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Kurzfassung 

Die Arbeit befasst sich mit den Auswirkungen des mehrfachen Überfahrens der 

Werkstückoberfläche mit dem Wasserstrahl und anderen Einflussfaktoren, wie 

Vorschub, Wasserdruck und Düsenabstand auf die Wasserstrahlbehandlung von 

Metalloberflächen. Hierzu wurde die Oberflächenbeschaffenheit vor und nach der 

Wasserstrahlbearbeitung herangezogen. Eine Erhöhung der Anzahl der Überfahrten 

mit dem Wasserstrahl und eine Erhöhung des Drucks führen zu einer höheren 

Rauheit, einer größeren Erosion, sowie einer höheren Härte. Die 

Vorschubgeschwindkeit hat eine gegenteilige Wirkung auf die genannten 

Oberflächeneigenschaften. Es lässt sich ein bestimmter Düsenabstand finden, bei 

dem die maximale Oberflächenrauheit, Erosion und Härte entsteht. Durch 

Untersuchungen der Mikrostrukturen der bearbeiteten Oberflächen wurden 

Erkenntnisse über den Mechanismus des Materialabtrags sowie den Beginn und die 

Weiterentwicklung von Schädigungen gewonnen. Basierend auf der Methode der 

statistischen Versuchsplanung wurde außerdem die Oberflächenbehandlung mit 

Wasserstrahl optimiert. Ebenfalls entwickelte Empirische Modelle zeigen eine sehr 

gute Korrelation zwischen gemessenen und erwarteten Ergebnissen. Eine geeignete 

Auswahl der Parameter zur praktischen Anwendung kann darauf basierend erfolgen. 

 Abstract 

The study addresses the effect of multiple jet passes and other parameters namely 

feedrate, water pressure and standoff distance in waterjet peening of metallic 

surfaces. An analysis of surface integrity was used to evaluate the performance of 

different parameters in the process. An increase in the number of jet passes and 

pressure leads to a higher roughness and more erosion and also a higher hardness. 

In contrast, the feedrate shows a reverse effect on those surface characteristics. 

There exists a specific value of standoff distance that results in the maximum surface 

roughness, erosion as well as hardness. Analysis of the surface microstructure gave 

a good insight into the mechanism material removal process involving initial and 

evolved damage. Also, the waterjet peening process was optimized based on the 

design of experiment approach. The developed empirical models had shown 

reasonable correlations between the measured and predicted responses. A proper 
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selection of waterjet peening parameters can be formulated to be used in practical 

works. 
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Zusammenfassung 

Für die Wasserstrahl-Technologie gibt es verschiedene Anwendungen, wie zum 

Beispiel Trennen, Oberflächenbehandlung, Reinigung, Entfernung von 

Beschichtungen und Randschichtverfestigung (Waterjet peening, WJP). WJP ist eine 

relativ neue Anwendung der Wasserstrahl-Technologie. Es handelt sich hierbei um 

eine mechanische Verstärkung der Oberfläche, welche durch hochfrequente Stöße 

der Wassertropfen mit der Werkstück-Oberfläche und der daraus bedingten lokalen 

plastischen Verformung bewirkt wird. Dadurch werden hohe Druckeigenspannungen 

in die Oberfläche induziert, was eine größere Oberflächenhärte und längere 

Lebensdauer der Komponenten bedingt. Es ist bekannt, dass 

Hochdruckwasserstrahlen in der Lage sind, eine starke Beschädigung der 

Oberfläche des Werkstoffs durch Erosion zu verursachen. Diese ist durch den Stoß 

der sich mit hoher Geschwindigkeit bewegende Flüssigkeitsmasse mit der 

Werkstückoberfläche bedingt. Die vorliegende Arbeit befasst sich mit den 

Auswirkungen des mehrfachen Überfahrens der Werkstückoberfläche mit dem 

Wasserstrahl und anderen Einflussfaktoren, wie Vorschub, Wasserdruck und 

Düsenabstand auf den WJP Prozess für Edelstahl X5CrNi18-10 (Werkstoffnummer 

1.4301) und Stahl C45 (Werkstoffnummer 1.0503). Eine Analyse der 

Oberflächenbeschaffenheit in Bezug auf die Oberflächenrauheit, Abtragung, Härte 

und Mikrostrukturen wird verwendet, um den Einfluss verschiedener Parameter auf 

den WJP zu bewerten. 

Eine Erhöhung der Anzahl der Überfahrten mit dem Wasserstrahl führt zu einer 

höheren Rauheit und Erosion auf der Oberfläche durch die wiederholte Belastung 

der Oberfläche mit dem Strahl. Ein hoher Wasserdruck bewirkt aufgrund der höheren 

kinetischen Energie der Wassermoleküle ebenfalls eine größere Oberflächenrauheit 

und verstärkte Erosion. Dahingegen zeigt eine Steigung des Vorschubs eine 

umgekehrte Wirkung auf Oberflächenrauheit und Erosionsrate. Für den Düseabstand 

existiert ein bestimmter Abstand, bei dem der Strahl hauptsächlich aus 

Wassertröpfchen besteht, wodurch sich eine maximale Oberflächenrauheit und 

Erosion ergibt. Die Erosion und der Materialabtrag sind bei Stahl C45 (UNS G10450) 

höher als bei Edelstahl X5CrNi18-10 (UNS S30400), was in der geringeren Härte des 

Stahls C45 begründet ist. Die Mikrostruktur gibt Aufschluss über den Mechanismus 

des Materialabtrags, der anfänglichen und sich entwickelnde Beschädigung. 
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Die Härte sinkt mit steigendem Abstand der Düse zur Oberfläche. Ein mehrfaches 

Überfahren der Oberfläche mit dem Strahl und eine Erhöhung des Drucks führen zu 

einer größeren Härte und einer größeren Tiefenwirkung. Im Gegensatz dazu hat eine 

Erhöhung des Vorschubs eine geringere Härte zur Folge. Für einen bestimmten 

Düsenabstand wir die Härte maximal. Die wassergestrahlten Proben weisen eine 

geringere Schwingfestigkeit als die unbearbeiteten Proben auf, was wahrscheinlich 

durch die erhöhte Oberflächenrauheit bzw. Kerbwirkung bedingt wird. Für die 

Dauerfestigkeit spielt die Oberflächenrauheit eine größere Rolle als die Erhöhung der 

Härte. 

In der Arbeit wurde zudem die Wasserstrahl-Randschichtverfestigung basierend auf 

der Methode der statistischen Versuchsplanung optimiert. Diese basiert auf den 

Response-Surface-Methoden unter Verwendung des experimentellen Ansatzes nach 

Box-Behnken. Dabei wurde die Aluminiumlegierung AlMg1 (Werkstoffnummer 

3.3315) als Probenmaterial gewählt. In diesem Zusammenhang wurden empirische 

Modelle entwickelt, um die Oberflächenrauheit und die Härte vorherzusagen. Die 

empirischen Modelle zeigen eine sehr gute Korrelation zwischen den gemessenen 

und erwarteten Ergebnissen. Eine geeignete Auswahl der Parameter zur praktischen 

Anwendung kann darauf basierend erfolgen. 
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1 Introduction 

The technology and applications of high pressure waterjet have been studied for 

many decades (as early as 1960s) [1]. It has been used extensively in various 

industry-related applications including machining, surface preparation, cleaning, 

coating removal and surface treatment like waterjet peening (WJP). In general, water 

is compressed to an ultrahigh pressure up to about 700 MPa and discharged from a 

small orifice typically between 0.2 to 0.4 mm in diameter [1, 2]. If abrasive is used, it 

is then mixed with the stream of high-velocity water in a chamber before entering the 

nozzle. The system produces a high velocity water stream up to 900 m/s, with or 

without abrasive particles causing damage to materials by shearing, cracking, 

erosion, cavitation, delamination and plastic deformation [2]. 

In a machining process, high-pressure waterjet is used to cut a workpiece. With an 

addition of abrasive particles, the machining capability of the waterjet is significantly 

improved. Various machining processes can be performed including cutting, drilling, 

milling, etc. A wide range of materials and thicknesses can be cut with good cutting 

quality and small taper. However, different processing parameters and material 

properties have to be carefully assessed as to produce the desired cutting qualities. 

Using only water at a relatively low pressure, cleaning of surfaces from dirt or coats 

can be achieved [3]. High pressure waterjet also is used successfully to mill coal into 

powders [4]. 

Waterjet peening (WJP) is a relatively new application of the waterjet technology [5]. 

It is a mechanical surface strengthening process where high-frequent impact of water 

drops on the surface of metal components, which causes local plastic deformation. 

As a result, high compressive residual stresses are induced in the surface-near layer 

of the workpiece, which leads to enhanced surface hardness and fatigue life [6]. With 

an addition of abrasive particles, a higher amount of compressive residual stresses is 

induced but with a significant increase in roughness of metal surfaces [1]. 

In the Chair of Design in Mechanical Engineering (KIMA), University of 

Kaiserslautern, there were a few research projects conducted in the field of waterjet 

technology. Several studies were carried out on the simulation and performance of 

the cutting jet [7, 8, 9, 10, 11]. The waterjet technology has also been introduced in a 
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medical-related application. Few studies were reported about its potential application 

[12, 13, 14, 15]. 

The present study attempts to investigate the effect of the waterjet peening process 

on the material surfaces. The work consists of eight chapters. The present chapter 

briefly introduces the waterjet technology in general. Chapter 2 reviews the current 

state of the art on several mechanical surface treatment processes including shot, 

laser shock and waterjet peening. However, the basic concept of the waterjet 

peening process is discussed in detail. Also, some results from the previous 

literatures on the effect of the waterjet peening process are reported. The motivation 

and the scope of the present study are explained in Chapter 3. Chapter 4 describes 

the experimental and analytical procedures in conducting the study. Chapter 5 

presents the main results in the characterization of the waterjet peening process. The 

effects of the process on the materials surface, sub-surface and the fatigue 

performance are discussed. The optimization of the waterjet peening process is 

presented in Chapter 6. Chapter 7 discusses the conclusions based on the results 

and the recommendations for future works. Lastly, a summary and outlook for future 

research is presented in Chapter 8. 

  



2 State of the art  3 

 

2 State of the art 

In today’s practice, mechanical surface treatments have been widely applied 

particularly in the spring-manufacturing, automotive and aerospace industries. 

Furthermore, these processes are known to be well established in ancient times 

concerning metallic materials where evidently hammering was the first mechanical 

method used to make particular components to final shape and strength [16]. It was 

realized that the failure due to fatigue depends on many factors, and very often it 

develops from particular surface areas of engineering parts. So, it seems possible to 

improve the fatigue strength of metallic components by the application of suitable 

mechanical surface strengthening processes [16]. 

2.1 Methods of mechanical surface treatment 

Various mechanical treatment processes can be applied to enhance the surface 

characteristics of engineering components. These treatments use physical processes 

to determine the resulting surface condition. The compressive stresses are mainly 

induced into ductile metals mechanically by localized plastic deformation within the 

outer surface region [17]. Mechanical surface treatment processes usually available 

in today’s industry can be roughly divided into cutting and non-cutting methods [18]. 

However, the main focus of cutting methods is on producing a final shape of a 

product, while achieving optimal surface layer states is only a secondary objective. 

Therefore, the present study is confined to describing the non-cutting methods which 

serve to primarily enhance the surface layer state. A summary of these methods is 

shown in Table 2-1. The methods are generally divided into groups based on the 

movement between the tools and the workpiece and also the nature of the impacting 

force, i.e. either a static or an impulsive tool impact. In the present study, the 

description of methods without relative movement is limited to impulsive impact, 

which has a repetitive irregular pattern as in shot and waterjet peening as well as a 

repetitive regular pattern as in laser shock peening process. 
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Table 2-1: Overview of the principal non-cutting processes of mechanical surface 
treatment [18] 

Tool 
input 

No. of 
treatments 

Without 
relative 
movement 

With relative movement 

Rolling Sliding 

Without 
slip 

With 
slip 

Solid 
medium 

Liquid 
medium 

Static 
Singular 

smooth 
embossing,  
flat embossing,  
size 
embossing 

deep rolling,  
finish rollling,  
size rolling 

spinning, 
drawing, 
spinning 

autofretting, 
stressing 

Repetitive 
regular 

 
 

Impulsive 

Singular   

Repetitive 
regular 

hammering,  
laser shock 
peening, 
waterjet 
peening 

 

repetitive 
irregular 

shot peening,  
needle 
peening, 
ultrasonic 
peening 

  brushing  

 

2.1.1 Shot peening process 

Shot peening is a cold working process generating a high plastic strain on the 

surface of metals. In general, it has been applied to the metal parts that require a 

high level of surface hardness and an elevated resistance to fatigue failure in service 

[19]. Shot peening is widely used as a mechanical surface treatment method in the 

automotive and aerospace industries [20]. In the process, peening balls or ‘shots’ 

which are normally made of hard materials such as steel, ceramic or glass spheres, 

strike a surface of metal at high velocity as illustrated in Fig. 2-1. After the strike, the 

elastically stressed region tends to recover to the fully unloaded state, while the 

plastically deformed region sustains some permanent deformation. A compressive 

residual stress region is introduced due to these inhomogeneous elasto-plastic 

deformations [21]. 
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Fig. 2-1: Illustration of shot peening process [22] 

Wohlfahrt [23] explained about the two competitive residual stress (σr) generating 

processes in the shot peening as illustrated in Fig. 2-2. The first process is the direct 

plastic elongation of layers very close to the surface as a consequence of tangential 

forces due to numerous shot indentations as shown in Fig. 2-2 (a). As the deformed 

region tends to expand, it is restrained by adjacent material which has not been 

plastically deformed by the shot impact. The plastic zones are joined up to form a 

uniform layer when the whole of the surface is covered by impinging shots. Since the 

plastically deformed surface layer seeks to occupy more space, it is progressively 

compressed. It is comparable to the hammering of the surface and is indicated in an 

increase of surface roughness. The elastic-plastic elongation of the surface layers 

yields the maximum magnitude of compressive residual stresses at the very surface 

as indicated in the bottom of Fig. 2-2 (a).  

Shots 

Solid target 
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Fig. 2-2: Schematic illustration of the formation of residual stresses due to the two 
residual stress generating processes in shot peening, a) direct stretching of a surface 
layer and, b) Hertzian pressure [23, 24, 25] 

The second residual stress generating process can be explained as Hertzian 

pressure which arises as a consequence of the vertical force connected with the 

impact of each shot ball as illustrated in Fig. 2-2 (b) [23, 24]. The resulting shear 

stress has a maximum value at a distance of 0.47a below the surface (where a is the 

radius of the contact zone) [23]. The residual stress distribution is illustrated in the 

bottom of Fig. 2-2 (b). If the Hertzian pressure becomes high enough, the maximum 

shear stress can exceed the flow stress in the depth of 0.47a and the resulting plastic 

deformation will generate compressive residual stresses in this depth [23]. In 

practice, the distribution of compressive residual stress after the shot peening 

process is the result of the combined effect of these two competing processes, direct 

plastic surface deformation and plastic deformation of deeper layers [25]. The depth 

σr 
- 

+ 

Depth below 
the surface 

Plastically 
extended layer 

a) 

σr 

- 

+ 

Depth below 
the surface 

Deformation 
depth 

Surface 

Shot 

Elastic 
region 

Boundary 

Plastic 
region 

2a 

b) 
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of the induced compressive residual stress may be up to a few hundred micrometers 

below the treated surface [24, 26, 27]. 

The introduction of compressive residual stress by surface plastic deformation is 

usually regarded as the major factor in increasing the fatigue strength. The 

magnitude and depth of the compressive stress depends upon the kinetic energy of 

the impacting particles, the yield strength of the peened material and the relative 

hardness of the shots and the peened material [26]. Since, the kinetic energy of the 

shots, Es, is given by Eq. (2-1). 

   
 

 
    

          (2-1) 

where ms and vs are the mass and velocity of the shot particle respectively. Thus, the 

velocity of the shots is regarded as one of the most significant parameters in the shot 

peening process [28]. 

In the shot peening process, the kinetic energy transferred by a shot stream can be 

measured based on a standard procedure called Almen Intensity Test developed and 

patented by John O. Almen [28]. The intensity is obtained by using Almen strips and 

an Almen gauge as shown in Fig. 2-3. The Almen strips are made from cold-rolled 

spring steel (SAE 1070 – Material no. 1.1231) in three different thicknesses and 

denoted as N, A and C strips for different intensity measurement levels but all have 

the same dimensions [28]. The strip is exposed to the shot stream for a specified 

time and it bends because of plastic deformations induced by the shot peening as 

shown in Fig. 2-3 (a) Then, the strip is removed and placed on the Almen gauge as 

shown in Fig. 2-3 (b). The value of the arc deflection at the centre of the Almen strip 

is recorded as the Almen intensity (Ishot). A higher intensity (i.e. higher arc deflection) 

means that a higher amount of kinetic energy has been transferred to the treated 

components [25]. 
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Fig. 2-3: a) The Almen strip is peened on an Almen holder, b) the Almen arc height is 
measured using the Almen gauge [29] 

A lot of investigations have been conducted to study the effect of shot peening in the 

formation of a residual stress field and its effect to the fatigue life. Lee et al. [19] 

investigated the effect of the cementite phase on the surface hardening of carbon 

steel with three different carbon contents, i.e. 0.1 %C, 0.45 %C, and 0.8 %C, under 

the shot peening process. All specimens were treated at different peening durations 

(tp) using rounded cut wire (RCW) hardened steel shots with an average diameter 

(Ds) of 250 µm. The results show that the surface hardness increases with an 

increase in carbon content of the steels as shown in Fig. 2-4. They concluded that 

the surface hardening of the carbon steels in the shot peening is achieved through 

both the grain refinement and carbon dissolution following the spheroidization of the 

cementite phase. They observed a higher degree of the grain refinement and also a 

higher amount of dissolved cementite into the ferrite in the steels with higher carbon 

contents. This renders the ferrite supersaturated with carbon, upon which the degree 

of surface hardening markedly increases. 
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Fig. 2-4: Surface hardness profiles of the three carbon steels [19] 

Sanjurjo et al. [20] investigated the effects of the shot peening process on a duplex 

stainless steel AISI 2205 (Material no. 1.4462). They have treated the material using 

the shot peening process in a controlled condition where a significant higher intensity 

peening was developed. The cast steel S-230 shots were used. The results were 

compared with the same material treated by an industrial shot peening process but 

produced a lower intensity peening. As expected, the controlled shot peening 

treatment was much more effective in inducing a higher compressive residual stress 

up to 631 MPa as compared to 367 MPa in the case of the industrial peening. In 

addition, the total thickness of the compressive layer generated by the controlled 

peening treatment was more than 350 µm deeper than the one generated by the 

industrial peening. 

Wang et al. [26] studied the compressive residual stress field for several shot-peened 

metals namely 20Cr, 30CrMo, 40Cr, GC4, 45 steels and LC9 aluminium alloy in 

different states systematically and quantitatively. They developed empirical models 

for measuring the compressive residual stress at the surface,     , maximum 

compressive residual stress,       , and the depth of the compressive residual stress 

field,  , as shown in Eq. (2-2) to Eq. (2-4) respectively. 
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       (      (      
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where     is the yield strength,      is the ultimate tensile strength,    is the peening 

intensity (i.e. arc height on A-strip) and    is the assumed value of   which equals to 

0.01 mm for Ti-alloy and Al-alloy, 0.09 mm for steel with     = 870 – 1000 MPa and 

0.04 mm for other steels. 

The effect of hardness, fatigue strength and surface roughness of nitrogen austenitic 

stainless steel in primary shot peening and double shot peening was investigated by 

Singh et al. [30]. Initially, both specimens were peened with glass shots however 

zirconium micro-shots were used for double shot peening. They found that a double 

shot peening process reduces the surface roughness without significant change in 

the residual stress. As a result, the fatigue life increases mainly due to the 

improvement in surface finish from the double shot peening process. Furthermore, 

Torres and Voorwald [31] evaluated the fatigue life of AISI 4340 steel, used for 

aircraft landing gears, under four different peening intensities (i.e four different 

peening pressures were applied from 8 to 45 psi). Steel shots (S 230) with an 

average diameter of 0.7 mm were used. They found that at the highest stress there is 

no change in the number of cycles until failure except in the specimen treated with 

the lowest peening intensity as shown in Fig. 2-5. However, there is an increase in 

the fatigue life for medium and high cycles. They also found that the best fatigue life 

conditions were found in the intermediate peening intensities. Perhaps, a lower 

fatigue life at the highest intensity was due to an effect of overpeening. The surface 

experiences some defects in the form of microcracks which may act as crack 

initiation in the fatigue test. 
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Fig. 2-5: S-N curves on the base and shot peened specimens [31] 

Zhang et al. [32] investigated the influence of different shot peening media namely 

Zirblast B30, Ce-ZrO2 and glass beads on the fatigue performance of the high-

strength wrought magnesium alloy AZ80. They found that peening with Ce-ZrO2 

shots resulted in the fewest surface defects, lowest roughness, highest maximum 

compressive residual stress and highest improvement of the fatigue strength. The 

different responses in surface integrity of the peened magnesium alloy are possibly 

due the different properties of the peening media. Since Ce-ZrO2 has a higher 

density and size than Zirblast B30 and glass beads, thus it has to travel at a 

significantly lower velocity in order to achieve a similar peening intensity. 

Consequently, less surface damage was produced from a lower kinetic energy of Ce-

ZrO2 shots. 

Lee at al. [33] studied the influence of shot peening on the microstructure, surface 

roughness and corrosion resistance of AISI 304 stainless steel. Based on 

microstructures at the surface, they found the formation of nano-sized grains, multi-

directional mechanical twins and strain-induced martensite. Also, the plastically 

deformed region with multi-directional mechanical twins and slip bands on the 

surface layer was formed to a depth of 200–250 µm. The hardness was increased by 

about 40 % with respect to the as-received specimen up to a depth of 300 µm. 

However, the surface roughness was increased significantly after the shot peening 
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treatment which leads to a lower corrosion resistance mainly because the practical 

area for corrosion per unit area also increases with increasing surface roughness. 

Shen et al. [34] studied the effect of plasma nitriding of AISI 304 austenitic stainless 

steel with a pre-shot peening process. The material was peened with industrial steel 

shots having a diameter of 0.8 mm. They found that the substrate suffered severe 

deformation and the grain boundary became obscure within the outmost layer below 

20 µm in depth. Beyond that depth, a huge change in the substructure within the 

grains and different systems of slip bands were observed for most of the grains as 

illustrated in Fig. 2-6. 

 

Fig. 2-6: Cross-sectional morphologies of shot-peened austenitic stainless steel 304 
sample [34] 

2.1.2 Laser shock peening process 

In principle, laser shock peening (LSP) is similar to other peening processes with the 

aim of enhancing the fatigue life of engineering components. It is the latest peening 

technology initially introduced in the aerospace industry [22]. In the process, a laser 

beam is directed toward the surface of a metal component coated with an ablative 

layer (e.g. paint or tape) and covered with a thin layer of transparent material, usually 

water as illustrated in Fig. 2-7. This creates high energy plasma that generates a 

pressure shock wave and propagates the compressive stress through the 

material [22]. The material will experience an extensive plastic deformation when the 

magnitude of the shock wave exceeds its dynamic yield strength. After the flow of the 
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shock wave, the elastically stressed subsurface layer tends to recover to its original 

condition but the continuity of the material in the elastic and plastic zone prevents this 

to happen. As a result, it develops a compressive residual stress at the surface thus 

contributing to the improvement of yield strength and hardness of laser peened 

material [35, 36, 37]. 

 

Fig. 2-7: Illustration of laser peening process [35] 

There are two distinctive aspects of the laser peening as compared to the shot 

peening process [22]. Firstly, the surface to be peened is immersed in a thin layer of 

water which prevents the high energy plasma from expanding, thus driving the 

energy into the workpiece surface. Secondly, the ablative layer is used as a sacrificial 

layer to prevent a possible burning of the surface from high energy plasma. 

In general, a depth of laser peening induced stresses between 0.5 to over 1 mm can 

be attained depending on processing conditions and material properties [37]. In some 

cases, laser peening induces higher residual stresses as well as deeper depths [38]. 

The fatigue life enhancement of metallic components may be accomplished with the 

inducement of the compressive residual stresses in surface layers. Gao [38] 

determined the improvement of fatigue property in 7050–T7451 aluminium alloy by 

laser and shot peening. Laser peening was done under different treatment 

times, nshot (i.e. 2, 4, 6 and 8 times). While, shot peening was done using different 
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shots (i.e. glass beads, ceramic beads and cast steel shots). The author found that 

the laser peening had produced the depth of compressive residual stress layer up to 

1200 µm compared to only 250 µm for shot peening. Moreover, the fatigue strength 

of the laser peened specimen was increased by 42 % with respect to the as-

machined specimen, while there was an increase of 35 % in fatigue strength for the 

shot peened specimen.  

Other researchers reported the effect of laser shock peening without a coat or 

ablation layer in the workpiece material [39, 40]. The laser beam is directly in contact 

with the workpiece surface, thus requiring the use of a smaller output power as to 

avoid severe melting of the surface. Maawad et al. [39] investigated the high cycle 

fatigue performance of titanium alloy after a laser shock peening process without 

coating. They varied few parameters in the laser shock peening process namely the 

laser pulse energy (Epulse), laser spot diameter (Dspot) and laser pulse density (Npulse). 

They also compared the results with a similar material treated by a shot peening 

process. The outcomes indicated that the laser shock peening process without 

coating produced a better performance of high cycle fatigue than the conventional 

shot peening process due to a larger amount of compressive residual stress and a 

deeper strengthening layer. However, the laser shock peening process without 

coating produced a higher surface roughness caused by easily induced surface 

vaporization and later on re-solidification of the molten droplets. Furthermore, 

Sathyajith [40] reported the effect of laser peening without coating on aluminium alloy 

6061-T6. Their results show that the laser peening without coating had significantly 

improved the surface compressive stress and hardness with a little increase in 

surface roughness.  

Lim et al. [41] investigated the enhancement of abrasion and corrosion resistance of 

duplex stainless steel using a pulsed Nd:YAG laser in the laser shock peening 

process. They treated the surface at a condition which may result in the maximum 

increase of surface hardness because a higher abrasion resistance may be achieved 

for metals with a higher surface hardness. They found that the compressive residual 

stress at the laser peened sample was enhanced by about three times from that of 

unpeened material with the depth profile extended up to about 0.8 mm. They also 

found that at the optimal process parameters, wear volume and corrosion rate of 

duplex stainless steel were reduced by 39% and 74.2%, respectively which a lower 
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density and size of corrosion pits were produced on wear track as a result of laser 

shock peening. 

Peyre et al. [42] compared the performance of laser and shot peening in surface 

modifications of 316L stainless steel. In the laser peening process, the laser 

intensities (Ilaser) as well as number of laser impacts (nimpact) were varied accordingly. 

The results show that the work hardening levels consistently increase with higher 

laser intensities and number of laser impacts. Furthermore, the microstructures of 

laser peened specimens show a lot of deformation twins and persistent slip bands 

especially for specimens treated with higher laser intensities and numbers of impacts 

as shown in Fig. 2-8. They also found that the laser peening treatment generated 

lower residual stresses and work hardening levels than shot peening treatment 

possibly due to the nature of laser peening process which involves no contact. 

 

Fig. 2-8: Microstructures of laser peened surfaces show a) deformation twins and slip 
bands (one activated system) at 4 GWcm-2 laser intensity and 3 number of laser 
impacts, b) a presence of three deformation systems in the same grain at 8 GWcm-2 
laser intensity and 6 number of laser impacts [42] 

2.1.3 Liquid peening process 

In the liquid peening process, high impacts of water droplets are used to impinge a 

metal surface thus causing local plastic deformation. Mostly water is used but some 

researchers performed experiments with oil. Others used a water-oil emulsion. A 
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basic principle of water jet peening is shown schematically in Fig. 2-9. The nozzle is 

moved at a desired feedrate (traverse speed), vn, in the linear direction across the 

surface to be peened. The process parameters that may influence the residual stress 

formation and coverage area are the traverse speed of the nozzle, vn, the water 

pressure p0, at the nozzle entrance, the nozzle to specimen's surface distance (i.e., 

standoff distance, h), the nozzle diameter, Dn and the inclination angle of attack, θ. pi 

is the impact pressure that strikes the metal surfaces. Water pressure (or jet flow 

rate) at the nozzle entrance, nozzle geometry (e.g. nozzle diameter), inclination angle 

of attack and pitch are the main parameters influencing the jet coherence as well as 

the peening power. Whereas, standoff distance and traverse speed of the nozzle are 

the main parameters affecting the interaction between the jet and the workpiece 

surfaces [8]. 

 

Fig. 2-9: Basic principle of water jet peening  

Quite a number of research in WJP process has been conducted to study its 

potential applications and associated sciences. Chillman et al. [43] explored the 

effects of high pressure WJP at 600 MPa on the surface finish and integrity of the 

titanium alloy (Ti–6Al–4V). They varied the traverse rates (vn) and the standoff 

distance (h). They found that WJP at 600 MPa induces a plastic deformation to 
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deformation. Grinspan and Gnanamoorthy [44] substituted water with oil in a peening 

process (OJP) of aluminium alloy where the depth of residual stress was noticed to 

be more than 250 μm below the surface. 

Ju and Han [45] investigated the influence of water cavitation peening (WCP) 

treatment on the microstructure of pure titanium. WCP refers to a technique in the 

waterjet peening process in which suitable air can be inserted into the extra high-

velocity flow in the nozzle as shown in Fig. 2-10. The combined high pressurized 

water with air can generate a uniform bubbles cloud which then collapse on the 

surface of the components thus producing a high impact of water cavitation [46]. 

Normally, the same nozzle arrangement in abrasive waterjet treatment is used for 

WCP. The air is led into the inlet instead of the abrasive particles. Ju and Han [45] 

observed that a longer peening duration (tp) of WCP produces higher residual 

stresses. Qin et al. [47] investigated the influence of the inclination angle (θ) on the 

process capability of water cavitation peening. They found that the impact pressure 

and residual stresses obtained at various inclination angles were almost equal to 

each other within the effective process area. 

 

Fig. 2-10: Schematic of jet nozzle with aeration  

2.2 Mechanics of waterjet impact 

The mechanism of waterjet impact is determined from how the waterjet stream hits 

the surface of the material. The physical characteristics of the waterjet stream may 

affect the response of treated surfaces. Therefore, it is important to understand the 
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physical representation of the waterjet stream as it exits from the nozzle until it hits 

the workpiece. 

A stream of high-pressurized water consists of three different regions namely, the 

initial region, the transition region and the final region [48, 49]. These regions can be 

explained with the help of a diagram as shown in Fig. 2-11 (a). The stagnation 

pressure is assumed to be the same as that at the nozzle exit within the initial region. 

Also, the jet is considered as a solid continuous beam with a high axial dynamic 

pressure and almost no air content. The approximate length can be determined from 

extrapolation of the decrease in the stagnation pressure [50]. A typical flow of the 

waterjet is shown in Fig. 2-11 (b). 

 

Fig. 2-11: a) Physical characteristics of waterjet stream [48, 49], b) a typical flow of 
waterjet 
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region. The breakup of the waterjet stream into droplets is mainly due to the 

interaction of the waterjet with the surrounding air. The velocities of the water lumps 

and droplets remain largely unchanged within this region. However, continuous 

interactions between the waterjet and surrounding air result in more disintegration of 

the droplets as the jet travels further in the transition region. This will lead to a 

reduction in droplets velocities and also a widening of the effective flow field i.e. a 

diverging of water stream. It is also believed that the size of droplets becomes 

smaller as it is closer to the outer boundary between the jet and the ambient air. This 

is due to the fact that the outer boundary contains a higher concentration of air and 

the jet is in constant friction with it. As a result, the axial velocity of the jet reduces as 

it moves away from the centre of the nozzle to the extent it exhibits almost zero 

velocity as shown in Fig. 2-11 (a). In other words, within this region there exists a 

mist zone where the droplets show a zero velocity [51]. Finally, the waterjet enters 

the final region where there is a noticeable decrease in the droplets velocities as the 

droplets break up into finer droplets. Within this region, the jet has dissipated most of 

the energy to effectively modify the features of material surfaces. 

The velocity of the jet exiting from the nozzle can be estimated based on the 

Bernoulli’s equation in fluid dynamics. It is assumed that the water exits the nozzle as 

in ideal case which there is a rotationally symmetric flow with a constant speed over 

the cross sectional pipe. This assumption will neglect the pipe and nozzle friction for 

an incompressible flow. According to the Bernoulli equation, the equilibrium equation 

(the inlet is indexed as 0, and the outlet is 1) can be established as Eq. (2-5). 

        
 

 
    

          
 

 
    

          (2-5) 

       is a pressure loss in the nozzle due to the friction in the nozzle. In order to 

calculate the theoretical maximum possible energy conversion in the nozzle, the 

pressure drop is neglected as in ideal case, i.e.         . The height difference 

between the inlet and outlet can be neglected especially if the nozzle’s standoff 

distance is very small or in a case of horizontal arrangement, i.e.      . The outlet 

pressure can be neglected since the water flows freely in the ambient air at the end 

of the nozzle, i.e.     . Also, inlet velocity can be considered zero since it is within 

a closed system. Then after simplification and rearranging of (Eq. 2-5), the outlet 

velocity,    can be estimated as in Eq. (2-6). 
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   √
   

 
         (2-6) 

This is the theoretical maximum possible velocity. In actual case due to the friction, 

the rate may be somehow lower. In this case due to the very low pressure at the 

outlet, the water can be assumed to be incompressible. The velocity,   , can be 

considered as the water impact velocity,   , when it hits the material surface [52, 53]. 

However, the fluid flow associated with high-speed impinging droplets is rather 

complicated and still not fully understood [54]. 

2.2.1 Liquid erosion mechanisms 

It is known that highly pressurized water is able to cause severe damage to the 

surface of target materials by means of erosion. This is caused by the collision of a 

high-velocity liquid mass with a solid target that generates short high-pressure 

transients. An extensive review on the liquid impact was summarized by Field [55] 

from his own works and that of other researchers [52, 56, 57, 58, 59, 60]. The impact 

of liquid on a solid target consists of two main stages as illustrated in Fig. 2-12. 

In the first stage, the liquid behaves in a compressible manner generating the so-

called ‘water-hammer’ pressure or impact pressure [61]. At the moment when the 

droplet hits the solid surface, a high compressive pressure region is generated at the 

shock front of the jet due to the compression of water. This pressure is the main 

reason for most of the damage resulting from liquid impact on the solid surface. 

 

Fig. 2-12: Schematic illustration of liquid impact on solid target [56, 62] 
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The second stage of liquid impact begins after the release of the impact pressure as 

illustrated in Fig. 2-12. At this stage there is a rapid fall in pressure along the contact 

periphery. The outward flow becomes possible when the limit of compressible 

deformation of the drop is exceeded as given in Eq. (2-7). 

  

  
              (2-7) 

where   is the contact angle. 

The outward flow continues while the water-hammer compression at the centre of 

impact is relieved as well. The maximum pressure acting on the surface will then 

occur along the central stagnation line. The central stagnation pressure,    for 

incompressible flow is given in Eq. (2-8). 

   
 

 
    

          (2-8) 

In this stage of impact, a large shear stress is generated due to the high-speed radial 

flow,    across the surface after the jet impact as indicated in the second stage of 

Fig. 2-12. As a result, local shear fractures may happen even in high strength 

materials [57]. 

 

Fig. 2-13: The situation a short time after a droplet impact [55] 
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The situation a short time just after the impact is illustrated in Fig. 2-13.The shock 

envelope is made up of many wavelets. The liquid behind the envelope is 

compressed and the solid target beneath this area is subjected to a high pressure. 

This high pressure impact is maintained while the shock wave moves supersonically 

from the edge of the contact area between the impacting droplet and the solid target 

into the material with respect to the shock speed [55, 56, 57, 60]. 

The contact zone of the impact begins to expand with the non-uniform pressure 

distribution reaching a maximum value thus leading to the generation of a dilatational 

compression wave, a distortional shear wave and a Rayleigh surface wave [56, 63, 

64]. These waves are illustrated in Fig. 2-14. The Rayleigh wave travels in the 

longitudinal direction of the wave velocity of the material. This surface wave interacts 

with small surface cracks which are located an extended distance from the primary 

impact zone thus leading to additional crack growth [56, 63]. 

 

Fig. 2-14: Impact of a spherical drop on a material showing the shock wave in the 
drop and the stress waves in the material. The shaded width of the shear and 
compressional waves represent the relative amplitudes of the particle motion [64] 

The most commonly used approximations to the pressure developed in the liquid-

solid impact are based on the one-dimensional elastic impact theory. The water-

hammer pressure or impact pressure,    can be calculated as in Eq. (2-9). 
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where    is the impact velocity of the liquid.       and       are the densities and the 

shock velocities of the liquid and the solid, respectively. For an impact on a rigid 

target which is true for most metals, the values of      is an order of magnitude larger 

than      for water. Therefore, the impact pressure can be sufficiently approximated 

as in Eq. (2-10). 

                  (2-10) 

In case of a high velocity liquid impact, an appropriate shock velocity can be used to 

calculate the impact pressure. This can be expressed with the term of the acoustic 

velocity,    as shown in Eq. (2-11). 

                 (2-11) 

where the acoustic velocity,    for water is about 1500 ms-1. While,   is a constant 

which has a value close to 2 for water in the high impact velocity range (   up to 1000 

ms-1). 

The duration of its impact depends on the time taken by the released waves to pass 

through the compressed liquid. The very short duration of the water-hammer 

pressure pulse,    can be calculated as in Eq. (2-12). 

   
    

   
          (2-12) 

where   is the radius of curvature of the drop (liquid mass) in the region of contact.  

Therefore, it can be summarized that the erosion of material surface results from 

both stages of liquid impact. During the initial stage, the maximum compressive 

stress acts along the central line of impact thus producing a central depression crater 

as well as various cracks. Later, the compressive stress diminishes and the outward 

flow begins to exert a tensile stress at some critical value of the liquid/solid contact 

angle. The erosion of the material surface by an impacting liquid may result from the 

impact pressure, or from the shearing effects of high-velocity outward flow, or from 

the both [52, 56, 57, 58, 59, 60, 61]. 
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2.2.2 Strengthening mechanisms 

The properties of metal are directly related to its dislocation motions. The 

strengthening mechanism of metal depends on this relationship. Dislocations are 

defects in the orderly arrangement within an atomic structure of a metal. The plastic 

deformation of a metal corresponds to the motion of dislocations. In other words, a 

metal is able to plastically deform if the dislocations inside it are able to move. 

Therefore, the mechanical strength may be improved by reducing the ability of 

dislocations to move. It is because hardness and strength are related to the ease 

with which plastic deformation can be made to occur. That is to say that a larger 

mechanical force will be required to initiate plastic deformation. On the contrary, a 

higher ability of dislocation to move results in a larger tendency of a metal to deform, 

as a result it becomes softer and weaker. In general, it can be said that all 

strengthening techniques rely on this simple principle which is to restrict the 

dislocation motion thus producing a harder and stronger material [17, 65, 66]. 

The strengthening of metals can be achieved through a few mechanisms for example 

by grain size reduction, solid-solution alloying and strain hardening [17, 65, 66]. 

However, these are the strengthening mechanisms for single phase metals and may 

require some increase in temperature. The strengthening of multiphase alloys is 

more complex wherein the mechanical properties are dependent on the 

characteristics of the microstructure. The development of a microstructure generally 

involves some type of phase transformation which is a change in the number and/or 

character of the metallic phases [17]. Since the materials used in the present study 

are both ferrous alloys (i.e. austenitic stainless steel 304 and ferritic carbon steel 

1045), therefore the discussion is limited to the strengthening mechanism based on 

phase transformations particularly martensitic transformation as it happens principally 

in Fe-C alloys systems. However, the strain hardening mechanism is also discussed 

here since it happens in the peening processes. Of course, in the real sense the 

alloys are deformed and strengthened in conjunction with one another, for example, 

an alloy may be collectively strengthened based on strain hardening and phase 

transformation [17]. 

The strain hardening is sometimes called work hardening or cold working because 

the temperature during the deformation process occurs at a much lower temperature 
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relatively to the melting temperature of the metal and in most cases at room 

temperature [17]. It is the strengthening process of a metal by plastic deformation. 

When a material is permanently deformed, the dislocation motion moves until it is 

stopped by something else in the crystalline lattice. The dislocation motion can be 

effectively restricted by another dislocation since they cannot pass through each 

other [65]. As a result, the dislocations will be mounted up against each other and 

became interlocked. This may prevent any further permanent deformation without the 

use of significantly higher energy thus considerably enhancing the strength of the 

material under subsequent loading. 

 

Fig. 2-15: The typical stress-strain diagram of a metal [17, 65] 

Theoretically, strain hardening can be explained based on a typical stress-strain 

diagram of a metal as shown in Fig. 2-15. The original stress-strain behaviour is 

shown as a blue line. Its original yield strength is indicated as σYS. Initially, a certain 

amount of stress is applied beyond its original yield strength to point A. When the 

stress is released, the material returns to a state of zero stress along a path parallel 

to the elastic loading line (green line) due to elastic strain recovery. Upon reloading, 

the material follows the same path up to the original stress-strain curve (red dotted 

line). However, the material’s elastic limit has been increased to σYS’. Therefore, the 

material becomes stronger during the process since its new yield strength, σYS’ is 

now substantially higher than the original yield strength, σYS. However, the total 

elongation available has now diminished thus decreasing its ductility and formability. 
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Martensitic transformation involves a change in the crystal structure by shear 

movements of atoms [67]. This reaction is found in many alloy systems, but the 

principal and most important system is the Fe-C alloy. Martensite is a metastable 

phase which has the same composition as the austenite from which it forms [17]. 

Martensite forms without a change in composition, therefore diffusion is not required 

for the transformation to occur. It is for this reason that martensite can form at such a 

low temperature by adequate loadings. The most important characteristic of 

martensite is its potential of very high hardness. In some way, this hardness is 

directly related to the fundamental characteristic of martensite, but somehow it is 

caused by the severe distortions that accompany the formation of the martensite. 

2.3 Effect of waterjet impact on surface 

2.3.1 Roughness 

It is widely known that the surface roughness plays a critical role in determining the 

fatigue life of engineering components. Thus, a lot of studies have been conducted to 

investigate the effect of waterjet impact on material surfaces. Arola et al. [68] studied 

the effect of waterjet peening (WJP) and abrasive waterjet peening (AWJP) on the 

surface topographies of commercially pure titanium and a titanium alloy (Ti6Al4V). 

Based on a comparison of the standard roughness parameters for each material, 

they found that the surface texture resulting from AWJP was primarily dependent on 

the treatment conditions, not the material. However, a minimal increase in roughness 

occurred in the treatment of the pure titanium as expected from its comparatively 

lower yield strength than the titanium alloy. There were also changes of roughness 

through WJP of both materials, however the changes were far less significant than 

those resulting from AWJP. This is to be expected as AWJP invokes a combination 

of erosion and localized plastic deformation as a result of abrasive particle impact 

thus increasing the surface roughness. On the effect of peening parameters, they 

found that the increase in kinetic energy achieved with the use of large abrasives and 

high jet pressures resulted in more substantial erosion of the surface. 

Arola and Hall [69] further investigated the effect of parameters on particle deposition 

in abrasive waterjet surface treatment of commercially pure titanium. Based on the 

results, they found that the surface texture was mostly influenced by the level of the 
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jet pressure and the abrasive particle size. As expected, the surface roughness 

increased linearly with the jet pressure and the abrasive particle size. They explained 

that an increase in kinetic energy of the jet resulting from the mass and/or velocity of 

the abrasives increased the potential for material removal. Furthermore, some of the 

abrasive particles remain embedded in the surface upon jet impact which may cause 

a change in surface roughness. Arola and McCain [70] explored the feasibility of 

using AWJP as a new method of surface preparation for metal orthopaedic implants. 

The surface roughness resulting from AWJP of the titanium alloy (Ti6Al4V) was 

significantly lower than the surface of titanium with plasma spray coating used for 

cementless fixation in metal orthopaedic implants. 

Kunaporn et al. [71] studied the effect of different nozzles on surface preparation of 

6061-T6 aluminium alloy. They used three different nozzles namely a fuzzy jet (i.e. 

air is aerated into the nozzle similar to a WCP jet), a fan jet (i.e. the water is spread 

upon exiting the nozzle), and a round jet (plain waterjet) as shown in Fig. 2-16. They 

found that under the same treatments, the specimens treated with the fan jet 

produced the same order of surface roughness to those specimens treated with the 

round jet. Whereas the specimens treated with the fuzzy jet yielded a roughness 

value about five times higher than the other two types of nozzles. They explained that 

the fuzzy jet produced a higher level of the kinetic energy than the fan jet and the 

round jet. The high jet energy in the fuzzy jet is due to the air that is directed into the 

mixing tube.  
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Fig. 2-16: The stream of waterjet exiting the, a) fuzzy jet, b) fan jet, and c) round jet 
nozzles [71] 

Kunaporn et al. [72] also investigated the effect of peening parameters on the surface 

texture using only a fan jet and round jet nozzles. However, a different aluminium 

alloy was used (7075-T6). Generally, the removal characteristics within the impact 

zone are found to predominantly dependent on the standoff distance [73]. The water 

peening using the round jet nozzle caused a rougher surface than those using the 

fan jet nozzle for standoff distance higher than 36 mm. However, the fan jet nozzle 

had a significant effect on the surface roughness at a standoff distance less than 

30 mm. Little changes of surface finish were noticed in the specimens waterpeened 

at the standoff distance higher than 44 mm using both nozzles. While, increasing the 

peening duration by lowering the nozzle traverse rate yielded an increase in surface 

roughness [74]. Furthermore, the waterjet treatment under the same peening 

duration yielded a similar surface roughness although the nozzle traverse rate was 

different [72]. Possibly, under the same peening duration, the resulting kinetic energy 

of the jet on those specimen surfaces is equal. The surface roughness may also not 

change if the materials are under an elastic pre-stress condition during an abrasive 

waterjet peening process [75]. 

a) b) c) 
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2.3.2 Erosion 

It is understood that the surface erosion is directly related to the surface roughness. 

High erosion of the surface tends to produce a high roughness as well since more 

material has been removed. Therefore, it is not surprising to see surfaces subjected 

to waterjet treatment producing high roughness values while generating more erosion 

of the surface. 

Chillman et al. [43] conducted a preliminary investigation on the effect of different 

types of jets in waterjet peening on the surface finish of a titanium alloy (Ti6Al4V). 

Three types of jets were used namely plain waterjet (only water), water-air jet (or 

water cavitation jet) and water-water jet (WWJ) (i.e. water was entrained instead of 

air). They observed that the WWJ was violently vibrating and produced a pattern that 

was not uniform. Meanwhile based on the erosion volume rate, the water cavitation 

jet produced higher erosion than the plain waterjet. They further investigated the 

effect of various peening parameters using only the plain waterjet and water-air jet 

[51]. In general, for both types of jets they found that a decrease in the traverse rate 

led to an increase in the degree of erosion as shown in Fig. 2-17. It became clear 

that the erosion mechanism is dependent on the jet exposure time which increases 

by decreasing the traverse rate. 

  

Fig. 2-17: Surface erosion images of titanium alloy at different traverse speed, a) 
1272 mm/min, b) 1902 mm/min, c) 2538 mm/min and d) 10158 mm/min [51] 
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With respect to the standoff distance, the two types of jets gave a different effect on 

the erosion. For the case of plain waterjet, no erosion was evident at small standoff 

distances (< 38 mm). However, the erosion rate continued to increase up to a 

distance of 100 mm and continued to decrease beyond that. For the case of water-air 

jet with a low air flow rate, the erosion became much more uniform regardless of 

standoff distances [51]. While, a high air flow rate led to a decrease in the erosion for 

standoff distances higher than 38 mm. They explained the relationship between the 

standoff distance and the erosion from the jet structure point of views. The amount of 

air flow rate aerated into the jet flow had a direct impact on the ability of the jet to 

remove material. The injection of a low air flow rate produced an increase in erosion 

rate (about 2 - 4 times) compared with the plain waterjet. It is due to an increase in 

the erosive nature of the jet by accelerating the breakdown of water into droplets. 

However, too much air may saturate the jet thus leading to a loss of velocity droplet 

particularly at increased standoff distance. 

In contrast, Oka et al. [76] found that the maximum damage rates were commonly 

observed for standoff distances from 120 to 200 mm in waterjet peening of aluminium 

alloy 5083 regardless of pressures. Again, they pointed to the nature of the jet 

structure. A very short standoff distance causes a low material removal possibly 

because of a formation of water column instead of water droplets. The water column 

only presses the specimen without imposing cyclic stresses onto it. Therefore, its 

impact frequency is too low to cause large erosion at the very short standoff distance. 

The impact frequency increases as the standoff distance increases thus inducing a 

proportional increase in the damage rate. However, the standoff distance at the 

maximum damage rate did not coincide with the maximum impact frequency. They 

speculated that the droplet velocity might as well influence the damage rate of a 

material under waterjet impingement. The calculated droplet velocity was constant at 

the maximum value up to a standoff distance of 200 mm and it gradually decreased 

beyond that. Therefore, a combination of maximum droplet velocity and medium 

impact frequency produces the highest damage rate. Although, the maximum impact 

frequency was found at a standoff distance more than 200 mm, but the droplet 

velocity was reduced thus decreasing the damage rate. 

The effect of a pulsating waterjet impact on aluminium surface using a fan jet nozzle 

has been investigated by Foldyna et al. [77]. An acoustic generator of pressure 
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pulsations was attached to the machine thus producing the pulsating jet as shown in 

Fig. 2-18. Understandably, the pulsating jet breaks up into smaller droplets at a 

standoff distance shorter than is necessary for development of pulses in the jet. 

Therefore, the optimum standoff distance with the maximum erosion of aluminium 

surface was found to be shorter in the range of 20 to 40 mm depending on the 

excitation amplitude. They also found that the optimum standoff distance decreased 

with a larger excitation amplitude due to the fact that the break up length of the 

pulsating jet was inversely proportional to the excitation amplitude. 

 

Fig. 2-18: Pulsating jet generated at 20 MPa (scale represents standoff-distance in 
mm) [77] 

Barriuso et al. [78] investigated the effect of the traverse rate in roughening of 

stainless steel 316 LVM and titanium alloy (Ti6Al4V) by abrasiveless waterjet 

peening. Using the scanning electron microscope (SEM) to examine the 

microstructure of the eroded surfaces, they observed that both specimens treated 

with a lower traverse rate produced more erosion manifested by a larger number of 

pits with deeper undercuts. Also, they noticed that within similar machining 

conditions, the steel specimens had coarser erosion than the Ti6Al4V ones as shown 

in Fig. 2-19. It is to be expected since the hardness of the steel specimen 

(~ 210 HV0.01) is lower than the Ti6Al4V (~ 320 HV0.01). 
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Fig. 2-19: SEM images of eroded surfaces, a) stainless steel (316 LVM) and b) 
titanium alloy (Ti6Al4V) [78] 

A similar observation was also made by Taylor [79] in surface roughening of nickel-

chromium alloy (Inconel 718) which revealed more erosion at a lower traverse rate. 

Taylor [79] also studied the effect of pressure on the erosion. He found that more 

erosion was noticed at a higher pressure. The same study notices a clear threshold 

pressure required for measurable erosion which is above 207 MPa. It is interesting to 

note that upon examination of the eroded surface using SEM at a higher 

magnification, the waterjet erosion produces a fractal surface. Furthermore, there is 

no indication of ductile fracture or brittle fracture as indicated by the absence of long-

running cleavage facets. Since the waterjet erosion feature size is 10 times smaller 

than its grain size, as a consequence there is no feature evident that relates to the 

erosion structure. 

Islam et al. [80] discussed the effect of waterjet surface treatment on tribological 

properties of aluminium-silicon alloy. They reported that the optical microscopy 

examination revealed the mechanisms for material removal during waterjet treatment 

which consisted of ploughing of grains as well as transgranular and intergranular 

propagation of cracks. Nevertheless, the microscopic features of the eroded surfaces 

are similar in nature regardless of the parametric conditions used for the treatment 

[70]. Further examination using SEM revealed that the impact of waterjet caused a 

collapse of porosity underneath the surface.  

The aspects of the material removal mechanism in plain waterjet milling on gamma 

titanium aluminide (γ-TiAl) have been discussed by Kong et al. [81]. Their study 

focuses on in-depth surface observations from macro and microscopic point of view. 

5 µm 

a) b) 

5 µm 
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Based on macroanalyisis of jet footprint, they found that at a low water-hammer 

pressure the jet did not form continuous erosion traces onto the workpiece and thus 

its erosion was inhomogeneous. Whereas, at higher water hammer pressure the 

erosion became significantly continuous. At microscopic features, they observed two 

different levels of material removal mechanism. Firstly, the initial damage or low level 

surface damage occurred through few stages namely a plastic deformation, stress 

wave propagation and generation of micropits. Secondly, the evolved damage or 

subsequent combined erosion stages resulted in mainly granular cracking and 

fracture as well as lamellar fracture of the material. Furthermore, Huang et al. [62] 

looked at the mechanisms of damage initiation in a titanium alloy (Ti6Al4V) subjected 

to water droplet impact. On the macroscopic scale of the damage, they observed 

similar erosion features as explained by Kong et al. [81]. However, under microscopic 

view, they found some distinct erosion features where the damage initiation was 

achieved through grain tilting and preferential grain boundary damage. 

2.4 Effect of waterjet impact on the sub-surface 

2.4.1 Hardness 

It is known that the waterjet peening process causes an increase in the strength on 

the material sub-surface due to work hardening and phase transformation. The 

increase in material strength can be measured through the amount of induced 

residual stresses and hardness. Although, the hardness value represents only the 

surface resistance of the material against plastic deformation, it is widely employed 

mainly because of its simple test method. Furthermore, the value of hardness and 

residual stress induced from a peening process can be correlated. Under peening 

processes, the material surface shows an increase in the hardness as well as in the 

compressive residual stress. Although the profile and the magnitude are not similar 

between the hardness and the compressive residual stress, however the depth of the 

hardening and the strengthening layers shows a little difference. [30, 39, 82] 

The effect of waterjet peening conditions on the improvement of residual stress on 

the surface of stainless steel 304 has been investigated by Hirano et al. [83]. Using a 

surface layer removal technique, they measured the residual stresses by X-ray 

diffraction from the surface to a depth of 250 µm. They found that the initial residual 
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stress at the surface was tensile in nature from 60 to 100 MPa. After WJP, the 

residual stresses were compressive in nature with the maximum stress at the surface 

of about 500 MPa and decreased with an increase in surface depth. They also found 

that the residual stress was still compressive at a depth of about 250 µm. In terms of 

the influence of various WJP conditions, they found that the residual stress increased 

with the peening duration. Whereas, increasing the pressure induced a higher 

amount of residual stress on the material surface. While, the maximum residual 

stress improvement was achieved at a standoff distance of about 30 mm. 

Tönshoff et al. [5] measured the amount of induced compressive residual stresses on 

case hardened steel 16MnCr5E under waterjet peening impact. With increasing 

peening duration, they observed that the amount of compressive residual stress 

increased up to a maximum level of about 560 MPa. However, for longer peening 

durations, a distinct decrease of compressive residual stress was noticed. 

Interestingly, they also observed that somehow the water pressure had no influence 

on the level of the maximum compressive residual stress, but higher water pressures 

shifted the maximum to shorter peening durations. The increase in surface hardness 

was also related to longer peening durations [5]. In contrast, Arola et al. [68] noted 

that the induced compressive residual stresses resulting from waterjet peening of 

titanium alloy Ti6Al4V and pure titanium increased with the water pressure. However, 

the amount of residual stresses resulting from WJP of the pure titanium was higher 

than the Ti6Al4V. They explained that the lower yield strength of the pure titanium 

enabled more extensive near-surface deformation and resulted in a larger 

compressive residual stress. 

In water cavitation peening (WCP) of steel 1045, the maximum compressive stress 

induced was up to 215 MPa with a depth of strengthening layer up to 110 µm [84]. 

Whereas, in WCP of steel 1070, Qin et al. [47] observed an increase in compressive 

stress of around 600 MPa from the original compressive stress of 350 MPa. By 

varying the inclination angles of the nozzle, they however found that the induced 

residual stresses were almost uniform and equibiaxial as shown in Fig. 2-20. In 

contrast Daniewicz and Cummings [85] found a higher increase in compressive 

residual stresses measured in parallel to the rolling direction than those measured 

transversely to the rolling direction. They argued that it might be a result of 

crystallographic texture influences on the measurements. They further found that a 
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decrease in the magnitude of the compressive residual stress with an increase in the 

water pressure which is in disagreement with the trend observed by Arola et al. [68]. 

This decrease in surface compressive residual stress was potentially the result of a 

higher surface roughness due to an increase in the water pressure which eventually 

reduces the accuracy of X-ray diffraction (XRD) residual stress measurements. 

 

Fig. 2-20: The relationship between the inclination angle of WCP and residual stress 
in, a) X direction, and b) Y direction [47] 

Grinspan and Gnanamoothy [82] treated aluminium alloys 6063-T6 and 6061-T4 with 

oil jet peening. They found the magnitude of induced surface compressive residual 

stress decreased with increasing in standoff distance in both materials possibly due 

to reduction in impact pressure with increasing standoff distance. The increase of 

compressive residual stress was higher in 6063-T6 than 6061-T4 due to the former 

higher yield strength. The depth of induced compressive residual stress in both 

samples was more than 200 µm. In case of hardness, they found that the surface 

hardness increased by 34 - 44% compared to unpeened material hardness. While 

the hardened layers extended up to a depth of approximately 350 and 400 µm for 

both materials respectively. In oil jet treatment of another material steel 1040, they 

found the surface compressive residual stress increased with decreasing nozzle 

traverse rate with a depth of the strengthening layer of about 50 µm [86]. While, the 

increase in hardness was about 14 - 22% of the base material hardness. Kunaporn 

et al. [71] found that the hardness increased in some conditions by about 10-15% 

from the base material hardness during waterjet treatment of aluminium alloy 6061-

T6. The degree of surface hardening was extended to a depth of about 200 µm. 
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Islam et al. [80] also observed a similar increase in hardness of about 15% during 

waterjet treatment of Al-Si alloy. 

2.4.2 Microstructures 

The phase transformation in a surface layer of 304 stainless steel induced by the 

shot peening process has been discussed by Ni et al. [87]. It is understood that the 

surface of metal experiences a severe plastic deformation due to continuous collision 

with the shots. Therefore, the plastic deformation at high strain rates results in a 

phase transformation from the austenitic phase to the martensitic phase [87]. They 

used conversion electron Mössbauer spectroscopy (CEMS) and X-ray diffraction 

(XRD) methods to characterize the phase structures in the shot peened surface 

layer. They found that the amount of martensite increased remarkably with an 

increase in shot peening treatment time until a maximum value was reached after 

15 min of treatment time as illustrated in Fig. 2-21. However, upon longer treatment 

time, the amount of martensite decreased slightly due to a reversion of martensite 

possibly from the effect of temperature rise at the surface. 

  

Fig. 2-21: The amount of martensitic phase as a function of treatment duration in 
stainless steel 304, (a) the second type of martensite (SM), b) the first type of 
martensite (FM), c) total martensite (TM) determined from CEMS, and (d) total 
amount of martensite determined from XRD (XM) [87] 
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Whereas, Wang et al. [88] investigated the formation of martensite in the surface 

layer of medium-manganese austenitic steel caused by shot peening treatment. 

Using the XRD and transmission electron microscopy (TEM), they found the 

formation of nanograined microstructures mainly composed of strain induced 

α martensite grains with the average size of about 8 nm. The volume fraction of 

α martensite decreases with an increase in the depth of shot-peened surface which 

most likely reduces its hardness as well. Ju and Han [45] reported on the effect of 

WCP duration on the microstructural changes in the near-surface layer of pure 

titanium. They observed that the density and quantity of deformation twinning 

increased gradually with increasing peening duration and decreased gradually with 

increasing layer depth from the treated surface. The SEM analysis revealed that 

several deformation twinnings formed in a single crystal grain, while others interlaced 

with the different slip systems as depicted in Fig. 2-22. 

 

Fig. 2-22: SEM microstructure at a depth of 30-40 µm [45] 

Barriuso et al. [78] found severe plastically deformed grains up to a depth of 20 µm 

beneath the eroded surface during waterjet peening of stainless steel 316 LVM. 

Further on, the grains progressively increased to achieve a grain size of the bulk up 

to a distance of 70 - 100 µm as shown in Fig. 2-23 (a). Interestingly, these distances 

coincided approximately with regard to the distance of the hardness gradient. Upon 

detailed examination at a higher magnification, they also observed some cracks just 

below the eroded surface as shown in Fig. 2-23 (b). 

100 µm 
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Fig. 2-23: SEM images of stainless steel 316 LVM at different magnifications, a) 500 
X and, b) 3000 X [78] 

Tsujikawa et al. [89] treated stainless steel 304 samples using a shot peening 

process at different particle injection pressures. They noticed that the sample shot 

peened at a higher injection pressure generated more deformed grains in the forms 

of slip bands and twins as shown in Fig. 2-24. Also, the deformed grains were found 

at a deeper distance from the peened surface. 

    

Fig. 2-24: Cross-sectioned views of shot peened specimens at different injection 
pressures, a) 0.1 MPa and, b) 0.9 MPa [89] 

2.5 Effect of waterjet impact on fatigue life 

Fatigue is one of the main criteria in the design of engineering components. It is 

simply because it has been estimated that it contributes to approximately 90% of all 

mechanical service failures [90]. It is the failure due to the application of fluctuating 

stress that is much lower than their yield stress limit. A few studies have reported that 

the waterjet peening process is employed to modify material surfaces by introducing 
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compressive residual stresses which consequently may increase the fatigue life of 

the materials. 

The improvement of fatigue strength in abrasive waterjet peening of stainless steel 

304 and titanium alloy Ti6Al4V has been reported by Arola et al. [91]. They compared 

the fatigue strength of both specimens treated with two parametric conditions that 

gave a high and low induced compressive residual stresses respectively. They found 

a rather limited increase in the fatigue strength for both materials (< 10 %) as shown 

in Fig. 2-25 (a). They further treated a new set of Ti6Al4V specimens at a higher 

intensity (peening duration) as to produce a higher level of induced residual stresses. 

Apparently, the endurance strength increased to nearly 25 % as shown in Fig. 2-25 

(b).  

 

Fig. 2-25: The Wöhler diagrams of the AWJ peened and untreated specimens 
(Arrows indicate specimens that did not fail). a) stainless steel 304, and b) titanium 
alloy Ti6Al4V [91] 

While, Kunaporn et al. [92] reported a maximum increase in the fatigue strength by 

20-30 % in waterjet peening of aluminium alloy 7075-T6. However, they also noted 

that the degree of fatigue improvement was strongly dependent on the peening 

conditions. They observed that increasing the pressure and the peening time might 

yield an increase in surface hardness, but the fatigue limit would rapidly decline due 

to an increase in surface erosion as well. It is well known that surface irregularities 

may encourage fatigue crack initiation at the specimen surface [93]. 
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During oil jet peening of carbon steel 1040, an improvement of fatigue strength by 

about 19 % was reported [86]. They further reported that the fatigue life was higher in 

specimens peened at a higher pressure probably because of the difference in 

magnitude of the induced compressive residual stress at the surface as well as of the 

hardening effect. In contrast as shown in Fig. 2-26, they found that the fatigue 

strength of peened specimens seemed to be almost similar regardless of the nozzle 

traverse rate since the residual stress and hardening showed also not much 

difference. 

 

Fig. 2-26: The wöhler diagrams of the oil jet peened and unpeened specimens 
(Arrows indicate specimens that did not fail) [86] 

Han et al. [84] reported an increase of fatigue life of about 15-20 % in water 

cavitation peening of carbon steel 1045. They compared the fatigue life of peened 

and unpeened specimens of original as well as oil quenched carbon steel 1045. They 

also noticed that the improvement of fatigue life was obviously apparent at higher 

cycles as shown in Fig. 2-27 (a). The typical fracture surface with fatigue striation 

patterns is shown in Fig. 2-27 (b). 
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Fig. 2-27: a)The wöhler diagrams of the different test specimens (Arrows indicate 
specimens that did not fail), b) the typical fracture surface [84] 

The fatigue strength of stainless steel 316 under cavitating jets in air (CJA) and water 

(CJW) has been investigated by Soyama [94]. The cavitation peening in water takes 

place inside a water-filled chamber. It is obvious that the improvement of the fatigue 

strength using the cavitating jet is better in air than in water as shown in Fig. 2-28. 

The lower fatigue strength of CJW is possibly due to the interference between the jet 

and water. Interestingly, although he found the induced residual stress in CJW at two 

different standoff distances were nearly the same, but the fatigue strength was barely 

improved for the specimens treated at lower standoff distance as shown in Fig. 2-28. 

This could be due to some cracks occurred in the peened area of specimens treated 

with a lower standoff distance. 

 

Fig. 2-28: The wöhler diagrams of the different test specimens (Arrows indicate 
specimens that did not fail) [94] 
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2.6 Summary of state of the art 

The basic concepts of peening processes namely the shot peening, laser shock 

peening and waterjet peening process are presented in this chapter. However, the 

literatures on the waterjet peening process are discussed in details since it is the 

main focus of the present study. The various studies on the peening processes are 

summarized in Table 2-2, Table 2-23 and Table 2-24 respectively for shot, laser 

shock and liquid peening. 

Table 2-2: Summary of the various studies on shot peening process 

Ref. Process Conditions Material Topic of study 

[19] Shot 
peening 

shot: steel 
Ds: 250 µm 
tp: 0 - 250 s 

AISI 1010 
AISI 1045 
AISI 1080 

Surface hardness 

[20] Shot 
peening 

shot: cast steel S-230 
Ishot: 5 - 13 A 

AISI 2205 Residual stress 
Strengthening depth 
Fatigue strength 

[26] Shot 
peening 

shot: cast steel 
Ds: 0.8 mm 
fA: 0.3 – 0.6 mm 

20Cr, 30CrMo, 
40Cr, GC4, 
C45 steel,  
AA LC6 

Residual stress 
Strengthening depth 
Empirical models 

[30] Shot 
peening 

single shot: glass 
double shot: Zi 
Ds: 0.05 – 0.15 mm 
Ishot: 1 – 6 A 

RS561 Residual stress 
Strengthening depth 
Fatigue strength 

[31] Shot 
peening 

shot: steel 230 
Ds: 0.7 mm 
Ishot: 0.0027 – 0.0141 A 

AISI 4140 Residual stress 
Strengthening depth 
Fatigue strength 

[32] Shot 
peening 

shot: Zirblast B30, Ce-
ZrO2, glass beads 
Ds: 0.3 – 0.8 mm 

Mg alloy AZ80 Surface roughness 
Residual stress 
Strengthening depth 
Fatigue strength 

[33] Shot 
peening 

shot: cast steel 
Ds: 0.8 mm 

AISI 304 Surface roughness 
Microstructure 
Hardness 
Hardening depth 
Corrosion resistance 

[38] Shot 
peening 

shot: glass beads, 
ceramic beads, cast steel 
shots 
Ds: 0.15 – 0.28 mm 

AA 7050 Surface roughness 
Residual stress 
Strengthening depth 
Fatigue strength 

  



2 State of the art  43 

 

Table 2-3: Summary of the various studies on laser shock peening process 

Ref. Process Conditions Material Topic of study 

[38] LSP Nshot: 2 – 8 AA 7050 Surface roughness 
Residual stress 
Strengthening depth 
Fatigue strength 

[39] LSP 
without 
coating 

Epulse: 48 – 52 mJ 
Dspot: 0.4 ± 0.03 mm 
Npulse: 127 ± 0.1 
pulse/mm2 

Ti-2.5Cu,  
Ti-54M, 
LCB 

Surface roughness 
Residual stress 
Strengthening depth 
Fatigue strength 

[40] LSP 
without 
coating 

low energy laser  
(< 300 mJ) 

AA 6061 T6 Surface roughness 
Hardness 
Hardening depth 
Fatigue strength 

[41] LSP Npulse: 25 – 75 pulse/mm2 SS 2205 Residual stress 
Strengthening depth 
Wear resistance 
Corrosion resuistance 

[42] LSP Ilaser: 8 – 20 GW cm-2 

Nimpact: 2 - 12 
AISI 316L Surface roughness 

Hardness 
Residual stress 
Microstructure 

 

Table 2-4: Summary of the various studies on liquid peening process (Part 1) 

Ref. Process Conditions Material Topic of study 

[43] WJP vn: 84.7 – 169.3 mm/s 
h: 12.7 – 63.5 mm 

Ti6Al4V Surface roughness 
Hardness 
Hardening depth 

[44] OJP h: 15 – 40 mm AA6063 Surface roughness 
Hardness 
Hardening depth  

[45] WCP tp: 15 – 60 min Pure Ti Hardness 
Hardening depth 
Residual stress 

[46] WCP h: 30 -120 mm 
tp: 5 – 30 min 

SAE 1070 Impact pressure 
Residual stress 
Strengthening dept 

[47] WCP θ: 0 - 90° SAE 1045 Impact pressure 
Residual stress 

[68] WJP po: 140 – 280 MPa pure Ti, 
Ti6Al4V 

Surface roughness 
Residual stress 

[71] WJP vn: 102 – 2752 mm/s 
h: 12.7 – 38.1 mm 
nozzle type: fuzzy, fanjet, 
roundjet 

Ti6Al4V Surface texture 
Hardness 
Hardening depth 
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Table 2-5: Summary of the various studies on liquid peening process (Part 2) 

Ref. Process Conditions Material Topic of study 

[74] WJP nj: 2 – 6 
vn: 1000 – 3000 mm/min 
po: 100 – 300 MPa 

AISI 304 Surface roughness 
Hardness 
Hardening depth 
Microstructure 

[75] AWJP po: 103 – 262 MPa 
grit size: 54 – 120 mesh # 

Ti6Al4V, 
spring steel, 
Inconel 

Surface roughness 
Residual stress 
Strengthening depth 

[76] WJP po: 10 – 70 Mpa 
h: 30 – 500 mm 

Al alloy 5083 Erosion 
Impact force 

[77] WJP pulsating jet 
po: 20 -40 MPa 
h: 10 – 90 mm 

Al 99.5 Erosion 
Surface roughness 
Microstructure 

[78] WJP vn: 0.05 – 0.1 m/min AISI 316 
Ti6Al4V 

Surface roughness 
Hardness 
Hardening depth 
Microstructure 

[79] WJP po: 207 – 345 MPa 
vn: 30.5 – 127 cm/min 

Inconel 718 Erosion 
Microstructure 

[80] WJP po: 34 – 70 MPa 
h: 25 – 76 mm 
vn: 25 – 250 mm/s 

Al-Si alloy Erosion 
Hardness 
Hardening depth 
Microstructure 

[85] WJP h: 6 – 11.4 mm 
po: 100 – 140 MPa 

Al 1100 H14 Surface roughness 
Residual stress 

[86] OJP vn: 0.25 – 0.5 mm/s AISI 1040 Surface hardness 
Surface morphology 
Fatigue strength 

[91] AWJP h: 152 – 254 mm 
po: 103 – 262 MPa 
vn: 1.02 – 2.03 m/min 
grit size: 54 – 120 mesh # 

AISI 304 
Ti6Al4V 

Surface roughness 
Residual stress 
Fatigue strength 

[92] WJP po: 103 – 310 MPa 
vn: 454 – 787 m/s 
h: 24 – 64 mm 

Al 7075-T6 Surface roughness 
fatigue strength 

[94] WCP cavitation in air and water JIS SUS316L Residual stress 
Fatigue strength 

[95] WJP nj: 1 - 3 
po: 50 – 150 MPa 
vn: 500 – 1500 mm/min 
h: 20 – 60 mm 

Al 5005 Surface roughness 
Hardness 
Hardening depth 
Process optimizatrion 

[96] WCP h: 55 – 85 mm JIS SCM420 Residual stress 
Surface roughness 
Process optimization 

[97] WJP po: 175 – 225 MPa 
h: 5 – 10 mm 
nj: 2 – 4 
vn: 20 – 40 mm/min 

Al 6063-T6 Residual stress 
Hardness 
Surface roughness 
Process optimization 
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3 Problem specification and scientific approach 

The material surface plays an important role in the response of the engineering 

components. Surfaces are often subjected to various surface treatment processes to 

achieve certain qualities that are not available from the primary manufacturing 

processes [98]. The process is conducted for various reasons including to improve 

the performance of materials, change physical properties, vary appearance and alter 

dimensions. A diverse range of thermal, mechanical and chemical treatments has 

been developed to modify the surface characteristics [99]. Various surface treatment 

processes have been used for a wide range of materials from semiconductors to 

metals, ceramics, polymers, bio and nanomaterials [100]. 

The quality and performance of a product is directly related to its surface integrity 

produced from different surface treatment processes. Surface integrity comprises the 

topography (e.g. roughness, erosion), the mechanical properties (e.g. residual stress, 

hardness), metallurgical states (e.g. phase transformation, microstructure) and other 

related property variations of the work material during surface processing procedures 

[101]. Therefore, alteration of the surface integrity especially in the mechanical 

related applications has a significant effect on fatigue strength and lifetime of 

engineering components. 

A fatigue failure under cyclic loads is most commonly originated at the near-surface 

area where it has the highest stress concentrations and tensile stresses resulting 

from production processes. A major method of increasing fatigue performance is by 

imposing compressive residual stresses within a thin outer surface layer. As a result, 

the possibility of crack initiation leading to fatigue failure is reduced. The method may 

offer some positive effects by enhancing the fatigue strength of the components than 

the usage of highly alloyed and more expensive materials [5]. 

The shot peening and the laser shock peening processes are widely established in 

the industry. However, there are possible disadvantages of the shot peening process 

including defects and rough peened surfaces which have shown to be detrimental to 

fatigue crack initiation [102]. While in the laser shock peening, there are possibilities 

of thermal effects such as melting of the metal surface, especially for alloys of a low 
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melting point [103]. The waterjet peening process may overcome the limitations of 

other peening processes, particularly leaving a clean and smooth surface with low 

surface roughness as well as the absence of thermal effects [44]. Over the past 

decade, the WJP process has shown to be a promising method in the mechanical 

surface strengthening process. A lot of research has been conducted to study its 

potential applications and associated sciences. However, a detailed knowledge in 

this process is not comprehensively reported in the literature. Therefore, there is a 

need to widen the knowledge in the field of the waterjet peening process by 

conducting more research. 

Considerable works have been done in investigating the effect of various WJP 

process parameters on the inducement of residual stresses on metallic surfaces. 

However, all the works were carried out in a single-pass treatment. There is a 

possibility that the residual stress can be introduced in a higher amount and/or 

deeper below the surface if the metallic surfaces are treated repeatedly with multiple 

passes. As shown in studies on traditional machining processes, particularly grinding, 

it became clear that there is a variation in magnitude of residual stress with respect to 

the depth of the residual stress distribution in multiple passes grinding technique 

[104]. It was also revealed that as the number of grinding passes increases, the 

normal grinding force increases as well, which resulted in a higher amount of 

compressive residual stresses being induced [105]. Furthermore, a study on 

multipass abrasive waterjet cutting has shown its superiority over a single-pass 

cutting where it produces better surface quality and penetration depth [106]. It is thus 

essential to investigate the effect of multiple passes treatment in the WJP process. 

The main objective of the present study is to evaluate the response of different 

materials namely, stainless steel 304 and carbon steel 1045 when they are subjected 

to multiple passes treatment in the WJP process. Additionally, the effect of other 

parameters in WJP such as feedrate, standoff distance and water pressure is also 

discussed. 

Furthermore, little attention has been paid to the optimization of the waterjet peening 

process. It is known that increasing the energy and frequency of water drops may 

lead to a higher increase in hardness as well as a deeper hardening layer [74]. 

Unfortunately, it may also increase the roughness of the material surfaces which is 

detrimental to its fatigue life. Therefore, it is important to find a balance between the 
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increase in hardness and also roughness of the material surfaces. In order to have 

good increase in hardness within acceptable roughness of the peened surfaces, it is 

necessary to employ optimization techniques to find the optimal waterjet peening 

conditions. Also, workable models between the hardness as well as the roughness 

and the peening parameters can be developed in order to plan the process in 

advance with high rates of reproducibility. For this reason, the response surface 

methodology can conveniently be employed. Therefore, a special chapter in the 

present thesis is specifically dedicated to discuss about the optimization of WJP 

parameters on aluminium alloy 5005 as an example and also the development of 

workable empirical models for surface roughness (Ra) and hardness. 
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4 Research methodology 

4.1 Materials 

A total of three different materials was selected in the present work. Both ferrous and 

non-ferrous materials were chosen namely austenitic stainless steel 304, carbon 

steel 1045 and aluminium alloy 5005. These materials were primarily chosen 

because of their wide usage as mentioned in the literatures and also their availability 

in the laboratory. Both ferrous alloys were used for extensive investigations on the 

effect of waterjet peening parameters mainly due to their relatively higher strength 

compared to aluminium. Furthermore, both materials were treated using a similar set 

of parametric levels in order to make an appropriate comparison of their responses 

under the waterjet peening process. The non-ferrous alloy was used for the study of 

optimization in the waterjet peening process because of its much lower strength than 

the ferrous alloys. Therefore, the aluminium alloy 5005 was treated with a different 

set of parametric levels so that a proper assessment on the optimization of its 

performance could be done. The details about the experimentation and optimization 

in the waterjet peening process of aluminium alloy 5005 are explained in Chapter 6. 

The austenitic stainless steel 304 (X5CrNi18-10, material no. 1.4301) was selected 

as the first test material. Austenitic steels are commonly used for stainless 

applications because of their excellent formability even at room temperature [107]. 

Stainless steel 304 is the most common of austenitic grades which is used in 

chemical processing equipments and heat exchangers for food, dairy, and beverage 

industries. Austenitic stainless steel is also used in medical applications. In fact, 

Arola et al. [91] studied the influence of abrasive waterjet peening on austenitic 

stainless steel (AISI 304). With the use of abrasive particles, the treated surfaces 

produced quite high values of Ra up to 14 µm even with a single jet pass [91]. It is 

known that rough surfaces are expected to encourage fatigue crack initiation thus 

accelerating the failure of a component. Therefore, it is of interest to treat the same 

material but without the use of abrasives in the waterjet peening process so that 

smoother surfaces can be produced. The typical chemical composition and 

mechanical properties of austenitic stainless steel 304 are given in Table 4-1 and 

Table 4-2 respectively. 
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Table 4-1: Chemical composition (weight-%) of austenitic stainless steel 304 [108] 

C Mn Si P S Cr Ni Others Fe 

0.07 2.00 1.00 0.045 0.015 17.00-19.50 8.00-10.50 N 0.11 Balance 

 

Table 4-2: Mechanical properties of austenitic stainless steel 304 [108] 

Yield strength (MPa) Tensile strength (MPa) Elongation (%) 

230 540-750 45 

 

The surfaces of the received specimens were already smoothened and film coated 

from the production process through the rolling method. It had an average surface 

roughness, Ra of 0.15 µm. Therefore, no necessary smoothing of the surfaces was 

needed prior to the experiments. Fig. 4-1 (a) shows the surface microstructure of the 

austenitic stainless steel 304 sample as received. Some rolled grains from the 

manufacturing process can be clearly seen. Fig. 4-1 (b) shows the equiaxed grain 

structures of the cross-sectioned surface.  

 

Fig. 4-1: Microstructures of austenitic stainless steel 304 specimen, a) at surface of 
received specimen, b) at cross-sectioned after etched  

The second test material used for the experiments of this work was carbon steel 

1045 (C45, material no. 1.0503). It is a plain carbon steel containing 0.45 wt% C. It is 

widely available in the market. Carbon steels in general are known to be able 

successfully undergoing heat treatment processes. These heat-treated alloys are 

stronger and their applications include railway wheels and rails, gears, crankshafts, 

and other machine parts and high-strength structural components calling for a 

combination of high strength, wear resistance and toughness [17]. The surface 

hardness of carbon steel 1045 can be improved through a shot peening process [19]. 

20 µm 

b) 

6 µm 

a) 
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Furthermore, its strength can also be improved using a water cavitation peening 

process (WCP) [84]. In case of WCP, the cavitating bubbles which collapse on the 

surface of the component produced a higher amount of compressive stress [84]. 

However, a higher level of the kinetic energy produced in the cavitating jet had also 

yielded a significantly high value of roughness on the material surface [71]. 

Therefore, it is an interesting topic to study the response of the same material when it 

is subjected to a pure waterjet peening process. A smoother surface can be expected 

since the plain waterjet produces a lower level of the kinetic energy than the 

cavitating jet [71]. The typical chemical composition and mechanical properties of 

carbon steel 1045 are given in Table 4-3 and Table 4-4 respectively. 

Table 4-3: Chemical composition (weight-%) of carbon steel 1045 [108] 

C Mn Si P S Cr Ni Mo Others Fe 

0.42-0.50 0.50-0.80 0.40 0.045 0.045 0.40 0.40 0.10 
Cr+Mo+Ni 

0.63 
Balance 

 

Table 4-4: Mechanical properties of carbon steel 1045 [108] 

Yield strength (MPa) Tensile strength (MPa) Elongation (%) 

230-305 530-580 15-16 

 

The microstructures of carbon 1045 are shown Fig. 4-2. The surface has been 

polished up to a level of mirror surface as shown in Fig. 4-2 (a) using a lapping 

machine. As a result, it has a very low average surface roughness, Ra of 0.07 µm. 

The cross-sectioned microstructures show the ferrite and pearlite constituents as 

seen in Fig. 4-2 (b). 

 

Fig. 4-2: Microstructures of carbon steel 1045 specimen, a) at surface of received 
specimen, b) at cross-sectioned after etched  

70 µm 

a) 

30 µm 

b) 

Pearlite 

Ferrite 
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The third tested material was aluminium alloy 5005 (AlMg1 G15, material no. 3.3315) 

which was mainly used to elaborate the optimization method of the waterjet peening 

process. Aluminium alloys in general are well known to possess a high strength to 

weight ratio. This advantage makes them suitable to be used in many industrial 

applications. Some of the more common applications of aluminium alloys include 

railway car bodies, automotive parts (e.g. engine blocks, pistons and manifolds), 

cooking utensils, low pressure vessels and piping, and fuel tanks [17]. In the present 

study, aluminium alloy 5005 was used largely because it is readily available on the 

market. Its typical chemical composition and mechanical properties are given in 

Table 4-5 and Table 4-6 respectively. 

Table 4-5: Chemical composition (weight-%) of aluminium alloy 5005 [109] 

Mg Si Fe Cu Mn Cr Zn Al 

0.70-1.10 0.30 0.45 0.05 0.15 0.10 0.20 Balance 

 

Table 4-6: Mechanical properties of aluminium alloy 5005 [110] 

Yield strength (MPa) Tensile strength (MPa) Elongation (%) 

110-175 145-185 8 

 

The surfaces of the received specimens were also already smoothened and film 

coated from the production process through rolling method as shown in Fig. 4-3 (a). 

The sample had an average surface roughness (Ra) of 0.50 µm. Again, no necessary 

smoothing of the surfaces was needed prior to the experiments. Fig. 4-3 (b) shows 

the cross-sectioned surface of the specimen. 

 

Fig. 4-3: Microstructures of aluminium alloy 5005 specimen, a) at surface of received 
specimen, b) at cross-sectioned 

500 µm 

a) 

20 µm 

b) 
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4.2 Experimental setup 

4.2.1 Equipment 

The equipment used for machining all the samples was an UHDE high pressure 

waterjet machine at the KIMA Chair as shown in Fig. 4-4. The UHDE pump is 

capable generating a water pressure up to 6000 bars with a maximum flow rate of 

about 2 l/min. The incidence angle was set at 90° (i.e. the nozzle head was 

perpendicular to the specimen surface). It produces a width of treated surface of 

approximately 0.8 mm. The process was done without the use of abrasives where 

surfaces free of embedded abrasive particles could be expected. The movement of 

the nozzle is done through a PC based NC controller with CAD/CAM interface. The 

nozzle moves in two axes with a maximum working area of 900 x 1200 mm. 

 

Fig. 4-4: Waterjet machine at KIMA 

The machine is equipped with a nozzle made of stainless steel, brass seal and 

sapphire stone produced by Quick-Ohm Küpper & Co GmbH. The nozzle has a 

diameter of 0.3 mm. The nozzle and its cross-sectional view are shown in Fig. 4-5 

[111]. 

Nozzle head 

Y 

X 

Z PC based 
NC controller 
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Fig. 4-5: a) the nozzle, and b) its cross-sectional view (all dimensions are in 
millimetres) 

4.2.2 Experimental design 

In WJP, there is a vast number of parameters affecting the quality of the results. 

Therefore, only a few parameters were selected to ensure the feasibility of the 

multipass treatment and its influence can be properly assessed. The machining 

parameters and their respective ranges were carefully selected based on preliminary 

trial runs as well as on literature reviews [43, 44, 51]. These machining parameters 

were easily managed by adjusting those parameters into the desired levels. The 

effect of WJP treatment was clearly observed within these ranges of parameters. The 

machining parameters and their ranges are shown in Table 4-7. Some of the 

parameters were kept constant during the entire experiments such as nozzle 

diameter, Dn, (0.3 mm) and inclination angle, θ, (90°). A full factorial experiment was 

conducted which gave a total of 27 experimental runs. For each experimental run, 

the machining parameters were set to a pre-defined level accordingly. 

Table 4-7: Machining parameters and their respective ranges 

No. Machining parameters 
Range 

Low Medium High 

1. Number of jet passes, nj 2 4 6 

2. Feedrate, vn (mm/min) 1000 2000 3000 

3. Pressure, p0 (MPa) 100 200 300 

a) b) 

Ø9.5 

Ø7 

Ø3.2 

6 
4.5 

 

49˚ 

 Ø0.3 
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It is known that, the standoff distance plays an important role in determining the 

response of the material under the waterjet peening process. However, its effect 

covers a wide range of distances as to constitute the different zones of waterjet 

structure [48, 49]. Therefore, a set of distances were selected for a systematic 

investigation on the effect of standoff distance within the present study. The 

distances were selected primarily based on initial trial runs and literature reviews [51, 

76]. The levels of standoff distance are given in Table 4-8. 

Table 4-8: Range of standoff distances 

Standoff distance, h (mm) 

30 60 90 120 150 180 

 

4.2.3 Experimental procedure 

The square test plates had the dimension of 150 mm × 30 mm in surface area and 

3 mm of thickness. The specimen was laid on the workpiece table of the waterjet 

machine as shown in Fig. 4-6. It was properly clamped to ensure that the specimens 

would not move and remain in the horizontal position during the treatment process.  

 

 

Fig. 4-6: The test specimen during the treatment process 

For each experimental run, the machining parameters were set to the intended levels 

according to the experimental design. Once all the parameters were set to their 

respective levels, the test samples were treated as programmed into a CNC 

Nozzle 

Specimen 
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programme. With that programme, the nozzle was moved along the width direction 

as illustrated in Fig. 4-7. The nozzle moved in a reverse direction repeatedly 

according to the set number of jet passes. There was a gap of 2 mm left between 

each experimental run. The gap ensures that no interference occurs between the 

exposed tracks of the jets. 

 

 

Fig. 4-7: Illustration of the treated specimen 

4.3 Analysis of test samples 

All the treated surfaces were analyzed accordingly. First of all, a portion of the 

treated surface was used for roughness measurements. Another portion of the 

treated surface was used for hardness measurements and microstructural analyses 

as to avoid any interference from the roughness measurement since the stylus of the 

roughness tester has to be in contact with the surface. The microstructures on the 

treated surfaces were captured using an optical and a scanning electron microscope 

(SEM). A three dimensional (3D) measuring instrument, Nanofocus µSurf was also 

used to capture 3D images of the surfaces. Later, the specimens were sectioned for 

sub-surface analyses namely hardness measurement as well as sub-surface 

microstructure measurement. A Vickers hardness indenter was used for hardness 

measurement. Finally, a new set of specimens were treated for fatigue test analysis.  

4.3.1 Surface roughness measurement 

The roughness was measured on the treated surface. A computer-based surface 

roughness measuring device (Hommel T8000) available at the Institute for 

Measurement and Sensor-Technology (MTS), University of Kaiserslautern, was used 

2 mm 

Workpiece 

Waterjet 
peened surface 

Area of hardness 
measurement 
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in the present investigation. The machine is equipped with a ball-shaped ruby stylus 

tip having a diameter of 5 µm and tip angle of 90°. The stylus was traversed along 

the direction of treated surface at a constant speed of 0.05 m/s. The transverse 

surface roughness profiles for each treated surface were taken in the middle of 

treated lines. All measurements were acquired using a cut-off length of 0.8 mm. The 

machine provides most values of the standard roughness parameters such as Ra 

(average arithmetic roughness), Rv (maximum valley depth of the roughness profile), 

Rp (maximum peak height of the roughness profile) and Rt (total height of the 

roughness profile) according to the ISO 4287 [112]. However, the result of Ra will be 

discussed in the present study since it is the most widely used parameter in 

roughness profile. Ra is defined as the arithmetic average of the vertical deviations 

from the nominal surface over a specified length. The Ra values were taken at least 

four times for each sample so that averages could be calculated in order to minimize 

the variability. 

4.3.2 Hardness measurement 

The treated specimens were prepared for hardness measurement and 

microstructural analysis based on standard procedures as described by Buehler Ltd. 

[113]. The treated samples were sectioned into smaller pieces using an abrasive 

wheel cutter with a sufficient flow of coolant. After that, the sectioned specimens 

were hot mounted with the edge of the treated specimen exposed on the polishing 

surface. This method uses pressure and heat to encapsulate the specimens. 

A commonly mounting material for metallographic specimens, ProbeMet (supplied by 

Buehler Ltd) was used. It contains conductive filler particles (copper) and 

thermosetting epoxy resin as to obtain electrical conductivity for the SEM analysis 

purpose later. 

The mounted specimens were then grinded using silicon carbide abrasive papers 

with successive particle grit sizes (P120, P240, P400, P600 and P1200) in wet 

condition. Finally, the specimens were mechanically polished as to produce a flat and 

mirror-like in appearance. Polishing was firstly conducted with 6 and 1 µm diamond 

abrasives suspended onto napless canvas cloth. Final polishing was done in 

sequence with 0.3 µm (alpha alumina) and 0.05 µm (gamma alumina) suspensions 

using medium nap cloths. In the end, subsurface hardness measurement was 
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conducted on the polished specimens using a computer-controlled Buehler OmniMet 

MHT hardness tester available at the Institute for Manufacturing Technology and 

Production Systems, University of Kaiserslautern. The Vickers hardness was 

obtained as a function of depth with 10 gf load over a 15 s indentation period. An 

average of at least four hardness data was recorded at every depth. It was acquired 

on the cross-section of the specimen at different depths starting from roughly 25 µm 

beneath the eroded surface as shown in Fig. 4-8. The measurements were continued 

at 10 different depths until a far distance of 1000 µm (i.e. 25, 50, 75, 100, 150, 200, 

300, 500, 750 and 1000 µm). 

 

Fig. 4-8: Hardness measurement on a cross-sectioned specimen 

4.3.3 Microstructural analysis 

A microstructural analysis is divided into two parts. A scanning electron microscope 

was used to characterize both the surface and the sub-surface microstructures. A 

Philips - XL 40 scanning electron microscope available at the MTS Institute, was 

used with an accelerating voltage of 20 kV. A secondary electron image (SEI) was 

primarily employed for the characterization of the microstructures. The image 

magnifications were adjusted accordingly as to capture both macro and micro scales 

of the microstructures. While, a non-contact optical 3D measurement (Nanofocus 

μSurf) explorer also available at the MTS Institute, was used for the measurement 

and analysis of surfaces. The 3D structures of the surfaces were acquired using a 

10× objective lens which covered a measuring field of about 1600 µm × 1600 µm. 

50 µm 

70 µm 
25 
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The specimens from the hardness measurement were reused for the sub-surface 

microstructure investigation. However, the specimens were prepared again as to 

avoid the effect of material deformation from the hardness indentation. After final 

polishing of the specimens, etching was conducted using the recommended chemical 

solutions. Etching is mainly conducted to reveal particular structural characteristics of 

metals. V2A etchant (supplied by Buehler Ltd.) was used to etch the polished 

specimens of austenitic stainless steel 304. It was done by immersing the specimens 

in the solution for about 30 seconds at 50° C. While, for carbon steel 1045, the most 

common etchant, 3% Nital (also supplied by Buehler Ltd.) was used. The specimens 

were immersed in the solution for duration about 50 seconds at room temperature. 

4.4 Fatigue test 

The final test was conducted to analyze the fatigue performance after treatment 

under different waterjet peening conditions. Its objective is to measure the 

effectiveness of the waterjet peening process in improving the fatigue strength of the 

metallic samples. Due to some constraints, only the austenitic stainless steel 304 and 

the aluminium alloy 5005 were used for the fatigue test. Though the fatigue 

performance for the other material (i.e. carbon steel 1045) is not expected to be the 

same, it is believed that the general trend of the results may somehow show a 

similarity under the waterjet peening treatment. Furthermore, the fatigue test results 

for the same materials under other peening processes from the work of previous 

researchers are reported in Chapter 5.4. 

The fatigue test specimens were prepared according to the dimensions as shown in 

Fig. 4-9 (a). The plate has a thickness of 3 mm. Three different conditions were used 

in the waterjet treatment of the fatigue specimens. The conditions were selected 

based on three different numbers of jet passes i.e. 2, 4 and 6. The rest of the 

parameters were kept constant i.e. pressure = 200 MPa, feedrate = 2000 mm/min, 

nozzle diameter = 0.3 mm and standoff distance = 30 mm. The waterjet peening was 

conducted on both sides of the specimens in the region where it experienced the 

highest stress (i.e. in the middle of the specimen) up to a length of 15 mm as shown 

in Fig. 4-9 (b). The effective coverage width of waterjet peening on the surface was 

about 0.4 mm. Therefore, for a complete coverage of the surface, the nozzle was 

moved in a gap distance of 0.4 mm over the length of 15 mm. A minimum of 14 
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specimens for each treatment condition was used for the investigation. The 

specimens were tested at different stress levels with an interval of about 25 MPa. 

The original specimens were also tested so that the fatigue strength performance 

could be compared between the treated and non-treated specimens. 

 

Fig. 4-9: a) Schematic drawing of the fatigue test specimen (all dimensions are in 
millimetres), b) waterjet peening of fatigue specimen 

  

Fig. 4-10: Schematic of an alternating bending fatigue tester (Inset is the treated test 
specimen) [114, 115] 
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The fatigue tests were conducted at room temperature on an alternating bending 

fatigue test machine type PWO (manufactured by Schenck GbmH) available at the 

Working Group of Material Testing, University of Kaiserslautern. It is an alternating 

bending fatigue machine which is able to perform dynamic fatigue test in accordance 

with the German standard DIN 50142 [114]. The machine displacement is controlled 

through a crank-linkage mechanism as illustrated in Fig. 4-10. This produces a 

sinusoidal waveform with a frequency of 23 Hz. The test was conducted at various 

bending stress levels. The test was continuously run up to failure or 10 × 106 cycles, 

depending on whichever occurred first. The fatigue life responses of the treated and 

non-treated specimens were achieved by plotting the number of cycles to failure 

versus the maximum applied bending stress. Later, the fracture surfaces of the 

specimens were examined using SEM to characterize the failure features. 
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5 Results and discussions 

This chapter discusses the main results about the effect of the waterjet peening 

process on the stainless steel 304 and the carbon steel 1045. The results are 

explained based on the surface and sub-surface characteristics as well as the fatigue 

behaviour. Also, the erosion mechanisms involving both materials are discussed. 

5.1 Effect of waterjet peening on surface 

The discussion on the effect of the waterjet peening process on material surfaces is 

divided into two sections. The first section of the investigations discusses the effect of 

various waterjet peening parameters on the surface roughness. The surface erosion 

generated by the waterjet peening process parameters is discussed in the second 

part of the section. Both macro and micro scales of surface erosion are considered in 

this section. 

5.1.1 Roughness 

The effect of the number of passes on the surface roughness of both peened 

specimens for different feedrates is shown in Fig. 5-1. Generally, it can be clearly 

seen that increasing the number of jet passes produces a higher surface roughness 

for both specimens. Unlike a through cut in the waterjet machining process where a 

smoothening action is expected on the kerf walls of workpiece by subsequent passes 

to remove the ‘peaks’ left by precedent passes [106]. However, in the waterjet 

peening process, rougher surfaces are expected due to repeated bombardment of 

waterjet onto the surface [74]. This implies the roughening of the surface by the 

subsequent passes which make the surface rougher. In other words, the subsequent 

passes do not remove the peaks left by precedent passes, but introduce new peaks 

on the surface of the workpiece thus increasing their surface roughness. 

Furthermore, rougher surfaces were also produced at lower feedrates as illustrated in 

Fig. 5-1. This effect which can be explained as decreasing the traverse rate allows 

additional overlap machining action and more water molecules to impinge on the 

surface thus producing a higher surface roughness. 
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Fig. 5-1: Effect of number of passes on surface roughness for different feedrates at a 
pressure of 200 MPa and a standoff distance of 30 mm (Stainless steel 304 and 
carbon steel 1045 are represented by solid and dashed lines respectively) 

The effect of the number of passes on the surface roughness for different pressures 

is shown in Fig. 5-2. It is obvious that the effect of the number of passes shows a 

similar trend like the previous case where a higher number of jet passes results in a 

rougher surface. Furthermore, it is clear that the surface roughness increases with an 

increase in the water supply pressure as illustrated in the diagram. It is known that 

the water supply pressure is directly proportional to the impingement velocity of the 

water droplet [116]. Therefore, it can be anticipated that a higher water supply 

pressure increases the kinetic energy of the water molecules and enhances their 

capability for material removal thus increasing the surface roughness. In comparison 

with Arola et al. [68], but utilizing a single pass treatment in abrasiveless WJP of a 

pure titanium and titanium alloy (Ti6Al4V), they found only a mild increase in surface 

roughness with an increase in WJP pressure. This is also true for the present case 

but only at a minimum of 2 jet passes as shown in the diagram. At a higher number 

of jet passes, there are significant changes of surface roughness for different 

pressures. 
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Fig. 5-2: Effect of number of passes on surface roughness for different pressures at a 
feedrate of 2000 mm/min and a standoff distance of 30 mm (Stainless steel 304 and 
carbon steel 1045 are represented by solid and dashed lines respectively) 

It is of interest to compare the present results with those obtained by Arola et al. [91] 

with the same alloy of austenitic stainless steel 304 but treated with abrasive WJP. 

They recorded an average surface roughness ranging from approximately 5 to nearly 

14 µm by utilizing pressures between 103 and 262 MPa and feedrates between 1020 

and 2030 mm/min which are about the same as in the present case, i.e. 100 to 

300 MPa and 1000 to 3000 mm/min respectively. However, the surface roughness 

values for austenitic stainless steel 304 were recorded less than 10 µm as in the 

present case. Therefore, it can be said that the abrasiveless WJP may produce a 

lower surface roughness even if it is treated with more jet passes. 

The effect of the standoff distance on the surface roughness for a different number of 

jet passes in the waterjet peening process is shown in Fig. 5-3. Initially, the surface 

roughness increases with an increase in the standoff distance until it reaches a 

maximum roughness at a standoff distance of 90 mm. Beyond that, it decreases and 

approaches the original surface roughness. A lower standoff distance causes very 

little removal of material. Probably, water droplets were not generated but rather a 

water column or a continuous beam of waterjet [76]. The continuous water column 
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only presses the surface of the specimen without imposing the cyclic stresses. 

Therefore, the impact frequency of the water column is too low to cause significant 

erosion at the short standoff distance [76]. Moreover, there is a high possibility that at 

a shorter standoff distance, the reflection of water droplets after hitting its target 

disturbs the new incoming water droplets from the nozzle [8, 95]. However, at a 

relatively high standoff distance due to the divergence of waterjet, the effect of 

waterjet reflection is drastically reduced. 

 

Fig. 5-3: Effect of standoff distance on surface roughness for different number of 
passes at a pressure of 200 MPa and a feedrate of 2000 mm/min (Stainless steel 
304 and carbon steel 1045 are represented by solid and dashed lines respectively) 

Also in the present study, the standoff distance between 60 to 120 mm can be said 

as a transition region of the jet structure from a flow to mainly water droplets [48, 49]. 

Interestingly, Han et al. [84] found that the maximum impact pressure due to the 

waterjet cavitation peening occurred in the range of standoff distances between 70 to 

95 mm. This explains higher erosion within these distances with the maximum 

erosion at a standoff distance of approximately 90 mm. Oka et al. [76] found that the 

maximum damage depth was observed for a standoff distance between 120 and 

200 mm at all water pressures in the waterjet treatment of aluminium alloy 5083. 

Whereas, Chillman et al. [51] found that the distance of 100 mm produces the 
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highest erosion in the waterjet surface processing of the titanium alloy Ti6Al4V. 

A further increase in standoff distance results in a lower surface roughness. This is 

said to be the final region of waterjet structures where there is a noticeable decrease 

in the droplet velocities as the droplets break up into finer ones. Within this region, 

the jet has dissipated most of the energy to effectively modify the features of material 

thus lowering the amount of surface erosion. 

It is also interesting to note that the effects of feedrate and pressure in the surface 

roughness  are  more  prominent  at a higher  number of jet  passes. As shown in 

Fig. 5-1 to Fig. 5-3, there are significant changes of surface roughness at a higher 

number of jet passes for different feedrates, pressures and standoff distances 

respectively. It is possible that during the initial jet passes, the impact of the jet only 

resulted in initiating some cracks without significantly sheared the material at the 

surface. The cracks did not considerably change the value of roughness since most 

materials were not removed. However, at subsequent jet passes, besides initiating 

some new cracks, the previous cracks might easily propagate leading to removal of 

more fragments of material. As a result, a noticeable increase in roughness could be 

observed since most materials at the surface were removed. Furthermore, in the 

cavitation erosion test, the erosion rates typically exhibit two different regimes based 

on the cavitation exposure time [117]. The erosion rate is almost negligible within the 

first regime or the incubation period. While, there is an accelerated erosion rate 

within the second regime. It is to note that a lower number of jet passes represents a 

lower exposure time. Beyond that, there were accelerated surface erosion 

particularly at the highest number of jet passes which constituted the highest 

exposure time. Based on the surface roughness, it can be suggested that 2 - 4 jet 

passes is the incubation period of the surface erosion in the present study. 

Furthermore, Oka et al. [76] reported that the incubation period decreases with an 

increase in water pressure. It means that the slope of the surface roughness 

increases rapidly with an increase in water pressure as shown in Fig. 5-2. 

5.1.2 Erosion 

A further analysis of the peened surfaces is based on SEM images. A lower 

magnification of SEM images was used so that macroscale erosion of jet tracks could 

be observed. The SEM images were taken at a magnification of about 70 times. The 



66  5 Results and discussions 

 

erosion tracks on the austenitic stainless steel 304 workpiece surface produced by 

different feedrates are shown in Fig. 5-4 to Fig. 5-6. The arrows indicate the direction 

of the jet nozzle feedrate. It is clear that the erosion decreases with an increase in 

the nozzle feedrate.  

 

Fig. 5-4: Erosion tracks of austenitic stainless steel 304 for different number of 
passes, a) 2 passes, b) 4 passes and c) 6 passes, at a feedrate of 1000 mm/min, a 
pressure of 200 MPa and a standoff distance of 30 mm 

 

Fig. 5-5: Erosion tracks of austenitic stainless steel 304 for different number of 
passes, a) 2 passes, b) 4 passes and c) 6 passes, at a feedrate of 2000 mm/min, a 
pressure of 200 MPa and a standoff distance of 30 mm 

 

Fig. 5-6: Erosion tracks of austenitic stainless steel 304 for different number of 
passes, a) 2 passes, b) 4 passes and c) 6 passes, at a feedrate of 3000 mm/min, a 
pressure of 200 MPa and a standoff distance of 30 mm 

At higher feedrates, there exists limited erosion with small isolated pockets as shown 

in Fig. 5-5 and Fig. 5-6. Moreover, the erosion tracks were discontinuous and almost 

negligible particularly for erosion tracks at a higher feedrate and a lower number of 
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passes as seen in Fig. 5-5 (a), Fig. 5-6 (a) and Fig. 5-6 (b). Generally, it can be said 

that the erosion tracks are very stochastic in nature. However, at a higher number of 

passes particularly at the lowest feedrate as shown in Fig. 5-4 (c), the erosion track 

becomes significantly continuous thus indicating a repeated removal of material at 

subsequent jet passes. 

 

Fig. 5-7: Erosion tracks of carbon steel 1045 for different number of passes, a) 2 
passes, b) 4 passes and c) 6 passes, at a feedrate of 1000 mm/min, a pressure of 
200 MPa and a standoff distance of 30 mm 

 

Fig. 5-8: Erosion tracks of carbon steel 1045 for different number of passes, a) 2 
passes, b) 4 passes and c) 6 passes, at a feedrate of 2000 mm/min, a pressure of 
200 MPa and a standoff distance of 30 mm 

 

Fig. 5-9: Erosion tracks of carbon steel 1045 number of passes, a) 2 passes, b) 4 
passes and c) 6 passes, at a feedrate of 3000 mm/min, a pressure of 200 MPa and a 
standoff distance of 30 mm 

The erosion tracks on the carbon steel 1045 workpiece surface produced by different 

feedrates are shown in Fig. 5-7 to Fig. 5-9. The arrows indicate the direction of the jet 
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nozzle feedrate. Again, a general trend as observed previously for the workpiece 

surfaces of austenitic stainless steel 304 was found here. The SEM images show 

that the erosion increases with a decrease in nozzle feedrate as well as with an 

increase in the number of jet passes. At higher feedrates and lower numbers of jet 

passes, there exists limited erosion in isolated regions with small pockets as shown 

in Fig. 5-7 (a), Fig. 5-8 (a) and Fig. 5-9. A clearer trace of jet tracks was revealed 

under jet impingement at a lower feedrate and a higher number of jet passes as seen 

in Fig. 5-7 (b), (c) and Fig. 5-8 (b), (c). Furthermore, at the lowest feedrate and the 

highest number of jet passes as shown in Fig. 5-7 (c), the erosion track becomes 

significantly continuous. 

 

Fig. 5-10: Erosion tracks of austenitic stainless steel 304 for different number of 
passes, a) 2 passes, b) 4 passes and c) 6 passes, at pressure = 100 MPa 

 

Fig. 5-11: Erosion tracks of austenitic stainless steel 304 for different number of 
passes, a) 2 passes, b) 4 passes and c) 6 passes, at pressure = 200 MPa 

 

Fig. 5-12: Erosion tracks of austenitic stainless steel 304 for different number of 
passes, a) 2 passes, b) 4 passes and c) 6 passes, at pressure = 300 MPa 
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The erosion tracks on the austenitic stainless steel 304 workpiece surface produced 

by different pressures are shown in Fig. 5-10 to Fig. 5-12. The arrows indicate the 

direction of the jet nozzle feedrate. From the figures, it is clear that the erosion 

increases with an increase in the water pressure. At lower pressures, there exists 

limited erosion with small isolated pockets as shown in Fig. 5-10 and Fig. 5-11. 

Moreover, the erosion tracks were discontinuous and almost negligible particularly for 

erosion tracks at a lower pressure and number of passes as seen in Fig. 5-10 (a), (b) 

and Fig. 5-11 (a). The erosion tracks are also very stochastic in nature. However, the 

erosion track becomes significantly continuous at the highest number of jet passes 

and the highest pressure as shown in Fig. 5-12 (c), thus indicating a higher energy of 

jet as well as a repeated action of material removal at subsequent jet passes. 

The erosion tracks of ferritic steel 1045 subjected to waterjet treatment at different 

pressures are shown in Fig. 5-13 to Fig. 5-15. The arrows indicate the direction of the 

jet nozzle feedrate. Overall, all surfaces examined show different degrees of 

damage. It is obvious that the pressure as well as the number of jet passes 

demonstrate a similar effect on the surface erosion as seen in the waterjet peening of 

austenitic stainless steel 304. The erosion increases with an increase in the water 

pressure and also the number of jet passes. 

Furthermore, it is to notice that every surface micrograph treated with 2 jet passes 

regardless of feedrates and pressures produces a very small amount of erosion. Also 

the value of surface roughness is very low with less than 3 µm in every case as 

shown in Fig. 5-1 and Fig. 5-2. Almost all the original surfaces remain intact since the 

erosion was inhomogeneous and discontinuous hence they were not detrimental to 

the original surface. This shows that 2 jet passes may not really produce 

considerable erosion to the surface in spite of different feedrates and pressures. This 

indicates that in the present study a threshold number of jet passes for the material 

erosion can be considered at about 2 jet passes. Also this can be said as the 

incubation period of the surface erosion in the present study. 
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Fig. 5-13: Erosion tracks of carbon steel 1045 for different number of passes, a) 2 
passes, b) 4 passes and c) 6 passes, at a pressure of 100 MPa, a feedrate of 2000 
mm/min and a standoff distance of 30 mm 

 

Fig. 5-14: Erosion tracks of carbon steel 1045 for different number of passes, a) 2 
passes, b) 4 passes and c) 6 passes, at a pressure of 200 MPa, a feedrate of 2000 
mm/min and a standoff distance of 30 mm 

 

Fig. 5-15: Erosion tracks of carbon steel 1045 for different number of passes, a) 2 
passes, b) 4 passes and c) 6 passes, at a pressure of 300 MPa, a feedrate of 2000 
mm/min and a standoff distance of 30 mm 

As previously discussed, increasing the number of jet passes only increases the 

surface roughness slightly for specimens treated at either higher feedrates or lower 

pressures as illustrated in Fig. 5-1 and Fig. 5-2 respectively. Also, their surfaces 

experience only minimal erosion with small craters as shown in Fig. 5-6 and Fig. 5-10 

as well as Fig. 5-9 and Fig. 5-13 respectively for the stainless steel 304 and the 

carbon steel 1045. This could be possibly due to the shock absorption of a water film 

formed on the bottom of the crater from previous jet passes [76]. As a result, these 

water films absorb the water impact from subsequent jet passes and minimize the 

a) 

500 µm 

b) 

500 µm 

c) 

850 µm 

500 µm 

a) 

500 µm 

b) 

500 µm 

c) 

850 µm 

500 µm 

a) 

500 µm 

b) 

500 µm 

c) 

500 µm 



5 Results and discussions  71 

 

total damage to the surface. However, the effectiveness of these water films in 

absorbing shock is significantly reduced if the exposure duration (i.e. feedrate) is too 

low or the energy (i.e. pressure) is too high as in the present case when the feedrate 

is 1000 mm/min or the pressure is 300 MPa. It is clear that within these regions the 

material is sufficiently exposed to the waterjet impact and/or the water droplets 

carries enough energy to remove the material at the surface as indicated in Fig. 5-4 

and Fig. 5-12 as well as Fig. 5-7 and Fig. 5-15 for the stainless steel 304 and the 

carbon steel 1045 respectively. This is confirmed by a study of Barriuso et al. [78] in 

roughening another type of austenitic stainless steel AISI 316 LVM with a single jet 

pass but with much lower feedrates between 50 to 100 mm/min and a higher jet 

pressure of 360 MPa produced rougher surfaces of about 11 - 13 µm. This is 

possible since a higher water pressure as well as much lower feedrates were utilized 

although the specimens were treated with only a single jet pass. This shows that 

multiple jet passes treatment may not produce substantial erosion if the pressure and 

the feedrate are within the threshold limit. 

 

Fig. 5-16: Erosion tracks of carbon steel 1045 for different standoff distances, a) 30 
mm, b) 60 mm, c) 90 mm, d) 120 mm, e) 150 mm and f) 180 mm, at a pressure of 
200 MPa, a number of jet passes of 4 and a feedrate of 2000 mm/min 

An example on the effect of the standoff distance on the surface erosion is shown 

Fig. 5-16. It is clear that the erosion increases with an increase in the distance 

between the nozzle and the workpiece until it reaches the maximum at a distance of 

90 mm (Fig. 5-16 (c)). A further increase in the standoff distance results in lower 
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erosion.As expected, the erosion was the least at the highest standoff distance of 

180 mm as the case of the present study. Furthermore, based on the trend of the 

surface roughness as shown in Fig. 5-3, it can be clearly seen that beyond this 

maximum distance the roughness approaches the original roughness of the 

specimens. So, the distance perhaps about 200 mm, can be considered as a critical 

effective standoff distance while beyond it the waterjet is unable to remove the 

materials. Based on a mathematical model developed in a coating removal 

experiment, Leu et al. [118] approximated the optimal standoff distance (i.e. the 

distance where the most material was removed) to be about half of the critical 

effective standoff distance. This is about 100 mm for the present study which is in 

agreement as the maximum erosion occurred at a distance of 90 mm as indicated in 

Fig. 5-3 as well as Fig. 5-16. 

As discussed above, a high velocity of waterjet can cause damage to the target 

materials by means of erosion. The structure and velocity of the jet change based on 

the different regions of the waterjet. The loss of jet velocity begins once the jet leaves 

the nozzle exit due to aerodynamic interaction, turbulence and cavitation [62]. It can 

be expected that the initially coherent jet breaks up to form droplets as air is 

entrained into the jet [118]. Sohr and Thorpe [119] suggested that this breakdown 

into droplets occurred at a critical standoff distance which is approximately 175 times 

of the orifice diameter. Comparing this to the present work, the critical standoff 

distance where the jet breaks up to form droplets is about 52.5 mm with the nozzle 

diameter of 0.3 mm. This is somehow in agreement with the present study where the 

standoff distance between 60 to 120 mm is said as the main transition region of the 

jet structure consisting of mainly water droplets as found from Fig. 5-3. This may also 

explain higher erosion within these distances with the maximum erosion at a standoff 

distance of approximately 90 mm as shown in Fig. 5-16. 

Since the SEM images only show the surface features in 2 dimensions, it is difficult to 

assess the depths of the erosion tracks. It would be interesting to discuss the extent 

of the erosion especially their depths. Therefore, a 3D profilometer was used to 

capture the 3D features of the surfaces. Based on 3D images of waterjet treated 

surfaces for both materials at different parameters, there was little difference in the 

characteristics and the extent of the observed erosion tracks other than their depths. 

Hence, only a few representations of 3D images are presented in this section as to 
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describe the effect of peening parameters on the erosion depths. 3D images of the 

surface structures treated at different numbers of jet passes are shown in Fig. 5-17. 

These are the surface 3D images for the same specimens as presented in Fig. 5-15. 

It is obvious that the erosion tracks in 3D show similar features as previously 

characterized by SEM. However, it is clear that the erosion depths are higher in the 

specimens treated with a higher number of jet passes as indicated by high values of 

valley depths as indicated in Fig. 5-17 (b) and (c).  

 

Fig. 5-17: 3D images of surface erosion at different jet passes, a) 2 passes, b) 4 
passes and c) 6 passes, at a pressure of 200 MPa, a feedrate of 2000 mm/min and a 
standoff distance of 30 mm (black arrows indicate the traverse direction of the 
nozzle) 

Whereas, 3D images of the surface structures treated at different feedrates are 

shown in Fig. 5-18 . The surface 3D images are for the same specimens as 

presented in Fig. 5-7 (c), Fig. 5-8 (c) and Fig. 5-9 (c) respectively. It seems that the 

erosion tracks in 3D show similar features as previously characterized by SEM. 
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Basically, the erosion becomes less continuous as the feedrate increases. It is 

interesting to note that the depth of the valley are about the same for the specimen 

treated at lower feedrates of 1000 and 2000 mm/min as shown in Fig. 5-18 (a) and 

Fig. 5-18 (b) respectively. However, the high of the peak is higher for the specimen 

treated with the lowest feedrate. Perhaps, this feature contributes to a higher value of 

the roughness in the specimen treated with a lower feedrate. In addition, it is good to 

note that the depth of the craters under waterjet impingement at particularly lower 

feedrates may be the same but its erosion is not homogeneous over the treated 

surface. 

 

Fig. 5-18: 3D images of surface erosion at different feedrates, a) 1000 mm/min, b) 
2000 mm/min c) 3000 mm/min, at a pressure of 200 MPa, a number of jet passes of 
4 and a standoff distance of 30 mm (black arrows indicate the traverse direction of 
the nozzle) 

3D images of the surface structures for the same specimens treated at different 

pressures are shown in Fig. 5-19. The images were taken on the same erosion 
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tracks as presented in Fig. 5-13 (c), Fig. 5-14 (c) and Fig. 5-15 (c) respectively. 

Again, the erosion tracks in 3D show similar features as previously characterized by 

SEM. Generally, the surface erosion is more continuous as the pressure increases. 

Also, the erosion depths are higher in the specimens treated with a higher pressure 

as indicated by high values of valley depths. 

 

Fig. 5-19: 3D images of surface erosion at different pressures, a) 100 MPa, b) 200 
MPa and c) 300 MPa, at a feedrate of 2000 mm/min, a number of jet passes of 4 and 
a standoff distance of 30 mm (black arrows indicate the traverse direction of the 
nozzle) 

3D images of the surface structures for the same specimens treated at different 

standoff distances are shown in Fig. 5-20. The images were taken on the same 

erosion tracks as presented in Fig. 5-16. However, only the 3D images with the 

highest erosion (i.e. at standoff distances of 60, 90 and 120 mm) are presented here 

since there was little difference in the characteristics of the eroded surfaces from 

previously presented 3D images. A similar feature of the erosion tracks in 3D was 
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observed from previously characterized images by SEM. The erosion was noticed 

the most at a standoff distance of 90 mm as shown in Fig. 5-20 (b) with the deepest 

valley. 

 

Fig. 5-20: 3D images of surface erosion at different standoff distances, a) 60 mm, b) 
90 mm and c) 120 mm, at a pressure of 200 MPa, a number of jet passes of 4 and a 
feedrate of 2000 mm/min (black arrows indicate the traverse direction of the nozzle) 

It is also interesting to discuss about the effect of the number of jet passes on the 

erosion track width. On macro-scale erosion as seen above, some of the eroded 

surfaces do not display a clear erosion track width since it happened as a small 

pocket. However, the width of the erosion track can be clearly seen on the treated 

surfaces that display a continuous removal of the material especially in the 

specimens treated with a higher number of jet passes. An almost constant erosion 

track width of approximately 850 µm was produced in those treated jet specimens. In 

the present case, it can be expected that the effective coverage area from the jet with 

a nozzle diameter of 0.3 mm is about 850 µm. Likewise, it can be seen that the 
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traces of the surface erosion such as craters are also located within this width in the 

specimens treated with a lower number of jet passes. This shows that the material 

removal on the surface under the waterjet impingement only happens within the 

effective coverage area. It is believed that the erosion track will not appreciably get 

wider with even more jet passes but certainly the erosion track depth will notably get 

deeper. Also, the randomly formed craters on the surface during previous jet passes 

may easily combine to form larger craters at subsequent jet passes. As a result, 

uniform erosion with full removal of materials is developed over the surface within the 

jet effective coverage area. 

5.1.3 Comparisons of surface effects between both materials 

It is good to compare about the results of surface roughness and erosion for both 

materials (i.e. stainless steel 304 and carbon steel 1045) studied in the present work. 

It is known that the material properties (i.e. strength, hardness, ductility, fatigue 

resistance, etc.) affect the surface erosion of a material. Krella and Czyniewski [120] 

commented that an increase in the material strength and hardness tend to increase 

the cavitation erosion resistance. However, they also noted that there was no straight 

correlation between the material hardness and the incubation period. In case of the 

present study, a similar conclusion can be made where there is no clear correlation 

between the incubation period and the hardness of the materials. It is to note that the 

stainless steel 304 has a higher hardness than the carbon steel 1045 (i.e. 230 HV0.01 

versus 145 HV0.01). however, it can be seen from Fig. 5-2 and Fig. 5-3 that both 

materials show a relatively similar behaviour in regard to the incubation period at 

about 2 – 4 jet passes. 

In general, carbon steel 1045 has produced a higher value of surface roughness than 

stainless steel 304 as shown in Fig. 5-1, Fig. 5-2 and Fig. 5-3. This can be expected 

since the carbon steel has a lower hardness than the stainless steel. Therefore, it 

has a lower erosion resistance thus producing a higher roughness of the surface. 

Interestingly, the increase of roughness in the carbon steel 1045 can be considered 

moderate in comparison to the stainless steel 304 within the same parametric 

conditions although the hardness of the former is slightly more than half of the latter. 

Also, the degree of erosion observed in the carbon steel 1045 is only slightly more 

severe with a continuous erosion surface particularly at a higher pressure and more 
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number of jet passes as shown in Fig. 5-15 (b) and Fig. 5-15 (c) than in the stainless 

steel 304 as shown in Fig. 5-12 (b) and Fig. 5-12 (c). Possibly, since the carbon steel 

1045 has a lower original roughness than stainless steel 304 (i.e. 0.07 µm versus 

0.15 µm) this results in a lower increase of roughness after the waterjet treatment. It 

is known that an initially smooth surface is favourable to the erosion resistance [121]. 

However, the erosion behaviour of the material surface under the waterjet impact is 

very complex. A lot of factors may influence its behaviour. It can be said that a lower 

material hardness is no guarantee to a lower erosion resistance. Additionally, there is 

no simple relation between the amount of material loss during cavitation erosion and 

the mechanical properties of a material, such as hardness, strength and toughness 

[122]. In contrast, Lee [123] found a relationship between the materials’ hardness 

and the erosion rate. The erosion rate decreased with an increase in the material 

hardness. However, the same author pointed out that the erosion rate for a simple 

two-phase alloy system is strongly related to the amount of primary ferrite in the 

microstructure rather than its hardness. While, Mann and Arya [124] commented that 

the hardness of coatings played a crucial role in improving the erosion resistance 

especially during the incubation period for coated materials. 

Richman and McNaughton [125] suggested that material removal rates are 

correlated with cyclic deformation parameters, a strong indication that the damage in 

the cavitation erosion is a fatigue process. They established the relationship between 

the erosion behaviour with the fatigue strength coefficient. The fatigue strength 

coefficient is inversely proportional to the erosion depth. Based on the database of 

cyclic deformation parameters for various metals, the stainless steel 304 displays a 

higher value of the fatigue strength coefficient than carbon steel, thus it has a higher 

erosion resistance [125]. Furthermore, Feller and Kharrazi [126] reported that the 

erosion resistance strongly influenced by the binding energy and the crystal structure 

of the base material. They explained that single phase alloys had high erosion 

resistance due to high covalent bonding and low stacking fault energy. The 

predominant mode of deformation is thus planar slip due to the low stacking fault 

energy which prevents recombination of partial dislocations necessary for cross-slip 

[127]. In other words, the surface distortion is largely confined to the grain-boundary 

regions, thereby limiting the area susceptible to erosion [128].  
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While, the second-phase particles in multi-phase alloys were preferentially removed 

because of the initiation of deformation and cracks at the particle-matrix interfaces. 

Also according to Preece and Macmillan [128], the material in these alloys is 

removed by lateral growth of flat-bottomed pits that develops because of the large 

numbers of dislocation sources. This results in the near-surface highly localized 

stress concentrations which lead to the initiation of cracks. This may explain why 

more erosion had occurred in the carbon steel 1045 than the stainless steel 304. It is 

to note that the former consists of multi-phases (i.e. ferrite and pearlite phases) while 

the latter consists of a single austenite phase. Furthermore, Heathcock et al. [127] 

attributed the low erosion resistance of ferritic steels to the strain rate sensitivity of 

the body-centered cubic lattice structure. The high strain rates generated from 

waterjet peening treatment may result in a rapid brittle fracture along both 

transgranular and intergranular paths [127]. 

Another possible reason of good erosion resistance of the stainless steel 304 is due 

to the phase transformation that may occur during waterjet treatment [120, 127]. It is 

known that the phase transformation needs energy which typically occurs during 

heating resulted from highly localized impact of water droplets [120]. The energy 

generated will be absorbed or dissipated by the solid material to change its 

dislocation structure and transform its austenite into martensite phase [120, 127, 

129]. As a result of a high work-hardening rate of the stainless steel 304, it is thus 

expected to have a higher erosion resistance. In general, the alteration of phase and 

dislocation structure may finally change the material properties and change the 

erosion resistance of the material. The details discussions on the erosion 

mechanisms for both materials are reported in the following section. 

5.2 Erosion mechanisms 

A further investigation of SEM images at a higher magnification gives details of the 

erosion nature. Since, the erosion features under the microscopic observation for 

different surfaces displayed relatively similar characteristics; only several magnified 

images at selected locations are presented here. Nevertheless, various surface 

damage mechanisms can be clearly seen from these images. In general, the erosion 

mechanisms for both materials (i.e. austenitic stainless steel 304 and carbon steel 

1045) show quite similar features since both materials are ductile metals. As 
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explained by Hancox and Brunton [57], yielding in ductile metals can be expected to 

begin locally at average impact pressures appreciably below the average flow stress 

for the metals. The regions which are yielded previously were further deformed and 

pitted by the liquid flow. As a result, the material removal from the surface happens 

by the impingement of the liquid flow against the edges of the surface fractures [57]. 

The detail discussions on the erosion mechanisms will be presented with the help of 

SEM images at higher magnifications. The SEM Images for both materials are used 

interchangeably throughout this section. 

Several magnified SEM images of the stainless steel 304 were captured at different 

locations of the erosion tracks. The images represent the effect of different waterjet 

peening parameters as shown in Fig. 5-4 to Fig. 5-6. The magnified images are 

shown in Fig. 5-21 to Fig. 5-24 respectively for different numbers of jet passes, 

feedrates, pressures and standoff distances. Clearly, severe erosion happens 

particularly at the highest number of jet passes, the lowest feedrate, the highest 

pressure and the standoff distance of 90 mm as displayed in Fig. 5-21 (c), Fig. 5-22 

(a), Fig. 5-23 (c) and Fig. 5-24 (b) respectively where the original surfaces are no 

longer present as evidenced by a larger size of the pit with more undercuts. A similar 

observation was noticed by Barriuso et al. [78] in roughening of metallic biomaterials 

using abrasiveless waterjet peening where they observed a large number of pits with 

undercuts as well as some larger intrusions, which are more abundant and larger as 

in those treated with the lower feedrate. Besides, erosion of material was observed 

appearing like hills and valleys as well as some parts of relatively flat indentations 

and rolled-up grains around the crater as similarly observed by Oka et al. [76] in 

waterjet treatment of aluminium alloy. It can be anticipated that increasing the 

number of jet passes causes the removal of the material tip repetitively thus eroding 

the surface further. Furthermore, decreasing the feedrate allows additional overlap of 

the waterjet action and more water molecules to impinge on the surface hence 

resulting in severe erosion. Moreover, it implies smaller impingement time of the 

waterjet on the same point of the specimen. Whereas, a higher pressure generates a 

higher kinetic energy of water molecules hence eroding the surfaces more efficiently. 
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Fig. 5-21: Details of surface erosion for different number of jet passes a pressure of 
200 MPa, a feedrate of 2000 mm/min, and a standoff distance of 30 mm, a) 2 jet 
passes, b) 4 jet passes, and c) 6 jet passes 

 

Fig. 5-22: Details of surface erosion for different feedrates at a pressure of 200 MPa, 
,a number of jet passes of 4 and a standoff distance of 30 mm, a) 1000 mm/mm, 
b) 2000 mm/min, and c) 3000 mm/min 

 

Fig. 5-23: Details of surface erosion for different pressures at a feedrate of 2000 
mm/min, a number of jet passes of 4 and a standoff distance of 30 mm, a) 100 MPa, 
b) 200 MPa, and c) 300 MPa 

 

Fig. 5-24: Details of surface erosion for different standoff distances at a pressure of 
200 MPa, a feedrate of 2000 mm/min and a number of jet passes of 2, a) 60 mm, b) 
90 mm, and c) 120 mm 
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It is also interesting to discuss about the effect of the waterjet parameters on the 

micro-scale erosion pattern. Generally, all surfaces experience a certain degree of 

erosion during the waterjet impingement at different parameters. The surfaces with 

severe erosion show a similarity where the original surface is no longer present. 

However, the eroded surfaces treated with different numbers of jet passes display a 

relatively different pattern. A shape like a mountain hill terrace was produced and it 

became clearly visible especially at a higher number of jet passes as illustrated in 

Fig. 5-21 (b) and Fig. 5-21 (c). Comparing these figures, it seems that the latter 

shows a deeper slope of terrace due to the additional erosion from more waterjet 

passes. This specific pattern is not found on the other eroded surfaces treated with 

different parameters as shown in Fig. 5-22 to Fig. 5-24. This is a strong indication 

that the erosion mechanism during the waterjet impingement process is somehow 

like a fatigue process especially under the multiple jet passes treatment [128, 130]. 

This will be further discussed in the next paragraphs. 

As discussed above, during subsequent jet passes with more water impacts, old 

cracks are further propagated thus forming a network of cracks as well as the 

initiation of new cracks. Adler and Hooker [131] suggested that the hydraulic 

penetration mode of fracture dominates the subsequent erosion process. This 

damage is due to the hydraulic stresses generated by the penetration of the water 

during the subsequent impacts into the enlarged impact zone. The most favourable 

structure for the hydraulic penetration effect is the original sites of the lateral outflow 

fracture and pitting [131]. This leads to crack propagation and eventually pitting as 

well as material removal. As shown in Fig. 5-21 (b), with more water impacts at a 

higher jet passes, the previously formed small craters may easily combine to form a 

larger crater. As a result, a bigger crater is developed with full removal of materials 

over the surface. With even further jet passes, more fractures can be expected with 

full removal of the material fragments as shown in Fig. 5-21 (c). 

In general, the material removal occurs at two levels, i.e., initial and evolved damage 

[74, 81]. Due to the highly stochastic nature of the plastic deformation in material 

surfaces, it is hard to capture its initial damage perfectly. However, a possibly initial 

damage image was captured on a surface treated with the lowest jet pass number as 

indicated in Fig. 5-25 and Fig. 5-26 respectively for the stainless steel 304 and the 

carbon steel 1045. The images were captured on the treated surface (i.e. Fig. 5-4 (a) 
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and Fig. 5-15 (a) respectively) with no noticeable erosion traces. The deformation 

starts when high-velocity droplets hit the impact zone as shown in Fig. 5-25 (a) as 

well as Fig. 5-26 (a). As a result, a small central depression crater is formed due to 

the impact pressure. Also some cracks initiate and propagate from the impact zone. 

Some grains are also deformed due to the impact pressure as well as the generated 

stress waves. Strain gradients are set up across the grain boundaries because of the 

different strains in the neighbouring grains eventually leading to grain boundary 

fractures [123]. The water droplets hit within a certain area thus forming many impact 

craters with various extended crack lines and deformed grains as shown in Fig. 5-25 

(b) as well as Fig. 5-26 (b). Later, the liquid outward flow results in lateral shear 

stresses which may further fracture the solid particles in the impact zone and its 

surrounding areas. 

 

Fig. 5-25: Example of the initial damage on the stainless steel surface, a) a single 
impact zone, b) many impact zones (circles indicate the main impact zones) 

 

Fig. 5-26: Example of the initial damage on the carbon steel surface, a) a single 
impact zone, b) many impact zones (circles indicate the main impact zones) 
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The examples of the evolved damage surface are shown in Fig. 5-27. The images 

were captured on various locations of the eroded surfaces of the carbon steel 1045. 

Various surface damage mechanisms can be seen from these images. Deep cavities 

are formed when the pits from the individual fractures are combined together as 

shown in Fig. 5-27 (a) and (b). Besides, the surface erosion was observed appearing 

like hills and valleys as well as some parts of relatively flat indentations and rolled-up 

grains around the crater as shown in Fig. 5-27 (c). The surface cracks are possibly 

propagated mainly along the grain boundaries as evidenced by tilting of a grain as 

indicated in Fig. 5-27 (d). 

 

Fig. 5-27: Example of the evolved damage on the carbon steel surface, a) full 
removal of material with deep cavities, b) lateral outflow jetting, c) rolled-up grains, 
and d) fractures along grain boundaries 
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shown in Fig. 5-27 (b) to (d). Also, the circumferential rims on the edges of the 

erosion track were plastically deformed and slightly raised by a ploughing action due 

to an outward acting shear stress arising from the liquid flow across the surface. It is 

known that the outward stress wave propagates circumferentially from the impact 

zone [56]. This can be seen in those figures where there exist some parts of circular 

bands in the edges due to the lateral outflow jetting. However, the band waves 

appear to propagate only in the direction of the erosion track edges (i.e. to the left or 

right sides of the erosion track) as indicated in Fig. 5-27 (b) and (c). The possible 

reason is that the traces of bands in the nozzle traverse direction were eventually 

removed by subsequent jet passes. 

Hancox and Brunton [57] assumed the maximum outward flow stress (shear stress) 

to be approximately one-tenth of the impact pressure if a cylindrical indenter was 

used. This shear stress can be considered too small to cause significant damage to 

the surface. However, in most cases the surface experiences some degree of 

damage (e.g. cracks and fractures) from the initial impact pressure. Therefore, the 

shear stress is normally large enough to cause local shear fractures on the already 

weakened surface [57]. Still, the lateral outflow jetting does not significantly 

contribute to the widening of the erosion track outside the effective coverage area of 

the jet. However, it may further deform and pitted the regions which were initially 

yielded. 

It is interesting to discuss about the fracture mode of the eroded surfaces for both 

materials. The fracture surfaces were carefully examined. For the stainless steel 304 

as shown in Fig. 5-28 (a), the erosion mode involves a highly ductile fracture 

mechanism as indicated by the appearance of the fracture surface to be dull and 

fibrous. The observed mode of erosion agrees with that reported previously in the 

cavitation erosion test of a similar material [127]. On the other hand, all the eroded 

specimens of the carbon steel 1045 showed a mixture of brittle–ductile erosion 

mode. A typical fracture surface is shown in Fig. 5-28 (b). A brittle fracture region can 

be clearly seen as indicated by nearly flat surfaces with river patterns typical of 

cleavage fracture. This happens since the material consists of both ferrite and 

pearlite phases. It is suggested that pearlitic flaws are responsible as cleavage 

initiators [132]. The cementite plates of a pearlitic colony are broken in two when they 

cannot accommodate the slip deformation of ferrite due to their much higher 
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stiffness. As a result, the slip proceeds inside the pearlitic colony and act as a void 

nucleation mechanism for the discontinuities produced by the breakage of cementite. 

Finally, the voids grow assisted by plastic deformation and become pearlitic flaws to 

trigger the cleavage damage. Since pearlite is randomly distributed within the 

microstructure, therefore, the cleavage induced by such a constituent in these 

microstructures must also be a random phenomenon [133]. Furthermore, ferritic 

steels are sensitive to the strain rate due to its body centred cubic (BCC) lattice 

crystal structure [127]. The waterjet impingement produces high strain rates thus 

resulting in rapid brittle fracture along both transgranular and intergranular paths for 

ferritic-pearlitic steel as the material removal mechanism. Therefore, the erosion 

mechanism shows a predominant mode of brittle fracture. Likewise, Heathcock et al. 

[127] noticed the mode of material removal of the sample in the fully ferritic steel was 

almost entirely by the brittle fracture while for the samples in the duplex state, the 

erosion mechanism showed an increasing proportion of ductile fracture. 

 

Fig. 5-28: The typical fracture surfaces showing, a) a ductile erosion mode in 
stainless steel 304, and b) a ductile-brittle erosion mode in carbon steel 1045 

It is interesting to note that the erosion under waterjet impingement is somehow like a 

fatigue process especially with a higher number of jet passes. The erosion does not 

occur in a single impact; rather, it is produced by multiple impacts and assumed to be 

cumulative as a form of fatigue failure [128]. Furthermore, Richman and McNaughton 

[125] found good correlations between material removal rates in a cavitation erosion 

process and cyclic deformation parameters. They concluded that it was a strong 

indication that the damage in cavitation erosion was a fatigue process. As the 

bubbles collapse incessantly and randomly in the cavitation process, the impact 

stress thus exerting on the material surface can be considered to act in a way very 
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similar to that of low cycle strain fatigue [122]. In other word, at low impact energy, 

the average stress may be too low to cause general fractures, but some deformation 

is produced by each impact in regions of stress concentration [57]. The amount of 

deformation is accumulated and after certain number of impacts the fractures can be 

detected. Together with the effect of jet outward flow, striation marks can be 

observed especially at the rims of the impact craters as shown in Fig. 5-29. Kamkar 

et al. [134] suggested that the striation marks confirm the transgranular nature of 

crack propagation mechanism. It indicates the intrinsic cyclic damaging mechanism 

associated with water droplets impingement erosion. 

 

Fig. 5-29: Striation marks indicating cyclic ductile propagation mode of, a) stainless 
steel 304, and b) carbon steel 1045 

In order to get further information about the grain erosion, some of the eroded 

surfaces of the carbon steel 1045 were mildly etched for about 15 seconds with 3% 

Nital. The SEM images of etched specimen in the middle and at the edge of erosion 

track are shown in Fig. 5-30 (a) and (b), respectively. It is clear that the water impact 

produces deformation in the grains. However, the cracks are more concentrated at 

the ferritic-pearlitic grain boundaries as indicated as bold black arrows in Fig. 5-30 (a) 

and (b). Also, it can be noticed that some cracks also occur within the ferrite grains. 

With further water impact, damage continues by a tunnelling mechanism until 

complete ferrite grains are removed thus leaving the harder pearlite grains [123]. 

With even further water impact, tunnelling is extensive enough to remove the surface 

pearlite colonies thus leaving a completely eroded surface. 
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Fig. 5-30: a) uneroded grains in the middle of erosion track, and b) deformed grains 
at the edge of erosion track 

It is also interesting to examine the structure underneath the eroded surface. The 

treated specimens were cross-sectioned and mounted. The specimens were 

sectioned randomly over the erosion tracks. Only the treated surfaces that show 

visible erosion with respects to the initial and evolved damage are discussed here. 

Examples of early cross-sectional damage of the eroded surface are shown in Fig. 5-

31. The initial damage characteristics show small and isolated pockets of erosion 

with some cracks beneath it as shown in Fig. 5-31 (a). The surface cracks seem to 

propagate within the grains (i.e. ferrite grains). Also, there exist sub-surface 

transgranular cracks as indicated as white arrows in Fig. 5-31 (a) which are 

considered as simply nucleated and not as the result of crack propagation in the out-

of-plane direction [134]. However, it is also possible that the cracks as indicated as 

white arrows might have direct contact to the eroded area in another cross section. 

Since ferrite is the weaker phase, more surface and sub-surface cracks were 

identified to originate within the ferrite than pearlite grains. However, the major 

damage occurred at the grain boundaries. Fig. 5-31 (b) was captured on the surface 

treated with the highest jet passes but at the lowest pressure of 100 MPa. Although 

the surface was treated with repeated water impacts, however, it experienced very 

little erosion. The surface can be considered in the early stage of damage since the 

pressure used is below the threshold limit. 
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Fig. 5-31: Cross-sectioned images of erosion tracks taken from figures, a) Fig. 5-15 
(a), and b) Fig. 5-13 (c) 

Additionally, more cross-sectional images were captured at different erosion tracks 

as shown in Fig. 5-32. The damage features at these locations show somehow the 

typical evolved damage characteristics under the waterjet treatment. Overall, the 

cross-sectional views show a similar damage characteristic as discussed above 

where the erosion tracks are deeper and wider for the specimens treated at a higher 

jet passes and higher pressure. The cross-sectional views of the erosion tracks 

treated with different jet passes are shown in Fig. 5-32 (a) and (b). Increasing the 

number of jet passes, the erosion tracks were widened and deepened as shown in 

Fig. 5-32 (a) with the width and depth of about 480 and 60 µm respectively. Also, 

there exist two main craters which are separated by unbroken fragments as indicated 

in the inset of Fig. 5-32 (a). A major portion of the unbroken fragments are made up 

of pearlite grains since they appear to be a more resistant constituent and less prone 

to be damaged by the cavitation erosion process [117]. With further jet passes, the 

unbroken fragments will probably be removed because cracks propagate beneath 

them in ferrite grains or at grain boundaries and the craters be joined thus forming a 

larger crater. This can be seen in the erosion track treated at the highest jet passes 

with a width and depth about 750 µm and 125 µm, respectively, as indicated in 

Fig. 5-32 (b). A further examination of the damage features as indicated in the inset 

of Fig. 5-32 (b) shows various damage mechanisms including cracks along the grain 

boundaries (indicated black arrow) as well as within the grains (indicated white 

arrows). However, the pictures seem to suggest that the damage is concentrated 

along the grain boundaries. As damage progresses, the primary ferrites were eroded 

before the pearlite. This comes as no surprise since the grain boundaries are zones 
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of weakness and they act as initiation sites in the damage of the primary ferrite phase 

in the hypoeutectoid steels [123]. 

 

Fig. 5-32: Cross-sectioned images of erosion tracks taken from figures, a) Fig. 5-15 
(b), b) Fig. 5-15 (c), c) Fig. 5-14 (b), and d) Fig. 5-14 (c) 

Fig. 5-32 (c) shows an example of sub-surface cracks merging together and leads to 

the detachment of a larger fragment of the material. It is indicated as black arrows in 

the inset of Fig. 5-32 (c). It seems that the cracks mainly propagated along the grain 

boundaries although some propagated through the grains. With further water 

impacts, the cracks or the tunnels are extensive enough to remove the whole 

fragment of the material. The tunnelling mechanism thus produces more intense 

pressures within them leading to damage propagation on a larger scale than 

unmerged cracks [134]. Fig. 5-32 (d) shows the typical effect of the jet lateral flow. 

The shearing force from the lateral flow raises the circumferential rim as shown in 

Fig. 5-32 (d). Also, the shearing force creates lateral cracks and sub-tunnels within 

the rim. In the subsequent jet passes, the shearing force may further raise the rim as 

well as propagate the cracks and sub-tunnels. Since the sub-tunnels run parallel to 
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the eroded surface, further propagation of the cracks and tunnels may lead to the 

removal of sizeable fragments of the rims [134]. 

It is also interesting to examine the structure underneath the eroded surface of 

stainless steel 304. Again, the specimens were sectioned randomly over the erosion 

tracks. Only the treated surfaces that show visible erosion will be discussed here. 

The cross-sectional microstructures of the eroded surface of stainless steel 304 are 

shown in Fig. 5-33. As explained above, the high erosion resistance of this alloy is 

attributed to its deformation characteristics. The material removal initiates at, and 

propagates from, protruding slip bands and/or twin boundary steps and grain 

boundaries [127]. These various damage initiations can clearly be seen from Fig. 5-

33 (a). However, in most cases, the surface erosion was observed to initiate and 

propagate from protruding slip bands as shown in Fig. 5-33 (b). This is in contrast 

with Kwok et al. [135] who found that the cavitation erosion of a similar material was 

first initiated at the twin boundaries rather than at the grain boundaries. Anyway, it is 

to note that the cracks initiate and propagate in a three-dimensional direction and the 

cross-sectional views only give partial information. Nonetheless, the non-random 

feature of the crack distribution gives a strong trend in how the microstructure may 

influence the crack propagation and also the induced erosion. 

 

Fig. 5-33: Cross-sectioned images of erosion tracks of stainless steel 304 showing, 
a) various damage initiations, and b) most damage initiated from slip bands 
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Fig. 5-34: Overview of water erosion mechanism under repeated impacts, a) during 
initial jet passes, small central depression craters are created as well cracks and 
fractures due to impact pressure and lateral flow of droplets, b) during subsequent jet 
passes, more fractures happen by pitting and ploughing action in which the 
previously formed craters may combine to form a larger crater, c) with even more jet 
passes, more fractures can be expected hence introducing new craters as well as 
deepening the erosion craters 

It is obvious that the erosion mechanism of metals particularly plain carbon steel 

under multiple passes treatment of waterjet peening is very complex. It consists of 

various stages of material removal mechanisms including the deformation of the 

impact crater, the initiation and propagation of cracks with possible tunnelling to 

remove large fragments of the material. These stages of material removal 

mechanism can be summarized as in Fig. 5-34. In general, during earlier jet passes, 

the high impact pressure of water droplets produces many small central depression 

craters in the material surface as illustrated in Fig. 5-34 (a). As a result, the material 

beneath it experiences a larger plastic deformation as well as some initiation of 

cracks. Later, the lateral outward flow of the droplets may result in local shear 

fractures in the material surface by a pitting action. In the subsequent jet passes, old 

cracks are further propagated and also new cracks are initiated. The cracks may 
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easily propagate to form a network of cracks thus fracturing the grains and/or sub-

grains. Also, the circumferential rims on the edges of the erosion track were 

plastically deformed and slightly raised by a ploughing action from the droplet 

outward flow. As a result, a bigger crater is developed to form uniform erosion with 

full removal of materials over the surface as shown in Fig. 5-34 (b). If the eroded 

surface is subjected to further jet passes, more fractures can be expected hence 

introducing new craters as well as deepening the main erosion craters as shown in 

Fig. 5-34 (c). 

As a summary, the material removal mechanism occurs at two levels, i.e. initial 

damage and evolved damage [81]. An example of initial damage surface is shown in 

Fig. 5-35. Impact zone occurs when high-frequent impact of water strikes onto the 

solid surface. High impact of water droplet creates compressible stresses, which act 

on both the solid surface and the water droplet forming a shock envelope [55]. The 

liquid behind the envelope is compressed and the solid surface beneath this area is 

subjected to a high pressure, which consequently tends to deform the target material. 

Due to repeated impact of water droplets during peening, the contact wall was 

subjected to severe shear force because of the outward flow (i.e., lateral jetting) of 

water across the surface [136]. The shear stresses exerted by the radial flow of water 

from subsequent impact breaks the solid particles. Hence, cracking and eroding of 

solid particles happen particularly in the impact zone and its surrounding area. The 

cracks in the impact zone join together and results in material removal and the 

formation of micropits [81]. 

 

Fig. 5-35: An example of initial damage surface 
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The cracks and fractures of material at later damage stage i.e. evolved damage, are 

shown in Fig. 5-36. The material has a grain size of approximately between 10 to 40 

µm. It can be speculated that the cracks and fractures occur along the grain 

boundaries as well as inside the grains. This phenomenon is more noticeable during 

peening with a higher number of jet passes. Also as shown in previous surface 

microstructures, materials were removed in a higher quantity during treatment with a 

higher pressure or a lower feedrate. It can be concluded that at a higher jet passes 

and pressure and also a lower feedrate, the energy was high enough to create 

tremendous fractures and more continual erosion along the grain boundaries and 

within the grains. 

 

Fig. 5-36: An example of evolved damage surface 

5.3 Effect of waterjet peening on the sub-surface 

5.3.1 Hardness 

The subsurface hardness was measured on the cross-sections of the specimens at 

different depths starting from 20 µm beneath the jet impinged surface until a far 

distance of 1000 µm. The result for the effect of the different number of passes on 

surface hardening is shown in Fig. 5-37. For stainless steel 304, there are generally 

significant changes in hardness values up to a depth of approximately 100 µm with 

an exception of a specimen treated with the lowest number of passes where the 

hardening layer depth is less than 100 µm. However, based on outlying lines of 

power graphs, the hardening layer may extend slightly up to a depth of 150 µm 
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especially in the case of the highest number of passes (i.e. 6 passes). The average 

maximum hardnesses were recorded to be 258, 263 and 280 HV0.01 for 2, 4 and 6 

number of passes respectively. These constitute to an increase in hardness of about 

12, 14 and 22% respectively with respect to the base material which has an average 

hardness of approximately 230 HV0.01.  

 

Fig. 5-37: Effect of number of passes on Vickers hardness as a function of depth 
below eroded surface at a pressure of 200 MPa, a feedrate of 2000 mm/min and a 
standoff distance of 30 mm. 

While for carbon steel 1045, overall there are significant changes in hardness values 

up to a depth of approximately 300 μm. Beyond that, the hardness is about the same 

as the material’s original hardness of about 145 HV0.01. Generally, it shows a very 

similar trend as previous case where the hardness decreases gradually from the 

surface. Also, the specimen treated with a higher jet passes displayed a higher 

increase in hardness as shown in Fig. 5-37. The average maximum hardnesses were 

recorded to be 184, 199 and 246 HV0.01 for 2, 4 and 6 number of passes respectively. 

These constitute to an increase in hardness of about 27, 37 and 70% respectively 

with respect to the hardness of base material. This clearly shows that treating the 

surface with the higher number of passes produces a higher increase of hardness as 

well as a deeper hardening layer. Obviously, the increase in hardness and thickness 

of hardening layer is the result of repeated water droplet impacts on the material 

surface after the multiple jet passes treatment. 
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It is interesting to relate the effect of work hardening in the material erosion 

resistance. Obviously, the surface has been hardened after early jet passes as 

discussed above. This increase in hardness may contribute to the initial erosion 

resistance of the material. Duraiselvam et al. [137] suggested that after long 

exposure periods, a material loss could be promoted due to the removal of the work 

hardened layer by brittle fracture. As a result, the erosion increased with an increase 

in the number of jet passes which results in a higher exposure time as discussed 

above. The surface hardness had also increased with an increase in the number of 

jet passes. However, it is believed that the hardened layer was not completely 

removed at the subsequent jet passes. Furthermore, a new hardened layer was 

introduced and resulted in a higher increase in the surface hardness. 

The effect of feedrate on Vickers hardness as a function of depth below eroded 

surface is shown in Fig. 5-38. Generally, a similar trend is also noticed with hardness 

decreasing gradually from the surface. Also, a higher hardness gradient is found in a 

specimen treated with a lower feedrate. For stainless steel 304, the data shows that 

there is an increase in average maximum hardness of about 27, 14 and 12% for 

feedrates of 1000, 2000 and 3000 mm/min respectively as compared to the base 

material. In contrast, the average increases of maximum hardness are about 50, 37 

and 22 % respectively for carbon steel 1045. The hardness gradient has a similar 

depth profile like the previous ones. The hardness gradient for the specimens treated 

with the slowest feedrate of 1000 mm/min shows higher depth of about 300 and 400 

µm for stainless steel 304 and carbon steel 1045 respectively. Interestingly for 

stainless steel 304, samples treated with 2000 and 3000 mm/min show a similar 

hardness gradient trend in which their graph lines are almost overlapping. As 

discussed above, the feedrate of over 2000 mm/min is beyond its threshold limit 

where its effectiveness in treating the material is very much reduced. As a result, the 

hardness profiles do not differ significantly between feedrates of 2000 and 3000 

mm/min. In addition, decreasing the traverse rate allows more water molecules to 

impinge on the surface, therefore, introducing higher amount of compressive residual 

stresses and leading to a higher hardness. 
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Fig. 5-38: Effect of feedrate on Vickers hardness as a function of depth below eroded 
surface at a pressure of 200 MPa, a number of jet passes of 4 and a standoff 
distance of 30 mm. 

The effect of pressure on Vickers hardness as a function of depth below eroded 

surface is shown in Fig. 5-39. Again, for both materials, a similar trend with hardness 

decreasing gradually from the surface is noticed. Furthermore, a higher hardness 

gradient is found in a specimen treated with a higher pressure. For stainless steel 

304, the graph shows that there is an increase in average maximum hardness of 

about 16, 27 and 31% for pressures of 100, 200 and 300 MPa respectively as 

compared to the base material. The depth of the hardened layer is extended up to 

250 µm. While, for carbon steel 1045, there is an increase in hardness up to a depth 

of 300 µm. The average increases in maximum hardness are about 21, 35 and 70% 

for pressures of 100, 200 and 300 MPa respectively as compared to the base 

material. Likewise, the specimens treated with a higher pressure also displayed a 

higher increase in hardness. Possibly, a higher pressure generates a higher kinetic 

energy of water molecules thus inducing a higher magnitude of residual stress over 

the surface [74]. Interestingly for carbon steel 1045, the hardness profiles do not 

differ significantly between the specimens treated with the lowest pressure and the 

original specimen. Perhaps as discussed above, at the lowest pressure, the water 

droplets do not carry enough impact energy to plastically deform the material at the 

surface in order to increase its hardness. 

320 

280 

240 

200 

160 

120 
0 400 600 800 

Depth (µm) 

1000 mm/min (304) 

1000 mm/min (1045) 
V

ic
k
e
rs

 h
a

rd
n

e
s
s
 (

H
V

0
.0

1
) 

200 1000 

2000 mm/min (304) 

2000 mm/min (1045) 

3000 mm/min (304) 

3000 mm/min (1045) 



98  5 Results and discussions 

 

 

Fig. 5-39: Effect of pressure on Vickers hardness as a function of depth below 
eroded surface at a feedrate of 2000 mm/min, a number of jet passes of 4 and a 
standoff distance of 30 mm. 

The effect of standoff distance on Vickers hardness as a function of depth below 

eroded surface is shown in Fig. 5-40. A similar trend with hardness decreasing 

gradually from the surface can be noticed. For stainless steel 304, there is an 

increase in average maximum hardness of about 13, 21 and 18% for standoff 

distances of 60, 90 and 120 mm respectively as compared to the base material. The 

depth of hardened layer is less than 200 µm. While, for carbon steel 1045, there is an 

increase in hardness up to a depth of 300 µm. The average increases in maximum 

hardness are about 34, 60 and 37% for standoff distances of 60, 90 and 120 mm 

respectively as compared to the base material. For both specimens, a standoff 

distance of 90 mm resulted in the highest increase in hardness. As expected, this 

standoff distance is believed to carry the highest impact pressure thus deforming the 

surface the most. 
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Fig. 5-40: Effect of standoff distance on Vickers hardness as a function of depth 
below eroded surface at a pressure of 200 MPa, a feedrate of 2000 mm/min and a 
number of jet passes of 4. 

It is interesting to discuss the percentage increase of hardness for both materials. It 

is obvious that within the same treatment parameters, the carbon steel 1045 

generally shows a higher percentage of hardness increase than stainless steel 304. 

The maximum percentage increase of the carbon steel 1045 was 70% meanwhile the 

stainless steel 304 only produced a maximum hardness increase of 31%. This is 

possibly due to the different hardness values of the original surface. As mentioned 

above, the average original hardness of the stainless steel 304 is significantly higher 

than the carbon steel 1045 (i.e. 230 HV0.01 versus 145 HV0.01). Since the latter is 

softer than the former, amount of plastic deformation in this material is larger 

compared to the stainless steel 304 [138]. As a result, this induces more cold work 

giving in a higher hardness increase compared to its core hardness. In other words, 

according to Nikitin and Besel [139], the hard surface regions have lower plastic flow 

(i.e. less dislocation movement). As a result, the work hardening state of the surfaces 

shows only little changes. Therefore, the hard surface experiences very little plastic 

deformation thus limiting the increase in hardness upon the impact of waterjet. 

Another interesting point to discuss is about the hardness increase variation for both 

materials. It can be seen from Fig. 5-37 to Fig. 5-40 that the hardness measurements 

of carbon steel 1045 show a wide margin of errors. While, the stainless steel 304 
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shows a relatively small margin of errors. It seems that the changes in the 

microstructures (residual stress, work hardening) of the stainless steel 304 are more 

stable thus leading to a small variation in hardness measurements. As reported by 

Nikitin and Besel [139], a hard microstructure results in a stable residual state. As 

discussed above, the austenite phase in the stainless steel 304 may transform into 

the martensite phase under the work hardening process [87, 88, 89]. According to 

Lee et al. [19], for the carbon steel 1045, the cementite phase in the pearlitic 

microstructure is spheroidized and dissolved into the ferrite thus refining the ferrite 

grains. It is known that amongst them, the martensite is the hardest phases [140]. 

Therefore, it is possible that the stainless steel 304 achieves a stable work hardening 

state due to a harder martensite phase. Another possible reason of high variation in 

hardness measurement of carbon steel 1045 is due to its multiple phases 

microstructure. The ferrite phase is softer than pearlite/ spheroidite phase [141]. 

Therefore, the hardness measurement on different phases of carbon steel 1045 

microstructures (i.e. ferrite, pearlite/ spheroidite) may result in quite significant 

variation of hardness values especially using a small load of Vickers indenter. 

Similarly, Autenrieth et al. [142] found a wide range of scatter in the hardness data 

during a micro cutting process of the same material which was attributed to the 

influence of variations in the phase composition and different grain orientations within 

the sampled volume of the material. 

Furthermore, it is also interesting to compare the performance of the same materials 

but treated with other peening processes. In shot peening of austenitic stainless steel 

S30432, there was an increase in hardness of more than 50% of the substrates’ 

value with a depth of hardening layer of 250 µm [143]. While, in hammer peening of 

stainless steel 304L, the hardness increased about 78% of the original hardness with 

a depth of hardening layer of 500 µm [144]. Whereas, in shot peening of steel with 

carbon content of 0.45%, the surface hardness increased about 76% after the 

treatment [19]. While, in laser shock peening of AISI 1045 steel, the hardness 

increased by more than double of the original hardness with a hardening layer depth 

of 100 – 150 µm [145]. It seems that from literatures, carbon steel 1045 experienced 

a higher percentage of hardness increase than stainless steel 304 under peening 

processes. This is in agreement with the present study where carbon steel 1045 

displayed a higher degree of hardness increase than stainless steel 304. However, 
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the hardness increase in both materials used in the present study is relatively lower 

than other peening processes.  

5.3.2 Microstructures 

The subsurface microstructures were acquired using scanning electron microscope 

(SEM) from cross-sectioned specimens of stainless steel 304. The cross-sectional 

microstructures were captured up to a depth of approximately 350 µm. Additionally, 

the magnified pictures at just below the eroded surface (≈ 50  m), at a depth 

approximately 150 µm and at a depth approximately 250 µm were also captured. 

These depths were selected based on the analysis of hardness profiles as presented 

above. The locations of magnified pictures were selected randomly as to show 

appropriate features of grains as well as to avoid some artifacts in the 

microstructures. 

The subsurface morphologies of peened samples for the different numbers of jet 

passes are shown in Fig. 5-41. Cross-sectional microstructures of all samples 

indicate that the substrate experienced a certain degree of plastic deformation. The 

density and quantity of deformed grains decrease gradually with increasing layer 

depth from the treated surface. It is evidenced as shown in the top inset pictures 

where more grains suffered significant deformation through different systems of slip 

bands as compared to the middle and bottom inset pictures. Similar observation was 

made in shot peening of the same material. The outmost layer of the substrate 

suffered severe deformation and the grain boundary became obscure [34]. Amounts 

of slip bands are more abundant and severe in the specimen treated with the higher 

number of passes as illustrated in Fig. 5-41 (c) as compared to the specimens 

treated with a lower jet passes as shown in Fig. 5-41 (a) and (b). Also the 

deformation of grains is extended up to a depth of 150 µm as shown in the middle 

inset picture with a small amount of slip bands. There is no noticeable deformation 

beyond that depth since there is an absence of slip bands as shown in the bottom 

inset picture. This is in agreement with the subsurface hardness measurement which 

show the gradient of hardness up to a depth of 150 µm for the specimen treated with 

6 jet passes. The specimens treated with 2 and 4 jet passes show a significant 

deformation only just below the eroded surfaces as shown in the top inset pictures of 

Fig. 5-41 (a) and (b) respectively with little slip bands. This shows that the thickness 
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of hardened layer is limited to just below the eroded surface when it is treated with 

lower jet passes. 

 

 

Fig. 5-41: Subsurface microstructures for different number of jet passes at a pressure 
of 200 MPa, a feedrate of 2000 mm/min and a standoff distance of 30 mm, a) 2 
passes, b) 4 passes and c) 6 passes, (The insets show the magnified pictures at just 
below the eroded surface (top), at a depth of approximately 150 µm (middle) and at a 
depth approximately of 250 µm (bottom)) 

Subsurface microstructures for different feedrates are shown in Fig. 5-42. Basically 

the microstructures show a similar pattern where slip bands can be clearly seen in 

the deformed grains especially near the eroded surface as shown in the top insets of 

Figure 15. However, some slip bands still can be seen in the deformed grains away 

from the surface in the specimen treated with the lowest feedrate as shown in the 

Fig. 5-42 (a). This is just to confirm the earlier hardness profile analysis where the 

hardness gradient is extended up to 250-350 µm for the specimen treated with the 

lowest feedrate. In contrast, there is an absence of slip bands in the grains away 

from the surface in the specimens treated with feedrates of 2000 and 3000 mm/min 

as illustrated in Fig. 5-42 (b) and (c) respectively. Again, this shows that the 
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deformation of grains is limited up to 100 µm close to the surface as discussed above 

where the depth of hardening layers for those specimens is about 100 µm. Overall, 

this is in agreement with Ju and Han [45] in water cavitation peening (WCP) of pure 

titanium where they found the density and quantity of deformed grains increase 

gradually with increasing WCP duration and decrease gradually with increasing layer 

depth from the treated surface. It is to note that a higher feedrate implies smaller 

impingement duration of the waterjet on the same point of the specimen. Therefore, 

less deformed grains are found in the specimens treated with higher feedrates. 

 

 

Fig. 5-42: Subsurface microstructures for different feedrates at a pressure of 200 
MPa, a number of jet passes of 4 and a standoff distance of 30 mm, a) 1000 
mm/min, b) 2000 mm/min and c) 3000 mm/min, (The insets show the magnified 
pictures at just below the eroded surface (top), at a depth of approximately 150 µm 
(middle) and at a depth of approximately 250 µm (bottom)) 

The subsurface morphologies of peened samples for the different pressures are 

shown in Fig. 5-43. Cross-sectional microstructures of all samples indicate that the 

substrate experienced a certain degree of plastic deformation even up to a depth of 

250 µm as shown in the bottom insets of Fig. 5-43. Generally, this is in agreement 
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with the hardness gradient analysis above which shows the depth of hardening layer 

is extended up to 200 µm. Amounts of slip bands in the deformed grains are more 

abundant and severe in the specimen treated with the higher pressures as illustrated 

in Fig. 5-43 (b) and (c) as compared to the specimens treated with a lower pressure 

as shown in Fig. 5-43 (a).  

 

Fig. 5-43: Subsurface microstructures for different pressures at a feedrate of 2000 
mm/min, a number of jet passes of 4 and a standoff distance of 30 mm, a) 100 MPa, 
b) 200 MPa and c) 300 MPa, (The insets show the magnified pictures at just below 
the eroded surface (top), at a depth of approximately 150 µm (middle) and at a depth 
of approximately 250 µm (bottom)) 

Also there is a considerable amount of slip bands in the deformed grains at a depth 

of 250 µm for the specimen treated with the highest pressure of 300 MPa as shown 

in the bottom inset picture of Fig. 5-43 (c). Therefore, it can be speculated that the 

grains would be deformed beyond the depth of 250 µm. Moreover, as shown in 

Fig. 5-39, the depth of hardening layer is extended up to 400 µm in the specimen 

treated with the highest pressure of 300 MPa. Again, this is due to the fact that a 

higher kinetic energy of water molecules at higher pressures induces higher amount 
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of compressive stresses hence plastically deforming the grains more and to a higher 

depth. 

 

 

Fig. 5-44: Subsurface microstructures for different standoff distances at a pressure of 
200 MPa, a feedrate of 2000 mm/min and a number of jet passes of 4, a) 60 mm, b) 
90 mm and c) 120 mm, (The insets show the magnified pictures at just below the 
eroded surface (top), at a depth of approximately 150 µm (middle) and at a depth of 
approximately 250 µm (bottom)) 

The subsurface morphologies of peened samples for the different standoff distances 

are shown in Fig. 5-44. Cross-sectional microstructures of the sample treated at a 

standoff distance of 90 mm indicate that the substrate experienced a certain degree 

of plastic deformation up to a depth of 250 µm as shown in Fig. 5-44. This is 

somehow in agreement with the hardness gradient analysis above which shows the 

depth of hardening layer is extended beyond 200 µm. Also, amounts of slip bands in 

the deformed grains are more abundant and severe as compared to the specimens 

treated at standoff distances of 60 mm and 120 mm as illustrated in Fig. 5-44 (a) and 

(c) respectively. This can be expected since the standoff distance of 90 mm resulted 
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in the highest increase in hardness thus plastically deforming the grains most and to 

a higher depth. 

It is good to discuss about the changes in the microstructures of the carbon steel 

1045. Unlike, the stainless steels which showed slipbands or twinnings in the grains 

indicating the plastic deformation, a similar form of deformation cannot be seen in the 

carbon steels. Evidence of plastic deformation is hardly observed in the cross-

sectional microstructures. Fig. 5-45 shows a typical cross-sectional view of the 

eroded surfaces captured using an optical microscope. It can be expected that the 

material experiences a certain degree of plastic deformation just below the eroded 

surface as shown in Fig. 5-45 (a). At the rim of the erosion crater, the grains are 

heavily plastically deformed due to the effect of the jet lateral outflow as indicated in 

Fig. 5-45 (b). 

 

Fig. 5-45: a) typical eroded surface showing the plastic deformation zone, and b) 
enlarged image showing the zone of heavily plasticially deformed grains 

The eroded surfaces were further characterized using a SEM. An example of 

plastically deformed grains is shown in Fig. 5-46. This image is randomly captured in 

one of the erosion craters. Due to the high pressure of the waterjet, the material 

experiences large plastic deformation especially in the main impact zones. As a 

result, some grains are distorted as shown in Fig. 5-46 (a). Upon a closer look as 

shown in Fig. 5-46 (b), part of the grains seems to be stretched to the sides. This 

possibly happens due to the jet lateral outflow which exerts high tensile stresses to 

the material surface. Of course, this happens after repeated impact of the water 

droplets onto the surface. 
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Fig. 5-46: a) typical eroded surface in the main impact crater, and b) enlarged image 
showing the zone of heavily plasticially deformed grains 

 

Fig. 5-47: a) typical eroded surface, and b) enlarged image showing a possible grain 
refinement zone 

Other images of the eroded surface are shown in Fig. 5-47. It is believed that the 

grains at the surface layer are heavily deformed due to the intensive plastic 

deformation as indicated in Fig. 5-47 (a). However, from the image it is hard to tell 

the change in the microstructures of ferrite or pearlite in the carbon steel 1045. But, it 

is widely reported in the literatures that in this type of steel, there is a formation of 

nanocrystalline structures in the surface during severe plastic deformation [19, 146, 

147, 148, 149]. Fig. 5-47 (b) possibly shows an example of the zone where the grain 

refinement takes place. Of course, it is pretty much difficult to see the nanostructures 

using SEM. A transmission electron microscope (TEM) is commonly used to better 

understand the variation of the grain refinement. Unfortunately, in the present study, 

TEM has not been used due to some constraints. Perhaps, it would be used in the 

future research. However, the hardening mechanisms involving this alloy in other 

cold-working processes are discussed. 
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It is known that most nanocrystalline materials possess high strength and hardness 

[148]. Therefore, the mechanical properties of most material can be enhanced by 

refining their microstructures. It has been reported that the strengthening mechanism 

in peening processes such as shot peening is due to the work-hardening and the 

surface grain refinement [19, 147]. Grain refinement is regionally homogeneous and 

the grain size progressively increases with the distance from the peened surface 

[147, 148]. Zhou et al. [150] reported that the plastic deformation induces substantial 

grain refinement of both ferrite and cementite in a steel with spheroidal cementite. 

Ferrite grains are plastically deformed first in which most dislocations are found to be 

nucleated at the cementite/ ferrite interfaces. The refinement process of ferrite is 

significantly facilitated by the presence of dispersed cementite particles. The coarse-

grained ferrite phase is subdivided by plenty of sub-grain boundaries and grain 

boundaries into submicron-sized grains [148]. Plastic deformation occurs in 

cementite particles through gliding of edge dislocations after the refinement of ferrite 

grains [150]. Due to accumulation of multiple gliding, the cementite refines into nano-

sized cementite particles mixed within ferrite nano-grains in the top surface layer 

[150]. 

Zhou et al. [150] noticed a decreasing volume fraction of cementite with decreasing 

depth of in the top deformed layer thus indicating of dissolution of cementite induced 

by increasing plastic straining. Furthermore, in a shot peening process of carbon 

steels, Lee et al. [19] reported that cementite in the pearlite colony is spheroidized 

and dissolved into the ferrite under a very large plastic deformation. Initially, the 

cementite acts as an initiation site for dislocation and is finally spheroidized. Then, it 

is dissolved into the ferrite thus creating subgrain boundaries. As a result, the ferrite 

grains are appreciably refined. The spheroidized cementite acts a precipitation, and 

together with the grain refinement lead to the strengthening of the carbon steel [19]. 

5.4 Effect of waterjet peening on fatigue life 

5.4.1 Fatigue life performance 

The specimens (stainless steel 304) were treated with three different waterjet 

peening conditions designated with W1 (2 jet passes), W2 (4 jet passes) and W3 (6 

jet passes). The other parameters were kept constant, i.e. a pressure of 200 MPa, a 
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feedrate of 2000 mm/min and a standoff distance of 30 mm. The different treatment 

conditions resulted in average surface roughnesses of 0.86, 2.20 and 3.43 µm for the 

specimens of W1, W2 and W3 respectively as summarized in Table 5-1.  

Table 5-1: Average surface roughness of treated and non-treated specimens 

Specimens Surface roughness, Ra (µm) 
Surface hardness, HV0.01 

(% increase) 

Original 0.14 – 0.16 224 – 243 

W1 0.78 – 0.94 249 – 265 (12%) 

W2 1.60 – 2.62 255 – 275 (14%) 

W3 2.34 – 4.86 275 – 289 (22%) 

It is to note that the original specimen has an average surface roughness of 0.15 µm. 

The treated surfaces are shown in Fig. 5-48. It can be seen that the waterjet 

treatment covers the whole regions uniformly with the highest erosion for specimen 

W3 followed by W2 and W1. It was also found that the maximum increases of 

hardness in the surface were about 12%, 14% and 22% with respect to the base 

material for the specimens of W1, W2 and W3 respectively [74]. 

 

Fig. 5-48: Surfaces of fatigue specimens, a) original, b) W1, c) W2 and d) W3. (Insets 
are magnified images) 
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The results of the fatigue tests are plotted as the stress amplitudes versus N (number 

of cycles). The S-N curves are shown in Fig. 5-49. Overall, the waterjet treated 

specimens show a lower fatigue strength than the original specimens. Specimens 

with the highest increase in hardness and also surface roughness (i.e. specimen W3) 

resulted in the largest decrease in fatigue strength. This was followed by specimens 

W2. It is interesting to note that, the specimens W1 do not show a decrease in 

fatigue strength as compared to the original ones. Perhaps, it demonstrates a very 

marginal increase in the fatigue strength. However, the increase in the fatigue 

strength could not be conclusively said since only a limited number of specimens 

were tested. In comparison with Arola et al. [91] in abrasive waterjet peening of the 

same material, an increase in the fatigue strength of the treated specimen was 

discored. However, the increase in the fatigue strength was rather limited less than 

10% with respect to the untreated specimen. In contrast, no noticeable increase in 

the fatigue strength was observed in the present study. Possibly, the amount of 

compressive residual stress introduced over the specimen surface was very much 

lower than Arola et al. [91]. This is to be expected since no abrasive particles were 

used in the present study unlike Arola et al. [91]. It is known that using abrasive 

particles in the waterjet peening might introduce a higher compressive residual stress 

than a pure waterjet [68]. 

 

Fig. 5-49: Stress versus N diagrams for stainless steel 304 
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The results seem to suggest that the influence of the surface roughness is more 

prominent than the increase in hardness in determining the fatigue strength. 

However, it comes as no surprise since rougher surfaces are expected to encourage 

fatigue crack initiation [93]. In fatigue testing of mild carbon steel with different 

surface finishes produced by polishing which resulted in surface roughness between 

1.78 to 5.48 µm, Alang et al. [151] found that the fatigue strength increased with a 

decrease in the surface roughness. Furthermore, Aviles et al. [145] found a lower 

fatigue resistance of laser peened specimens than the original specimens of medium 

carbon steel. They noticed that the laser peened specimen displayed an increase in 

micro-hardness up to double than its original with a hardening layer of about 100-150 

µm. However, the surface roughness also increased to 0.30-0.35 µm from 0.04-0.08 

µm. Upon further examination of laser peened surfaces, they found some micro-

cracks and the inclusions which were the main cause of the reduction in fatigue life.  

 

Fig. 5-50: Cross-sectional view of the fatigue specimens, a) Original, b) W1, c) W2 
and d) W3. (Insets are magnified images) 

A similar observation was also found in the present study. Upon further examination 

of the fatigue specimens, some cracks and notches were observed in the specimens 
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as shown in Fig. 5-48 as well as Fig. 5-50. It is clear that with increasing number of 

jet passes, the number of surface defects increased significantly. As a result, the 

higher roughness of the surface decreases the fatigue time for crack initiation. 

It is also to note that no measurements of residual stresses were conducted for the 

peened fatigue specimens in the present study. Therefore, the relationship between 

the induced residual stresses and the fatigue strength cannot be established. 

However, it is expected that the compressive residual stress is also introduced the 

most in the specimens that displays the highest increase in the hardness (i.e. 

specimen W3) as similarly observed in [32, 145, 152]. Also, this specimen produced 

the highest amount of surface defects as shown in Fig. 5-48 (d) and Fig. 5-50 (d). 

The initiation of cracks in peened specimens is dependent on the positive effect of 

compressive residual stresses and the negative effect of surface defects [153]. In the 

present case, the benefit of compressive residual stresses was possibly defeated by 

the negative effect of surface defects thus leading to the overpeening effect. The high 

amount of microcracks in the surface may just act as the crack initiation and easily 

propagate during the fatigue test. Similar results were also found in shot peening 

process [32, 152, 154] as well as laser shock peening process [145]. 

5.4.2 Surface fracture analysis 

The broken specimens were later examined using SEM to determine the crack 

initiation mechanisms. Since broken surfaces for different specimens tested at 

different loads displayed little difference, only selected SEM images of the broken 

specimens will be reported and discussed. The fractured surfaces of W1 specimen 

are shown in Fig. 5-51. It can be seen that the crack initiations started mainly at both 

upper and lower corners as shown in Fig. 5-51 (b) since these were the areas with 

the highest stress concentrations. Similarly, the fatigue test of the untreated 

specimens revealed that the cracks initiated at only these areas. However, it can also 

be noticed that the cracks also initiated at the surface as shown in Fig. 5-51 (c). As 

expected, this was possible since the surface experienced slight erosion due to the 

waterjet treatment. Therefore, the notches on the surface act as the sites for the 

cracks initiation. The residual fracture surface in the middle of the specimen shows a 

typical ductile fracture mode with fatigue striation patterns as shown in Fig. 5-51 (d). 
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Fig. 5-51: SEM images of W1 fractured specimen, a) overview at a stress amplitude 
of 450 MPa, b) crack initiation at the corner, c) crack initiation at the surface and d) 
striation in the middle (arrows indicate crack initiation sites) 

While, the fractured surfaces of W2 specimen at applied loads of 450 and 500 MPa 

are shown in Fig. 5-52. Clearly, more cracks were initiated and propagated at the 

surface flaws as shown in Fig. 5-52 (a) and Fig. 5-52 (b). The residual fracture 

surface in the middle of the specimen shows a typical ductile fracture mode with 

fatigue striation patterns as shown in Fig. 5-52 (d). 
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Fig. 5-52: SEM images of W2 fractured specimen, a) in the corner, b) in the middle at 
a stress amplitude of 450 MPa, c) overview at a stress amplitude of 500 MPa crack 
initiation, and d) striation in the middle (arrows indicate crack initiation sites) 

While, the fractured surfaces of W3 specimen are shown in Fig. 5-53. Again, it can 

be seen that the crack initiations started at corners of the specimen as shown in the 

Fig. 5-53 (b) since these were the areas with the highest stress concentrations. 

However, more cracks were probably initiated at the surface due to a higher extent of 

the surface defects as shown in Fig. 5-53 (d). These surface defects may simply act 

as the crack initiation sources. Although, the hardness increase was recorded the 

highest in these specimens, but the negative effect of surface defects generated by 

waterjet peening was more favourable. The higher surface roughness decreases the 

fatigue time for crack initiation eventually breaking the specimens faster. This leads 

to the overpeening effect where there is a pronounced drop in the fatigue life at 

higher jet passes. The residual fracture surface in the middle of the specimen shows 

a typical ductile fracture mode with fatigue striation patterns as shown in Fig. 5-53 

(c). Comparing the fatigue striation patterns for the specimens W2 and W3 at the 

same applied load of 500 MPa as shown in Fig. 5-52 (d) and Fig. 5-53 (c), it seems 

that the striation spacing is more in the latter specimen. This indicates the faster 

fatigue crack growth rate [84]. 
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Fig. 5-53: SEM images of W3 fractured specimen, a) overview at a stress amplitude 
of 500 MPa, b) crack initiation at the corner, c) crack initiation at the surface and d) 
overview at a stress amplitude of 350 MPa (arrows indicate crack initiation sites) 

It is obvious that the fatigue strength under waterjet peening treatment is directly 

related to the surface quality of the peened specimens as well as the location of 

these defects. The surface defects act as stress concentration sites which magnify 

the applied stresses according to the severity of the surface flaws, unlike bulk defects 

which are more shielded by the surrounding materials [155]. This severity depends 

on the size and shape of the surface defects. Sharper and deeper surface defects 

may increase the concentration of stress at their crack tips that are more likely to act 

as crack initiation sites [156]. A similar conclusion can be drawn as shown in the 

present study where surfaces with more and severe defects result in higher crack 

initiation sources thus lowering the fatigue strength of the material. 
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6 Optimization of the waterjet peening process 

This chapter discusses the usage of a method to optimize the waterjet peening 

process. The aluminium alloy 5005 was used as an example specimen. For a robust 

process design, there is a need to focus on the optimization of parameters by 

reducing the measured variation of quality characteristics. Therefore, a design of 

experiment based on the response surface methodology can be utilized for the 

process optimization. These collections of mathematical and statistical techniques 

are useful for modelling and analysis in applications where a response of interest is 

influenced by several factors and the objective is to optimize this response [157]. 

6.1 Design of experiment 

Design of experiments (DOE) was first introduced by Fisher in the early 1920s 

intended to study the effects of multiple variables simultaneously and most 

economically using a statistical technique [158]. The process of DOE is carried out 

for quality improvement purposes. Using DOE, all combinations of the factors 

included in an experimental study are able to be laid out for investigation purposes. If 

the number of possible combinations is too large, then a fraction of the total 

possibilities is conducted such that all factors will be evenly present. Fisher devised 

the first method that made it possible to analyze the effect of more than one factor at 

a time [158]. The combinations are created using a matrix, which allows each factor 

an equal number of test conditions. Statistical calculations such as mean and 

ANalysis Of VAriance (ANOVA) are used to analyze the results of such experiments. 

By studying the effects of individual factors on the results, the best factor combination 

can be determined. When applied to product or process design, the method helps to 

seek out the best design among the many alternatives. 

The various methods of DOE can be used to solve scientific problems which involve 

determining a proper combination of factors, ingredients, parameters and variables 

rather than innovations or a single identifiable cause. In general, it is applicable to 

any situation that depends on many influencing factors. It is a method that 

scientifically gives the best option when facing with many possibilities. It is possible to 

investigate one factor at a time to determine the effect of the factor but it is not 

necessarily true since factors are interacting with each other in real-life application. 
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Real behaviour of the factors can be studied when the influences of all factors have 

an equal opportunity to be present. Therefore, it is recommended to apply the DOE 

technique to capture such effects. The number of necessary experiments depends 

on the number of factors and their levels. Generally, the larger the number of factors, 

the bigger is the reduction from the total possibilities in a full factorial experiment.  

There are very few studies on waterjet peening that have explored on finding the 

optimal conditions for various waterjet peening parameters affecting the quality 

characteristics. Macodiyo and Soyama [96] investigated the effects of fatigue 

strength of carburized chrome-molybdenum steel subjected to surface treatment by 

cavitation peening. They used a design of experiment (DOE) based on the response 

surface methodology (RSM) to model optimal conditions for the critical factors such 

as processing times and cavitation number affecting fatigue strength. They found that 

the cavitation number yielded better results in improving the fatigue strength of 

chrome-molybdenum steel and the models used in the DOE were in agreement with 

the experiments performed. Furthermore, Rajesh and Babu [97] established 

empirical models of waterjet peening of aluminium alloy based on Taguchi’s 

experimental design. They noticed only a slight deviation in the results predicted with 

the models compared to the results obtained from the experiments.  

6.2 Response surface methodology 

In the present work, the response surface methodology (RSM) was selected as the 

method for the experimental design. It is an empirical modelling approach for 

determining the relationship between various processing parameters and responses 

[159]. The Box–Behnken design is a widely used experimental design for RSM due 

to its simplicity [160]. It requires only parameters at three different levels and it is 

based on the combination of the factorial with incomplete block designs for each 

independent parameter. Therefore, this design gives desirable statistical properties 

and most importantly with only a fraction of the experiments required for three-level 

factorials [160]. 

A statistical method known as multiple linear regression is widely used in building the 

empirical models in RSM. It is a statistical technique for investigating and modelling 

the relationship between variables, where an equation is established to relate the 
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independent variables or commonly known as the predictor or regressor variables 

and the dependent variables or commonly known as the response variables [157]. In 

other words, in the multiple linear regression models, the values of the regressor 

variables can be fixed and the corresponding value of the response variables will be 

observed. In almost all applications of regression, the regression equation is just an 

approximation to the actual functional relationship between the variables of interest. 

These regression models can be termed as mechanistic or empirical models since 

these functional relationships are based on knowledge of underlying the mechanisms 

of physical, chemical, or other engineering or scientific theory [157]. In the present 

work, the waterjet peening process involves a number of defined dependent factors 

or parameters, k. Thus, the functional relationship between the response, y and 

independent variables, x can be represented by the second order polynomial model 

with interaction as shown in Eq. (6-1) [157]. 

 ( )     ∑   
 
      ∑    

 
     

  ∑ ∑        
 
   

   
       (6-1) 

where β and ԑ are the coefficients and error, respectively. 

In WJP, there are a vast number of parameters affecting the quality of the results. 

Therefore, only a few parameters were selected to ensure the feasibility of the 

multipass treatment and its influence can be properly assessed. The machining 

parameters and their respective ranges were carefully selected based on preliminary 

trial runs as well as in literature reviews [43, 44, 45, 47, 68, 74]. The effect of WJP 

treatment was clearly observed within these ranges of parameters. The machining 

parameters and their ranges are shown in Table 6-1. 

Table 6-1: Waterjet peening parameters and their respective ranges 

No. Waterjet Peening parameters 
Range 

Low Medium High 

1. Number of jet passes, nj 1 2 3 

2. Pressure, po (MPa) 50 100 150 

3. Feedrate, vn (mm/min) 500 1000 1500 

4. Standoff distance, h (mm) 20 40 60 

In a linear regression analysis, a complete set of data is essential in ensuring a more 

simplified and applicable model to be established. Therefore, it is important to have a 
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good method of data collection. The best way of collecting data is using a designed 

experiment where a set of parameters or factors and their levels can be manipulated. 

In the present study, the Box-Behnken experimental design was used to create a 

sufficient set of data.  

The total number of experiments is based on the number of parameters and their 

levels [157]. Since in the present case, there is a total of four parameters with each at 

three levels, therefore a total number of 29 experiments is required based on the 

Box-Behnken experimental design. In determining the total number of experiments, 

the experimental design is divided into blocks representing the number of interactions 

between any 2 parameters. In each block, a certain number of parameters are put 

through all combinations for the factorial design, while the other parameters are kept 

at the central values. For instance, the Box-Behnken design for 4 parameters 

involves six blocks, in each of which 2 parameters are varied through the 4 possible 

combinations of high and low. This gives the total number of experiments of 24 (i.e. 6 

blocks multiply with 4 possible combinations in each block). With additional of 5 

experimental runs at a centre point, the total number of experiments becomes 29. 

A centre point (i.e. in which all factors are at their central values) was included in the 

experimental design. The experimental run at the centre point is included as to 

improve the accuracy and repeatability of the experimental design. The experimental 

runs for the centre point were repeated 5 times (i.e. at experimental runs number 1, 

10, 14, 15 and 19). A software for design of experiments, Design-Expert®, was used 

for analyzing the experimental results based on the response surface methodology 

approach.A total of 29 experimental runs were carried out in the present study as 

shown in Table 6-2.  
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Table 6-2: Experimental runs and their results based on Box-Behnken experimental 
design 

Exp. 
No. 

Waterjet peening parameters Responses 

nj po (MPa) vn (mm/min) h (mm) Ra (µm) 
Hardness 
(HV0.01) 

1 2 100 1000 40 8.25 59.20 

2 2 150 500 40 15.93 61.30 

3 1 150 1000 40 14.28 58.67 

4 2 100 500 60 16.41 59.00 

5 2 100 1500 20 0.54 57.57 

6 3 100 1000 60 14.04 60.70 

7 3 100 1000 20 0.55 60.00 

8 3 100 1500 40 5.14 55.83 

9 1 50 1000 40 0.54 54.60 

10 2 100 1000 40 8.18 57.77 

11 3 50 1000 40 0.69 56.10 

12 2 100 500 20 0.73 56.70 

13 2 50 1000 60 0.57 55.00 

14 2 100 1000 40 5.85 58.20 

15 2 100 1000 40 5.83 58.90 

16 2 150 1500 40 13.01 59.07 

17 1 100 1500 40 0.56 54.80 

18 2 50 1000 20 0.51 55.10 

19 2 100 1000 40 6.50 58.50 

20 2 50 500 40 0.54 55.07 

21 3 100 500 40 13.44 59.73 

22 1 100 500 40 6.78 57.90 

23 2 100 1500 60 4.11 57.23 

24 1 100 1000 60 1.85 57.00 

25 2 150 1000 20 10.55 58.27 

26 1 100 1000 20 0.53 56.80 

27 3 150 1000 40 15.25 59.60 

28 2 150 1000 60 16.00 59.83 

29 2 50 1500 40 0.56 54.50 

Exp. No. Experimental number 

6.3 Analysis of results 

Table 6-2 above shows the experimental results for both roughness and hardness 

based on the Box-Behnken experimental design. 

6.3.1 Roughness 

It is to note that the average original surface roughness is about 0.49 µm. In the 

present study, the roughnesses after the peening treatment were obtained between 
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0.51 to 16.42 µm. Based on the roughness level of all experimental runs, the results 

can be divided into three different groups. The first group consists of experimental 

runs with a low roughness below 1 µm. The experimental runs in the second group 

have a range of roughness between 1 to 10 µm. Finally, the third group refers to the 

experimental runs which have a high roughness of more than 10 µm. 

About 11 experimental runs produce roughnesses below 1 µm. An example of a 3D 

image of the surface structure in this group is shown in Fig. 6-1. The erosion on the 

surfaces are hardly to be observed and they are comparable to the original surface. 

The amount of removed material is nearly zero. A further analysis for experimental 

run number 5 shows that the maximum depth of the pit was 2.90 µm. In comparison, 

the original surface has the maximum depth of the pit about 2.79 µm. Nevertheless, 

the maximum depth of the pit within this group varies from 2.80 to 4.50 µm.  

 

Fig. 6-1: 3D images of surface structures for experimental run number 5 (Ra = 0.54 
µm) 

About 9 experimental runs have roughnesses between 1 to 10 µm. An example of 3D 

image of surface structure in this group is shown in Fig. 6-2 for the experimental run 

number 22. In this group, there is significant erosion over the surfaces. However, the 

erosion track is not continuous as shown in Fig. 6-2. Furthermore, no constant width 

of erosion track is produced on the surface. There is a moderate removal of material 

with high values of the valley-to-peak between 34.50 to 73.67 µm. 

 

0.000

1989.1

[µm]

2004.7

[µm]

50.11

25.30

0.48

-24.34

-49.15

[µm]

0.000

1989.1

[µm]

2004.7

[µm]

50.11

25.30

0.48

-24.34

-49.15

[µm]

1600 µm 

1600 µm 

0.0 µm 

50.11 
[µm] 

0.48 

-49.15 

 

 

 

Direction 
of nozzle 
traverse 



122 6 Optimization of the waterjet peening process 

 

  

Fig. 6-2: 3D images of surface structures for experimental run number 22 (Ra = 6.78 
µm) 

There are another 9 experimental runs that produce roughnesses above 10 µm. 

Fig. 6-3 shows the example of the 3D image of the surface structure for the 

experimental run number 16. All experimental runs in this group show severe erosion 

to the surfaces. There is a high amount of removed material with an almost constant 

width of erosion track. The erosion continues along the track without interruption with 

very high values of valley-to-peak in a range between 69.92 to 105.66 µm. 

  

Fig. 6-3: 3D images of surface structures for experimental run number 16 (Ra = 13.78 
µm) 
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It is interesting to further discuss about the erosion nature of the aluminium alloy 

5005 under the waterjet impingement process. The eroded surfaces were examined 

using SEM at different magnifications. Since, the erosion features for different 

surfaces displayed relatively similar characteristics, only several SEM images at 

selected erosion tracks are presented here. Nevertheless, the overall surface 

damage mechanism can be clearly seen from these images. Fig. 6-4 shows an 

example of the eroded surface at different magnifications. The surface displays 

uniform erosion with full removal of the material over the erosion track width as 

shown in Fig. 6-4 (a). Upon a closer look at a higher magnification as shown in Fig 6-

4 (b), the erosion is characterized by ductile removal of the material with undulated 

appearance of the surface as well as lots of large pits. 

 

Fig. 6-4: Example of eroded surface for the experimental number 16 at a 
magnification of, a) 66x, and b) 515x 

Fig. 6-5 shows the effect of four different peening parameters on the surface 

roughnesses of the peened specimens. It can be seen that increasing the number of 

passes produces a higher surface roughness as shown in Fig. 6-5 (a). Also, the 

surface roughness increases with an increase in pressure as shown in Fig. 6-5 (b). 

Furthermore, rougher surfaces were also produced at lower feedrates as shown in 

Fig. 6-5 (c). In addition, the surface roughness increases with an increase in standoff 

distance as shown in Fig. 6-5 (d). 
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Fig. 6-5: Effect of, a) number of passes, b) pressure, c) feedrate, and d) standoff 
distance on Ra 

6.3.2 Hardness 

On the basis of the three different groups as discussed above, the effect of surface 

roughness on hardness was analyzed. It is to note that the base material has an 

average hardness of approximately 53.58 HV0.01. The change in hardness as a 

function of the depth below the eroded surface for a few experimental runs which 

produced roughnesses below 1 µm is shown in Fig. 6-6. The roughnesses for trial 13, 

18 and 20 are 0.57, 051 and 054 µm, respectively. Overall, there are almost no 

changes in hardness values along the depth. It may seem to be a very small change 

of hardness gradients near to the surface. But, the error bars are quite long to 

strongly suggest that there is any change in hardness gradients in the present study. 

150 50 100 

b) Pressure (MPa) 

3 1 2 

0 

15 

20 

R
o
u

g
h
n

e
s
s
 (

µ
m

) 

a) Number of passes 

5 

10 

1500 500 1000 

c) Feedrate (mm/min) 

60 20 40 

d) Standoff distance (mm) 

0 

15 

20 

R
o
u

g
h
n

e
s
s
 (

µ
m

) 

5 

10 



6 Optimization of the waterjet peening process 125 

 

  

Fig. 6-6: Hardness as a function of depth for experimental runs with low Ra 

The changes of hardness gradients for experimental runs which have intermediate 

roughnesses (between 1 to 10 µm) are shown in Fig. 6-7. The roughnesses for trial 

8, 22 and 23 are 5.14, 6.78 and 4.11 µm, respectively. The magnitude of hardness is 

high at the surface and decreases with increasing depth from the surface. There are 

significant changes in hardness values up to a depth of approximately 200 μm. 

Beyond this depth, the hardness is about the same as the original hardness at the 

surface.  

 

Fig. 6-7: Hardness as a function of depth for experimental runs with intermediate Ra 

The changes of hardness gradients for the experimental runs which produced high 

roughnesses (above 10 µm) are shown in Fig. 6-8. The roughnesses for trial 16, 27 

and 28 are 13.01, 15.25 and 16.00 µm, respectively. There are significant changes in 

hardness values up to a depth of approximately 300 μm. It is more interesting to note 
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that the maximum increase in hardness is not located just below the eroded surface. 

The maximum increase in hardnesses was recorded at a depth of approximately 80 – 

120 µm. Further analysis of the material structures below the eroded surfaces show 

some cracks as can be seen in Fig. 6-9. The low strength of aluminium alloy makes it 

possible for the occurrence of cracks especially at very high impact energy of 

injected water used within this experiment. The crack propagation extends up to a 

depth of about 50 - 80 µm. Therefore, the measurement of hardness within these 

depths shows a low value as shown in Fig. 6-8. 

 

Fig. 6-8: Hardness as a function of depth for experimental runs with high Ra 

  

Fig. 6-9: Cracks below the eroded surface (Experimental run 27) 

The effect of different peening parameters on hardness is shown in Fig. 6-10. 
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passes as shown in Fig. 6-10 (a). The increase in hardness is the result of the 

introduction of compressive stresses from repeated waterjet impact forces at a higher 

number of passes [74]. The effect of pressure on the Vickers hardness is shown in 

Fig. 6-10 (b). A higher hardness gradient is found in a specimen treated with a higher 

pressure. This is due to the fact that a higher kinetic energy of water droplets at 

higher pressures induces a higher amount of compressive stresses hence, 

increasing the hardness. The effect of the feedrate on the hardness is shown in 

Fig. 6-10 (c). Increasing the traverse rate allows less water droplets to impinge on the 

surface. Therefore, it may induce a lower amount of compressive residual stresses 

and lead to a lower hardness. Besides, the effect of the standoff distance on the 

hardness is shown in Fig. 6-10 (d). There is a very small increase in hardness as the 

standoff distance increases. It is due to the same reason above that the impact 

energy of waterjet is low at a lower distance because of water column effect.  

 

Fig. 6-10: Effect of, a) number of passes, b) pressure, c) feedrate, and d) standoff 
distance on hardness 
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waterjet peened AA 5005 is shown in Fig. 6-11. Similarly, a higher residual stress 

was found in the specimens with a higher surface roughness [91]. Unsurprisingly, the 

parametric combinations that give a high energy of waterjet (e.g. high pressure, etc) 

may induce a high degree of compressive residual stress and hardness. Also, due to 

the high energy of the waterjet, significant erosion of the surface may be occurred. 

 

Fig. 6-11: Relationship between the average surface roughness and hardness 
resulting from waterjet peening of AA 5005 

Based on the experimental data set in Table 6-2, the surface roughness (Ra) and the 

hardness (HV) empirical models were developed. The Ra model describes the 

average roughness on the surface while the HV model shows the maximum of the 

hardness value below the surface. The hardness for every trial run was measured 

across the specimen depth. An average of at least four hardness data was recorded 

at every depth. Therefore, for the purpose of developing a model for hardness, only a 

single value of hardness is needed for every trial run. So only the maximum hardness 

(average) value at a certain depth for each trial run was recorded in Table 6-2. Thus, 

the empirical model for hardness is capable to predict only the maximum hardness 

after the peening process regardless of the depth of hardening layer. The coefficients 

of regression were determined using the stepwise method of the Design Expert 

software. The two models were based on the 29 experimental runs conducted 
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according to the Box-Behnken experimental design. The second-order models for Ra 

(µm) and hardness (HV0.01) in terms of waterjet peening parameters are shown in Eq. 

(6-2) and Eq. (6-3), respectively.  

                                                 

                                       ( 6-2) 

                                                   

      
            

       (6-3) 

where nj is the number of jet passes, po is the pressure (MPa), vn is the feedrate 

(mm/min) and h is the standoff distance (mm), respectively. 

In order to accept the models for practical use, it is important to do some assessment 

to check their validity. The model validation is directed toward determining whether 

the model will function successfully in its intended operating environment for 

prediction purposes. A common way for checking the validity of a regression model is 

by evaluating the coefficients of determinations (R2 and adjusted R2) [157]. It is the 

proportion of variation explained by the regressor where values of that are close to 1 

mean that most of the variability in response is explained by the regression model. 

Generally, if the model fits the data well, the overall value of R2 and adjusted R2 

(    
 ) should be higher or equal to 0.70. For the case of surface roughness, the 

values of R2 and     
  are 0.884 and 0.852, respectively. Whereas, the values of R2 

and     
  for hardness are 0.808 and 0.766, respectively. There are reasonable 

correlations between the measured and the predicted values for both Ra and 

hardness as shown in Fig. 6-12. Therefore, the empirical models are useful in 

predicting the responses of Ra and hardness during waterjet peening of aluminium 

alloy 5005 within the ranges of the parameters in this study. A proper selection of the 

peening parameters can be formulated to be used in practical works. 
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Fig. 6-12: Comparison of measured versus predicted values of, a) Ra, and b) 
hardness (line indicates an ideal case) 

The significance of the models and their parameters were then investigated through 

the analysis of variance (ANOVA). ANOVA is a statistical technique conducted 

mainly to learn about the influence of various design parameters and to observe the 

degree of sensitivity of the result to different parameters affecting the quality 

characteristics [161]. Through ANOVA, the degree of variation of each control factor 

which causes relative to the total variation observed in the result can be seen clearly 

[158]. The F-ratio or the variance ratio is the ratio between the parameters effect 

variance (the mean square due to a parameter) and the experimental error variance 

(the mean square due to experimental error). This ratio is used to test for the 

significance of factor effects. A larger F-value indicates that there is a big change in 

the performance characteristic due to the variation of the process parameter. Also, if 

a p-value of any model and its terms is less than or equal to 0.05, the terms in the 

model have significant effect on the response. The ANOVA results for Ra and 

hardness are shown in Table 6-3 and Table 6-4 respectively. This analysis was 

carried out for a 95% confidence level. It was found that the respective p-values for 

both models are less than 0.05. It shows that both models are significant. 
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Table 6-3: ANOVA results for surface roughness (Ra) 

Source 
Sum of 
squares 

Degree of 
freedom 

Mean 
square 

F-value 
p value 

(Prob > F) 

Model 884.046 6 147.341 27.826 < 0.0001 

n 50.307 1 50.307 9.501 0.0054 

p 555.016 1 555.016 104.816 < 0.0001 

u 74.551 1 74.507 14.079 0.0011 

h 130.482 1 130.482 24.641 < 0.0001 

nh 37.027 1 37.027 6.992 0.0148 

uh 36.663 1 36.663 6.923 0.0152 

Residual 116.493 22 5.295 - - 

Lack of fit 110.627 18 6.146 4.191 0.0872 

Pure error 5.866 4 1.466 - - 

Cor total 1000.539 28 - - - 

Prob Probability, Cor total Corrected total 
Corrected total=Total Sum of squares (SS) for the model terms + Residual SS and 
Corrected total = Sum of degrees of freedom (df) of all the model terms + residual df 
 

Based on the p-value for the Ra model as shown in Table 6-3, all the model terms are 

significant with pressure having the highest degree of significance followed by 

standoff distance, feedrate and number of passes. Furthermore, the interactions 

either between the number of passes and the standoff distance as well as between 

the feedrate and the standoff distance are also significant but they have a low degree 

of significance on the surface roughness. It is also good to note that as discussed 

above, none of the experimental runs with roughnesses below 10 µm were treated 

with the highest pressure of 150 MPa. This simply confirms that the pressure is the 

most significant parameter in influencing the surface roughness in this experiment. 

Hence, treating the surfaces with the highest pressure will certainly produce 

extensively rougher surfaces. 

The p-value of the lack of fit test is 0.08. It is insignificant since its value is more than 

0.05 thus indicating that all the data in this study fit the model adequately. The 

individual influence of each parameter on Ra was discussed above. However, it is 

interesting to discuss about the significant interaction effects between the number of 

passes and the standoff distance as well as between the feedrate and the standoff 

distance. As shown in Table 6-3, both interactions are significant as indicated by the 

p-values which are less than 0.05. The effect of interaction between the number of 

passes and the standoff distance on Ra is shown in Fig. 6-13. It can be observed that 

at a lower number of passes, Ra shows only marginal changes at different levels of 
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the standoff distance. However, at the highest number of passes, Ra increases 

dramatically as the standoff distance increases from 20 to 60 mm. This indicates that 

in this study there exists a strong interaction between the number of passes and the 

standoff distance particularly at a higher level of jet passes.  

 

Fig. 6-13: Effect of interaction between number of passes and standoff distance on 
Ra 

On the contrary, the interaction between the feedrate and the standoff distance 

shows a reverse effect on surface roughness as shown in Fig. 6-14. In other words, 

the effect of increasing the standoff distance on Ra is more profound at the lowest 

feedrate. Ra increases significantly while the standoff distance increases from 20 to 

60 mm at the lowest feedrate. However, changing the standoff distance shows an 

almost no change in Ra at the highest feedrate of 1500 mm/min. Similarly, Ra does 

not change with increasing feedrate at the lowest standoff distance of 20 mm. This 

suggests that there is a strong interaction between the feedrate and the standoff 

distance in influencing the Ra. 
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Fig. 6-14: Effect of interaction between feedrate and standoff distance on Ra 

Whereas, based on the p-value for the HV model as shown in Table 6-4, all the 

parameters are significant except the standoff distance. Again, the pressure has the 

highest degree of significance followed by the number of passes and the feedrate. As 

presented in Table 6-2, the highest HV recorded was at the highest pressure of 150 

MPa. Also, the values of HV were notably higher at the highest pressure. This simply 

confirms that the pressure is the most significant parameter in influencing the HV in 

this experiment. 

The p-value of the lack of fit test is 0.13. It is insignificant since its value is more than 

0.05 thus indicating that all the data fit the model adequately in this study. The 

individual influence of each parameter on HV has been explained above. However, it 

is interesting to discuss the insignificant effect of the standoff distance in influencing 

the HV. There is a possibility that the chosen range of standoff distance (i.e. 20 – 60 

mm) in this study gives only a marginal effect to the HV. As found by Oka et al. [76] 

in waterjet treatment of aluminium alloy 5083, the value for the impingement force 

was constant at a standoff distance of less than 100 mm. Therefore, it gave an 

almost constant hardening effect to the surface of the material. Furthermore, 

Grinspan and Gnanamoorthy [82] found only a slight increase in HV for oil jet peened 

aluminium alloy 6063-T6 at different standoff distances between 25 and 40 mm. 

There was less than 4 % difference of the hardness increase from the original 

hardness. 
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Table 6-4: ANOVA results for hardness (HV) 

Source 
Sum of 
squares 

Degree of 
freedom 

Mean 
square 

F-value 
p-value 

(Prob > F) 

Model 86.254 6 17.251 19.319 < 0.0001 

n 12.383 1 12.383 13.867 0.0011 

p 57.948 1 57.948 64.894 < 0.0001 

u 9.541 1 9.541 10.684 0.0034 

h 4.590 1 4.590 5.140 0.0331 

P2 2.625 1 2.625 2.940 0.0999 

u2 20.538 23 0.893 - - 

Residual 19.266 19 1.014 3.189 0.1347 

Lack of Fit 1.272 4 0.318 - - 

Pure error 106.793 28 - - - 

Cor total 86.254 6 17.251 19.319 < 0.0001 

Prob Probability, Cor total Corrected total 
Corrected total=Total Sum of squares (SS) for the model terms + Residual SS and 
Corrected total = Sum of degrees of freedom (df) of all the model terms + residual df 

6.3.3 Optimization 

Based on the developed models, an analysis on multiple response optimizations was 

conducted to achieve optimum results. The target is to find the optimal set of 

parameters within the tested range in the present study that can produce a minimum 

surface roughness and a maximum hardness simultaneously. Different sets of 

optimal parameters were obtained using the desirability function approach in the 

Design Expert software for the optimization of multiple response processes. Different 

desirability functions were used based on different importance criteria of roughness 

and hardness. The criteria of the desirability function are intended to achieve different 

sets of optimal parameters that may produce roughnesses below 10 µm. A total of 

five experimental runs was selected and performed for optimal sets of parameters as 

shown in Table 6-5. Furthermore, these different combinations of optimal parameters 

were used to validate the robustness of the developed empirical models. The results 

of optimization for actual and predicted Ra as well as HV based on different 

importance criteria for each response are shown in Table 6-5. The predicted 

responses for both Ra and HV were calculated from the empirical models. From the 

Design Expert software, the minimum overall desirability function was found to be 

82%. All responses were predicted to be within these desired limits. Overall, the 

predicted and actual responses for both Ra and HV are satisfactory with good 

reliability. It shows that the models are workable in predicting the responses of Ra 

and HV in the present research. 
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Table 6-5: Optimization runs and their results 

Exp. 
No. 

Waterjet peening parameters Actual responses 
Predicted 
responses 

nj 
po 

(MPa) 
vn 

(mm/min) 
h 

(mm) 
Ra 

(µm) 
Hardness 

(HV0.01) 
Ra 

(µm) 
Hardness 

(HV0.01) 

1 3 103.0 826.61 20.0 0.77 57.67 2.45 59.60 

2 3 108.1 818.67 20.0 1.39 58.23 3.14 59.81 

3 3 114.0 806.18 20.0 2.30 58.67 3.93 60.03 

4 3 122.1 784.58 20.0 4.53 58.33 5.00 60.30 

5 3 130.0 735.14 24.7 8.90 59.50 7.91 60.54 

Exp. No. Experimental number 
 

From the multiple response optimization based on the desirability function approach, 

similar optimal parameters were selected to treat specimens for the fatigue test. 

Since, there is a little change in the hardness values at different optimal conditions, 

only two different sets of parameters were utilized for the fatigue test. The two 

different cases are the one that results in the lowest and the highest increase in the 

hardness. Of course, the lowest increase in the hardness also corresponds to the 

lowest increase in the roughness and vice versa. The two sets of optimal parameters 

are denoted as experiment number 1 and 5 respectively in the Table 6-5. The 

bending fatigue specimens were treated at these two set of parameters in a similar 

manner as described in Chapter 4.4.  

6.3.4 Fatigue results 

The result of the fatigue test is shown in Fig. 6-15. The results show that the treated 

specimens at optimal conditions produce lower fatigue strength than the untreated 

specimens. Almost all treated specimens had consistently failed at a lower number of 

cycles than the untreated specimens for almost all stress levels. Specimens with the 

highest increase in the hardness and also the surface roughness (exp. no. 5) 

resulted in the largest decrease in the fatigue strength. This was followed by other 

treated specimens (exp. no. 1). The fatigue strengths are approximately 220 MPa 

(untreated), 200 MPa (exp. no. 1) and 165 MPa (exp. no. 5). This should come as no 

surprise since the hardness increase at optimal conditions is very marginal with 

significant increase in the surface roughness. As discussed in Chapter 5.4, there is a 

stronger influence of the surface roughness than the hardness in determining the 

fatigue strength of a material.  
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Fig. 6-15: Stress versus N diagrams for aluminium alloy 5005 

Fig. 6-16 shows the untreated and treated surfaces of the fatigue specimens. The 

untreated specimen as shown in Fig. 6-16 (a) has an average surface roughness of 

about 0.5 µm. The specimens treated at optimal conditions generate a noticeable 

amount of erosion with uniform erosion on the specimen with the highest roughness 

(exp. no. 5) as shown in Fig. 6-16 (c). While, another treated specimen (exp. no. 1) 

show a limited amount of erosion with few isolated craters as shown in Fig. 6-16 (b). 

Some cracks and notches can also be observed from the cross-sectional view of the 

treated specimens as shown in Fig. 6-17. 

 

Fig. 6-16: Surface of fatigue specimens, a) untreated, b) exp. no. 1, and c) exp. no. 5 
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Fig. 6-17: Cross-sectional view of the fatigue specimens, a) untreated, b) exp. no. 1, 
and c) exp. no. 5 

The broken specimens were later examined using SEM to determine the crack 

initiation mechanisms. Since broken surfaces for different specimens tested at 

different loads displayed little difference, only selected SEM images of the broken 

specimens are discussed. For standardization, fractured surfaces tested at a stress 

level of 287 MPa are presented here. A typical crack initiation site in the untreated 

specimen is shown in Fig. 6-18.  

 

Fig. 6-18: SEM images of untreated fractured specimen, a) overview, b) surface, c) 
crack initiation at the corner, and d) fatigue striation in the middle (black arrows 
indicate crack initiation sites) 
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shown in Fig. 6-18 (a). The enlarged image of the corner is shown in Fig. 6-18 (c). No 

noticeable crack initiation sites have been found on the surface of the untreated 

specimen as shown in Fig. 6-18 (b). This is possibly due to the absence of defects on 

the surface. The residual fracture surface with fatigue striation is shown in Fig. 6-18 

(d). Overall, the residual fracture surfaces indicate a dominant ductile fracture at all 

stress levels. 

The fracture surface for the treated specimen (exp. no. 1) is shown in Fig. 6-19. The 

crack initiations started mainly at the corners since these areas were subjected to the 

highest stress concentrations during the bending fatigue test. Also, some cracks 

randomly initiate from the surface as shown in Fig. 6-19 (b) because the existence of 

isolated pockets of erosion. Due to a higher degree of surface erosion at the top 

corner, the cracks easily initiate and propagate from it as shown in Fig. 6-19 (c). . 

The residual ductile fracture surface with fatigue striations is shown in Fig. 6-19 (d). 

 

Fig. 6-19: SEM images of treated fractured specimen (exp. no. 1), a) overview, b) 
surface, c) crack initiation at the corner, and d) fatigue striation in the middle (black 
arrows indicate crack initiation sites) 

Fig. 6-20 shows the fractured surface for another treated specimen (exp. no. 5). 

Again, the crack initiations started mainly at the corners since these areas were 
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subjected to the highest stress concentrations during the bending fatigue test as 

illustrated in Fig. 6-20 (c). However, more cracks were probably initiated at the 

surface due to a higher extent of the surface defects as shown in Fig. 6-20 (b). The 

severe surface defects act as the crack initiation sources thus eventually breaking 

the specimens faster. The residual ductile fracture surface with fatigue striations is 

shown in Fig. 6-20 (d). 

 

Fig. 6-20: SEM images of treated fractured specimen (exp. no. 5), a) overview, b) 
surface, c) crack initiation at the corner, and d) fatigue striation in the middle (black 
arrows indicate crack initiation sites) 
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7 Conclusions 

7.1 Evaluation of surface effects 

The surface roughness and erosion of austenitic steel 304 and carbon steel 1045 

under waterjet peening process was investigated. Also, the effect of multiple jet 

passes treatment as well as other parameters such as feedrate, water pressure and 

standoff distance was examined. Based on the results, the following conclusions can 

be drawn. 

- For both materials, increasing the number of jet passes produced a higher surface 

roughness as well as wider and deeper erosion tracks. Rougher surfaces and more 

erosion can be expected due to repeated bombardment of waterjet onto the 

surface. Furthermore, rougher surfaces were also produced at lower feedrates due 

to additional overlap machining action and more water molecules to impinge on the 

surface. 

- Furthermore, the surface roughness and erosion increased with an increase in 

water supply pressure because of a higher kinetic energy of the water molecules 

thus enhancing their capability for material removal. Whereas, the standoff distance 

of about 90 mm produced the maximum surface roughness and erosion for both 

materials probably at this distance the jet structure consists of mainly water 

droplets. 

- Generally, with carbon steel 1045, a higher value of surface roughness was 

observed than with stainless steel 304. This is possible due to a lower material 

hardness of the carbon steel 1045 thus lowering its erosion resistance. 

- In general, the erosion mechanisms especially under multiple jet passes treatment 

happened in various stages. During earlier jet passes, the high impact pressure of 

water droplets produces many small central depression craters in the material 

surface thus initiating some cracks. Later, the lateral outward flow of the droplets 

further results in local shear fractures in the material surface by a pitting action. 

During subsequent jet passes, old cracks are further propagated and new cracks 

are initiated. The previously formed craters may easily combine to form a larger 

crater thus developing a bigger crater to form uniform erosion with full removal of 

materials over the surface. 
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7.2 Evaluation of sub-surface effects 

The following conclusions can be drawn on the effect of various waterjet peening 

parameters on sub-surface of austenitic steel 304 and carbon steel 1045. 

- For both materials, the hardness shows a general trend of decreasing gradually 

from the surface into the sub-surface. Also, the specimens treated with a higher jet 

passes displayed a higher increase in hardness as well as a deeper hardening 

layer. Similarly, a higher hardness gradient was also found in a specimen treated 

with a higher pressure. In contrast, a lower feedrate produced a higher increase in 

hardness gradient. As expected, a standoff distance of 90 mm resulted in the 

highest increase in hardness probably due to the highest impact pressure at this 

distance thus deforming the surface the most. 

- The carbon steel 1045 showed a higher percentage of hardness increase than 

stainless steel 304. It is possible because of the higher hardness value of the 

original surface of stainless steel 304, it has a lower plastic flow thus restricting the 

dislocation movement. 

- Also, the hardness increase variation in the stainless steel 304 had shown a 

relatively small margin of errors. This is probably due to a more stable work 

hardening state of stainless still 304 during phase transformation.  

- Cross-sectional microstructures of stainless steel 304 samples indicated that the 

substrate experienced a certain degree of plastic deformation. The density and 

quantity of slip bands in the deformed grains decreased gradually with increasing 

layer depth from the treated surface. 

7.3 Evaluation of fatigue effects 

The following conclusions can be drawn on the effect of the waterjet peening process 

on the fatigue life of austenitic steel 304 and aluminium alloy 5005. 

- Overall, the waterjet treated specimens had shown lower fatigue strength than the 

original specimens. Specimens with the highest increase in hardness as well as 

surface roughness resulted in the largest decrease in the fatigue strength. 

- The results suggested that the influence of the surface roughness was more 

prominent than the increase in hardness in determining the fatigue strength since 
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rougher surfaces are expected to encourage fatigue crack initiation. The specimens 

with more surface defects decreased the fatigue time for crack initiation. 

- Based on the SEM images of the broken specimens, the crack initiations started 

mainly at both upper and lower corners of the specimens. However, more cracks 

were probably initiated at the surface due to a higher extent of the surface defects.  

- Although, there was an increase in the hardness, but the fatigue life decreased due 

the surface defects thus leading to the overpeening effect. 

7.4 Optimization of waterjet peening process 

Based on the Box-Behnken experimental design approach, the following conclusions 

on the effect of waterjet peening process of aluminium alloy 5005 can be drawn. 

- The equivalent parametric trends show that the increase in hardness is not possible 

without a corresponding increase in surface roughness. The surface roughness and 

hardness are linearly related. Understandably, the parametric combinations that 

give a high energy of waterjet may induce a high degree of hardness as well as 

significant surface erosion. 

- The developed empirical models for surface roughness (Ra) and hardness (HV) 

have reasonable correlations between the measured and predicted responses with 

acceptable R2 and     
 . A proper selection of peening parameters can be 

formulated to be used in practical works. 

Different sets of optimal parameters were generated based on different desirability 

functions for each response. The predicted and actual responses for optimized Ra 

and HV are satisfactory with good reliability. It shows that the models are workable 

in predicting the responses of Ra and HV in the present research. 
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8 Summary and outlook 

The present study addresses the effect of multiple jet passes and other parameters 

such as feedrate, water pressure and standoff distance in waterjet peening (WJP) of 

metallic surfaces. An analysis of surface integrity in terms of surface roughness, 

erosion, hardness, microstructures and fatigue strength was used to evaluate the 

performance of different parameters in the WJP process. An increase in the number 

of jet passes as well as pressure leads to a higher roughness and more erosion of 

the surface and also to a higher hardness. However, the feedrate shows a reverse 

effect on surface roughness, erosion and hardness. For the standoff distance, there 

exists a specific distance that results in the maximum surface roughness, erosion 

and hardness. The surface microstructures show the mechanism of material removal 

process involving initial and evolved damages. Furthermore, the damage is more 

concentrated along the grain boundaries. The shearing force from the jet lateral flow 

raised the circumferential rims and created lateral cracks and sub-tunnels which 

might eventually be removed in the subsequent jet passes. The waterjet treated 

specimens had produced lower fatigue strength than the untreated specimens most 

probably due to the formation of a high degree of surface erosion. The influence of 

the surface roughness is more prominent than the increase in the hardness in 

determining the fatigue strength since rougher surfaces are expected to encourage 

fatigue crack initiation. 

Also in the present study, the waterjet peening process is optimized using the design 

of experiment (DOE) approach. The DOE method is based on the response surface 

methodology utilizing the Box–Behnken experimental design approach. Workable 

empirical models were developed to predict the surface roughness and hardness. 

The developed empirical models show reasonable correlations between the 

measured and predicted responses with acceptable coefficients of determinations. A 

proper selection of WJP parameters can be formulated to be used in practical works. 

Overall, the present study has shown some potential for future works especially in 

the application of multiple jet passes in the waterjet peening process. It has been 

shown that the treated surfaces with multiple jet passes may produce a smaller 

roughness and erosion compared to the abrasive waterjet and also the water 
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cavitation process. However, the surface hardness has somehow shown a limited 

increase compared to other waterjet peening processes. With a proper combination 

of other parameters and the number of jet passes, an optimum performance can be 

achieved. Furthermore, based on the fatigue result, the effect of surface erosion is 

more prominent than the increase in the hardness with multiple jet passes treatment. 

It would be interesting if the surface erosion can be minimized while achieving an 

optimum increase of hardness. Multiple jet passes can be conveniently applied by 

performing a polishing action on the surface with the subsequent passes. Firstly, the 

material surface is treated with sufficient kinetic energy during the initial jet passes so 

that an optimum compressive residual stress and hardness can be induced with 

suitable erosion. Finally, much lower kinetic energy of the jet is used during 

subsequent passes hence only unstable fragments of material introduced from 

previous erosion are removed. As a result, the surface can be smoothened while 

maintaining the initially hardened layer. Consequently, the smoother surface of the 

treated specimen may produce higher fatigue strength since fatigue crack initiation is 

discouraged with the formation of smoother surface. 



Literature  145 

 

Literature 

 
[1] FOLKES, J.: Waterjet—An innovative tool for manufacturing. Journal of 

Materials Processing Technology, 209 (2009), pp. 6181-6189. 

[2] HASHISH, M.; STEELE, D.E.; BOTHELL, D.H.: Machining with super-pressure (690 

MPa) waterjets. International Journal of Machine Tools and Manufacture, 37 

(1997), pp. 465-479. 

[3] DAOMING, G.; JIE, C.: ANFIS for high-pressure waterjet cleaning prediction. 

Surface and Coatings Technology, 201 (2006), pp. 1629-1634. 

[4] CUI, L.; AN, L.; GONG, W.; JIANG, H.: A novel process for preparation of ultra-

clean micronized coal by high pressure water jet comminution technique. Fuel, 

86 (2007), pp. 750-757. 

[5] TÖNSHOFF, H.K.; KROOS, F.; MARZENELL, C.: High-pressure water peening-a 

new mechanical surface-strengthening process. CIRP Annals-Manufacturing 

Technology, 46 (1997), pp. 113-116. 

[6] MOCHIZUKI, M; ENOMOTO, K.; SAKATA, S.; KUROSAWA, K.; SAITO, H.; TSUJIMURA, 

H.; ICHIE, K.: A study on residual stress improvement by water jet peening. 

Proceedings of the 5th International Conference on Shot Peening, (1993), 

Oxford, pp. 247-256. 

[7] SCHINDLER, C.; SEVERIN, F; WIND, M.: CFD-Simulation von Flachstrahldüsen-

strömungen, O+P Zeitschrift für Fluidtechnik, 4 (2007), pp. 178-182. 

[8] CADAVID-GIRALDO, R.: Cutting with fluidjets of small diameter, Dissertation, 

Fachbereich Maschinenbau und Verfahrenstechnik, Technische Universität 

Kaiserslautern, 2004. 

[9] CADAVID, R.; WÜSTENBERG, D.; LOUIS, H.; PUDE, F.; SENNE, T.: Effect of helium 

atmospheres on abrasive suspension water jets. International Journal of 

Advanced Manufacturing Technology, 26 (2005), pp. 1246-1254. 

[10] WEISS, M.: Trennen von Faser-Nicht Faserverbunden mit 

hochdruckwasserstrahlen am Beispiel von Nadelvliesboden, Dissertation, 

Fachbereich Maschinenbau und Verfahrenstechnik, Technische Universität 

Kaiserslautern, 2000. 



146  Literature 

 

[11] WEISS, M.; WÜSTENBERG, D.; MOMBER, A.W.: Hydro-erosive separation of 

plastic fibers from textile compounds. Journal of Material Cycles and Waste 

Management, 5 (2003), pp. 84-88. 

[12] GROß, I.: Schneiden der Hornhaut am Auge mit Wasserstrahl, Dissertation, 

Fachbereich Maschinenbau und Verfahrenstechnik, Technische Universität 

Kaiserslautern, 2003. 

[13] LOOF, C.: Entwicklung eines Hydrokeratoms für die LASIK-Chirurgie, 

Fachbereich Maschinenbau und Verfahrenstechnik, Dissertation, Technische 

Universität Kaiserslautern, 2008. 

[14] LOOF, C.; SCHINDLER, C.: Development of a microkeratome for LASIK-surgery 

based on high pressure water jet technology. Proceedings of 6th Conference 

on Mechanical Engineering, (2008), Budapest, pp. 1-10. 

[15] SCHINDLER, C; LOOF, C.: Hornhautschnitt mit Hochdruckwasserstrahl für die 

LASIK-OP. Medizintechnik, 129 (2009), pp. 103-108. 

[16] KLOOS, K.E.; MACHERAUCH, E.: Development Of Mechanical Surface 

Strengthening Processes From The Beginning Until Today. Proceedings of 3rd 

International Conference on Shot Peening, (1987), Garmisch-Partenkirchen, 

pp. 3-27. 

[17] CALLISTER, W.D.: Fundamentals of materials science and engineering: an 

integrated approach. 5th edition, John Wiley & Sons, New York, 2001. 

[18] SCHULZE, V.: Modern mechanical surface treatment. Wiley-Vch, Weinheim, 

2006. 

[19] LEE, W.; CHO, K.; KIM, K.; MOON, K.; LEE, Y.: The effect of the cementite phase 

on the surface hardening of carbon steels by shot peening. Materials Science 

and Engineering: A, 527, (2010), pp. 5852-5857. 

[20] SANJURJO, P.; RODRÍGUEZ, C.; PARIENTE, I.; BELZUNCE, F.; CANTELI, A.: The 

influence of shot peening on the fatigue behaviour of duplex stainless steels. 

Procedia Engineering, 2 (2010), pp. 1539-1546. 

[21] MIAO, H.; DEMERS, D.; LAROSE, S.; PERRON, C.; LÉVESQUE, M.: Experimental 

study of shot peening and stress peen forming. Journal of Materials 

Processing Technology, (2010), pp. 2089-2102. 



Literature  147 

 

[22] BREUER, D.: Vacuum/Surface Treatment Laser Peening- Advanced Residual 

Stress Technology. Industrial Heating, 74 (2007), pp. 48-50. 

[23] WOHLFAHRT, H.: The influence of peening conditions on the resulting 

distribution of residual stress. Proceedings of the International Conference on 

Shot Peening, (1984), Chicago, pp. 316-331. 

[24] AL-OBAID, Y.F.: A rudimentary analysis of improving fatigue life of metals by 

shot-peening. Journal of applied mechanics, 57 (1990), pp. 307-312. 

[25] MIAO, H.Y.: Numerical and theoritical study of shot peening and stress forming 

process, University of Montreal, Dissertation,  2010. 

[26] WANG, S.; LI, Y.; YAO, M.; WANG, R: Compressive residual stress introduced by 

shot peening. Journal of Materials Processing Technology, 73 (1998), pp. 64-

73. 

[27] WILLIAM, S.: Practical application of shot peening. The shot peener, 5 (1992), 

pp. 1-4. 

[28] KIRK, D.: Shot peening. Aircraft Engineering and Aerospace Technology, 71 

(1999), pp. 349-361. 

[29] GARIEPY, A.; LAROSE, S.; PERRON, C.; BOCHER, P.; LEVESQUE, M.: On the effect 

of the peening trajectory in shot peen forming. Finite Element in Analysis and 

Design, 69 (2013), pp. 48-61. 

[30] SINGH, L.; KHAN, R.A.; AGGARWAL, M.L.: Effect of shot peening on hardening 

and surface roughness of nitrogen austenitic stainless steel. International 

Journal of Engineering Science, 2 (2010), pp. 818-826. 

[31] TORRES, M.A.S.; VOORWALD, H.J.C.: An evaluation of shot peening, residual 

stress and stress relaxation on the fatigue life of AISI 4340 steel. International 

Journal of Fatigue, 24 (2002), pp. 877-886. 

[32] ZHANG, P.; LINDEMANN, J.; LEYENS, C.: Shot peening on the high-strength 

wrought magnesium alloy AZ80—Effect of peening media. Journal of Materials 

Processing Technology, 210 (2010), pp. 445-450. 

[33] LEE, H.; KIM, D.; JUNG, J.; PYOUN, Y.; SHIN, K.: Influence of peening on the 

corrosion properties of AISI 304 stainless steel. Corrosion Science, 51 (2009), 

pp. 2826-2830. 



148  Literature 

 

[34] SHEN, L.; WANG, L.; WANG, Y.; WANG, C.: Plasma nitriding of AISI 304 austenitic 

stainless steel with pre-shot peening. Surface and Coatings Technology, 204 

(2010), pp. 3222-3227. 

[35] HATAMLEH, O.A.: Comprehensive investigation on the effects of laser and shot 

peening on fatigue crack growth in friction stir welded AA 2195 joints. 

International Journal of Fatigue, 31 (2009), pp. 974-988. 

[36] SATHYAJITH, S.; KALAINATHAN, S.: Effect of laser shot peening on precipitation 

hardened aluminum alloy 6061-T6 using low energy laser. Optics and Lasers 

in Engineering, 50 (2011), pp. 345-348. 

[37] MONTROSS, C.; WEI, T.; YE, L.; CLARK, G.; MAI, Y.: Laser shock processing and 

its effects on microstructure and properties of metal alloys: a review. 

International Journal of Fatigue, 24 (2002), pp. 1021-1036. 

[38] GAO, Y.K.: Improvement of fatigue property in 7050–T7451 aluminum alloy by 

laser peening and shot peening. Materials Science and Engineering: A, 528 

(2011), pp. 3823-3828. 

[39] MAAWAD, E.; SANO, Y.; WAGNER, L.; BROKMEIER, H.; GENZEL, C.: Investigation of 

laser shock peening effects on residual stress state and fatigue performance 

of titanium alloys. Materials Science and Engineering: A, 536 (2011), pp. 82-

91. 

[40] SATHYAJITH, S.; KALAINATHAN, S.; SWAROOP, S.: Laser peening without coating 

on aluminum alloy Al-6061-T6 using low energy Nd: YAG laser. Optics & 

Laser Technology, 45 (2012), pp. 389-394. 

[41] LIM, H.; KIM, P.; JEONG, H.; JEONG, S.: Enhancement of abrasion and corrosion 

resistance of duplex stainless steel by laser shock peening. Journal of 

Materials Processing Technology, 212 (2012), pp. 1347-1354. 

[42] PEYRE, P.; SCHERPEREEL, X.; BERTHE, L.; CARBONI, C.; FABBRO, R.; BERANGER, 

G.; LEMAITRE, C.: Surface modifications induced in 316L steel by laser peening 

and shot-peening. Influence on pitting corrosion resistance. Materials Science 

and Engineering: A, 280 (2000), pp. 294-302. 

[43] CHILLMAN, A.; RAMULU, M.; HASHISH, M.: Waterjet peening and surface 

preparation at 600 MPa: A preliminary experimental study. Journal of Fluids 

Engineering, 129 (2007), pp. 485-490. 



Literature  149 

 

[44] GRINSPAN, A.S.; GNANAMOORTHY, R.A.: Novel surface modification technique 

for the introduction of compressive residual stress and preliminary studies on 

Al alloy AA6063. Surface and Coatings Technology, 201 (2006), pp. 1768-

1775. 

[45] JU, D.Y.; HAN, B.: Investigation of water cavitation peening-induced 

microstructures in the near-surface layer of pure titanium. Journal of Materials 

Processing Technology, 209 (2009), pp. 4789-4794. 

[46] QIN, M.; JU, D.Y.; OBA, R.: Improvement on the process capability of water 

cavitation peening by aeration. Surface and Coatings Technology, 200 (2006), 

pp. 5364-5369. 

[47] QIN, M.; JU, D.; OBA, R.: Investigation of the influence of incidence angle on the 

process capability of water cavitation peening. Surface and Coatings 

Technology, 201 (2006), pp. 1409-1413. 

[48] YANAIDA, K.; OHASHI, A.: Flow characteristics of water jets. Second 

International Symposium on Jet Cutting Technology, A2 (1974), Cranfield, pp. 

19-32. 

[49] YANAIDA, K.; OHASHI, A.: Flow characteristics of water jets in air. Fifth 

International Symposium on Jet Cutting Technology, A3 (1980), Hannover, pp. 

33-43. 

[50] SHIMIZU, S.: Tribology in Water Jet Processes. New Tribological Ways. InTech, 

Rijeka, 2011, pp. 153-164. 

[51] CHILLMAN, A.; RAMULU, M.; HASHISH, M.: Waterjet and Water-Air Jet Surface 

Processing of a Titanium Alloy: A Parametric Evaluation. Journal of 

Manufacturing Science and Engineering, 132 (2010), pp. 011012. 

[52] LESSER, M.B.; FIELD, J.E.: The impact of compressible liquids. Annual Review 

of Fluid Mechanics, 15 (1983), pp. 97-122. 

[53] HALLER, K.; POULIKAKOS, D.; VENTIKOS, Y.; MONKEWITZ, P.: Shock wave 

formation in droplet impact on a rigid surface: lateral liquid motion and multiple 

wave structure in the contact line region. Journal of Fluid Mechanics, 490 

(2003), pp. 1-14. 



150  Literature 

 

[54] REIN, M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid 

Dynamics Research, 12 (1993), pp. 61-93. 

[55] FIELD, J.E.: ELSI conference: invited lecture: Liquid impact: theory, experiment, 

applications. Wear, 233 (1999), pp.1-12. 

[56] BOWDEN, F.P.; FIELD, J.E.: The brittle fracture of solids by liquid impact, by 

solid impact, and by shock. Proceedings of the Royal Society of London. 

Series A, Mathematical and Physical Sciences, 282 (1964), pp. 331-352. 

[57] HANCOX, N.L.; BRUNTON, J.H.: The erosion of solids by the repeated impact of 

liquid drops. Philosophical Transactions for the Royal Society of London. 

Series A, Mathematical and Physical Sciences, 260 (1966), pp. 121-139. 

[58] PREECE, C.M.; BRUNTON, J.H.: A comparison of liquid impact erosion and 

cavitation erosion. Wear, 60 (1980), pp. 269-284. 

[59] OBARA, T.; BOURNE, N.K.; FIELD, J.E.: Liquid-jet impact on liquid and solid 

surfaces. Wear, 186 (1995), pp. 388-394. 

[60] HEYMANN, F.J.: High-speed impact between a liquid drop and a solid surface. 

Journal of Applied Physics, 40 (1969), pp. 5113-5122. 

[61] COOK, S.S.: Erosion by water-hammer. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, 119 (1928), pp. 481-488. 

[62] HUANG, L.; FOLKES, J.; KINNELL, P.; SHIPWAY, P: Mechanisms of damage 

initiation in a titanium alloy subjected to water droplet impact during ultra-high 

pressure plain waterjet erosion. Journal of Materials Processing Technology, 

212 (2012), pp. 1906-1915. 

[63] ADLER, W.F.: Liquid drop collisions on deformable media. Journal of Materials 

Science, 12 (1977), pp. 1253-1271. 

[64] KENNEDY, C.F.; FIELD, J.E.: Damage threshold velocities for liquid impact. 

Journal of Materials Science, 35 (2000), pp. 5331-5339. 

[65] GEDEON, M.: Strain hardening and strength. Technical Tidbits, 17 (2010), pp. 

1-2. 

[66] BLACK, J.T.; KOHSER, R.A.: Degarmo's materials and processes in 

manufacturing. 11th edition, John Wiley & Sons, Inc., New York, 2012. 



Literature  151 

 

[67] ASKELAND, D.R.; FULAY, P.P.; WRIGHT, W.J.: The science and engineering of 

materials. 6th edition, Cengage Learning, Inc., Stamford, 2011. 

[68] AROLA, D.; MCCAIN, M.; KUNAPORN, S.; RAMULU, M: Waterjet and abrasive 

waterjet surface treatment of titanium: a comparison of surface texture and 

residual stress. Wear, 249 (2002), pp. 943-950. 

[69] AROLA, D.; HALL, C.L.: Parametric effects on particle deposition in abrasive 

waterjet surface treatments. Machining Science and Technology, 8 (2004), pp. 

171-192. 

[70] AROLA, D.; MCCAIN, M.L.: Abrasive waterjet peening: a new method of surface 

preparation for metal orthopedic implants. Journal of Biomedical Materials 

Research, 53 (2000), pp. 536-546. 

[71] KUNAPORN, S.; CHILLMAN, A.; RAMULU, M.; HASHISH, M.: Effect of waterjet 

formation on surface preparation and profiling of aluminum alloy. Wear, 265 

(2008), pp. 176-185. 

[72] KUNAPORN, S.; RAMULU, M.; HASHISH, M.; HOPKINS, J.: Ultra high pressure 

waterjet peening Part I: Surface texture. Proceedings of WJTA American 

Waterjet Conference, (2001), Minnesota, Paper 25. 

[73] RAMULU, M.; KUNAPORN, S.; AROLA, D.; HASHISH, M.; HOPKINS, J.: Waterjet 

machining and peening of metals. Journal of Pressure Vessel Technology, 

122 (2000), pp. 90-95. 

[74] AZHARI, A.; SCHINDLER, C.; KERSCHER, E.; GRAD, P.: Improving surface 

hardness of austenitic stainless steel using waterjet peening process. The 

International Journal of Advanced Manufacturing Technology, 63 (2012), pp. 

1035-1046. 

[75] SADASIVAM, B.; HIZAL, A.; AROLA, D.: Abrasive waterjet peening with elastic 

prestress: A parametric evaluation. International Journal of Machine Tools & 

Manufacture, 49 (2009), pp. 134-141. 

[76] OKA, Y.I.; MIHARA, S.; MIYATA, H.: Effective parameters for erosion caused by 

water droplet impingement and applications to surface treatment technology. 

Wear, 263 (2007), pp. 386-394. 



152  Literature 

 

[77] FOLDYNA, J.; SITEK, L.; ŠČUČKA, J.; MARTINEC, P.; VALÍČEK, J.; PÁLENÍKOVÁ, K.: 

Effects of pulsating water jet impact on aluminium surface. Journal of Materials 

Processing Technology, 209 (2009), pp. 6174-6180. 

[78] BARRIUSO, S.; LIEBLICH, M.; MULTIGNER, M.; ETXEBERRIA, I.; ALBERDI, A.; 

GONZÁLEZ-CARRASCO, J.: Roughening of metallic biomaterials by abrasiveless 

waterjet peening: Characterization and viability. Wear, 270 (2011), pp. 634-

639. 

[79] TAYLOR, T.A.: Surface roughening of metallic substrates by high pressure pure 

waterjet. Surface and Coatings Technology, 76 (1995), pp. 95-100. 

[80] ISLAM, M.A.; FARHAT, Z.; BONNELL, J.: High pressure water-jet technology for 

the surface treatment of Al-Si alloys and repercussion on tribological 

properties. Journal of Surface Engineered Materials and Advanced 

Technology, 1 (2011), pp. 112-120. 

[81] KONG, M.C.; AXINTE, D.; VOICE, W.: Aspects of material removal mechanism in 

plain waterjet milling on gamma titanium aluminide. Journal of Materials 

Processing Technology, 210 (2010), pp. 573-584. 

[82] GRINSPAN, A.S.; GNANAMOORTHY, R.: Surface modification by oil jet peening in 

Al alloys, AA6063-T6 and AA6061-T4: Residual stress and hardness. Applied 

Surface Science, 253 (2006), pp. 989-996. 

[83] HIRANO, K.; ENOMOTO, K.; MOCHIZUKI, M.; HAYASHI, M.; HAYASHI, E.; SHIMIZU, S.: 

Improvement of residual stress on material surface by water jet peening. 14th 

International Conference on Structural Mechanics in Reactor Technology, 2 

(1997), Lyon, pp. 361-368. 

[84] HAN, B.; JU, D.Y.; JIA, W.P.: Influence of water cavitation peening with aeration 

on fatigue behaviour of SAE1045 steel. Applied Surface Science, 253 (2007), 

pp. 9342-9346. 

[85] DANIEWICZ, S.R.; CUMMINGS, S.D.: Characterization of a water peening 

process. Journal of Engineering Materials and Technology, 121 (1999), pp. 

336-340. 

[86] GRINSPAN, A.S.; GNANAMOORTHY, R.: Effect of oil jet peening duration on 

surface modification and fatigue behavior of medium carbon steel AISI 1040. 

Materials Science and Engineering: A, 456 (2007), pp. 210-217. 



Literature  153 

 

[87] NI, Z.; WANG, X.; WANG, J.; WU, E.: Characterization of the phase 

transformation in a nanostructured surface layer of 304 stainless steel induced 

by high-energy shot peening. Physica B: Condensed Matter, 334 (2003), pp. 

221-228. 

[88] WANG, T.; LU, B.; ZHANG, M.; HOU, R.; ZHANG, F.: Nanocrystallization and α 

martensite formation in the surface layer of medium-manganese austenitic 

wear-resistant steel caused by shot peening. Materials Science and 

Engineering: A, 458 (2007), pp. 249-252. 

[89] TSUJIKAWA, M.; EGAWA, M.; SONE, T.; UEDA, N.; OKANO, T.; HIGASHI, K.: 

Modification of S phase on austenitic stainless steel using fine particle shot 

peening. Surface and Coatings Technology, (2012). 

[90] CAMPBELL, F.C.; Elements of metallurgy and engineering alloys. ASM 

International, Inc., Ohio, 2008. 

[91] AROLA, D.; ALADE, A.E.; WEBER, W.: Improving fatigue strength of metals using 

abrasive waterjet peening. Machining science and technology, 10 (2006), pp. 

197-218. 

[92] KUNAPORN, S.; RAMULU, M.; JENKINS, M.; HASHISH, M.; HOPKINS, J.: Ultra high 

pressure waterjet peening, Part II: High cycle fatigue performance. 

Proceedings of WJTA American Waterjet Conference, (2001), Minnesota, 

Paper 26. 

[93] TAYLOR, D.; CLANCY, O.M.: The fatigue performance of machined surfaces. 

Fatigue & Fracture of Engineering Materials & Structures, 14 (1991), pp. 329-

336. 

[94] SOYAMA, H.: Improvement of fatigue strength by using cavitating jets in air and 

water. Journal of Materials Science, 42 (2007), pp. 6638-6641. 

[95] AZHARI, A.; SCHINDLER, C.; LI, B.: Effect of waterjet peening on aluminium alloy 

5005. International Journal of Advanced Manufacturing Technology, 67 

(2013), pp. 785-795. 

[96] MACODIYO, D.O.; SOYAMA, H.: Optimization of cavitation peening parameters 

for fatigue performance of carburized steel using Taguchi methods. Journal of 

Materials Processing Technology, 178 (2006), pp. 234-240. 



154  Literature 

 

[97] RAJESH, N.; RAMESH, B.N.: Empirical modelling of water-jet peening of 6063-T6 

aluminium alloy. Journal of Production Engineering, 86 (2005), pp. 22-26. 

[98] SCHEY, J.A.: Introduction to manufacturing processes. 3rd edition. McGraw-

Hill, Inc., New York, 2000. 

[99] CRITCHLOW, G.W.; BREWIS, D.M.: Review of surface pretreatments for titanium 

alloys. International Journal of Adhesion and Adhesives, 15 (1995), pp. 161-

172. 

[100] XIANGHUAI, L.: Recent advance in surface treatment and its applications in 

China. Surface and Coatings Technology, 131 (2000), pp. 261-266. 

[101] ULUTAN, D.; OZEL, T.: Machining induced surface integrity in titanium and nickel 

alloys: A review. International Journal of Machine Tools and Manufacture, 51 

(2011), pp. 250-280. 

[102] MEGUID, S.A.; SHAGAL, G.; STRANART, J.C.: Finite element modelling of shot -

peening residual stresses. Journal of Materials Processing Technology, 92-93 

(1999), pp. 401-404. 

[103] DING, K.; YE, L.: Simulation of multiple laser shock peening of a 35CD4 steel 

alloy. Journal of Materials Processing Technology, 178 (2006), pp. 162-169. 

[104] KARABELCHTCHIKOVA, O.; RIVERO, I.V.: Variability of residual stresses and 

superposition effect in multipass grinding of high-carbon high-chromium steel. 

Journal of Materials Engineering and Performance, 14 (2005), pp. 50-60. 

[105] ZHANG, B.; YANG, F.; WANG, J.; ZHU, Z.; MONAHAN, R.: Stock removal rate and 

workpiece strength in multi-pass grinding of ceramics. Journal of Materials 

Processing Technology, 104 (2000), pp. 178-184. 

[106] WANG, J.; GUO, D.M.: The cutting performance in multipass abrasive waterjet 

machining of industrial ceramics. Journal of Materials Processing Technology, 

133 (2003), pp. 371-377. 

[107] BIGDELI KARIMI, M.; ARABI, H.; KHOSRAVANI, A.; SAMEI, J.: Effect of rolling strain 

on transformation induced plasticity of austenite to martensite in a high-alloy 

austenitic steel. Journal of Materials Processing Technology, 203 (2008), pp. 

349-354. 



Literature  155 

 

[108] BRINGAS, J.E.: Handbook of comparative world steel standards. ASM 

International, Inc., Massachusetts, 2004. 

[109] Seeberger GmbH & Co. KG: Material data sheet 3.3315. URL: 

http://www.seeberger.net/_assets/pdf/werkstoffe/aluminium/en/3.3315.pdf. 

(Accessed on 23/05/2012). 

[110] mejo Metall Josten GmbH & Co. KG: Festigkeitseigenschaften Aluminium 

Bleche   und   Bänder.   URL:  http://www.mejo.de/metallexikon_europaeische

_normen_festigkeitseigenschaften_aluminium_bleche_und_baender.asp#L4. 

(Accessed on 23/05/2012). 

[111] Quick-Ohm Küpper & Co. GmbH: Sapphire waterjet nozzles type 18. URL: 

http://www.quick-ohm.com/sapphire_waterjet_nozzles/typ18.htm (Accessed 

on 20/01/2014). 

[112] Standard ISO 4287: 1997: Geometrical Product Specifications (GPS) -- 

Surface texture: Profile method -- Terms, definitions and surface texture 

parameters; International Organization for Standardization. 

[113] Buehler Ltd.: The science behind Materials preparation: A guide to materials 

preparation and analysis. United States of America, 2004. 

[114] AKAY, S; YAZICI, M.; BAYRAM, A.; AVINC, A.: Fatigue life behaviour of the dual-

phase low carbon steel sheets, Journal of Materials Processing Technology, 

209 (2009), pp. 3358-3365. 

[115] BELINGARDI, G.; CAVATORTA, M.P.; FRASCA, C.: Bending fatigue behavior of 

glass–carbon/epoxy hybrid composites. Composites Science and Technology, 

66 (2006), pp. 222-232. 

[116] AZMIR, M.A.; AHSAN, A.K.: A study of abrasive water jet machining process on 

glass/epoxy composite laminate. Journal of Materials Processing Technology, 

209 (2009), pp. 6168-6173. 

[117] GODOY, C.; MANCOSU, R.; LIMA, M.; BRANDÃO, D.; HOUSDEN, J.; AVELAR-BATISTA, 

J.: Influence of plasma nitriding and PAPVD Cr1−xNx coating on the cavitation 

erosion resistance of an AISI 1045 steel. Surface Coating Technology, 200 

(2006), pp. 5370-5378. 



156  Literature 

 

[118] LEU, M.; MENG, P.; GESKIN, E.; TISMENESKIY, L.: Mathematical modeling and 

experimental verification of stationary waterjet cleaning process. Journal of 

Manufacturing Science and Engineering, 120 (1998), pp. 571-579. 

[119] SOHR, J.M.; THORPE, M.L.: Stripping of thermal spray coatings with ultra high 

pressure water jet. SAE Technical Paper, 101 (1992), pp. 51-59. 

[120] KRELLA, A.; CZYZNIEWSKI, A.: Influence of the substrate hardness on the 

cavitation erosion resistance of TiN coating. Wear, 263 (2007), pp. 395-401. 

[121] PREECE C.: DRAPER, C.: The effect of laser quenching the surfaces on their 

cavitation erosion resistance. Wear, 67 (1981), pp. 321-328. 

[122] ZHAO, K.; GU, C.; SHEN, F.; LOU, B.: Study on mechanism of combined action of 

abrasion and cavitation erosion on some engineering steels. Wear, 162-164 

(1993), pp. 811-819. 

[123] LEE, G.M.C.: The erosion resistance of plain carbon steels under water droplet 

impact conditions. Wear, 141 (1990), pp. 185-201. 

[124] MANN, B.S.; ARYA, V.: An experimental study to correlate water jet 

impingement erosion resistance and properties of metallic materials coatings. 

Wear, 253 (2002), pp. 650-661. 

[125] RICHMAN, R.H.; MCNAUGHTON, W.P.: Correlation of cavitation erosion behavior 

with mechanical properties of metals. Wear, 140 (1990), pp. 63-82. 

[126] FELLER, H.G.; KHARRAZI, Y.: Cavitation erosion of metals and alloys. Wear, 93 

(1984), pp. 249-260. 

[127] HEATHCOCK, C.J.; PROTHEROE, B.E.; BALL, A.: Cavitation erosion of stainless 

steel. Wear, 81 (1982), pp. 311-327. 

[128] PREECE, C.M.; MACMILLAN, N.H.: Erosion. Annual Review of Materials Science, 

7 (1977), pp. 95-121. 

[129] KRELLA, A.: Influence of cavitation intensity on X6CrNiTi18-10 stainless steel 

performance in the incubation period. Wear, 258 (2005), pp. 1723-1731. 

[130] LUISET, B.; SANCHETTE, F.; BILLARD, A.; SCHUSTER, D.: Mechanisms of stainless 

steels erosion by water droplets. Wear, 303 (2013), pp. 459-464. 

[131] ADLER, W.F.; HOOKER S.V.: Rain erosion behaviour of polymethylmethacrylate. 

Journal of Material Science, 13 (1978), pp. 1015-1025. 



Literature  157 

 

[132] MILLER, L.; SMITH, G.: Tensile fracture in carbon steels. Journal of Iron Steel 

Institute, 208 (1970), pp. 998-1005. 

[133] VALIENTE, A.; RUIZ, J.; ELICES, M.: A probabilistic model for the pearlite-induced 

cleavage of a plain carbon structural steel, Engineering Fracture Mechanics, 

72 (2005), pp. 709-728. 

[134] KAMKAR, N.; BRIDIER, F.; BOCHER, P.; JEDRZEJOWSKI, P.: Water droplet erosion 

mechanisms in rolled Ti-6Al-4V. Wear, 301 (2013), pp. 442-448. 

[135] KWOK, C.T.; MAN, H.C.; CHENG, F.T.: Cavitation erosion and damage 

mechanisms of alloys with duplex structures. Materials Science and 

Engineering A, 242 (1998), pp. 108-120. 

[136] GRINSPAN, A.S.; GNANAMOORTHY, R.: Surface modification by oil jet peening in 

Al alloys, AA6063-T6 and AA6061-T4, Part 2: Surface morphology, erosion, 

and mass loss. Applied Surface Science, 253 (2006), pp. 997-1005. 

[137] DURAISELVAM, M.; GALUN, R.; WESLING, V.; MORDIKE, B.L.; REITER, R.; 

OLIGMÜLLER, J.; BUVANASKEHARAN, G.: Cavitation erosion resistance of Ti6Al4V 

laser alloyed with TiC-reinforced dual phase intermetallic matrix composites. 

Materials Science and Engineering A, 454-455 (2007), pp. 63-68. 

[138] MAHAGAONKAR, S.B.; BRAHMANKAR, P.K.; SEEMIKERI, C.Y.: Effect of shot 

peening parameters on microhardness of AISI 1045 and 316L material: an 

analysis using design of experiment. The International Journal of Advanced 

Manufacturing Technology, 38 (2008), pp. 563-574.  

[139] NIKITIN, I.; BESEL, M.:Correlation between residual stress and plastic strain 

amplitude during low cycle fatigue of mechanically surface treated austenitic 

stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045. Material Science 

and Engineering A, 491 (2008), pp. 297-303. 

[140] KANG, S.H.; IM, Y.T.: Three-dimensional thromo-elastic-plastic finite element 

modeling of quenching process of plain-carbon steel in couple with phase 

transformation. International Journal of Mechanical Sciences, 49 (2007), pp. 

423-439. 

[141] AL-ABBASI, F.: Micromechanical modeling of ferrite-pearlite steels. Materials 

Science and Engineering A, 527 (2010), pp. 6904-6916. 



158  Literature 

 

[142] AUTENRIETH, H.; OKOLO, B.; SCHULZE, V.; WANNER, A.: Surface workhardening 

and residual stresses induced by micro cutting processes. Proceedings of the 

8th International Conference on Residual Stresses, (2008), Denver, pp. 608-

615. 

[143] ZHAN, K.; JIANG, C.H.; JI, V.: Effect of prestress state on surface layer 

characteristic of S30432 austenitic stainless steel in shot peening process. 

Materials and Design, 42 (2012), pp. 89-93. 

[144] HACINI, L.; LE, N.V.; BOCHER, P.: Effect of impact energy on residual stresses 

induced by hammer peening of 304L plates. Journal of Materials Processing 

Technology, 208 (2008), pp. 542-548. 

[145] AVILÉS, R.; ALBIZURI, J.; LAMIKIZ, A.; UKAR, E.; AVILÉS, A.: Influence of laser 

polishing on the high cycle fatigue strength of medium carbon AISI 1045 steel. 

International Journal of Fatigue, 33 (2011), pp. 1477-1489. 

[146] LIU, W.; ZHANG, C.; XIA, C.; YANG, Z.; WANG, P.; CHEN, J.: Strain-induced 

refinement and thermal stability of a nanocrystalline steel produced by surface 

mechanical attrition treatment. Materials Science & Engineering A, 568 (2013), 

pp. 176-183. 

[147] LIU, G.; WANG, S.; LOU, X.; LU, J.; LU, K.: Low carbon steel with nanostructured 

surface layer induced by high-energy shot peening. Scripta Materialia, 44 

(2001), pp. 1791-1795. 

[148] TAO, N.; WANG, Z.; TONG, W.; SUI, M.; LU, J.; LU, K.: An investigation of surface 

nanocrystallization mechanism in Fe induced by surface mechanical attrition 

treatment. Acta Materialia, 50 (2002), pp. 4603-4616. 

[149] LIU, G.; LU, J.; LU, K.: Surface nanocrystallization of 316L stainless steel 

induced by ultrasonic shot peening. Materials Science and Engineering A, 286 

(2000), pp. 91-95. 

[150] ZHOU, L.; LIU, G.; MA, X.L.; LU, K.: Strain-induced refinement in a steel with 

spheroidal cementite subjected to surface mechanical attrition treatment. Acta 

Materialia, 56 (2008), pp. 78-87. 

[151] ALANG, N.A.; RAZAK, N.A.; MISKUN, A.K.: Effect of surface roughness on fatigue 

life of notched carbon steel. International Journal of Engineering & 

Technology, 11 (2011), pp. 203-206. 



Literature  159 

 

[152] ZHANG, P.; LINDEMANN, J.: Influence of shot peening on high cycle fatigue 

properties of the high-strength wrought alloy AZ80. Scripta Materialia, 52 

(2005), pp. 485-490. 

[153] HUTMANN, P.: The application of mechanical surface treatment in the 

passenger car industry. Shot Peening, Wiley-VCH Verlag GmbH & Co., 

Weinheim, 2006, pp. 3-12. 

[154] WAGNER, L.: Mechanical surface treatements on the titanium, aluminium and 

magnesium alloys. Materials Science and Engineering A, 263 (1999), pp. 210-

216. 

[155] KOSMAC, T.; OBLAK, C.; JEVNIKAR, P.; FUNDUK, N.; MARION, L.: The effect of 

surface grinding and sandblasting on flexural strength and reliability of Y-TZP 

zirconia ceramic. Dental Materials, 15 (1999), pp. 426-433. 

[156] SCHERRER, S.S.; DENRY, I.L.; WISKOTT, H.W.: Comparison of three fracture 

toughness testing techniques using a dental glass and a dental ceramic. 

Dental Materials, 14 (1998), pp. 246-255. 

[157] MONTGOMERY, D.C.; PECK, E.A.; VINING, G.G.: Introduction to linear regression 

analysis. John Wiley & Sons, Inc., New York, 2001. 

[158] ROY, R.K.: Design of experiments using the Taguchi approach. John Wiley & 

Sons, Inc., New York, 2001. 

[159] CHI, G.; HU, S.; YANG, Y.; CHEN, T.: Response surface methodology with 

prediction uncertainty: A multi-objective optimisation approach. Chemical 

Engineering Research and Design, 90 (2012), pp. 1235-1244. 

[160] ALAO, A.R.; KONNEH, M.: Surface finish prediction models for precision grinding 

of silicon. International Journal of Advanced Manufacturing Technology, 58 

(2012), pp. 949-967. 

[161] FOWLKES, W.Y.; CREVELING, C.M.: Engineering methods for robust product 

design: using Taguchi methods in technology and product development. 

Prentice Hall, Inc., Massachusetts, 1995. 

 



 

 

List of Publications 

 

[1] AZHARI, A.; SCHINDLER, C.; KERSCHER, E.; GRAD, P.: Improving surface 

hardness of austenitic stainless steel using waterjet peening process. The 

International Journal of Advanced Manufacturing Technology, 63 (2012), pp. 

1035-1046. 

[2] AZHARI, A.; SCHINDLER, C.; LI, B.: Effect of waterjet peening on aluminium alloy 

5005. International Journal of Advanced Manufacturing Technology, 67 

(2013), pp. 785-795. 

[3] AZHARI, A.; SCHINDLER, C.; NKOUMBOU, J.; KERSCHER, E.: Surface erosion of 

carbon steel 1045 during waterjet peening. Journal of Materials Engineering 

and Performance 23 (2014), pp. 1870-1880. 

List of Students’ Projects 

 

[1] LI, B.: The effect of waterjet peening on aluminium alloy 5005. Studientarbeit 

Nr.: 675 (2012), Lehrstuhl für Konstruktion im Maschinen- und Apparatebau 

(KIMA), Technishe Universität Kaiserslautern. 

[2] JHISLAIN, N.K.: Waterjet treatment of ferritic steel (1045). Studientarbeit Nr.: 

711 (2012), Lehrstuhl für Konstruktion im Maschinen- und Apparatebau 

(KIMA), Technishe Universität Kaiserslautern. 



 

 

Curriculum vitae 

 

First name:   Mohd Azmir 

Last name:    Mohd Azhari 

 

 

Education 

1986 – 1991   Seri Cempaka Primary School, Kampong Gajah, Perak 

1992 – 1996   Izzuddin Shah Secondary School, Ipoh, Perak 

April 1999   Matriculation certificate,  

    International Islamic University Malaysia 

May 2003   Bachelor of Engineering in Manufacturing,  

    International Islamic University Malaysia 

December 2006  Masters of Science in Manufacturing,  

    International Islamic University Malaysia 

December 2013  PhD in Mechanical Engineering 

Technische Universität Kaiserslautern 

 

Work experience 

Apr 2002 – Jun 2002 Industrial trainee, Lafarge Malayan Cement Ltd. 

May 2003 – Dec 2003 Production executive, F&N Dairies Pvt. Ltd. 

Dec 2005 – Dec 2006 Lecturer, School of Engineering and Tecnology, 

    INTI International College Subang 

Dec 2006 – Dec 2009 Lecturer, Faculty of Manufacturing Engineering, 

    Universiti Malaysia Pahang 

Dec 2009 –  Dec 2013 PhD scholar, Chair of Design in Mechanical Engineering, 

  Technische Universität Kaiserslautern 

Dec 2013 –    Senior lecturer, Faculty of Manufacturing Engineering, 

    Universiti Malaysia Pahang 

 



KIMA-Schriftenreihe

bereits veröffentlicht wurden

11 	 Cadavid-Giraldo, R.: Cutting with fluidjets of small diameter. 			 
	 2004, ISBN 3-936890-46-3�   30,–

12 	 Kasper, J.: Untersuchungen zur Schneidzerkleinerung von Aluminium. 		
	 2005, ISBN 3-936890-70-6�   30,–

13 	 Theobald, U.: Untersuchung des Gewebeaufschlusses in Reißmaschinen
	 unter Betrachtung des Einzelbeanspruchungsvorganges.
	 2005, ISBN 3-936890-74-9�   30,–

14 	 Loof, C.: Entwicklung eines Hydrokeratoms für die LASIK-Chirurgie.
	 2008, ISBN 978-3-939432-79-1�   30,–

15 	 Thjunjoto: Entwicklung einer Apparatur zur Gewinnung von Proben
	 aus Bohrkernen unter in-situ Druck.
	 2009, ISBN 978-3-941438-07-1�   30,–

16 	 Wind, M.: Numerische und experimentelle Analyse und Optimierung 
	 der technischen Eigenschaften eines selbstexpandierenden Stents.
	 2011, ISBN 978-3-941438-75-0�   30,–

17 	 Kleiner, O.: Numerische und experimentelle Untersuchung der 
	 Rad/Schiene-Interaktion unter Berücksichtigung mechanischer 
	 und thermomechanischer Effekte. 
	 2011, ISBN 978-3-941438-88-0�   30,–

  8 	Soffel, M.: Untersuchung des Lufteinzuges beim 
	 Hochgeschwindigkeitswickeln von Kunststofffolien.
	 2013, ISBN 978-3-943995-32-9�   40,–

  9 	Stephan, N. K.: Vorgehensmodell zur Unterstützung der interdisziplinären  
	 und föderierten Zusammenarbeit in der frühen Phase der Produktentstehung
	 - am Beispiel der Nutzfahrzeugindustrie -
	 2013, ISBN 978-3-943995-37-4�   40,–
  
10 	 Li, H.: Analysis of Off-Road Tire-Soil Interaction through  
	 Analytical and Finite Element Methods
	 2013, ISBN 978-3-943995-42-8�   40,–

11 	� Azhari M. A. M.: Effects of Waterjet Treatment on Surface 
Integrity of Metals and its Optimization

	 2014, ISBN 978-3-943995-60-2�   40,–


