: AGröbner basisG = {f1, . . . , fr} ⊂ F0 w.r.t.> and a leading syzygy
term s ∈ L�(Syz(G)) ⊂ F1

Output: A lifting s̄ ∈ Syz(G) ⊂ F1 of s w.r.t. G and �

1: g := ψ(s)
2: s̄ := s
3: while g 6= 0 do
4: t := LT(g)
5: choose a term m ei ∈ F1 with mLT(fi) = t and s � m ei
6: g := g −mfi
7: s̄ := s̄−m ei
8: return s̄

Since we have gk = 0, every single term occurring in this sequence is eventu-
ally cancelled at one of the reduction steps in line 6, but only the processing of
the leading terms LT(g1), . . . ,LT(gk) contributes to the syzygy s̄ ∈ Syz(G).
In particular, those terms which are not divisible by one of the leading mono-
mials LM(fi), i = 1, . . . , r, do not contribute to s̄ and can therefore be left
out. We use the following terminology to refer to these terms.

Definition 4.3.2. Let S ⊂ F0 be a set of vectors and let t ∈ F0 be a term.
Then t is called a lower order term w.r.t. S if

LM(f) - t for all f ∈ S \ {0} .

For an element g ∈ F0, we define LOT(g|S) to be the sum of those terms
occuring in g which are of lower order w.r.t. S.

Furthermore, instead of reducing the leading term of g at a given step, we
may choose any term of g which is not of lower order. Taking the above ob-
servations into account, we get the algorithm LiftHybrid (Algorithm 4.5).
Note that the lower order terms which are left out at the intermediate steps
sum up to zero.

We can even go further and consider the set T of terms in g rather than
the polynomial g itself. In other words, we do not need to sort the terms in g
and we do not need to carry out the cancellations of terms which may occur
in line 6 of LiftHybrid. Then each term in T can be reduced independently
as in LiftTree (Algorithm 4.6). This yields a tree structure by the recursive
calls of LiftSubtree (Algorithm 4.7) for each term in T .

The algorithm applied at the root node of this tree, LiftTree, slightly
differs from the algorithm applied at the other nodes, LiftSubtree. In
LiftTree, the leading term of ψ(s) is included in T , whereas at the other
nodes, this term has been cancelled by the reduction in the previous step
and is therefore left out in LiftSubtree. Because of this difference, we

68 Chapter 4: New Algorithms to Compute Syzygies

Algorithm 4.5 LiftHybrid

Input: AGröbner basisG = {f1, . . . , fr} ⊂ F0 w.r.t.> and a leading syzygy
term s ∈ L�(Syz(G)) ⊂ F1

Output: A lifting s̄ ∈ Syz(G) ⊂ F1 of s w.r.t. G and �

1: g := ψ(s)− LOT(ψ(s)|G)
2: s̄ := s
3: while g 6= 0 do
4: choose a term t of g
5: choose a term m ei ∈ F1 with mLT(fi) = t and s � m ei
6: g := g − (mfi − LOT(mfi|G))
7: s̄ := s̄−m ei
8: return s̄

need the following definition to give a proper description of the output of
LiftSubtree.

Definition 4.3.3. Let s ∈ F1 be a term. We call ŝ ∈ F1 a subtree lifting of
s w.r.t. G and � if the following conditions hold:

1. LT�(ŝ) = s, and

2. all terms in tail(ψ(ŝ)) ∈ F0 are lower order terms w.r.t. G and �.

Algorithm 4.6 LiftTree

Input: AGröbner basisG = {f1, . . . , fr} ⊂ F0 w.r.t.> and a leading syzygy
term s ∈ L�(Syz(G)) ⊂ F1

Output: A lifting s̄ ∈ Syz(G) ⊂ F1 of s w.r.t. G and �

1: g := ψ(s)
2: T := set of terms in (g − LOT(g|G))
3: s̄ := s
4: for all t ∈ T do
5: choose a term m ei ∈ F1 with mLT(fi) = t and s � m ei
6: s̄ := s̄− LiftSubtree(m ei)

7: return s̄

LiftTree terminates when T = ∅ is reached in every branch of the tree.
One can easily check that this algorithm returns indeed a lifting of the input
by comparing it to LiftHybrid.

Remark 4.3.4. Let s ∈ L�(Syz(G)) ⊂ F1 be a leading syzygy term. If s̄ is a
lifting of s w.r.t. G and �, then s̄ is a subtree lifting of s, but the converse
statement is not true in general.

4.4. Example 69

Algorithm 4.7 LiftSubtree

Input: A Gröbner basis G = {f1, . . . , fr} ⊂ F0 w.r.t. > and a term s ∈ F1

Output: A subtree lifting ŝ ∈ F1 of s w.r.t. G and �

1: g := ψ(s)− LT(ψ(s))
2: T := set of terms in (g − LOT(g|G))
3: ŝ := s
4: for all t ∈ T do
5: choose a term m ei ∈ F1 with mLT(fi) = t
6: ŝ := ŝ− LiftSubtree(m ei)

7: return ŝ

For any term s′ ∈ F1, a proper lifting of s′ (w.r.t. G and �) exists if and
only if s′ is leading syzygy term, that is, an element of L�(Syz(G)). Hence
we cannot expect to find proper liftings of the terms m ei ∈ F1 to which
LiftSubtree is applied in Algorithms 4.6 and 4.7.

Remark 4.3.5. The condition s � m ei in line 5 of Algorithm 4.6 is always
satisfied at the analogous step in Algorithm 4.7 and thus does not need to
be checked there.

Remark 4.3.6. Let m1 ei1 , . . . ,mk eik ∈ F1 be the sequence of terms chosen
in line 5 of LiftReduce when this algorithm is applied to a leading syzygy
term s ∈ L�(Syz(G)). Then we have

s � m1 ei1 � . . . � mk eik .

However, the terms m ei ∈ F1 chosen in LiftHybrid, LiftTree, and
LiftSubtree satisfy s � m ei, but they are not necessarily ordered.

LiftTree has two main advantages in comparison to LiftHybrid.
First, no reductions as in line 6 of LiftHybrid occur. Second, the re-
sults of LiftSubtree can be cached and reused. We will see an example
for this in the next section.

4.4 Example

In this section, we give an example in order to illustrate the differences
between the three approaches which we presented in the previous section.
The example has been chosen in such a way that it shows the benefits,
but also possible drawbacks of the new methods. However, note that a
considerable speed-up can only be expected for large examples.

Throughout this section, let F0 := R := Q[x, y, z] be endowed with the
lexicographical ordering, denoted by >. We compute the first syzygy module

70 Chapter 4: New Algorithms to Compute Syzygies

of G := (f1, f2, f3) ⊂ R with

f1 := xy + x+ y2 + 2y − 1 ,

f2 := xz − x− y − z − 2 ,

f3 := yz + 1 .

Note that G is a Gröbner basis w.r.t. >. Let � be the Schreyer ordering on
F1 := R3 induced by > and G. We can use Algorithm 4.2 to check that a
minimal generating set of the leading syzygy module of G w.r.t. � is given
by

L = {y · e2, x · e3} ⊂ F1 .

Our goal is to extend these leading syzygy terms to generators of the
syzygy module. Let us first consider the usual LiftReduce approach (Al-
gorithm 4.4). Flow charts of LiftReduce applied to the two leading syzygy
terms above are shown in Figure 4.1.

They start with the input term on the syzygy level and its image g under
ψ : F1 → F0, ei 7→ fi, on the level of F0. At each step, the leading term of
g is reduced w.r.t. G while s̄1 and s̄2 keep track of these reductions. Both
charts have the shape of a chain because every step depends on the previous
one. We could choose a different reduction at the first step of the diagram
on the right hand side, but there is no other choice at the other steps. The
process ends when g = 0 is reached, and we finally get the syzygies

s̄1 = (−z + 1) · e1 +(y + 1) · e2 +(y + 3) · e3 ∈ Syz(G) and
s̄2 = (−z) · e1 + e2 +(x+ y + 2) · e3 ∈ Syz(G)

as liftings of the leading syzygy terms y · e2 and x · e3, respectively.
The main innovation of the algorithm LiftHybrid (Algorithm 4.5) is to

leave out the lower order terms in g. This in turn allows us to choose, at each
step, any of the remaining terms for reduction, in contrast to LiftReduce.
Hence the terms in g do not have to be ordered at all. If we always choose,
however, to reduce the leading term as in LiftReduce, then the flow charts
of LiftHybrid applied to y ·e2 and x ·e3, respectively, can be obtained from
those for LiftReduce by leaving out the underlined lower order terms, see
Figure 4.1.

In LiftTree (Algorithm 4.6), the polynomial g is replaced by a set of
terms denoted by T and each term is treated independently. The corre-
sponding flow charts in Figure 4.2 and Figure 4.3 thus have a tree struc-
ture where each node represents one of the recursive calls of LiftTree
and LiftSubtree. In Figure 4.3, the result of LiftTree(y · e2) can be
read off as the sum of all the terms s̄1. Similarly, LiftTree(x · e3) yields
(−z) · e1 + e2 +(x+ y + 2) · e3.

Again, the underlined lower order terms are left out. The process ends
when T = ∅ is reached in every branch. It is worth noting that although each

4.4. Example 71

Figure 4.1: LiftReduce/LiftHybrid applied to
y · e2 and x · e3

s̄1 := y · e2
g := xyz − xy − y2

::::
− yz − 2y

::::

s̄1 := s̄1 − z · e1
g := −xy − xz − y2z − y2

::::
− 3yz − 2y + z

::::::::

s̄1 := s̄1 + e1

g := −xz + x
:::
− y2z − 3yz + z − 1

:::::::

s̄1 := s̄1 + e2

g := −y2z − 3yz − y − 3
:::::::

s̄1 := s̄1 + y · e3
g := −3yz − 3

:::

s̄1 := s̄1 + 3 · e3
g := 0

s̄2 := x · e3
g := xyz + x

:::

s̄2 := s̄2 − z · e1
g := −xz + x

:::
− y2z − 2yz + z

:::

s̄2 := s̄2 + e2

g := −y2z − 2yz − y − 2
:::::::

s̄2 := s̄2 + y · e3
g := −2yz − 2

:::

s̄2 := s̄2 + 2 · e3
g := 0

step resembles a reduction step, no reductions as in the first two approaches
occur. The main advantage of the LiftTree approach is that intermediate
results can be cached and reused. In Figure 4.3, the term xyz occurs as an
element of T , but the whole subtree which corresponds to this element has
already been computed when LiftTree was applied to y · e2 in Figure 4.2
and we can therefore just plug in the cached result.

A possible drawback of this method can be observed in Figure 4.2: Two
steps are necessary to compute the term (3·e3) in the result whereas LiftRe-
duce and LiftHybrid need only one step for this. On the other hand, we
could also cache the result of LiftSubtree(e3) and reuse it for the compu-
tation of LiftSubtree(2 e3), of course.

72 Chapter 4: New Algorithms to Compute Syzygies

Figure 4.2: LiftTree applied to y · e2

s̄1 := y · e2
T := {xyz,−xy,−y2

:::
,−yz,−2y

:::
}

s̄1 := −z · e1
T := {−xz,−y2z,−2yz,+z

::
}

s̄1 := e2

T := {−x,−y,−z,−2
::::::::::::::

}
s̄1 := y · e3
T := {+y

::
}

s̄1 := 2 · e3
T := {+2

::
}

s̄1 := e1

T := {x, y2, 2y,−1
:::::::::::

}
s̄1 := e3

T := {+1
::
}

Figure 4.3: LiftTree applied to x · e3

s̄2 := x · e3
T := {xyz,+x

::
}

cached:
s̄2 := −z · e1 + e2 +y · e3 +2 · e3
T := ∅

Part III

Real Singularities

73

Chapter 5

Algorithmic Classification of
the Simple Real Singularities

We present algorithms to classify isolated hypersurface singularities over the
real numbers according to the classification by V.I. Arnold [4]. This chapter
covers the splitting lemma and the simple singularities. We plan to continue
this research project and to provide algorithms for the classification of the
unimodal real singularities up to corank 2 as well. Chapter 6 is the first
important step in this direction. All algorithms are implemented in the
Singular library realclassify.lib [48].

5.1 Introduction

Arnold et al. [4] present classification theorems for singularities over the
complex numbers up to modality 2 and for singularities over the real numbers
up to modality 1, including complete sets of normal forms. For the complex
case, they also give an algorithm how the type of a given singularity can
be computed, called the “determinator of singularities” (cf. [4, Chapter 16]),
but this question is left open for the real case. The goal of this chapter is to
fill this gap for the simple singularities. For this purpose, we present both,
algorithms and an implementation thereof, for the classification of the simple
hypersurface singularities over the real numbers w.r.t. right equivalence.

We consider real functions with a critical point at the origin and critical
value 0, i.e. functions in m2, where m denotes the ideal of function germs
vanishing at the origin. Two function germs f, g ∈ m2 ⊂ R[[x1, . . . , xn]] are
considered as right equivalent, denoted by f r∼ g, if there exists an R-algebra
automorphism φ of R[[x1, . . . , xn]] such that φ(f) = g.

We have implemented all the algorithms presented here in the computer
algebra system Singular [39]. The implementation is freely available as a
Singular library called realclassify.lib [48] which relies on Singular’s
classify.lib [47] to determine, for a given polynomial, the type in Arnold’s

75

76 Chapter 5: Algorithmic Classification of the Simple Real Singularities

classification over the complex numbers. The methods used in classify.lib
will not be discussed in this chapter. For more information in this regard,
[27] can be studied.

In Section 5.2, we introduce basic notions and methods which are fre-
quently used for the algorithmic classification in the subsequent sections.
We first give an overview of the different notions of equivalence in singular-
ity theory and how they are related in Subsection 5.2.1. Thereafter we recall
some basic results on the Milnor number and the determinacy in Subsec-
tions 5.2.2 and 5.2.3, and we also recall how these invariants can be com-
puted. As a further prerequisite, we show that the homogeneous parts of
lowest degree of two right equivalent functions factorize in the same way
over R (Section 5.2.4, Proposition 5.2.8). We also show that in some cases,
this factorization can even be carried out over Q which is important for the
algorithmic aspect (Lemma 5.2.9).

Using the Splitting Lemma (Theorem 5.3.2), any function germ f over the
real numbers with an isolated singularity at the origin can be written, after
choosing a suitable coordinate system, as the sum of two functions of which
the variables are disjoint. One of the functions, called the nondegenerate
part of f , is a nondegenerate quadratic form and the other function, called
the residual part of f , is an element of m3. The number of variables in the
residual part is equal to the corank of f , denoted by corank(f). In this
chapter, we only consider germs with corank 0, 1 and 2. A version of the
Splitting Lemma for singularities over R and a corresponding algorithm are
discussed in Section 5.3.

In [4], the real singularities of modality 0 and 1 are classified up to stable
equivalence into main types which split up into more subtypes depending on
the sign of certain terms. Two functions are stably equivalent if they are right
equivalent after the direct addition of nondegenerate quadratic forms. Hence
after applying the Splitting Lemma, we only need to consider the residual
part in order to compute the correct subtype. It can be easily seen that the
subtypes are complex equivalent to a complex singularity type of the same
name as its corresponding real main singularity type (see Table 5.1). In fact
there is a bijection between the complex types of modality 0 and 1 and the
real main types. Thus, if we can determine the complex type of a function
germ, we only need to determine the correct subtype of the corresponding
real main type. The classification of the residual part is given in Section 5.4,
together with explicit algorithms for each singularity type.

5.2 Prerequisites

5.2.1 Equivalence

There are different notions for the equivalence of two power series in singu-
larity theory:

5.2. Prerequisites 77

Definition 5.2.1. Let K be either R or C and let f, g ∈ K[[x1, . . . , xn]] be
two power series.

1. f and g are called right equivalent, denoted by f r∼ g, if there exists a
K-algebra autmorphism φ of K[[x1, . . . , xn]] such that

φ(f) = g .

2. f and g are called contact equivalent, denoted by f
c∼ g, if there

exist a K-algebra autmorphism φ of K[[x1, . . . , xn]] and a unit u ∈
K[[x1, . . . , xn]]∗ such that

φ(f) = u · g .

3. f and g are called stably equivalent, denoted by f s∼ g, if there exist in-
dices k, l ∈ {1, . . . , n} such that f ∈ K[[x1, . . . , xk]], g ∈ K[[x1, . . . , xl]],
and the two power series become right equivalent after the addition of
nondegenerate quadratic forms in the additional variables, i.e.

f(x1, . . . , xk)± x2
k+1 ± . . .± x2

n
r∼ g(x1, . . . , xl) ± x2

l+1 ± . . .± x2
n .

Remark 5.2.2. Note that right equivalence implies both contact and stable
equivalence, but the converse statements are not true in general. For in-
stance, x2

1 + x2
2 and −x2

1 − x2
2 are contact, but not right equivalent over

R.

This chapter and the Singular library realclassify.lib both deal
with the classification of the simple singularities w.r.t. right equivalence over
K = R. We first use the Splitting Lemma and Algorithm 5.2 from Section 5.3
to get rid of the nondegenerate part. We can then apply the classification by
Arnold et al. [4] w.r.t. stable equivalence to the residual part in Section 5.4.

From the point of view of real algebraic geometry, a classification w.r.t.
contact rather than right equivalence might be more interesting because it
better reflects the local real geometry of a singularity. In the example from
the remark above, x2

1 + x2
2 and −x2

1 − x2
2 both define a solitary point in the

plane, as opposed to the two intersecting lines defined by−x2
1+x2

2 and x2
1−x2

2.
But note that a classification w.r.t. right equivalence is only finer than one
based on contact equivalence. Hence the shape of the local real geometry of
a singularity can always be read off from its right equivalence class, given
by its stable equivalence class together with the inertia index introduced in
Theorem 5.3.2; the Singular library realclassify.lib indeed also serves
this purpose. For the simple singularities, it is moreover easy to see which
of the right equivalence classes are contact equivalent.

78 Chapter 5: Algorithmic Classification of the Simple Real Singularities

5.2.2 The Milnor Number

We briefly recall the following well-known definition:

Definition 5.2.3. For f ∈ R[[x1, . . . , xn]] and p ∈ AnR, the Milnor number
of f at p is defined as

µ(f, p) := dimR

(
R[[x1 − p1, . . . , xn − pn]]

/〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉)
∈ N∪{∞} .

If p is the origin, we simply write µ(f) instead of µ(f, p).

The Milnor number is known to be finite at isolated singularities (cf.
[18, Chapter I, Lemma 2.3]) and to be invariant under right equivalence
(cf. Lemma 2.10 ibid.). It is thus an important tool for the classification of
isolated singularities. We refer to [18] for more properties of this invariant.

There is a well-known algorithm for the computation of the Milnor num-
ber which is implemented in Singular, see [19, pp. 526–528].

5.2.3 The Determinacy

In general, the singularities we deal with in this chapter are defined by power
series, but algorithmically, we want to work with polynomials. It is thus
important for our algorithmic approach that any power series defining an
isolated singularity is right equivalent to a polynomial which can be obtained
from it by leaving out terms of sufficiently high order.

Definition 5.2.4. Let f ∈ R[[x1, . . . , xn]] be a power series.

1. Let f =
∑∞

j=0 fj be the decomposition of f into homogeneous parts fj
of degree j. For k ∈ N, we define the k-jet of f as

jet(f, k) :=

k∑
i=0

fi .

In other words, the k-jet of f can be obtained from f by leaving out
all terms of order higher than k.

2. f is called k-determined if

f
r∼ jet(f, k) + g for all g ∈ mk+1 .

The determinacy is, just as the Milnor number, both invariant under
right equivalence and finite for isolated singularities. We cite the following
statement (cf. [18, Chapter I, Supplement to Theorem 2.23]) due to its im-
portance for the algorithmic approach and refer to [18] for further results
regarding the determinacy:

5.2. Prerequisites 79

Proposition 5.2.5. Let f ∈ m ⊂ R[[x1, . . . , xn]]. If

mk+1 ⊂ m2

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
R[[x1,...,xn]]

holds, then f is k-determined.

As a consequence of this, any power series f which has an isolated sin-
gularity at the origin is (µ(f) + 1)-determined (cf. [18, Chapter I, Corol-
lary 2.24]). But we can often compute a much better upper bound for the
determinacy by using the above statement as in Algorithm 5.1.

Algorithm 5.1 Determinacy

Input: f ∈ Q[x1, . . . , xn] with an isolated singularity at the origin
Output: an upper bound for the determinacy of f
1: k := Milnor(f) + 1

2: J :=
(
∂f
∂x1

, . . . , ∂f∂xn

)
⊂ Q[x1, . . . , xn]

3: compute a standard basis G of (m2 J) w.r.t. a local monomial ordering <
4: for (l = 1, . . . , k − 1) do
5: if (NF<(ml+1, G) = 0) then
6: k := l
7: break
8: return k

Remark 5.2.6. In Algorithm 5.1, the for-loop computes the minimal k ∈ N
such that the condition in Proposition 5.2.5 holds. This number is equal to
the degree of the so-called highest corner of 〈G〉 = (m2 J) (cf. [19, Corol-
lary A.9.7]) and can thus also be computed by combinatorial means with the
Singular command highcorner() which is often much faster.

It is worth to note that both the Milnor number and the determinacy
of an arbitrary power series f ∈ R[[x1, . . . , xn]] do not change if we regard
f as an element of C[[x1, . . . , xn]]. The same holds for the output of the
corresponding algorithms presented here.

5.2.4 Results Regarding the Factorization of Homogeneous
Polynomials over R and Q

Definition 5.2.7. Let φ be an R-algebra automorphism of R[[x1, . . . , xn]].
For j ≥ 0 we define the j-jet of φ, denoted by φj , to be the automorphism
given by

φj(xi) := jet(φ(xi), j + 1) for all i = 1, . . . , n .

The next result is in many cases a starting point for the algorithmic
classification of the residual part, see Section 5.4. Given f and g with f r∼ g,
it can be used to determine φ0 for some automorphism φ such that φ(f) = g.

80 Chapter 5: Algorithmic Classification of the Simple Real Singularities

Proposition 5.2.8. Let f, g ∈ R[[x1, . . . , xn]] be two power series with f r∼ g
and k := ord(f) > 1. Let φ be an R-algebra automorphism of R[[x1, . . . , xn]]
such that φ(f) = g.

If jet(f, k) factorizes as

jet(f, k) = fs11 · · · f
st
t

in R[x1, . . . , xn], then jet(g, k) factorizes as

jet(g, k) = φ0(f1)s1 · · ·φ0(ft)
st .

Proof. By assumption we have that f = fs11 · · · f
st
t + f ′, where fs11 · · · f

st
t is

homogeneous of degree k and the order of f ′ is greater than k. We denote
the higher order parts of φ by φ∗ := φ− φ0. Since φ is a homomorphism, it
follows that

φ(f) = φ(fs11 · · · f
st
t) + φ(f ′)

= φ0(fs11 · · · f
st
t) + φ∗(fs11 · · · f

st
t) + φ(f ′)

where φ0(fs11 · · · f
st
t) is homogeneous of degree k and both φ∗(fs11 · · · f

st
t) and

φ(f ′) are of order higher than k. Hence

jet(g, k) = jet(φ(f), k) = φ0(f s11 · · · f
st
t) = φ0(f1)s1 · · ·φ0(ft)

st .

Since we do not want to work with rounding errors nor field extensions
in the implementation of the proposed algorithms, the above result would
not be of much help for this purpose without the following result.

Lemma 5.2.9. If f ∈ Q[x, y] is homogeneous and factorizes as

(i) gd1 or (ii) g1g
d
2 ,

where g1, g2 ∈ R[x, y] are polynomials of degree 1 and d > 1, then f factorizes
as

(i) ag′d1 or (ii) ag′1g
′d
2 ,

respectively, where g′1, g
′
2 ∈ Q[x, y] are polynomials of degree 1 and a ∈ Q.

Proof. (i) Let f = (a1x + a2y)d, a1, a2 ∈ R. Without loss of generality,
suppose a1 6= 0. Then f = ad1(x + a2

a1
y)d. Since the coefficient of xd in

f ∈ Q[x, y] is ad1, we have ad1 ∈ Q and therefore (x + a2
a1
y)d ∈ Q[x, y] which,

by dehomogenization, leads to (x+ a2
a1

)d ∈ Q[x]. Since Q is a perfect field it
follows that a2

a1
∈ Q. Thus f = ag′d1 , where a := ad1 ∈ Q and g′1 = x+ a2

a1
y ∈

Q[x, y].
(ii) Let f = (a1x+ a2y)(a3x+ a4y)d, a1, . . . , a4 ∈ R. Suppose a1, a3 6= 0.

For the cases a1, a4 6= 0, a2, a3 6= 0 and a2, a4 6= 0 the proofs are similar. We

5.3. The Splitting Lemma 81

have a1a
d
3 ∈ Q analogously to part (i). Hence (x+ a2

a1
y)(x+ a4

a3
y)d ∈ Q[x, y]

which in turn implies (x+ a2
a1

)(x+ a4
a3

)d ∈ Q[x]. Since Q is a perfect field it
follows that the roots of this polynomial are rational. Therefore f = ag′1g

′d
2

with a := a1a
d
3 ∈ Q, g′1 := (x + a2

a1
y) ∈ Q[x, y], and g′2 := (x + a4

a3
y) ∈

Q[x, y].

5.3 The Splitting Lemma

Definition 5.3.1. For f ∈ R[[x1, . . . , xn]], we define the corank of f , denoted
by corank(f), as the corank of the Hessian matrix H(f) at 0, i.e.

corank(f) := corank(H(f)(0)) .

The following well-known theorem, called the Splitting Lemma, allows
us to reduce the classification to germs of full corank or, algorithmically, to
a polynomial contained in m3 ∩R[x1, . . . , xc] for a given input polynomial of
corank c. We present a version for singularities over the real numbers, taking
into account the signs of the squares.

Theorem 5.3.2. If f ∈ m2 ⊂ R[[x1, . . . , xn]] has an isolated singularity and
if its corank is c, then

f
r∼ g −

c+λ∑
i=c+1

x2
i +

n∑
i=c+λ+1

x2
i

with g ∈ m3 ∩R[[x1, . . . , xc]]. g is called the residual part of f and λ is
called the inertia index of f . Both λ and the right equivalence class of g are
uniquely determined by f .

The following proof is based upon the proofs of the Theorems 2.46 and
2.47 in Chapter I of [18].

Proof. The corank of the Hessian matrix of f at 0 is c, so by the theory of
quadratic forms over R there is a transformation matrix T such that

T t · 1
2H(f)(0) · T = diag(0, . . . , 0,−1, . . . ,−1, 1, . . . , 1) .

Therefore the linear coordinate change (x1, . . . , xn) 7→ (x1, . . . , xn) ·T t trans-
forms the 2-jet of f into

(
−
∑c+λ

i=c+1 x
2
i +

∑n
i=c+λ+1 x

2
i

)
where λ is the inertia

index of f . Applied to f , this transformation leads to

f (3)(x1, . . . , xn) := f((x1, . . . , xn) · T t)

= g3 −
c+λ∑
i=c+1

x2
i +

n∑
i=c+λ+1

x2
i +

n∑
i=c+1

xi · h(3)
i

82 Chapter 5: Algorithmic Classification of the Simple Real Singularities

with g3 ∈ m3 ∩R[[x1, . . . , xc]] and h
(3)
i ∈ m2. The coordinate change φ(3)

defined by

φ(3)(xi) :=

xi, i = 1, . . . , c,

xi + 1
2h

(3)
i , i = c+ 1, . . . , c+ λ,

xi − 1
2h

(3)
i , i = c+ λ+ 1, . . . , n.

yields

f (4)(x1, . . . , xn) := f (3)(φ(3)(x1, . . . , xn))

= g3 + g4 −
c+λ∑
i=c+1

x2
i +

n∑
i=c+λ+1

x2
i +

n∑
i=c+1

xi · h(4)
i .

with g4 ∈ m4 ∩R[[x1, . . . , xc]] and h
(4)
i ∈ m3. Continuing in the same manner,

the last sum will be of arbitrarily high order. It can be eventually left out
because f is finitely determined as an isolated singularity.

Since this proof is constructive, we can immediately derive Algorithm 5.2
from it.

5.4 The Real Classification of the Residual Part
w.r.t. Stable Equivalence

Arnold et al. [4] present independent classifications of the simple singularities
over the complex and over the real numbers, using stable equivalence. We
refer to the equivalence classes of the complex classification as complex types.
In the classification over the real numbers, the simple singularities are divided
into main types which split up into one or more subtypes. These subtypes
differ from each other only in the sign of certain terms.

It is known that the modality does not decrease under complexification
[4, pp. 273-274]. So by applying the algorithms for the complex classification
to the real normal forms, it is easy to see that in modality 0, there is a one-
to-one correspondence between the complex types and the real main types.
The real classification can thus be seen as a refinement of the complex one.
The same holds true also in modality 1, but in both cases, this is not clear a
priori and can only be deduced from the independently derived complex and
real classifications. In fact, it is not known whether the modality is preserved
under complexification in general [4, pp. 273-274].

Both the real and complex normal forms of the simple singularities are
listed in Table 5.1. From here onwards we will work with stable equivalence,
cf. Definition 5.2.1(3). For all degenerate forms it is thus only necessary,
after applying the Splitting Lemma, to consider their residual parts, i.e.
germs in m3. Note that the right equivalence class of a real singularity is

5.4. The Real Classification of the Residual Part w.r.t. Stable Equiv. 83

Algorithm 5.2 Algorithm for the Splitting Lemma

Input: f ∈ m2 ⊂ Q[x1, . . . , xn] and k ∈ N such that f is k-determined
Output: the corank c of f , the inertia index λ of f , and a polynomial

g ∈ m3 ∩Q[x1, . . . , xc] such that

f
r∼ g −

c+λ∑
i=c+1

x2
i +

n∑
i=c+λ+1

x2
i

1: compute a transformation matrix T ∈ Rn×n such that

T t · 1
2H(f)(0) · T = diag(0, . . . , 0,−1, . . . ,−1, 1, . . . , 1) =: N

2: c := number of zeroes on the diagonal of N
3: λ := number of entries equal to −1 on the diagonal of N
4: f (3)(x1, . . . , xn) := f((x1, . . . , xn) · T t)
5: for (l = 3, . . . , k) do
6: write f (l) as

f (l) =
l∑

j=3

gj −
c+λ∑
i=c+1

x2
i +

n∑
i=c+λ+1

x2
i +

n∑
i=c+1

xi · h(l)
i

with gj ∈ mj ∩Q[x1, . . . , xc] and h
(l)
i ∈ ml−1

7: f (l+1) := φ(l)(f (l)) where φ(l) is defined by

φ(l)(xi) :=

xi, i = 1, . . . , c,

xi + 1
2h

(l)
i , i = c+ 1, . . . , c+ λ,

xi − 1
2h

(l)
i , i = c+ λ+ 1, . . . , n.

8: g :=
∑k

j=3 gj
9: return c, λ, g

given by its stable equivalence class together with its inertia index which can
be computed using Algorithm 5.2.

Using the Singular library classify.lib [47] for the complex classifi-
cation and the one-to-one correspondence between the real main singularity
types and the complex types, the algorithmic classification of a real germ
boils down to determining to which of the corresponding subtypes the germ
is equivalent. For the singularity types E7 and E8, there is nothing left to
do because each of these types has only one real subtype. The rest of the
cases is considered one by one in the following subsections.

Throughout the rest of this chapter, we write f for the given input poly-
nomial, g for its residual part which can be obtained by applying the Splitting
Lemma, and c for the corank of f . We also assume that f , and thus g, is a
polynomial over Q. With these notations, g is a polynomial in c variables.

84 Chapter 5: Algorithmic Classification of the Simple Real Singularities

Table 5.1: Real normal forms of singularities of modality 0

Complex Normal forms
Equivalences Values of k

normal form of real subtypes

Ak xk+1
+xk+1 (A+

k) A+
k

r∼ A−k k ≥ 1
−xk+1 (A−k) for even k

Dk x2y + yk−1
x2y + yk−1 (D+

k)
- k ≥ 4

x2y − yk−1 (D−k)

E6 x3 + y4
x3 + y4 (E+

6)
- -

x3 − y4 (E−6)

E7 x3 + xy3 x3 + xy3 - -

E8 x3 + y5 x3 + y5 - -

5.4.1 A1

If c = 0, then f is of complex type A1. The residual part in this case is g = 0,
even though Table 5.1 assigns the normal form x2 to this type for formal
reasons. As a consequence, all the real singularities of main type A1 are
stably equivalent and their right equivalence class is completely determined
by their inertia index λ.

5.4.2 Ak, k > 1

If c = 1, then the singularity is of complex type Ak for some k > 1. Over
the real numbers, this type splits up into the subtypes A+

k and A−k if k is
odd. Furthermore g is a univariate polynomial in this case, say g ∈ Q[x].
The value of k is given by the order of g minus 1 because ±xk+1 and g are
right equivalent and thus have the same order.

Note that if k is even, then A+
k

r∼ A−k and we have only one real subtype
which we denote by Ak. Let k be odd. Then the sign of the singularity
type is determined by the sign of the coefficient of xk+1. This follows since
Proposition 5.2.8 implies jet(g, k + 1) = ±(φ0(x))k+1 = ±(αx)k+1, where
φ(±xk+1) = g, α ∈ R, and the sign depends on the singularity type. Since
k+1 is even and α ∈ R, φ does not change the sign of the coefficient of xk+1.
We use Algorithm 5.3, after applying the Splitting Lemma in case c = 0 or
c = 1.

For the rest of the chapter, we turn our attention to singularities of
corank 2. In these cases 0 6= g ∈ m3 is a polynomial in two variables, say
g ∈ Q[x, y]. Using the Singular library classify.lib, we determine the
complex singularity type and thus the real main singularity type of g, or

5.4. The Real Classification of the Residual Part w.r.t. Stable Equiv. 85

Algorithm 5.3 Algorithm for the case Ak
Input: f ∈ Q[x1, . . . , xn] of complex singularity type Ak, the output poly-

nomial g after applying Algorithm 5.2, and the corank c of f
Output: the real singularity type of f , i.e. Ak, A+

k or A−k , k ∈ N
1: if c = 0 then
2: type := A1

3: if c = 1 then
4: k := ord(g)− 1
5: if k is even then
6: type := Ak
7: else
8: s := coefficient of xk+1 in g
9: if s > 0 then

10: type := A+
k

11: else
12: type := A−k
13: return type

equivalently f . The purpose of the remaining algorithms in this chapter
is to determine the correct real subtype of g, or equivalently f . We now
consider each complex type, or equivalently every real main type, separately.

5.4.3 D4

The normal form of the complex singularity type D4 is x2y+y3, which splits
up into x2y+y3 (D+

4) and x2y−y3 (D−4) in the real case. The two cases can
be distinguished by factorization; the details are carried out in Algorithm 5.4.
Since the determinacy of D4 is 3, it suffices to look at the 3-jet. The number
of factors of the 3-jet over R is an invariant of the real subtype which is 1 in
the case D+

4 and 3 for D−4 .
However, using the Singular command factorize in order to deter-

mine the number of factors is problematic because the factorization over R
differs from those over Q and C in some cases. As an alternative, we de-
homogenize the 3-jet and count the number of real roots of the resulting
univariate polynomial which is exactly the same as the number of factors of
the 3-jet over R.

If we want to dehomogenize the 3-jet via x 7→ x, y 7→ 1 without reducing
its degree, we first have to make sure that the coefficient of x3 is non-zero.
It is easy to check that this is achieved by lines 2 to 13 of Algorithm 5.4. For
the implementation in Singular, we used the library rootsur.lib [56] to
count the number of real roots of a univariate polynomial.

Remark 5.4.1. Geometrically, the dehomogenization in Algorithm 5.4 corre-

86 Chapter 5: Algorithmic Classification of the Simple Real Singularities

Algorithm 5.4 Algorithm for the case D4

Input: g ∈ m3 ⊂ Q[x, y] of complex singularity type D4

Output: the real singularity type of g, i.e. D+
4 or D−4

1: h := jet(g, 3)
2: s1 := coefficient of x3 in h
3: s2 := coefficient of y3 in h
4: if (s1 = 0) then
5: if (s2 6= 0) then
6: swap the variables x and y in h
7: else
8: t1 := coefficient of x2y in h
9: t2 := coefficient of xy2 in h

10: if (t1 + t2 6= 0) then
11: apply x 7→ x, y 7→ x+ y to h
12: else
13: apply x 7→ x, y 7→ 2x+ y to h
14: apply x 7→ x, y 7→ 1 to h
15: n := number of real roots of h
16: if (n < 3) then
17: return D+

4

18: else
19: return D−4

sponds to blowing the 3-jet up at the origin plus choosing a chart. Since the
3-jet is homogeneous, blowing-up always yields three lines in the complex
case. In the real case, however, we get either one or three lines depending on
their position w.r.t. the real subspace in the complex picture. All the lines
lie in the chosen chart because the coefficient of x3 is non-zero.

5.4.4 Dk, k > 4

For the cases Dk with k > 4, the complex normal form is x2y + yk−1. It
splits up into x2y+yk−1 (D+

k) and x
2y−yk−1 (D−k) for each k over the reals.

We use the following two results from [36, p. 35] to distinguish between the
two cases:

Lemma 5.4.2. A singularity of type D+
k or D−k is (k − 1)-determined.

Lemma 5.4.3. Let j ≥ 4. Then there exists a polynomial R ∈ mj+1 ⊂
R[[x, y]] such that

x2y + a0x
j + a1x

j−1y + . . .+ ajy
j r∼ x2y + ajy

j +R, a0, . . . , aj ∈ R,

5.4. The Real Classification of the Residual Part w.r.t. Stable Equiv. 87

using the R-algebra automorphism

x 7→ x+ p1, where p1 = −1

2
(a1x

j−2 + . . .+ aj−1y
j−2) ,

y 7→ y + p2, where p2 = −a0x
j−2 .

By Lemma 5.4.2, the determinacy of a singularity of main type Dk is
k−1. Therefore we only need to consider the (k−1)-jet of g in this case. By
Proposition 5.2.8, the 3-jet of g factorizes as jet(g, 3) = g2

1g2 over R, where
g1 and g2 are homogeneous polynomials of degree 1. Note that Lemma 5.2.9
ensures that this factorization can be carried out even over Q. We can thus
transform g into a polynomial of the form

x2y + terms of degree higher than 3

by applying the automorphism defined by g1 7→ x, g2 7→ y to g.
We now systematically consider the terms of each degree 3 < j < k. By

applying the transformations in Lemma 5.4.3, for each j, the only term of
total degree j which possibly remains is ajyj . This term vanishes for j < k−1
and it does not vanish for j = k− 1, otherwise g is not of complex type Dk.
Thus, after applying these transformations, we can write g as g = x2y+αyk−1

with α 6= 0. Clearly if α > 0 then x2y + αyk−1 r∼ x2y + yk−1 and if α < 0
then x2y + αyk−1 r∼ x2y − yk−1.

Algorithm 5.5 Algorithm for the case Dk, k > 4

Input: g ∈ m3 ⊂ Q[x, y] of complex singularity type Dk, k ∈ N, k > 4
Output: the real singularity type of g, i.e. D+

k or D−k
1: k := µ(g)
2: h := jet(g, k − 1)
3: factorize jet(h, 3) as h2

1h2, where h1 and h2 are linear
4: apply h1 7→ x, h2 7→ y to h
5: for (j = 4, . . . , k − 1) do
6: if (jet(h, j)− x2y 6= 0) then
7: write jet(h, j)−x2y as a0x

j+a1x
j−1y+ · · ·+ajyj , a0, . . . aj ∈ Q

8: apply x 7→ x− 1
2(a1x

j−2 + · · ·+ aj−1y
j−2), y 7→ y − a0x

j−2 to h
9: h := jet(h, k − 1)

10: write h as h = x2y + αyk−1, 0 6= α ∈ Q
11: if (α > 0) then
12: return D+

k

13: else
14: return D−k

88 Chapter 5: Algorithmic Classification of the Simple Real Singularities

5.4.5 E6

In this case, whose complex normal form is x3 + y4, we have that either
g
r∼ x3 + y4 (E+

6) or g r∼ x3 − y4 (E−6). Therefore there exists an R-algebra
automorphism φ of R[[x, y]] such that φ(g) = (φ(x))3 + (φ(y))4 or such that
φ(g) = (φ(x))3−(φ(y))4. Since the coefficients of x3 and y3 in g cannot both
be zero, we can ensure that the coefficient of x3 is non-zero by swapping the
variables if necessary. Now, by Proposition 5.2.8 and Lemma 5.2.9, the 3-jet
of g factorizes as c(g1)3 with c ∈ Q and g1 = b0x + b1y ∈ Q[x, y], b0 6= 0.
By applying x 7→ x−b1y

b0
, y 7→ y to g, we can thus assume without loss

of generality that φ0 is of the form φ0(x) = c′x, φ0(y) = d0x + d1y with
c′, d0, d1 ∈ R. Since φ is an automorphism, we have that d1 6= 0. Hence

(φ(y))4 = d4
1y

4

+ (terms of degree 4 and higher, not of the form αy4, α ∈ R) .

If we can show that (φ(x))3 does not contain a term of the form αy4, α ∈ R,
then we can determine whether g is of type E−6 or E+

6 by considering the
sign of the coefficient of the monomial y4. A simple calculation yields

jet((φ(x))3, 4)− jet((φ(x))3, 3) = 3(φ0(x)2)(φ1(x)− φ0(x))

= 3(c′x)2(φ1(x)− φ0(x)) ,

which means that (φ(x))3 does not have any term of the form αy4, α ∈ R.

Algorithm 5.6 Algorithm for the case E6

Input: g ∈ m3 ⊂ Q[x, y] of complex singularity type E6

Output: the real singularity type of g, i.e. E+
6 or E−6

1: h := jet(g, 3)
2: s := coefficient of x3 in h
3: if (s = 0) then
4: swap the variables x and y
5: factorize h into linear factors over Q[x, y], with a factor g1 = b0x+ b1y
6: apply x 7→ x−b1y

b0
, y 7→ y to g

7: d := coefficient of y4 in g
8: if (d > 0) then
9: return E+

6

10: else
11: return E−6

Chapter 6

The Structure of the
Equivalence Classes of the
Unimodal Real Singularities up
to Corank 2

In the classification of real singularities by Arnold et al. [4], normal forms, as
representatives of equivalence classes under right equivalence, are not always
uniquely determined. We describe the complete structure of the equiva-
lence classes of the unimodal real singularities of corank 2. In other words,
we explicitly answer the question which normal forms of different type are
equivalent, and how a normal form can be transformed within the same
equivalence class by changing the value of the parameter. This provides new
theoretical insights into these singularities and has important consequences
for their algorithmic classification.

6.1 Introduction

This chapter is the first important step towards the algorithmic classification
of the unimodal real singularities up to corank 2. It can thus be seen as a
continuation of Chapter 5 which contains the algorithmic classification of
the simple real singularities. All the algorithms presented there have been
implemented in the computer algebra system Singular [39] as a library
called realclassify.lib [48].

Our work is based on the classifications of complex and real singularities
of small modality up to stable equivalence by Arnold et al. [4]. Two power
series f, g ∈ K[[x1, . . . , xn]] with a critical point at the origin and critical
value 0 are complex (if K = C) or real (if K = R) equivalent, denoted by
f

K∼ g, if there exists a K-algebra automorphism φ of K[[x1, . . . , xn]] such that

89

90 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

φ(f) = g. They are stable (complex or real) equivalent if they become (com-
plex or real) equivalent after the direct addition of non-degenerate quadratic
terms.

In this chapter, we focus on the unimodal singularities of corank 2. Their
complex and real normal forms can be found in Table 6.1. Just as for the
simple singularities (cf. Chapter 6), it turns out that the complex singularity
types split up into one or several real subtypes and that the normal forms
of the real subtypes belonging to the same complex type differ from each
other only in the signs of some terms. We therefore sometimes refer to
the complex singularity types as main types. The hyperbolic type Ỹr is an
exception because it is complex equivalent to Yr,r and only occurs as a type
on its own in the real classification.

The normal forms in Table 6.1 cover the equivalence classes of the uni-
modal singularities of corank 2, but some of them are equivalent to others.
Such equivalences occur both between different real subtypes and between
normal forms with different values of the parameter a. However, there
are no equivalences between different main types. To give an example,
x4 − 4x2y2 + y4, the normal form of X++

9 with a = −4, is equivalent to
−x4 + 10x2y2− y4, the normal form of X−−9 with a = 10, via the coordinate
transformation x 7→ c(x+ y), y 7→ c(x− y) with c =

(
4
√

2
)−1. Examples like

this one have consequences for the algorithmic classification of real singu-
larities. The question if the singularity in the example is of real type X++

9

or of real type X−−9 is not well-posed and the value of the parameter is not
uniquely determined. Note that this problem does not occur for the simple
singularities: By definition, their normal forms do not admit parameters,
and there are no equivalences between different real subtypes except for the
main types Ak where k is even, cf. Chapter 6.

The goal of this chapter is to determine the complete structure of the
equivalence classes for the unimodal real singularities of corank 2. Based
on these results, we plan to present algorithms to determine the equivalence
class of a given unimodal real singularity of corank 2 in a separate article.
If T1 and T2 are subtypes of the same singularity main type T and if g1(a)
and g2(a) are the normal forms of T1 and T2, respectively, where a denotes
the value of the parameter, then we are interested in the set of all pairs
(u, v) such that g1(u) is equivalent to g2(v). This question can be asked in
three different ways: If we consider complex values of u and v and complex
coordinate transformations, we denote the corresponding set by P1(T1, T2),
for real values of u and v, but still complex transformations by P2(T1, T2),
and finally by P3(T1, T2) if we consider only real values of u and v and real
transformations, cf. Definition 6.2.6.

The formal definitions of these sets and other basic notations are intro-
duced in Section 6.2, along with different ways how P1(T1, T2), P2(T1, T2),
and P3(T1, T2) can be conveniently written down in concrete cases. The
following sections are devoted to the computation of these sets for any two

6.1. Introduction 91

Table 6.1: Normal forms of singularities of modality 1 and corank 2

Complex Normal forms Restric-

normal form of real subtypes tions

P
ar
ab

ol
ic X9 x4 + ax2y2 + y4

+x4 + ax2y2 + y4 (X++
9)

a2 6= +4
−x4 + ax2y2 − y4 (X−−9)

+x4 + ax2y2 − y4 (X+−
9)

a2 6= −4
−x4 + ax2y2 + y4 (X−+

9)

J10 x3 + ax2y2 + xy4
x3 + ax2y2 + xy4 (J+

10) a2 6= +4

x3 + ax2y2 − xy4 (J−10) a2 6= −4

H
yp

er
bo

lic

J10+k x3 + x2y2 + ay6+k
x3 + x2y2 + ay6+k (J+

10+k) a 6= 0,

x3 − x2y2 + ay6+k (J−10+k) k > 0

X9+k x4 + x2y2 + ay4+k

+x4 + x2y2 + ay4+k (X++
9+k)

−x4 − x2y2 + ay4+k (X−−9+k) a 6= 0,

+x4 − x2y2 + ay4+k (X+−
9+k) k > 0

−x4 + x2y2 + ay4+k (X−+
9+k)

Yr,s x2y2 + xr + ays

+x2y2 + xr + ays (Y ++
r,s)

−x2y2 − xr + ays (Y −−r,s) a 6= 0,

+x2y2 − xr + ays (Y +−
r,s) r, s > 4

−x2y2 + xr + ays (Y −+
r,s)

Ỹr (x2 + y2)2 + axr
+(x2 + y2)2 + axr (Ỹ +

r) a 6= 0,

−(x2 + y2)2 + axr (Ỹ −r) r > 4

E
xc
ep

ti
on

al

E12 x3 + y7 + axy5 x3 + y7 + axy5 -

E13 x3 + xy5 + ay8 x3 + xy5 + ay8 -

E14 x3 + y8 + axy6
x3 + y8 + axy6 (E+

14)
-

x3 − y8 + axy6 (E−14)

Z11 x3y + y5 + axy4 x3y + y5 + axy4 -

Z12 x3y + xy4 + ax2y3 x3y + xy4 + ax2y3 -

Z13 x3y + y6 + axy5
x3y + y6 + axy5 (Z+

13)
-

x3y − y6 + axy5 (Z−13)

W12 x4 + y5 + ax2y3
+x4 + y5 + ax2y3 (W+

12)
-

−x4 + y5 + ax2y3 (W−12)

W13 x4 + xy4 + ay6
+x4 + xy4 + ay6 (W+

13)
-

−x4 + xy4 + ay6 (W−13)

92 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

real subtypes T1 and T2 listed in Table 6.1. We first recall the definitions
of (piecewise) weighted jets and filtrations in Section 6.3. They play a ma-
jor role in the proof of Theorem 6.4.3, the main result of Section 6.4. This
theorem allows us to restrict ourselves to a small subset of coordinate trans-
formations, which we call a sufficient set, if we want to determine P1(T1, T2).
It is thus the theoretic basis for Section 6.5 where we explain how P1(T1, T2),
P2(T1, T2), and P3(T1, T2) can be computed using Singular. We also give
an example with explicit Singular commands. These methods do not apply
for the singularity type Ỹr which is treated separately in Section 6.5.4. Sec-
tion 6.6 contains the results of these computations in a concise form. Finally,
we point out some remarkable aspects of the results in this chapter as well
as their consequences for the algorithmic classificiation of the unimodal real
singularities of corank 2 in Section 6.7. The maybe most surprising outcome
is that the real subtype J−10 is actually redundant whereas J+

10 is not.

6.2 The Sets of Parameter Transformations P1, P2,
and P3

Let us start with some basic definitions. Throughout the rest of this chapter,
let K be, in each case, either R or C.

Definition 6.2.1. Two power series f, g ∈ K[[x1, . . . , xn]] are called K-
equivalent, denoted by f

K∼ g, if there exists a K-algebra automorphism
φ of K[[x1, . . . , xn]] such that φ(f) = g.

Note that K∼ is an equivalence relation on K[[x1, . . . , xn]]. Arnold et al. [4]
give the following formal definition for normal forms w.r.t. this relation:

Definition 6.2.2. Let K ⊂ K[[x1, . . . , xn]] be a union of equivalence classes
w.r.t. the relation K∼. A normal form for K is given by a smooth map

Φ : B −→ K[x1, . . . , xn] ⊂ K[[x1, . . . , xn]]

of a finite-dimensional K-linear space of parameters B into the space of poly-
nomials for which the following three conditions hold:

1. Φ(B) intersects all the equivalence classes of K;

2. the inverse image in B of each equivalence class is finite;

3. the inverse image of the whole complement to K is contained in some
proper hypersurface in B.

Remark 6.2.3. Note that the term normal form is subtly ambiguous. Ac-
cording to the above definition, a normal form is a smooth map where the

6.2. The Sets of Parameter Transformations P1, P2, and P3 93

inverse image of each equivalence class may contain more than one element,
whereas the common meaning of this term rather refers to the polynomials
which are the images under this map. We could be more precise and avoid
this ambiguity by introducing a new term for either of the two meanings.
However, we stay with the common usage of the term normal form in order
to prevent confusion.

Definition 6.2.4. Let S ⊂ AutK(K[[x1, . . . , xn]]) be a set of K-algebra au-
tomorphisms of K[[x1, . . . , xn]] and let f, g ∈ K[[x1, . . . , xn]] be two power
series.

1. We denote the set of all automorphisms in S which take f to g by
TS
K(f, g), i.e.

TS
K(f, g) := {φ ∈ S | φ(f) = g} .

2. If S = AutK(K[[x1, . . . , xn]]), we simply write TK(f, g) for TS
K(f, g),

i.e.
TK(f, g) := {φ ∈ AutK(K[[x1, . . . , xn]]) | φ(f) = g} .

The above definition is the key ingredient for the definition of P1, P2,
and P3. We also need the following notation.

Remark 6.2.5. As usual, we denote the field of quotients Quot(K[a]) by
K(a). Let f ∈ K(a)[[x1, . . . , xn]] be a power series over this quotient field.
Then f can be written as f =

∑
ν∈Nn cνx

ν with coeffients cν = pν
qν
∈ K(a)

where pν , qν ∈ K[a] are polynomials of minimal degree with this property
and qν 6= 0 for all ν ∈ Nn.

If we consider the polynomials pν , qν as polynomial functions pν , qν :
K → K, then we may also consider the coefficients cν as functions cν :
K \V (qν) → K where V (qν) is the set of points where qν vanishes. Via
this correspondence, we finally get power series f(u) :=

∑
ν∈Nn cν(u)xν ∈

K[[x1, . . . , xn]] for each value u ∈ K \
⋃
ν∈Nn V (qν).

We use the notation f(u) throughout this chapter. Likewise, we add the
value of the parameter which occurs in the normal form as given in Table 6.1
in parentheses to the name of the singularity (sub-)type if we want to refer
specifically to the corresponding equivalence class. For instance, we denote
by E14(3) the (complex or real) right-equivalence class of x3 + y8 + 3xy6.

For any specific singularity type T , we denote by NF(T) its normal form
as shown in Table 6.1, i.e. we write NF(E14(a)) = NF

(
E+

14(a)
)
for the poly-

nomial x3 + y8 + axy6 and NF
(
E−14(5)

)
for x3 − y8 + 5xy6.

We can now state the main definition of this section.

Definition 6.2.6. We define the following sets of parameter transforma-
tions:

94 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

1. Given power series f, g ∈ C(a)[[x1, . . . , xn]], we define the first set of
parameter transformations of f and g as

P1(f, g) :=
{

(u, v) ∈ C2 |f(u) and g(v) are well-defined and
TC(f(u), g(v)) 6= ∅

}
.

2. Given power series f, g ∈ R(a)[[x1, . . . , xn]], we define the second set
of parameter transformations of f and g as

P2(f, g) :=
{

(u, v) ∈ R2 |f(u) and g(v) are well-defined and
TC(f(u), g(v)) 6= ∅

}
.

3. Given power series f, g ∈ R(a)[[x1, . . . , xn]], we define the third set of
parameter transformations of f and g as

P3(f, g) :=
{

(u, v) ∈ R2 |f(u) and g(v) are well-defined and
TR(f(u), g(v)) 6= ∅

}
.

Remark 6.2.7.

1. Note that we have P3(f, g) ⊆ P2(f, g) ⊆ P1(f, g) for any two power
series f, g ∈ R(a)[[x1, . . . , xn]].

2. For any two unimodal singularity (sub-)types T1, T2 and i ∈ {1, 2, 3},
we simply write Pi(T1, T2) instead of Pi(NF(T1(a)),NF(T2(a))), e.g.
we write P1

(
E+

14, E
+
14

)
for P1

(
NF
(
E+

14(a)
)
,NF

(
E+

14(a)
))
.

For the parabolic singularity types X9 and J10, the sets P1, P2, and P3

can be described in terms of the following definition.

Definition 6.2.8. For Ω ⊂ C, let (fi : Ω → C)i∈I be a family of complex-
valued functions on Ω. We define the joint graph of (fi)i∈I over Ω as

ΓΩ((fi)i∈I) := {(a, fi(a)) ∈ Ω× C | a ∈ Ω, i ∈ I} .

It turns out that for the hyperbolic and exceptional unimodal singular-
ities, P1, P2 and P3 are just unions of sets of the form (a, ra)a∈K for some
r ∈ K. For those cases we use the following notations.

Definition 6.2.9. For any polynomial p(X) ∈ C[X], we define the sets
C0(p(X)) and R0(p(X)) as

C0(p(X)) := {(a, ra) ∈ C2 | a, r ∈ C, p(r) = 0} ,
R0(p(X)) := {(a, ra) ∈ R2 | a, r ∈ R, p(r) = 0} .

Additionally, we define C(p(X)) and R(p(X)) as

C(p(X)) := C0(p(X)) \ {(0, 0)} ,
R(p(X)) := R0(p(X)) \ {(0, 0)} .

6.3. Weighted Jets and Filtrations of Power Series and Transformations 95

Remark 6.2.10. We occasionally use the notation R
(
X l − s

)
with l ∈ N \{0}

and s ∈ {−1,+1}, e.g. in Tables 6.5 and 6.6. Of course, this could be written
in a more explicit way for many values of l and s; for instance, we could write
∅ instead of R

(
X4 + 1

)
. But distinguishing between different cases would

spoil the symmetries of those tables and we therefore stick to the shorthand
notation.

6.3 Weighted Jets and Filtrations of Power Series
and Transformations

We briefly introduce the concepts of (piecewise) weighted jets and filtrations.
For background regarding the definitions in this section, we refer to [3]. We
assume that the reader is familiar with the notions of weighted degrees,
quasihomogeneous polynomials, and Newton polygons.
Remark 6.3.1. Let w be a weight on the variables (x1, . . . , xn). Throughout
this chapter, we always assume that the weighted degree of xi, denoted by
w-deg(xi), is a natural number for each i = 1, . . . , n.

Definition 6.3.2. Let w0 := (w1, . . . , ws) ∈ (Nn)s be a finite family of
weights on the variables (x1, . . . , xn). For any term t ∈ K[x1, . . . , xn], we
define the piecewise weight of t w.r.t. w0 as

w0-deg(t) := min
i=1,...,s

wi-deg(t) .

A polynomial f ∈ K[x1, . . . , xn] is called piecewise quasihomogeneous of
degree d w.r.t. w0 if w0-deg(t) = d for any term t of f .

Definition 6.3.3. Let w be a (possibly piecewise) weight on the variables
(x1, . . . , xn).

1. Let f =
∑∞

i=0 fi be the decomposition of f ∈ K[[x1, . . . , xn]] into
weighted homogeneous parts fi of w-degree i. We denote the weighted
j-jet of f w.r.t. w by

w-jet(f, j) :=

j∑
i=0

fi .

2. A power series in K[[x1, . . . , xn]] has filtration d ∈ N if all its terms are
of weighted degree d or higher. The power series of filtration d form a
vector space Ewd ⊂ K[[x1, . . . , xn]].

Remark 6.3.4. Note that d < d′ implies Ewd′ ⊆ Ewd . Since the filtration of the
product Ewd′ ·Ewd is d′+ d, it follows that Ewd is an ideal in the ring of power
series. We denote the ideal consisting of power series of filtration strictly
greater than d by Ew>d. If the weight of each variable is 1, we simply write
Ed and E>d, respectively.

96 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

There are also similar concepts for coordinate transformations:

Definition 6.3.5. Let φ be a K-algebra automorphism of K[[x1, . . . , xn]]
and let w be a (piecewise) weight on the variables.

1. For j > 0 we define the weighted j-jet of φ w.r.t. w, denoted by φwj , to
be the map given by

φwj (xi) := w-jet(φ(xi), w-deg(xi) + j) ∀i = 1, . . . , n .

If the weight of each variable is 1, i.e. w = (1, . . . , 1), we simply write
φj for φwj .

2. φ has filtration d if, for all λ ∈ N,

(φ− id)Ewλ ⊂ Ewλ+d .

Remark 6.3.6. Let φ be a K-algebra automorphism of K[[x1, . . . , xn]].

1. Note that φ0(xi) = jet(φ(xi), 1) for all i = 1, . . . , n. Furthermore note
that φw0 may have filtration less than or equal to 0 for any weight w.

2. Let w0 = (w1, . . . , ws) ∈ (Nn)s be a piecewise weight on (x1, . . . , xn),
let f0 ∈ K[x1, . . . , xn] be piecewise quasihomogeneous of degree d0

w.r.t. w0 and f1 ∈ K[x1, . . . , xn] quasihomogeneous of degree d1 w.r.t.
w1. For any δ ≥ 0, we always have (φ − φw1

δ)(f1) ∈ Ew1
>d1+δ, but the

analogon for w0 does not hold in general: To give a counterexample,
let us consider the case n = s = 2, w0 = ((1, 4), (4, 1)), f0 = x1x2, and
let φ be given by φ(x1) := x1 + x2

2, φ(x2) := x2 + x2
2. Then f0 is of

degree d0 = 5, but (φ−φw0
0)(f0) = x4

2 is of degree 4 w.r.t. w0 and thus
not an element of Ew0

5 = Ew0
d0+0.

6.4 Sufficient Sets of Transformations

The results in this section considerably narrow down the transformations we
need to consider between specific unimodal normal forms of the same main
type in order to check if they are equivalent or not. In fact these results are
in many cases the main step for determining the structure of the equivalence
classes of the unimodal singularities up to corank 2.

Definition 6.4.1. Let f and g be elements in C(a)[[x1, . . . , xn]] and let S
be a subset of AutC(C[[x1, . . . , xn]]). We call S a sufficient set of coordinate
transformations for the pair (f, g) if

∀u, v ∈ C :
(
TC(f(u), g(v)) 6= ∅ ⇔ TS

C(f(u), g(v)) 6= ∅
)
.

6.4. Sufficient Sets of Transformations 97

The sufficient sets which we consider here can be described using the
following notation.

Definition 6.4.2. Let Mx and My be sets of monomials in C[[x, y]] and let
CMx and CMy be the C-vector spaces spanned by these sets, i.e. CMx :=⊕

m∈Mx
Cm and analogously for CMy. We define the set of coordinate

transformations spanned by Mx and My as

S(Mx,My) := {φ ∈ AutC(C[[x, y]]) | φ(x) ∈ CMx, φ(y) ∈ CMy} .

Theorem 6.4.3. Let T be one of the main singularity types listed in Ta-
ble 6.2, let S be the corresponding set of automorphisms, and let T1 and T2

be subtypes of T . Then S is a sufficient set of coordinate transformations for(
NF(T1(a)),NF(T2(a)

)
.

Table 6.2: Sufficient sets for unimodal singularities of corank 2

T S

P.

X9 S({x, y}, {x, y})
J10 S({x, y2}, {y})

H
yp

er
bo

lic J10+k S({x}, {y})
X9+k S({x}, {y})

Yr,s
r 6= s S({x}, {y})
r = s S({x}, {y}) ∪ S({y}, {x})

E
xc
ep

t. E12, E13, E14 S({x}, {y})
Z11, Z12, Z13 S({x}, {y})
W12,W13 S({x}, {y})

Proof of Theorem 6.4.3. We give different proofs for the parabolic, the hy-
perbolic, and the exceptional cases as indicated in Table 6.2.

In each case, let T1 and T2 be subtypes of the same main type T , and
for u ∈ C let φ ∈ AutC(C[[x, y]]) be a coordinate transformation which takes
f := NF(T1(u)) to NF(T2(v)) for some v ∈ C.

Parabolic cases: The normal forms of both X9 and J10 are quasihomo-
geneous with weights w := (1, 1) and w := (2, 1), respectively. Let us first
consider the case T = X9. We have

φ(f) = φw0 (f) + (φ− φw0)(f) = φw0 (f) +R

with R ∈ Ew>4. This implies φ(f) = φw0 (f) because φ(f) = NF(T2(v)) is
homogeneous of degree 4 w.r.t. the weight w. So any possible value of v

98 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

which can be reached via some φ ∈ AutC(C[[x, y]]) can also be obtained by
φw0 ∈ S({x, y}, {x, y}), i.e., S({x, y}, {x, y}) is a sufficient set of coordinate
transformations for the pair (NF(T1(a)),NF(T2(a))).

Let us now consider the case T = J10. Again we have φ(f) = φw0 (f),
but in this case φw0 is of the form φw0 (x) = αx + βy + γy2, φw0 (y) = δy
with α, β, γ, δ ∈ C. Comparing the coefficients of φ(f) = NF(T2(v)) and
φw0 (f) = β3y3+(other terms) yields β = 0 and therefore φw0 ∈ S({x, y2}, {y})
as expected.

Hyperbolic cases: We present a proof for the main type T = J10+k, the
proofs for X9+k and Yr,s are similar. For Yr,s with r = s, we have to take
the special shape of S into account, cf. Table 6.2.

It does not matter for the arguments below whether we assume T1 = J+
10+k

or T1 = J−10+k, the same holds for T2. We write ± whenever the sign can be
either plus or minus in order to prove all cases at once.

The Newton polygon of f = NF(T1(u)) = x3 ± x2y2 + uy6+k has two faces
defined by f1 := x3±x2y2 and f2 := ±x2y2 +uy6+k. Let w0 be the piecewise
weight given by the two weights w1 := (12+2k, 6+k) and w2 := (12+3k, 6).
Then f is piecewise quasihomogeneous of degree d := 36 + 6k w.r.t. w0.

We now proceed in three steps: In the first two, we show φw1
0 ∈ S({x}, {y})

and φw2
0 ∈ S({x}, {y}). Finally we conclude that φ(f) is equal to φw0

0 (f) and
that φw0

0 is an element of S({x}, {y}) which proves the claim.

The transformation φw1
0 is generically of the form

φw1
0 (x) = αx+ β1y + β2y

2 ,

φw1
0 (y) = γy

with coefficients α, β1, β2, γ ∈ C. With these notations we have

φ(f) = φw1
0 (f) + (φ− φw1

0)(f)

= β3
1y

3 + (3αβ2
2 ± 2αβ2γ

2)xy4 + (β3
2 ± β2

2γ
2)y6 + (other terms)

on the one hand and

φ(f) = NF(T1(v)) = x3 ± x2y2 + vy6+k

on the other hand. This implies (in this order) β1 = 0, α 6= 0, β2 = 0 and
hence φw1

0 ∈ S({x}, {y}).
The second step is a proof by contradiction. Let m be the largest integer
which is not greater than k

2 + 2. Then similar as above, the automorphism
φw2

0 is of the form

φw2
0 (x) = αx+ β1y + β2y

2 + . . .+ βmy
m ,

φw2
0 (y) = γy

6.4. Sufficient Sets of Transformations 99

with α, β1, . . . , βm, γ ∈ C and α, γ 6= 0. We have already shown β1 = β2 = 0.
Assume βs 6= 0 for some s ∈ {3, . . . ,m} and let s be minimal with this
property. Then the coefficient of xys+2 in φ(f) = φw2

0 (f) + (φ − φw2
0)(f) is

±2αβsγ
2 which implies βs = 0 in contradiction to the assumption. Hence

β3 = . . . = βm = 0 and φw2
0 ∈ S({x}, {y}).

For the last step, we consider the following equations:

φ(f) = φw1
0 (f) + (φ− φw1

0)(f)︸ ︷︷ ︸
=: R1 ∈ Ew1

>d

φ(f) = φw2
0 (f) + (φ− φw2

0)(f)︸ ︷︷ ︸
=: R2 ∈ Ew2

>d

φ(f) = φw0
0 (f) + (φ− φw0

0)(f)︸ ︷︷ ︸
=: R0

Note that it is not a priori clear that R0 lies in Ew0
>d if we only consider

these equations, cf. Remark 6.3.6(2). Nevertheless, this can be shown if we
take into account the results of the two previous steps: By definition of the
piecewise weight w0, any term in φw0

0 (x) also appears in φw1
0 (x) or φw2

0 (x)
(or both), analogously for φw0

0 (y). Therefore we have φw0
0 (x) = αx and

φw0
0 (y) = γy, hence φw0

0 = φw1
0 = φw2

0 and φw0
0 ∈ S({x}, {y}). This implies

R0 = R1 = R2 ∈ Ew1
>d ∩ E

w2
>d = Ew0

>d .

Since φ(f) = NF(T2(v)) is piecewise quasihomogeneous of degree d w.r.t.
w0, we finally get R0 = 0 and φ(f) = φw0

0 (f). This proves the claim.

Exceptional cases: The normal forms of all the exceptional cases in Ta-
ble 6.2 are semi-quasihomogeneous polynomials, i.e., in these cases f =
NF(T1(u)) is of the form f = f0 +f1 where f0 is quasihomogeneous of degree
d ∈ N w.r.t. some weight w = (wx, wy), f1 has weighted degree d + δ > d,
and the Milnor number µ(f0) of f0 is finite (for the definition of the Milnor
number, see Definition 5.2.3). In all the cases, f1 consists of the term which
contains the parameter and we have

φ(f) = φwδ (f0) + φw0 (f1) + (φ− φwδ)(f0) + (φ− φw0)(f1)

= w-jet(φwδ (f0), d+ δ) + φw0 (f1) +R

with R ∈ Ew>d+δ. As above, φ(f) = NF(T2(v)) implies R = 0. If we show

φwδ ∈ S({x}, {y}) , (∗)

then it follows that φwδ is equal to φw0 and therefore

φ(f) = w-jet(φw0 (f0), d+ δ) + φw0 (f1)

= φw0 (f0) + φw0 (f1)

= φwδ (f) .

100 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

This, together with (∗), proves the claim.

The statement (∗) can be shown seperately for each of the eight cases by some
easy computations. We carry out the proof for W13, the other cases follow
similarly. The normal forms of the subtypes of W13 are ±x4 + xy4 + ay6,
so in this case we have w = (4, 3), d = 16, and δ = 2. The ±-sign does not
matter for the computations which follow, but we carry it along in order to
prove all subcases at once. The transformation φwδ is generically of the form

φwδ (x) = αx+ βy + γy2 ,

φwδ (y) = εx+ ζy

with α, β, γ, ε, ζ ∈ C because any other term would raise the weighted de-
gree by more than δ. With these notations, we now successively compare
the coefficients of φwδ (f) and φ(f) = NF(T2(v)) = ±x4 + xy4 + vy6. The
coefficient of y4 in φwδ (f) is ±β4, therefore we have β = 0. The remaining
coefficients of xy4, x2y3, and x3y2 are now αζ4, 4αεζ3, and ±4α3γ+6αε2ζ2,
respectively, which shows that (in this order) αζ 6= 0, ε = 0, and γ = 0.
Hence φwδ is in fact of the form φwδ (x) = αx, φwδ (y) = ζy which proves (∗)
for T1, T2 ∈

{
W+

13,W
−
13

}
.

6.5 On the Computation of the Results

Based on the previous section, the results presented in Section 6.6 can be
computed using Singular for all those singularity types which are covered
by Theorem 6.4.3. The main tools for these computations are elimination,
Gröbner covers, and primary decomposition. For each pair of singularity
subtypes T1, T2, the computation follows the same structure: One can first
compute the set P1(T1, T2) using elimination and factorization. The set
P2(T1, T2) can then be derived from this as the intersection of P1(T1, T2) with
R×R. In order to determine P3(T1, T2), one finally has to check for each
point or branch in P2(T1, T2) whether or not there is a real transformation
which changes the parameter in such a way. Gröbner covers and primary
decomposition are convenient tools to simplify the often complicated ideals
which occur in this last step.

Although our approach is almost algorithmic, we do not present it as an
algorithm here because each case requires slightly different means depending
on the intermediate results. Especially the computation of P3(T1, T2) is
rather straighforward in some cases whereas it requires careful considerations
in other cases.

However, writing down every detail of the computations for each case is
beyond the scope of this section. Instead, we present the general framework

6.5. On the Computation of the Results 101

and give explicit Singular commands for T1 = T2 = X++
9 which is one of

the more complicated cases (cf. Theorem 6.6.1).
The singularity type Ỹr does not appear in Table 6.2 and thus needs

special care. The structure of the equivalence classes of this type can be
computed on the basis of the data for the type Yr,s, cf. Section 6.5.4.

6.5.1 How to Compute P1(T1, T2)

Let S = S(Mx,My) ⊂ AutC(C[[x, y]]) be the sufficient set of C[[x, y]]-
automorphisms for (NF(T1(a)),NF(T2(a))) given in Theorem 6.4.3. Let
t1, . . . , tr be coefficients for the monomials in Mx and My and let φ be
a generic element of S with these coefficients, i.e. let φ be of the form
φ(x) = t1 · x+ (other terms) (or of the form φ(x) = t1 · y + (other terms) in
case T1 and T2 are subtypes of Yr,s with r = s).

We denote the parameter occurring in NF(T1) by a and the one in NF(T2)
by b. By comparing the coefficients in φ(NF(T1(a))) and NF(T2(b)), we get
a set of equations in a, b, t1, . . . , tr which is equivalent to φ(NF(T1(a))) =
NF(T2(b)). Let I ⊂ C[a, b, t1, . . . , tr] be the ideal generated by these equa-
tions. Then the vanishing set V (I) describes completely which transforma-
tions take NF(T1(a)) to NF(T2(b)) for which values of a and b.

We can now eliminate the variables t1, . . . , tr from I and thus obtain an
ideal I ′ ⊂ C[a, b] which is in all cases generated by one polynomial g. This
elimination geometrically corresponds to the projection A2+r

C ⊃ V (I) 7→
V (I ′) ⊂ A2

C. After factorizing g ∈ C[a, b] into irreducible factors g1, . . . , gs,
we compute the roots in b of each factor (over C(a) or suitable extensions
thereof if necessary). We thus get roots of the form b − f(a) where f(a)
can be considered as a function in a. These functions explicitly determine
the possible values of b for each given a and their joint graph is exactly
P1(T1, T2).

Example 6.5.1. We compute P1

(
X++

9 , X++
9

)
with Singular. For convenience

we work over Q(a, b, t1, t2, t3, t4)[x, y]:

> ring R = (0,a,b,t1,t2,t3,t4), (x,y), dp;
> poly f = x^4+a*x^2*y^2+y^4;

According to Theorem 6.4.3,

S =
{
φ ∈ AutC(C[[x, y]]) | φ(x) = t1x+ t2y, φ(y) = t3x+ t4y,

t1, . . . , t4 ∈ C
}

is a sufficient set of automorphisms for X9:

> map phi = R, t1*x+t2*y, t3*x+t4*y;
> matrix C = coef(phi(f), xy);
> print(C);

102 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

x^4, x^3*y, x^2*y^2,x*y^3, y^4,
C[2,1],C[2,2],C[2,3], C[2,4],C[2,5]
> C[2,1];
(a*t1^2*t3^2+t1^4+t3^4)

Now the second row of the matrix C contains the coefficients of phi
(
X++

9 (a)
)
,

C[2, 1] for instance is the one belonging to x4. Using the corresponding
coefficients of X++

9 (b) = x4 +b ·x2y2 +y4, we can define the ideal I as above:

> matrix D[1][5] = 1, 0, b, 0, 1;
> ideal I = C[2,1..5]-D[1,1..5];

As the next step, we map this ideal to Q(a)[b, t1, t2, t3, t4] and eliminate the
variables ti:

> ring S = (0,a), (b,t1,t2,t3,t4), dp;
> ideal I = imap(R, I);
> ideal g = eliminate(I, t1*t2*t3*t4);
> g;
g[1]=(a^4-8*a^2+16)*b^6+(-a^6-720*a^2-1152)*b^4
+(8*a^6+720*a^4+20736)*b^2+(-16*a^6+1152*a^4-20736*a^2)

Factorizing the single generator of this ideal finally yields the functions
f1,1

1 , . . . , f1,1
6 defined in Theorem 6.6.1. Note that a2 6= 4.

> factorize(g[1]);
[1]:

_[1]=1
_[2]=b+(-a)
_[3]=b+(a)
_[4]=(a-2)*b+(-2*a-12)
_[5]=(a+2)*b+(-2*a+12)
_[6]=(a+2)*b+(2*a-12)
_[7]=(a-2)*b+(2*a+12)

[2]:
1,1,1,1,1,1,1

6.5.2 How to Compute P2(T1, T2)

Given P1(T1, T2), it is easy to compute P2(T1, T2) even “by hand” because
we have

P2(T1, T2) = P1(T1, T2) ∩ (R×R) .

Example 6.5.2. Continuing the example above, the values f1,1
1 (a), . . . , f1,1

6 (a)
are clearly real for a ∈ R, cf. Theorem 6.6.1. The set P2

(
X++

9 , X++
9

)
is thus

the joint graph of these functions over R \{−2, 2}.

6.5. On the Computation of the Results 103

To give another example, for T1 = T2 = X+−
9 the set P1(T1, T2) is the

joint graph of f i,i1 , . . . , f i,i6 over C \{−2i, 2i}. The values of f i,i1 (a) and f i,i2 (a)

are clearly real for a ∈ R, but those of f i,i3 (a), . . . , f i,i6 (a) are not except at
some exceptional points which are already covered by f i,i1 and f i,i2 . So in this
case we have

P2

(
X+−

9 , X+−
9

)
= ΓR

(
f i,i1 , f i,i2

)
= ΓR

(
f1,1

1 , f1,1
2

)
.

6.5.3 How to Compute P3(T1, T2)

Since P3(T1, T2) ⊂ P2(T1, T2) by definition, we can determine P3(T1, T2)
by checking for each pair (a, b) ∈ P2(T1, T2) whether or not there is a real
coordinate transformation φ ∈ AutR(R[[x, y]]) which takes NF(T1(a)) to
NF(T2(b)). This can be reduced to a finite problem as follows: Let gj , j ∈
{1, . . . , s}, be the irreducible factors of the polynomial g as in Section 6.5.1.
Then in all the cases, P2(T1, T2) is a finite union of “branches” of the form
V (gj) and some exceptional points. We can check whether a branch V (gj)
or an exceptional point (qa, qb) in P2(T1, T2) belongs P3(T1, T2) by simply
adding appropriate relations to the ideal I and looking at the real solutions
of the resulting ideal. In other words, we define J := I + 〈gj〉 or J :=
I + 〈a − qa, b − qb〉, respectively, and investigate VR(J). Note that we have
I ⊂ R[a, b, t1, . . . , tr] and gj ∈ R[a, b] and thus J ⊂ R[a, b, t1, . . . , tr] in all
the cases.

P3(T1, T2) is the image of VR(J) ⊂ A2+r
R under the projection A2+r

R → A2
R,

i.e. we have (pa, pb) ∈ P3(T1, T2) if and only if there is a coordinate trans-
formation with real coefficients (pt1 , . . . , ptr) such that (pa, pb, pt1 , . . . , ptr) is
an element of VR(J) ⊂ A2+r

R .
It turns out that the ideal J is quite complicated in some cases and that it

can be difficult to determine VR(J) by just computing a Gröbner basis of J .
One way out is then to consider J as a parametric ideal J ⊂ R(a)[b, t1, . . . , tr]
and to compute a Gröbner cover thereof by using the Singular library
grobcov.lib [49]. A Gröbner cover completely describes the possible shapes
of Gröbner bases of J for different values of a. It contains a generic Gröbner
basis of J , i.e. one which is a Gröbner basis except for finitely many ex-
ceptional values of a, and additionally Gröbner bases of J for each of these
exceptional values. The ideals in a Gröbner cover of J typically have a much
easier structure than J itself. We can thus treat them one by one and de-
termine their real solutions. We will often find generators such as (tj)

4 + 1,
indicating that the vanishing set over R of this ideal is empty.

If any of the ideals in the Gröbner cover of J are still to complicated
and if their vanishing set over R cannot be easily read off, another trick
is to compute a primary decomposition of these ideals with the Singular
library primdec.lib [44]. Typically, it is then easy to see that some of the

104 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

primary components have no solutions over R whereas the real solutions of
the remaining components can be easily determined.
Example 6.5.3. We have already seen in Example 6.5.2 that P2

(
X++

9 , X++
9

)
is the joint graph of f1,1

1 , . . . , f1,1
6 over R \{−2, 2}. We now have to check

for each of these functions whether their graph is also contained in the set
P3

(
X++

9 , X++
9

)
.

This is clearly the case for f1,1
1 = id. To check this for f1,1

3 , we continue
the Singular session from Example 6.5.1, add the corresponding relation
to the ideal I and compute a Gröbner cover of the resulting ideal J :

> ideal J = I, (a-2)*b+(-2*a-12);
> LIB "grobcov.lib";
> grobcov(J);

The output of the last command is too long to be printed here. We will find
that the Gröbner basis of J for generic a contains the generators (t2)2 +(t4)2

and (t3)2 + (t4)2 which imply t2 = t3 = t4 = 0 for any real solution of this
ideal. But this is a contradiction to phi ∈ AutR(R[[x, y]]). The exceptional
cases for the parameter a are a + 2 = 0, a − 2 = 0, a2 + 12 = 0, a + 6 = 0,
a − 6 = 0, and a = 0. The first two cases are excluded by the definition of
the singularity type X++

9 , a2 + 12 = 0 would imply a 6∈ R, for a + 6 = 0
and a = 0 the corresponding Gröbner bases of J contain generators similar
to those mentioned above, and finally a− 6 = 0 implies b− 6 = 0 such that
this case is already covered by the graph of f1,1

1 .
To give one more example, let us consider f1,1

5 :

> J = I, (a+2)*b+(2*a-12);
> grobcov(J);

The crucial generator of the Gröbner basis of J for generic a is now the
polynomial (a + 2)(t4)4 − 1 which has a real root if and only if a > −2.
Considering the other generators, it is easy to see that given t4 ∈ R, t1 =
t2 = t3 = −t4 is a real solution. The exceptional values of a in this case
are the same as above and again, we do not have to consider a + 2 = 0,
a − 2 = 0, and a2 + 12 = 0. The relation a + 6 = 0 implies b + 6 = 0
which is already covered by f1,1

1 . Finally, t1 = t2 = t3 = 1
4√2

, t4 = − 1
4√2

and
t1 = t2 = t3 = 1

4√8
, t4 = − 1

4√8
are real solutions for the cases a = 0 and

a− 6 = 0, respectively. To sum up, the graph of f1,1
5 over R>−2 belongs to

P3

(
X++

9 , X++
9

)
, but not the part over R<−2.

Continuing in this manner, one can show that f1,1
2 , f1,1

4 and f1,1
6 do not

contribute any additional points, so we get

P3

(
X++

9 , X++
9

)
= ΓR′

(
f1,1

1

)
∪ ΓR>−2

(
f1,1

5

)
where R′ := R \{−2, 2}.

6.5. On the Computation of the Results 105

Remark 6.5.4. With the above notations, the irreducible factors gj , j =
1, . . . , s, of the polynomial g are luckily of degree 1 in b in almost all cases. If
one of those factors, say g1, has degree in b greater than 1, and if additionally
the corresponding ideal J = I + 〈g1〉 has both real and complex solutions,
then an extra calculation is needed: Let f1(a), . . . , fk(a) be the roots of g1

in b as above, i.e. g1 = (b−f1(a)) . . . (b−fk(a)) (over C(a) or over a suitable
extension thereof if necessary). Then we have to check which of these roots
f1(a), . . . , fk(a) belong to the real solutions of J and which of them can only
reached via complex transformations.

This is especially crucial for the singularities of type J10 in order to
distinguish between fσ,ρ3 , fσ,ρ4 , fσ,ρ5 , and fσ,ρ6 , cf. Theorem 6.6.2.
Remark 6.5.5. The hyperbolic singularity types listed in Table 6.1 are actu-
ally infinite series of types. One might argue that the computations described
in Sections 6.5.1 to 6.5.3 must be carried out for each single k > 0 (for J10+k

and X9+k) and for each pair r, s > 4 (for Yr,s) in order to check the results
presented in Theorems 6.6.4 to 6.6.6. This is, of course, impossible in prac-
tice. But it turns out that the results are periodic in k and r, s, respectively.
Hence it suffices to carry these computations out for sufficiently many values
of k and r, s. If we closely examine the intermediate steps, then we can easily
check that the results are indeed periodic.

6.5.4 The Special Type Ỹr

Theorem 6.4.3 does not give any sufficient set for subtypes of Ỹr and indeed
it turns out that there is no degree-bounded sufficient set for this case, cf.
Remark 6.5.9.

But since Ỹr is C-equivalent to Yr,r, we can use the structure of the equiva-
lence classes of Yr,r (cf. Theorem 6.6.6) to determine P1(T1, T2), P2(T1, T2),
and P3(T1, T2) for T1, T2 ∈

{
Ỹ +
r , Ỹ

−
r

}
. To do so, let us first define the

principal part of a power series.

Definition 6.5.6. Let f ∈ K[[x1, . . . , xn]] be a power series, let Γf be its
Newton polygon, and let f0 be the sum of those terms of f which lie on Γf .
Then we call f0 the principal part of f .

The following result is due to [3, Corollary 9.9].

Lemma 6.5.7. Let f ∈ C[[x, y]] be a power series whose principal part is of
the form f0 = xa + λx2y2 + yb, where 0 6= λ ∈ C, a ≥ 4, and b ≥ 5. Then f
and its principal part f0 are C-equivalent, i.e. f C∼ f0.

Based upon this lemma, we can now specify an explicit equivalence be-
tween the normal forms of Ỹr and Yr,r.

Lemma 6.5.8. For any r > 4 and any a ∈ C \{0}, we have(
a,
(

1
4

)r
a2
)
∈ P1

(
Ỹ +
r , Y

++
r,r

)
∩ P1

(
Ỹ −r , Y

−+
r,r

)
.

106 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

Figure 6.1: Equivalences between NF
(
Ỹ +
r

)
and NF

(
Y ++
r,r

) (
c :=

(
1
4

)r)

NF
(
Ỹ +
r (a)

)
NF
(
Ỹ +
r

(
±
√
ζa
))

	
NF
(
Y ++
r,r

(
ca2
))

NF
(
Y ++
r,r

(
ζca2

))

Proof. Let φ ∈ AutC(C[[x, y]]) be the coordinate transformation defined
by φ(x) := 1

2(x + y) and φ(y) := 1
2 i(x − y). Then the principal parts of

φ
(
NF
(
Ỹ +
r (a)

))
and φ

(
NF
(
Ỹ −r (a)

))
are of the form

(
1
2

)r
a · xr + λx2y2 +(

1
2

)r
a · yr with λ = 1 and λ = −1, respectively, so the result follows from

Lemma 6.5.7.

Section 6.5.1 tells us how to compute P1(T1, T2) for T1, T2 ∈ {Y ++
r,r , Y

−+
r,r },

cf. Theorem 6.6.6. We can use this data and the above lemma to compute
P1(T1, T2) for T1, T2 ∈

{
Ỹ +
r , Ỹ

−
r

}
. Let us consider the case P1

(
Ỹ +
r , Ỹ

+
r

)
,

the other cases follow similarly. According to Lemma 6.5.8, NF
(
Ỹ +
r (a)

)
is C-equivalent to NF

(
Y ++
r,r

(
ca2
))

with c :=
(

1
4

)r for any r > 4 and any
a ∈ C \{0}. This in turn is C-equivalent to NF

(
Y ++
r,r

(
ζca2

))
for any ζ

satisfying ζ l − 1 = 0 where l = gcd(2, r + 1), cf. Theorem 6.6.6. Applying
Lemma 6.5.8 again leads to NF

(
Y ++
r,r

(
ζca2

)) C∼ NF
(
Ỹ +
r

(
±
√
ζa
))
, and we

thus get the diagram shown in Figure 6.1.
This proves NF

(
Ỹ +
r (a)

) C∼ NF
(
Ỹ +
r

(
±
√
ζa
))

for ζ as above, and since
the diagram is commutative, there are no equivalences for other values of
the parameters than these. Hence

P1

(
Ỹ +
r , Ỹ

+
r

)
= C

(
X2l − 1

)
with l as above. The set P2

(
Ỹ +
r , Ỹ

+
r

)
can now be determined as in Sec-

tion 6.5.2. In fact it is easy to see that

P2

(
Ỹ +
r , Ỹ

+
r

)
= R

(
X2 − 1

)
.

We clearly have (a, a) ∈ P3

(
Ỹ +
r , Ỹ

+
r

)
for a ∈ R \{0}, and also (a,−a) ∈

P3

(
Ỹ +
r , Ỹ

+
r

)
if r is odd. For the case where r is even, let us consider

NF
(
Ỹ +
r (a)

)
as a function in x and y over R2 and let the parameter a be

positive. In this case the function NF
(
Ỹ +
r (a)

)
=
(
x2 + y2

)2
+ axr takes

only non-negative values whereas NF
(
Ỹ +
r (−a)

)
=
(
x2 + y2

)2 − axr attains

6.6. Results 107

also negative values. Hence there is no real coordinate transformation which
takes NF

(
Ỹ +
r (a)

)
to NF

(
Ỹ +
r (−a)

)
. The argument is similar for a < 0. To

sum up, we have

P3

(
Ỹ +
r , Ỹ

+
r

)
=

{
R(X2 − 1), if r is odd,
R(X − 1), if r is even.

Remark 6.5.9. Let r ≥ 8 be a multiple of 4 and let φr ∈ AutC(C[[x, y]]) be
a coordinate transformation which takes f := NF

(
Ỹ +
r (a)

)
to NF

(
Ỹ +
r (−a)

)
.

Assume that the degree of both φr(x) and φr(y) is less than r
4 and let f =

f0 +f1 be decomposed into its principal part f0 :=
(
x2 + y2

)2 and f1 = axr.
Then we have

φ(f) = φ(f0) + φ(f1) =
(
x2 + y2

)2 − axr
where the degree of φ(f0) is less than r. Therefore φ(f0) = φ0(f0) =(
x2 + y2

)2 and φ(f1) = φ0(f1) = −axr. If φ0 is given by φ0(x) = αx + βy,
φ0(y) = γx+δy with α, β, γ, δ ∈ C, the second of these two equations implies
β = 0 and αr = −1, but the first one in turn implies γ = 0 and α4 = 1 which
is a contradiction.

So the degree of either φr(x) or φr(y) must at least r
4 . This shows that

a degree-bounded sufficient set of coordinate transformations for the pair(
NF
(
Ỹ +
r (a)

)
,NF

(
Ỹ +
r (a)

))
and for arbitrarily high r does not exist.

6.6 Results

In this section we present the sets P1, P2, P3 in table form for every unimodal
real singularity type up to corank 2.

108 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

Theorem 6.6.1. The structure of the equivalence classes of the X9 singu-
larities is as shown in Table 6.3 where for j = 1, . . . , 6 and ρ, σ ∈ {1, i}, the
function fρ,σj is defined as follows:

fρ,σ1 (a) := +ρσ · a , fρ,σ3 (a) :=
+2σa+ 12ρσ

a− 2ρ
, fρ,σ5 (a) :=

−2σa+ 12ρσ

a+ 2ρ
,

fρ,σ2 (a) := −ρσ · a , fρ,σ4 (a) :=
+2σa− 12ρσ

a+ 2ρ
, fρ,σ6 (a) :=

−2σa− 12ρσ

a− 2ρ
.

Furthermore, we use the following notations:

C′ := C \{−2, 2} , R′ := R \{−2, 2} , C′′ := C \{−2i, 2i} .

Table 6.3: P1, P2 and P3 for the X9 singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

X++
9 X++

9

ΓC′
(
f1,1

1 , . . . , f1,1
6

)
ΓR′
(
f1,1

1 , . . . , f1,1
6

)
ΓR′
(
f1,1

1

)
∪ ΓR′>−2

(
f1,1

5

)
X−−9 X−−9

ΓR′
(
f1,1

1

)
∪ ΓR′<+2

(
f1,1

3

)
X++

9 X−−9 ΓR<−2

(
f1,1

4

)
X−−9 X++

9 ΓR>+2

(
f1,1

6

)
X+−

9 X+−
9

ΓC′′
(
f i,i1 , . . . , f i,i6

)
ΓR
(
f1,1

1 , f1,1
2

)
ΓR
(
f1,1

1

)X−+
9 X−+

9

X+−
9 X−+

9

X−+
9 X+−

9

X++
9 X+−

9

ΓC′
(
f1,i

1 , . . . , f1,i
6

)
∅

X++
9 X−+

9 {(0, 0)}
X−−9 X+−

9 ∪ {(0,−6), (0, 6)}
X−−9 X−+

9

X+−
9 X++

9

ΓC′′
(
f i,11 , . . . , f i,16

)
∅

X−+
9 X++

9 {(0, 0)}
X+−

9 X−−9 ∪ {(0,−6), (0, 6)}
X−+

9 X−−9

6.6. Results 109

Theorem 6.6.2. The structure of the equivalence classes of the J10 singu-
larities is as shown in Table 6.4 where for j = 1, . . . , 6 and ρ, σ ∈ {−1,+1},
the function fρ,σj is defined as follows:

fρ,σ1 (a) := +
√
ρσ · a ,

fρ,σ2 (a) := −√ρσ · a ,

fρ,σ3 (a) := +

√
−ρσ(a2 − ρ · 4)(a2 − ρ · 9) + a(a2 − ρ · 3)

√
a2 − ρ · 4

2(a2 − ρ · 4)
,

fρ,σ4 (a) := −

√
−ρσ(a2 − ρ · 4)(a2 − ρ · 9) + a(a2 − ρ · 3)

√
a2 − ρ · 4

2(a2 − ρ · 4)
,

fρ,σ5 (a) := +

√
−ρσ(a2 − ρ · 4)(a2 − ρ · 9)− a(a2 − ρ · 3)

√
a2 − ρ · 4

2(a2 − ρ · 4)
,

fρ,σ6 (a) := −

√
−ρσ(a2 − ρ · 4)(a2 − ρ · 9)− a(a2 − ρ · 3)

√
a2 − ρ · 4

2(a2 − ρ · 4)
.

In each case, ρ and σ are given by

ρ :=

{
+1, if T1 = J+

10 ,

−1, if T1 = J−10 ,
σ :=

{
+1, if T2 = J+

10 ,

−1, if T2 = J−10 .

Furthermore, we use the following notations:

ξ := 3√
2
, I1 :=]−∞,−ξ[⊂ R ,

C′ := C \{−2, 2} , I2 :=]−ξ,−2[⊂ R ,
R′ := R \{−2, 2} , I3 :=]+2,+ξ[⊂ R ,
C′′ := C \{−2i, 2i} , I4 :=]+ξ,+∞[⊂ R .

Remark 6.6.3. In Theorem 6.6.2, the definitions of fρ,σ1 , . . . , fρ,σ6 involve
square roots of possibly complex values. These square roots are defined
as follows: For any complex number z = reiφ ∈ C with r, φ ∈ R, r > 0, and
0 ≤ φ < 2π, we set √

z :=
√
rei

φ
2 .

In particular, Im(
√
z) > 0 for all z ∈ C \R>0 and

√
z ≥ 0 for all z ∈ R>0.

Theorem 6.6.4. The structure of the equivalence classes of the J10+k sin-
gularities is as shown in Table 6.5 where in each case, l and s are given
by

l :=
6

gcd(6, k)
, and

s :=

{
+1, if k ≡ 2 (mod 4),

−1, else.

110 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

Table 6.4: P1, P2 and P3 for the J10 singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

J+
10 J+

10 ΓC′(f
ρ,σ
1 , . . . , fρ,σ6)

ΓR′(f
ρ,σ
1 , fρ,σ2)

∪ ΓR>+2(fρ,σ3 , fρ,σ4)

∪ ΓR<−2(fρ,σ5 , fρ,σ6)

∪{(0,−ξ), (0,+ξ)}
∪ {(−ξ, 0), (+ξ, 0)}

ΓR′(f
ρ,σ
1)

∪ ΓR>+2(fρ,σ4)

∪ ΓR<−2(fρ,σ5)

J−10 J−10 ΓC′′(f
ρ,σ
1 , . . . , fρ,σ6) ΓR(fρ,σ1 , fρ,σ2) ΓR(fρ,σ1)

J+
10 J−10 ΓC′(f

ρ,σ
1 , . . . , fρ,σ6)

{(0, 0)}
∪ ΓR>+2(fρ,σ3 , fρ,σ4)

∪ ΓR<−2(fρ,σ5 , fρ,σ6)

ΓI4(fρ,σ3)

∪ ΓI3(fρ,σ4)

∪ ΓI2(fρ,σ5)

∪ ΓI1(fρ,σ6)

∪{(−ξ, 0)}
∪ {(+ξ, 0)}

J−10 J+
10 ΓC′′(f

ρ,σ
1 , . . . , fρ,σ6)

{(0, 0)}
∪ ΓR(fρ,σ3 , . . . , fρ,σ6)

ΓR(fρ,σ3 , fρ,σ6)

Table 6.5: P1, P2 and P3 for the J10+k singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

J+
10+k J+

10+k C(X l − 1) R(X l − 1) R(X l − 1)
J−10+k J−10+k

J+
10+k J−10+k C(X l − s) R(X l − s) ∅
J−10+k J+

10+k

6.6. Results 111

Theorem 6.6.5. The structure of the equivalence classes of the X9+k sin-
gularities is as shown in Table 6.6 where in each case, l and s are given
by

l :=
4

gcd(4, k)
, and

s :=

{
+1, if k ≡ 4 (mod 8),

−1, else.

Table 6.6: P1, P2 and P3 for the X9+k singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

X++
9+k X++

9+k

C(X l − 1) R(X l − 1) R(Xk+1 − 1)
X+−

9+k X+−
9+k

X−+
9+k X−+

9+k

X−−9+k X−−9+k

X++
9+k X+−

9+k

C(X l − 1) R(X l − 1) ∅
X+−

9+k X++
9+k

X−+
9+k X−−9+k

X−−9+k X−+
9+k

X++
9+k X−+

9+k

C(X l − s) R(X l − s) ∅
X+−

9+k X−−9+k

X−+
9+k X++

9+k

X−−9+k X+−
9+k

X++
9+k X−−9+k

C(X l − s) R(X l − s) ∅
X+−

9+k X−+
9+k

X−+
9+k X+−

9+k

X−−9+k X++
9+k

112 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

Theorem 6.6.6. The structure of the equivalence classes of the Yr,s singu-
larities is as shown in Table 6.7 where in each case, l, s1 and s2 are given
by

l :=
r

gcd(r, s)
· gcd(2, r + 1, s+ 1) ,

s1 :=

{
+1, if r ≡ 0 (mod 4) or s ≡ 0 (mod 4),

−1, else,

s2 :=

{
+1, if r 6≡ 0 (mod 2) or s

gcd(r,s) ≡ 0 (mod 2),

−1, else.

In the special case where r = s, additional equivalences occur. They are
listed in Table 6.8.

Remark 6.6.7. Note that there are also equivalences between subtypes of Yr,s
and subtypes of Ys,r which can be obtained by just swapping the variables
x and y. For r = s these are exactly the additional equivalences listed
in Table 6.8. But equivalences of this kind also occur for r 6= s, e.g. we
have R(X − 1) ⊂ P1(Y ++

5,7 , Y ++
7,5), but we do not consider those cases in

Theorem 6.6.6.

6.6. Results 113

Table 6.7: P1, P2 and P3 for the Yr,s singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

Y ++
r,s Y ++

r,s

C(X l − 1) R(X l − 1) R(Xs+1 − 1)
Y −+
r,s Y −+

r,s

Y +−
r,s Y +−

r,s

Y −−r,s Y −−r,s

Y ++
r,s Y −+

r,s

C(X l − s1) R(X l − s1) ∅
Y −+
r,s Y ++

r,s

Y +−
r,s Y −−r,s

Y −−r,s Y +−
r,s

Y ++
r,s Y +−

r,s

C(X l − s2) R(X l − s2)

R(X l − s2),

if r 6≡ 0 (mod 2), and

∅, if r ≡ 0 (mod 2)

Y −+
r,s Y −−r,s

Y +−
r,s Y ++

r,s

Y −−r,s Y −+
r,s

Y ++
r,s Y −−r,s

C(X l − s1s2) R(X l − s1s2) ∅
Y −+
r,s Y +−

r,s

Y +−
r,s Y −+

r,s

Y −−r,s Y ++
r,s

Table 6.8: Additional equivalences for the Yr,s singularities in the special
case r = s

T1 T2 Additional elements of P3(T1, T2)

Y ++
r,s Y +−

r,s

{
R(X + 1), if r ≡ 0 (mod 2) and a < 0

∅, elseY −+
r,s Y −−r,s

Y +−
r,s Y ++

r,s

{
R(X + 1), if r ≡ 0 (mod 2) and a > 0

∅, elseY −−r,s Y −+
r,s

114 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

Theorem 6.6.8. The structure of the equivalence classes of the Ỹr singular-
ities is as shown in Table 6.9 where in each case, l and s are given by

l := 2 · gcd(2, r + 1), and

s :=

{
+1, if r ≡ 0 (mod 4),

−1, else.

Table 6.9: P1, P2 and P3 for the Ỹr singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

Ỹ +
r Ỹ +

r C(X l − 1) R(X2 − 1)

{
R(X2 − 1), if r ≡ 1 (mod 2)

R(X − 1), if r ≡ 0 (mod 2)Ỹ −r Ỹ −r

Ỹ +
r Ỹ −r C(X l − s) R(X2 − s) ∅
Ỹ −r Ỹ +

r

6.6. Results 115

Theorem 6.6.9. The structure of the equivalence classes of the exceptional
unimodal singularities is as shown in Table 6.10.

Table 6.10: P1, P2 and P3 for the exceptional unimodal singularities

T1 T2 P1(T1, T2) P2(T1, T2) P3(T1, T2)

E12 E12 C0(X21 − 1) R0(X − 1) R0(X − 1)

E13 E13 C0(X15 − 1) R0(X − 1) R0(X − 1)

E+
14 E+

14 C0(X12 − 1) R0(X2 − 1) R0(X − 1)

E−14 E−14 C0(X12 − 1) R0(X2 − 1) R0(X − 1)

E+
14 E−14 C0(X12 + 1) ∅ ∅

E−14 E+
14 C0(X12 + 1) ∅ ∅

Z11 Z11 C0(X15 − 1) R0(X − 1) R0(X − 1)

Z12 Z12 C0(X11 − 1) R0(X − 1) R0(X − 1)

Z+
13 Z+

13 C0(X9 − 1) R0(X − 1) R0(X − 1)

Z−13 Z−13 C0(X9 − 1) R0(X − 1) R0(X − 1)

Z+
13 Z−13 C0(X9 + 1) R0(X + 1) ∅

Z−13 Z+
13 C0(X9 + 1) R0(X + 1) ∅

W+
12 W+

12 C0(X10 − 1) R0(X2 − 1) R0(X − 1)

W−12 W−12 C0(X10 − 1) R0(X2 − 1) R0(X − 1)

W+
12 W−12 C0(X10 + 1) ∅ ∅

W−12 W+
12 C0(X10 + 1) ∅ ∅

W+
13 W+

13 C0(X8 − 1) R0(X2 − 1) R0(X − 1)

W−13 W−13 C0(X8 − 1) R0(X2 − 1) R0(X − 1)

W+
13 W−13 C0(X8 + 1) ∅ ∅

W−13 W+
13 C0(X8 + 1) ∅ ∅

116 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

6.7 Interpretation of the Results

Looking more closely at Theorem 6.4.3 and Section 6.6, it turns out that the
structure of the equivalence classes is quite simple for some singularity types
whereas it is very involved for others. To describe this in more detail, let us
first consider the sufficient sets given in Theorem 6.4.3:

• It suffices to work with scalings of the form φ(x) = αx, φ(y) = βy as
coordinate transformations to figure out the structure of the equiva-
lence classes of the hyperbolic and exceptional unimodal singularities.
(To be precise, for Yr,s with r = s we also have to take into account
transformations of the form φ(x) = βy, φ(y) = αx where the variables
are swapped, cf. Table 6.2.)

• For the two parabolic types X9 and J10, scalings are not sufficient.
Instead, we have to consider more complicated transformations which
involve more terms.

• One can see from the proof of Theorem 6.4.3 that these differences
reflect the different shapes of the normal forms: The normal forms
of the hyperbolic singularity types listed in Table 6.2 are weighted
quasihomogeneous, those of the exceptional singularity types are semi-
quasihomogeneous. Both shapes turn out to be very restrictive w.r.t.
possible coordinate transformations. In contrast to this, the normal
forms of the parabolic types are quasihomogeneous and thus allow for
more freedom in this regard.

• The singularity type Ỹr is an exception. It is complex equivalent to
Yr,r, but it appears as a separate singularity type over R. There is no
degree-bounded sufficient set for the normal form of this type (cf. Re-
mark 6.5.9), so the computational methods described in Sections 6.5.1
and 6.5.3 do not work. Instead, we have to use other methods, cf.
Section 6.5.4.

As a consequence of the differences w.r.t. sufficient sets described above,
there are two general forms of equivalences as presented in Section 6.6:

• For the hyperbolic and the exceptional singularities, the equivalences
between different subtypes can be described by constant factors. More
precisely, if T1 and T2 are subtypes of the same hyperbolic or excep-
tional main singularity type, then there exists a finite set of constants
r1, . . . , rm ∈ C such that the equivalences between the normal forms
of T1 and T2 are exactly those of the form NF(T1(a)) ∼ NF(T2(ria))
with a ∈ C or a ∈ R as appropriate. Therefore we use the notations
C(p(X)), R(p(X)) and C0(p(X)), R0(p(X)) with p(X) ∈ C[X] (see
Definition 6.2.9) for the hyperbolic and the exceptional cases, respec-
tively, cf. Theorems 6.6.4 to 6.6.9.

6.7. Interpretation of the Results 117

• The equivalences which occur among subtypes of the two parabolic
singularity types X9 and J10 are much more involved and cannot be
written down in terms of constant factors. We describe them as joint
graphs of certain functions, cf. Theorems 6.6.1 and 6.6.2.

The results presented in Section 6.6 have consequences for the algorithmic
classification of the unimodal singularities of corank 2 over R. They are
indeed intended to be the first step in this direction. Once again, we can
distinguish between different cases. Note that the following remarks apply
to the classification over R and therefore only deal with real coordinate
transformations and real values of the involved parameters:

• In the exceptional cases, there are no equivalences between different
subtypes of the same main type and the value of the parameter is
uniquely determined, cf. Theorem 6.6.9.

• For the singularity types J10+k, X9+k, and Ỹr, there are no equivalences
between different subtypes of the same main type, but the parameter
can in some cases change its sign within the same subtype, cf. Theo-
rems 6.6.4, 6.6.5, and 6.6.8.

• For Yr,s, there are equivalences even between different subtypes. There-
fore the question which real subtype a given singularity of main type
Yr,s belongs to is not always well-posed, e.g., a singularity can be both
of type Y ++

5,7 and of type Y +−
5,7 . However, the first of the two signs is

always uniquely determined. The parameter can change its sign, but
its absolute value is uniquely determined, cf. Theorem 6.6.6.

• The structures of the equivalence classes of the two parabolic cases
X9 and J10 are the most complicated among all the cases discussed
here. There are equivalences between different subtypes and the pa-
rameter may change in non-trivial ways. For X9, the possible values
which a given parameter can be transformed to can be expressed as
rational functions of this parameter (cf. Theorem 6.6.1), whereas the
corresponding functions for J10 involve radical expressions (cf. Theo-
rem 6.6.2). Note that there are, however, no equivalences between the
subtypes X++

9 , X−−9 on the one hand and X+−
9 , X−+

9 on the other
hand, i.e. the product of the two signs which occur in the subtypes of
X9 is uniquely determined.

• It is a remarkable result that for any value of a ∈ R, the normal form
of J−10(a) is R-equivalent to the normal form of J+

10(a′) for some a′ ∈ R
while the converse is not true, cf. Theorem 6.6.2. In other words, the
real subtype J−10 is redundant whereas J+

10 is not.

To sum up, the normal forms which are listed in the classifications of the
unimodal singularitities over C and over R by Arnold et al. [4] cover the whole

118 Chapter 6. The Equiv. Classes of the Unimodal Real Singularities

space of unimodal singularities, but some of them are equivalent. There are
equivalences between normal forms for different values of the parameter and
also between different subtypes, to an extend that the subtype J−10 is even
redundant.

Bibliography

[1] G. Amdahl: Validity of the single processor approach to achieving
large-scale computing capabilities. In: AFIPS Conference Proceedings
30 (1967), pp. 483–485.

[2] E.A. Arnold: Modular algorithms for computing Gröbner bases. In: J.
Symb. Comp. 35 (2003), pp. 403–419.

[3] V.I. Arnold: Normal forms of functions in neighbourhoods of degener-
ate critical points. In: Russ. Math. Surv. 29.2 (1974), pp. 10–50.

[4] V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko: Singularities of
Differential Maps. Vol. I. Boston: Birkhäuser, 1985.

[5] M.F. Atiyah and I.G. Macdonald: Introduction to Commutative Alge-
bra. Reading, MA: Addison-Wesley, 1969.

[6] J. Böhm, W. Decker, S. Laplagne, and F. Seelisch: Computing integral
bases via localization and Hensel lifting. In preparation.

[7] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S.
Steidel: Parallel Algorithms for Normalization. In: J. Symb. Comp. 51
(2013), pp. 99–114.

[8] J. Böhm, W. Decker, C. Fieker, and G. Pfister: The use of bad primes
in rational reconstruction. To appear. 2013. url: http://arxiv.org/
abs/1207.1651.

[9] W. Bosma, J. Cannon, and C. Playoust: The Magma algebra system.
I. The user language. In: J. Symb. Comp. 24 (1997), pp. 235–265.

[10] W. Decker, G.-M. Greuel, and G. Pfister: Primary Decomposition:
Algorithms and Comparisons. In: Algorithmic Algebra and Number
Theory. Ed. by G.-M. Greuel, B.H. Matzat, and G. Hiss. Heidelberg:
Springer, 1998, pp. 187–220.

[11] W. Decker and F.-O. Schreyer: Varieties, Gröbner Bases, and Algebraic
Curves. Book in preparation.

[12] W. Decker, G.-M. Greuel, G. Pfister, and T. de Jong: The normal-
ization: a new algorithm, implementation and comparisons. In: Com-
putational methods for representations of groups and algebras. Essen:
Birkhäuser, 1999.

119

http://arxiv.org/abs/1207.1651
http://arxiv.org/abs/1207.1651

120 Bibliography

[13] D. Eisenbud: Commutative Algebra with a View Toward Algebraic Ge-
ometry. Springer, 1995.

[14] P. Gianni, B. Trager, and G. Zacharias: Gröbner Bases and Primary
Decomposition of Polynomial Ideals. In: J. Symb. Comp. 6 (1988),
pp. 149–167.

[15] H. Grauert and R. Remmert: Analytische Stellenalgebren. Springer,
1971.

[16] R.T. Gregory and P. Kornerup: Mapping Integers and Hensel Codes
onto Farey Fractions. In: BIT Numerical Mathematics 23.1 (1983),
pp. 9–20.

[17] G.-M. Greuel, S. Laplagne, and Seelisch. F.: Normalization of rings.
In: J. Symb. Comp. 45 (2010), pp. 887–901.

[18] G.-M. Greuel, C. Lossen, and E. Shustin: Introduction to Singularities
and Deformations. Berlin: Springer, 2007.

[19] G.-M. Greuel and G. Pfister: A Singular Introduction to Commuta-
tive Algebra. Second edition. Berlin: Springer, 2008.

[20] J.L. Gustafson: Reevaluating Amdahl’s Law. In: Communications of
the ACM 31.5 (1988), pp. 532–533.

[21] A. Hirano: Construction of plane curves with cusps. In: Saitama Math-
ematical Journal 10 (1992), pp. 21–24.

[22] N. Idrees, G. Pfister, and S. Steidel: Parallelization of Modular Algo-
rithms. In: J. Symb. Comp. 46 (2011), pp. 672–684.

[23] D. Jiang and J.P. Singh: Scaling Application Performance on a Cache-
coherent Multiprocessor. In: Proceedings of the 26th Annual Interna-
tional Symposium on Computer Architecture. IEEE Computer Society,
1999, pp. 305–316.

[24] T. de Jong: An algorithm for computing the integral closure. In: J.
Symb. Comp. 26 (1998), pp. 273–277.

[25] T. de Jong and G. Pfister: Local Analytic Geometry. Vieweg, 2000.

[26] A.R. Karlin, K. Li, M.S. Manasse, and S. Owicki: Empirical Stud-
ies of Competitve Spinning for a Shared-memory Multiprocessor. In:
Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles. ACM Press, 1991, pp. 41–55.

[27] K. Krüger: Klassifikation von Hyperflächensingularitäten. MA thesis.
University of Kaiserslautern, 1997. url: ftp://www.mathematik.
uni-kl.de/pub/Math/Singular/doc/Papers/diplom_krueger.ps.
gz.

[28] R. La Scala and M.E. Stillman: Strategies for Computing Minimal Free
Resolutions. In: J. Symb. Comp. 26 (1998), pp. 409–431.

ftp://www.mathematik.uni-kl.de/pub/Math/Singular/doc/Papers/diplom_krueger.ps.gz
ftp://www.mathematik.uni-kl.de/pub/Math/Singular/doc/Papers/diplom_krueger.ps.gz
ftp://www.mathematik.uni-kl.de/pub/Math/Singular/doc/Papers/diplom_krueger.ps.gz

121

[29] D.A. Leonard and R. Pellikaan: Integral closures and weight functions
over finite fields. In: Finite Fields and their Applications 9 (2003),
pp. 479–504.

[30] M.S. Marais and A. Steenpaß: The Classification of Real Singularities
Using Singular. Part I: Splitting Lemma and Simple Singularities.
Accepted for publication in: J. Symb. Comp. 2013.

[31] M.S. Marais and A. Steenpaß: The Classification of Real Singularities
Using Singular. Part II: The Structure of the Equivalence Classes of
the Unimodal Singularities. Submitted. 2014.

[32] G.E. Moore: Cramming more components onto integrated circuits. In:
Electronics 38.8 (1965).

[33] F.-O. Schreyer: A Standard Basis Approach to Syzygies of Canonical
Curves. In: J. Reine Angew. Math. 421 (1991), pp. 83–123.

[34] F.-O. Schreyer: Die Berechnung von Syzygien mit dem verallgemein-
erten Weierstrasschen Divisionssatz. Universität Hamburg. Diplomar-
beit. 1980.

[35] T. Shimoyama and K. Yokoyama: Localization and Primary Decom-
position of Polynomial Ideals. In: J. Symb. Comp. 22 (1996), pp. 247–
277.

[36] D. Siersma: Classification and Deformation of Singularities. PhD the-
sis. Univ. of Amsterdam, 1974. url: http://www.staff.science.
uu.nl/~siers101/ArticleDownloads/DissertationSiersma.pdf.

[37] A. Singh and I. Swanson: An algorithm for computing the integral
closure. 2009. url: http://arxiv.org/abs/0901.0871.

[38] I. Swanson and C. Huneke: Integral closure of ideals, rings, and mod-
ules. Cambridge University Press, 2006.

Software Systems

[39] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann: Singular
3-1-6 – A computer algebra system for polynomial computations. 2012.
url: http://www.singular.uni-kl.de.

[40] GAP – Groups, Algorithms, and Programming, Version 4.7.5. The
GAP Group. 2014. url: http://www.gap-system.org.

[41] D.R. Grayson and M.E. Stillman: Macaulay2 – A software system
for research in algebraic geometry. 2013. url: http://www.math.
uiuc.edu/Macaulay2/.

http://www.staff.science.uu.nl/~siers101/ArticleDownloads/DissertationSiersma.pdf
http://www.staff.science.uu.nl/~siers101/ArticleDownloads/DissertationSiersma.pdf
http://arxiv.org/abs/0901.0871
http://www.singular.uni-kl.de
http://www.gap-system.org
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/

122 Bibliography

Singular Libraries

[42] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Stei-
del: locnormal.lib. A Singular 3-1-6 library for the normalization
of affine domains using local methods. 2013.

[43] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Stei-
del: modnormal.lib. A Singular 3-1-6 library for the normalization
of affine domains using modular methods. 2013.

[44] W. Decker, S. Laplagne, G. Pfister, and H. Schönemann: primdec.lib.
A Singular 3-1-6 library for primary decomposition and radicals of
ideals. 2012.

[45] A. Hashemi, G. Pfister, H. Schönemann, A. Steenpaß, and S. Steidel:
modstd.lib. A Singular 3-1-6 library for computing Gröbner bases
of ideals using modular methods. 2014.

[46] N. Idrees, G. Pfister, A. Steenpaß, and S. Steidel: assprimeszerodim.
lib. A Singular 3-1-6 library for computing the associated primes of
a zero-dimensional ideal. 2014.

[47] K. Krüger: classify.lib. A Singular 3-1-6 library for classifying
isolated hypersurface singularities w.r.t. right equivalence. 2012.

[48] M.S. Marais and A. Steenpaß: realclassify.lib. A Singular 3-1-6
library for classifying isolated hypersurface singularities over the reals
w.r.t. right equivalence. 2012.

[49] A. Montes and H. Schönemann: grobcov.lib. A Singular 3-1-6 li-
brary for Gröbner covers of parametric ideals. 2012.

[50] G. Pfister and A. Steenpaß: primdec_parallel.lib. A Singular 3-
1-6 library for parallel primary decomposition. 2014.

[51] A. Steenpaß: modquotient.lib. A Singular 3-1-6 library for com-
puting ideal quotients and saturations using modular methods. 2014.

[52] A. Steenpaß: modular.lib. A Singular 3-1-6 library for modular
computations. 2014.

[53] A. Steenpaß: parallel.lib. A Singular 3-1-6 library providing an
abstraction layer for parallel skeletons. 2014.

[54] A. Steenpaß: resources.lib. A Singular 3-1-6 library for managing
computational resources. 2014.

[55] A. Steenpaß: tasks.lib. A Singular 3-1-6 library providing a parallel
framework based on tasks. 2014.

[56] E. Tobis: rootsur.lib. A Singular 3-1-6 library for counting the
number of real roots of a univariate polynomial. 2012.

Wissenschaftlicher Werdegang

06/2004 Abitur am Gymnasium Hammonense

10/2004 – 09/2009 Studium der Mathematik und Philosophie,

HU Berlin

07/2009 Diplom in Mathematik, HU Berlin

seit 01/2010 Doktorand bei Prof. Dr. Wolfram Decker,

TU Kaiserslautern

Curriculum Vitae

06/2004 Abitur at the Gymnasium Hammonense

10/2004 – 09/2009 Studies of mathematics und philosophy,

HU Berlin

07/2009 Diplom in mathematics, HU Berlin

since 01/2010 PhD studies with Prof. Dr. Wolfram Decker,

TU Kaiserslautern

123

	Preface
	List of Contributions
	List of Figures
	List of Tables
	List of Algorithms
	I Parallelization
	1 Singular's Parallel Framework
	1.1 General Introduction to Parallelization
	1.2 Implementation in Singular
	1.2.1 Task-Oriented Design
	1.2.2 User Interface
	1.2.3 Transparency and Responsiveness
	1.2.4 Recursive Usage
	1.2.5 Resource Management
	1.2.6 Data Transfer
	1.2.7 Performance and Stability
	1.2.8 Outlook

	2 Parallel Algorithms for Normalization
	2.1 Introduction
	2.2 The GLS Normalization Algorithm
	2.3 Normalization via Localization
	2.4 Modular Methods
	2.5 Timings

	3 Parallel Primary Decomposition
	3.1 The Algorithm of Gianni, Trager, and Zacharias
	3.2 A Parallel Algorithm for Primary Decomposition
	3.2.1 The Zero-Dimensional Case
	3.2.2 Verification
	3.2.3 Modular Methods
	3.2.4 Trivially Parallelizable Parts

	3.3 Timings

	II Syzygies
	4 New Algorithms to Compute Syzygies
	4.1 Introduction
	4.2 Schreyer's Syzygy Algorithm
	4.2.1 The Induced Ordering
	4.2.2 Schreyer's Theorem
	4.2.3 Schreyer Frame

	4.3 New Algorithms
	4.4 Example

	III Real Singularities
	5 Algorithmic Classification of the Simple Real Singularities
	5.1 Introduction
	5.2 Prerequisites
	5.2.1 Equivalence
	5.2.2 The Milnor Number
	5.2.3 The Determinacy
	5.2.4 Results Regarding the Factorization of Homogeneous Polynomials over R and Q

	5.3 The Splitting Lemma
	5.4 The Real Classification of the Residual Part w.r.t. Stable Equivalence
	5.4.1 A_1
	5.4.2 A_k, k > 1
	5.4.3 D_4
	5.4.4 D_k, k > 4
	5.4.5 E_6

	6 The Structure of the Equivalence Classes of the Unimodal Real Singularities up to Corank 2
	6.1 Introduction
	6.2 The Sets of Parameter Transformations P_1, P_2, and P_3
	6.3 Weighted Jets and Filtrations of Power Series and Transformations
	6.4 Sufficient Sets of Transformations
	6.5 On the Computation of the Results
	6.5.1 How to Compute P_1(T_1, T_2)
	6.5.2 How to Compute P_2(T_1, T_2)
	6.5.3 How to Compute P_3(T_1, T_2)
	6.5.4 The Special Type Y_r

	6.6 Results
	6.7 Interpretation of the Results

	Bibliography

