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Abstract

Researchers and analysts in modern industrial and academic environments are faced with
a daunting amount of multivariate data. While there has been significant development
in the areas of data mining and knowledge discovery, there is still the need for improved
visualizations and generic solutions. The state-of-the-art in visual analytics and exploratory
data visualization is to incorporate more profound analysis methods while focusing on
improving interactive abilities, in order to support data analysts in gaining new insights
through visual exploration and hypothesis building.

In the research field of exploratory data visualization, this thesis contributes new
approaches in dimension reduction that tackle a number of shortcomings in state-of-
the-art methods, such as interpretability and ambiguity. By combining methods from
several disciplines, we describe how ambiguity can be countered effectively by visualizing
coordinate values within a lower-dimensional embedding, thereby focusing on the display of
the structural composition of high-dimensional data and on an intuitive depiction of inherent
global relationships. We also describe how properties and alignment of high-dimensional
manifolds can be analyzed in different levels of detail by means of a self-embedding hierarchy
of local projections, each using full degree of freedom, while keeping the global context.

To the application field of air quality research, the thesis provides novel means for
the research of aerosol source contributions. Triggered by this particularly challenging
application problem, we instigate a new research direction in the area of visual analytics
by describing a methodology to model-based visual analysis that (i) allows the scientist to
be “in the loop” of computations and (ii) enables him to verify and control the analysis
process, in order to steer computations towards physical meaning. Careful reflection of
our work in this application has led us to derive key design choices that underlie and
transcend beyond application-specific solutions. As a result, we describe a general design
methodology to computing parameters of a pre-defined analytical model that map to
multivariate data. Core applications areas that can benefit from our approach are within
engineering disciplines, such as civil, chemical, electrical, and mechanical engineering, as
well as in geology, physics, and biology.
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CHAPTER 1

Introduction

“Applications trigger new basic research problems.” - Hans Hagen

Simulation and experimental data acquisition enable scientists and engineers to gather vast
amounts of data. Thereby, more and more application domains are producing progressively
larger and inherently more complex (multivariate) data sets. Visualization, the first and
foremost step of data analysis, is presented acute challenges by multivariate data because
its full depiction requires more degrees of freedom than what is feasible for physical display
devices, as well as for human perception. Visualization is to find visual representations of
this data that are comprehensible to the user and feasible to the user’s tasks and goals.
While conveying as much information within the data as possible, this amounts to no small
scale of abstraction and approximation. Thereby, the challenge lies in finding solutions
that are scalable, interpretable, and interactive. This thesis addresses novel techniques for
explorative and model-based visual analysis that meet these challenges.

Working closely with application scientists and engineers, this research combines domain
expertise from key disciplines, such as machine learning, human-computer-interaction, and
visualization, to develop fundamentally new methodologies that are required to support
interactive visual data exploration and analysis. The thesis contributes to the research
field by methods in two topics: explorative and model-based visual analysis.

In ezxplorative visual analysis, the focus is laid on utilizing dimension reduction for the
visualization of high-dimensional data. Dimension reduction finds an optimal representation
of points in lower-dimensional space that best reflects the inherent properties, such as
variance or similarity, of points in high-dimensional space. The benefit is hereby that these
techniques are scalable and highly intuitive in terms of their visual representation, for
example, for identifying outliers or groups in the data. Complemented with higher-detail
views, dimension reduction can facilitate a powerful interface for explorative visual analysis.

Nevertheless, state-of-the-art methods for dimension reduction also have a number of
shortcomings, such as ambiguity, by which the applicability of the technique immensely
suffers. This is inherent by concept, as the abstraction of complex proximity relationships
yields approximation errors that are not conveyed in the point arrangement of projections.
Such ambiguous projections, for example, showing a group of points being very close that
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are actually far apart in high-dimensional space, can easily lead to wrong conclusions
about the data set. Based purely on point arrangement, projections are generally hard
to interpret for scientists as they do not convey actual data values or ways to ascertain if
the global layout reflects local properties of the data. With the limited degrees of freedom
available to map high-dimensional data, these problems can, in all likelihood, not be solved
from a mathematical point of view.

However, we show in this work that such shortcomings can in fact be countered effectively
by combining methods from different disciplines to aid in the visual representation of
dimension reduction. We describe how concepts of information visualization may be used to
gain additional degrees of freedom in lower-dimensional embeddings, or to help with better
interpretability and interactivity in adjusting both view and model of the lower-dimensional
mapping. Incorporation of level-of-detail approaches for data abstraction and new concepts
for visual verification to evaluate the error and ambiguity of a mapping are further essential
approaches by which we improve existing work. In particular, this thesis contributes
two novel methods that render dimension reduction more interpretable, interactive, and
effective in the context of explorative visual data analysis.

The first method [ERHH11, REM*12, EHHR13] incorporates data values within the
lower-dimensional embedding to enhance analytical capabilities, illustrate the structure of
the data, and counter ambiguity of lower-dimensional projection. It is the first method to
achieve an embedding of coordinate values within dimension reduction and incorporates
many intuitive interaction mechanisms to analyze and explore high-dimensional data. The
second method [EKHS14] utilizes graph abstraction techniques to achieve a dimension
reduction that incorporates different levels of detail. Thereby, the user is able to explore
high-dimensional data in different levels interactively by traversing a hierarchy of con-
secutive self-embedding projections corresponding to compositional sub-regions of the
high-dimensional manifold. Both methods represent fundamentally new algorithmic and
analytical approaches of explorative visual data analysis.

In addition to our contributions in explorative visual data analysis, we describe a funda-
mentally different and new visualization approach that we call model-based visual analysis.
Our work was triggered by the application of air quality research, where collaborating
research partners have the task to characterize chemical constituents within airborne
particles based on data acquisition by single particle mass spectrometry (SPMS). As of
now, no visualization method was able to depict these results in a comprehensible manner
that would facilitate the analytical task. Measurements provided in form of mass spectra
represent complex mixtures of various sources. The goal of visual analysis is to extract
these sources that constitute the individual particles in form of latent variables of the data.
However, as both mass spectrum and mixture model are non-negative, common methods
of dimension reduction, such as spectral decompositions, are not applicable to this task.
Further, neither the visualization of the mass spectra nor the within comprised features
would facilitate the analytical task of characterizing the intermixing of each individual
particle.

In contrast to previous work conducted in explorative visual analysis, the analytical goal
of the application is not merely to explore or comprehend their data, but to conduct an



analysis based on a specific model. Visualizing this analytical interpretation of the data
cannot be facilitated by the methods for data exploration. In particular, methods like
independent component analysis fail to portray the physical mixture model of particle
constituents. Hence, results are not meaningful in terms of atmospheric processing and
not useful to atmospheric scientists. Methods for data clustering cannot handle the subtle
differences between chemical constituents and cannot unravel ambiguity in the data known
as isobaric interference. As a consequence, data analysis in the domain has involved a
copious amount of manual investigation by the scientist - a highly time consuming and
subjective process.

Triggered by this application problem, our work instigates a fundamentally new basic
research direction for visualization: model-based visual analysis. Dealing effectively with
this problem necessitates the practical need for visualizing the analytical reasoning of
an optimization process that is specifically designed to map to the application’s analysis
model. Our methodology entails a visual interface to this optimization that (i) allows the
scientist to be “in the loop” of computations and (ii) enables him to verify and control the
optimization process, in order to steer computations towards physically and mathematically
correct interpretable results.

The model for the intermixing of chemical constituents is incorporated both in the visual
representation, as well as in the semi-automatic analysis process [EGG*12]. Approximation
errors, that are a necessity to the non-convex optimization process, are further analyzed
in a new methodology based on the information content of the feature basis and visually
presented to the analyst in an explorative visualization [EHH*13]. These methods have
been integrated in a single framework for the visual analysis of SPMS data, tested, and
evaluated in the application area, serving as a proof of concept. Using this framework, our
collaborators have been able to (i) reproduce established findings in mere a fraction of the
time, (ii) process and analyze considerably more data than in previous studies, and (iii)
gain new insights enabled by the visualization.

The outstanding success of our methodology in the application of air quality research
naturally prompts the question of its applicability to other domains. We evaluate this
potential and describe the general design choices that underlie and transcend beyond our
application-specific solution [EHHS14]. The task facilitated by this methodology is gener-
alized to computing parameters of a pre-defined analytical model that map to given data.
To achieve this task, our methodology represents an interdisciplinary and integral approach
involving mathematical modeling, machine learning, visualization, and human-computer
interaction. In particular, it involves the incorporation of the scientist in every step of both
the design and the usage of the final system. With the generalization to model-based visual
analysis, our goal is to provide guidelines for the design of tools that can help scientists
solve mathematically ill-posed problems in a semi-automated manner, where the computer
does the “heavy lifting” and maintains unsubjective mathematical rigor, while the scientists
oversees and steers computations towards physical meaning. A broad range of application
areas could be identified for our approach.

The manuscript is structured as follows. Chapter 2 introduces the bare minimum basic
concepts in terms of mathematical, visual, and analytical approaches for high-dimensional
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data by summarizing established principles. Chapter 3 and Chapter 4 describe our own
work in the area of explorative and model-based visual analysis, respectively. Within each
chapter, the sections consecutively build on one another, while the order of chapters reflect
both the level of user involvement and knowledge of the field needed to follow the work
described.



CHAPTER 2

Fundamental Concepts

This section summarizes fundamental concepts and related work in the scope of this thesis.
It includes basic notations and conventions used throughout this manuscript. After a brief
overview of the mathematical background, the key concepts of multivariate analytics and
visualization are presented.

2.1 Mathematical background

It is assumed that the reader is familiar with standard concepts of point, vector, and
matrix operations. This section merely gives a brief overview of the essential mathematical
background needed for multivariate data analysis and recapitulates some of the main
definitions.

2.1.1 Matrix algebra

A matriz A represents a rectangular array of elements with n rows and m columns,
n,m € N, of order (n x m). The element in the ith row and jth column is referred by a; ;,
whereas a; o refers to the entire ith row, a (1 X m) matrix, and a, ; refers to the entire jth

column, given by a (n x 1) matrix. The matriz product C' of matrices A and B is defined
by

Cij = i X bej = Z ik bl (2.1)
1<k<p

for 1 <i<n,1<j<m and the orders stated below.

boo  bom
|:a0’0 . ao’p:| % . . _ |:C(]70 CO,m]
ano --- Qnp ’ ) Cn,0 Cn,m
bp70 bp,m
(n xp) (p xm) (n x m)

Matrix multiplication is associative, i.e. A(BC) = (AB)C, but not commutative, i.e.
AB # BA in general. The transpose matriz AT of a matrix A is obtained by interchanging
its rows and columns. Also, a square matriz (n x n) is said to be symmetric if A = AT,
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thus a;; = a;; for 1 <4,j7 < n. The identity matriz I is a square matrix for which the
diagonal entities a;; are unit measures, e.g. 1, and other entries are zero, a; ; = 0 for 7 # j.

A m-dimensional point represents a (1 x m) matrix P, whereas the transpose P of order
(m x 1) equals its corresponding position vector. Throughout this work, we conveniently
interpret a vector v € R™ as the position vector of a point P € R™. For the purpose of
this manuscript, the interchanging of terminology between point and vector, thus, refers to
the transposition of the underlying matrix. Further, the length of a point P € R™, also
known as the Euclidean norm, refers to the Fuclidean distance from the point’s positional
vector v to the origin and is defined as

lolla = [ > w2 (2.2)

1<i<m

Vectors vy, v2 € R™ are said to be orthogonal to each other when

vl X vy =0 (2.3)

and orthonormal to each other when

vl X vp = vl X vy = 1. (2.4)
A set of vectors vy, ..., v, are said to be linearly dependent if constants cq,...,c, can be
found such that

cavi+--4cp v, =0. (2.5)

This implies that at least one of the vectors can be expressed as a linear combination of
the other vectors, thus implying redundancy. If no such constant can be found, the set is
said to be linearly independent.

The rank of a square Matrix A is defined as

rank(A) = number of linearly independent rows of A

= number of linearly independent columns of A. (2.6)

Thus, a matrix of order (n x n) with rank n shows no redundancies in the sense that none
of its columns could be expressed by a combination of its other columns, while the same
holds for its rows.

The trace of a square matrix A of order (n x n) equals the sum of its diagonal entries,
denoted as

trace(A) = Z Qi (2.7)

1<i<n

For the determinants of square matrices A and B holds that
o det(A) = det(AT)
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o det(AB) = det(A)det(B)

Particularly, consider a square matrix A, for which a decomposition of the form A = PLU
exists, so that P is a permutation matrix, L a lower triangular matrix with diagonal entries
l;; =1 and U is a upper triangular matrix. Then the determinant of A equals the product
of the diagonal entries of U, thus

det(A) = ] wis (2.8)

1<i<n

This decomposition is generally referred to as LU decomposition. The above stated
definitions have been derived from [CC80] and [Har08].

2.1.2 Eigenvectors and eigenvalues

In the following, we describe how eigenvectors and -values of matrices represent characteristic

properties of their matrices. A matrix A is said to have an eigenvector v with an eigenvalue
Aif

Avy=A~. (2.9)

Square matrices of order (m x m) can have up to m linearly independent eigenvectors
~vi € R™ with such corresponding eigenvalues. Naturally, A v/ = X «/, for an infinite
number of vectors 7/ that are linear dependent to ~y, so that Ay = X+/. Thus, ~ is often
chosen with unit length, ||y||]2 = 1. For square symmetric matrices, the eigenvalues \;
are real and their eigenvectors are mutual orthogonal to each other, forming a coordinate
system.

Eigenvectors can be interpreted as vectors whose orientation does not change by the
application of the belonging matrix in form of a transformation. The orientation therefore
represents a characteristic feature of the matrix. The amount of scaling, given by the
eigenvalues, represents a quantification of this characteristic feature. Figure 2.1 illustrates
this interpretation.

The number of eigenvalues A; # 0 equals the rank of the matrix. An analogous definition
of eigenvectors and eigenvalues is given in [FHO8] by

A=rATT, (2.10)

which is called the eigendecomposition of A, whereas I' is the matrix of column wise
arranged eigenvectors and A is the diagonal matrix of eigenvalues. Thus, for a (m x m)
matrix A,

I'= (v1,..,ym) and
A= ()\i)lgigm = diag()\l,...,/\m). (2.11)
(2.12)

There is a relationship between the determinant, trace and eigenvalues of a square
matrix A, which should be noted. The trace of a (m x m) matrix A equals the sum of its
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Figure 2.1: Geometric interpretation of eigenvectors as transformation invariant orientations,
scaled by their corresponding eigenvalues.

eigenvalues,

trace(A) = Z i (2.13)

1<i<m

whereas the determinant of A is given by the product of its eigenvalues,

det(A) = J[ M (2.14)

1<i<m
For a more detailed consideration, see [Har(08].

2.1.3 Statistics

In the following, we introduce the essential techniques of descriptive statistics that are
the basis of multivariate analysis. For more information, [Ren02] is recommended. We
consider input data given in the form of a (n x m) matrix

11 o Tim
X=1... ... ... (2.15)

Inl - Tnm,

where each row represents one m-dimensional data element. The n data elements are
considered as random samples with m variables. The n x m observations are object to
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statistical analysis and description techniques. Throughout this work, we consider only
continuous variables. We handle X as observation data and are only interested in the
properties of the given multivariate samples, not their population. Thus, when referring to
a variable’s properties, we are considering the properties of the observations of this variable
throughout all samples.

Given n m-dimensional data elements by a (n x m) matrix X, we consider n samples,
each containing m observations (scalar values). We define the (sample) mean of a variable
y;, 1 < j < m as the arithmetic average of n observations 1 j, ...,z j, given by

1
Y = ﬁ Z Zj j- (216)
1<i<n

We denote the mean of X as the m-dimensional point

X =1, Um), (2.17)

having the variable means in each corresponding coordinate. It represents the geometric
center position of the n points in m-dimensional space. Similarly, min(X) is referred to as
the geometric minimum point (min(y1), ..., min(ym)).

Furthermore, a variable y; is said to be centered if

> (i —7) =0 (2.18)

1<i<n

and analogously, X is said to be centered if all its variables are centered.
The standard deviation sy, of a variable y;, 1 < j < m, is defined as

Y i<cicn (Tij —T5)?
syj:\/ == nj . (2.19)

It gives a measure of deviation, regarding the arithmetic mean distance over all the
observations of a variable to the variable’s mean.
A similar descriptor is given by the variance sj2» of a variable y;, 1 < j < m, defined as

)2
(i — T
832/_ _ Zlgzgn( 2¥) ]) ) (220)
i n
It is the square of the standard deviation and therefore gives no exact distance measure.

The above listed measures of spread are concerned with a single variable. For multi-
variate analysis, it is often important to investigate the relationship between two variates.
Covariance is a measure of how one variable’s variance relates to another variable’s variance.
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Figure 2.2: Geometric interpretation of the statistical descriptors. The data’s mean X, its
variables’ mean y1 and 73, their standard deviation s,, and sy,, as well as their correlation
1,2 is displayed.

The covariance s; ; of two variables y; and y;, 1 < 4,57 < m, is defined as

sij = Zlgkgn( ki — vi)( k,j y])' (2.21)

Note that the covariance of two equal variables is its standard deviation, thus s;; = 532/1-'
With all m variables, we form a covariance matrix S of order (m x m) with entries s; ;
as covariances for each combination of variables. For a centered (n x m) data matrix X,

we find that

s—Lx7Tx (2.22)
n
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Note that covariance is translation invariant regarding different means. However, it is
scale dependent regarding different spreads. If one is interested in a measure of linear
relationship between two variables, that is scale invariant, the correlation between them is
a better descriptor. The correlation r; ; of two variables y; and y; is obtained by dividing
the variables’ standard deviations s; and s; from the covariance s; ;, thus

rij = el (2.23)
S Sj
In this regard, correlation can be seen as a standardized covariance, where a correlation of
1 indicates full correlation, 0 none and -1 opposed correlation.

However, if all variables share the same scale, covariance gives a sufficient comparison
of the linear relationship between two variables. Consider two n-dimensional vectors
v; and v;, accounting for the n observations in the centered variables y; and y;, i.e.
v; = (%145 — Ui, ---» Tn,i — Ui), vj analogous. Let o be the smaller angle between them. We
find that the cosine of o equals the correlation of y; and y; [Ren02], since

vv—i—vv vi —v) (v, — v Ty
7“7;73':0080— 7 J (] z) ( 2) _ Uz UJ (2.24)

24/ (vlv;) U vj) /ol ,/vavj

Hence, if v; and v; are perpendicular to each other, the cosine of the angle between them is
zero. Therefore, y; and y; show no correlation in the data. To illustrate a zero-correlation,
consider that

v v = g Tk Ty =0

1<k<n

follows from their orthogonality and the above sum being zero states, that for any observa-
tion z; # 0, 21, ; = 0 and vice versa.

2.2 Visual approaches

This section addresses the visual representation of multivariate data. Ideally, such a
representation allows the viewer to visually identify all coordinates for any number of
dimension and for any number of elements. This task is most likely infeasible. Instead, we
discuss different approaches their corresponding foci.

Most visualization techniques focus on one of two things - being feasible to visualize a
high number of relatively low dimensional elements, or being able to account for a lower
number of very high dimensional elements. One of the main issues in these techniques is
deriving a good representation for coordinates. Since physical display devices can only
facilitate a maximum of three dimensions, one can no longer represent the coordinates
of higher-dimensional objects by its position within a scene. Instead, one has to derive
a new representation that accounts for all possible coordinates of an object for any
number of dimensions. This is a typical problem of information visualization, where one is
concerned with finding meaningful representations for non-scientific data. On the other
hand, most multidimensional data is scientific. This work is concerned with continuous real
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multidimensional data resulting from scientific measurements. The data is interpretable by
metrics and describable by statistical or analytical methods.

The aspects involving the visualization of multidimensional data could therefore be
separated into the representation of multidimensional objects and the appliance of analytical
methods to simplify, summarize and abstract, as well as the supply of a framework that
allows an interactive, exploratory data investigation. In this regard, multidimensional
visualizations may be seen as part of visual analytics or exploratory data analysis. This
section introduces the most common visualization techniques for multidimensional data,
discusses their advantages and drawbacks, and provides further references.

Although many techniques apply to categorical data as well, we focus on visualization
techniques for tables of numerical data. These so called table visualizations have been
categorized by several surveys, e.g. [HG97], [GTCO01], or [AdO04], which represent the
main sources of this section. Ward et al. have also given an excellent summary of existing
techniques in this field [WGK10].

2.2.1 Heatmaps and Multiple Linegraphs

Heatmaps and Multiple Linegraphs may be considered as one of the most basic table
visualizations. Given a table of n m-dimensional numerical data, these visualization
techniques represent the data through a substitution of the numerical values by colors and
line segments, respectively.

Line Graphs are commonly used to display piecewise continuous functions of one variable.
Multiple Line Graphs gives the name to the technique of mapping m functions over each
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Figure 2.3: Multiple Line Graphs visualization of the ASA car specs data set. Data values
are visualized as piecewise continuous functions per variable. Image courtesy of [GTCO1].
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Figure 2.4: Heatmap visualization of the iris flower data set. This technique encodes data
values in color space, while keeping the basic layout of a table. Image courtesy of [GTCO1].

corresponding column, representing the observations in this variable as connected line
segments. Each line graph is laid out horizontally with the discretized dimension over the
number of observations and with the vertical continuous dimension (scaled to a specific
height) for the mapping of the observations’ numerical values. The high familiarity with
this data representation accounts for an intuitive readability.

Instead of using the vertical dimension for the plotting of numerical values, Heatmaps use
color as their dimension to represent numerical values. Numerous possible color mappings
can be chosen to represent values by colors. This technique can be considered as one of the
first information visualization techniques in computer graphics and is still used extensively
because of its intuitiveness and efficient pattern recognition abilities. Several extensions
have been developed, such as Survey Plots [Loh95] and Table Lens [RC94|. Their efficiency
can be greatly improved by a meaningful ordering of the columns and rows.

Since lines and colors are a more feasible form for human perception than numerical
values, these techniques enhance the readability of numerical data tables. The average
viewer is more likely to recognize patterns in these pictures compared to reading the original
table of numerical values. However, for many dimensions and elements, the representation
takes up a lot of space and comparison becomes harder. While the overall value distribution
in each variable may be displayed in an intuitive fashion, further analysis of the data may
find its limits for this representation.

2.2.2 Glyphs and Icongraphic displays

Glyphs and icons are common techniques in information visualization. Usually each object
is designed to express a number of features equal to the dimension of the data and represents
a single data element. One of the most famous examples are the Chernoff faces [Che73],
where data dimensions are mapped to facial features. These features are facial attributes
like angles, width or length of eyes, nose, mouth or eyebrows.

The human ability to precisely distinguish an enormously broad range of facial charac-
teristics make this technique potentially very suitable for encoding very high dimensional
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Figure 2.5: Exemplary Chernoff Faces. Data values are encoded in attributes of facial
features, such as mouth width, each corresponding to a dimension. Image courtesy of [GTCO01].

data points in an extremely low space-taking representation.

Another type of glyph and icon visualization encodes distinctive patterns in a texture
that is to represent patterns in the data. Similar to a Chernoff face, a single icon, also
known as a stick figure, shows a distinct layout for a feature set and represents one data
element [PG88]. These icons are then packed together in a dense display, thus mapping
the dimension values of the data onto features of the resulting texture.

Other techniques include Recursive Patterns [KAK95] and Dimensional Stacking [WLT94],
where dimensions are embedded within other dimensions. By these embeddings, the re-

GREGRAE
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Figure 2.6: Icongraphic displays encode data values in icon features, thereby, mapping
patterns in the data to patterns of the resulting texture. Image courtesy of [PG88].
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Figure 2.7: Scatter plot matrices show projections of the data along the data dimensions.
The diagonal shows the distribution of each dimension. Image courtesy of [GTCO1].

sulting displays encode an imposed hierarchical structure of the data. Whereas differences
between data points can be recognized very easily by the means of these visualization
techniques, however, the quantification of the original coordinates by the viewer usually
faces a problem.

2.2.3 Scatter plot matrices

The well-known 2D scatter plot is probably the most commonly utilized visualization
technique for 2D points in Euclidean space. Mappings and transformations can freely be
applied to the point projection. When more (non-spatial) attributes are associated with
each point, one usually encodes these by the display of objects (instead of points) with an
equal number of associated attributes, e.g., color, size, or shape.

One of the earliest techniques for displaying m-dimensional data was the scatter plot
matrix. This (m x m) matrix of 2D scatter plots contains m(m — 1)/2 scatter plots,
each plotting one pairwise combination of dimensions. Over time, numerous variants and
extensions have evolved. Often, diagonal plots show the data’s distribution in the specific
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Figure 2.8: Parallel Coordinates visualization of the iris flower data set. Data points are
visualized as piece-wise linear functions, thereby, revealing patterns and outliers quickly. Image
courtesy of [GTCO1].

dimension, for example by a histogram. Other variants are, for example, hyperbox [AC91]
or prosection [STDS95].

Techniques that allow the visual linking of features from one plot to another greatly
improve the readability of the plots, as well as analytical processes. It is such interactive
techniques, which make a scatter plot matrix suitable for data mining. However, without
such linking and highlighting enhancements, the scatter plots become hard to compare
and one might quickly lose focus in analysis.

2.2.4 Parallel Coordinates

Inselberg’s Parallel Coordinates [ID90] belongs to the most famous visualization techniques
in information visualization. The core idea is to represent multidimensional points by
the means of a projective coordinate system, in which uniform coordinate axis for each
dimension are placed in parallel to each other. Points are then represented by polygonal line
chains, which intersect the parallel axis, mapping the point’s coordinate in the respective
dimension.

More formally, the coordinate system constructed for the representation of m-dimensional
numerical data, can be described as follows. On the two-dimensional projective xy-plane
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(titled as P™), m lines, so called parallel coordinate axes y1, ..., ym, are placed sequentially
along positive x direction, in parallel, equidistant and perpendicular to the z axis. In
addition, the parallel axes have the same positive orientation than the y axis and yq, as
the first axis of the sequence, is defined by x = 0. With d being the distance between the
parallel axes, a point p € R™ is represented by the polygonal line [ having the vertices
(d(i —1),p;), for 1 < i <m, in zy-coordinates.

Inselberg claims that the value of his technique can only be fully appreciated, when
the dualities between the projective parallel space P? and the Euclidean space R? are
considered. A good summary of the dualities between P? and R? is given by [Hin88],
[Ins85] and [ID94], as described in the following.

The fundamental duality is given by the fact that points in R? map into lines in P2,
whereas lines in R? map into points in P?. The latter observation is given by the fact that
a set of infinitely close points, forming a line in R?, map into a set of infinitely close lines,
intersecting in a single point in the projection plane of P2.

This relationship can be explicitly expressed by conveying the definition of the implicit
line formed by the points in R? directly to the point’s coordinates in P?. For a line
l:y=mz+bin R?, with m < oo, the points on [ form an infinite family of lines, which
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Figure 2.9: Dualities of Parallel and Euclidean space: A (point-) line is mapped to a (line-)
point and a (point-) curve is mapped to a (line-) curve. Image courtesy of [ID94].
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Figure 2.10: Star Plot visualization of the iris flower data set. Data is mapped on closed
piece-wise line segments along circularly arranged coordinate axes. Image courtesy of [GTCO01].

intersect in the point (d/(1 —m),b/(1 —m)), for m # 1, in P2, Furthermore, vertical lines
[ 1y = c are mapped to (0,c). Whereas, for lines with m = 1, the notion of an ideal point
is derived, for which the corresponding parallel lines intersect at the slope y/x = b. Other
dualities include that a conic (point) curve in R? is mapped to a conic line curve in P?,
defined by the lines representing tangents to the curve. For example, an ellipse in R? is
mapped to an hyperbola in P2, as shown in figure 2.9 [ID90].

Transformations also show interesting dualities. Rotations in R? map to translations
in P? and vice versa, making a transformation, that is visually hard to detect in R?,
easier to detect in P?. For a detailed discussion of these geometric dualities as well as the
consideration of multidimensional space, the reader is referred to [Ins09a]. These interesting
geometric properties of P, together with the fact that the data presentation with its
uniform treatment of dimensions, is very intuitive and easy to understand, have made this
technique very successful. However, some major drawbacks should be mentioned. The
needed display space to represent multidimensional data increases linearly to the number
of dimensions. More profoundly, for a sizable number of data elements, the line chains
become increasingly visually cluttered and hard to compare. Furthermore, its effectiveness
for detecting features in the data is highly dependent on the dimension ordering, i.e. the
sequential ordering of the parallel axis.

However, over the past decades, many advances in the visual representation have been
made, especially in enhancing cluster detection and selection highlighting. These techniques
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well exceed the common alpha blending and edge-bundling, as well as the limits of this
work. Examples include [HLDO02], [HW09], [YGX*09], [AdO04], [MWO02] or [MMOS].
Closely related, though not quite as famous, is a technique named Circular Parallel
Coordinates [HG97], also known as Star Plots. Although they can be considered as glyphs,
they are introduced in the following to highlight the similarity to dimensional anchor
visualizations, discussed in the next section.

As the name suggests, circularly arranged coordinate axes are utilized to represent
multidimensional data points. The analogy of a Star Plot derives from the presentation of
a point in R’ by a closed polygonal line chain, which may look like a star for some points.
Analogous to Parallel Coordinates, the polygonal line intersects each dimension axes at
their corresponding coordinate value. The technique is restricted to positive real data,
as most representations that use circularly arranged dimension axes. Similar to Parallel
Coordinates, Star Plots become cluttered for many data elements and its effectiveness is
dependent on the arrangement of the dimensions.

2.2.5 Dimensional Anchor visualizations

Inspired by Parallel Coordinates, many other techniques have been developed that treat
dimensions uniformly and represent them in form of a line or a direction in space. The
following techniques can be categorized as Dimensional Anchor visualizations [HGP99],
whereas a dimensional anchor corresponds to a single dimension. The anchor is usually
represented by a line, whereas its position, length and orientation play an essential part for
the data projection. Often, such anchors are circularly arranged position vectors, which
makes the visualization one of the most compact regarding the needed display space.

Dimensional Anchor Visualizations typically project a multidimensional data element as
a single point onto (usually two-dimensional) space, whereas the point’s position within
the projection hints to its coordinates. This high abstraction level has the benefit that the
representation can account for many data elements without cluttering the display. However,
since the point positions in such a projection are highly ambiguous, the visualization can
lead to misinterpretations of the data. The amount of enlightenment that derives through
this data display is highly dependent on the effectiveness of the chosen projection.

Star Coordinates [Kan00] are associated with this category of visualizations. They feature
a basic, yet intuitive projection technique. Each dimension is represented by circularly
arranged position vector, a dimensional anchor. The projection of an m-dimensional data
element is found by the linear combination of these vectors multiplied by the numerical
values in the corresponding dimensions. Star Coordinates offer simple but very powerful
interaction and the possibility for enhancement. The technique is formally introduced in a
later chapter.

RadViz [HG97] (Radial Coordinate Visualization), also belongs into the category of
dimensional anchor visualizations. RadViz uses spring constants to find the position of the
projected data points. Illustratively, each data point has m springs attached to it, each
located at the end of the corresponding dimensional anchor. The springs’ force equals its
coordinate in the dimension. The data point is projected to the position that has a sum of
zero total spring forces.

PolyViz [HG97], as well as its extension XRadViz [HGP99], are similar techniques. Here
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Figure 2.11: RadViz visualization of the iris flower data set. Data points are projected using
spring forces from anchors arranged on a circle. Image courtesy of [HG97].

the anchors are arranged as line segments of a polygon, showing the data’s distribution in
the dimension along each line segment. However, the data elements are projected as in
RadViz.

2.2.6 Other techniques

Projection Pursuit [GTCO1] is another interesting technique. As the name would already
suggest, the purpose of Projection Pursuit lies in finding good data projections that account
for sought-after data properties. The user may choose, possibly with the help of analytical
methods, to define a curve in multidimensional space that is of particular interest. The
technique then generates a sequence of projections by moving a projection plane along this
curve.

A quite different projection technique is a method called Andrew’s Curves [And72].
Similarly to a Fourier transformation of a data point, the method plots a curved line for
each data point (z1, ..., Zy,), using the following function:

e
V2  sin(t)  cos(t)  sin(2t)  cos(2t)

ft) =

Plotted for in the interval [—II, IT], f can represent many dimensions and highlight clusters
within the data in a visually appealing way. However, for large data sets, computation
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Figure 2.12: Andrew’s Curve visualization of the iris flower data set. Data points are
visualized by characteristic curves that reflects features. Image courtesy of [HG97].

time can be a disadvantage of this technique.

To allude to a visualization that is not based on a projection in Euclidean space,
Hyperbolic Multi-Dimensional Scaling [WR02] utilizes the hyperbolic plane to incorporate
focus and context into the projection. Using the circular Poincaré model, under which
the H2 has an exponential growth of length and area toward the disc’s boundary, they
formulate a projection method that applies Sammon’s MDS to H2.

2.2.7 Comparison and observations

For all presented representations, it can be concluded that no one method can be recom-
mended above all others. All visualizations are scale dependent, meaning that they need
standardized data to achieve their full effectiveness.

For a small number of elements in a high number of dimensions, glyphs are a rather
intuitive and effective representation. However, their efficiency is dependent on the ordering
of the dimensions and to the mapping of dimensions to the glyph’s features.

For a small number of dimensions, scatter plot matrices can represent a high number
of elements in an intuitive way and give a good overview on the data, although their
analytical abilities are somewhat limited. Also, they tend to use up a lot of display space,
as do heatmaps and line graphs.

Dimensional anchor visualizations and parallel coordinates also give a good overview.

Figure 2.13: Hyperbolic plane visualization of the iris flower data set. Data points are
projected on the hyperbolic plane, providing focus and context. Image courtesy of [WR02].
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While the latter displays all data without abstraction, the former abstracts the data values
by a point projection. This leads to reduced visual clutter but also to inherent ambiguity
with respect to coordinate values. However, both techniques show the most potential for
improvements and many interaction techniques are possible within these displays.

Interaction is the key fundament of exploratory data visualization. The cognitive
admission and comparison of data patterns is greatly improved by interaction techniques
like linking, brushing, browsing, zooming and highlighting. In addition to interactive means
for exploration, most state-of-the-art techniques facilitate or directly incorporate analytical
methods in order to work effectively, for example, a good (starting) projection or dimension
ordering. Basic analytical concepts are introduced in the following.

2.3 Analytical approaches

A number of techniques have been introduced that aid in the visual representation of
multidimensional data, as it has been given in raw form. However, with increasing
complexity of the data and the given limitations of available display space, it is often
inevitable to make compromises regarding the information that can be reasonably displayed.

Often, the question arises on what the focus of visualization for a specific data set
should be. In order to derive such a focus, the given information content has to undergo a
selection that reflects some measure of importance for the user. To do so, the data has to
be analyzed and possible sources of interest have to be discovered. This section provides a
small insight in techniques that derive such knowledge from data and it is fair to say that
knowledge about the underlying data, if utilized accordingly, may aid in numerous aspects
of its visual representation.

Stating the precise boundaries between data mining and knowledge discovery is a difficult
task. The interdisciplinary context of knowledge discovery makes most techniques hard to
assign to a single field. Data mining involves the analysis of observational data sets with
the intent of discovering relationships within the data and the summary of these in an
understandable and useful way for the user [HSMO1]. The output formed by these techniques
is often called patterns or features of the data set and generally specify a mathematical
model that is of interest to the investigator. These models may be classified in the two
categories, descriptive and predictive [Han05]. While descriptive models characterize
observed properties of the data, predictive models describe the inference that is drawn
from the data.

The main concepts of data mining cover data processing, -characterization, -discrimination,
-clustering, -regression, -classification, as well as the visual representation circumscribed
in the fields of exploratory data analysis and model visualization [dOL03], [Han05]. Data
preprocessing techniques include data cleaning, -reduction and -filtering. Filtering and
data reduction may also encompass outlier analysis, which purpose is to find objects that
do not comply with the general behavior of the data set. It can be seen as noise reduction
in this context. For more information about data mining techniques, the interested reader
will find, for example, [Han05] or [HSMO1], to give a more comprehensive introduction.
The described content in this section is, to a big extend, summarized from the work of
Everitt et al. [ELLO1], which can be recommended as an excellent reference and can serve
as a source for further information about this topic.
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2.3.1 Metrics

An issue of central importance for all analytic techniques is the comparison of objects. This
section illuminates on methods for quantifying how “close” objects are together, i.e. how
(dis-)similar they are. Common transformations between similarities s and dissimilarities d
include:

e d=1-—35
e d = c— s, for some constant c

¢ d=/AT=3)

While some metrics measure similarity and others dissimilarity, we abstract these notations
where possible by using the single term proximity 6. Further, We only consider measures for
continuous real data, although some of these techniques may apply to categorical data as
well. In the following, we discuss measures for the proximity between objects and between
groups.

Measures of proximity

Designing a generally applicable metric is an immense challenge. Metrics are almost always
data dependent and should be tailored for every application to fulfill the right needs, i.e.
provide the right quantification of proximity. However, there are a range of generally
applicable proximity measures for multivariate elements. Most of these are distance metrics,
which fulfill the triangular inequality

Oij + 0k = O;k, (2.25)

with ¢ being the distance measure for objects ¢, j and k.
Common inter-individual proximity measures d; ;, deriving from a (n x m) data matrix

X include [ELLO1]:

Manhattan distance dij= > |wip—xjypl (2.26)
1<p<m
Euclidean distance 0ij = Yo (mip—xjp)? (2.27)
1<p<m
Minkowski distance Sij =0 > |wip— wj7p|r)% , r>1 (2.28)
1<p<m

<Z< Zi,p%j,p
Angular separation bi; = =p=m (2.29)

2 2
z Tip Z Tip
1<p<m 1<p<m

1<Z< (Ti,p—T7,0)(T5,p—T7,0)
iq = =pP=m s 230
%i \/ > (%p*ﬂ)z\/ > (@5p—T50)2 ( )

1<p<m 1<p<m

Pearson correlation

. —_— 1 .
with Zie =2 > wip
1<p<m
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Most commonly used is the Euclidean distance, which quantifies proximity of multivariate
data elements by interpreting each variable as a dimension in Euclidean space and measuring
the physical distance between the objects within this space. As one might guess, this is
not always ideal, since not all variables are equally scaled or should be treated equally.

Another popular measure of distance is the Manhattan metric, also called “city-block” or
“taxi cab” metric. Motivated by the Manhattan city blocks, its distance measure equals the
length of the path between two locations within such a street configuration. It serves as
an excellent example for metrics in general, since it gives a measure of proximity, subject
to a specific interpretation of space, which is determined by the application. Both the
Manhattan (I3 norm) and the Euclidean distance (lo norm) are special cases of the general
Minkowski distance, also known as [, norm.

Distance measures have an inherent interpretation of their correspondent space, through
which they derive their measure of distance. However, there are other ways to interpret
the proximity of two objects, which are not related to a spatial norm.

The above noted correlation coefficients suggest that the correlation between two objects
may be used to quantify their relationship. These coefficients ¢; ; indicate a correlation
varying from [—1,1] and may be transformed into a dissimilarity measure by 0;; =
(1= ij)/2.

The angular separation coefficient is often employed in specific applications, in which
variables are of the same scale and when the investigator is not interested in absolute sizes
of samples, but in its (relative) composition. The name derives from the fact that this
measure equals the cosine of the angle between the two m-dimensional sample vectors.
Since the angle é(:zg:., x]T.) is independent of the length of the vectors, as well as in which
orientation they should differ, it is a measure of how close the relative composition of
one sample is to the composition of another sample. For example, perpendicular vectors
indicate zero correlation. Often, all samples z; o are normalized, when the investigator is
only interested in the composition of the samples. The angular separation coefficient is
then equal to the dot product of two vectors, given by lepgm TipTip-

Pearson’s correlation coefficient differs from the angular separation in the employment
of the arithmetic mean (Z;o) for the m observations in the a sample. This differs severely
from the common correlation between variables (7}, 4), where the variable’s mean (over
all samples) is employed to each corresponding observation. In this regard, correlation
between objects tries to standardize the samples, not the variables. Therefore, it considers
the angle between two m-dimensional vectors, starting at the mean of the observations.

It should be noted that correlation coefficients are to some extend contested in literature,
since they are problematic when variables have been measured in different scales. For more
information, see [ELLO1].

Measures of inter-group proximity

With a given proximity metric, defined for pairs of multivariate elements, this section
considers methods for evaluating the proximity between groups of elements.

There are two major ways for deriving such inter-group proximities. They are based
on either inter-individual proximities or group summaries. The set of inter-individual
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proximities for two groups, G1, G2 C R™, entitles the set of all proximities ¢; ; with i € G
and j € Go. These values are often stored in a symmetric (|G1| X |G2|) proximity matrix
A. Given A, common interpretations of inter-group distances d¢g, @, include

nearest neighborhood distance = min (0i5) (2.31)
1<i<|GL [, 1<5<|Ge|
thest neighborhood dist = 0; 4 2.32
furthest neighborhood distance 1gig|Grﬂg)§jg|G2\( ij) (2.32)
;ghborhood dist ! > 5 (2.33)
average neighborhood distance = ————— i :
e Gi+1Gal
1< < ‘Gl‘,
1<j <Gy

Inter-group proximities may also be interpreted based on group summaries. These
commonly include the mean element, the element having arithmetic group mean values for
all variables, as well as the minimum or maximum elements. Such representative elements
are then substituted in the calculation of proximities between groups, thus making it
to a consideration of individual proximities between representative elements. Using the
Euclidean distance metric for instance, the inter-group proximity between groups G; and
G, derived from the group representative elements o; and o9, is obtained by

01,6y = 0or00 = | D> (01, —03,)". (2.34)

1<i<m

Also common is the consideration of within-group covariance for interpreting proximity
between groups. The Mahalanobis distance D? for instance, is obtained by

D* = (71 —m)" 55) ¢, (T1—Ta), (2.35)

with Z1 and T3 being the group mean elements and Sgi1uge the pooled covariance matrix
of both groups.

By considering the within-group covariances, the Mahalanobis distance takes the shape of
groups into account for quantifying proximity, i.e. similarity. However, for high differences
in within-group covariances, this metric is an inappropriate inter-group measure. For this
case alternative measures were suggested, such as

2 b (71— T3)
VT St by 4 /bT Sy by

5@1,02 = (2.36)

with by = (t S1 + (1 —)S2)~! (z7 — T2).
Such inter-group measures are of fundamental interest in clustering approaches, which
are introduced in a later section. For more information, the interested reader is referred to

[ELLO1].
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Weighting and standardization

Throughout all presented measurements of proximities between multivariate elements, a
weighting, w; € R for 1 < i < m, may be assigned to the variables or samples, reflecting
a measure of specific importance. Weights may also be assigned to enhance or neglect
specific data structures.

As a special case of weighting, the standardization of variables to unit variance or range
is common in many applications. Samples may be collected with differently scaled variables,
showing different value ranges or variances. Standardization of the variables is often useful
when scale-dependent proximity measures are used to compare multivariate elements.

Standardization weights, that impose a uniform treatment of variables on the data, are
often applied prior to analysis. The reciprocal of the samples’ standard deviation or range
in each variable y; are commonly used as weights w; for this standardization.

In contrast to treating variables uniformly, weights may also be applied as an enhancement
of specific variables or elements. Depending on the application, the investigator might
want to reduce the impact of outliers on certain analysis by the (down-)weighting of
such elements. When considering groups of elements, weighting might also be applied to
elements based on representative properties of their group.

By the application of weights, certain measurements of proximity can reflect favored
properties for the application. In this regard, there are vast possibilities for the improvement
of data analysis, when the appropriate weights are chosen. However, in most cases, the
appropriate weights are found in practice through experimentation and discussion with
application experts. Nevertheless, there are some general approaches to weighting. For
instance, weights derived from estimates are often used for enhancing analysis results.
Such estimates include the probability of a variable’s property to account for sought-after
data features. Weights are then applied with the aim to emphasize on variables with the
highest potential regarding their properties for analysis, e.g. classification. For example, in
clustering applications, weights derived from estimates of within-group variability show
high potential for recovering groups.

It should also be noted that a given data set for analysis might already contain a
pre-weighting of variables, namely the variables that have been measured and selected
for analysis. They reflect therefore the interest of the investigator according to a binary
weighting. Further weighting by subjective importance judgments, e.g. through user
interaction, should be applied with caution, since such results may only reflect an existing
classification of the investigator. Therefore, subjective weights might not lead to new
results based on genuine data features. Weights should always be chosen to enhance specific
aspects of analysis and it should be carefully evaluated if this enhancement does not restrict
the overall analysis to a point, where the output is merely a consequence of the weighting.

2.3.2 Clustering

In the context of multidimensional data analysis and visualization, a group of similar
objects is called a cluster. In other words, the art of bundling objects in a way that reflects
their inherent relationships is called clustering. An excellent introduction to the field of
cluster analysis has been presented by Everitt et al. [ELLO1|. This section marks the main
aspects of their extensive survey and provides a short overview of the field. The reader is
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advised to recall the introduction to proximity metrics, presented in section 2.3.1, since
they are a key interest to all techniques that require comparisons.

One distinguishes between two basic kinds of clustering methods. These are the hierarchi-
cal and optimization clustering techniques. Hierarchical clustering imposes a hierarchical
structure on the data, defining the relationship of the objects by stepwise refining the data
as a single unit into single-elements groups. On the other hand, optimization clustering is
not concerned with the hierarchical coherence of the data. Its goal is to partition the data
elements into a specified number of clusters, for which a numerical criterion is optimized.

As hierarchical clustering is of particular interest to this work, it is considered in more
detail. However, a brief revision of basic optimization criteria is presented. Algorithms
that efficiently compute approximations of such optimization problems are not part of this
work. The interested reader is referred to [PS82] or [Mit98], which give an introduction to
the computation of optimization algorithms.

As with proximity measures, no one clustering method can be recommended above the
others in all cases. Factors like the graphical display of the output, the needed robustness
toward noise in the data, the desired mathematical properties of the clusters or the produced
structure, as well as computational expenses need to be considered. Clustering methods
should always be designed to recover the types of clusters that are suspected in the data
and to fit the application dependent needs [ELLO1].

Hierarchical clustering

Hierarchical clustering techniques are concerned with the assembly of an hierarchical
structure for all elements of the data. Therefore, the output may be interpreted as a
directed tree, having groups of elements (being clusters themselves) as inner nodes and the
data elements as leafs. The cluster of all data would be represented by the root of this tree.

One differentiates between two basic techniques of hierarchical clustering, which are
defined by the direction of the tree’s construction. Agglomerative methods build the
hierarchy bottom-up. They begin with single-element groups and stepwise join the most
similar groups together, forming a new group, represented by an inner node, within the
hierarchy. Once joined groups are never touched again, which ensures an unambiguous
structure. However, this benefit comes with the price that mistakes cannot be undone.

Analogously, divisive methods construct a hierarchy from top to bottom. This way they
produce a series of partitions in each hierarchy step, beginning with a single cluster that
contains all the data, to a n clusters with a single element.

Depending on the different presumptions of inter-individual and inter-group proximities,
hierarchical clustering methods attempt to find the stepwise optimal divisions of the data.
The interpretation of inter-group proximities is of particular importance, since different
measures of such produce highly different resulting hierarchy structures.

Everitt et al. have revised many agglomerative methods, defined by different inter-group
proximity measures. In analogy to inter-group proximities discussed in section 2.3.1,
common agglomerative methods are presented below [ELLO1] and illustrated in figure 2.14.

o complete linkage: furthest neighbor proximity

e single linkage: nearest neighbor proximity
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Figure 2.14: An illustration of different inter-group proximity relations in agglomerative
clustering methods. The relevant distances when comparing two point clouds are shown for the
criteria complete linkage (CL, bottom-left), single linkage (SL, top-left), group average linkage
(UPGMA, center), centroid linkage (UPGMC, mid-left), and median linkage (MPGMC, right).

e group average linkage (UPGMA): averaged unweighted pairwise inter-individual
group member proximity

o centroid linkage (UPGMC): unweighted inter-individual group mean (centroid) prox-
imity
o median linkage (MPGMC): inter-individual weighted group mean (median) proximity

)

Median linkage imposes an equal weighting for the computation of a newly joined groups
mean, so that groups with many members do not dominate smaller groups regarding the
joined mean.

Lance and Williams’ recurrence formula constitutes a method that produces such a
nested structure by optimizing a criterion in a stepwise manner. Their proposed flexible
scheme for the update of inter-group proximities, due to the fusion of groups ¢ and 7, is
given by

Ok, (ij) = @ilk,i + @0k, j + B0ij + |0k — Ok 41, (2.37)

where 9; ; is the proximity between groups 7 and j. Lance and Williams used this scheme with
the parameterization a; = a;j, v =0, f < 1 and o; + oj + = 1. Other parameterizations
can be found, for which this scheme matches the above presented agglomerative methods.
For example, single linkage corresponds to the parameterization o; = a; = 1/2, § =0 and
v=1/2.

Ward proposed a different method, in which the fusion of two clusters is based on
an overall error sum F. Similar to an optimization step, the clusters are joined that
minimize the increase in the sum of within-cluster errors. For a disjoint partition of the
n m-dimensional data elements into groups, {1,...,n} = G1 U... U Gy, this total error is
defined as

E= Y E, with
1<g<n,
Eg = Z Z (xivj - yj(g))27
1€Gg 1<j<m
Uilg) = o X Tig - (2.38)

i€Gy
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Since () equals the mean of the observations in variable j for group g, the group error
criterion Fj; essentially equals the within-cluster sum of variance for each variable.

Empirical studies reveal that agglomerative methods may suffer from the effect of chain-
ing, reversals and inversions. Furthermore, they often fail to recover non-spherical clusters
that are present in the data. Ward’s method works well for many cases, whereas single
linkage should not be used with noise between clusters within the data. It is argued that
because of these problems, divisive methods are likelier to recover the main structure of
the data [ELLO1].

Divisive methods operate globally and stepwise minimize disorder (heterogeneity) within
each group, similar to direct optimization algorithms. The disorder D is reduced, by
the split of a cluster (ij) in two clusters ¢ and j, by D;jy — Di — Dj. Consequentially,
D; + Dj < Dy;;). Analogously to agglomerative methods, the split is chosen that achieves
the highest of such reductions.

Divisive techniques include the monothetic and polythetic division. Given their naming,
monothetic methods base their split on a single variable. They optimize homogeneity or
association with other variables and are often used for binary data, where they tend to
minimize the number of splits.

Polythetic divisive methods base their decision for a split on all variables. At each step,
they form two splitter groups with the pair of most dissimilar elements as seeds and adjoin
the rest of the elements to the group having the more similar seed. For example, with the
Euclidean distance as the inter-individual proximity measure, this methods cuts a (perfect)
ellipse exactly in half, with a split perpendicular to the major axis.

As a remark, interesting mathematical properties of hierarchical clustering methods are
introduced in the following. A basic property, that should be considered, is the ultrametric
property, which states

di,j < max(d;k,05), for all clusters 4, j and k, (2.39)

where 9; ; is the proximity between clusters ¢ and j. For most agglomerative methods, this
holds for the pair (4,7), at the step when they are grouped together.

A related property to consider is the property of spatial distortion. The with single
linkage associated chaining effect, for which dissimilar objects are drawn into the same
cluster through noise, is an example for this effect. The property of spatial conservation
states

MAN(Ou s Ouj) < O, (i) < mMax(dui, Ouj),

for all clusters ¢, j and objects u, (2.40)

where 9, (;;) is the proximity of objects u to the joined cluster of i and j. In other words, it
states that the proximity of u to a joined cluster (ij) is neither smaller than the minimal
proximity, nor greater than the maximal proximity to one of the original clusters. Through
the fusion of two clusters, these bounds are conserved.

Group average linkage would be an example, for which this property holds. Contrary to
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conserving this proximity relation, spatial distorting methods interpret proximities to be
closer or further after the merging of clusters. For example, complete - and single linkage
are two spatial distorting methods.

Everitt et al. [ELLO1] have summarized a number of admissible properties that have
been discussed in literature, which include

o Clump admissibility: regarding the within-cluster proximities in relation to the
between-cluster-proximities

o Convex admissibility: regarding the intersection of convex hulls of clusters in Euclidean
space

e Point proportional admissibility: regarding the alteration of cluster boundaries,
subsequent to the replication of objects

o Monotone admissibility: regarding the change in the clustering, subsequent to mono-
tonic transformations

It should be noted that hierarchical methods are not limited to producing a nested
structure, but can also be used to find a number of partitions of the data. The choice, at
which step to stop the further fusion or segmentation of clusters, however, represents a
general problem.

Often the number of clusters in the data is unknown and cannot be specified in advance.
However, an indicator for the “best cut” is given by a large change in fusion level or by
a low change in disorder level. In order to find this cut, common methods evaluate the
clump admissibility of the structure, which criteria is based on the ratio of between-cluster
to within-cluster variance.

Optimization criteria

As optimization clustering is not part of this work, we do not dwell into the vast field of
approximation algorithms. Nevertheless, we introduce the basic criteria for optimization
clustering. Such methods find a partitioning of the individual data elements into a specified
number of groups by optimizing a numerical criterion.

An optimal criterion should describe a partitioning that exhibits groups with coherent and
distinct properties or structure. Furthermore, groups should be well distinguishable from
other groups by possibly application-dependent properties like spatial positioning, shape,
density, distribution, size, spatial orientation or variable trends. Everitt et al. [ELLO1]
have discussed the most common optimization criteria, which are presented in the following.

Given a dissimilarity matrix A of n data elements, basic optimization criteria give
attention to the homogeneity and separation of the clusters that are to be produced. As a
quantification for the lack of homogeneity within a single group, measures include the sum
of dissimilarities between each pair of objects in the group. For a group defined by object
indices G C {1,...,n}, this measure is given by

mG) = > ., (2.41)

u,vEG,uFv
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where r € 1,2. The employment of squared dissimilarities is a common method to emphasize
on strict structure.

Instead of considering all pairwise dissimilarities, a measure known as star index evaluates
the sum of dissimilarities to the group’s seed (a center element), which is given by

ha(G) = min (Z 5g,u> . (2.42)

ueG

A simple measure of a group’s separation is given by the sum of pairwise dissimilarities
between the group’s members to the members of other groups. For a disjoint partition
{1,...,n} = G1 U...UGy,, this represents

siG =Y > > b, (2.43)

uelG; 1<i<ng i#j veG;

In some cases, the minimum separation of a group may give a stricter and appropriate
measure,

SQ(G]') = min (5571]) . (2.44)
1 <i<ng,i#j
u e Gj, v e G;

With one of the above measures of group homogeneity or separation, an optimization
criterion might be defined by the sum over all groups, e.g.

> ha(Gy). (2.45)

1<i<ng

Clearly, the minimization of the above criteria is equivalent to the maximization of the
sum for s;. Ratios of such criteria might also be interesting, for example

Y 92(Gy)
1<i<n,

> h(Gi)’

1<i<ng

(2.46)

represents a balance of the maximization of the minimal separation and the minimization
of the group’s heterogeneity.

More interesting may be criteria directly derived from a (n x m) data matrix X. However,
the principal considerations are similar. With regard to homogeneity and separation, a
dispersion matrix 7' can be decomposed into a within and between group dispersion matriz.

The dispersion matrix 7', defined as

7= @, -X")al, X7, (2.47)
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is decomposed into a within-group dispersion matrix W,

w= Y Y l,-Xe ), Xe )T, (2.48)

1<i<ng ueG,;

and a between-group dispersion matrix B,

B= Y (Xo, -X)(Xe, =X, (2.49)

1<i<ng

so that T =W + B.

Recall that for a square matrix A, trace(A) equals the sum of A’s eigenvalues, whereas
det(A) equals the product of its eigenvalues. The following criteria may derive from the
above decomposition. To minimize the within-group sums of squares over all variables, one
minimizes trace(W), which is equivalent to maximizing trace(B).

Since trace(W) is scale dependent and imposes a spherical structure on the data, the
maximization of the ratio det(T")/det(W) may be of better use if standardization is not
wished. Since T, and therefore det(T'), remains constant for all group permutations,
the minimization of det(W) is equivalent and is a commonly used criteria. It is scale
independent and can find non-spherical clusters.

However, det(W) assumes that clusters have approximately the same size and shape.
For clusters with different shape, the criteria

[T det (we,)<! (2.50)

1<i<ng

will likely uncover these clusters better than det(W). However, it is restricted to a minimum
number of group members, |G;| > m, to avoid singular dispersion matrices.
For uncovering groups of different size, the criteria could be adjusted to

[T det (’Zj2> ! . (2.51)

1<i<ng

The interested reader is referred to [ELLO1] for a more detailed description.



CHAPTER 3

Explorative Visual Analysis

Due to enhanced data acquisition and analysis methodologies in almost all application
domains, dimensionality and amount of data have increased steadily. Since the comprehen-
sion of interrelations in human visual recognition is usually limited to three dimensions,
gaining insight into high-dimensional data by a meaningful visual representation is a highly
relevant and still very much an open research topic. Although different approaches have
already been described to depict the coordinate values of multidimensional data points, the
static nature of basic visual representations renders them ineffective to facilitate cognition
of the data when its amount or complexity exceeds a certain threshold.

Methods for explorative visual analysis add an interactive component to the visual
representation in order to explore the data, identify patterns, trends, and other relevant
characteristics more effectively. One fundamental approach that has proven to perform
well for the exploration of high-dimensional data is the projection from high- to a low-
dimensional space. Through the use of such dimension reduction techniques, the often
highly complex relationships between multidimensional data elements can be abstracted and
encoded into distance relationships between points of a lower-dimensional embedding. Thus,
dimension reduction provides visually scalable embeddings of the intrinsic properties of the
data. Such embeddings also represent an ideal visual interface for selection and subsequent
detailed analysis in a multi-view environment. Designed appropriately, approaches using
dimension reduction are ideally suited to gain an overview, assess data relationships, and
identify outliers, clusters, or structure. However, problems include false interpretation
under ambiguity and insufficient degrees of freedom, as well as the correct separation of
salient data features.

This chapter describes our results and approaches using dimension reduction to facilitate
explorative visual analysis. Our main contributions are:

e Visualizing values in dimension reduction

e Level-of-detail in dimension reduction

We describe how methods of dimension reduction can be effectively combined with methods
from other disciplines to render visual data exploration more powerful and informative, for
example, by visualizing higher-level structure, level-of-detail, error, and ambiguity.

33
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The remainder of this chapter is structured as follows. Section 3.1 [EHH12] provides an
overview of dimension reduction techniques suited to aid in explorative data analysis. It is
an introduction to the main concepts and related work. A comparison of state-of-the-art
methods describes the differences and relationships between dominant research foci.

Section 3.2 [ERHH11, REM*12, EHHR13] describes a novel technique that combines
clustering, dimension reduction, and multidimensional data representation to form a
multivariate data visualization that incorporates both detail and overview. This unique
combination counters the individual drawbacks common to dimension reduction and mul-
tidimensional data visualization techniques, namely ambiguity and clutter. Thereby, a
specific clustering criterion is used to decompose multidimensional data into a hierarchical
tree structure. This decomposition is embedded in a novel dimensional anchor visualization
through the use of weighted linear dimension reduction. The resulting Structural Decom-
position Tree (SDT) provides not only insight on the data’s inherent structure, but also
conveys detailed coordinate value information. Fast and intuitive interaction techniques
are facilitated in order to guide the user in highlighting, brushing, and filtering of the data.

Section 3.3 [EKHS14] describes a novel method that combines global and local projections
into a level-of-detail approach for dimension reduction. Based on the construction of a
relative neighborhood graph, we apply hierarchical clustering using the Mahalanobis
distance to abstract the data’s underlying multidimensional manifold. Thereby, our
clustering criterion is designed to capture the shape and topology of the manifold in
different compositional levels. Our visualization facilitates interactive exploration of these
levels by means of self-embedding projections, each using full degrees of freedom in locally
optimal depictions of the corresponding compositional part of the data. Thereby, our
method facilitates an interactive exploration of both global and local data properties.

3.1 Survey of related work in dimension reduction

This section provides an introduction to the concepts of visualizing high-dimensional
data using dimension reduction. Thereby, we survey methods of dimension reduction
that focus on visualizing multivariate data. Our aim is not to be exhaustive but to
describe the mathematical concepts and ideas underlying the algorithms, to provide an
overview of basic approaches, and to review select state-of-the-art methods. Implementation
details, although important, are not discussed. The reader should be aware that there are
numerous dimension reduction methods that focus on the various aspects of data analysis.
For example, methods for feature reconstruction or classification are closely related to
those considered here but are not discussed because their focus is not on visualization.
The reader will find that, due to its long history, there are numerous surveys on dimension
reduction. For example, authors focus on a specific subset of techniques[SWH*06] or
investigations[ST03], provide a broad overview[Burl0], or historical background[LV10].
The remainder of the section is structured as follows. Section 3.1.1 represents the core of
the survey - a detailed introduction to the concepts of dimension reduction. After a formal
problem statement is given, we divide the basic approaches in two classes: projection
(Section 3.1.2) and manifold learning (Section 3.1.3). We also provide a taxonomy for
these methods that can act as a classifier for which data the methods are most suited.
Section 3.1.4 reviews two recently developed but fundamentally different approaches to
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non-linear multivariate data visualization and offers a qualitative comparison between
them. The object of this investigation is to infer common trends between different concepts
of dimension reduction. Finally, concluding remarks are provided in Section 3.1.5. The
work is published in [EHH12].

3.1.1 Dimension reduction

Methods for dimension reduction compute a mapping from high- to low-dimensional space.
The formal problem setting can be described as follows. Let X € R™*™) a set of n
points in m-dimensional data space, and two metric distance (or dissimilarity) functions,
Om : R™ x R™ — R and §; : R! x R — R, over data space R™ and target space R’
respectively, with m,t € N*,t < m, be given. A mapping function ¢ that maps the
m-dimensional data points (z; € X) to t-dimensional target points (y; € Y), i.e.,

$: R™ — R’ (3.1)
r; >y, for 1<i<n,

is defined s.t. ¢ “faithfully” approximates pairwise distance relationships of X by those of
Y € R("*), Thus, the goal is to map the proximity of points in data space to points of
equal proximity in target space, i.e., 0 (24, 2;) = 0¢(vs,y;), for 1 < 4,5 < n. In particular,
an adequate mapping is designed to ensure that remote data points are mapped to remote
target points.

Since the target space usually has lower degrees of freedom than those required to model
distance relationships in multi-dimensional space, the mapping ¢ adheres to an inherent
error that is to be minimized by its definition. Often, ¢ is defined to minimize the least
squares error €(¢p(X)):

(O(X) = > Wij Gm(zirz;) — 6eli y;))*, for W e R, (3.2)

1<i,j<n

where W is a weight matrix that can be used to define the importance of certain data
relationships or dimensions. For example, this may be used to disregard outliers by defining
Wi,j = 1/5m(a;i,xj) (for 5m<1‘i,x]‘) 75 0) [KCO4].

Formally, the above definitions require both data and target distance functions to be
metric. That is, both functions must adhere to the properties of positive definiteness,
symmetry, and the triangular inequality. For human perception, the most intuitive distance
metric is the Euclidean distance, La(p,p') = >21<;<, v/ (pi — P';)? for p,p’ € R?. Due to
this fact, the Euclidean distance is often chosen as the metric for the target space, §; = Lo.
However, the distance (or dissimilarity) measure of the application domain, d,,, is in most
cases not Euclidean and may in some cases not even be metric. For example, psychometric
dissimilarities can be non-metric. Methods that deal with non-metric distances, for example,
by mapping the rank order of data points, are introduced in Section 3.1.3.

In the following, we review and discuss several algorithms that realize a suitable mapping
¢ as defined above. We divide them into two basic approaches of the following underlying
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Figure 3.1: A taxonomy of dimension reduction methods. We distinguish between projective
methods, graph-based methods, and methods for manifold learning, by being applied for the
corresponding type of data.

principal geometric ideas. If the data lies within a linear subspace of lower dimensionality,
then it can be re-expressed by a linear basis transformation without loss of information.
These bases can be ordered according to their contribution to the mapping error e¢ and
the t bases are used that minimize this error. However, if the data is non-linear and lies
on an unknown manifold of lower dimensionality, then distance relationships along this
manifold can be learned in an unsupervised manner and used for data mapping.

A careful taxonomy of the methods considered here is formulated in the following
and illustrated in Figure 3.1. Methods that are solely based on linear inner product
transformations are defined as projection techniques, while those that are able to ascertain
distance relationships in a non-linear data structure are defined as manifold learning
techniques. These techniques can be further grouped in two basic approaches. Focusing on
metric data spaces, the first approach is graph-based. These methods model the data as a
graph and utilize optimizations of graph theory to learn manifold distances in data space.
The second approach is stress-based and focuses on the embedding directly, i.e., learning
the mapping that minimizes the mapping error (stress) in target space. Based on iterative
optimizations, they can learn the embedding of non-metric distances.

3.1.2 Projection-based methods

Projective techniques display multi-dimensional data by projecting points onto a lower-
dimensional space such that distance relationships between points in the projection space
reflect specific relationships between the data points in multi-dimensional space. Since
these relationships may be too complex to be completely conveyed in lower-dimensional
space, projections (and all mappings considered here) are in general ambiguous. We define
a projection by the use of a projection in the geometric sense - projecting the data based
on a (linear) inner product transformation. The geometric idea behind this approach
is to express the data by a set of “condensed” variables that approximately model the
(unknown) underlying factors and reduce redundancies. The two main approaches are to
project based on variance or inner product relations and both are, in an Euclidean setting,
interchangeable.
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Principal Components Analysis (PCA)

As one of the first dimension reduction techniques discussed in the literature, Principal
Components Analysis (PCA)[Pea01] conveys distance relationships of the data by orthogo-
nally projecting it on a linear subspace of target dimensionality. In this specific subspace,
the orthogonally projected data has maximal variance. Thereby, PCA defines a “faithful”
approximation as one that captures the data’s variance in an optimal way. It has been
shown[KC04] that by the maximization of variance, PCA also minimizes the least squares
error (3.2) for Euclidean distances in data and target space, d,, = d; = Lo, under the
constraint of orthogonally projecting the data:

ePCA= > (La(wi,2;) — La(yi yy))*. (3.3)

1<ij<n

Remarkably, PCA achieves this through a computationally efficient linear transformation.
The resulting projection is a genuine view that does not distort the data. The only major
drawback of PCA is that, due to its linear nature, it does not capture non-linear data well.

For the following considerations, we assume without loss of generality that X € R(®*™)
is centered, i.e., the mean of all given data points has been subtracted from all data points.
The PCA projection is defined as

PCA: R™ — R’ (3.4)
T; b—>$if, for1<i<n,

with I' = (1), ..., y()) € R(mX?) being the matrix storing columnwise the eigenvectors of
the corresponding ¢ largest eigenvalues of the data’s covariance matrix S = n~! X7 X. The
largest eigenvalue of S, A1, holds the variance of the data orthogonally projected in the
direction of ;. f storing the ¢ mutually orthogonal vectors in which directions the data has
the largest variance, define a partial orthonormal basis in data space R™. The orthogonal
projection_onto the corresponding rank-¢ subspace in R™ is defined by X =XxTIIT.
Thereby, X € R(™™) ig the best rank-t- approximation of X (under Ls). Using the basis
F data points x; are projected onto this subspace such that z; = Zl<k<t Y FPCA (),
for 1 <i<n.

Besides its broad applicability to visualization, PCA may be used for many more tasks.
For example, a prominent gap in the eigenvalue spectra gives an upper bound for the
intrinsic dimensionality of the data. Therefore, it is often used for filtering Gaussian noise
or for reducing data size and computation time. PCA is a well-established technique with
an extensive history. As such, many variants exist and more information can be found, for
example, in [Jol02] or [Man86].

Metric Multidimensional Scaling (MDS)

Metric Multidimensional Scaling (MDS)[Tor58], also known as classical MDS, is a well-
established approach that uses projection to map high-dimensional points to a linear
subspace of lower dimensionality. The technique is often motivated by its goal to preserve
pairwise distances in this mapping. As such, metric MDS defines a faithful approximation
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as one that captures pairwise distance relationships in an optimal way; more precisely,
inner product relations.

Metric MDS finds an optimal (least squares) linear fit to the given pairwise distances,
assuming the distance used is metric. If Euclidean distances are given, 6 = Lo, metric
MDS is equivalent to PCA up to scaling and rotation. However, metric MDS finds the
best linear fit to any metric dissimilarities. This makes the technique more flexible to use
compared to PCA. Its performance is also independent of data dimensionality, however,
the method scales poorly with the number of data points.

By the method’s design, the mapping error preserves inner product relations:

emMDS = Z (xzx;f — yiy]T)Q. (3.5)

1<i,j<n

Let a matrix of pairwise metric distances (or dissimilarities), (A); ; = d; j, be given. From
these metric distances, the data’s Gram matrix of inner products is given by G = HAH”,
where A = -1/ 261.27 ; and H is a centering matrix. The complete eigendecomposition of G
requires O(n?) time which is, in most cases, too expensive for practical problems. However,
variants of the method achieve an approximation in O(nlogn) time based on a divide and
conquer approach of the eigendecomposition]YLMWO06]. In addition, increasingly faster
solvers are being developed[KMP10)].

Metric MDS is defined as

mMDS: R™ — R’ (3.6)
T; r—>fz//l\, for1<i<n

with I' = (v, ...,4®) € R"*") being the matrix storing columnwise the eigenvectors
of the corresponding t largest eigenvalues of the Gram matrix of inner products, G =

XXxT, Gij= :EZ:E;‘F A is the diagonal matrix storing the roots of the ¢ largest eigenvalues

of G, A= diag(v/ A1, oo, V).

Although metric MDS works in the inner product space, the geometric intuition behind
the method is very similar to that of PCA. As such, points are projected into the linear
subspace of largest variance. However, this subspace is defined by metric MDS based on
the eigenvalue decomposition of an n x n matrix of inner products. The duality between
PCA and MDS becomes clear when considering that G has the same rank and eigenvalues
(up to a constant factor) as the covariance matrix Cov(X) = n~' X7 X and that for the
Gram matrix holds that G = n~'Cov(XT). Therefore, the Gram matrix is a covariance
matrix in R™ that reflects the same principal relationships of the data as the covariance
matrix in R™, although, expressed in a basis system that reflects linear combinations of
data points (instead of dimensions). For more information on metric MDS, the reader is
referred to [HS07] or [CC94].

Although being both powerful and flexible, metric MDS leaves two questions unanswered:
(1) What if the data are samples from a non-linear manifold and its proximity relationships
are unknown? (2) What if these proximity relationships cannot be described by a metric?
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In the following, we discuss the essential concepts that solve these two major issues.

Kernel PCA

Kernel PCA[SSM98] is considered a variant of PCA and metric MDS (due to their duality)
that is capable of depicting non-linear data. Kernel PCA is based on two assumptions that
make the application of (linear) PCA to non-linear data possible. The first assumption
is that in the space of the data’s underlying features, the data is linear. The second
assumption is that there is a function that approximates the inner product of data points
in this feature space. This function is called a kernel and the utilization of a non-linear
kernel in a linear setting to capture non-linear data structure is known as the “kernel trick”.
Formally, this setting is described as follows. Let a kernel k£ be given that approximates
inner product relations of non-linear data in their feature space, such that

k: R"xR" —R (3.7)
(zi,z;5) > D(x)P(x;)", for 1<i<n,

where @ is the mapping to feature space. Kernel PCA is defined as

K—-PCA: R —R' (3.8)
T; Hﬁfl\, for1<i<n

with I = (v, .., y®) € R™*!) being the matrix storing columnwise the eigenvectors of
the corresponding t largest eigenvalues of the Gram matrix of inner products in feature
space, GE? = k(x;, ;). As the diagonal matrix storing the roots of the ¢ largest eigenvalues
of G®) A = diag(v/A1, ..., V)

Thereby, Kernel PCA computes the eigenvectors of the covariance matrix of the data in
feature space. Although this space, as well as the data coordinates therein, is unknown,
the kernel maps to the data’s Gram matrix of inner products in feature space. Based on
the assumption of the correctness of a kernel k, the eigendecomposition of G*) captures
the non-linear relationships in the data by maximizing variance in feature space. As such,
Kernel PCA can be viewed as a generalization of metric MDS by substituting the utilization
of Euclidean dot products to generalized dot products.

It is not surprising that the bottleneck of Kernel PCA is finding the “right” kernel.
Since distance relationships along the possibly non-linear sub-structures of the data are, in
general, a-priori unknown, the definition of a suitable kernel requires explicit knowledge
about the data. If this knowledge is not given, methods are better suited that determine
distance relationships along non-linear data structures in an unsupervised data-driven
manner. This is the concept of manifold learning.

3.1.3 Manifold learning

Projection-based methods work well for data that fits approximately to a linear subspace.
When this is not the case, the hope for dimension reduction is that the data follows at least
a non-linear pattern, i.e., it lies on a lower-dimensional manifold. The methods considered
in this section are able to learn (and depict) proximity relationships of data points on
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(non-linear) manifolds in an unsupervised manner. While mappings from projection-
based methods can be described by linear transformations that capture known proximity
relationships, this is not the case for manifold learning techniques. In particular, these
techniques abstract from Euclidean distance relationships and capture distances along a
manifold. Figure 3.2 illustrates the difference between projection and manifold learning
based mappings.

There are two distinct approaches to learn unknown proximity relationships. These
approaches are based on the data being of metric or non-metric dissimilarity. To model
metric distances on a manifold, graph-based techniques are often used that retrieve local
distance relationships in a data-driven way and project the data based on these metric
distances. However, there are various applications that require the display of non-metric
dissimilarity relationships. This problem cannot be solved by graph-based methods but
only through a direct minimization of the mapping error in the embedding. This leads to
the optimization of a non-convex stress function. Consequently, stress-based methods are
prone to local minima and slow convergence.

Graph-based methods can be divided into two classes: global and local modeling. Global
approaches first learn proximity relationships on a locally low-dimensional sub-manifold
and, second, depict these relationships using, for example, projection-based methods like
metric MDS. Local graph-based modeling follows a divide and conquer approach. The
idea is to divide the data into small groups and to solve this embedding locally. Local
systems are then “pieced together” based on overlapping or fixation points. Although
the projection step finds the global optimum for the embedding, the initial retrieval of
distance relationships is based on optimization problems such as shortest path problems,
least squares fits, or semidefinite programming. In this regard, graph-based methods are
also prone to local minima or higher computational cost.

Non-metric MDS

The ability of metric MDS to map data relationships from a dissimilarity matrix is based
on the key assumption that dissimilarities are approximate squared metric distances. As
for all spectral methods, this allows for the computation of a globally optimal projection.
However, this also limits its application and prohibits non-metric scenarios, for example,
stemming from psychometric research where metric postulates do not hold. Instead of this
eigendecomposition approach, the idea of non-metric Multidimensional Scaling is to directly
minimize the mapping error (3.2) with respect to a given non-metric dissimilarity matrix
and possibly some weighting thereof. Unfortunately, due to the non-metric nature, the
resulting stress function is non-convex and optimization thereof is prone to local minima.

For a perfect projection, it holds that e(MDS(X,Y,W)) = 0, where X is the input,
Y the output, and W an optional (arbitrary) weighting. One way to approximate the
solution is through a steepest descent approach, for example, with the Euler method[AP98].
Thereby, a step-wise iteration towards zero, where the (k 4 1) iteration has the form
yk+D) — y(k) 4 a(k)VEMDS(X, y®), W), converges to a local minimum. The step size
o®) can be constant or can be computed by means of line search. A disadvantage of
this method is its slow convergence near a minimum. An approach to avoid this is to
use higher-level, gradient-descent-type methods, for example, Newton’s methods[KTT98|.
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Figure 3.2: The difference between projection and manifold learning. In the swiss roll data
set, data is sampled along a non-linear manifold (A). A projection of the data is shown in
(B), while an embedding by manifold learning is shown in (C). The embedding by manifold
learning does not provide a view of the data points in data space but a distortion thereof along
the manifold in order to approximate proximity relationships. Image courtesy of [SWH*06].

These methods converge more quickly at a higher computational cost.

The exact embedding of non-metric dissimilarities in a metric target space is impossible.
However, in non-metric MDS, the rank-order of dissimilarities is assumed to contain the
most significant information and the main goal of the approach is to depict the rank-order
in its output configuration. A well-known approach to non-metric MDS is the Shepard-
Kruskal algorithm[Kru64]. At its core is a twofold optimization process that optimizes
the goodness of fit with regard to the non-metric input. First, an optimal monotonic
transformation of the non-metric dissimilarities to metric distances is found that preserves
the rank-order of non-metric inputs. After the optimization of the rank-order distances, the
output configuration is further improved iteratively, balancing both stress and monotonicity.

MDS is in all respects a hard non-convex optimization problem. Using a good initialization
is therefore important. Numerous variants of MDS exist and many other methods are
closely related, like Sammon’s mapping[Sam69]. Especially multi-level approaches have
substantially increased performance[IMO09]. For an overview, reference [BGO05] is helpful.

Isomap

Instead of learning the embedding directly in target space, Isomap[TSL00a] attempts to
explicitly model non-linear proximity relationships in terms of geodesic distances. As such,
it can be viewed as a variant of metric MDS to model non-linear data using its (metric)
geodesic distances. In order to retrieve these distances, a global graph-based optimization
approach is utilized.

Geodesic distances are learned by linearly approximating the non-linear manifold.
Thereby, a network of undirected neighborhood graphs is constructed in which each
data point is a node and has edges to its neighbors that are weighted by the points’
dissimilarity. The weights represent the local approximation of geodesic distances on the
manifold. From these graphs, a square geodesic distance matrix is computed which is used
for the metric MDS projection. The essential steps can be summarized as follows:
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1. For each data point z; compute an undirected k-neighborhood graph based on the
k points of smallest dissimilarity to z; and assign this dissimilarity as the edge’s
weight.!

2. The (n x n) matrix of geodesic distances A is found by computing the shortest paths
through the network of neighborhood graphs.?

3. Project the data using A and metric MDS, as described in Section 3.1.2.

One problem of Isomap is that after double-centering of the geodesic distances, the
Gram matrix of inner products is not guaranteed to be positive semidefinite. One variant
that solves this issue is Maximum Variance Unfolding (MVU)[WS06]. The underlying idea
behind MVU is to unfold the manifold under the constraint that local distances between
neighboring points are preserved. This is optimized with respect to maximum variance.

Note that the lower-dimensional embedding of geodesic distances by Isomap involves
the eigendecomposition of a dense (n x n) matrix. Like with metric MDS, this leads
to significant computational effort. Further variants exist that tackle this problem, for
example, by integrating a local approach[STO03].

Locally Linear Embedding (LLE)

In contrast to modeling a manifold by global geodesic distance relationships, LLE[RS00a]
models the manifold by extracting its local intrinsic geometry. Thereby, LLE follows a
local graph-based approach. The basic idea of LLE is based on the linear approximation of
all data points (in complex non-linear structures) by a convex linear combination of its
neighborhood. Formally, this assumption can be described by the following equation which
has to hold for all data points x; € X and their surrounding neighbors Nj,

J]

T eN;

with 0 < W;; <1, szeNi Wi =1, and W;; =0, for 1 <4,j < n. The local intrinsic
geometry has the appealing property that it stays unchanged under transformations like
translation, rotation or scaling. Hence, the local linear relationships of points in data space
directly define the intrinsic geometry for the output points to target space. The weights
W; ; are approximated by solving a least squares problem based on a k-neighborhood graph.
In contrast to Isomap, LLE models nearest neighbors by directed graphs which leads to
a more suitable approximation. With these local relationships, LLE constructs a set of
global equations for the projection to target space. The method is summarized as follows:

1. For each data point z;, compute the k neighbors N; that are nearest to z; with
respect to the distance function d,.

2. Compute the weights W;; that minimize the equation > 7', [z; — 327, Wi x|
and satisfy the constraints, W;; = 0 if z; is not a neighbor of x;, W;; = 0 and
Z?Zl W;j=1foralll<i<n.

1 Often a threshold is used to model disconnected sub-manifolds.
2 This can be computed, for example, using Dijkstra’s algorithm[Dij59].
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3. Compute the output points y; that minimize the equation » i, [y; — > 7, Wi jyil%

As with Isomap, the data projection step is done by solving an n x n eigenproblem
that is based on the global weight matrix W. Due to the locality of LLE, this weight
matrix is sparse which leads to a significant advantage in terms of computation speed. The
projection is defined by the bottom ¢ +1 ! eigenvectors of the matrix (I — W)T(I — W)
that can be computed without a full matrix diagonalization[DDRvdV00].

3.1.4 Current state of research

Having introduced the main concepts of dimension reduction that can be utilized for
visualization, this section reviews more recent work. We compare the two dominant and
distinct approaches to non-linear dimensionality reduction, namely graph- and stress-based
methods. We review one representative paper of each approach, each one being both
state-of-the-art and comparable in terms of similar goals and assumptions. Because both
methods stem from a different background, it is likely that they have been developed
independently from each other. Our goal is to infer common trends, relations, and solutions
of these independent research streams that both solve the problem of finding optimal
lower-dimensional embeddings for non-linear multivariate data.

Piecewise Laplacian-based Projection (PLP)

Similar to LLE, PLP[PEP*11] makes the assumption that every data point z; can be ap-
proximated by a convex combination of its neighbors x; € N; based on weights W; ;. While
LLE finds those weights through optimization, PLP uses pre-defined weights according to:

1 1
W= L 3.10
T S, xj) /Zkze:N Om(T4,xk) (3.10)

with d,, being the metric distance function of the data space. Due to those pre-defined
weights, the projection has no unique solution. Therefore, a set of global control points
is added on a divide-and-conquer basis to solve this problem. PLP divides the data in
smaller subsets, each contributing a number of control points that are globally projected to
preserve global relationships among subsets. This procedure allows for corrections based
on user input, which makes this method interactive. PLP is defined by the following steps:

1. Separate X into s = y/n different samples S; for 1 < j < s. 2

2. For each sample S; define the neighborhoods N; C S; for each z; € S; and a set of
control points C; C 5.

3. Globally project all control points C' = C; U...U Cy from R™ to RY,

1 The bottom eigenvector is a unit vector and is discarded to enforce the constraint that the embeddings
have zero mean. Here, bottom refers to the ordering imposed by largest to lowest corresponding
eigenvalues.

2 Note that y/n is an upper bound for the number of groups in a data set of size n [PB95]. More
sophisticated estimation schemes may also be used.
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4. For each sample S}, construct and solve a separate local linear system but based only
on the local variables C; and the neighborhoods N; C §;.

5. Present the resulting projected data points Y to the user who can redefine the
neighborhoods. Based on the new neighborhoods, repeat the method from step three.

Paulovich et al.[PEP*11] set the number of neighbors & to ten and the number of control
points in each sample S; to \/@ 1 which ensures that the number of control points of a
sample corresponds to its sample size. The set of global control points C' can be embedded
by any appropriate mapping, for example, Paulovich et al. use the stress-based Force
Scheme[TMNO3].

After the local linear systems have been solved for each sample, the user can interact with
the projected data set through its representation as a k-nearest neighbor graph and adjust
neighborhoods or samples by simply moving data points within the embedding. Due to the
used multi-level approach, only the linear systems of samples have to be recomputed in
which the neighborhoods have been changed. Consequently, PLP can learn the embedding
of large high-dimensional data sets in a semi-supervised manner.

If data does not come in a tagged format, partitioning it into samples is done by clustering
methods. On the one hand, the multi-level approach leads to significantly smaller total
computational cost since the linear systems, which are solved at step four, are now smaller.
On the other hand, important global features may be missed due to this approach. Since
the control points (randomly chosen) set the frame for global relation of local patches,
there is no guaranty that global features can be preserved in all cases. However, the option
of user interaction can compensate for this scenario.

Multigrid Multidimensional Scaling (MG-MDS)

As a variant of multidimensional scaling, MG-MDS[BBKYO06] is based on the direct
optimization of the weighted mapping error as a stress function e¢ given by (3.2), although,
the method requires distances to be metric. In contrast to PLP, weights in MG-MDS can
be arbitrary and do not represent a convex combination. The basic idea is to re-state the
problem of finding ¢ = argming e(¢(X); A, W) with respect to the gradient-descent-type
method as a problem of finding ¢ with Ve(¢(X); A, W) =0 and to embed this problem
into a multigrid approach, through which substantial performance improvements can be
achieved. A simplified view of MG-MDS is that the re-stated problem is first solved for a
core, a small subset of all data points. But instead of a one-step projection of the remaining
data points, each of the remaining data points is projected separately, in a step-by-step
projection. Hence, to project one of the remaining data points, not only the projected core
but all the so far projected points are used. Obviously, this increases the computational
cost, but approximation errors which occur during a big, one-step projection, can be
counteracted.

MG-MDS constructs a hierarchy of grids from the data set X such that for X =
{ziy,..., i, }, the hierarchy is defined by choosing z;, randomly chosen from X and

1 Note that the total number of control points amounts to n3/4
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picking z;, from k =n — 1 to k = 1 so that the following equation holds:

x;, = arg r&%?(l:krilil?."nd(m,xil) for1<k<n-—1.
In other words, x;, is a data point with maximal distance to all data points with higher
hierarchy level. Each grid level k holds the set of all data points of the hierarchy level
equal or higher than k, i.e., Xy = {wj,,...,;,}. To transfer between grid levels, multi-grid
approaches offer restriction Pk’f'H and interpolation matrices P,f_l, such that Np_; =
P,f'HNk and Np_q1 = P,f_lNk. Additionally, a corresponding stress function ek, based on
X, Ay, and Wy, determines the error.
Choosing a maximal grid level R, MG-MDS is summarized by the following steps:

1. If r = R, solve miny, sr(Xgr,Tr) by using Euler’s or Newton’s methods which are
based on the gradient of sg.

2. Otherwise, go from grid 7 to r + 1, using P’*! and Vs,, changing also W and A.

3. Apply recursively the MG-MDS method to X, 1 and use P to get from grid  + 1
back to grid r.

4. During each movement from one grid to the next, a relaxation, using an SMACOF-
type method[BGO5], is needed to smooth the errors which occur during the movement.

Note that the existence of P71 and Pr~! for all R < r < n is a weaker form of the
convex neighborhood assumption of LLE or PLP. Pr™! and P’~! can be found if the data
points in grid level r belong to the convex combination of the points in 7+ 1, and r — 1
respectively.

Comparison

Both approaches of stress optimization and spectral decomposition solve the problem of
visualizing non-linear multivariate data. However, they achieve this in completely different
ways. A comparison between them is difficult because stress optimization solves the much
harder problem of embedding non-metric distance relationships, while spectral methods
are restricted to metric ones. Nevertheless, such a comparison has the potential of inferring
valuable insights on what generic ideas and solutions help with the problem at hand.
For this, MG-MDS was chosen as a representative over numerous other state-of-the-art
methods that follow the stress optimization approach because its unique advantages are
also restricted to the input being metric dissimilarities. Here, the relations between both
methods are qualitatively discussed and their suitability for different scenarios is assessed.
This comparison is based on the crucial factors that may delimit their application: online
behavior, parameterization, and computational cost.

Assumptions

PLP (like LLE) makes the assumption that each data point can be represented by a convex
combination of its nearest neighbors. Thereby, the data is approximated by a set of linear
patches. MG-MDS, on the other hand, is based on the minimization of the stress function



46 3 Explorative Visual Analysis

through gradient methods and uses only a weak form of this assumption.! Hence, for data
sets where the convex combination property does not hold, no suitable neighborhood can
be found, or when the computation of the neighborhoods is too costly, MG-MDS is better
suited to solve the problem.

Algorithmic approach

PLP and MG-MDS are similar in the sense that they do not use the whole data set at
once. Instead, they use a small subset for the costly core projection? and then project the
rest of the data with a faster method which uses the core projection. This is a definite
trend and saves a significant amount of time. However, this approach requires the data set
to be of sufficient size in order for a good initial core projection to be possible. Hence, for
smaller data sets, methods like LLE are preferable.

Parameterization

When little is known of a data set, an extensive list of parameters often represents a
burden for the analyst. However, in a visual analytics environment, the ability to tweak
the mapping based on knowledge and interaction is a definite advantage. Additionally,
expert knowledge is utilized that simplifies the problem of embedding. PLP requires
knowledge of the "right" clustering technique, the number of clusters in the data set, the
number of control points, as well as knowledge for defining the "right" neighborhood. This
requires the user to have a good initial assessment on the data’s structure and its global
features. Therefore, when no expert is available, MG-MDS is the safer choice because it
requires less user parameters (maximal grid level and core gradient method). On the other
hand, PLP’s ability to iteratively refine the mapping based on user interaction makes the
method more suitable for visual exploration and allows one to infer this knowledge over time.

Online behavior

Considering online scenarios where an existing solution is to be adjusted with regard to
new data, PLP is better suited for such purpose than MG-MDS. > With PLP, new data
points do not chance the global projection but only the local linear system within the
sample which can be computed with comparably low computational cost. In this regard,
MG-MDS has to be redone for grid levels in which the new data points occur. Although,
most likely, the maximal grid level » = R stays unchanged, the overall computational cost
is higher. Both methods, however, are based on the dimension of the data points. For
online scenarios where, instead of new points, new dimensions are added to the already
existing data, methods solely based on local intrinsic geometry (like LLE) are advantageous.
In any case, local methods are preferable for online scenarios.

Computational cost

1 In MG-MDS, the convex combination is only a sufficient condition but does not have to hold for all
data points and also does not include neighborhood relations.

2 Either the projection of the control points or the calculation at the maximal grid level r = R.

3 It is assumed that the new data points are not taken as control points.
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Another limiting factor for the suitability of dimension reduction methods with regard to
many applications are their computational costs. The cost for computing a neighborhood
graph depends on the form the data is given in. In case of a distance matrix, the cost
to construct a k-neighborhood graph amounts to O(k - n) for each of the n data points.
If the data is given as an m-dimensional point set, the computational cost to define the
neighborhood for each data point is O(m -n?). Although, in some cases, space partitioning
data structures like K-D trees[FBF77] can reduce this cost to O(n - logn), their suitability
for higher-dimensional spaces is an open research question. We therefore denote the cost to
compute the distance matrix by O(Distance), while the cost to compute a k-neighborhood
graph is denoted by O(Neighbors). With these considerations in mind, the computational
costs of these two methods are:

PLP: O(Distances) + O(n*/?) + O(n%/*) + O(s-Sample,, /) with s = \/n being the number
of samples and O(Sample,, /S) the computational cost for each sample with size n/s.
For this, a uniform size over all samples is assumed. O(Sampley) is defined as
O(Sampley) = O(k3/2) + O(k*/?)+ the computational cost to solve a linear system
of size k x (k 4+ v/k), with vk being the number of control points in the sample. The
two other terms are the cost to find the samples using a clustering method and the
global projection of all n3/4 control points using any O(n?) projection method.

MG-MDS: O((n — R)n?) + O(2Rn?) + O(Distances), with R being the maximal grid level.
The first term is for the core projection of grid level r = R using Euler’s Method.
The second term is for movement between these r many grid levels. By using more
complex methods than Euler’s method, the computational cost increases while the
value of the stress function decreases. Based on the same considerations as those
made by PLP, it seems that R = n — /n is a fair initial guess for the maximal grid
level.

Note that these terms are all upper bounds. The actual computational cost can be far
smaller. For examples in PLP, much effort is saved since the computation of the samples
and control points uses the clustering results for the computation of the neighborhoods.
Also, data may already come in a gridded or tagged form that these algorithms can use
and take advantage of.

3.1.5 Conclusions

The comparison of state-of-the-art methods that follow the graph- or stress-based approach
shows that no single method can be preferred over another. On the contrary, the effectiveness
of state-of-the-art methods mainly depends on the data and application. However, the
comparison also shows that there are similar research directions. At present, especially
multi-level approaches show great potential and form one of the dominant research directions
in both graph- and stress-based manifold learning.

Motivation for ongoing work includes manifolds of complex non-linear geometry, more
flexible and interactive embeddings, better encoding of information, and scalability to larger
data sizes.We believe that only through the incorporation of multiple concepts from different
research fields can methods for dimension reduction keep pace with future problems. Due to
the increasing complexity of high-dimensional data sets, a two-dimensional target space is
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not sufficient for the embedding. There is a major gap to close to the concepts of information
visualization that may be used to gain additional degrees of freedom in an embedding.
Furthermore, these concepts can help with better interpretability and interactivity in
adjusting both view and model of the lower-dimensional mapping. Conceptual level-of-
detail approaches for data abstraction and analysis can be entwined with algorithmic
multi-level approaches. Also, the approximation of proximity relationships, as well as
their embedding, is not only prone but bound to produce errors. One possible research
direction to solve this dilemma. is to develop concepts for visual verification that evaluate
and visualize the error and ambiguity of a mapping. These concepts can be combined with
semi-supervised learning approaches that incorporate user input into the mapping and
visualization, thereby allowing a more effective visual exploration.

The following sections provide new conceptual approaches tackling some of the research
directions mentioned above. Thereby, we contribute to the current state-of-the-art by ways
to render dimension reduction more

interactive in providing novel ways to parameterize embeddings interactively,

flexible by incorporating user input for hypothesis testing and more focused analysis,

intuitive by using visual metaphors, and

informative by incorporating more information than proximity relationships, e.g.,
higher-level structure, level-of-detail, alternative solutions, ambiguity, and error.

3.2 Combining relationship and value visualization

From the various methods proposed in literature for multivariate data visualization,
two fundamentally different approaches can be identified: (1) wvalue and (2) relation
visualizations. The first approach focuses on the visualization of the individual dimension
contributions of each multidimensional data point. This is usually achieved by specific
visual mappings. Parallel coordinates and color maps are amongst this class of approaches.
Although these techniques allow for a quick visual access to the details of each data point,
they lack of an overview and are usually subject to strong visual clutter. The second
group of visualizations abstracts from those details and aims to visualize the proximity
relationships of the points in high-dimensional data space. Common means to achieve this
are projection into a low dimensional presentation space. As described in the previous
section, projections are an excellent approach for showing relations in the data. However,
they immensely suffer from ambiguity that is imposed by dimension reduction. Thus, they
can easily lead to wrong conclusions about the data set.

This section describes a novel visualization technique that combines the two distinct
approaches of value and relation visualizations into a single holistic technique that benefits
from both methods. To achieve this, a novel value visualization is embedded into a
point projection. Central to our technique is the calculation and display of a structural
decomposition tree (SDT), which

1. removes ambiguities within the low-dimensional point representation,

2. visualizes the data points’ coordinates together with their composition, and
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3. serves as an efficient tool for visual data exploration.

The SDT is designed to convey the composition of a given data set and is calculated with
regard to optimal length and extend in order to minimize redundancies and clutter. To
achieve this, the data is hierarchically decomposed under the criterion of commonalities and
projected in a way that maximizes the distances between branches of different composition.
The SDT provides an overview to general properties of the data, as well as a detailed
comparative view to individual coordinate values. Ambiguities imposed by the projection
are solved by the branch structure. As shown by different examples, the branch structure
is also a great means to identify clusters of data points.

The section is structured as follows. After the presentation of related work (Section
3.2.1), we introduce SDTs, discuss related problems, and describe the main ideas of our
approach (Section 3.2.2). This is followed by details of the construction of SDTs (Section
3.2.3), interpretation of the initial projection (Section 3.2.4), as well as their interaction
mechanisms (Section 3.2.5). Results are discussed (Section 3.2.6) and underlined by a case
study (Section 3.2.7. Lastly, concluding remarks are summarized (Section 3.2.8). The work
is published in [ERHH11, REM*12, EHHR13].

3.2.1 Related work

Several surveys containing different categorizations of multidimensional data visualizations
have been proposed, such as [dOL03], [HGM*97], [GTCO01]. For example, the taxonomy
of basic techniques by Ward et al. [WGK10] is derived by the emphasis on the visual
primitives used to represent the data. We choose to further abstract these taxonomies
and focus on the information that the visualizations are to convey, being either coordinate
values of data points or relations between data points. Therefore, we categorize the field of
multidimensional data visualization into the two basic approaches of value- and relation
visualization.

Value visualizations allow detailed analysis by visualizing the coordinate values of every
data point. Heatmaps, Glyphs, Scatter Plot Matrices, and Parallel Coordinates can be
considered as members of this category and are introduced in Section 2.2. A common
problem with these techniques is that they are often not scalable with regard to the
amount and dimensionality of the data. The visualizations become less comprehensible
as the number of dimensions increases and often get cluttered as the number of data
elements increases. Instead of proposing new representations for multidimensional data,
researchers have been mainly focused on overcoming the previously mentioned drawbacks.
The emphasis has been on enhanced cluster visualization ([JLJCO05], [ZYQ*08], or [AdO04]),
brushing techniques ([EDFO08] or [HLD02]), and better utilization of screen space [MMOS].
However, clutter reduction through dimension ordering ([PWRO04] or [YPWRO03]) is often
regarded as the main research focus in the realm of value visualizations. Based on data
point correlations, dimension ordering techniques focus on the arrangement of dimensions
in the visual representations they are applied to. The research conducted by Ankerst et al.
was the first to formally state this arrangement problem [ABK98]. While these approaches
are great improvements to coordinate visualization techniques, they still face scalability
issues. Even if the dimensions are ordered and the data filtered perfectly, the information
displayed may still be overwhelming for the user and no clear overview can be established.
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The second category, relation visualization, is referred to as dimension reduction tech-
niques in literature. Relation visualizations establish a good overview and are often
incorporated in multi-view systems as exploratory devices, e.g., as in [POMO07]. Depending
on the application, research focuses on better representation of specific data structures, e.g.,
scientific point cloud data [OHJS10], a better incorporation of domain-appropriate analysis
techniques, e.g., brushing and filtering [JBS08], or computational speed gains ([IMO09]
or [PSN10]). As introduced in Section 3.1, these techniques display multidimensional
data by mapping points to a lower dimensional space, so that proximity relationships
between points in the projection space reflect the relationships between the data points in
multidimensional space. Since these relationships may be too complex to be completely
conveyed in lower dimensional space, projections are in general ambiguous. One of the first
dimension reduction techniques to be proposed and still dominant in practice is Principal
Components Analysis (PCA). The method conveys Euclidean distance relations in multi-
dimensional space by orthogonally projecting into a plane that is aligned to capture the
greatest variance of the data. Remarkably, PCA achieves this through a computationally
fast linear transformation that does not distort the data. In contrast to manifold learning,
the embedding by PCA represents a genuine view of the data space that is clearly defined
by a projection plane. It is this property that renders PCA as the method of choice to
be combined with visual entities and interactive mechanisms, in order to facilitate the
incorporation of coordinates in this projection. As introduced by Koren et al. [KC04],
linear dimension reduction may also be weighted. This method is also incorporated into
our approach to optimize the coordinate display.

Successful representations of complex data often utilize metaphors of commonly un-
derstandable concepts, such as topological landscapes [WBP07]. Coordinate values are
especially hard to interpret in projections since projections convey no visual connection to
the original dimensions. However, Dimensional Anchor Visualizations (DAVs) [HGP99]
incorporate similar concepts by using dimensions as (often interactive) display objects
that determine the mapping of multidimensional points for their projection. With the
assistance of these understandable visual references, the user may influence and better
interpret the projection process. RadViz [HGM*97] is an example for DAVs. It is a
technique that illustrates a non-linear projection process in the form of spring forces that
are connected to each data point and the Dimensional Anchors. For a general overview, see
Sectionsec:basics.visual Approaches. The Star Coordinates approach by Kandogan [Kan01]
utilizes an even more intuitive projection process. This well-known projection treats DAs
as unit vectors that are uniformly distributed along a circle and maps multidimensional
points by linear combinations, as shown in Figure 3.3. We choose this approach as the basis
for our technique due to its intuitive interaction ability and mapping process. The user
may interact with the DAs by changing their end position, thus creating a new projective
view on the data set. This provides an intuitive interface for viewing transformations by
which the contributions of certain dimensions can be emphasized or neglected. However,
the effectiveness of the presentation is strongly dependent on the quality of the initial
projection. The approach discussed in [STTXO08] is based on dimension ordering to find
initial arrangements for the DAs that attain for clusters in the data. However, coordinates
cannot be conveyed by these methods and the representation remains ambiguous.
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Figure 3.3: A point P = (d;1,...,d;s) € R® is projected by the star coordinate system
by the linear combination of its dimension anchors C1,...,Cs with the point’s coordinates as
coefficients [Kan01]. However, many points can be projected to the same location, making this
representation highly ambiguous if linear combinations are not shown.

Few publications exist that combine the two approaches of value and relation visual-
izations. To the best of our knowledge, there is no related work that directly resembles
our approach. However, some recent publications have tackled this combination from
other perspectives. The following approaches integrate a projection method into Parallel
Coordinates: Yang et al. [YPWRO3| presents an importance-oriented dimension ordering
approach that utilizes PCA, Johansson et al. [JJ09] propose a dimensionality reduction
method that enables user-defined metrics and use this method to reduce clutter, enhance
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clusters and filter outliers, and Yuan et al. [YGX*09] allow the abstraction of a subset
of dimensions by integrating scattered points arranged by MDS. Yang et al. have also
utilized dimension hierarchies [YWRHO03] or MDS [YPH*04] to display relations between
dimensions and used pixel-oriented methods to display data values in form of glyphs for
each dimension. In comparison, we present a novel approach that integrates a visualization
of coordinates into a linear projection.

3.2.2 Main idea

The main idea of SDTs is to show how data points are projected. For this display, we use
the Star Coordinates [Kan01] as basis. This projection is defined by a linear combination
of unit vectors and coordinates for each dimension. The “projection path” is intuitively
visualized by line segments as shown in Figure 3.3. Data point coordinates can be depicted
and a unique path for each data point eliminates the ambiguities of the projection. However,
this simple display of linear combinations increasingly clutters the display when the number
of data points is large, rendering the benefits of the projection (the overview) useless. SDTs
overcome this problem by having the following characteristics:

(1) In structured data, many points’ coordinates are similar to some degree. Consequently,
large parts of their linear combinations are similar. Such shared line segments can be
aggregated, resulting in a more compact representation. One way to achieve this is by
edge bundling. However, in this particular visualization, the information that is encoded
in the orientation of edges (contributions of coordinates in one dimension) is easily lost
when the edge is bent. Instead of using edge bundling (in geometry space), we compute
a hierarchy of linear combinations (in data space) for all data points. At each level of
this hierarchy, additional contributions explain the data’s composition. The result is a
tree in which each inner node is a compositional limiting point for the commonalities of
succeeding nodes. Data points are the leafs of this tree and their coordinates are given
by the sum of individual contributions along the path from leaf to origin (see Figure 3.4).
We use hierarchical clustering to compute this hierarchy and achieve a tree with minimal
overall branch length, thereby greatly reducing redundancies.

(2) Another aspect that highly influences visual clutter is the Dimensional Anchors
(DAs) initial arrangement. While this arrangement problem can be formulated as a 1-
D optimization problem, this is computationally expensive. Instead, we apply a linear
projection and use a sophisticated weighting scheme that greatly enhances the display
of this structure. In particular, this optimizes the starting configuration of DAs towards
maximizing the space between tree paths.

(3) Special consideration is also placed on the visual representation of the SDT. For
the different ways to depict the coordinate contributions, an ordering problem arises. To
guarantee interactive capabilities, we employ a simple but fast ordering heuristic. In order
to further enhance the recognition of data structure, the branches within the SDT encode
the number of elements within this subtree in branch thickness and gray-scale.

(4) Appropriate means for interaction have also been developed to handle occlusion and
guide in exploratory cluster analysis. Since visual analysis and exploration is indispensable,
we enhance the intuitive interaction methods of DAs by novel techniques to aid in brushing,
filtering, and selection. For example, one interaction technique hints at possibly interesting

y
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Figure 3.4: By the representation through dimensional anchors alone (left), a simple but
ambiguous view is achieved. Ambiguity may be solved by the display of the point’s dimension
contributions (center). However, this presentation highly clutters the view due to many and
redundant line segments. A tree embedding, based on the structural composition of the data,
achieves a trade-off in form of an unambiguous and less cluttered view (right).

configurations of the projection.

The following section explains the details of these aspects. To generate an unambiguous
view, we restrict SDTs to represent positive values only. Otherwise, the user would have
to identify opposite-directed line segments as negative values of the respective dimension,
which proved to be extremely counter-intuitive in our experiments. The high likelihood of
line crossings was another essential factor for this restriction. However, in most cases this
can be reasonably overcome by a translation of the data.

3.2.3 Construction of structural decomposition trees

In this section our algorithm will be introduced, as well as a detailed description of
the achieved properties. Two preprocessing steps are necessary before the SDT can be
visualized. First, a hierarchical clustering method computes the decomposition of the
data for the visualization. Secondly, an initial projection is computed that emphasizes
this structure. Finally, point coordinates and precomputed structure are visualized in a
new wvisual representation that allows fast interaction. It should be noted that this step is
computationally efficient in relation to the precomputations.

Hierarchical clustering

In order to create a structural decomposition, the data set is clustered hierarchically.
There are many methods that perform hierarchical clustering, mostly varying in their
use of inter-individual and inter-group metrics. Often, approaches are tailor-made to fit
the specific requirements. In our case, the clustering step should generate an ideal tree
structure, achieving a nesting with minimal redundancies, i.e., minimal overall line length.
This structure should be ready for display, designed to minimize calculations at running
time in order to support rendering at high frame rates.

The unfortunate restriction of drawing only positive coordinate values has proven to be
a challenge for the computation of a non-redundant structure. In many clustering schemes,
the average of cluster elements is compared as the representative elements for aggregation.
This technique is referred to as group average linkage in literature [ELL01]. However,
drawing the mean of a group (as part of the decomposition of the group’s elements) would
require to draw negative coordinate values, in order for the decomposition to hold. Since
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we have chosen to draw only positive coordinate values, we can only draw the minimum
of the coordinates for each dimension as each stepwise decomposition of a group. These
minimum commonalities therefore have to be the representatives for comparing clusters in
our method.

Consider a matrix X € R}Y*™ of n m-dimensional data points where zy, , refers to the
q’th coordinate of the k’th data point, as well as a complete and disjoint partition in clusters
(4, ..., Cy, containing indices of data points, i.e., C; C {1,...,n},1 < i < n.. We define the
inter-group proximity measure ¢ to quantify the measure of compositional commonalities
between two clusters ¢ and j as

51‘,]’ = |min(C¢ U Cj)|, for min(C’i U C]) cR™
= ) min(G;UCy),, (3.11)
1<g<m

where 9; ; > 0. In analogy to the L' norm, we interpret § as the length of a path in
non-Euclidean space. We further define min of a collection of indices C' as

min(C) = (iréi(r}(a:k,l), ...,ggg(mk,m)), for C C {1,....,n} (3.12)
and interpret it as the geometric minimum element, minE. It represents the point of the
convex hull of m-dimensional points in a collection C' that is closest to the origin, i.e., has
the lowest norm as defined above.

A clustering method computing the desired decomposition can be summarized as the
following binary hierarchical agglomerative process:

1. Generate a starting set G of n single-element-clusters C}, each containing a different
data point.

2. Tterate the following steps until G' contains only a single (root) cluster.

a) Search for the most appropriate pair within G, i.e., clusters C; and C}, for which

8ij = C?C%,EG(éa’b)'

b) Aggregate this pair to a cluster Cey, append this cluster to the set G and
remove the original clusters C; and Cj from G.

3. The single remaining cluster in G represents the root element of the structural
decomposition.

Note that many bottom-up approaches have spatial distorting properties, like it is often
the case when shortest pair distance or single linkage is used [ELLO1]. Early approaches
with common distance measures have led to highly redundant structures and cluttered
displays due to the rapid deterioration of the minimum representative through the aggre-
gation within the hierarchy. Keeping big minimum commonalities has proven to be a key
property for our structure. Therefore, we have developed a cluster criterion that forms
maximal fitting cluster representatives, so that the aggregation steps along the hierarchy
(from long to short minima) ensures the right spanning of the tree. The result is illustrated
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Figure 3.5: 2D data points without (left) hierarchically clustered by a shortest distance
criterion (center). Spatial distortion with this metric leads to the tendency to low decomposition
points and thus, to high redundancies. Clustering based on the criterion of the highest minimum
commonality (right) achieves an embedding that minimizes redundancies, and shows no such
spatial distortion effects.

in Figure 3.5 and shows highly favorable properties.

This clustering scheme is specially tailored for our visualization. In this context, it
provides an optimal solution to reduce the overall redundant lines in terms of length, as
we will show in the following. At each step, the two clusters are aggregated that have
the maximum length of their joined minE. We find that this maximization of |minE|
is essentially equivalent to the minimization of the length of discrepancy to the (joined)
father-node for each of the clusters. In other words, for C; and C; being aggregated, we
denote 6; ; as the discrepancy |min(C;)| — d; ; and find that at each step, both §; ; and 6;;
are minimized if ¢; ; is maximized. Therefore, we achieve the minimization

0ij +05i < O+ 0k, forl <kl <n, (3.13)

for the aggregation of two clusters C; and Cj, at any step of the clustering process. This
observation is of key interest for our technique, since these discrepancies ); ; represent the
length of the lines drawn for each (child-)node (C;) of the SDT. Thus, the overall length
of the SDT’s line segments is stepwise minimized, which optimizes the representation in
terms of compactness and minimal redundancies.

Initial projection
As discussed in Section 3.2.1, there are many ways to project data. While one usually wants
a projection to preserve relative m—D distances between data elements, our observation
is that this does not necessarily lead to an ideal embedding for any data representation.
For SDTs, the space between tree paths has a crucial influence on line intersections and
visual clutter. Therefore, the Dimensional Anchors (DAs) need to be arranged in a way
that maximizes this space.

While any linear projection method can be used to adjust the DAs, we use a weighted
linear projection scheme according to [KC04] because it is fast, robust, and very flexible.
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By following this approach, pairwise weights are used to influence the covariance matrix
so that its eigenvectors (and the two-dimensional projection given by the two ’highest’
eigenvectors) reflect the pairwise dissimilarities given by or imposed to the data. By the
means of these weights, objects are projected further away if they are highly dissimilar and
vice versa. Consequently, we use a weighting that emphasizes the computed hierarchical
data structure.

The initial projection is defined by the two eigenvectors, v and 7o of largest eigenvalues,
computed from the weighted covariance matrix XL X, where X € IR’}rxm is centered
beforehand. The pairwise weights £; ; are chosen to relate to the distances between nodes
within our hierarchical decomposition. Let disttchcj, for two clusters (nodes) C; and Cj
within our hierarchy, be the structural distance measure. This measure is formally defined
as the number of edges along the path from C; to C;. The Laplacian matrix £ is defined
as in [KCO04] and pairwise dissimilarities are disttci’cf. As shown in [KCO04], we find that
our projection maximizes

> (distl, ¢, dist? )%, (3.14)

1<j

where distﬁ ; represents the Euclidean distance between the two projected points within
the p-dimensional projection. Clearly, this equation is maximized by projecting those data
points far from each other that hold a greater structural distance. Through this scheme,
the projection is optimized to display the structural decomposition, which leads to an
optimal separation of different tree paths (according to (3.14)). Note that this process is
achieved through a linear transformation, preserving the genuine data properties as a true
projective view. Since this structural distance disregards the actual proximity of points
within the m-dimensional space, this weighting is also robust to outliers.

In order to derive the DA arrangement, the original m unit vectors are projected. The
ith DA’s end position, a; € R?, is given by

a; = (((1)> T, + <(1]> v2,)%, (3.15)

and may be normed or scaled (e.g., by eigenvalues) depending on the application. Note
that not all dimensions are necessarily present (via DA) within this projection and that
DAs may be collocated and of different scale. Since our approach is general, there may
be applications where this mapping has to be adjusted due to specific data properties.
However, we claim that collocation of anchors according to their dimension’s correlation
and a scale according to their contribution within the data is a faithful abstraction method.
This way, correlating variables can be easily assessed within our visualization, which is a
useful feature for an intuitive visual assessment of the data’s properties.

Visual representation

Once the data is decomposed into a hierarchical structure and the Dimensional Anchors
(DAs) are arranged to bring out this structure accordingly, the SDT can be visualized.
The coordinates of a node (cluster) C; are given by the precomputed min(C;). The node’s
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position within the projection, pos?(min(C;)), is given by the linear combination with the
DAs and min(C;) as corresponding coefficients. This position, however, does not convey the
coordinates in an unambiguous way. As discussed in Section 3.2.2; the linear combinations
reflecting the point coordinates have to be visualized in order to assure an unambiguous
visualization. Therefore, we visualize the path leading to each point’s location - the actual
linear combination.

For a node C;, we have at least m'! possible combinations to draw the path leading to
the node, where m’ = [{j | min(C;); # 0,1 < j < m}|. Therefore, the arising problem is to
find a meaningful order of these m’ line segments without spending large computational
expenses on this arrangement. Since the DAs’ orientation and scale are meant to be
interactively changed, the resulting layout of these line segments changes accordingly. We
want to keep rendering speed at interactive levels, while achieving a visually uncluttered
representation. Consequently, an optimization process according to exact quality measures
(e.g., line crossings) is not an option. However, we have discovered a good heuristic for
this ordering being dependent on length and orientation of the line segments. For any line
segment s; = djc;, the dot product to the normed direction from father Cj, to child node
C; determines the drawing order of these connected segments. Thus, we draw decreasing
with v;. e §; for v, = posP(min(C;))T — posP (min(Cy))7.

The actual rendering of the tree is a straight-forward recursion. Starting at the root C.
of the tree, minE(C,) is drawn and for each successive child node, the discrepancy to the
father node is drawn. Thus, for every node C;, being the child of a father node Cj, the
discrepancy minE(C;) — minE(Cy) is drawn. As discussed with (3.13), this discrepancy is
minimized in a stepwise fashion by our clustering algorithm which consequently reduces
visual clutter. Another way of dealing with visual clutter and line crossings is to use color
and shape for a better visual recognition of different paths. For the line segments of a
node, an appealing color and width configuration is found to relate to the number of nodes
within the current subtree, ranging from dark to light and broad to thin with decreasing
element count.

It should be noted that the rendering of a SDT is potentially faster than in other value
visualizations. By exploiting commonalities in our precomputation steps, the decomposition
can reduce the overall objects that have to be drawn significantly. For example, while
scatter plot matrices draw nm? points and parallel coordinates draw n(m —1) line segments
for every data set, a SDT may have any number of line segments in [0,(2n — 1)m|, depending
on the commonalities in the data. This may be of benefit for large data sets.

3.2.4 Interpretation of the initial layout

Projections are a powerful means to convey relations in high-dimensional data. Due to the
characteristics of dimension reduction, however, they are often difficult to interpret. In
previous work it was shown that SDTs are specifically suited to depict data coordinates in
a way that aims at intuitive interpretation. Experimental studies of PCA-based projections
showed that the projection conveys properties of the data by the length and relation of the
DAs to each other. This, however, has never been explicitly quantified.

In this section, we investigate in full detail how the initial arrangement of DAs in SDTs
relates to the corresponding variables in the data and how the user can interpret this
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arrangement to infer knowledge about the data. Due to the use of a PCA-related projection
method for SDTs, the given statements apply to all PCA-based projections. We shortly
recall dimensional anchors and their arrangement, after which we are linking the properties
of DAs to those of the data. We first outline why DAs are used to reflect a PCA projection
and how their initial arrangement is defined. This is expressed by latent features in the
data, i.e., the eigenvectors and eigenvalues of the data’s covariance matrix indicating the
information content within the different data dimensions. In order to understand which
data properties are visually encoded in a projection, we investigate how the projection is
defined by these features and what information is thereby depicted. This is expressed by a
derivation of the spectral decomposition of the covariance matriz. After these steps, we
show that the specific DA arrangement allows one to derive conclusions and data properties
that are of keen interest to the user but not depicted by the common plotting of principal
components. Finally, statements to implications of these properties aim for a better
understanding of an arbitrary PCA-based projection, thus avoiding its misinterpretation.

DAs and their arrangement Since SDTs can be computed and visualized both in 2D
or 3D space, the following considerations are made for an arbitrary display dimensionality p.
We assume that n m-dimensional data points are stored row-wise in X so that X € R(xm),
The projection of X to X € R(™*P) i defined by the linear mapping of m-D data points
X; to p-D display points Xj;, for 1 <4 < n, by the linear combination of DAs a; € RP with
the corresponding coordinate X; ;, for 1 < j < m:

)?i: Z ani,j' (316)
1<j<m

This technique, the mapping in star coordinates [Kan01], can be understood as a gener-
alization of drawing 3D objects on paper to arbitrary dimensions. In the original work,
however, the DAs are initially arranged in a uniform distribution along a unit circle. In
general, this leads to a non-orthogonal projection. This can be misleading because the
distance in display space does not reflect distance in R™. To avoid this, a projection is
designed to minimize this mapping error. This error is commonly expressed as the sum of
squared pairwise distance differences arising from the mapping from m to p dimensions,
Yoi<ijen(D(Xi, Xj5) — da( X5, X;))?, where dy is the Euclidean distance metric and D is an
appropriate distance metric of the application domain. This error can be minimized, for
example, by PCA in the case D = dy. Instead of expressing the data by the original unit
vectors, PCA computes new orthogonal directions (principal components) in which the
data has maximal variance and re-expresses all data points in coordinates of these principal
components. The projection is defined by the p principal components that capture the
highest variance in the data. Although distance relations between data points are captured
well in this projection, the interpretation of principal components is not intuitive. In
almost all applications, the link to the original data is essential for analysis. Therefore,
the depiction of the original data coordinates and relations between the original data
dimensions is an important aspect for a projection.
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Linking properties of DAs to those of the data We utilize DAs to make possible
a better interpretation and more intuitive understanding of the underlying projection
without losing any of the underlying projection’s benefit. In the following, we investigate
the properties of this DA projection in more detail and deduct which properties of the DAs
link to which properties in the data. The following considerations are based on the data’s
covariance matrix. Without loss of generality, we assume X to be centered and, since the
used weighting scheme in previous work changes the covariance matrix (to be weighted) a
priori, we can neglect the weighting in the following. We also neglect the global scaling by
n~! that does not influence relations in the data.

The PCA projection X of X is defined as X = X f, with I" = (v, ..., 4P)) € R(m>P)
being the matrix storing column-wise the eigenvectors of the corresponding p largest
eigenvalues of the covariance matrix S of X. Equation (3.16) implies that the linear
mapping of DAs A = (ay,...,a,,)" € R™*P) is defined as X; = X A. In order to initially
arrange the DAs such that their mapping is equivalent to that of the PCA, we define each
DA as a row vector of I

a; = (’yl-(l),...,vfp))T. (3.17)

This step is equivalent to the projection of the original unit vectors 1; € R™ to R? subject
to the same rotation, i.e., aZT = 1?? It is important to note that PCA projects X
by reducing its dimensionality to p in an optimal variance-preserving way. Thus, the
information that is actually displayed by this projection is that of the inherently defined
best rank-p approximation X of X.

Spectral decomposition of the covariance matrix The process of dimensionality
reduction by maximizing variance becomes clear when considering the spectral decom-
position of S. That is the decomposition of the combined variances of all elements in X
into successive contributions of decreasing variance: S = Alfy(l)'y(l)T + ...+ )\T'y(’”)fy(’")T,
with A, being the & highest eigenvalue of S and v*) the corresponding eigenvector for
1 <k<r=rank(X).

Each contribution S®*) = )\k'y(k)'y(k)T thereby increases the rank of the matrix summation
by one. Ar holds the variance of the contribution, whereas 'y(k)fy(k)T defines the mixing of
this variance, i.e., how this contributes to S. Consequently, the covariance matrix of the
PCA’s p-dimensional best rank-p approximation X of X equals the sum over the first p
contributions, where usually p < rank(X). The covariance between dimensions ¢ and j of
the projected data X is

1<k<p

Similarly, X can be defined by X = X I'T'T. For the dimensions (columns) in X the
following equation holds: X, ; = Zl<j<m Xe (FFT)Z-J-. X ;i is constructed from X by the
efl (k) (k)

linear combination of all X, ; with coeflicients (f r D)= k<pVi 7j - Consequently,
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these coefficients deﬁne the orthogonal projection of the data and account for the similarities
between columns in X, i.e., for rank(X).

Conclusions With the above considerations in mind, we show in the following that the
length of each DA and the angles between them reflect specific properties of the projection
and of the projected data X. The mixing matrix I'T'T holds normalized contrlbutlons to S
and relates to the DA’s arrangement in the sense that (FFT)M- =D 1<k<p Si,j /A = Sij,

whereas :97] = cos Z(ai, a;) ||aill2 ||aj||2. We can draw the following conclusions:

1. The length of DAs equals the standard deviation of the respective dimension in X ,
normalized for each contribution S*) by its variance \j.

ladle 27 [ ST ()2

1<k<p

(5.19) gm = 5

2. The cosine of the angle between two DAs equals the correlation of the respective
dimensions in X, where both covariance and standard deviation are normalized for
each contribution S*) by its variance .

T
ala;
Laj,a) = I
cos Z(ai, a;) l|aill2|]a;|]2
k
(3.17) Sickepl h
Si 8
~(k

Implications It is important to emphasize that X does not represent the whole data
X but only its best rank-p approximation. That is, X is the approximation of X that
can be optimally depicted in p dimensions with regard to its variance. Therefore, X
is the orthogonally projected data on the subspace RP which is spanned in a way that
the projection reflects the dominant trends in X. However, RP can only cover the most
dominant information in the data. While other subspaces that are left out globally account
for less variance in the data, relations therein may still be of importance for the user.
Unfortunately, this information cannot be captured in a single projection and, consequently,
parts of the relations between the original data dimensions in R™ are lost. The user has to
be aware of this issue because it may lead to possible misinterpretations stemming from
the visual assessment of the DAs’ properties.

Because principal components are mutually orthogonal, it is possible that the depicted
standard deviation of certain dimensions is lower in the initial projection than in other
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projections. This depends on the overall information content of this dimension in the
subspaces collapsed by dimensionality reduction. Thus, the knowledge derived from the
DAs can only be a subset of the hidden information and usually represents a high-level
view only. To avoid misinterpretation, they must be further evaluated. The quality of the
projection, with regard to one dimension, is reflected by the amount of its lost variance due
to dimension reduction. To indicate this information, an SDT display provides variance
points for each dimension. Each variance point consists of two circles. While the outer
circle’s radius represents s;, the dimension’s standard variation, the inner circle represents
Si, the part of the dimension’s standard variation that is reflected by the projection.
Assessing the ratio between both circles, (5;/s;)?, thereby allows one to infer the quality of
the projection with regard to a data dimension. Thus, variance points provide guidance
for interactive exploration.

Commonly, the user is aware of the fact that projections have an inherent information
loss. Projections that map different points in R™ to the same location in RP make this
fact clear. Ambiguity is often a severe problem and stems from the principal illustration
of “collapsed” subspaces. Points that only differ in the subspaces that are disregarded by
dimensionality reduction are consequently projected onto the same location. By visualizing
the projection path of each data point, SD'Ts prevent possible misinterpretations by assuring
the user that data points are only equal when they share the same path. This display,
however, introduces further graphical primitives into the data representation, leading to
occlusion problems and visual clutter. How to solve these issues by proper interactive
exploration is discussed in the following section.

3.2.5 Interaction with structural decomposition trees

Although the SDT’s starting projection has desirable mathematical properties, interactive
analysis is usually needed to gain further insight. Interactions within SDTs can be mainly
classified as interactions with the data or the dimensional anchors as well as changes of
the view. In this section, we describe the available interaction methods from a general,
functional standpoint, state their individual aims, and complete with novel guidelines on
how to interact with SDTs. This will provide users with quick insight and reference to the
available methods. Using these guidelines, SD'Ts convey an intuitive visual mapping that
can be remembered and from which the user can quickly learn

e how the data is assembled, spread, where clusters are, or which pattern they follow,

e how parts of the data are connected, differ, or how they relate to each other, and

o what properties they have, e.g., intra-cluster variances, shape, or alignment.
SDTs are most effective when used as an explorative interface within a multi-view envi-
ronment. Through selection, point sets may be further analyzed using a high-detail value
visualization. To find interesting candidates for detailed analysis, the data must first be

interactively explored. Figure 3.6 gives an overview of basic interaction techniques, while
more are described in the following.
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Figure 3.6: A 5-D data set with 5 point-clouds is shown. SDTs best display differences and
commonalities within the structural assembly of the data. Further analysis can be conducted
by adjusting the projection, highlighting, or filtering.

Interactions with the data This class of interactions allows the user to highlight or
filter parts of the data. Associated techniques are usually strongly task and application
depend.

Interaction: Dimension highlighting

Aim: Emphasizing dimension contributions of the data

Guidelines: This interaction (see Figure 3.6) allows the user to emphasize all line segments
corresponding to the coordinates of a dimension and thus helps to investigate the structural
decomposition of the data. The selection of too many dimensions decreases its usefulness.
Only DAs of current importance to the user should be selected.

Interaction: Path highlighting

Aim: Emphasizing data points and subtrees

Guidelines: Path highlighting (see Figure 3.6) emphasizes interesting pathes and branches
within the SDT. During selection the user should focus on paths that lead through cluttered
regions as they might no be easily followed and take unexpected ways.
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Figure 3.7: Interactive complexity and clutter reduction taking advantage of the capabilities
of SDTs: dimension filtering (left) reduces the number of branch segments in the tree, node
collapsing (right) the number of displayed subtrees. Additional means for zoom and pan
interaction allow the users to drill-down into the presentation and data to obtain momentary
detail (bottom).

Interaction: Node collapse

Aim: Data filtering

Guidelines: This interaction causes subtrees and data points to disappear from the SDT
representation. A single subtree is then represented by a characteristic point only (see
Figure 3.7, right). After collapsing, the main value contributions of all associated data
points are still visible and can be used and interpreted, e.g., for comparison with other sub-
trees. Most appropriate regions to apply node collapse are cluttered areas or uninteresting
subtrees. The user, however, should always bear in mind that data filtering was applied.

Interactions with the dimensional anchors The layout of an SDT visualization
consists of the different DAs. As their alignment strongly influences the projection of the
data, allowing for their interactive modification is a powerful means for a variety of purposes.
As there is no restriction on their placement, interactions can change the (1) angle or (2)
length of an DA, or (3) both. Each kind of modification can be used to achieve a distinct aim.

Interaction: Move of a DA to a corresponding variance point

Aim: Exploration of hidden subspaces

Guidelines: Subspaces hidden by dimension reduction can contain further information
important for the analyst. They are made available by a successive exploration of individual
dimensions via their respective variance points. This leads to different but still orthogonal
projections of the data. To explore most important information first, it is meaningful
to use large variance points indicating a strong inherent information content. We also
propose to use variance points placed at opposite positions on the unit circle. Although
position has no meaning regarding the amount of information content, this leads to strong
changes in the projection and may reveal unexpected and important insight (see Figure 3.8).
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Figure 3.8: Variance points help to find other promising projections of the data. Large
variance points (left) indicate projections most suited to convey the variance in the data.
Opposite variance points (right), even when not accounting for much variance, often lead to
strongly different projections helping to identify unexpected data properties.

Switching between close points does not significantly change the projection and can usually
be skipped even for large variance points.

Interaction: Move of the SDT stem to another position

Aim: Solving occlusion issues

Guidelines: Sometimes only the orientation of the tree or of large branches is to be changed,
e.g., to overcome visibility and occlusion issues. To support this, we propose to find and
relocate a dimension with strong contribution to the stem of the SDT, e.g., a dimension
with low variance. This leaves the initial crone structure of the SDT widely unaltered for
further analysis.

Interaction: Orthogonal placement of two DAs

Aim: Discovery or verification of correlation between two dimensions

Guidelines: The orthogonal placement of two DAs emphasizes potential correlation be-
tween two dimensions and thus enables the viewer for its visual discovery or verification.
Correlations can be identified by following the development of the point contributions
from the origin along the direction of the respective dimension vectors. As an example,
increasing contributions for both dimensions indicate a linear correlation for the associated
dimensions (see Figure 3.9, left). Visual emphasis of the involved dimension contributions
by dimension highlighting helps revealing such characteristic patterns. Due to the fact that
SDTs are projected into a two-dimensional presentation space, correlations between more
than two dimensions must be explored successively.

Interaction: Enlarging or shrinking a DA
Aim: Exploration of data distribution, discovery of data clusters, conveyance of value



65

3.2 Combining relationship and value visualization

“(7g311) pat1aIls A[PAIIORIIUI O URD (I0[0D UAIS)
vV ®© ‘(107m00) woryaafod Teryur oty urgim Surreginpd jurod [erjuejod SUI0dIIA0 0} I9pIO U *(1J0]) SUOISUSUIIP POJRIIOSSR Y Toam)d(
SUOI}[91I0D JO UoIyenyess oy Ardurrs weo uoryejuaseld o) ur (10[0d MO[RA pue pal) sy om} Jo jueursdeld [euoSotyio oy, :¢'g NSy




66 3 Explorative Visual Analysis

contributions

Guidelines: As the length of a DA proportionally influences the position of the projected
data, the associated points can be stretched or compressed easily (see Figure 3.9, cen-
ter/right). This allows for an investigation of the data distribution of the associated
dimension. Thereby, it is useful to enlarge and shrink the DA multiple times and in
different directions to discover the representation where the distribution is conveyed best.
Dimensions causing a visual separation of data points usually contribute to clustering.
Enlarging the length of a DA enhances separation and thus can help identifying such clus-
ters. All points of a potential cluster show a similar behavior during length changes. Path
highlighting can be used for further verification. In case of a valid cluster, all associated
points must share the same projection path. Length modification is also particularly useful
to visually emphasizing value contributions in the tree. Strong contributions can easily be
identified by their strong response to length changes.

Interaction: Move of a DA to the origin of the projection

Aim: Dimension filtering

Guidelines: To reduce clutter, it is meaningful to filter out less interesting dimensions by
placing their anchors at the origin of the projection (see Figure 3.7, left). Appropriate
candidates are dimensions that are correlated or show similar characteristics. They can
be substituted by a single super-DA, whereby its angle is determined by the average and
the length by the sum of all associated DAs. This changes the point projections only
slightly, but removes many SDT branches from the representation. We further propose to
remove dimensions having (1) very small variance points or (2) many, very small branches
of similar length at high tree levels indicating little structure in the data.

Interaction: Continuous circular movement of a DA

Aims: Discovery of data clusters, exploration of data distribution

Guidelines: The movement of a DA enables the motion parallax effect of the human visual
system to create a pseudo three-dimensional impression of the two-dimensional SDT repre-
sentation (see Figure 3.10). This lets the points and the tree appear more “plastic” and
results in more insight about the structure and potential clusters in the data. During the
interaction, point clusters can be identified by their constant grouping. Circular movement
leading to similar projections at each turn helps the human visual system to memorize the
gained insight. Continuously changing diameter stretches or compresses potential clusters
allowing for improved identification or verification. Not every dimension is equally suited
to achieve this. We propose to select a dimension that strongly contributes to higher
tree branches, e.g., one that has a high variance in data values. As such a dimension
strongly affects the top of the SDT leaving its stem nearly unchanged, it can increase
motion parallax. Appropriate dimensions can easily be found by dimension highlighting
emphasizing all line segments corresponding to the coordinates of a dimension and thus
conveying their distribution.
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Interactions to change the view Analysis on a more granular level, such as details
to identified clusters, can be obtained by the following interaction. This allows for the
assessment of potential sub-clusters, dimension contributions, and distributions.

Interaction: Zoomé&Pan of the current viewing region

Aim: Providing overview or detail

Guidelines: Changing view point and direction is a common means in interactive data
exploration. Following the information visualization mantra [Shn96] visual data analysis
should successively repeat the stages: (1) providing an overview to the data, (2) filter-
ing data that are of minor interest, and (3) drilling-down to uncover interesting details.
Overview and detail within this process can be obtained by panning and zooming into the
representation (see Figure 3.7).

3.2.6 Results

To evaluate the visual representation of data structures by SDTs, we investigated both
artificial and benchmark data sets. We observed that our approach is profoundly robust
for connected data, e.g., ellipsoids or curves that can be represented linearly and has an
inherent structure. Quite notably, non-linear, non-convex, and even higher genus shapes
of different sizes are presented well by the structurally weighted projection approach, as
Figure 3.11a-c shows. We observed that closely connected compositional parts of curves or
higher genus shapes share the same subtree within our computed hierarchy structure. Since
the projection is optimized to emphasize these structural distances and since this structural
distance is a topological feature of the data, we can in fact note that our approach is
topology-preserving in terms of an optimization regarding the alignment of the projection
plane.

Further, two popular and real-world multidimensional data sets (Iris and Cars) have
been chosen to act as benchmark data sets and to provide a comparison to other techniques
using the same data sets, e.g., [PWRO04], [SYHX08], [YGX*09], or [WGK10]. In Figure
3.11d, the SDT of the Iris data reveals three compositionally distinct groups. The strong
stem indicates a clear structure and shows that the sepal width accounts for the most
commonalities among the collected species. Two of the three species are similar but can be
distinguished in their different variance, as well as different magnitudes, in petal length
and width. In Figure 3.11e, five groups can be distinguished resigning at three different
levels of the tree. These (vertical) levels represent car properties ranging from “efficiency’
(specs of high acceleration, low weight, MPG, and displacement) to “high power” (the
opposite) . The initial projection correctly hints at correlations between these properties.
European and Japanese cars are dominant within the lower “efficiency” tree level (bottom
right), while American cars reside in all levels of the tree (left, vertical side).

These results show that structural relations between clusters within data are well
represented and differences in coordinates between clusters can be perceived easily. SDTs
are most suited to depict a general impression of a data set and to convey an intuitive
visual mapping of multidimensional data that can be remembered. The user can learn
easily

)

e how the data is assembled, spread, where clusters are, or which pattern they follow,
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Artificial data sets: (a) 3 tori in R1?, (b) 4 ellipsoids in R1%, (c) 5 point clouds in R'%; Benchmark data sets: (d) Iris

and (e) Cars data set.

Figure 3.11
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e how parts of the data are connected, differ, or how they relate to each other, and

o what properties they have with regard to intra-cluster variances, shape, or alignment.

SDTs not only show how different (relations) data points are but also where these
differences lie (values) by giving an assessable connection to multidimensional space. This
is conveyed in a compact and intuitive representation which leads to a better interpretation
of the data and is the main contribution of our work. Since SDTs focus on providing
an overview of the data, traditional value visualizations are better suited for detailed
analysis tasks. Embedded in an interactive framework, SDTs are appropriate as a device
for exploration, selection, and filtering. The benefit of the underlying projection becomes
even more obvious for higher-dimensional data. One can observe that clusters are well
represented, even in very high-dimensional data sets, where one can argue that purely
value visualizations fail. The amalgamation of value- and relation visualization makes
SDTs more powerful than linear projections and more scalable than value visualizations.

Inherent in our method, drawbacks of SDTs are shared with those of linear projections
and concern the suitability for unstructured, noisy, or manifold data. For such data, SDTs
resemble more “cluttered bushes” than structured trees. However, our approach is generic
and offers many possibilities for adjustments, e.g., in data transformation, projection, and
clustering, to better fit specific applications.

3.2.7 Case study: air quality data

We have evaluated our method to real-world data provided by the UC Davis air quality
research center and obtained by single particle mass spectrometry [BW09]. The raw 256-
dimensional data has undergone application-specific data transformations (normalization)
as well as dimension reduction to the 13 dimensions most important for the investigation
purposes of our collaborators. The data are highly unstructured. Due to this characteristic,
the SDT consists of a small stem and many small branches. The achieved representation
of individual coordinate values, however, still allows for an accurate data investigation as
shown by the following findings we got during analysis.

Figure 3.12 a), shows the obtained initial projection for 1000 particles randomly selected
from a sampling campaign at three different sites. This first view clearly reveals two main
clusters corresponding to the different sampling sites. Due to similar particle compositions,
however, both campaigns ran for Fresno can only hardly be distinguished (green and blue
dots) even with the support of the SDT. Three dimensions are highly significant for all
campaigns: C-Carbon, NOz-Nitrogen oxides, and Po-Potassium. By using dimension
highlighting it can be revealed that there are significantly higher C' concentrations in Fresno
than in Pittsburgh (see Figure 3.12 b)). The opposite applies to Po. NOzx is more variant
and can be found in similar contributions in both sites (see Figure 3.12 c)).

While exploring the data by projection adjustments, it is possible to show that dimension
C?24 representing a carbon isotope cannot be found in Pittsburgh and also has only small
concentrations in Fresno (see Figure 3.12 d)). Contributions of C'36, another carbon isotope,
can be found in similar concentrations at both sampling sites with either high or low values
(see Figure 3.12 e)). Moving the corresponding dimension anchor to one of its variance
points also indicates an inverse correlation of C'36 to C' (see Figure 3.12 f)).
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Figure 3.12 g) illustrates the effect of dimension and node filtering leading to a reduced
number of displayed tree items and thus less occlusion. Compared to Figure 3.12 b) only
details relevant to the domain scientists are shown. Options to drill into interesting parts
of the projection provide more details. As shown in Figure 3.12 h) one can see that all
points belonging to the Pittsburgh sub-cluster show almost identical Po concentrations,
but vary strongly in their NOx contents.

3.2.8 Conclusions

The section describes a novel method for the visualization of high-dimensional data based on
the idea of representing and visualizing the data’s structure by a tree. This approach leads to
visualizations that allow one to comprehend relations between clusters in high-dimensional
data and helps to reinforce a mental mapping of these relations.

The computation and display of this structural decomposition tree (SDT) is optimized
with regard to depicting minimal redundancies in order to prevent cluttering. The result
is a meaningful embedding of coordinate values in a point projection. This approach
tackles the issue of ambiguities introduced by projection effectively and further supports
the capability of producing an overview of the data. For effective data exploration, we
have developed unique interaction techniques that enhance exploratory capabilities such as
projection adjusting, feature highlighting, and data filtering.

We were particularly interested in practical implications and insight that can be gained
from an interpretation of the initial projection of the data. We showed that the length
and relation of DAs allow one to draw meaningful conclusions about the information
content of a single and correlations between multiple dimensions of the data. We also
provided a functional view and guidelines for effective interaction with SDTs. To illustrate
their meaningful appliance, we performed a case study on highly complex real-world data.
The results demonstrate that SDTs can be successfully used in a variety of real-world
application domains to cope with the challenging problem of high-dimensional data analysis,
visualization, and interactive exploration.

Presently, no stand-alone technique is capable to ideally support all analysis tasks for
high-dimensional data. There is a clear trend towards multi-view-systems that link several
techniques to combine their individual benefits. Providing a convenient overview of the
data, as well as an intuitive interface for selection and filtering is a critical property of
such systems. The unique support of intuitive interactions (zoom, pan, data selection,
dimension highlighting, viewing manipulation) makes SDTs a suitable candidate to act as
an overview and interface for such systems.

3.3 Utilizing graph abstraction for level-of-detail

The previous method is specifically designed to facilitate explorative analysis of global
trends. In contrast, the method described in this section is designed to explore properties of
the data in different levels of detail, both on a global and local scale. Local properties as, for
example, the shape of clusters within a data set, cannot be depict optimally by dimension
reduction when the available degrees of freedom are fixed on a global context. Therefore,
methods focusing on the depiction of local properties of the manifold, for example, Locally
Linear Embedding (LLE) [RS00a], typically apply a neighborhood graph and map distance
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relationships from the local neighborhood into a global alignment of points. Thereby, the
data residing on some unknown high-dimensional manifold is represented by a series of
local patches that represent small locally linear approximations, projected into target space,
and aligned by neighborhood distances.

While this approach works well for data that is evenly connected to resemble a single
manifold, there are a number of shortcomings. The fix neighborhood size, for example in
the dominant k-nearest-neighbor graph, requires not only knowledge of the sampling density
beforehand but also cannot handle data with differing distribution well. This often leads
to unwanted short circuiting and crossings of the graph and thus to a misrepresentation
of the manifold. This disadvantage becomes especially profound for data that contains
multiple disconnected clusters. For this data, the visualization often heavily distorts the
shape and topology of the data set. In this setting, global projection approaches, such as
Principal Components Analysis (PCA) or Isomap [TSL00a], exceed local approaches in
depicting global data relationships.

We contribute to the state-of-the-art by a novel method that combines global and local
projections into a level-of-detail approach for dimension reduction. Central to our approach
are measures and techniques that have not yet been applied to the context of dimension
reduction, although they may prove to counter a number of shortcomings. Multi-level
approaches have been applied for computational speed gains but have not been made
flexible enough to provide interactive level-of-detail analysis. Although dimension reduction
techniques that apply neighborhood graphs generally outperform in depicting local data
properties, the rigid neighborhood definition yields a number of pitfalls. Clustering methods
incorporated in dimension reduction often do not preserve the geometric shape and topology
of clusters.

Central to our approach and new in the context of dimension reduction is the intercon-
nection of the following concepts:

e Relative neighborhood definition
o Hierarchical clustering of the manifold based on the Mahalanobis distance

e Visual embedding of level-of-detail projections

Thereby, the data is divided in a hierarchy by applying a clustering method designed to
preserve shape and topology of the manifold. Different levels of detail are visualized by
iteratively embedding projections of different compositional parts of the data set, thereby
facilitating an interactive exploration of both global and local data properties.

The remainder of the section is structured as follows. Section 3.3.1 describes our method
in detail, while Section 3.3.1 describes the results of our method being applied to artificial
and real data sets. Finally, concluding remarks are provided in Section 3.3.3.

3.3.1 Method

We describe a method that facilitates explorative analysis of multivariate data in different
levels of detail by embedding a hierarchy of linear projections. Our method consists of 6
conceptual blocks:

1. Construction of a relative neighborhood graph
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Hierarchical clustering of neighborhoods based on Mahalanobis distance
Embedding of the level-of-detail structure by sets of self-embedded ellipsoids
Local principal components projection in each ellipsoid

Local projection quality for error and ambiguity

A T o

Interaction and parameterization of tree traversing
In the following, we describe each of these blocks in detail.

Relative neighborhood graph

The described problems with the application of k-nearest neighborhood graph have led us
to the utilization of a relative neighborhood for dimension reduction. Thereby, we follow
the definition of Lankford who defined two points within a set as “relatively close” if and
only if they are “at least as close to each other than to any other points” [Lan69], i.e., the
following holds for two points p and ¢ in a set of points X:

d(p,q) < max(é(p,r), 6(q,r) | r € X, 7 # p,q), (3.19)

where ¢ is an arbitrary distance metric. Based on this definition of relative neighborhood,
Toussaint defined the Relative Neighborhood Graph (RNG) [Tou80] that contains exactly
the edges between points that are relative neighbors. It is shown that the RNG is a subset
of the Delaunay triangulation and that the minimum spanning tree is a subset of the RNG.
Toussaint argued that the RNG is more adaptive to the data by imposing less structure on
it, while the RNG is also a better approximation of the human perception of the shape of
a point set. An example of an RNG in 2D is shown in Figure 3.13

We argue that the RNG is superior to the purpose of manifold embedding than the
k-nearest neighbor, as the adaptive neighborhood criterion takes into account local point
densities and requires no parameterization. This eliminates the problem of specifying
neighborhood size and overall better approximates the manifold in a data-driven manner.

Clustering

The Relative Neighborhood Graph serves as an approximation of the manifold the data
resides in. The graph is processed further by hierarchical clustering to obtain a level-of-
detail characterization of this manifold. For this, we apply a bottom-up clustering approach
based on the Mahalanobis distance. This distance measure is defined by incorporating the
distribution of neighboring points and is thus a superior approximation of distances within
clusters than, for example, the Euclidean distance. The Mahalanobis distance between two
groups of data points A and B is defined as follows.

5™ (A,B)anp = /(A - B)Covz! y(A - B)T, (3.20)

where A and B refer to the groups’ mean, while Covgrl1 g denotes the inverse of the pooled
covariance matrix of A and B.

The inter-group Mahalanobis distance takes into account the (possibly non-spherical)
shape of clusters, which is a highly desirable feature in our setting. However, it is not scale-
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Figure 3.13: Relative neighborhood graph for an arbitrary point arrangement in 2D: The
relative neighborhood criterion captures the local density of clusters without the need for
parameterization. Thereby, the underlying manifold is approximated linearly. Successive
hierarchical clustering of this manifold provides a level-of-detail characterization for the data.

independent but increases with increasing distance of group means and, more importantly,
with decreasing within-group variation. The latter represents a less desirable feature for
hierarchical clustering. In our clustering method, we avoid these problems by decoupling
shape from distance.

For the bottom-up binary hierarchical clustering approach of this work, we apply a new
inter-group distance measure that is based on the difference in Mahalanobis distance subject
to joining two groups. Further, the user can define the impact of the shape of groups to
be considered in this measure by convex combination between normalized Mahalanobis
distance and the shortest Euclidean distance between groups. It is defined as follows for
groups A,B € X.

a dpin(A,B) (1 — @) dspape(A,B)
ZC,DeX dmin(CvD) ZC,DeX dshap@(C’D)
dmin(A,B) = min(|la —b||2|la € A,b € B)
dshape(A,B) = |} (A) — ¢hrp(A)| + |95 (B) — ¢XH5(B))

oM (A,B)

(3.21)

Here, d;, measures the minimum Euclidean distance between two groups and dgspape
measures the difference in Mahalanobis distances for these groups by comparing before and
after joining the groups, subject to the original and pooled normed covariance, respectively.

The application of a normalized Mahalanobis measure renders our inter-group shape
measure scale-independent, thus allows for decreasing distances under decreasing within-
group variation. The decoupled shortest distance measure works entwined with the concept
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Figure 3.14: An example of the hierarchy generated from our clustering approach: (a) shows
the relative neighborhood graph for three clusters in 3D. The resulting hierarchy computed by
the clustering of points by our combined criterion of distance and shape is shown in (b). Our
clustering captures the structure of the data by gradually accumulating compositionally fitting
pieces of increasing size. Image courtesy of [Karl4].
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of graph abstraction, as this measure is applied to neighboring clusters in the hierarchically
abstracted Relative Neighborhood Graph. An example of the resulting hierarchy is given
by Figure 3.14.

Tree embedding

The computed hierarchy of clusters on the approximated manifold is visualized in an
embedding that focusses on representing the shape of patches. Patches of the hierarchically
abstracted manifold are projected linearly by application of PCA, thereby approximating
the manifold in the corresponding level-of-detail. The two principal components of highest
eigenvalue represent (by their variance) an elliptical shape. We follow this natural inter-
pretation to embed the projection of patches into ellipses, while sub-patches, representing
higher levels of detail, are embedded recursively, as shown in Figure 3.15.

Each ellipse acts as a natural boundary to the projection by PCA and encodes information
about the ratio of variance between first and second principal components by its principal
axes. The projection is scaled uniformly to fit into the ellipsoid without distorting data
relationships. The child ellipses are oriented by rotation such that the angle between
first principal component of father and child reflect that of the main axes of the ellipses.
Further, they are positioned such that they do not overlap. All applied transformations
preserve local distance relationships and serve as an intuitive embedding of the locally
linear abstracted manifold.

Projection quality

The initial projection provides a single ellipsis showing a global projection of the complete
data set by PCA. The user may interact with this view and navigate through the hier-
archy, going from global perspective to local representations. Thereby, piece-wise linear
approximations of smaller scale of the manifold are embedded recursively in the ellipse
that the user wants to subdivide.

Piece-wise linear approximation of a multidimensional manifold yields errors. While PCA
minimizes this error, it does not diminish it. Therefore, it is important to provide the user
with visual feedback of which part of the current projection is an inadequate representation,
thus requiring further descending down the hierarchy into higher levels of detail, or if the
current projection is adequate to approximate the corresponding part of the manifold, thus
alarming the user that no further descending is required. For this, we provide a projection
quality measure corresponding to each projected data point that reflects its distance to the
linearly approximated patch of the manifold, the projection plane. Thus, we show which
points are further apart in high-dimensional space than suggested by the projection.

The projection quality of a point Y; in the two-dimensional projection is defined as

follows.
qYi) = [1Xi— X[l (3.22)
Y = Xy
X' = Xyt

Here, 7 is the matrix storing row-wise the two eigenvectors of highest eigenvalue of the
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Figure 3.15: The abstraction hierarchy is visualized by successively self-embedding ellipses.
(a) Descending down the hierarchy and into higher levels of detail: upon user interaction,
the data points that belong to the next patches are highlighted each by a bounding box. A
quick animation transforms the bounding boxes into new embedded ellipses that each depict a
new point projection using full degree of freedom. (b) The local projection quality, i.e., the
approximation error for each point in the projection, is shown by color coding. Green marks a
good fit of the projection plane, while points shown in red are ill-represented.

covariance matrix of the data X. vy represents the transformation into the projection
plane, embedding the points X’ in high-dimensional space, while having an intrinsic
dimension of two.

To visualize the quality of a projection point, color coding is applied to each point.
Percentiles of the data’s standard deviation may be defined by the user to mark the
adequacy of approximations, thus allowing the user to model acceptable deviation from the
approximation, for example by noise, in relation to the data’s standard variation. Figure
3.15(b) shows an example of the projection quality.

Interaction

Our method facilitates the interactive segmentation of manifold approximations by de-
scending the hierarchy and recursively embedding projections of the sub-patches, thereby
investigating smaller patches of the manifold at higher detail. Tree traversal is facilitated
by intuitive parameterization options that define the criteria for the next embedding. The
following options are provided:

e Minimum projection quality

¢ Maximum variance
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e Minimum data points

By defining one or more of these criteria, the user inherently specifies the level of detail
the user is interested in. The user may define the relative difference of node’s projection
quality, variance, and data points in relation to that of to their root.

By defining a minimum projection quality, the algorithm descends to the topmost nodes
of the subtree corresponding to patches that can be approximated linearly to a specified
quality relative to the root’s standard deviation, such that the sum of distances to the
projection plane is less or equal to the specified ratio of standard deviation. Applied
incrementally to subtrees, this leads to an incremental improvement of local projection
quality. By defining a maximum variance, the algorithm descends at least so far down the
tree such that the variance of the node is less than a specified percentile of variance of the
node. Likewise for defining a minimum ratio for the number of data points per patch.

Starting at the root node of an arbitrary subtree within the hierarchy, the nodes closest
to the root of the subtree are found that fulfill the requirement defined by the user. These
nodes may not be direct children of the root but are directly embedded into the root’s
ellipsoid. Note that it is not our goal to show the complete cluster hierarchy, as this would
unnecessarily overload the visual representation. The visual embedding reflects only the
segmentation steps according to user’s definition.

3.3.2 Results

In this section, we evaluate the capabilities of the described method to facilitate level-
of-detail analysis of multivariate data. We assume that data resides on one or more
multidimensional manifolds that can be approximated reasonably on a local scale. Further,
we assume that data can be interpreted on multiple scales, i.e., in levels of detail, for
example by containing multiple clusters of various distributions, which are to be investigated
by locally dissecting the data into different levels. For this, we investigate benchmark data
sets that meet these assumptions and compare the results of our method to those achieved
by Locally Linear Embedding (LLE) [RS00a] and Isomap [TSLO0Oa], as they represent
well-known methods for local and global manifold approximation, respectively. In order
to make a fair comparison, we show the two best pictures obtained by LLE and Isomap,
respectively, obtained from a series of neighborhood parameterizations for k= 2%, 5%,
10%, 20%, and 40% of the total number of data points.

Orthogonal planes

Beginning our evaluation, we investigate data generated by stretched Gaussian distribution
such that points reside on three non-intersecting mutually orthogonal planes in three-
dimensional space. This artificial data set serves as a proof of concept for the method
described. It contains three disconnected clusters of an intrinsic dimension of two that can
each be perfectly represented by a local linear projection but cannot be represented well
by a single global projection. In the linear subspace of each cluster, the data exhibits an
elliptic shape which is the kind of distribution this method is designed to focus on.
Figure 3.16 shows that our method performs as expected on this data set. Beginning
the visual exploration of the data, the user is first facilitated the global overview of the
data. Enfolding of the hierarchy and going into higher detail, the three classes within the



80 3 Explorative Visual Analysis

data are identified directly. Each is outlined by a bounding box in the projection. This is
followed by a quick animation that re-arranges the initial projection into three embedded
ellipses. Thereby, each bounding box transforms into one ellipse and all points traverse
into either one of the ellipses that each correspond to one of the generated planes. The
color coding of the points (green throughout) shows the quality of the local approximations
to be flawless. From this view, the user can directly infer that the data contains three
classes of ellipsoidal shape, each residing in a plain. In the context of the global alignment,
two of the planes can be identified to be orthogonal, although the third cannot due to the
lack of degrees of freedom in the global alignment.

Figure 3.17 shows the results of LLE and Isomap for this data. While isomap manages
to separate the three clusters to some extend for the initial parameterization of the
neighborhood size k = 20%, our method significantly outperforms for this data set.

Intersecting planes

Next, we investigate our method’s capability to separate and visualize clusters in the data
that are intermingled. Data points residing on two planes are generated as above but
the alignment is changed such that the planes intersect each other. Each cluster is again
intrinsically two-dimensional, although the intersection makes it generally hard to show

Figure 3.16: Orthogonal planes: The initial view (top) shows the global projection of the
data ill-suited. Traversing into higher detail, the three embedded ellipses each facilitate an
optimal sub-global view of the data. Image courtesy of [Kar14].
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Figure 3.17: Orthogonal planes: Results obtained from Isomap (left) and LLE (right) for
data points elliptically distributed on orthogonal planes. The best result is obtained with
Isomap for the parameterization of neighborhood size k = 20% (bottom left). However, the
planes are in general ill-represented. Image courtesy of [Karl4].

this feature in data.

Figure 3.18 shows that our method performs unexpectedly well for this data set. The
initial view shows already two clusters, one of which being well represented by the global
projection and one being misrepresented. Going into higher detail, the two clusters are
visualized in their corresponding local projection, showing the data points to be generally
represented well in two dimensions. Only a few points near the intersecting region of
the planes are shown to be misrepresented. These are the exact points that have been
misclassified during clustering to belong to the other cluster, respectively. The visualization
alerts the user of the misfit to prevent misinterpretation. Still, the overall visualization
of the compositional parts of this data set is excellent, separating the two planes almost



82 3 Explorative Visual Analysis

-y

P T A A

Figure 3.18: Intersecting planes: After the initial global layout (top), traversing into higher
detail (middle) reveals the three planes almost perfectly (color coding by local projection
quality), except for the immediate intersection region. This is shown by the bottom figure,
where color coding depicts the plane classes. Image courtesy of [Karl4].
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Figure 3.19: Intersecting planes: Isomap (left) and LLE (right) cannot separate the planes.
Image courtesy of [Karl4].

exactly.
Figure 3.19 shows the results of Isomap and LLE for different parameterizations. Here,
the representations of the data set are hardly better than that of PCA.

Entangled rings

The last artificial data set we consider is data generated along two mutually planar circles.
The rings are aligned such that they represent two chain links, closely running through each
other but not touching one another. Again, each cluster is intrinsically two-dimensional
and aligned in three-dimensional space.

Figure 3.20 shows that our method separates and visualizes both rings perfectly. The
initial view shows both classes initially but does not let on the local distance relationships
of the left circle. Based on the global projection alone, the user cannot determine the



84 3 Explorative Visual Analysis

.....

........

.
. .
- o .
......

-----

Figure 3.20: Entangled rings: Traversing beyond the initial projection (top), shows both
rings unfolded perfectly (bottom). Image courtesy of [Karl4].

shape of the cluster being a circle or an ellipse. However, enfolding yields the two clusters
visualized as a circle and without error.

Figure 3.21 shows the results of Isomap and LLE on this data set. The exact geometric
alignment cannot be inferred from any result for the tested of parameterizations. However,
when presented with results for multiple parameterizations, one can identify a general
trend for the data. In one subfigure, the rings are connected, while in another they are
disconnected, and in a third they are closely intermingled. However, the actual shape of
the circles is generally ill represented.

Iris flower data

Having exceeded at artificial data sets described above, we finally test our method for
the representation of real data. As a benchmark data set, we choose the Iris flower data
that is often used in classification and pattern recognition domains. It contains three
classes corresponding to different species of the iris flower, each described by four variables
corresponding to measurements along four axes for each flower. While one cluster can be
generally well separated from the other, two clusters are highly intermingled and are often
ill represented.

Figure 3.22 shows the two results of our method for different weightings of distance
and shape in our clustering approach. With 30% set to distance and 70% set to shape,



3.3 Utilizing graph abstraction for level-of-detail 85

Figure 3.21: Entangled rings: Neither Isomap (left) nor LLE (right) achieve a clear separation
or depict the circular geometry of the rings. Image courtesy of [Karl4].

unfolding of the hierarchy leads to the identification of four clusters, one corresponding to
each of the three classes and one to the intersection region of the two intermingled clusters.
However, with higher weight on shape in our clustering, the classes are visualized with
almost perfect separation. The projection quality suggests that the cluster in the middle
of the three is best represented by its local projection, while the others exhibit non-linear
and non-elliptic shape.

Figure 3.23 shows the results of Isomap and LLE for the Iris data. Both methods
generally fail to visualize the shape and alignment of clusters and distort the data. This
clearly shows the benefit of the level-of-detail approach of our method.
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Figure 3.22: Iris flower data: After the initial view (top), the next level of detail shows
the three flower classes each in a separate projection (middle), corresponding to an excellent
classification (bottom). Image courtesy of [Karl4].

Figure 3.23: Iris flower data: left column: The results obtained from Isomap (left) and LLE
(right) are highly diverse, depending on the neighborhood parameterization. Nevertheless, both
methods distort the data set in all tested parameterizations, thereby, failing to convey the
shape and alignment of the clusters. Image courtesy of [Karl4].
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3.3.3 Conclusions

This section describes a new method for the visual exploration of multivariate data that is
based on a level-of-detail approach involving dimension reduction and graph abstraction.
We counter typical shortcomings of neighborhood approximation by employing a relative
neighborhood graph and define a clustering method based on the Mahalanobis distance that
abstracts this graph in different levels of detail. These levels are made visually accessible to
the user by embedded local projections fitted into ellipses corresponding to the distribution
of the data in the local approximation of the manifold. By embedding local projections,
each projection utilizes full degrees of freedom, thus achieving an optimal representation
for every detail level of the data being investigated.

A projection quality measure facilitates further understanding about the distance of
each projected point orthogonal to the projection plane. Together with the means to
parameterize the navigation between different hierarchy levels, these concepts form a
powerful method for interactive exploration. Experiments show that our method captures
the shape and topology of data features extremely well and significantly outperforms
related methods on data sets that exhibit clusters suitable for level-of-detail analysis.






CHAPTER 4

Model-based Visual Analysis

From the beginning, this dissertation was set out to solve a single but very important
application problem. The concepts of exploratory visual data analysis that have been
known to succeed in numerous applications were to be applied to the specific problem of
analyzing data from single particle mass spectrometry in the application of air quality
research. It was not without struggle that this author has realized that these concepts
alone cannot resolve the underlying analytical problem. Only a holistic scientific workflow
can facilitate physically meaningful analysis of the application problem. Triggered by the
problem in air quality research, this chapter describes how the workflow can be designed
that not only solves the specific problem in air quality research but can also be regarded as
new basic research in visualization that can be applied to a broad range of other application
areas. Our main contributions are:

o Visual interface for steering and verification of non-negative matrix factorization
e Methodology to analyzing approximation errors of non-negative matrix factorization

e A general design methodology for model-based visual analysis

The application problem being solved can be summarized as follows. The data provided
from single particle mass spectrometry (SPMS) contains mass spectra of individual collected
airborne particles. A mass spectrum describes a distribution of ions by mass. Discretized
and normalized, these spectra are stored and interpreted as points in high-dimensional
space for consecutive analysis of the comprised chemical compounds of each particle. As
mass is ambiguous, various sources may contribute to each dimension of the data and the
spectra do not lend themselves to a straightforward deduction of chemical compounds.
Instead, a basis transformation is to be found that models the observed spectra as a linear
combination of the spectra arising from each of the comprised chemical compounds, such
that linear combinations of this basis forms the observed mass spectra. In particular, the
basis vectors are not mutually orthogonal, leading to the ambiguity in the data. Physical
and chemical constraints further dictate both basis and coefficients to be non-negative.

Common methods for dimension reduction, for example, spectral decompositions like
principal or independent components analysis, cannot find a basis transformation that
accounts for non-negativity in both the mass spectrum and its combinatorial model. The

89
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results are not meaningful in terms of atmospheric processing, as they show no relationship
to air pollutant emission sources. Thus, atmospheric scientists are ambivalent about using
dimension reduction and data analysis is mainly based on clustering techniques. However,
clustering also provides unreliable results, as it fails to resolve ambiguity in the data due
to its dependency on geometric distance measures. Hence, the individual mass spectra
comprising the clusters are inspected, interpreted, and re-classified in a copious amount of
manual effort. This is not only time-consuming but ultimately based on the subjective
interpretation of an expert analyst without a fundamental mathematical underpinning.

We have studied this problem in a joint collaboration between the domains of air quality
research and visualization. Dealing effectively with this problem necessitates the practical
need for visualizing the analytical reasoning of a specifically designed optimization process.
Thereby, we instigate a research direction for visualization in which little prior work exists.
We show in this chapter that visualization is essential in providing air quality researchers
with the means of finding both physically and mathematically correct interpretable lower-
dimensional basis transformations of their data. Our methodology involves the visualization
of a non-convex, multi-criteria, and non-negative optimization process. It entails a visual
interface to this optimization that (i) allows the scientist to be “in the loop” of computations
and (ii) enables verify and control the optimization process, in order to steer computations
towards physical meaning while maintaining mathematical rigor. Thereby, we contribute
both to the field of air quality research by providing novel means for the research of aerosol
source contributions, as well as to the visualization community by laying the groundwork for
further research towards enabling physically meaningful and interpretable semi-automatic
data analysis.

Having applied our method to data from biomass combustion sources, our collaborators
have been able to (i) reproduce established findings in a matter of hours (where prior
work took months), (ii) process and analyze a hundred times more spectra than in
previous studies, and (iii) gain surprising new insights enabled by the visualization. The
unparallel success of our method in this application naturally prompts the question of
whether the underlying concepts of our approach could be applied to other applications
to achieve equal satisfactory results. We evaluate this potential in the final section of
this chapter and describe the general design methodology underlying our approach. We
define model-based visual analysis as an integral approach to compute parameters of a
pre-defined analytical model that map to given data. In particular, our design choices
are intended to facilitate analysis of mathematical ill-posed problems. Our approach
involves an intensive background and requirement analysis to clearly define the analytical
question of the scientist mathematically. Subsequent design of the algorithm for parameter
approximation incorporates user input and steering, such that the user can be in the loop
of computations. By representing analytical parameters and approximation errors in data
space, we incorporate user knowledge and involve the scientist in decision making. Finally,
this design involves interaction mechanisms for interactive steering, as well as approaches
for verification and analysis of approximation errors.

The remainder of the chapter is structured as follows. Section 4.1 describes the application
problem that has triggered this new basic research. After ab intensive review of related work
in Section 4.2, we describe the design of an interactive visual interface for non-negative



4.1 Single particle mass spectrometry in air quality research 91

factorization of single-particle mass spectrometry in Section 4.3 [EGG*12]. Further,
we describe how computations can be verified and our methodology extended by the
visual analysis of approximation errors in Section 4.4 [EHH*13|. Finally, we generalize
the underlying principles of our work in Section 4.5 [EHHS14] by describing a design
methodology to model-based visual analysis. We identify a broad range of applications
that can benefit from our approach.

4.1 Single particle mass spectrometry in air quality research

Atmospheric particles have been shown to increase morbidity and mortality in urban areas
and to alter the Earth’s radiative energy balance. An important step in tackling this
problem is to elucidate the chemical compounds of ambient airborne particles. A single
particle mass spectrometer (SPMS) now chemically analyzes individual aerosol particles in
real time, providing unprecedentedly rich data sets for air quality and climate research.

SPMS instruments collect, filter, and characterize aerosols based on their mass spectrum.
The spectrum is measured by the instrument based on particle ionization. In simple terms,
this process can be described as follows. Individual aerosols are filtered, accelerated through
a drift tube and hit by a plasma beam. The beam causes the particle to ionize and break
up into fragments of different compositional levels. The mass and relative abundance of
fragment ions within the particle is then computed by a time-of-flight analyzer, providing
the mass spectrum. Thus, the mass spectrum represents a function mapping mass over
elemental charge (m/z) of fragment ions to their abundance in the particle. Discretized
in bins of 1 m/z step size, the analyzer captures the first 256 m/z ratios for each aerosol.
The resulting histogram data is stored as a 256-dimensional vector, where each coordinate
corresponds to the abundance of fragments within the aerosol having an m/z ratio within
the dimension’s section of the discretized spectrum.

As mass is ambiguous, various ions may contribute to each coordinate/dimension, thus,
SPMS mass spectra do not lend themselves to a straightforward deduction of chemical
compounds. This phenomenon is known as isobaric interference. Data transformations
based on geometric distance metrics are unable to resolve this ambiguity, as they rely
on the comparison of coordinates which, in SPMS data, can stem from different physical
sources. Consequently, data clustering results are not reliable and the state-of-the-art
approach involves verifying each individual (mean) representative spectrum by the scientist.
Figure 4.1 gives an example for this analysis. In the figure, individual peaks are labeled by
their source contribution. Ambiguity is resolved by manual analysis and experience.

Ambiguity has created several problems for the application and has in turn triggered
basic research problems for visualization. In air quality research, the task does not
match the available data. SPMS data is high-dimensional, noisy and ambiguous. The
application’s goal is categorizing particles by their composition; however, their composition
is not reflected by the mass spectrum because of its ambiguity. Consequently, a basis
transformation is needed that resolves this ambiguity.

According to the underlying physics, it is assumed that each particle can be described
by the linear combination of its fragment ions. As such, SPMS data X € ]Rgfxm), holding
n particle spectra discretized in m dimensions, can be described by the discretized mass
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spectra of their fragment ions as a basis B € ]fom) and coefficients C' € ]RS?X]C), such that
X = CB + N and (4.1)
Xie = Z C;,jBje + Nio .
1<j<k

Here, B is the matrix storing (row-wise) basis vectors, Bjo € R]', 1 < j < k, such that X
is derived with the coefficient matrix C' and the noise NV induced by the instrument. Note
that X; e and N; o, 1 <7 < n, refer to the rows of the matrices X and IN. Further, all values
are positive, reflecting the combination of mass spectra of fragment ions. The problem is
ill-posed and there is no unique solution because (i) C, B, and N are unknown and (ii)
any change in B can be undone by changing C' accordingly. In particular, adding arbitrary
basis vectors to an ideal set B* with appropriate coefficients (adding up to zero) does not
change the solution. From the standpoint of numerical optimization, infinitely many bases
exist with which the data can be described. Due to the complexity of the problem, the level
of uncertainty involved in data collection, partially unknown machine-dependent physical
models of particle fragmentation and noise induced by the instrument, previous methods
have failed to deliver physically correct independent data bases. To conduct meaningful
analysis, atmospheric scientists were required to inspect thousands of spectra manually in
an error-prone and time consuming process.
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Figure 4.1: As of now, atmospheric scientists estimate aerosol composition and the sources
that contribute to each m/z dimension based on their experience in investigating mass spectra.
Analyzing and classifying thousands of particle spectra can take months even with the help of
data clustering.
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4.2 Related work

Work related to the scope of this section can be found in the fields of dimension reduction,
visualization, and air quality research; we provide a brief overview in the following.

Dimension reduction

Methods for dimension reduction compute a mapping from high- to low-dimensional space.
Thereby, data is decomposed into a set of new coordinates, acting as coefficients to a
different basis that is more suitable with respect to data properties. In visualization,
dimension reduction is commonly applied as a means of finding a lower-dimensional data
embedding that best reflects distance relationships between high-dimensional points. Here,
the focus lies not on the properties of the basis but on their coefficients that act as an
abstraction to the high-dimensional data by mapping distance relationships. In contrast,
we are also concerned with the basis of this mapping, as its interpretation is essential in
air quality research.

Methods like multi-dimensional scaling [Tor58] or manifold learning [TSL0OOb, RS00b]
define data bases in inner product space. These bases prove hard to interpret as their
dimensionality equals the number of data points. While principal components analysis
[Pea01] finds bases in data space, it is restricted to orthogonal basis vectors. Overcoming
this restriction, independent components analysis [Com94, HOO00] finds non-orthogonal
independent data bases. However, this method is incapable of producing a non-negative
basis transformation [CP07].

Matrix factorization (MF) methods offer more degrees of freedom for defining optimization
goals. In particular, non-negative matrix factorization (NMF) has recently received great
attention because it is capable of computing non-negative basis transformations. Non-
negativity is an integral property for application areas that investigate physical phenomena
described by non-negative measurements or mixtures, as it is the case for the type of air
quality data we are concerned with. Here, we make use of the works of [KP08] and [WR10].
The former provides a framework for alternating non-negative least squares, while the latter
shows how the use of a decorrelation regularization term derives independent components
in non-negative data. In contrast to previous work, no matrix inversion is necessary for this
computation. Other work offers a convex model to NMF but is constraint in expressing its
basis as a convex combination of data points [EMO*11].

As MF methods are based on numerical optimization, their drawbacks lie with con-
vergence speed, as well as their proneness to local minima. The latter is a seemingly
insurmountable problem, as the optimization problem described in the previous section is
non-convex. Finally, all methods mentioned above share the common problem of finding a
basis transformation that is not only numerically correct but also physically interpretable
by domain experts. With complex physical restrictions that are not (yet) well-defined, it is
impossible to extract a physically correct data basis through numerical optimization alone.
After all, in air quality research, as well as in most scientific applications, the motivation
for data analysis is that data properties are part of open research questions. Consequently,
the scientist has to be involved in interacting with computations. This insight motivates
the present work.
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Visualization

While visual steering of exploration [SLY*09] and simulations [KTH*02, LGD*05, WFR*10]
have become well-established research areas in the field of visualization, the visual steering
of practical engineering optimization has not been the focus of previous studies. However,
this need is clearly documented [MCO00] and recent advances from the engineering commu-
nity give empirical evidence to the benefits of interactive visualization-based strategies to
support engineering design optimization and decision-making [CMKSO08].

Recently, novel techniques have been introduced to the visualization community that
enable user interaction in dimension reduction and have demonstrated great success in
application areas. For example, piecewise Laplacian-based projection (PLP) [PEP*11]
allows the user to interact directly with the mapping process by providing means to adjust
neighborhood and distance approximations. Thus, the user can implicitly redefine the
basis for dimension reduction. However, the application of PLP does not involve analysis
of this basis or the mapping error. Previous methods have used dimension reduction as a
means to visualize data. In contrast, our application requires visualization as a means to
steer dimension reduction toward physical correctness. In this regard, air quality research
may prove to trigger a new research domain for visualization.

Techniques to visualize matrix factorization can, in part, be based upon existing re-
search in multi-dimensional data visualization [WGK10]. Driven by applications, research
focuses on better representation of specific data properties (e.g., scientific point cloud data
[OHJS10]), better incorporation of domain-appropriate analysis techniques (like brushing
and filtering [JBS08]), or computational speed gains [IMO09]. Opposed to visualizing data
relationships by dimension reduction, value visualizations like heat maps, glyphs, scatter
plot matrices, and parallel coordinates, are regarded as the dominant approach to multi-
dimensional data visualization. Research in this area has focused on enhanced cluster visual-
ization [JLJC05, ZYQ*08, AdO04], brushing techniques [EDF08, HLDO02], and abstraction
[MMO8]. Clutter reduction through dimension ordering [PWR04, YPWRO03, FR11] is one

of the most promising approaches to enable data comprehension.

Visualization in air quality research

The air quality research community has recognized the need for tools to assist the inter-
pretation of data from single particle mass spectrometers that generate many spectra of
high dimensionality. Published under the synonym positive matrix factorization, NMF
has been used for classification of airborne particle types [KBHHO05]. However, the focus
has not been on deriving an independent basis or visualizing the result. As of now, the
dominant approach to mass spectrometry data analysis is to apply clustering methods.
These methods are commonly based on hierarchical [MMWO03], neural network [SHFP99],
or density [ZHPO08] schemes that utilize geometric distance measures. Available software
packages for mass spectrometry data ([GAR*10], [ZIC*06]) include a variety of data mining
methods that focus on clustering and the visual analysis thereof. Recently, a system
allowing visual analysis and steering of data clustering has been introduced [ZIN*08]. Here,
better clustering results have been obtained through the incorporation of expert knowledge
into data clustering and means for refinement of prior solutions.
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4.3 Model-based visual analysis of single particle mass spectrometry

Looking beyond the scope of air quality research, the underlying optimization problem
described in the previous sections is not uncommon and known as blind source separation
[CJ10]: given data that is derived from a combination of unknown compounds in unknown
abundance and combination, the goal is to factor out both unknowns, provided only with
an estimate of the number of compounds and an assumption of their mixing model. In
particular, the mass spectra of the inter-mixed compounds are not mutually orthogonal
which leads to ambiguity in the data. Thereby, the compounds and their combination
represent the actual “hidden” information that is to be factored out from the given
mixture. In the context of atmospheric processes, the unknown sources represent the latent
components that appear independently in aerosols. These form the actual, unambiguous,
and lower-dimensional data basis. Based on the physical model of particle ionization, each
measured aerosol mass spectrum can be described by the linear combination of the mass
spectra of independent compositional sources. As a consequence, the latent independent
variable basis of the data and the corresponding coefficients that derive the data are, in
theory, exactly the independent physical components and their occurrences in the aerosols.
However, in practice, extracting these basis vectors and coefficients so that their physical
composition can be interpreted proves difficult. While latent variable bases can be computed
by dimension reduction, these bases are often hard to interpret, and, although numerically
correct, not necessarily physically meaningful to atmospheric scientists analyzing the data.
In particular, methods like independent components analysis [Com94] do not account for
non-negativity in the mass spectrum and physical source mixture model. As a result, air
quality researchers are ambivalent about using dimension reduction when the resulting
data basis does not show a relationship to air pollutant emissions and their atmospheric
processing.

In this work, researchers, from the domains of air quality research and visualization,
jointly studied this problem to investigate the positive influence of visualization on solving
this problem. Dealing effectively with these vast, high-dimensional data sets necessitates
the practical need for visualizing the process of dimension reduction, thereby instigating
a research direction for visualization in which little prior work exists. We show in this
section that visualization is essential in providing air quality researchers with the means
of finding unambiguous physically correct lower-dimensional basis transformations of
their data. Our method involves the visualization of non-convex, multi-criteria, and
non-negative matrix factorization. Further, our method entails a visual interface to this
optimization process that (i) allows the atmospheric scientist to be “in the loop” of the
computation, (ii) provides direct visual feedback of the optimization process, and (iii)
enables controlled refinement of its solution. We introduce domain-specific visual encodings
and interactive mechanisms of matrix factorization that provide the means to incorporate
expert knowledge into numerical optimization and to steer this process toward physical
meaning while maintaining mathematical rigor. Thereby, we contribute both to the field of
air quality research by providing novel means for the research of aerosol source contributions,
as well as to the visualization community by laying the groundwork for further research
toward enabling physically meaningful and interpretable dimension reduction.
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The remainder of the section is structured as follows. Section 4.3.1 provides the require-
ment analysis and task description that results from the application problem described
in Section 4.1. Our framework, consisting of data factorization, domain-specific visual
encodings and interaction mechanisms, is described in Section 4.3.2. In Section 4.3.6,
this framework is applied to the factorization of biomass combustion particle spectra and
evaluated with respect to its ability to produce new insights to the application of air quality
research. Finally, concluding remarks are given in Section 4.3.9. The work is published in

[EGG*12).

4.3.1 Requirement analysis

Based on the interdisciplinary research involved in this work, we have identified key
requirements for implementing a basis transformation of SPMS data as described in the
previous section, as well as the tasks that define the usage of such a system.

Many optimization methods are static in nature and often output their result in combi-
nation with a single error measure. For air quality research, however, this is not sufficient.
An overall mapping error of “2.05”, for example, provides close to no insight for analysts.
Atmospheric scientists have extensive experience in interpreting SPMS data, identifying
different sources, common features, and noise. Under the mathematically ill-posed problem
of finding physically correct bases for the un-mixing of SPMS sources, analytical frameworks
are well-advised to draw upon the scientists’ knowledge in order to generate more reliable
results.

As numerical error measures hardly facilitate understanding of data features or the
physical correctness of the factorization basis, visualization of the basis transformation is
inevitable when the scientist is to assess its correctness. Thus, visualization should permit
a detailed understanding of

o the exact mapping error induced by the basis transformation with respect to the
data and

o the basis vectors used in the transformation with respect to the data features.
Further, an interface is required to perform the following tasks.

¢ Analyze basis:

In a correct factorization, each basis vector equals the mass spectrum of a stereotypical
particle fragment ion that is part of the measured aerosols. The basis should therefore
be depicted in a way that makes possible easy comparison between different basis
vectors and how they relate to the underlying data features, i.e., the different sources
in the data set. In this comparison, analysts should be able to identify the relative
peak heights and sparsity of the different basis vectors and verify that the basis
describes physically meaningful parts of aerosols.

e Analyze mapping errors:
To verify the correctness of the basis transformation, the scientists needs to analyze
how well each part of the data is captured by the factorization. In part, this error may
stem from noise or outlier measurements. Both overview and detail is required such
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that the overall fit, as well as the specific error with respect to certain dimensions or
data points, can be assessed.

¢ Adjust basis:
If the basis is found to be physically incorrect, intuitive means for interaction are
required to adjust the basis accordingly. Also, means to account for the level of
uncertainty in the basis configuration are desirable, since exact peak ratios may
vary depending on measurement parameters but certain conditions of the basis
configuration are known and can be specified.

The exact coefficients of the basis are not of immediate interest for verifying the factorization
but for successive analysis steps. Instead, the focus lies on the error that is induced by the
basis transformation, as well as on the physical correctness of the basis. Computations
should be based on the physical data model, mathematically well-founded, and convey
physically interpretable results. For visual user feedback, visualization is essential in
conveying an understanding of the factorization’s intermediate results, as well as to offer
an effective interface to verify and control computations with all involved parameters.

4.3.2 Method

The goal of the method presented in this section is to provide atmospheric scientists with the
means of finding unambiguous physically correct lower-dimensional basis transformations
of single particle mass spectrometry (SPMS) data. Our method involves the use of non-
negative matrix factorization (NMF) in combination with specific regularization terms
to find a basis transformation of SPMS data that minimizes ambiguity. Further, our
method entails a visual interface to this optimization process that allows the analyst to
be “in the loop” of the computation, provides direct visual feedback of the optimization
process, and allows controlled refinement of its solution. By introducing domain-specific
visual encodings and interaction mechanisms of SPMS factorization, we provide means to
incorporate expert knowledge into the numerical optimization in order to steer this process
and to verify the physical correctness of the basis transformation.

4.3.3 Non-negative matrix factorization

Given n data points of dimension m with non-negative coordinates, X € ]R(fxm) and a

positive integer kK € N,k > 0, methods that perform non-negative matrix factorization
(NMF) find a factorization of X into a basis B € ]fom) and coeflicients C' € ]RS:ZXk), such

that
|| X — CB|| — min, (4.2)

where all values in C' and B are non-negative.

From the class of existing methods for NMF, we use a combination of [WR10] and
[KPO08], together with two regularization terms of independence and diversity that serve
the objective of finding an unambiguous basis and reliable solution, respectively.

The objective of independence is understood by taking into account the physical process
of particle ionization induced by the SPMS instrument. The contribution of fragment
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Figure 4.2: With regularization, NMF finds a non-negative factorization in coefficients of
independent basis vectors (particle components). Thereby, the correctness of the mapping
(errors are illustrated in gray) is balanced against the independence and diversity of the basis.

ions to the particle’s mass spectrum can be modeled in a hierarchical manner, as larger
fragments ionize into smaller fragments. Thereby, the molecular compositional parts of the
particle contribute to the particle’s mass spectrum not only by their own m/z ratio but
also by those of their successive sub-fragmentations. For statistical considerations, these
fragmentation patterns are constant. Consequently, SPMS data can be described by a
latent variable model of independent components that represent fragmentation patterns. It
has been shown that, in order to derive the independent components from a non-negative
matrix, it is sufficient to find a factorization into a non-negative basis and coefficients
for which the coefficients of the basis vectors are uncorrelated [WR10]. Defining the
optimization goal of independence between the basis vector’s coeflicients, therefore, serves
not only the purpose of dimension reduction (basis transformation into independent latent
variables) but also leads to basis vectors of distinct molecular composition. Thus, the
regularization of independence aims toward an unambiguous and physically interpretable
basis.

Non-convex optimizations are prone to lead to only locally optimal results. Our experi-
ments of factorizing SPMS data have shown that the objective of independence leads to
the fact that outliers are not mapped well with this criterion alone and the optimization of
the basis may become “entrapped” by the local solution for independence. Although we
present no empirical evidence for this fact, the intuition behind these dilemmas is clear.
From an optimization perspective, the gain in correctness by changing the basis toward
faces of the bounding box of the data does not outweigh the penalty of correlation induced
by this change. Consequently, the optimization terminates in a local optimum. Although
independent components of SPMS data have to be diverse, early implementations using
only the regularization of independence have not produced this result but have ended
abruptly in unreliable solutions. However, steering the search for an independent basis
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by including a slightly weighted regularization of diversity has produced far more reliable
results.

To summarize these considerations, the non-negative matrix factorization of SPMS data
has the following objectives.

o NMF: C and B define a factorization of X for which ||X — CB|| is minimized
— numerically correct

e Regularization w.r.t. independence: basis coefficients C' are decorrelated
— unambiguous basis

e Regularization w.r.t. diversity: basis vectors B are mutually different
— reliable solution

We use a combination of [WR10] and [KP08] that involves a gradient-based two-block op-
timization scheme with multiplicative update rules according to [LS00]. The computations
can be summarized as follows, where ||.||% denotes the squared Frobenius norm.

1. Numerical correctness is enforced by multiplicative update rules in two successive

blocks:
MINCc>0 |X —CBJ||% , by (4.3)
Cap — Cap (X5~ aCRdZE)a’b
’ ’ (CBBT)ap +¢
where B is fixed and
mingso |X — CB||%, by (4.4)

([CTX — O‘BRB]ZE)QJ;
(CTCB)ap +¢

Bab < Ba,b

)

where C' is fixed. Here, [.]>. denotes that values are truncated to be greater or equal
to a small positive real value. The update rules employed here are inherently “normal”
additive gradient updates with a relative step size. However, this multiplicative
formulation yields faster computations and is currently the dominant approach to
NMF [LS00]. The regularization terms Rc and Rp are weighted by ac and ap,
respectively, producing an independent and diverse basis.! Ro and Rp are the partial
derivatives of the cost functions Jo(C) and Jp(B), i.e.,

_9Jc(0)
_ 0Jp(B)

1 Note that ap should be distinctly lower weighted than ac.
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Detailed notations of Rc can be found, for example, in [WR10].

2. Independence is enforced by updating C' using the partial derivative of the cost
function Jo(C) that defines the discrepancy between the uncentered correlation
(normed uncentered covariance) matrix of C', nCorr(C), to the k x k identity matrix,
I.

Jo(C) = || nCorr(C) — I||% , with (4.7)
nCorr(C) = NcCTCNg,
No = diag(1/]|Cerl[F; s 1/[|CollF) ; and

1CeillF = >t
1<I<n

3. Diversity is enforced by updating B using the partial derivative of the cost function
Jp(B) that defines the discrepancy between cos(B), the k x k matrix of the cosines
of the angles between all basis vectors in B, cos(B), to the k x k identity matrix, Ij.

Jp(B) = || cos(B) — I||% , with (4.8)
cos(B) = NpBB'Np,
Np = diag(1/||Bie

IBislle = [ > B?.
1<Ii<m

Note that computation of the partial derivative of Jp is algorithmically equivalent to that
of Jo. Instead of minimizing correlation between columns in C' (C, ;), Rp maximizes the
cosine of the angle between rows (basis vectors) of B (B; ). Figure 4.3 provides an example
of how this NMF implementation behaves in two dimensions.

|F, ceey 1/HBI<:,0||F) s and

4.3.4 Visual encodings

Although the numerical optimization, as presented in the previous section, has desirable
mathematical qualities with respect to factorizing mass spectra, results are not guaranteed
to be physically meaningful to domain experts. Due to noise, outliers, or local optimality, the
verification of the solution is required by scientists. In contrast to previous approaches using
numerical error metrics, we provide domain and problem-specific visual representations of
the matrix factorization process. This enables scientists to analyze the optimization result
in full detail, as well as to assess its quality on an abstract level. In the following, we give
a detailed account of these visual encodings and discuss their suitability for air quality
research.

The factorization of a data set X € R(™™) introduces additional entities that require
visual representation to make the user aware of their properties:

o the basis B € Rkxm)
o the coefficients C' € R("*k),



4.3 Model-based visual analysis of single particle mass spectrometry 101

(a) (b) (<)
Figure 4.3: An example of our NMF implementation. (a) shows a 2D point arrangement
that reflects the geometric properties of the SPMS data model as described in Section 4.1,
has two fairly independent sources, and noise added to it. Basis vectors and coeflicients are
computed by steepest descent (b), after which the unknown non-negative mixture of the two
contributing sources is found almost exactly (c).

o the mapping error X — CB, as well as its metric sum ||X — CB|[%,
o the correlation of the basis vectors’ coefficients nCorr(C), and

o the cosine of the angle between basis vectors cos(B).

However, not all entities are of equal interest (or importance) in the validation of SPMS
matrix factorization. Most importantly, B must be visualized, as the physical correctness of
the basis defines the value of the factorization. If the basis vectors cannot be interpreted as a
meaningful physical entity in the application, the factorization will hold no physical meaning
to scientists. Enabling the analysis and validation of B is therefore a key requirement to
be met by the visualization. Consequently, the visualization of B must show each basis
vector in full detail.

As the basis is to be evaluated in relation to the data, the visualization must also involve
the depiction of X in equal detail. This leads to the conclusion that X and B have to
be depicted in the same visual space and form, such that the user can visually reference
both entities in relation to each other more easily. Both B and X are histogram data
for which several alternative visual representations exist. However, mass spectrometry
data has already an established visual representation in the engineering community which
novel visualizations have to conform to. As Figure 4.1 shows, mass spectrograms are
visually represented as piecewise linear functions over mass. The effectiveness of our
method depends on the scientist’s ability to investigate patterns in these spectra, as well
as on the experience in identifying diverse sources contributing to SPMS data. The basic
geometric form for the visualization of X and B must therefore relate to the existing
representation of the histogram data. If X and B are seen as multidimensional, then
piecewise linear functions equal the representation by parallel coordinates [Ins09b] with
the following exceptions:

e No vertical lines are drawn for the dimensions.
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o Every dimension has equal scale.

e The order of dimensions is not arbitrary but given by mass ratios.

These exceptions render the application of state-of-the-art visualization techniques for
parallel coordinates (see Section 4.2) very limited. For visualizing SPMS data, dimension
reordering, edge bundling, or other forms of abstraction are generally less accepted by
air quality researchers. However, transfer functions, alpha blending, as well as coloring
schemes, that slightly affect the visual appearance but not the spatial presence of data
features, are accepted degrees of freedom for the visual representation.

Next to the basis, the mapping error X — C'B is of equal importance in the verification of
SPMS factorization. Even if the basis is verified to be physically correct, if the factorization
does not hold for the data, it will be of little worth to successive analysis. While the
overall quality of the factorization can be assessed by the norm || X — CB||%, a detailed
visualization of X — CB gives clues as to how the basis can possibly be adjusted to achieve
a better factorization result. NMF optimization is prone to local minima and the computed
basis is most likely not optimal. However, adjustment of B with respect to the mapping
error can improve results and lead to finding a global optimum. Consequently, a detailed
visualization of the mapping error is equally crucial to the effectiveness of our method.

There are two possibilities for defining the mapping error: absolute (X —CB) and relative
(CB/X), both are interesting for atmospheric scientists; even small measurements in specific
m/z dimensions can be important. As numerical optimization based on least sum of squares
tends to neglect small values, the visualization of the relative error, showing the factorized
data in relation to the original data, is required for verification. On the other hand, the
absolute error is of equal importance as it allows for the assessment of information loss and
shows the patterns of features that are not captured in the factorization. Consequently,
our visualization has to be able to depict both absolute and relative factorization error in
detail, while the absolute error should be displayed in relation to the basis in order to give
insights to its adjustment. Therefore, we depict X — C'B as separate polylines in the same
axis as X and B. To reduce confusion between these three visual entities, we use distinct
colors for each of them. We also allow for the option to hide the absolute error in case it
should clutter the view.

The relative error should be visually distinguishable from the absolute error and, therefore,
have a distinct representation. In our context, it shows the user how the factorization fits to
each coordinate of the data, i.e., whether the mapping accounts for higher or lower values
with respect to each value in X. To avoid further cluttering the visualization, we exploit
the yet unused degree of freedom of color coding X by this error measure. Although this
is intuitive to analysts, the drawback is that color may not be used for other visualization
goals, for example, to depict different clusters. Here, we use alpha blending to bring out
some of the data’s structure. To easily distinguish under- and over-representation, and
since relative errors CB/X generally show different distributions in these ranges ([0,1] and
[1,2]), two distinct colors are required for the definition of the color map. For CB/X =1,
the user’s attention is not needed as no error is present.

To this point, we have established the necessity of a single high-detail visualization
showing B relative to X (colored by the CB/X) and X — C'B. However, for analysis and
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verification of the factorization, the user also needs to quickly gain an overview of the
general mapping quality. This overview should facilitate an abstract comprehension of the
overall fit of the factorization and serve as a platform for interaction and navigation. We
provide this overview by a linear projection of X, CB, and B, defined by the two principal
components of the covariance matrix of X, as they are the orthogonal axes of maximal
variance in X. Further, we connect each point in X with its corresponding mapping in
CB. In this projection, the user can quickly identify outliers that are not mapped well by
the factorization, as well as its general quality.

A third plot accounts for the visual representation of nCorr(C) and cos(B), as indepen-
dence and diversity are important aspects of the optimization. However, their depiction is
not as essential to data analysis as the projection or graph view. As heat map representa-
tions of correlation matrices are well-established in the engineering community and are
also space efficient, we join both symmetric matrices by their upper and lower triangular
half, respectively, and display their values by color coding in gray scale. Note that the
basis has no inherent order and reordering of this matrix is semantically possible, however,
we find no need to do so as our NMF implementation generally performs well with respect
to independence of the basis.

4.3.5 Interaction

Effective visual analysis and manipulation of matrix factorization requires interaction. In
this section, we introduce the means for interaction provided by our visual interface and
comment on their eligibility for interactive visual verification of SPMS factorization. Figure
4.5 illustrates these techniques.

As established in previous sections, numerical error measures do not facilitate under-
standing of complex data features. The visual evaluation of the factorization is a necessary
step in air quality research. Thereby, effective interaction techniques are required for
atmospheric scientists to analyze the mapping error in each dimension with respect to
outliers, noise, and data features. We distinguish between two interaction classes: analysis
and manipulation. For the analysis part, we apply interaction techniques from visual
analytics to our visualization of matrix factorization. However, few techniques are available
that focus on interfacing dimension reduction methods. Here, we introduce novel and
intuitive interaction mechanisms that interface matrix factorization.

The first step in assessing the quality of a factorization result is its visual analysis. Given
the level of restrictions for visual encodings, parallel coordinates are inevitably prone to
visual clutter with increasing number of data points and dimensions. Therefore, interaction
is usually required for effective visual analysis. Zooming and panning allows for detailed
analysis of specific parts of the factorization. In order to analyze a group of data points or
basis vectors, we allow for problem-specific, semantic selection and filtering mechanisms.
Thereby, the projection plot acts as the selection interface that induces filtering operation
in the graph plot. Upon selection, the alpha values of all polylines are adjusted according
to their analytic connection to the selection. The selection of points

¢ hides other points in X,

¢ hides absolute errors in X — C'B not stemming from the selected points, and
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o shows basis vectors according to their coefficients in the mapping of the selected
points, i.e.,

p = Zp selected prb / Zp selected HC 4

while the selection of basis vectors

|1 17

¢ hides other basis vectors in B,
« leaves absolute errors in X — C'B untouched?, and

e shows points according to their coefficients in the mapping of the selected basis
vectors, i.e., ap = Cpp / [|Cpell1 2.

After thorough analysis of the factorization and its error, the atmospheric researcher may
refine parameters for a successive optimization step, either from an adjusted or random
starting point of parameter space. By interacting with the factorization, the analyst can
manipulate the basis by adjusting coordinates of basis vectors via left-mouse dragging. As
basis vectors are normalized by the optimization, the unadjusted coordinates are updated
such that the norm holds for the adjustment. By permitting this manipulation, the user
can iteratively define new starting points for the gradient-based search of an optimal data
basis for factorization.

Non-convex gradient-based optimization can be unpredictable, especially when applied
to high-dimensional data. As the definition of different starting points for optimization
may not necessarily imply a different result after steepest descent, setting the starting point
is not sufficient to assure physical correctness. Additionally, the user can set threshold
values for the basis optimization. Relative from the position of each basis coordinate,
positive and negative thresholds can be set by right-mouse dragging. These thresholds act
as strict boundary limits for the steepest descent which are guaranteed to be met by the
optimization. Setting boundary levels for only a few coordinates can change the entire
basis in a way that the configuration is optimal regarding to the given restrictions, while
the scientist can decide the exact degree of freedom for every part of the basis optimization.

When, after restarting the factorization with a refined basis, the result is still unsatisfac-
tory with respect to the mapping error, the researcher can investigate whether the number
of basis vectors is ill-set for the data’s factorization by adding or removing basis vectors.
The complete randomization of basis vector coeflicients can also provide the necessary
means for overcoming local optima. Often, this scenario can be observed while the online
visualization is running. Therefore, the optimization can be stopped or resumed at any
time.

1 For selected points p, the opacity of each basis b is adjusted to ap, where ||Cp e||1 refers to the sum of
the p’th row of the coefficent matrix C.

2 Note that the mapping errors cannot directly relate to any selection of basis vectors. Highlighting parts
of the errors might lead to the semantically incorrect conclusion that the selected basis vectors are
accountable for these errors.

3 For basis vector b selected, the opacitiy of each spectrum (m-D point) p is adjusted to ay, where ||Cp o||1
as above.
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4.3.6 Results

Collaborating researchers from the domain of air quality research have applied our method
to the factorization of biomass combustion sources. Here, we give excerpts of the study
and evaluation of our visualization framework with respect to speed, accuracy, and ease of
use. We also give a glimpse into the insights generated; however, these findings will be
published in a different forum. In summary of what is presented here, our collaborators
have been able to (i) reproduce established findings in mere a fraction of the time than
it was possible before, (ii) process and analyze ten-times more spectra than in previous
studies, and (iii) gain surprising insights enabled by the visualization.

4.3.7 Factorization of biomass combustion sources

Biomass combustion emits copious amounts of gases and particles into the atmosphere
and plays a key role in almost all present day environmental concerns including the health
effects of air pollution, acid rain, visibility reduction, and stratospheric ozone depletion.
Among the largest inadequacies in quantifying emission factors of biomass combustion
is the general paucity of methods identifying and quantifying particle classes in ambient
measurements for a wide range of ecosystems and combustion conditions, including anything
from naturally occurring, large wildfires to woodstoves and fireplaces used for residential
heating [RKEE05]. This is largely a result of the physical and chemical complexity of
particulate matter (PM). PM is the least understood factor in almost all issues ranging
from human health to global climate change and provides the impetus for studying ambient
particles in increasing detail to close these knowledge gaps.

In prior work, high-resolution clustering algorithms were used to characterize particle
classes of biomass combustion emission factors [BZWJ05]. The particle class depictions
in Figure 4.6 are the averages of all single particle mass spectra within their class and
the listed percentages represent the fraction of the total detected particles belonging to
that class. The relevant carbon cluster ions C (typically attributed to elemental carbon
(EC)), hydrocarbon fragment ions C, H,} (organic carbon (OC)) and isotopic K™ ions are
labeled. However, the apparent distinction between these particle classes, or compositional
discretization, is somewhat arbitrary and largely a result of the parameters chosen to
control the data clustering algorithm. In reality, there is a “continuous distribution” of
particle compositions ranging from those with mass spectra dominated by K (Figure 4.6.a)
to purely carbonaceous aerosol with mass spectra dominated by EC and OC ions (Figure
4.6.d). The fundamental issue in correctly distinguishing these particle types is isobaric
interference at m/z 39. Values in m/z 39 can represent K™ ions, CgH;_ ions or some
mixture of the two. CsH. ;“ ions are fairly ubiquitous in the mass spectra of carbonaceous
aerosol, and thus our ability to accurately separate biomass combustion from other sources
of EC/OC particles in ambient mixtures resides almost exclusively in our ability to accu-
rately determine the relative contribution of these two ions to the signal intensity observed
at m/z 39. The progression of particle compositions shown in Figure 4.6 was designed in
attempts to capture this issue. The presence of K is unambiguous in Figure 4.6.a, and
even Figure 4.6.b. As the ion signal at m/z 39 decreases and becomes comparable to, and
eventually less than, the C3 signal (in Figures 4.6.c and 4.6.d), it is increasingly difficult
to unambiguously specify the presence of K in the particle. This is a predominant issue as
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Figure 4.6: Single particle mass spectral representations of particle types observed from
biomass combustion in a wood stove during source sampling experiments. Due to isobaric
interference at m/z 39 (K+ / C3H3+), a clear separation could not be achieved.

Figure 4.6.d is characteristic of what is generally observed for carbonaceous particles from a
variety of sources. As a result, a significant amount of manual effort is expended making the
appropriate peak assignments necessary to distinguish between purely EC/OC and biomass
combustion particles. Unfortunately, this cannot be done using the cluster-average mass
spectra, such as those shown in Figure 4.6, since the relevant clusters commonly contain a
mixture of both particle types and clustering obscures important details in the spectra
that assist the analyst when making the assignments. Instead, the individual mass spectra
comprising the clusters must be inspected, interpreted and classified manually to obtain
more accurate source separations. This is extremely time-consuming and ultimately based
on the subjective interpretation of an expert analyst without a fundamental mathematical
underpinning.

In the following, we discuss the application of our method to (1) the woodstove source
sampling data from Pittsburgh, Pennsylvania, discussed above and (2) ambient Rapid
Single-ultrafine-particle Mass Spectrometer (RSMS) data collected during a sampling
campaign in Fresno, California [BZWO09.

We evaluate this method based upon (i) accuracy in resolving K-containing particles from
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EC/OC particles, (ii) efficiency in reducing overall analysis time and (iii) the contribution
of the visualization and interactive elements in conducting, interpreting, and gleaning
new insight from the overall process. The woodstove source sampling experiments offer
a good basis to evaluate performance since the data are already well-characterized while
the Fresno campaign provides a relatively unexplored and complex ambient data set to
test the visualization and interactive elements. The Fresno data is particularly well-suited
for this study since the two largest sources of particle pollution in the area are vehicular
emissions from local traffic and biomass combustion emissions from residential heating
and agricultural burning. As a result, the composition of the air shed is a large external
mixture of internally mixed EC-, OC- and K-containing particles, as well as components
formed in the atmosphere by gas-phase photochemistry and condensed on the particles,
providing a very challenging environment for resolving sources.

Results from the interactive analysis of the RSMS data collected during the wood stove
source sampling experiments are shown in Figure 4.7. Only those dimensions, or m/z
values, relevant to resolving the ambiguity in the presence of particulate K were included
in the analysis: m/z 24 (Cy), 27 (CoHy), 36 (C5), 39 (KT / C3HS ), and 41 (KT
/ C3H;_ ). This ability to select dimensions of interest, rather than analyzing the full
m/z range of the data, is a strong feature of the visualization interface and reduces both
computational burden and analysis time tremendously. The top panel of Figure 4.7 is
a screen shot of the visualization interface showing all of the data (fine lines) and basis
vectors (bold lines) identified during the factorization. It is immediately clear in this figure
that the algorithm does an excellent job factoring out the KT and C:;r / C’g,Hg+ signals
and that these two basis vectors model the data well. Also apparent is the fact that the
solution is slightly over-determined and the elements of the C; basis vector could have
been incorporated into the C;’ basis vector without any loss of information. The major
advantage of the visualization interface is that this can be done interactively by removing
the C’; basis, adjusting the Cgr basis vector lines to match the C;r and CoH. 3+ signal evident
in the data and then performing the optimization again. This is a very useful and efficient
way of analyzing these data. An unexpected and highly interesting result is the apparent
irrelevance of the m/z 41 dimension. Previous efforts have been made to separate biomass
combustion and EC/OC particles based on the ratio of integrated ion signal at m/z 39
to 41, and thus its inclusion in the analysis, but with limited success. The underlying
assumption is that C;r /CsH. 3+ ratios are small compared to the larger values associated
with the natural isotopic abundances of 3° K and #' K. Further research shall be conducted
in this regard.

The bottom left panel of Figure 4.7 shows the projection of all data points onto the K
and C’; basis vector space. Again, the separation in the data is strikingly clear with K
dominant particles clustered in the upper left-hand corner and EC/OC dominant particles
in the bottom right; these areas are circled in the figure. This interactive visualization
framework is very resourceful and the ability to interact with the projection by highlighting
individual data points, or clusters of points, and inspecting the relative basis contributions
to the selected points, is invaluable to interpreting the results and understanding the
structure of the data.

To quantitatively separate K-containing particles from purely EC/OC particles, the
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Figure 4.7: Top: Screen shot of the visualization interface showing results from factorization
of the RSMS data collected during the PAQS woodstove source sampling experiments. Bottom
left: Projection of the RSMS data onto the K+ and C basis space identified during factor
analysis. Bottom right: Projection of the RSMS data onto the K+ and Cj basis space after
factoring out the C3 basis vector from the data; As can be seen in the top figure, the focus for
dimension reduction lies with information in C, Cf, and K, and not in CoH3™ or C3H; .
The factorization minimizes the error in mapping K+ and C’; signals which corresponds nicely
to existing research stating that K™ is the major classifier in these dimensions. Further, the
spectra of KT and C;' /C3H. ;‘ particle classes are separated automatically and accurate. In
prior work, atmospheric scientists have required months to obtain this result.




4.3 Model-based visual analysis of single particle mass spectrometry 111

C?'f basis vector was factored out of all data points and the resulting data re-projected
onto the KT and C; basis vector space, as shown in the bottom right panel of Figure
4.7. The idea is that those data points showing near-zero contribution from the K basis
vector are purely EC/OC particles while the above-zero points are K-containing particles.
Clearly, there is error in the overall fit of the basis vectors to the data, as evidenced by
points with negative KT contribution, and this must be incorporated into the analysis.
Using the average residuals between the data points and basis vectors at m/z 39 shown as
bright pink lines in the top panel of Figure 4.7 as an error estimate for the factorization, a
window centered about zero has been drawn in the projection designed to separate purely
EC/OC particles from K-containing particles; note that the window fully encompasses
those points with negative contributions. Summing all points within the window yields
a value of 0.29 for the fraction of the total number of particles sampled that are purely
EC/OC particles. This result is in nearly perfect agreement with the value of 0.32 obtained
during the manual analysis of all 7000 mass spectra [BZWJO05].

Figure 4.8 shows results from the interactive analysis of the RSMS data collected during
the field campaign in Fresno. The same five dimensions were used and over 70,000 single
particle mass spectra were analyzed. Quite notably, this would not have been possible by
manual analysis. The optimization was initiated with three basis vectors but interactively
reconfigured to only two during analysis. The projection of all data onto the K+ and C’;
basis vector space is shown in the lower left panel and the clustering of the data points is
very distinct and clear. A majority of the data appears to fall roughly along a positively
sloping line (circled in the figure), where the upper cluster represents K-dominant particles
and the KT contribution decreases down the line toward the lower cluster. A snap shot of
the visualization interface when the lower cluster of data points is highlighted is shown
in the top panel. The apparent weak contribution of both the K+ and C’gr basis vectors
to this cluster is actually due to the prevalence of NO™ ions (m/z 30) in these mass
spectra. The framework does an excellent job resolving this particle class, especially since
m/z 30 was not included in the analysis. Purely EC/OC particles cluster in the lower
right-hand corner of the projection but are very sparse relative to the other particle types,
and even the results of the woodstove source sampling. This is also a highly interesting
and informative result but will not be addressed any further here. Similar to the analysis
above, the Cgr basis vector was factored out of all data points and the resulting data
re-projected onto the KT and Cgr basis vector space (lower right panel). Again, an error
estimate based on residuals was used to create a threshold range about zero to calculate
a value of 0.06 for the fraction of the total number of particles sampled that are purely
EC/OC particles. A notable strength of this particular interactive exercise was the ability
to robustly differentiate the presence of KT versus CgH;_ even in spectra where NO™
dominates the ion signal.

4.3.8 Expert evaluation

When processing high-dimensional data, paying attention to all the dimensions is chal-
lenging, so it is crucial to provide the user with a mechanism for appropriately reducing
the dimension of the problem at a minimum loss of information, as well as showing the
user both which dimensions are important and where information is lost. In the example
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Figure 4.8: Top: Screen shot of the visualization interface showing results from factorization
of the RSMS data collected during the field campaign in Fresno, CA. Bottom left: Projection
of the RSMS data onto the K* and Cj basis space identified during factor analysis. Bottom
right: Projection of the RSMS data onto the KT and C’;‘ basis space after factoring out the
C; basis vector from the data; While K+ and C’; are captured and separated well in the
factorization, the projection by the basis suggests a dominant cluster in the data that is not
part of these two particle classes. Further analysis shows that this is due to the prevalence of
NO™ ions (m/z 30) in these mass spectra.
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here, subtle differences between mass spectra can provide crucial guidance for assessing
and quantifying the source contributions to a given air shed. Clustering algorithms may
obscure these subtleties reducing their usefulness. At some level, the involvement of an
expert analyst is unavoidable but the burden of manually inspecting the several hundred
thousand mass spectra acquired during typical field campaigns, or even a subset thereof,
is unreasonable, time-consuming, and largely subjective. A highly visual and interactive
computational platform for analyzing, characterizing and manipulating these data is essen-
tial to these efforts. The emerging data visualization community requires interdisciplinary
collaborations to develop effective platforms — the impetus for the current work.

The interactive visual framework developed here provides educated, mathematically
rigorous suggestions, while leaving full control and physical verification to the analyst. In
this regard, both visualization and interaction build trust in both the factorization method
and its implementation. These computations may identify large errors, which must be
conveyed to the analyst. While information loss may be unavoidable at some level, it is
crucial to visualize exactly where this loss occurs. Both the color coding and the error
lines are helpful in qualitatively interpreting the basis transformations related to potential
errors. Filtering spectra and basis vectors is intuitive and by merely performing a few
interactions, the dominant clusters of spectra are easily highlighted. This astonishing level
of visual interaction with mass spectrometry data has not been possible before, thereby
introducing both new and exciting research potentials.

While previous methods did not recognize important features in the spectra, the fac-
torization is much more facile at identifying important commonalities and subtleties in
the spectra. We were able to reproduce established findings from the woodstove biomass
combustion measurements in a matter of hours, where prior work took months. Also we
were able to gain new insights from data collected in Fresno that will be the focus of future
investigations.

4.3.9 Conclusions

This section describes a framework for dimension reduction of single particle mass spectrom-
etry data that entails the use of visualization and interaction in order to steer computations.
Our work contributes to the community of air quality research by providing novel means
to reduce data dimensionality by physically correct and unambiguous basis transformation.
Thereby, we overcome limitations of previous methods that use dimension reduction as a
black-box scheme and move toward more physically sensible computing. By the utilization
of specifically tailored regularization terms, the presented non-negative matrix factorization
is capable of resolving ambiguity of the mass spectrum, thereby, laying the groundwork
for more reliable data analysis in air quality research. As the expert evaluation shows,
analysts are able to reproduce known research results with great ease and speed by using
our method. To the visualization community, we contribute well-justified visual encodings,
as well as novel interaction techniques that aid in the visual analysis and verification of
non-negative matrix factorization. Going further in this direction, the following section
describes how approximation errors in non-negative matrix factorization can be analyzed
and refined.
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4.4 Analysis of approximation errors in non-negative matrix factorization

The previous section describes how to characterize air parcels in terms of abundance of
characteristic sources: a basis transformation is to be found that models the observed
spectra as a linear combination of the spectra arising from each of the chemical compounds,
such that linear combinations of this basis forms the observed mass spectra. Physical and
chemical constraints further dictate both basis and coefficients to be non-negative, rendering
spectral decompositions inapplicable and the optimization problem non-convex. Thus,
approximations can only be computed iteratively by gradient-based approaches such as
non-negative matrix factorization (NMF') and currently known algorithms can only produce
sub-optimal results. The approximation error, defined as the discrepancy between data
and its lower-dimensional approximation, of mere locally optimal approximations deviates
significantly from that of a globally optimal (correct) solution. As a consequence, the quality
of approximations needs to be assessed by the scientist. The visual communication of errors
in non-negative matrix factorization, however, has not yet been studied in visualization
research and common visualization tools are not applicable to this problem.

In this section, we introduce a new methodology to the visual analysis of approximation
errors in non-negative matrix factorization that includes (i) an approach to assess the
quality of a factorization basis, (ii) a visualization of factorization errors, and (iii) means
to interactively minimize specific errors. During analysis, the scientist can compare the
numerical benefit in introducing a basis vector that minimizes error features selected in
the visualization against the benefit of each vector currently in the basis. Following this
methodology, the scientist can improve the factorization quality and consequently overcome
“being stuck” in local minima of non-convex optimization. Due to the high degree of
interactivity in this analysis, our method also provides awareness about the information
loss associated with the dimension reduction process and allows for an educated decision
regarding the degree of freedom needed to approximate high-dimensional data. Thereby, we
contribute to applications including, but not limited to, air quality research, by providing
novel means to elucidate chemical species content of MS spectra from any wide range of
sources. The core of our methodology can further be generalized and applied to other
settings of non-convex linear approximation of high-dimensional data.

The remainder of the section is structured as follows. Section 4.4.1 provides the nec-
essary requirement analysis and task description for our effort. Section 4.4.2 describes
our method, entailing a description of our methodology, the projection of factorization
errors, our approach to interactive analysis and refinement of the factorization, as well as
implementation remarks. Section 4.4.3 demonstrates how this method is effectively applied
in the factorization of SPMS data and evaluated with respect to its ability to produce new
insights to the application of air quality research. Finally, concluding remarks are given in
Section 4.4.4. The work is published in [EHH*13].

4.4.1 Requirement analysis

In the following, a brief account of the problem definition is given that involves a description
of errors in SPMS factorization, as well as our terminology. Finally, we describe the tasks
and requirements arising from this problem for the application of air quality research.
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Figure 4.9: Previous work visualizes the errors produced by SPMS data factorization in high
detail. Due to data complexity and dimensionality, this representation is prone to visual clutter
and fails to provide an overview to analysts who are faced with the problem of identifying,
classifying, and analyzing error features.

Errors in SPMS data factorization

Several errors are involved in the various stages prior to SPMS data analysis including,
but not limited to, data acquisition, sensor measurements, bit noise, integration of the
mass spectra, dimension reduction, gradient descent, and visual mapping. While many of
these errors are marginal or cannot be determined, the errors introduced by dimension
reduction can be both considerably large and determined based on the original data as
ground truth. Given the complexity of high-dimensional SPMS data (that is almost of
complete rank), any approximation to lower-dimensional space produces errors. However,
given the non-convex nature of our optimization, for which globally optimal results cannot
be expected, analyzing these errors becomes a necessity.

Consider a factorization for n data points of dimension m, X € R4 , in coeflicients
C € Ry (k) and basis B € Ry ™) for k < m. For the purpose of this work, we
define the error of a factorization as the discrepancy between the original data and its
factorization: X — C'B € R(™*™) Hence, errors are high-dimensional residuals, given by
the misfit for each point in the data. We impose no restrictions on the errors, as they may
be both positive or negative and of arbitrary magnitude, as depicted in Figure 4.9.

In addition to the errors introduced by dimension reduction, a SPMS factorization
largely exhibits noise that is assumed to follow a Gaussian distribution (for example, due to
gradient descent optimization and sensory noise). For the analysis of a suitable factorization
basis, these error contributions are of relatively low interest to analysts, as they are both
unavoidable and practically independent of the factorization basis. In contrast, specific
error features that are of interest are those that significantly deviate from a Gaussian

(nxm)
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distribution. If these specific error features occur in abundance, it indicates that the
factorization basis does not allow the depiction of these features in the data. This may be
either due to the dimensionality of the basis being set too low, or due to a sub-optimal
factorization basis that does not cover significant parts of the data.

In this section, we make use of terms as significance and optimality. We resort to
this terminology with respect to the quantity of information (variance), as the quality
of information cannot be assessed numerically. As such, we define the overall error of a
factorization by a norm of its errors (||X — C'B||) and define a factorization to be optimal
that produces a minimal overall error. However, at no point during analysis do we dismiss
any solution due to numerical inefficiency. To determine what may serve as adequate to
the current purpose of analysis is left to the analyst.

Tasks and requirements

In order to determine an adequate factorization of SPMS data, atmospheric scientists have
the ultimate task to minimize both dimensionality and error of the approximation. Thereby,
the goal is to choose a trade-off between dimensionality and error, admitting identified
errors that have been minimized and are unavoidable due to dimension reduction for the
sake of having a lower-dimensional representation. However, for mere locally optimal
solutions, it is unclear whether errors are truly minimized and unavoidable. Therefore, a
methodology is needed to assess both (i) the error and (ii) the quality of a factorization.
While the overall approximation error can be computed as described in the previous section,
the quality of a factorization relates to the efficiency of a basis in approximating the
data. Basis efficiency quantifies how much information from the data is represented in the
factorization in relation to a globally optimal solution given the same degree of freedom.
As knowledge of a globally optimal solution is unknown in general, analyzing factorization
quality requires a human-in-the-loop approach and the tools to aid in visual analysis.

It is only by the conveyance of both properties (error and efficiency) that scientists can
determine the “right” dimensionality for the basis and an adequate approximation of the
data. Analysis to ascertain basis efficiency must be tightly coupled with the visualization
of error features (and their significance) to aid the scientist in determining an admissible
trade-off, deciding which errors to admit as a consequence of dimension reduction and
weighting errors against dimensionality of the approximation. Finally, this methodology
to error-based analysis should include the means to systematically refine factorizations
towards minimizing errors. In summary, the key tasks and requirements for the visual
analysis of errors in SPMS data factorizations are:

1. Visualizing error features:

Error visualization should convey a classification of errors by importance and type,
and serve as a basis to conduct detailed analysis. A major requirement is the visual
separation of noise from specific error features described in the previous section. The
visualization must convey how much of the data is factorized with (less significant)
small errors following a normal distribution over all dimensions, as opposed to how
much of the data is not well represented, producing errors of (significant) specific
features, as described in the previous section.
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2. Analyzing basis efficiency:
In assessing the quality of a factorization, it is important to understand where
errors originate from, as they may stem from either (i) due to shortcomings of the
optimization process (local minima) or (ii) due to a necessity in dimension reduction
defined by basis dimensionality. Visualization should help to answer this question
and, when possible, uncover inefficiencies of the factorization basis with respect to
approximating the data.

3. Refining factorizations:
Once errors are identified during the analysis that are unacceptable, an analytical
system should entail the refinement of the factorization towards eliminating these
errors. A key requirement is interactivity of the data factorization and providing
visual feedback concerning the benefit of adjustments.

Our method aims at satisfying these requirements.

4.4.2 Method

We describe how factorization quality can be analyzed, sub-optimality assessed, and the
factorization be improved. Essential to our approach is a highly visual and analytical
framework that involves the analyst in several key steps.

Assessing optimality

Visualizing optimality of a factorization is a challenging task, as there exists no method that
can spot local minima or quantify their (sub-)optimality effectively. However, considering
the following concept leads to the conclusion that local minima in non-negative matrix
factorization can in fact be revealed with the help of visualization and interaction.

An optimal data basis must consist of basis vectors that are all optimal. Consequently,
the exchange of one vector in the basis set must not produce a (numerically) better
approximation. Further, for a sub-optimal basis must hold that there are better basis
vectors that produce less overall error, with respect to lowering error magnitudes in their
abundance. Conversely, the presence of similar errors of high magnitude and abundance
directly corresponds to a basis vector candidate that is not part of the current basis, while
being numerically beneficial to be included. This leads one to conclude that optimality
of the basis can be assessed by comparing the amount of information currently conveyed
by each basis vector against the amount of information that could be conveyed by basis
vector candidates. Further, these candidates are directly reflected by and can be identified
based on similar errors of high magnitude and abundance. Consequently, local minima in
the factorization can be revealed by (i) identifying candidates based on visually assessing
error magnitudes, similarity, and abundance, and (ii) comparing the amount of information
conveyed by the current basis vectors in relation to that of the candidate. If the candidate
allows for the conveyance of more information than one of the current basis vectors, then
the basis is sub-optimal. In this case, the candidate can be introduced into the basis,
possibly by exchanging one of the other basis vectors of lower benefit. This concept requires
three aspects: (i) a comparative measure of conveyed information per basis vector, (ii)
an error visualization focusing on error magnitudes, similarity, and abundance, and (iii)
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interactive probing of the error to visually compare the benefit of each basis vector against
that of selected candidates. We introduce this measure in the following.

In NMF, coefficients are exclusively non-negative. Consequently, each basis vector b; €
R™ only adds to the total approximation of X € R"*™) according to its coefficients ¢; € R™
and does not delimit other basis vectors’ contributions. Thus, the overall approximation
is decomposed into each basis vector’s contribution, such that CB =), ;.. ¢; ® b;. For
each basis vector’s contribution, we quantify its “gain” by a norm of the residuals to X. It
is possible that such contributions cover more variance than present in X. Therefore, the
gain of b; must be based on how its contribution matches the data. Consequently, our gain
measure is defined as follows:

gain(bi) = HXHl — HX — ¢ ®bi‘|1 . (4.9)

Analysis of this measure facilitates insight into the amount of information each basis vector
introduces in the factorization. Thus, spotting a local optimum reduces to identifying the
basis vectors of small gain and comparing them to the gain of the basis vector candidate
that corresponds to the largest error cluster.

Projection of factorization errors

In the following, we describe the design of a visualization that focuses on providing an
overview of factorization errors, while highlighting error classes for identifying possible
basis vector candidates. Thereby, we rely on two major classifiers for factorization errors:
magnitude and irregularity. Error magnitudes classify error severeness per data point
by a norm. While different norms may be suitable for this task depending on the application,
we apply the Euclidean norm to quantify the error magnitudes of SPMS factorization,
since it emphasizes larger misfits over smaller ones. Additionally, we classify errors by a
measure of irreqularity, similar to Hoyer’s sparsity measure [HR09], that is orthogonal to
error magnitudes and suggests a misfit in the factorization basis, as opposed to inadequate
numerical computations. With e € R™ referring to one of n errors, each consisting of m
residuals, this measure of error irregularity is defined as follows:

cos/(abs(e),1) —
1
-7

llell/(llellav/m) -

The dominance of a (sparse) feature in the error is defined by the cosine of the angle
between its absolute and 1 € R™, the vector of ones in all coordinates. Independent of
the error’s magnitude, it holds a measure of irregularity for 0 < a(e) < 1, where an error
of equal absolute coordinates leads to a value of 0 and a unit vector to 1. Figure 4.10
illustrates how this measure is interpreted to SPMS factorization errors. Based on this
measure, our projection ¢, depicting error magnitude and irregularity, is defined as follows:

it

ale) = 1— , where (4.10)

cos/(abs(e), 1)

¢: R™ — R? (4.11)

e = (afe), [lell2)
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Figure 4.10: By utilizing a measure of error regularity (left: regular — 0, right: irregular
— 1), the presence of dominant features in errors can be quantified, allowing for a visual
assessment of noise level.

The y-axis of this projection maps the magnitudes of the factorization errors, while the
x-axis maps to a(e), which indicates the dominance of a specific feature in the residuals of
an error, as opposed to showing uniform residuals.

By this mapping, errors of the same magnitude and regularity are mapped to the same
locations, regardless of their coordinates being identical. This problem is inherent to
dimension reduction and impossible to overcome. However, it can be at least partially
alleviated by a color scheme that shows additional differences. We define a projection to
three dimensions that assigns color values to each error according to its spatial configuration
in R™. First, the errors X —C'B are normalized to unit scale in order to render the projection
independently of error magnitudes and centered in order to utilize the full color range.
Second, the covariance matrix is built from this normalized centered matrix. Finally, the
eigenvectors associated with the three largest eigenvalues of this covariance matrix define
the projection into color space. A suitable color space is, for example, CIElab, as it is
uniform and of orthogonal basis.

For effective error investigation, the abundance of errors within ranges of specific
magnitude and irregularity must be accounted for in the visualization. In order to convey
information about the quantity of errors belonging to the same classifiers, the visualization
must make aware of the concentration of points within regions of the projection. However,
given limited resolution, the specific concentration of points in a projection is visually
impossible to assess for large data sets. Although interactively zooming into a projection
can unclutter the point configuration, this does not provide quantitative insight into the
point concentrations within a region. While assigning opacity values to points, either by
the use of alpha blending or by application of a non-linear transfer function, can help
convey point density, this approach does not scale well with increasing number of data
points.

In order to convey point concentrations within the projection, we use density field
contouring. Thereby, a high-resolution 2D scalar field is computed that holds, for each
pixel, the number of points projected to this location. Subsequently, the field is processed
via a convolution step using a Gaussian filter kernel, which is scaled to have a peak height
of 1 that decreases to 0 over its bandwidth. The Gaussian filter smoothes the field and
accumulates density values in the locality of its bandwidth, producing a density field.
A texture of contours can be computed, for example, by thresholding for isovalues in
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the density field. Contours of equal width in image space can be realized by setting the
threshold dependent on the local gradient of the density field. For further information on
kernel density estimation, we refer to [WJ95].

To summarize the properties of the error visualization defined above, we list the main
features in the following;:

o Horizontal axis: irregularity of errors (feature dominance)
o Vertical axis: magnitude of errors (Euclidean norm)
o Color: similarity of errors (in R")

o Contours: local quantity of errors (point density)

Figure 4.11 shows examples for different data factorizations.

Interaction

The selection of errors in a specific magnitude-distribution range (regional selection) and/or
(sub-)selection of errors based on their spatial relationship (color selection) in this visualiza-
tion can be linked and act as a filtering mechanism for different high-detail views. Further
sub-selection in high-detail views can effectively identify error features of a factorization.
These features correspond to a potential basis vector candidate that eliminates these errors.
In the following, we describe how the factorization quality can be assessed based on these
candidates and how the basis can be interactively refined.

Interactive refinement

After the selection of errors that are of interest in the interactive analysis process, our
methodology entails the visualization of the potential gain produced by the addition of
the corresponding basis vector candidate. This candidate, the optimal basis vector that
eliminates the selected errors, is given by the mean of the data points producing it, weighted
by the absolute mean of the errors per coordinate. As such, the basis vector is introduced
that has the exact features of the data points that are not covered by the factorization.
The coefficient matrix is adjusted projecting all data points onto the candidate vector and
adjusting coefficients of the other basis vectors in relation to how the candidate allows
for a better representation, while the coefficients for the candidate vector are generated
conversely based on the best fit.

Using this adjusted starting configuration, our NMF model is performed for several
iterations to produce an adequate estimate of the factorization quality that is achievable
by including the candidate. Due to the linear nature of the approximation, the gain
that can be expected by the addition of a vector to the basis depends on the magnitude
and abundance of spectra covered by the vector minus the variance between the spectra.
Consequently, the gain is highest for introduction of a basis vector corresponding to an
abundance of large errors showing similar features. However, by defining a basis candidate,
the analyst does not restrict the basis. While the two-block optimization scheme will first
optimize the coefficients to the initial basis, consecutive iterations will also update the basis
vectors if they are not optimal. Without delimiting the optimization, this methodology
can be used to overcome local minima, as well as to analyze and refine the basis.
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Subsequently to the NMF optimization with adjusted basis, the gain of the basis prior
to adjustment is visualized in relation to the gain post adjustment in the chart, while
the differences are highlighted in distinct colors. Figure 4.13 shows an example of this
separate view in our framework. If the gain of the analyst’s candidate is larger than that of
a basis vector from the previous basis configuration, then this candidate contributes more
information to the approximation and, consequently, a local minimum in the computation
has been uncovered. On the other hand, equally high gain values for all basis vectors, in
spite of high errors, suggest that the degree of freedom is set too low for the basis. By
selection in the bar chart, the analyst can flag any basis vector to be added or removed
from the basis and subsequently trigger the optimization to be performed again for the
desired configuration. Thus, the basis vector that minimizes the selected errors can be
added to the basis, other basis vectors of low gain can be deleted, or the candidate can be
forfeited in order to continue probing of the errors. As interactivity is an integral part of
this analysis, performing optimization methods on the GPU is inevitable for large data
sets. We describe our implementation in the following.

Independence regulation on the GPU

In [WR10], Wilson et al. described a term for regulating mutual independence between the
coeflicients of basis vectors in non-negative mixtures. Although being very robust, their
formulation requires no matrix inversion, making it more flexible than previous approaches
and fast to compute on the CPU. The update of the coefficient matrix C, applicable to
multiplicative NMF update schemes, that regulates independence is based on the derivative
of a cost function J¢ measuring correlation coefficients, as described in (4.3.3).

We note that the formulation given in [WR10] of the partial derivative 0J(C)/0C,, is
not easily realized on a GPU and can be reformulated more efficiently. By exploiting the
fact that the partial derivatives of the correlation matrix terms are symmetric and non-zero
only in a single row and column, we can greatly simplify the formulation as follows:

T Cab T
dJ(C) (nenf)pe ® Coe — 7200 @ (CTC)y e
b HC . : 4.12
9Cap o @ n.nl’ +e 1 (4.12)

Here, ® denotes the element-wise multiplication between two matrices of the same dimen-
sions, analogously to the division of ncncT2 which is understood as element-wise division of
the element-wise squared outer product matrix of n.. The correlation matrix Corr and
norm vector n. are given by

Corr = NcCTCNe (4.13)
Ne¢ = diag(n;!) , and
n. = ([|[Cenllr, ., ||CoillF) -

Our formulation (4.12) requires no index evaluations and only k& accumulations for updating
each entry in C, as opposed to k2. Consequently, computations are significantly faster,
while being solely based on general operations, lending itself towards a straightforward
implementation on the GPU.
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4.4.3 Results

The following case study and domain-expert feedback provided by atmospheric scientists
demonstrates the utility of our method. We have been able to (i) produce factorizations of
considerably higher quality than it was possible before, (ii) process and analyze ten times
more spectra than in previous studies, and (iii) gain surprising insights enabled by the
visualization.

Case study

The data we use as an example was collected from wood stove exhaust using a single
particle mass spectrometer [LR05]. Factorizations of this data are used to quantify emission
sources of biomass combustion. This aspect is of interest to atmospheric scientists, as
biomass combustion is ubiquitous, while being suspected to play a key role in present
day environmental concerns including health effects and climate change. The Pittsburgh
June-July data (X) contains roughly 70k particle spectra in 256 dimensions and was
factorized (in C' and B) using an eight-dimensional basis. The error in this factorization
can be quantified in relation to the data, || X —CB]||r / || X||F, producing a value of 31.1%.
This magnitude of information loss is typical for SPMS factorization, making the need
for analysis apparent. In our investigation, we first gain an overview of these errors in
the projection shown in the center of Figure 4.12 based on error magnitude (y-axis) and
irregularity (x-axis). Snapshots from a detailed view of selected errors are shown on the
sides in the figure. The depth contouring in the projection shows that the majority of the
data is factorized with good quality (low error magnitude/irregularity). However, large
amounts of spectra are not well approximated. The contours of the projection depict two
local maxima in error abundance, reflecting the spectra that are factorized by low and high
error magnitude, respectively, while irregularity increases with magnitude.

These results support the initial assumption that there are important features in the
data that are not covered by the factorization. Coarse classification of these error classes is
provided by the coloring of points in the projection. There are three major error clusters
visible in the projection, shown by the local abundance of green, blue, and red points.
Selection of these points allows for detailed investigation of the corresponding residuals to
be conducted in a high-level view. This reveals that the error types are characterized by
major misfit of the factorization in the following features: (i) Pb+-predominant error in
green cluster (372 spectra), (ii) NOT, SiO" and Fe™ in blue cluster (151 spectra), and
(iii) C;H, -predominant in red cluster (7,851 spectra).

Having identified dominant error clusters, we investigate the gain in minimizing these
errors. Figure 4.13 shows the estimated improvement that can be gained by introducing
a basis vector that minimizes each of the error features. While the (numerical) gain in
reducing the error feature outlined by the blue cluster is relatively low, it is considerably
higher for the green and red clusters. Noticeably, the gain in introducing a basis vector for
these clusters is higher than for other basis vectors (noted by index 0 and 5 in the figure),
as computed by the initial factorization. Consequently, we have shown that this basis is
sub-optimal and have found alternatives that improve the factorization.

As the initial factorization basis is shown to be sub-optimal in this analysis, the overall
error of the factorization can be decreased, while keeping the same dimensionality of the
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Figure 4.12: Errors of the factorization of Pittsburgh source sampling data, June-July, 2002.
Selecting errors by color and/or region in the projection (center, also shown in Figure 4.11(c))
effectively filters high-level views and, thereby, makes possible a detailed data analysis by
uncovering errors of high (right) or low (left) irregularity, magnitude, maxima of abundance
(bottom right), and provides further classifications by color. Red (bottom left), green (top
left), and blue (top right) error clusters are selected.

basis. With respect to refining the factorization, the sub-optimal parts of the basis can be
deleted and/or the more suitable vectors (for the red and green error classes) added to
the basis. Subsequently, the factorization is recomputed with the adjusted basis. In this
experiment, we have deleted the sub-optimal parts and introduced the two candidates of
higher gain instead. After convergence, the refined factorization features an overall error of
24.7% in relation to the original data. While being restricted to the same dimensionality
of the basis as the initial factorization, these results represent an improvement of the
overall error by 21.5%. An overview of the remaining error is depicted in Figure 4.14(a).
Noticeably, both error features that were minimized in our refinement are not apparent in
the projection. However, there are two new error clusters distinguishable at the top right
corner of the projection, in addition to the blue cluster. These new clusters correspond to
the two basis vectors that have been deleted in our refinement. Although of high magnitude
and irregularity, the clusters contain only a small number of spectra.

Our experiments have shown that significant additional improvement of the factorization
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Figure 4.13: The numerical gain in introducing basis candidates minimizing specific errors is
depicted in relation to the previous basis configuration (red = decrease). Sub-optimal parts of
the factorization exhibit a smaller gain than the analyst’s candidate ((a) and (c)). The analyst
can add the candidate to the basis, delete existing parts, or continue analysis.

for this data set can only be gained by increasing the dimensionality of the basis. However,
the amount of information that is consequently added decreases rapidly. Figure 4.14(b)
shows the error projection for a factorization of this data using a 24-dimensional basis. By
increasing basis dimensionality, an overall error of 14.8% with respect to the original data
was achieved. These results make apparent the need for visual analysis in data factorization.
Looking beyond the scope of this work, results also indicate that more research needs to
be conducted to support application domains. As such, actively searching for specific error
features may provide analysts with the ability to query factorization errors and to quantify
the quality of the approximation with respect to these features.

Expert feedback

The recent advent of single particle and related real time techniques in atmospheric science
has increased the quality and quantity of available data, so that improvements in data
visualization and comprehension techniques are increasingly desired. Single particle mass
spectrometers and other similar instruments that collect spectra in real time generate a
tremendous amount of data of high dimensionality. These huge, complex data sets pose
challenges for atmospheric scientists that need to analyze the data for various endpoints
such as emissions source, atmospheric transformations and toxicity. The high dimensionality
of the data also confounds comprehension by the atmospheric scientist because so few
dimensions can be readily observed.

The methods presented here reduce the dimension of the data set by discovering the
bases that underlie the data and visually present the resulting information to the scientist
in a way that elucidates the factors that establish the basis as representing significant
pollutant sources or atmospheric transformations. In typical studies, the common bases
are hundreds or thousands of times more prevalent than the uncommon ones so techniques
for identifying the bases must also take into account that bases with infrequent spectra
may have lower variability so appear more significant. Data analysis must not arbitrarily
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exclude this important information but instead communicate important basis properties,
such as efficiency, local minima, and information loss, to the scientist. The system described
here supports this objective and enables more accurate and verifiable data analysis. The
visualization makes it possible to analyze and classify different basis sets with respect to
information loss and different objectives. Alternative basis configurations can be readily
identified, by a cluster in the projection, and then selected for analysis. Visually comparing
the efficiency of basis vectors enables one to explore alternatives and identify new bases,
ultimately producing factorizations of higher quality. The interactive nature of this new
tool enables ready exploration of hypotheses and discovery of aspects of such large data
sets that one might not be able to discover otherwise.

4.4.4 Conclusions

It is important and difficult to address the issue of “error” in any data factorization method
and application setting. In our case, error can be associated with the result of approximating
original data in a lower-dimensional space. The error is directly influenced by the number
of chosen basis vectors and the efficiency of the basis transformation. This multi-criteria
and non-convex optimization problem cannot be solved in an optimal way by known
algorithms. It is therefore crucially important to have the data analyst play an integral
role in the entire process of factorization: by specifying the number of dimensions needed
for lower-dimensional approximation, specifying individual basis vectors, and determining
what is and what is not a “good approximation.” Error quantification and visualization,
combined with the ability to interactively influence the data factorization/approximation
process, is thus a highly desirable and crucially important component of any system aimed
at dramatically reducing the dimensionality of a complex and high-dimensional data set to
assist effectively with understanding. Our approach is exactly supporting this objective.

4.5 Generalizing model-based visual analysis

The described methods and approaches to analyzing single particle mass spectra have
been shown to prevail and to clearly succeed previous approaches in the application of
air quality research. Thereby, they represent a significant contribution to the application
area. At this point, the present work could be concluded. However, the research triggered
by this application prompts the question of whether the concepts can be applied to
other applications to achieve equal satisfactory results and a wider contribution. In this
concluding section, we evaluate this potential in answering where and how the described
specific concepts can be generalized to be made applicable to other application areas.
One key characteristic of the present work is the close link between machine learning,
visualization, and interaction. As such, this work affiliates to the relatively young research
field of Visual Analytics. The scope of Visual Analytics can be described as an integral
approach combining data analysis, visualization, and human factors [KMS*08]. The process
of Visual Analytics is defined by the key concepts: data, hypothesis, visualization, and
insight; as well as the transition functions from one concept to another. Broadly speaking,
the process involves data management and transformation, visualization and exploration,
as well as methods to support hypothesis formulation and verification aimed towards the
ultimate goal to generate new insights from data. In general, the process does not focus on
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a specific analytical task, but is rather designed to illustrate the scope of visual analytics,
covering the intersecting set between visual and analytical approaches. In contrast, the
work described here is also located at this intersection but represents a very specific
sub-setting that is far more linear than the full scope of this process by its aim to facilitate
a single analytical task. To this end, the goal is also not to derive insight in general but to
produce results for a very specific analysis problem. The analytical task is well defined
by the application, although in general, cannot be solved automatically. The task is to
produce parameters of a pre-defined analytical model that map to the data as observed.
In this setting, the transformation from model to data space is known and well defined.
Verification and error analysis can be facilitated by comparing the observed data to the
generated data from the model and showing the physical entities generated by the model
parameters in data space.

The core idea of our approach to solving the application problem described in the previous
sections is to divide and conquer the visual analysis process by solving each of the following
sub-problems: mathematical modeling of the analysis problem, algorithm design for solving
the mathematical model, visual representation of the analytical parameters, interaction for
steering computations, and verification for physical and numerical correctness. Each of
these conceptual building blocks are adjustable according to the application at hand. While
some of the visual representations described are designed for single particle mass spectra,
the interface and verification methods are designed for non-negative matrix factorization,
not restrictive to any specific application. The analysis approach as a whole is not restricted
to matrix factorization or to any particular application but is designed to facilitate a task
as defined above. In the following, we describe the conceptual building blocks behind our
approach to derive a more general concept of model-based visual analysis. Further, we
discuss applications that can benefit from this concept.

4.5.1 Design methodology for model-based visual analysis

We define model-based visual analysis as an integral approach to compute parameters for a
pre-defined analytical model that map to given data. In particular, the design choices that
are described in this section are intended to facilitate analysis of mathematical ill-posed
problems. The core of our approach is to incorporate the scientist in every step of both
the design and the usage of the final system. Scientists have extensive experience in
interpreting complex data, identifying different sources, common features, and noise. Under
a mathematically ill-posed problem setting, analytical methodologies are well advised to
incorporate this knowledge as best as possible into every step of the analysis process. Our
goal is to provide guidelines for the design of a system that can help scientists solve these
ill-posed problem in a semi-automated manner, where the computer does the “heavy lifting’
and maintains unsubjective mathematical rigor, while the scientists oversees and steers
computations towards physical correctness and interpretability.

Although any particular solution to this analytical task must be specific to data and
application, we provide general design hints for implementing such a methodology that are
independent of data and application. Thereby, we pursue an interdisciplinary and integral
approach involving mathematical modeling, machine learning, visualization, and human-
computer interaction. In particular, our approach involves an intensive background and

)
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requirement analysis to clearly define the analytical question of the scientist mathematically.
Subsequent design of the algorithm for parameter estimation incorporates user input and
steering, such that the user can be in the loop of computations. By representing analytical
parameters and approximation errors in data space, we incorporate user knowledge and
involve the scientist in decision making. Finally, this design involves interaction mechanisms
for interactive steering, as well as approaches for verification. We provide our guidelines in
the corresponding thematic blocks.

Mathematical modeling

Beginning the design of a method to facilitate model-based visual analysis, we must first
define the intended analysis mathematically. Based on extensive background research
and discussions with application scientists, the basic mathematical conditions of question
and answer to the application problem must be clear and well defined. Thereby, we
mathematically define the analytical model space M and data space D, both being high-
dimensional, as well as the mapping functions between these spaces. While these definitions
may be given directly by the applications, they may also be given implicitly, leading to the
following design tasks.

e Define the data space D, as well as the parameters of the analytical model.
P1y--sPn € M (4.14)

These parameters are the final answer to the application problem and the result of the
intended analysis. It is important to note that the analytical model space is defined
(explicitly or implicitly) by the application and that it is not necessarily the ideal
space with regard to mathematical properties or optimization. As such, it may be
ambiguous or over-defined. Parameters may not necessarily be independent of each
other and the space they reside in may not be metric. Nevertheless, it is important
to model these properties and to define, for example, measures for the similarity of
parameters, boundary conditions, and restrictions. Likewise, these properties must
be defined for the data space, including the similarity measure § between data points,
as well as metric properties of the space.

e Model the mapping from analytical model to data space.
f+ M —D (4.15)

One of the aspects that renders model-based visual analysis unique in a sense is the
clear definition of the transformation between analytical model to data space. This
is also the essential basis for designing an optimization for the parameter fit.

e Describe physical complement of the model parameters in data space.
fr pCcM —dcD (4.16)

In order to render optimization results interpretable and verifiable by domain experts,
it is essential that the corresponding object or effect is visualized in a way that
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relates the fit for each parameter to features in the data. Therefore, the physical
complements of the model parameters must be defined.

Machine learning design

Having mathematically defined the analytical problem, the next step is to design an
appropriate algorithm to estimate the parameters in M such that they map to given data
in D. For this, an inverse transformation f~! is defined as an optimization algorithm
minimizing a cost function.

X = (pla'”apn) 5 s.t.

Considerable care should be placed on the definition of a domain-appropriate error measure
for the misfit of parameters. Generally, this involves comparing the original data to the
data generated by the estimated parameter in data space using the defined mapping f.
Based on the Euclidean distance, a general choice can be the squared Frobenius norm ||.||%.
Domain-specific measures are based on the similarity measure §.

The design of the parameter optimization is of course not merely based on the cost
function but also largely influenced on the data- and domain-specific properties noted in
the mathematical modeling phase. These properties can render the optimization problem
non-convex, ultimately leaving a limited amount of choices for the optimization approach.
While gradient descent type methods have the flexibility to incorporate such restrictions,
they are often prone to slow convergence and sub-optimal solutions. This also holds for
the matrix factorization method applied in this work, although we have described how
these problems can be alleviated by multiplicative update rules, implementation on the
GPU, and the careful design of mechanisms for steering and verification. To facilitate these
mechanisms to the scientist, parameters of the algorithm must be made adaptable during
run time, such that inter-mediate solutions can be adapted and refined.

Visualization

In our design methodology, visualization takes the key role to render the parameter
approximation visually accessible to the scientist. Due to noise, outliers, and sub-optimal
solutions, this process cannot be automated. Therefore, visual verification is required by the
analyst to ensure physically meaningful results. This in turn requires the visualization to
represent three analytical entities in a manner that allows for exploration and comparative
analysis. These entities are (i) the data X C D, (ii) the analysis parameter P C M (sub-
results of the optimization), and (iii) the error X — f(P) C D of the parameter mapping. In
particular, knowledge about the total mapping error is not enough for this task but instead
the mapping error must be made interpretable corresponding to approximate solutions for
the analysis parameters and to data features. This amounts to the following sub-tasks.

¢ Design the explorative data visualization.
The first step in assessing the results provided by the optimization algorithm is to first
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understand the data. The design of an explorative data visualization involves first
defining an appropriate visual representation of the data that adheres to application
requirements and constraints. As our methodology relies on the scientist’s ability to
identify patterns and features within the data, the geometry of domain-typical data
representations should not be neglected. Instead, appropriate representations must
be discussed with and agreed upon by the intended user. In some domains, transfer
functions can be a good compromise to decrease visual clutter while maintaining the
generally accepted basic geometric form. Further, methods for interaction should be
provided to explore data effectively and to identify salient features.

e Design the visualization of model parameters and approximation error.

Designed in correspondence with the data visualization, the visualization of model
parameters and approximation errors must be similar enough to facilitate direct
comparison, while being distinctly identifiable. Thereby, the goal is to facilitate
comparative analysis between parameters, data features, and error. The error should
be incorporated both by absolute and relative values. While absolute values are given
by X — f(p1,...,pn), relative values, interpreted by an over- or underfitting, are given
by f(pi,...,pn)/X. If the data visualization allows the necessary degree of freedom,
color coding the relative error values in the data representation can facilitate quick
visual assessment of misfitted regions.

Where possible, the visualization should highlight the dependencies between data,
parameters, and error. The user must gain an overview by being able to assess
quickly which dimensions are important for the parameter solution and where errors
are. Parameters may have physical complements in data space that can be visualized
when triggered by interaction. This visualization should facilitate knowledge to the
scientists on how the parameters map to the data, how things relate, and how well
which part of the data are captured by the parameters. Thus, the goal is to visualize
the analytical reasoning of the optimization process, as well as the mapping to the
data, in terms of the function f.

Interaction

Effective visual analysis and manipulation requires interaction. Here, the goal of the
scientist is to visually evaluate and to interface the optimization algorithm. If the current
solution of the algorithm is inappropriate from a physical or semantical point of view,
the analyst should be able to change the optimization parameters by interacting with the
visualization. This requires intuitive operands that serve as an interface for interaction.
If possible, the scientist should be able to redefine and adjust parameters directly in the
data view. General interaction mechanisms to facilitate this methodology are methods for
exploration and refinement.

o Design interactive exploration of data features, parameter space, and error.
General mechanisms to facilitate explorative analysis are overview and detail, as well
as zooming and panning that can be embedded in any visualization. With increasing
number of dimensions and data points, these methods represent absolute prerequisites
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for exploration. Further, methods for selection and filtering aid the user in more
directed analysis. Other options include to hide or highlight parameters, as well as the
corresponding data features, or to trigger the visualization of physical complements
for select parameters. Additionally, options to exclude or include data dimensions,
data points, or parameters can further aid the scientist in specific analysis tasks.

o Design interactive refinement of parameters.

If parameter misfit is identified during explorative analysis, our methodology entails
an interactive refinement of the parameters. With this, the scientist can guide
the algorithm semi-automatically out of local minima and to find more adequate
solutions. In a monitoring and steering environment, the first interaction is to stop
the optimization process, in order to change the parameter setting and to later resume
computations with adjusted parameters. Adding or removing certain parameters can
be useful in settings where the solution is over- or under-determined.

In order to adjust parameters, appropriate methods facilitate direct interaction
with the visual primitives of these parameters to intuitively and quickly change
parameter values. In a computational steering context, methods to interactively
define boundaries for certain parameter values can aid the algorithm to traverse into
regions of the parameter space that would otherwise not be reachable. This method
can also facilitate the definition of physical restrictions for parameters after the design
of the optimization algorithm. Finally, the option to save and load (sub-)results of
the parameters can aid scientists to compare solutions or save analysis time.

Verification

Next to the visual verification of parameter values and errors, our methodology entails
assessment of local optimality of approximation errors by exploration of the error space and
comparison between different alternatives. Thereby, the goal is to facilitate analysis of the
quality of results from non-convex optimization. This can also aid in the interpretation of
results with respect to uncertainty. Depending on the application, it may be beneficial to
analyze the optimization landscape, that is the scalar-valued error field for the parameter
space (or a proximity around possibly sub-optimal parameters).

The core of our approach to assessing the quality of optimization results is based on
the following principle. Approximation errors (in X — f(P)) that follow a small normal
distribution can be regarded as noise and should thus be visually filtered out, while specific
(non-gaussian) error features represent a misfit of the parameter optimization to account for
corresponding data features. In Section 4.4.2, we describe a method to visually characterize
errors by abundance, similarity, sparsity, and magnitude. This is generally applicable
to any verification context in model-based visual analysis. The projection of the error
landscape acts as an interface for exploration and selection in a multi-view environment.
Upon selection of error features within this projection, a more detailed visual representation
allows analysis of the corresponding absolute errors in relation to the data and parameters.

Our methodology for finding more optimal results, as described in 4.4.2, is applicable to
settings where the analysis model entails linear projection of the data. This is achieved
by introducing the data feature corresponding to select errors in the projection, thus
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minimizing the identified error. Although, this is not applicable in any analysis model,
the general idea can be transferred. Generally, any salient error feature is a feature
in the data that is not mapped by the analytical parameters. The goal is therefore to
characterize the salient features in the error, compute the corresponding data features
that are misrepresented, and to compute an optimal set of parameters that minimize this
specific error feature. Our methodology further entails a comparison of the benefit from
minimizing this specific error feature with respect to the previous solution. Thereby, the
user can adapt the parameter set and compare different locally optimal solutions, with
respect to the overall approximation error or specific parts of the data being captured.

4.5.2 Applications

The task of model-based visual analysis is to produce parameters of a pre-defined analytical
model that map to given data. This represents a setting where the focus lies not on
exploration of the unknown but on analysis of the known. Additionally, the goal of
analysis is to produce specific analytical parameters that do not reside in data space. For
example, this setting frequently occurs to classification problems. In the following, we list
applications that could benefit from our approach and describe examples of domain-specific
classification problems fitting to the scope of our methodology.

o Physics:
The evaluation of experiments or simulation with respect to pre-defined parameters,
physical restrictions, and analytical model maps directly to our methodology.

« Biology:
We have applied our methodology successfully in biology where it was used to
study conformational changes of proteins in molecular biophysics [EGF*13]. To
facilitate model-based visual analysis of circular dichroism spectra, we have applied a
different optimization and new visual encodings, while following our general design
methodology. The results show that our method can be transferred and analogously
applied in the analysis of protein conformational changes, while leading to parallel
success.

o Geology:
In geochemistry, an example would be the classification of isotope and trace metal
geochemistry of the shells of recent and fossil organisms.

o Environmental science:
Next to atmospheric science, our methodology could facilitate a way to better
understand and tune algorithmic parameters in climate modeling.

o Engineering:
There are arguably numerous optimization problems in engineering that cannot
be automated but require the knowledge and experience of an expert. Adding
to the scope of model-based analysis, specific engineering disciplines that include
such problem settings are civil, chemical, electrical, and mechanical engineering. A
close link between optimization and human expert is especially desirable in settings
where important design decisions are made, for example, in urban planning, water
management, and construction.
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4.5.3 Conclusions

Visual Analytics can be defined by the interlinking of methods from machine learning,
visualization, and user interaction to a holistic scientific workflow. Here, we define model-
based visual analysis as a subset of this field by interlinking methods of these domains
to facilitate a single and specific analytical task, that is based on a well-defined analysis
model but not straight-forward to solve algorithmically. Thus, it involves the user with the
help of visualization, facilitating means for interaction and verification. Hereby, the goal is
neither primarily to explore, nor to find hypothesis, but to find parameters in a pre-defined
analysis model that map to given data. Our methodology entails verification and error
analysis by comparing the observed data to the data generated by the model parameters.
Thereby, we pursue an interdisciplinary and integral approach that involves mathematical
modeling of the analysis problem, algorithm design for solving the mathematical model,
visual representation of the analytical parameters, interaction for steering computations,
and verification for physical and numerical correctness.

Model-based visual analysis is of interest in applications that involve analytical problems
where automated methods are not sophisticated enough to find reliable and physically
correct solutions. These problem classes include non-convex optimization problems, such
as non-negative matrix factorization, operating under application-specific requirements
and constraints, and therefore have to involve the scientist to draw from his knowledge and
intuition. With our generalization to model-based visual analysis, we contribute a design
basis to develop a holistic scientific workflow by means of which application scientists are
able to conduct exactly this type of analysis effectively.

Although our approach was originally developed to solve a specific analysis problem in
one application, we have shown that the underlying design principles do in fact extend
to a far greater field of application. As we have discussed, the analytical tasks solved by
model-based analysis are abundant in physical sciences and engineering disciplines. In
these applications, there is a need for visual aid in analyzing increasingly vast amounts
of data and facilitating user intervention where the machine does not produce adequate
solutions. Model-based visual analysis addresses exactly this need.



CHAPTER 5

Conclusion

Due to enhanced data acquisition and analysis methodologies in almost all application
domains, progressively larger and inherently more complex (multivariate) data sets are
being produced. This dissertation describes new approaches to visually explore and analyze
these data sets. Our main contributions are:

o Visualizing values in dimension reduction

e Level-of-detail in dimension reduction

o Visual interface for steering and verification of non-negative matrix factorization

e Methodology to analyzing approximation errors of non-negative matrix factorization

e A general design methodology for model-based visual analysis

In the subject of data exploration, we focus on incorporating methods from dimension
reduction to facilitate more visually scalable and intuitive representations of multivariate
data. We describe how the incorporation of data values within a lower-dimensional
embedding enhances its analytical capabilities and effectively counters ambiguity of the
mapping [ERHH11, REM*12, EHHR13|. Our approach encodes data values into a tree
metaphor that illustrates the structure of data sets and helps to reinforce a mental mapping
of inherent relationships. The computation and display of the tree structure is optimized
with regard to depicting minimal redundancies, while unique mechanisms for interaction
enhance exploratory capabilities and support analysis of global trends.

Further, we describe how dimension reduction can be embedded to facilitate analysis and
exploration on different levels of detail, from global trends to local properties of the manifold
[EKHS14]. By utilizing criteria such as relative neighborhood and Mahalanobis distance,
the manifold underlying the data is approximated hierarchically. In order to render these
levels visually assessable, local projections are recursively embedded into ellipses, each
utilizing full degree of freedom to produce an optimal representation corresponding to the
level of detail. Means to interactively traverse these levels enable the user to explore local
properties gradually, thereby enabling effective analysis and exploration of the shape and
topology of clusters comprised in high-dimensional data.
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In Addition to our contributions in explorative data visualization, we describe work
which may prove to instigate a new basic research direction in visual analytics. Working
closely with atmospheric scientists, we have developed a fundamentally new algorithmic
and analytical methodology for visualization, by which it is now possible to characterize
aerosol source contributions [EGG*12]. Our methodology entails a visual mapping of
the application’s analytical model and the visualization of an optimization algorithm for
approximating the model’s parameters. As this model is mathematically ill-posed and the
corresponding optimization problem non-convex, approximation results are not guaranteed
to be numerically the best solution or physically meaningful with respect to their semantical
interpretation. Therefore, our methodology entails the use of visualization and interaction
to steer the approximation algorithm and analyze the errors that results from it towards
producing results of physical meaning and mathematical rigor. Thereby, we overcome
limitations of previous methods that use machine learning algorithms as a black-box scheme
and move toward more physically sensible computing.

Further, we describe how errors in non-negative matrix factorization may be quantified,
visualized, and methodically analyzed, in order to provide scientists with the ability to
interactively improve the results [EHH*13]. Our methodology for user-guided error-aware
data factorization entails an assessment of the amount of information contributed by
each dimension of the approximation, an effective combination of visualization techniques
to highlight, filter, and analyze error features, as well as novel means to interactively
refine these errors, both to physical meaning and to numerical optimality. Following this
methodology, the scientist can improve the factorization quality and consequently overcome
“being stuck” in local minima of non-convex optimization. Due to the high degree of
interactivity in this analysis, our method also provides awareness about the information
loss associated with the dimension reduction process and allows for an educated decision
regarding the degree of freedom needed to approximate multivariate data.

Our methodology has been implemented in a single framework for visual analysis, tested,
and evaluated by domain scientists, serving as a proof of concept. Using our framework,
atmospheric scientists have been able to (i) reproduce established findings in a fraction
of the time, (ii) process and analyze a hundred times more spectra than in previous
studies, and (iii) gain surprising new insights enabled by the visualization. The outstanding
success in the application of air quality research naturally prompts the question of its
applicability to other domains. To answer this question, we derive the key design choices
that underlie and transcend beyond application-specific solutions and describe a general
design methodology to computing parameters of a pre-defined analytical model that map
to multivariate data [EHHS14]. Thereby, we describe how a data- and application-specific
analysis task can be made visually accessible by representing analysis parameters and error
to the scientist and providing further means to interactively verify computations with the
scientist in-the-loop. Core application areas in natural sciences and engineering disciplines
are identified that can benefit from our approach to model-based visual analysis.
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APPENDIX A

Zusammenfassung

Forscher und Analysten in modernen industriellen und akademischen Umgebungen werden
mit einer gewaltigen Menge von multivariaten Daten konfrontiert. Obwohl es in den
Bereichen Data Mining und Knowledge Discovery bedeutsame Entwicklungen gegeben hat,
besteht immer noch Bedarf an verbesserten Visualisierungen und generischen Losungen.
Der Stand der Forschung in visueller Datenanalyse und explorativer Datenvisualisierung
ist es, neue Analysemethoden zu integrieren und Interaktion zu verbessern.

Im Forschungsfeld der explorativen Datenvisualisierung beschreibt diese Dissertation
neue Ansétze in der Dimensionsreduktion, die eine Reihe von Probleme beheben, die
aktuellen Methoden innewohnen, wie etwa die der Mehrdeutigkeit von Projektionen. Es
wird beschrieben, wie Koordinatenwerte innerhalb einer Projektion eingebettet werden
kénnen, wodurch Mehrdeutigkeiten behoben werden. Aulerdem wird behandelt, wie die
Visualisierung der strukturellen Zusammensetzung von hochdimensionalen Daten eine
intuitive Darstellung der inhdrenten Beziehungen vermittelt, oder wie Eigenschaften und
Ausrichtung von mehrdimensionalen Mannigfaltigkeiten in verschiedenen Detailstufen
visualisiert werden konnen. Letzteres wird mittels einer rekursiven Einbettung lokaler
Projektionen realisiert, die jeweils mit vollen Freiheitsgraden das zugehorige Detaillevel
optimal anzeigen, wahrend sie im globalen Kontext ausgerichtet sind.

Im Anwendungsfeld der Luftqualitatsforschung, stellt die Dissertation neue Methoden auf,
die der Berechnung der Zusammensetzung von Luftpartikeln aus Massenspektrometrien di-
enen. Die Forschung an diesem Anwendungsproblem fithrte zu neuer Grundlagenforschung
im Bereich der Visualisierung. Unsere Losung umfasst eine visuelle und integrative
Methodik, bei der Anwender Berechnungen mitverfolgen kénnen, um diese hinsichtlich
ihrer Semantik zu iiberpriifen, und, falls notwendig, steuernd auf den Berechnungsprozess
einwirken kénnen, wodurch weitreichende Ergebnisse im Anwendungsfeld erzielt wurden.
Sorgfiltige Reflektion unserer Losung hat dazu gefiihrt, allgemeine Design-Entscheidungen
aufzustellen, die der konkreten Losung zu Grunde liegen und auf weitere Anwendungsfelder
iibertragbar sind. Als Ergebnis beschreiben wir eine allgemeine Methodik zur Berechnung
von Parametern, die sich auf Basis eines vordefinierten Analysemodells anhand gegebener
multivariater Daten ableiten lassen. Anwendungsgebiete, die von unserer Methodik profi-
tieren, sind Ingenieursdisziplinen und Naturwissenschaften.
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