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Summary

This PhD-Thesis deals with the calculation and application of a new class of
invariants, that can be used to recognize patterns in tensor fields (i.e. scalar
fields, vector fields und matrix fields), and by the composition of scalar fields
with delta-functions also to point-clouds. In the first chapter an overview
over already existing invariants is given.

In the second chapter the general definition of the new invariants is given:
starting with a tensor field a set of moment tensor is created via folding in
tensor-product manner with different orders of the tensor product of the po-
sitional vector. From these, rotational invariant values are calculated via
contraction of tensor products. An algorithm to get a complete and indepen-
dent set of invariants from a given moment tensor set is described. Further-
more methods to make these sets of invariants invariant against translation,
rotation, scaling, and affine transformation.

In the third chapter, a method to optimize the calculation of these sets
of invariants is described: every invariant can be modeled as undirected
graph comprising multiple sub-graphs representing partially contracted ten-
sor products of the moment tensors. The composition of the sets of invariants
is optimized by a clever choice of the decomposition into sub-graphs, all paths
creating a hyper-graph of sub-graphs where each node describes a composi-
tion step. Finally, C++-source-code is created, which optimized using the
symmetry of the different tensors and tensor-products, and a comparison of
the effort to other calculation methods of invariants is given.

The fourth chapter describes the application of the invariants to object
recognition in point-clouds from 3D-scans. To do this, the invariants of sub-
sets of point-clouds are stored for every known object. Afterwards, invariants
are calculated from an unknown point-cloud and tried to find them in the
database to assign it to one of the known objects. Benchmarks using three
3D-object databases are made testing time and recognition rate.
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Introduction

Invariants play an important role in physics and are also import in recognition
of objects and other structures in point clouds and vector fields. In the word
re-cognition lies another key to understand why invariants are important:
you re-cognize things that have not changed in an environment that has
changed. Usually, recognition of an object is done in another space, time
and rotation, so the important invariants are those which do not change
under translation, rotation and time shift. Another thing that is important
is their computability. You do not want to do an extensive search for things
that are invariant, but want to compute them directly in every position
where you want to recognize things. Because one does not want to look at
every point in space, taking moments of the vectorfield or pointclouds does
some work to keep everything in a form that is compact and easy to process.
Rotational invariants of moment tensors are total contractions of the tensors.
To get more invariants, also total contractions of tensor products are looked
at. To avoid having too many invariants, a set of invariants is taken that
is independent, i.e. the elements of the set cannot be computed from each
other. Why do you need object recognition ? Important fields of application
are :

• Classification of objects in LIDAR scans of terrain surfaces. This is im-
portant because in many cases, only the terrain surface without build-
ings and plants is needed; in other cases, you want to extract street
networks.

• Face recognition: in security areas, 3d face recognition could serve as
a method to track intruders

• Tracking of cells and fibers in biological settings, with scalarfield data
stemming e.g. from confocal laser microscopy , MRT or CT.

I only used the invariants for face recognition. The main contributions of
this work are:

• A method to create an independent and complete set of invariants for
tensor-valued moments of arbitrary dimension (chapter 2 ) by trying
out the total contractions of tensor products of increasing order and
taking only those with linear independent first derivatives until the
expected number of invariants is reached. A moment tensor set e.g.
consisting of the second, third and fourth order symmetric 3d tensor
with in total 31 independent components is then transformed into 28
rotational invariants.
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• A method to optimize the computation of those invariants using a series
of tensor products and contractions described in a hypergraph (chapter
3).

• An algorithm using these invariants for object recognition in point
clouds (chapter 4), including a method to transform the invariants to
get nice statistical properties (section 4.6).



Chapter 1

Basic concepts

1.1 Tensor Algebra

This section summarizes the basics of tensor algebra and defines notation
used in this document. A good reference is [5], chapter 3:Tensor Algebra. A
short reference is given in [2], section 2.4:Multilineare Algebra. subsubsec-
tion 2.4.2.2:Kovariante und kontravariante Tensoren. In the following, the
italicised part of a section is always a translated excerpt from [2] and the
other part a comment.

1.1.1 Definition of a tensor

A tensor is a multi-linear mapping, which is a mapping that is linear in
each of it’s arguments, where the arguments can be vectors: Be X a finite-
dimensional linear space over � (where � ∈ {�,�}).The set of tensors
Tpq (X) consists of the mappings

M : X × . . .×X ×XT . . .×XT → � ,

where the space X is there q times and the dual space XT is there p times.
The Elements of T

p
k are called k times covariant and p times contravariant

Tensors over X, and T0
0 = �.

1.1.2 Tensor product

If M ∈ Tpq (X) and N ∈ Trs(X) the tensor product is defined as (here using
the property of the tensor of being a multilinear mapping):

(M⊗N)(u1, . . . , uq+s, v1, . . . , vp+r) := M(u1, . . . , uq, v1 . . . vp)N(uq+1, . . . , uq+s, vp+1, . . . , vp+r)

3
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1.1.3 Basis representation

Be b1, . . . , bn a basis of X. Every Tensor M ∈ Tqp(X) with p + q ≥ 1 has a
unique representation

M = t
j1...jp
i1...iq

bi1 ⊗ . . .⊗ biq ⊗ bj1 ⊗ . . .⊗ bjp (1.1)

with the coefficients t...... ∈ �. Here, bj refers to the linear form bj(u
∗) = u∗(bj)

for all u∗ ∈ XT . In the following, M
j1...jp
i1...iq

will denote the coefficient t
j1...jp
i1...iq

of
the basis representation of M . The tensor product written in the coefficients
is then simply:

(M ⊗N)
j1,...,jp+r
i1,...,iq+s

= M
j1...jp
i1,...,iq

N
jp+1,...,jp+s
iq+1,...,iq+s

1.1.4 Einsteins sum convention

Einstein’s sum convention is a notation for summing up indices together:
upper indices and lower indices that are denoted with the same name are
summed over. aml = timil for example means aml =

∑
i t
im
il , b = tilil means

b =
∑

i,l t
il
il , and dl = aml cm means dl =

∑
m a

m
l cm . It will be used below.

1.1.5 Basis change

The coefficients t
j1...jp
i1...iq

of a tensor are transformed in the same way as the

basis tensor bi1 ⊗ . . . ⊗ biq ⊗bj1 ⊗ . . . ⊗ bjp in a basis transform. Example: be

M = tsrb
r ⊗ bs. Then M = ts

′

r′b
r′ ⊗ bs′ with ts

′

r′ = Arr′A
s′
s t

s
r. In this document,

the possible basis changes will be between orthonormal bases, i.e. consist of
rotation and mirroring.

1.1.6 Lifting/lowering of indices

To convert contra-variant indices into covariant one, one uses the property
that < ai, b

j >= δji , where ai is the co-variant and bi the contra-variant basis
i.Here < ·, · > denotes the chosen scalar product. Popular choices for the
scalar product are the dot product in �3 implying an euclidean metric, and
a1b1 + a2b2 + a3b3 − a4b4 for spacetime implying a minkowski metric.

One sees that in Matrix notation aT b = I ⇒ aT = b−1 if bi,aj are column
vectors and the scalar product is the usual dot product. Therefore, in order
to transform from from b to a one has to multiply by ab−1= aaT . For an
orthonormal basis aaT = I, so upper and lower indices mean the same and
raising or lowering of indices does not require computation.
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1.1.7 Contraction

From M in equation 1.1 a new tensor can be constructed by equating one
upper and lower index and removing the corresponding basis vectors. This
operation is independent of the chosen basis. Example: be M = tijkbi⊗bj⊗bk.

Then N = tiikb
k is again a tensor in the same basis with the coefficients

sk = tiik. In this document, we will refer to this operation on the coefficients
by trace-taking as this is what it does to a two-component tensor, i.e. a
Matrix. As a computer doesn’t know about the names of the indices, we
use a contraction operator similar to [5], section 3.13, but do not distinguish
between co- and contravariant indices:∑

(a,b)

M :=
n∑

ia=ib=k=1

Mi1,...in

so
∑

(a,b) means ”contract the ath and bth index” . If the indices are both
lower or both upper, one has to be lifted or lowered repectively. It does not
matter which of them, as the matrix used for lowering or raising is symmetric,
as proved above. Example:∑

(1,3)

xijk = xi ji =
∑
i,j

Aikxijk = x i
ij =

∑
i,j

Aikxijk ,

where Aij =< ai, aj > is the matrix used for lifting.

1.2 Existing Invariants of Surfaces and Fields

In the following, we give a brief and non-exhaustive listing of invariant defi-
nitions:

1.2.1 Convolution

In [15] the use of integral invariants in general is studied, (of which our mo-
ments are a special case). A stability analysis is given, and it turns out that
they are very stable against random noise. A good algorithm for computing
them for surfaces in 3d using a mixture of fast fourier transformation and oc-
trees is presented. We use a similar algorithm that is more straight-forward
in section 4.7.

In [16] the following method for doing pattern recognition in vectorfields
on a 2-dimensional domain is described. It works best for structured recti-
linear grids. For every possible patternsize r and position x0, calculate the
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integrals

cij =

∫
B(r,x0)

(x− x0)ix− x0
j
f(x)dx

with x, c ∈ �, f : � → �, 0 ≤ i + j ≤ 2 and B(r, x0) a ball with radius r
around x0.

From cij calculate the above mentioned scale/rotational invariants: For
vector fields, all products

∏
k cikjk with

∑n
k=1(jk − ik) = n are rotationally

invariant. for scalar fields (i.e. the image space of f is real), the products
with

∑n
k=1(jk − ik) = 0 are rotationally invariant. The scale invariance is

straightforwardly computed by parameter substitution of the radius in the
integration. All invariants are stored in a tree which is used for similarity
searching. The integrals mentioned are accelerated using the convolution
theorem and fast fourier transformation. The complexity of the method
is O(nN2logN) in time for initialization (n times 2-dimensional FFT) and
O(logN) for searching. It uses O(N2) memory. Here, N refers to the number
of grid steps per direction and n to the number of ball radii.

1.2.2 Polynomial approximation of surfaces and fields

In [7], a multivariate polynomial is fit to the data and invariants of this poly-
nomial are calculated. It is related to our method because a multivariate
polynomial can always be expressed by a set of symmetric tensors. Essen-
tially, they solve a linear equation for the coefficients of a polynomial in the
source polynomial coefficients. It is more general in terms of the types of
transformations possible, but it will fail if the order of the moments in the
tensor components becomes too high. Another problem is that the fitting
process is not a very stable operation, as noted by the author.

1.2.3 Tensor properties

rotational invariants also include the eigenvalues of second-order tensors (i.e.
matrices) . These are of course less robust in computation than traces but
can be computed analytically from the characteristic polynomial of a matrix
A ( p(λ) = det(A−λI) ). To overcome the robustness issues, the coefficients
of that polynomial can be used instead.

In [17], a higher-order structure tensor is defined. An intuitive visual-
ization metaphor for higher-order tensors is given, as well as an eigenvector
decomposition algorithm for up to fourth order tensors:

T =
∑
i

λiei ⊗ ei ⊗ ei ⊗ ei
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These eigenvalues are rotational invariant tensor properties.
In [13] they define a generalized trace gentr(f(u)) = 3

2π

∫
Ω
f(u)du , where

Ω is the unit sphere and give formulas for the computation if f is represented
by up to sixth order tensors.

1.2.4 Spherical harmonic’s properties

Spherical harmonics are a decomposition of the sphere which decompose
a 3d field into components depending on latitude and longitude, form an
orthonormal basis with respect to the scalar product

< a, b >:=
1

4π

∫ π

0

∫ 2π

0

a(θ, ϕ)b(θ, ϕ)dϕ cos θdθ

The basis vectors Y m
l (θ, ϕ) , m = 0, 1, ...∞, l = −m, ...,m of spherical har-

monics are defined as

Y m
l (θ, ϕ) = Nm

l P
m
l (cos θ)eimϕ ,

where Pm
l (x) refers to the associated Legendre-polynomials and Nm

l to a nor-
malization constant. The advantages of spherical harmonics are that you can
control the level of detail just by restricting m, that you can esaily perform
a rotation on the coefficients of a decomposition after these basis vectors,
and that they can be computed again on local masks using convolution and
fast fourier transformation. In [4],[3] they are used to have a rotational in-
variant similarity measure for a local patch (again the integration goes over
a ball-shaped mask). To compare two patches, just try out a set of possible
rotations on the spherical harmonic’s coefficients and take the one that gives
the largest similarity. A problem of the method is the time required to try
out the possible rotations for similarity matching.

1.2.5 Curvature

For surfaces, nice invariants can be computed from the curvature: the gaus-
sian curvature and the curvatures of the principal curvature directions (which
again are computable from a 2d curvature tensor, which can be obtained by
fitting a quadratic form to a local pointset, or, if a parametric representation
of the surface is given, just by taking the derivatives ). [10] give on overview
over Methods to compute the curvature. A series of papers has been pub-
lished using the curvature Tensor for recognition and reconstruction using
Tensor voting: [6],[18],[19],[11],[20]
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Chapter 2

Moment Invariants on Tensor
Fields of Arbitrary Order and
Dimension

2.1 Preface

Objects in space usually have an arbitrary rotation and position which are
the transformations which do not not deform the objects. If you want to
recognize patterns which have an arbitrary rotation and scale, one possibility
would be to try out each possible rotation and scale of the pattern to be
recognized but, this is computationally very expensive if you want to be
precise. A better way to do it is to first compute a ”fingerprint” of the
pattern to find which is independent of the rotation and scale, then compare
it to the fingerprints of the patterns you want to analyse.

We will give a type of fingerprints that can be computed from tensorfields
of arbitrary order and dimension. We will call them moment invariants of
the field because of their relationship to the moment of inertia in physics: If
we have a mass density field, from the tensor 2A we define in section 2.2 the
tensor of inertia can be computed : T = ( 2A)I − 2A, and 1

2
2A is the moment

of inertia in all axes if the moment is isotropic, and is a rotational moment
invariant. In this chapter, we introduce a method to compute a complete
basis for rotational invariants of moments of tensorfields of – in principle –
any order and dimension, that are analytical. We give an example using up
to 4th-order structure tensors in 3d. We have published the main contents
of this chapter in [8]. We have changed the naming a bit from that paper to
have more consistency to existing concepts: We talk about moments when
referring to the tensors computed from the tensorfield, and about moment

9
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invariants instead of invariant moments when talking about the traces that
are rotational invariants.

2.1.1 Possibilities for Invariance

The moment invariants ~M can have certain invariance properties, which are

• Rotational invariance

only in value: ~M(f(~x)) = ~M(Rf(~x)))

only in domain: ~M(f(~x)) = ~M(f(R−1~x)))

in domain and value,

linked: ~M(f(~x)) = ~M(Rf(R−1~x)), see figure 2.1

independent: ~M(f(~x)) = ~M(Rf(R−1
∗ ~x))

• Translation invariance ~M(f(~x)) = ~M(f(~x− ~t)),~t ∈ �d

• Scale invariance

- In value ( ~M(f(~x)) = ~M(sf(~x))) : see figure 2.2

- In domain ( M(f(~x)) = ~M(sf(~x))) : see figure 2.3

- In domain and value:

- Linked : ~M(f(~x)) = ~M(spf(~x/s)) , s ∈ �

- Independent : ~M(f(~x)) = ~M(tf(~x/s)) , s, t ∈ �

~M(f(~x)) = ~M(Rf(R−1~x)) , R ∈ SO(d)

Figure 2.1: Rotational invariance
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~M(f(~x)) = ~M(sf(~x/s)) , s ∈ �

Figure 2.2: Scale invariance in value

~M(f(~x)) = ~M(f(~x/s)) , s ∈ �

Figure 2.3: Scale invariance in the domain

2.2 Rotational Invariance: Rf (R−1~x) = f (~x)

In the following, we always assume that the vectorfield ~f has a limited sup-
port.

Rotational invariants M of a vector/tensor-field fulfill:

~M(Rf(R−1~x)) = ~M(f(~x))

To compute them from the field f(~x), we first construct tensors mA

mA(f) =

∫
�d

~x⊗ . . .⊗ ~x︸ ︷︷ ︸
m

⊗ f(~x)dV

which explicitly reads:

mAi1...imj1...jn =

∫
�d

xi1 · · ·ximfj1...jn(~x)dx1 · · · dxd

The tensor rotation R(T ) is defined by:

T ′j1...jn =
∑
i1...in

(
n∏
k=1

Rikjk)Ti1...in

where Rij is the rotation matrix.
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If we compute the tensor mA for the rotated field f , we observe that the
rotation of the field f is equivalent to the rotation of the tensor mA:

mA(R(f(R−1~x)))

=

∫
�d

~x⊗ . . .⊗ ~x︸ ︷︷ ︸
m

⊗R(f(R−1~x))dx1...dxd

=x=Ry

∫
�d

R~y ⊗ . . .⊗R~y︸ ︷︷ ︸
m

⊗R(f(~y))dy1...dyd

=

∫
�d

∑
α1...αm

(
m∏
k=1

Rαkikyαk)
∑
β1...βn

(
n∏
l=1

Rβljl)fβ1...βn(~y)dy1 · · · dyd

=
∑

α1...αmβ1...βn

(
m∏
k=1

Rαkik)(
n∏
l=1

Rβljl)

∫
�d

(
m∏
k=1

yαk)fβ1...βn(~y)dy1...dyd

= R(mA(f))

In the following, we use the convention:∑
(a,b)

Tj1...jn :=
∑
i

(Tj1...jn , ja = jb = i)

∑
(a,b)(c,d)

Tj1...jn :=
∑
ij

(Tj1...jn , ja = jb = i, jc = jd = j)

etc.

We will call those sums traces, and total traces if the result is of 0th order.
Examples:∑

(1,3)

Tj1j2j3j4 =
∑
i

Tij2ij4 ,
∑

(1,3)(2,4)

Tj1j2j3j4 =
∑
ik

Tikik .

One observes that ∑
(a,b)

R(T ) = R(
∑
(a,b)

T )

( proof see Appendix 2.6 ).
One sees that all total traces are rotation-invariant.

2.2.1 Other types of rotational invariance

• rotational-invariant independent in value and domain: you leave out
total traces that have pairs between value (the i’s) and domain (the
j’s) indices of the tensor mA.
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• rotation-invariant only in value: only take traces between the value
indices

• rotation-invariant only in domain: only take traces between the domain
indices

2.2.2 Construct a basis for the rotational invariants of
a tensorset

If one has a set of tensors A with a certain number L of independent compo-
nents taking their symmetry into account, one wants to find a set of functions
whose values are invariant under a common rotation of the tensors in the ten-
sorset. Let M(d) be the number free parameters of a rotation in dimension d
(M(3) = 3,M(2) = 1 ) Then there will be L−M(d) independent rotationally
invariant functions (if you have tensors with order higher than 1 in the set).
It turned out that the total traces can be used for these functions. If you
want to have a complete basis for the invariants of one tensor T , you first
take all traces of T , then those of T ⊗ T , then of T ⊗ T ⊗ T and so on until
you have enough independent invariants.

The number of possibilities for total traces (
∑

(a1,a2)...(an−1,an) Tj1...jn ) of a
tensor with order n are:

(n− 1) · (n− 3) · . . . · 3 =
n!

2n/2(n/2)!

The left expression stems from the following: pair the first index with one of
the n − 1 remaining ones, then take the first remaining unpaired index and
pair it with one of the now n− 3 remaining ones, and so on.

Number of indices 2 4 6 8 10 12
Pairing possibilities 1 3 15 105 945 11340

You see that there are more summation possibilities than there are indepen-
dent invariants so one has to eliminate the redundant ones.

Reducing the number of candidates for invariants in the basis:
One observes that total traces of tensors which are symmetric in certain

groups of indices and that have the same number of connections between
these groups are equal. Examples for the number of connections: Let Tijk be
a total symmetric tensor. then T ⊗ T has two groups of indices in which it
is total symmetric (the first three and the second three indices). Then the
number of connections for

∑
(1,2)(3,4)(5,6) T ⊗ T is one ( the pair(3,4) ), for∑

(1,3)(2,4)(3,6) T ⊗ T it is three (all pairs).
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You can exploit this and take only one total trace for every number of
connections between groups of total symmetric indices in the tensor.

If you have tensors that are tensorproducts, you so do not take total
traces which leave two tensors in the tensorproduct unconnected, because
these are computable from traces of lower tensorproduct orders. Example:
Let Tij be a total symmetric tensor. Then

∑
(1,2)(3,4) T ⊗ T = (

∑
(1,2) T )2.

Getting a set of independent invariants: If the invariants are depen-
dent, then one invariant M1 is a function of the other invariants: M1(~a) =
f(M2(~a), ...Mn(~a))), where ~a is the vector with the independent components
of the tensorset A. You see then that

∂M1(~a)

∂~a
=
df(M2(~a), ...,Mn(~a))

d~a
=

n∑
i=2

∂f

∂Mi

∂Mi

∂~a

So if the invariants are dependent, their derivatives are linear dependent
everywhere. To test the linear dependence of the derivatives, it is sufficient
to test the dependence of their values at a random test vector. It is possible
then that independent invariants will be recognized as dependent, but this
is not very harmful because we have enough candidates. To get a complete
set of independent invariants, the following algorithm is applied:

1. Create a random test tensor at which the derivatives will be evaluated.

2. Create an upper-triangular matrix with as many columns as indepen-
dent tensor components and initially zero rows

3. For every candidate (a total trace of a Tensorproduct of the Tensors in
the tensorset) do:

Evaluate the first derivative of it at the test tensor

Append the derivative as the lowest row to the matrix and
”
zero

out“ by adding multiples of the upper rows (Gaussian elimination)

If that row is not zero now, the moment is linear independent of
the ones already in the basis and we add it to the basis, otherwise the
row is removed.

If the basis is complete(enough entries): stop.

Remark 1 The calculations have to be done in exact arithmetics (i.e. using
fractions of arbitrary precision numbers )
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3D Example: Vectorfield folded with the kernels 1, ~x, ~x⊗ ~x

2A =

∫
�3

~x⊗ ~x⊗ ~f(~x)dV, 1A =

∫
�3

~x⊗ ~f(~x)dV, 0A =

∫
�3

~f(~x)dV

Number of Components in A : 6 · 3 + 9 + 3 = 30
Number of independent invariants: 30− 3 = 27
The invariants are calculated as total traces from

0A⊗ 0A, 1A, 1A⊗ 1A, 1A⊗ 1A⊗ 1A, 0A⊗ 2A, 2A⊗ 2A.

First, we try to get the maximum number of invariants for every tensor
independently. So if a tensor is zero, one still has the contributions of the
remaining nonzero tensors.

By the way, the total traces of 1A are correlated to the coefficients of the
characteristic polynomial of 1A.

2.2.3 3D example: Scalar field folded with up to order
4 kernel

4A =
∫
�3 ~x⊗ ~x⊗ ~x⊗ ~x⊗ f(~x)dV, 3A =

∫
�3 ~x⊗ ~x⊗ ~x⊗ f(~x)dV,

2A =
∫
�3 ~x⊗ ~x⊗ f(~x)dV, 1A =

∫
�3 ~x⊗ f(~x)dV, 0A =

∫
�3 f(~x)dV

The number of A-components is: 1 + 3 + 6 + 10 + 15 = 35 . After translating
the tensor set A to its gravity center (see section 2.4), 1A get zero and can
be ignored. We also dont worry about 0A, because it is already rotation
invariant. The remaining number of independent invariants is then: 35−4 =
31. The entries of the moment basis are then calculated as total traces of

2A, 2A⊗ 2A, 2A⊗ 2A⊗ 2A,
3A⊗ 3A, . . . , 3A⊗ · · · ⊗ 3A︸ ︷︷ ︸

6

4A, . . . , 4A⊗ · · · ⊗ 4A︸ ︷︷ ︸
4

2A⊗ 4A, 2A⊗ 3A⊗ 3A, 3A⊗ 3A⊗ 4A

(see appendix 2.7).
These invariants are also invariant against mirroring of the field. If you

want to distinguish between mirrored versions of the field f and original ones,
you have to include ∑

(1,10),(2,13),(3,16),(4,11),(5,14),(6,17),(7,12),(8,15),(9,18)

3A⊗ 3A⊗ 3A⊗ ε⊗ ε⊗ ε

into the basis where ε is the total antisymmetric tensor.
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N 0 1 2 3 4 5 6 7 8
L(N, 3) 1 4 10 20 35 56 84 120 165

# invariants of:
scalarfields 1 2 7 17 32 53 81 117 162
vectorfields 1 4 27 57 102 165 249 357 492
stressfields 3 21 57 117 207 333 501 717 987

Table 2.1: Number of independent rotational invariants for tensor sets of
dimension 3 and maximum order N

2.2.4 Number of independent invariants for 3D-tensor
fields

We first look at the scalar-field case, where the tensors nA are total symmetric.
The number of components of a total symmetric tensor is equivalent to the
number of different words (= index sets) over an alphabet with d characters
(=the different index values) without the permutated versions of the words.
This number is

(
n+d−1
d−1

)
( see [2], Word Problem ). The total number of

independent components L of a tensorset A with maximum order N is:

L(N, d) =
N∑
n=0

(
n+ d− 1

d− 1

)
=

(
N + d

d

)

Reasoning for that: The independent components in the whole tensorset of
all tensors 0A, ..., NA in dimension d can be expressed as the components of
an Nth-order (d + 1)-dimensional tensor T where the components of iA are
the components of T where N − i indices are (d + 1) and i indices are in
the range [1, ..., d] . The number of components of that new tensor is then
accordingly

(
N+d
d

)
. For non-scalar tensor fields f(~x), you have to multiply L

with the number of independent f components (e.g. 3 for a vectorfield, 6 for
a stressfield). If you want the maximum number of independent rotational
invariants computed from A, you have to subtract the dimension of the ro-
tation group SO(3) from the number of components of A which is three (or
two if the maximum tensor order is one ). If having also translational and
value invariance, of course the number is reduced by another four, so for
d = 3, N = 4, the number of scalar field invariants is 28.

See table 2.1 for the numbers.



2.3. AFFINE INVARIANCE 17

2.3 Affine Invariance

To achieve affine invariance for scalar fields, a possibility is to apply a basis
transform to the tensor set that converts 2A to a unit matrix. To achieve
that, we make an eigenvector decomposition of 2A:

2A = V DV T , D =

 D11 0
. . . 0

0 Dnn


and Dii being the i-th eigenvalue. D can be expressed as a product EET ,
with E being a diagonal matrix with Eii =

√
Dii. It holds :

2A = V EIETV T

with I being the unit matrix.

If we setB = V E we have 2A = BIBT . One sees that basis-transformation
matrix from a tensor I to the tensor 2A is B. To transform from 2A to I, one
has to transform with B−1 = E−1V −1 with V −1 = V T , E−1 being diagonal
and E−1

ii = 1/
√
Dii.

2.4 Translational Invariance: ~M(f (~x)) = ~M(f (~x−
~t))

2.4.1 General Principle

For translation invariance, one always computes a vector ~c from the field
which moves in the same way the field f(~x−~t) moves (so ~c+~t is constant).
Then one computes the invariants M in a coordinate system with origin in
−~c. For scalar fields, a simple choice for −~c is the center of gravity which
can be computed as follows from A:∫

�d
~xf(~x)dV∫

�d
f(~x)dV

=
1A
0A

The new A′ are computed from A and ~c for scalar fields as following:

0A
′

= 0A, 1A
′
= 1A+ ~c 0A,

2A
′

= 2A+ ~c⊗ 1A+ 1A⊗ ~c+ ~c⊗ ~c 0A
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In the general case, where f(~x) can be a tensor field, and one has ~x-powers
higher than (~x⊗)2 it is more complicated: You have to express∫

�d

(~x+ ~c)⊗ · · · ⊗ (~x+ ~c)⊗︸ ︷︷ ︸
n

f(~x)dV

As a combination of A and ~c. The tensors nA′ of the translated tensorset A′

are then computed as follows:

nA′ =
n∑
k=0

(
n

k

)
B(k, n)

with

B(k, n) = C(k, n) symmetrized in the first n indices

C(k, n) = ~c⊗ · · · ⊗ ~c⊗︸ ︷︷ ︸
k

n−kA

To be more efficient, we look at it componentwise and go to a certain dimen-
sion:

Translation in 3D: We use the following notation in 3-dimensional space:
aijk denotes a tensor component of the total symmetric tensor i+j+kA which
which has i indices that are 1, j indices that are 2, and k indices that are 3.
The translation of this tensorset is computed by:

a′IJK =
I∑
i=0

J∑
j=0

K∑
k=0

(
I

i

)(
J

j

)(
K

k

)
aijkdI−i,J−j,K−k

where dijk := ci1c
j
2c
k
3 denotes the components of a tensor constructed from

the translation vector ~c. The formula above results from

a′IJK =

∫
�3

(x1 + c1)I(x2 + c2)J(x3 + c3)Kdx1dx2dx3

If you look at all components to compute, you see that the total number of
summands for the previous formula applied for all components is:

Ls :=
N∑
I=0

(I + 1)
N−I∑
J=0

(J + 1)
N−I−J∑
K=0

(K + 1) , N = max. order in A

One will then additionally have Lc := (N +1)(N +2)−4 multiplications you
need for the calculation of d : one can compute every higher order compo-
nent by the multiplication of a lower-order component with a component of
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~c. Effort versus tensor order (effort = number multiplications):
Maximum Order(N) 2 3 4 5 6

Approximated effort: 2Ls + Lc : 66 188 455 980 1932
Measured by implementation of the program: 27 101 287 689 1467

2.4.2 Vectorfields ~f and alternate choices for −~c
One does not always want to center the coordinate system in the center of
gravity. For higher-order fields, a center of gravity is not defined. So you
have to look for other choices of −~c.

At the center of gravity in the scalar case the moment
∑

(1,2)
1A
′ ⊗ 1A

′

takes its minimum with respect to ~c. So a good choice for ~c in the other
cases would be the minimum of a moment. To have a unique minimum, we
choose a moment which is quadratic in ~c. Then we get then the minimum
from a linear equation. For vectorfields, let’s look at the invariants

m′1 :=
∑

(1,2)(3,4)

1A
′ ⊗ 1A

′
and m′2 :=

∑
(1,4)(2,3)

1A
′ ⊗ 1A

′

At the minimum we have ∂m′i/∂~c = 0. In the following formulas we use
matrix calculus, where 1A is a matrix, 0A a column vector, I the unit matrix.

∂m′1/∂~c = 0 gives− 0A 0A
T

+ 2

 ( 0A1)2 0
. . .

0 ( 0Ad)
2


~c = −

∑
(1,2)

1A

 0A

∂m′2/∂~c = 0 gives− 0A
T 0A I + 2

 ( 0A1)2 0
. . .

0 ( 0Ad)
2


~c = − 1A 0A

The above calculation is not possible if the vector 0A vanishes which often
occurs for the interesting vectorfields ~f(~x) All invariants with order 2 in ~c
rely on 0A. So you use either minima of higher order invariants or extract
the translation vector directly from the vectorfield and not A. Here, one
choice for the translation vector −~c is the gravity center of the vector-lengths∫
�d

~x||~f(~x)||dV∫
�d
||~f(~x)||dV

.
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2.5 Scale Invariance

In this section we will describe how to make the rotational invariants de-
scribed above scale-invariant.

2.5.1 Scale Invariance in Value: ~M(f(~x)) = ~M(sf(~x))

For the scale invariance , you have to look in which order the scaling factor s
appears in the invariants. This s-order is just the number of A-tensors from
which ~M is calculated (

∑
(1,4)(2,5)(3,6)

3A⊗ 3A for example has an s-order of 2).

We denote it ov (order in value). Let ~M(k) denote the subset of invariants

with ov = k. Let ck := || ~M(k)||∞ = maxi|M(k)i| denote a norm for these
invariant sets. You want to find a factor s so that for every set of invariants
cks
−k ≤ 1 and for one set cks

−k = 1. Then multiply ~M(k) by s−k. The
resulting invariant set is scale invariant. Let l be the order of the set with
cls
−l = 1 so s = l

√
cl. A consequence is ck/ l

√
cl
k ≤ 1⇒ k

√
ck ≤ l

√
cl. So s will

be set to maxk k
√
ck.

2.5.2 Scale Invariance in Domain: ~M(f(~x)) = ~M(f(~x/s))

We define mA′ as the A-tensor computed from the domain-scaled field:

mA′ := mA(f(~x/s)) =

∫
�d

(~x⊗)mf(~x/s)dx1...dxd

Substitution of ~x with ~y = ~x/s gives

mA′ =

∫
�d

(s~y⊗)mf(~y)(sdy1)...(sdyd) = sm+d mA

You see that the order the scaling factor in 3A is the number of ~x-powers
plus the dimension of the field. We will call that order the domain order od
of the tensor A. So od(

nA) = n + d if f is defined on �d. If you want to
compute the domain order od of the invariants, you refer to the order of the
source tensors of the total traces. Example in 3D: od(

∑
(1,4)(2,5)(3,6)

3A⊗ 3A) =

od(
3A ⊗ 3A) = 2od(

3A) = 12. If ~M(l) denotes the subset of invariants with

od = l, the moment invariants are ~M(l)s−l with s = maxl
l

√
|| ~M(l)||∞. Proof

is in analogy to section 2.5.1.
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2.5.3 Scale Invariance in Domain and Value: ~M(f(~x)) =
~M(spf(~x/s))

Here, the combined order oc = ov + od is of importance. Example in 3D
with p = 1: The trace of 3A has combined order 6+1=7, the trace of 3A⊗ 3A
has combined order 7 · 2 = 14. Again, you look for the order by looking
at the order of source tensors of the total traces. If ~M(l) now denotes the

subset of invariance with oc = l, the invariant moments are ~M(l)s−l with

s = maxl
l

√
|| ~M(l)||∞. Proof is in analogy to section 2.5.1.

2.5.4 Scale Invariance Independently in Domain and
Value: ~M(f(~x)) = ~M(sf(~x/t))

We construct the moment invariants in the following way: Let ckl := || ~M(k, l)||∞
be the norms of the invariant’s subsets with domain order od = k and value
order ov = l. You construct the quotient of two norms qk := cl2k1l1/c

l1
k2l2

with
the property k = od(qk) = l2k1 − l1k2 > 0 and ov(qk) = l1l2 − l2l1 = 0 (so
the value scaling factor is eliminated). Of course,one should choose cl1k2l2 6= 0.
Now from s = max { k

√
qk} one constructs the domain-scale-invariant mo-

ments ~M(k, l)s−l. Subsequently, you apply the method for scale invariance
in value as previously described in section 2.5.1.

Example: Scalar case with up to order 4 kernel, 3D Point-Cloud
setting For this case, the invariants {

∑
(0,1)

2A} with the norm c21 and

{
∑

(0,1),(2,3)
4A} with the norm c41 are a good choice for the construction of

the quotients. We have then k1 = 4, k2 = 2, l1 = l2 = 1, k = 4− 2 = 2, q2 =
c41/c21, s = 2

√
q2 =

√
c41/c21. We also have then (as experiments showed)

always t = 1
√
s−2c21 = c2

21/c41. The scale-invariants are then ~M(k, l)t−ks−l.
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2.6 Proof of
∑

(a,b)R(T ) = R(
∑

(a,b) T )

We show that trace taking is a rotationally invariant operation (Of course
this is a known fact from tensor algebra). In terms of components, we have
to prove the relation

d∑
k=ja=jb=1

d∑
i1,...,in=1

(
n∏
l=1

Riljl

)
Ti1,...,in =?

d∑
i1,...,in

w.o. ia,ib
=1

 ∏
l∈{1,...,n}
\{a,b}

Riljl

 d∑
m=ia=ib=1

Ti1,...,in

We start with the left side and transform it to the right side. (without
loosing generality, we set a = 1 and b = 2).

d∑
k=j1=j2=1

d∑
i1,...,in=1

∏
l

RiljlTi1,...,in

separate the factors with l = 1, 2, replace j1,2 by k =
d∑

k=1

d∑
i1,i2=1

d∑
i3,...,in=1

Ri1kRi2k

(
n∏
l=3

Riljl

)
Ti1,...,in

reorder it =
d∑

i3,...,in=1

d∑
i1,i2=1

d∑
k=1

Ri1kRi2k︸ ︷︷ ︸
use orthonormality of R:

{
1: i1=i2
0: i1 6=i2

}

(
n∏
l=3

Riljl

)
Ti1,...,in

only summands with i1 = i2 contribute =
d∑

i3,...,in=1

d∑
m=i1=i2=1

(
n∏
l=3

Riljl

)
Ti1,...,in

reorder it =
d∑

i3,...,in=1

(
n∏
l=3

Riljl

)
d∑

m=i1=i2=1

Ti1,...,in

This proves the rotational invariance.

2.7 Invariant moments for scalarfields with

up to 4th order in ~x

The tables 2.2 and 2.3 each represent a basis for the rotation-invariant mo-
ments of a scalarfield in 3D. Every row in these tables corresponds to an
invariant moment. On the left side, the tensor is written from which the
total traces are taken. On the right, the index pairs are written which are
summed over. The index indices start with 0 (are zero-based).
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2A : (0 1)
2A⊗ 2A : (0 2)(1 3)

2A⊗ 2A⊗ 2A : (0 2)(1 4)(3 5)
3A⊗ 3A : (0 3)(1 4)(2 5)

(0 1)(3 4)(2 5)
3A⊗ 3A⊗ 3A⊗ 3A : (0 6)(1 9)(2 10)(3 7)(4 8)(5 11)

(0 3)(1 6)(2 9)(4 7)(5 10)(8 11)
(9 10)(0 3)(1 6)(2 11)(4 7)(5 8)
(3 4)(6 7)(9 10)(0 5)(1 8)(2 11)

3A⊗ 3A⊗ 3A⊗ 3A⊗ 3A⊗ 3A : (0 12)(1 15)(2 16)(3 9)(4 13)(5 17)(6 10)(7 11)(8 14)
4A : (0 1)(2 3)

4A⊗ 4A : (0 4)(1 5)(2 6)(3 7)
(0 1)(4 5)(2 6)(3 7)

4A⊗ 4A⊗ 4A : (0 4)(1 5)(2 8)(3 9)(6 10)(7 11)
(8 9)(0 4)(1 5)(2 6)(3 10)(7 11)
(4 5)(8 9)(0 6)(1 7)(2 10)(3 11)
(0 1)(4 5)(8 9)(2 6)(3 10)(7 11)

4A⊗ 4A⊗ 4A⊗ 4A : (0 8)(1 12)(2 13)(3 14)(4 9)(5 10)(6 11)(7 15)
(0 8)(1 9)(2 12)(3 13)(4 10)(5 11)(6 14)(7 15)
(0 4)(1 8)(2 12)(3 13)(5 9)(6 10)(7 14)(11 15)
(12 13)(0 4)(1 8)(2 14)(3 15)(5 9)(6 10)(7 11)
(12 13)(0 4)(1 8)(2 9)(3 14)(5 10)(6 11)(7 15)

2A⊗ 4A : (2 3)(0 4)(1 5)
2A⊗ 3A⊗ 3A : (2 3)(0 5)(1 6)(4 7)

(2 3)(5 6)(0 4)(1 7)
(0 2)(1 5)(3 6)(4 7)

3A⊗ 3A⊗ 4A : (0 1)(3 4)(6 7)(2 8)(5 9)
(0 1)(2 6)(3 7)(4 8)(5 9)

Table 2.2: a set of total traces that forms a basis for the rot.inv. moments
in the 3d scalar case
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2A : (0 1)
2A⊗ 2A : (0 2)(1 3)

2A⊗ 2A⊗ 2A : (0 2)(1 4)(3 5)
3A⊗ 3A : (0 3)(1 4)(2 5)

(0 1)(3 4)(2 5)
3A⊗ 3A⊗ 3A⊗ 3A : (0 6)(1 9)(2 10)(3 7)(4 8)(5 11)

(0 3)(1 6)(2 9)(4 7)(5 10)(8 11)
(9 10)(0 3)(1 6)(2 11)(4 7)(5 8)
(3 4)(6 7)(9 10)(0 5)(1 8)(2 11)

4A : (0 1)(2 3)
4A⊗ 4A : (0 4)(1 5)(2 6)(3 7)

(0 1)(4 5)(2 6)(3 7)
4A⊗ 4A⊗ 4A : (0 4)(1 5)(2 8)(3 9)(6 10)(7 11)

(8 9)(0 4)(1 5)(2 6)(3 10)(7 11)
(4 5)(8 9)(0 6)(1 7)(2 10)(3 11)
(0 1)(4 5)(8 9)(2 6)(3 10)(7 11)

2A⊗ 4A : (2 3)(0 4)(1 5)
2A⊗ 2A⊗ 4A : (0 4)(1 5)(2 6)(3 7)

(4 5)(0 2)(1 6)(3 7)
2A⊗ 2A⊗ 2A⊗ 4A : (0 6)(1 7)(2 4)(3 8)(5 9)

2A⊗ 4A⊗ 4A : (2 3)(0 6)(1 7)(4 8)(5 9)
(2 3)(6 7)(0 4)(1 8)(5 9)
(0 2)(1 6)(3 7)(4 8)(5 9)

2A⊗ 3A⊗ 3A : (2 3)(0 5)(1 6)(4 7)
(2 3)(5 6)(0 4)(1 7)
(0 2)(1 5)(3 6)(4 7)

2A⊗ 2A⊗ 3A⊗ 3A : (4 5)(0 7)(1 8)(2 6)(3 9)
3A⊗ 3A⊗ 4A : (0 1)(2 6)(3 7)(4 8)(5 9)

Table 2.3: a second set of total traces that forms a basis for the rot. inv.
moments in the 3d scalar case
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The computation of the total traces of tensors with order ≥ 12 in table
2.2 is very expensive. One can save computing time by including more traces
from combined tensors into the basis, which is done in table 2.3. However,
this basis will be incomplete once some of the source tensors mA get zero.
The tensors mA with odd m get zero if the field fulfils f(~x) = f(−~x), the
tensors with even m get zero once f(~x) = −f(−~x). The source tensors mA
can have zeros even for other reasons.

Results and Conclusions

We have presented a method to compute moments of a finite tensorfield in-
variant to rotation, scale and translation which are computed in the following
steps: At first a set of structure tensors is computed, then we it is made in-
variant to translation, then the basis for rotationally invariant moments of it
is computed, and finally the basis is made invariant to scale. We have also
given some figures on the efficiency of the different steps. Then we show our
method for the case of a 3d scalar field with tensor orders up to 4 in the ten-
sorset. The resulting moments are given in table 2.2. The evaluation of one
set of the corresponding polynomials in the mA-components, optimized by a
quasi-Horner-scheme in double precision (in the paper, I wrongly assumed
long double, as my compiler interpreted long double as double) needs 2.6µs
on an Intel Xeon 3GHz CPU. Further optimization can be achieved by com-
puting intermediate tensors along a tensor hypergraph (see next chapter).

2.8 Comparison to other tensor invariants

Here, a comparison to the invariants mentioned in section 1.2 is given:
Compared to the method of [17] which computes Eigenvalues and eigen-

vectors of up to fourth order structure tensors, our invariants are more effi-
cient to compute (as you will see in the following chapter 3). We could re-
place our mA-tensors described in section 2.2 by these structure tensors, but
the disadvantage is that they are not additive for different spacial domains,
which is used in our octree summing algorithm for speeding up computations
described in Appendix 4.7.1. Another disadvantage is that you can’t easily
compute versions for a translated origin for them which is important when
computing translation-invariant properties of tensorfields.
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Chapter 3

Efficient Computation of
Higher-Order Moment
Invariants Using a Graph
Representation

This chapter is about methods to compute the moment invariants introduced
in the previous chapter more efficiently.

To look at the structure of the invariants in a different way, we give the
set of invariants in the so-called Einstein notation (table 3.1): The type of
the tensor is indicated here by the number of its indices, and the pairs of
the paired sums in the previous chapter are now indicated by an index with
same letter, once as upper and once as lower index. Because our tensors live
in euclidean space with a unit metric tensor, it doesn’t matter which of the
two indices is an upper index (co-variant) or a lower index (contra-variant).

M0 = AiA
i , M1 = AjAi

i
kAlAmn

lAmAknj , M2 = AiAjA
j i , M3 = Ai

i

, M4 = AijA
ij , M5 = AijA

j i , M6 = AijAk
jAki , M7 = AijA

j
kA

ki ,
M8 = AijAklA

ljAki , M9 = AklAi
ilAj

jk , M10 = AjkAi
ikAj l

l , M11 =
AjkA

k
l
lAi

ij , M12 = Ai
i
kAj

jk , M13 = Ai
i
jA

j
k
k , M14 = Aij

iAjk
k ,

M15 = AijkA
ijk , M16 = AijkA

ikj , M17 = Ai
i
lAj

j
mAk

k
nA

mnl , M18 =
Ai

i
kAj

j
lAmn

mAlnk , M19 = Ai
i
kAj

j
lAmn

lAmnk , M20 = Ai
i
kAj

j
lA

l
mnA

mnk

, M21 = Ai
i
jAklmA

k
n
nAlmj , M22 = Ai

i
jAklmA

m
n
nAklj , M23 =

Ai
i
jAklmA

k
n
mAlnj , M24 = Ai

i
jAklmA

kl
nA

mnj , M25 = Ai
i
jAklmA

km
nA

lnj

, M26 = Ai
i
jAklmA

m
n
kAlnj

Table 3.1: set of invariants to be computed for a vector field in Einstein
notation
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This notation shows an important property of the contractions: associa-
tivity. To compute the final moments using some arbitrary computation order
using intermediate tensors, just put braces into the product of indexed ten-
sors. This ”brace-putting” will be the base of the graph-based optimization
done in this chapter. I tried out the following possibilities for computation
of the moment invariants:

• Polynomials in DNF in the source tensor components

• Horner scheme for the resulting polynomials

• The polynomials optimized for common sub-expressions

• Graph-based optimization

The graph-based optimization performed best, see tables ( 3.2,3.3 ).

3.1 Notes on the visualizations used in the

following sections

3.1.1 The tensor graph

It is common usage as mentioned e.g. by Penrose in [14],section 12.8, to
visualize a set of tensors with contracted indices as a graph. To visualize
graphs of tensors where the with two sets of symmetric indices stemming
from moments of vector- or tensorfields, I use graphs where every basic tensor
is visualized by two circles directly attached to each other, each circle sized
according to the number of indices.

Each contracted index pair is then indicated by a line between the circle
of the corresponding symmetric index set and the corresponding index of the
other basic component.

The circle is used to make clear that it makes no difference to which
position of the circle , i.e. to which index in the set of symmetric indices
an edge representing a contraction is attached to. Uncontracted indices are
indicated by open edges attached to only one circle(s). If having only one
set of symmetric indices of course only one circle is needed.

3.1.2 The tensor hypergraph

To visualize which tensors are contracted together to form a new tensor, I
use a (directed) graph where each node is a tensor represented by a tensor
graph inside a circle. We will call it a tensor hypergraph. The tensor graphs
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of final results, i.e. tensors with no open indices, will be drawn with a black
background. The direction is indicated by the direction on the page, that
means that the base tensors (the moments) will be draw on the bottom and
the results of a contraction one level above. To indicate that a tensor is
computed by a contraction of two instances of the same base tensor, the
result tensor is connected by two lines bent a little bit outwards to its base
tensor (see figures on pages 34 ff ).

3.1.3 Image creation

To create the actual tensor hypergraph images in this document I wrote a
small tool in C++ that automatically creates the tensor hypergraph images
in postscript from the graph datastructures I use to create the code for the
moment Invariant computation.

For the tensor graphs it places all base moments in a circle in the or-
der they are in the graph and then connects them through bent lines going
through the middle. Self-contractions are indicated on the outside. A dy-
namic spring layout would give nicer graph images, but with my method it
is made sure that the tensor graphs always have the same size.

For the tensor hypergraph the image is created level by level: In the
bottom level, the base tensors(the moments) are drawn, in the level above
all tensors that are calculated only from the tensors in the level(s) below and
so on.

To prevent image cluttering at least a little bit I ordered the tensors in
one level by the number of the leftmost tensor of the tensor in the level below
they are connected to.

3.2 Cost estimate for invariant computation

using contraction of tensor products

To asses the costs for a certain ”brace configuration” which we will use to
find an optimal one, we need some formulas to describe the cost of a tensor
product and contraction in one step. For simplicity I used only formulas for
product+contractions of non-symmetric tensors which is an upper bound.

number of additions: na = df (dc − 1)

number of multiplications: nm = dfdc(t− 1)
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where

• d is the dimension of the tensors

• f is the number of free indices of the result

• c is the number of indices that are contracted in one step

• t is the number of tensors the new tensor is computed from

3.3 Optimization by decomposition

Let’s take M17 = Ai
i
lAj

j
mAk

k
nA

mnl as an example. If you don’t decompose
the moment invariant computation at all and don’t mind symmetry, you
would have

f = 0, c = 6, t = 4 =⇒ na = 728, nm = 2916

If you calculate the DNF of the polynomial which minds tensor symmetry,
you still have na = 299, nm = 1155.

We use associativity of tensor products and contractions to calculate them
in an optimized way.

if you would decompose it like this:

Ai
i
l︸︷︷︸

=Bl

Aj
j
m︸ ︷︷ ︸

=Bm︸ ︷︷ ︸
=Clm

Ak
k
n︸︷︷︸

=Bn

︸ ︷︷ ︸
=Dlmn

Amnl

︸ ︷︷ ︸
=M17

You would use in three dimensions:

f c t na nm
B 1 1 1 6 0
C 2 1 2 0 9
D 3 1 2 0 27

M17 0 3 2 26 27
sum 32 63

You see that by decomposition, you save a lot ( You use 63 instead of 2916
multiplications )
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If you decompose it in an other way:

Ai
i
l︸︷︷︸

=Bl

Aj
j
m︸ ︷︷ ︸

=Bm

Ak
k
n︸︷︷︸

=Bn

Amnl

︸ ︷︷ ︸
=Cml︸ ︷︷ ︸

=Dl︸ ︷︷ ︸
=M17

You would use in three dimensions:

f c t na nm
B 1 1 1 6 0
C 2 1 2 18 27
D 1 1 2 6 9

M17 0 1 2 2 3
sum 37 39

You see that by re-ordering the computations you achieve further savings
(here 39 instead of 63 multiplications have to be used)

3.3.1 The tensor graph

Further savings are achieved by re-using the intermediate tensors B,C,D
in other moments and minding the symmetry of the tensors. To recognize
the tensors which are the same if index permutations are allowed, we con-
vert them into graphs and compute their normal forms respective to index
permutations.

formally speaking, our tensor graph consists of:

• a list of nodes S that represent the tensors. One tensor can be in there
multiply. The nodes are labeled by their tensor.

• a list of edges. Each edge consists of 2 node ids and 2 endpoint ids,
the lower node id coming first. The endpoint ids denote the group of
interchangeable indices in the tensor the edge is connected to. The list
of edges is always lexicographically sorted by (1) it’s node ids and (2)
the according labels.
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3.3.2 Representation of moment invariants as graphs

AijAk
jAki AijAklA

ljAki Ai
i
kAj

jk Ai
i
lAj

j
mAk

k
nA

mnl

M6 M8 M12 M17

An edge here represents a contracted index, a group of directly attached balls
represents a tensor, and a ball represents a group of interchangeable indices
inside a tensor. In this example, tensors computed from vector fields are
used which have special symmetry properties: The order-1 first indices are
always interchangeable.

3.4 Representation of tensors as as graphs

here, the final step of composition as described previously is drawn as a
graph. The tensors B and D are represented as a graph with one open edge
each which represents a free(=uncontracted) index.

3.4.1 Normalization of the tensor graph

To normalize the graph, we first sort the nodes by their tensor. Then we
we try out each permutation of the nodes that does not interchange nodes
with different tensors and take that one where the graph is smallest in our
special order: The graphs are compared by lexicographically comparing the
list of edges. of course , the node ids of the edges have to be updated in each
permutation and the edges have to be re-sorted.
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3.4.2 Creation of the hypergraph

To optimize the computation of all moment invariants in the set, a directed
hypergraph is created whose nodes are graphs. Every node again represents
a tensor. Every node is linked to the (max. two) sub-nodes it was created
from.

In the creation process, a sorted list of tensor graphs is maintained.
The process starts at the moment tensor graphs and tries to remove each

edge recursively. (in one step, only one edge is removed)
It assesses each split by the cost function nm = dfdct of the split and its

sub-splits. Tensor graphs that are re-used are counted only once.
The permutations of nodes that lead to the normal forms of the sub nodes

and the edges that were split are saved for later use.

3.4.3 Join nodes

Afterwards the nodes that have only one parent and whose parents have
only one child are joined with their parent. This is done because the child
has unnecessary free indices that makes its computation expensive: if you
contract two indices, the number of free indices f is decreased by two, the
number of contracted indices c only increased by 1. If you look at the cost
function this means a saving of a factor of d.

In that join of course you have to be careful that you convert the permu-
tations and split edges correctly.

3.5 Create the tensors from the graph

After the hypergraph has been created, the computation of the intermediate
tensors and the moment invariants(the black graphs) has to be created from
it. To do this, we sort the graph topologically into different levels: The first
level consists of the nodes that don’t have any subnodes, the upper levels of
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Figure 3.1: The tensor hypergraph before join (invariant set 1)
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M
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Figure 3.2: The tensor hypergraph (invariant set 1)
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Figure 3.3: The tensor hypergraph before join (tensor set 2)
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Figure 3.4: The tensor hypergraph (tensor set 2)
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those nodes that only have subnodes in levels below. Then, the tensors are
computed in that order.

3.5.1 Use symmetry

The symmetry should play a role here, so to compute one tensor, we use a spe-
cial type that accounts for repeated entries because of symmetry
(repeatTensor): For every unique component, we store a polynomial

• in the unique tensor components of the tensor(s) corresponding to the
immediate subnodes, and

• in the unique tensor components of the overall source tensors (those
on the lowest level of our topological order), to determine if they are
duplicated.

For every possible tensor multi-index, we store the id of the unique com-
ponent. From the outside, this type can just be accessed as a tensor with
polynomials as components.

3.5.2 Example for repeatTensor

If you would have the tensor product Bij = aiaj with ~a = (x+y, x) you have
the tensor

B =

(
x2 + y2 + 2xy x2 + xy

x2 + xy x2

)
This is expressed with a repeatTensor as

(
0 1
1 2

)
,

 a0a0

a0a1

a1a1

 ,

 x2 + y2 + 2xy
x2 + xy
x2


3.5.3 Compute the new tensor from its subnodes

For the new tensor we first create an object which represents the tensor
that results from the specific tensor product. It is composed of objects that
represent

• a tensor contraction. For this, the edge endpoints have to be converted
to tensor indices using the symmetry groups in the tensor.

• a tensor product.
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• a tensor with permuted indices. The index permutation has to be
computed from the permutation of the nodes the indices are attached
to.

To keep the memory usage low (the polynomials easily use a large portion
of memory), the actual components of these objects are only computed if
accessed. This tensor is then in turn converted to a repeatTensor with the
properties as described above.

3.5.4 Create the actual C++-code

Every repeatTensor object gets assigned a unique id in computation order.
If we have computed the repeatTensor objects, we have to convert their
computation into C++-code: Every repeatTensor is represented by an array
in its unique components with a short unique alphabetic name computed from
its id. For each unique component, the polynomial in the unique components
of it’s sub-tensors is printed out. Further optimization could be achieved by
leaving out unused components of the intermediate tensors and computing
common products only once. This is not done yet.

3.6 Statistics for the computation of the mo-

ment invariants

Here, statistics for the computation of the numeric values after having con-
verted the formulas to C++-code are given. In table 3.2 the statistics for an
invariant set for Vector fields and in 3.3 the statistics for an invariant set for
scalar fields and pointclouds are given. All times were measured on an Intel
Xeon 3 Ghz, 32 bit , double precision. For every optimization method, the
number of additions (Adds),muliplications (Mults),the runtime of the opti-
mized code (Time), and the number of buffer float variables (Vars) needed is
given. To assess the optimization, it is compared against three other methods
to compute the invariants:

• A polynomial in DNF in the source tensor components (the components
of 0A, 1A, 2A )

• That polynomial ,but evaluated using a quasi-horner scheme (common
factors are factored out)

• The factored-out polynomial optimized by computing common subex-
pressions of the different invariants first
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Table 3.2: Statistics for invariants of moments computed from 3D vector
fields

Optimization Method Adds Mults Time[µs] Vars
none(polyn. in DNF) 5378 19176 18 0

factoring out 5378 5946 6.8 0
common subexpressions 3676 2228 4.8 830

tensor hypergraph 624 780 0.68 201

Table 3.3: Statistics for invariants of moments computed from 3D scalar
fields or point clouds

Optimization Method Adds Mults Time[µs] Vars
none(polyn. in DNF) 1779 5611 4.5 0

factoring out 1779 2833 2.6 0
common subexpressions 1513 1317 2.1 419

tensor hypergraph 596 686 0.92 198



Chapter 4

Application of Moment
Invariants To Object
Recognition in 3D Point Clouds

One can do object recognition 3D point clouds with our moment invariants.
The point clouds stem e.g. from a stereo image or a laser scan.

To use these moments which are defined for scalarfields, you construct a
scalar field consisting of a set of delta functions centered at the points. The
tensors mA are calculated as:

mA =

∫
�3

(~x⊗)m
∑
i

δ(~x− ~xi)︸ ︷︷ ︸
f(~x)

dV =
∑
i

~xi ⊗ ...⊗ ~xi︸ ︷︷ ︸
m

(4.1)

In our case, we use for the domain order of the source tensors defined in
section 2.5.2 only the ~x-order m.

4.1 Principle of our object recognition algo-

rithm

Our algorithm will recognize objects saved in a reference database in an
unknown pointcloud and compute a unlikelihood value for every object in
our database to be contained in the unknown pointcloud. The unlikelihood
values are all initialized to 1.

41
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4.2 Build the database

For every object, you calculate a large number of invariant sets ( in our
examples up to 50000). Each moment set is computed from a ball centered
on the object’s surface. For the centers, we use the gravity centers of the
leaves of the octree structure we used for acceleration (see section 4.7) After
having computed the invariant sets you do some coordinate transformations
in the invariants’ space to have a better distance function. (see section 4.6
). To reduce the number of moment sets, you can cluster them (see section
4.6.1 ). After that, you insert them into a 28-dimensional adaptive kd-tree
and store for each leaf the id of the object it belongs to.

4.3 Analyze an unknown pointcloud

If you want to analyze a certain unknown pointcloud of a surface, you cal-
culate the moments sets of some randomly chosen balls centered on points
of the pointcloud. Each of these invariant sets can be a witness that the
pointcloud contains a certain object, so we call them witnesses. For each
witness, you do the following:

• Get all invariant sets of the database which are inside a hypercube of
max-distance 0.5 to the witness.

• Compute the distance dmin of the closest of these invariant sets to the
witness. Let imin be the id of the object this moment set is belonging
to.

• Compute the distance dother of the closest moment to the witness which
is inside the hypercube and not belonging to object imin.

• If 1.2dmin < dother, we multiply the unlikelihood value for imin by 1 −
(dother − dmin).

If one of the unlikelihood values drops below a certain threshold, we con-
sider an object as recognized and stop. Usually 100 witnesses are enough to
recognize the pointcloud reliably.

4.4 Probabilistic Reasonings

If we assume that the unknown pointcloud is a noised subset of one of the
pointclouds in the database it follows that the invariant sets of the unknown
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pointcloud are a noised subset of the invariant sets of the pointclouds in the
database. Let o be the index of the objects and i be the index of a moment
set of an object. We can then compute the probability distribution of the
28-dimensional invariant sets with the following assumptions:

• We have for every component of the moment set noise vi that has a
Gaussian distribution with p(vi) = 1

σ
√

2π
e−v

2
i /(2σ

2) which gives a distri-
bution of

p(~v) =
28∏
i=1

p(vi) = ce−~v
2/(2σ2), c :=

1

(σ
√

2π)28

for the 28-dimensional vector of moment invariants.

• All objects are equally probable to be the sample.

We then have the basis set Ω = {1..n}×{1..mk}×�28 with the probability
distribution

p(a) =
p(~x− ~xi)
nmk

, a = (k, i, x) ∈ Ω ,

where n is the number of objects, k the object id, mk the number of invariant
sets of object k, i the moment set id, and x the value of an invariant set.

Then the probability of a set of invariants sets xj ∈ �28, j = 1..l stemming
from object k is

P (k′ = k|x′1 = x1, ..., x
′
l = xl)

=
p(k′ = k, x′1 = x1, ..., x

′
l = xl)

p(x′1 = x1, ..., xl = x′l)
=
P (k′ = k)p(x′1 = x1, ..., x

′
l = xl|k′ = k)

p(x′1 = x1, ..., xl = x′l)

=P (k′ = k)

∏
j p(x

′
j = xj|k′ = k)∏

j p(xj = x′j)
= P (k′ = k)

∏
j

p(x′j = xj|k′ = k)

p(xj = x′j)

With yki ∈ �28 being the original invariant set number i of object number
k, the parts of the above equation are computed as:

p(x′j = xj|k′ = k, i′ = i) =
28∏
i=1

P (x′i = xi) = ce−(xj−yki)2/(2σ2) (4.2)

p(x′j = xj|k′ = k) =
1

mk

mk∑
i=1

ce−(xj−yki)2/(2σ2) (4.3)

p(x′j = xj) =
1

n

n∑
k=1

1

mk

mk∑
i=1

ce−(xj−yki)2/(2σ2) (4.4)
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4.4.1 Approximation of probabilities for efficient com-
putation

Because we don’t want to inspect too many points, we limit the exact com-
putation to a certain distance d of the sample points and approximate the
probability that the sample is from outside the cut-off-distance by the gaus-
sian distribution of all object’s distribution.

p(x′j = xj|k′ = k) =
c

mk

mk∑
i=1

e−(xj−yki)2//(2σ2)

=
c

mk

( ∑
i:||xj−yki||<d

e−(xj−yki)2/(2σ2) +
∑

i:||xj−yki||>d

e−(xj−yki)2/(2σ2)

︸ ︷︷ ︸
=:Ekj

)

We now want to approximate Ekj without looking at the single points. You
see that

Ekj =

mk∑
i=1

θ(d− ||xj − yki||)e−(xj−yki)2/(2σ2)

We approximate the point density of point of object k in the neighborhood
of xj by the density given by a multidimensional gaussian distribution with
the mean and mean square of the invariant sets in the object k at point xj
and call it pk. Ekj is then Integral of pke

−(xj−yki)2/(2σ2).
The distribution function of the euclidean distance of a vector, whose 28

components are independent and N(0, σ2) - gaussian distributed is

c′r27e−r
2/(2σ2), c′ :=

1

51011754393600σ28

(the term r27 is proportional to the surface of a a ball in 28 dimensions). It
takes its maximum at rmax = σ3

√
3

4.4.2 A nice approximation of the bell function

Because we want to use it the bell function e−r
2/2 can be nicely approximated

by
bp(r) = k(r)pθ(k(r)) , k(r) = 1− (r2/2)/p

This function has a C(p−1)-smooth transition to 0 at r =
√

2p : The l-th
derivative on the left side is

r

p

p!

(p− l)!
kp−l
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Figure 4.1: c′r27e−r
2/(2σ2) and its integral

and k(
√

2p) = 0, so the derivatives 0 . . . p − 1 are all zero at the transition
point. Because of the well-known limit limn→∞(1+x/n)n = ex this converges
to the bell function for high p values. By choosing p = 2n the exponentiation
can be calculated by squaring n times. For n = 7 you only need 7+2 = 9
multiplications and one subtraction to calculate it.

To get an approximation of the error of bp(r) relative to e−r
2/2 in the

range 0...
√

2p,we first look for an approximation of the error of (1 + x/p)p

relative to ex for x/p << 1: Using ex/p = 1 + x/p+ (x/p)2/2 +O((x/p)3 the
error is:

(1 + x/p)p − ex =
(
ex/p − (x/p)2/2−O((x/p)3)

)p − ex
= ex

(
1− e−x/p(x/p)2/2−O(e−x/p(x/p)3)

)p − ex
≈ ex

(
1− p e−x/p(x/p)2/2

)
− ex

≈ −x
2

2p
ex

Replacing x by −r2/2 , the approximation error of our formula is approxi-
mately − r4

8p
e−r

2/2 , which takes its maximum negative value at 2, so a good

approximation for the approximation error is −0.3/p.

4.5 Compute the moments and their invari-

ants

In the following, will use f(~x) =
∑

i δ(~x− ~xi)θ(r − ||~x− ~c||), where θ is the
Heaviside function θ(x) = (x > 0?1 : 0). Inserted into the equation 4.1, this
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Figure 4.2: approximation of the bell curve e−x
2/2 with bp(x): to the left the

approximation curves, to the right the approximation errors for different p
values

leads to

mA(~c, r) =
∑

{i:||~xi−~c||<r}

~xi ⊗ ...⊗ ~xi︸ ︷︷ ︸
m

where ~c is a point on an object’s surface and r is a fixed radius, preferably

being a power of two. r will be set to e.g. 2bln2
σr
16 c, with σr being the standard

deviation of the pointcloud containing the reference object. We use a power
of two for the radius so we have a set of fixed radii which are independent
of the objects. θ(r− ||~x−~c||) is rotationally invariant around ~c, so we don’t
introduce a dependency of rotation by using this cut-off function. For every
center ~c, we compute the tensorset 0A, ..., 4A.

This tensorset will be divided by the number of points it is computed
from given in 0A, so the point density on the surface is allowed to vary. 0A is
1 after that.

It is also translated to it’s center of gravity given in 1A (see 2.4), so it is
not too bad if there is much noise in the dataset and the center point ~c is
not exactly on the surface. 1A is 0 after that.

After that, you domain-scale the tensors by the inverse radius of the ball
( mA(~c, r)′ = mA(~c, r)r−m ).

Then, you can compute the rotational invariants from the moments in A
(see table 2.3)
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moments ov=4
√
moments

Figure 4.3: moment statistics, min-max range with a grey bar of 1 standard
deviation to both sides of the average

4.6 Coordinate transformations of the mo-

ments to have a nice distance measure

If you have a large set of invariant sets, you still don’t know how to measure
the distance between these high-dimensional values. We do the following
here:

• We take the ov-th root of the moments, so that the distribution of the
higher-order moments is less imbalanced (see figure 4.3), with ov being
the value order of the moment defined in section 2.5.1.

• We divide the moments by the standard deviation of the moments from
all invariant sets in the database, so the distance gives a measure of
how unlikely a certain value is.

If you look at figure 4.4, you see that there are two principal directions in
the set of invariant sets.

Making the invariant set components statistically independent It
proved to be good to transform the invariant sets with a linear transform
where the covariance matrix

Cij = 1/n
n∑
k=1

(xki − xi)(xkj − xj)
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Figure 4.4: The different invariants clustered using the correlation coef-
ficients as inverse distance function. The x-coordinate of the vertical con-
nection lines in the tree give the correlation coefficient between the clusters
connected
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becomes the unit matrix, as used e.g. in principal component analysis. After
the transform the euclidean distances are proportional to the standard devi-
ation in that direction. The resulting distance metric on the untransformed
data is known as Mahalanobis distance.

Here a short description how it is done: The covariance Matrix of a set of
vectors transformed with matrix M is C = MC ′MT , if C ′ is the covariance
matrix of the untransformed ones. With an eigenvector decomposition C can
be expressed as V DV −1, with V being the orthonormal eigenvector matrix
and D being a diagonal matrix holding the eigenvalues on the diagonals.
D can be expressed as a product EET , with E being a diagonal matrix
with Eii =

√
Dii so it holds : C = V EIETV T , with I being the unit

matrix. If we set M = V E and I = C ′ then we have C = MIMT . So, to
transform from vectors with cov.-mat. C ′ = I to vectors with cov. mat C
you have to multiply with M . To transform from vectors having cov.mat.
C to ones having cov.mat I, you have to transform with M−1 = E−1V −1.
Here, V −1 = V T , E−1 is diagonal and E−1

ii = 1/
√
Dii.

4.6.1 Thin out the invariant sets

If you have too many invariant sets it helps the efficiency to keep only one in-
variant set for each box of a certain size. To achieve that with 28-dimensional
data where keeping an entry for each grid cell inside the bounding hypercube
is impossible, you can do the following:

• Scale all values so that the desired cluster distance is 1.

• Round all values in the moments sets to integers.

• Insert the integer invariant sets into a sorted list where the ordering
criterion is the lexicographical order of the integer value sets.

• For every new moment set look up it’s rounded version in the list. If
it is already in there, discard it.

With this clustering technique it is still possible that some very close invariant
sets have different rounded versions and are not discarded. To overcome this,
one can use the following method: use d+ 1 = 29 mappings

sk : �d → �d, sk(x1, ..., xd) = (sk(x1), ..., sk(xd))

with

sk : �→ �, sk(x) = bx1 − tkc , t = 1/(d+ 1), k ∈ {0, ..., d}, d = 28
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Insert a new invariant set only if none of its mappings is contained in the
existing sets of integer vectors corresponding to a mapping. This method
uses the following theorem:

Theorem 1 Each pair of points ~x, ~y which is closer than t in all dimensions
(||~x − ~y||∞ < t), has got at least one mapping sk where it is mapped to the
same integer vector.

Proof Let z : � → � be the mapping z(x) = bx/tc, and x ≡k y ⇔
sk(x) = sk(y). Obviously |xi − yi| < t ⇒ |z(xi) − z(yi)| ≤ 1. One sees
that sk(x) = b(z(x) − k)/(d + 1)c. It follows z(xi) = z(yi)∀i ⇒ ~x ≡k
~y, k = 0..d. One also sees that sk(x) does its jumps where z(xi) jumps from
(d + 1)n + k − 1 to (d + 1)n + k (n ∈ �), and the numbers x where z(x)
is in the range k + n(d + 1)...k + d + n(d + 1) are all mapped to n by sk.
So, if |z(xi) − z(yi)| = 1, xi and yi are only not equivalent in the relation
=max{z(xi),z(yi)} mod (d+1) because there, k ≡ max{z(xi), z(yi)} mod (d + 1)
and k − 1 ≡ min{z(xi), z(yi)} mod (d + 1) So, for every dimension i there
is at most one mapping where xi and yi are not equivalent. As we have
d+ 1 mappings, but only d dimensions, there is always at least one mapping
remaining where ~x and ~y are equivalent in all dimensions.

4.7 Optimized computation of the moment

tensor set A

We want to compute

A(~c, r) =
{

mA(~c, r) =
∑

{i:||~xi−~c||<r}

~xi ⊗ ...⊗ ~xi︸ ︷︷ ︸
m

, m = 0...4
}

for many different ~c in an optimized and possibly approximative way so we do
not have to sum up the tensorsets for all points inside the ball {~x : ||~x−~c|| <
r} individually. The idea for that is to build an octree that stores in every
node the sum of tensorsproducts computed from the points inside it’s box.
The summation process inside the ball is then a recursive one as shown in
figure 4.5.

4.7.1 Building the octree from grid cells

To build the octree for a pointcloud, we first sort the points into the cells of

a regular grid, with a cell size of rb = 2bln2
σr
128c with σr being the standard

deviation of the distance of the points to the point-cloud center. We use a
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sum_inside_ball(A,node,ball)

{

if(node.box.is_inside(ball) )

A+= node.A;

else if(!node.box.is_outside(ball) && ! node.is_leaf() )

//box is not outside ball, so it intersects the ball:

for(int i=0;i<8;++i)

sum_inside_ball(A , node.children[i], ball);

}

Figure 4.5: A picture and C++ pseudo-code for the hierarchical summation
process

power of two for the cell size to avoid rounding problems when converting
from the source coordinates to grid coordinates. Then we build a regularly
subdivided octree with these cells as leaves. The root node of the octree will
have a power of two as edge length that is greater or equal to the maximum
dimension of the points’ bounding box.

For each leaf of the octree, we compute the tensorset

A(B) =
{ ∑
{i:xi∈B}

~xi ⊗ ...⊗ ~xi︸ ︷︷ ︸
m

, m = 0...4
}
, B = Box of the leaf

and store it there. This tensorset consists of 35 numbers and is efficiently
computed with 31 multiplications per point. After that, we store in each
node of the octree the sums of the tensorsets of it’s children.
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Sort the points into the grid cells

To sort the points into the grid cells, we build a 3-dimensional array vijk of
integers of size

d(xmax − xmin)/rbe︸ ︷︷ ︸
:=nx

×d(ymax − ymin)/rbe︸ ︷︷ ︸
:=ny

×d(zmax − zmin)/rbe︸ ︷︷ ︸
:=nz

with each entry corresponding to a grid cell. Then we count the points in
each grid cell by applying the following algorithm:

1. Set all entries of vijk to 0

2. For all points ~xi = (xi, yi, zi),
add 1 to to vb(xi−xmin)/rbcb(yi−ymin)/rbcb(zi−zmin)/rbc

After that, we sort the points into the cells by applying the following algo-
rithm:

1. Create an integer array w which contiguously stores all non-zero entries
of v and set each corresponding entry in v to it’s index in array w.

2. Create an array of coordinates c with the same size as the number of
points

3. Convert the entries in w to offset indices in c: w′0 = w0 , w′i+1 =
w′i + wi+1.

4. For every point ~xi = (xi, yi, zi) do the following:

- Calculate it’s index l in the array w:

l := vb(xi−xmin)/rbcb(yi−ymin)/rbcb(zi−zmin)/rbc

- Set ~cwl−1 to ~xi, set wl to wl − 1.

After that procedure, the point coordinates in the cell (i, j, k) are

{~cp, p ∈ [wvijk , wvijk+1)}
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Build the octree

To avoid traversing the octree for each cell we insert, we apply a bottom-up
strategy, where we only traverse the tree without reading any data. This
can be done because the octree is uniformly subdivided and the children’s
bounding boxes can be computed without any additional memory access.
We start with a box of edge length 2dln2 max{nx,ny ,nz}e in grid coordinates and
recursively subdivide until we reach an edge length of 1. There we create a
leaf if the corresponding grid cell is not empty. In the recursion level above,
we create a node if the recursion into the children returned any leaves and
directly add the leaves, and so on. The complexity of this procedure is linear
in the total number of grid cells, and the complexity of the memory access
is linear in the number of tree nodes which in most cases is linear dependant
to the number of filled leaves. Because memory access is always the most
expensive part of an algorithm, we prefer this bottom-up algorithm to a top-
down algorithm with a memory access complexity which is log-linear in the
number of leaves.

4.7.2 Alternative: Building the Octree with z-index

The z-index

x
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Figure 4.6: The z-curve in 2d with two levels. You see that the ranges
0-3,4-7,8-11,12-15 correspond to a quad, a node in a quadtree

The well-known z-index is a number that is calculated from the integer
coordinates and resembles the position in the fractal z-curve (see figures
4.6,4.7). It has the advantage that the membership in a regular octree’s
node corresponds to an interval in the z-index. In contrast to the hilbert
curve which could also used, it is discontinuous, but it is much easier and
faster to compute. Let xi, yi, zi denote the i’th bit of the x,y and z coordinate
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Figure 4.7: The z-curve in 3d with two levels. You see that the range 0-7
corresponds to the front lower left cube and the range 8-15 corresponds to
the front lower right cube, i.e. a node of an octree.

respectively. then the z-index is in binary notation ...z2y2x2z1y1x1z0y0x0 or,
more formally

∑n
i=0(23ixi + 23i+1yi + 23i+2zi).

...12...15

10...11...

2 13456789 0...2 13456789 0...2 13456789...

xyz

00

9... 3 3 3 00 07 77 4 44 1 1 18 88 5 55 2 22 666 666

00 01 1 12 223 3 34 445 55666 6667 778 88 9...

Figure 4.8: z-index computation using bit parallelity: first 3 steps

To compute it using bit-parallelity we use the following iteration using
buffer variables b

(k)
j , j ∈ {0, 1, 2} and mask constants m

(k)
j with & being the

bitwise-and-operator, and n the number of bits in the number format:

b
(0)
0 := x, b

(0)
1 := y, b

(0)
2 := z (4.5)

m
(k)
j := 2j3

k

bn/(3k+1)c∑
i=0

2i3
k+1

(23k − 1) (4.6)

b
(k+1)
j :=

2∑
l=0

2(l−j)3k(b
(k)
l &m

(k)
j ) (4.7)
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The sums in the formulae are computed with bitwise ors (because the 1-bits
of the summands don’t overlap) and the multiplication with powers of two
with bit-shifts. The logic behind it is that you put always 3 blocks of size 3k

together in correct order: in b
(k+1)
0 the zeroth,third, sixth .. block is stored, in

bk+1
1 the first, fourth, seventh block is stored and so on. The size of the blocks

with consecutive bits in correct order is multiplied by 3 in every step. In b
(k)
0

there are always 3k bits of the correct result. As soon as 3k is greater than
three times the maximum number number of trailing bits of the three input
variables, the computation can be stopped. Example: if x, y, z < 210 (10

trailing bits) the correct result is returned in b
(4)
0 because 34 = 81 >= 3 · 10.

In table 4.1 you see a c++-implementation with loops unrolled, and in figure
4.8 you see how the bits are moved around.

Build the tree

To compute the octree from the point cloud using the z-index and a desired
maximum number npt of points per octree leaf, the following steps are done:

1. Compute a bounding box [x1, x2]× [y1, y2]× [z1, z2] for the pointcloud

2. Compute the zindex for all points using a base length of 2p−10, where
p = dln2max{x2 − x1, y2 − y1, z2 − z1}e, and a coordinate origin of
(x1, y1, z1). This is done so no integer coordinate is ≥ 210 and so its
z-index fits into a 32-bit integer.

3. Create an array with tuples of z-index and coordinate index and sort
it by the z-index (using e.g. the c++ stl). This is very quick because
sorting is a standard operation that is optimized well.

4. Calculate for every pair of consecutive z-indices in that array the num-
ber of the highest bit where they differ divided by three and rounded
up, and store it in an array h. This gives the height of the lowest oc-
tree node both points corresponding to the indices belong to. For the
following steps to work, the first and last entry in the array is set to
the maximum tree height (most probably 10 here).

5. Calculate offsets o in the sorted coordinate array that correspond to
the octree’s leaves and at the same time calculate the number of upper
octree nodes by iterating through h. In every iteration do the following:

(a) Add an entry in an offsets array o pointing to the current index in
h. Each entry of the offset array corresponds to a leaf in the octree
to be built. Save the height at the current index in a variable hc.
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(b) Walk right through h while the height is lower than hc and either
less than npc entries have been visited or the the z-index did not
change (i.e. the height is zero).

Take the index of the highest entry visited in that walk to be the
next current index. Also increase the octree’s number of parent
nodes by the height difference between the new entry and the
previous one, which corresponds to the number of parent nodes
that are above the current leaf and not present in the previous
leaves.

6. Initialize the leaf and parent node arrays to the sizes as calculated in
the previous step.

7. Initialize the leaves from the point sets as given by the offset indices
(Each pair of consecutive offsets describes a set of points), i.e. create
the tensorsets from the points. Initialize the parent nodes: create so
many parent nodes as the height difference indicates. Maintain an array
of node pointers that represents the current path to the leaf. Set one of
the eight child pointers of the newly created parent nodes as indicated
by the corresponding 3 bits in the z-index to the corresponding child.

8. Initialize the tensor sets stored in the parent nodes as sum of the chil-
dren’s tensor sets.

4.8 Results

Three databases of objects were tested:

1. DENKER: A database scanned by a colleague of mine, Klaus Denker.
It consists of seven pointclouds with 500k to 4M points, which were
laserscans of some small objects: a piggy bank, two boxes, a power
socket, a chicken puppet, a dinosaur model, and a handy. Results in
figures 4.10,4.11 and table 4.2.

2. 3DRMA: A database of faces scanned at the Royal Military Academy
in Belgium[1] . It consists of 120 faces with 5000 - 15000 points per
face. Each face was scanned in different angles. You see the results in
figures 4.12,4.13.

3. GAVAB: A database of faces scanned at the Groupo Investigation
GAVAB, published in [12]. I used the vertices of the vrml meshes
they created from laser scans for recognition here. There were 60 faces
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in it scanned at different angles. Each face consisted of 5000-15000
points. In figures 4.12,4.13 you see the recognition results.

After building the database, we tested the recognition of the objects with a
version of an object with some random noise applied.The recognition hap-
pened to find the correct object in the database until the length of the noise
vectors exceeded the radius of our balls that we used to compute the mo-
ments. Then we tested if we could cut away part of the object and would still
recognize it. We have cut away half of the points with a random cuttingplane
on the center of gravity and still recognized the objects correctly. In figure
4.9 you see the noise applied to a face pointcloud.

The two face databases had multiple versions of each face scanned from
different directions. For my benchmarks, I put one version of each face into
my moment database. Afterwards, I tested for each face if my algorithm
finds the correct face in the database if given it’s pointcloud. Firstly I tested
it for the pointcloud version of the face that was in the database and secondly
for a pointcloud version of the face that was not in my database.

I have the following conclusions:

• Given enough points, the system always finds the correct result (as you
see for the DENKER database in figure 4.10 ).

• To reduce scanning artifacts that arise e.g. from the direction of the
laser lines, it is good to add some random displacements, as you see
in figure 4.14 on the left where noiselevel 0.01 gives better recognition
results than no noise at all.
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original with 0.07 noise 40% cut away

Figure 4.9: The noise that was applied for testing.
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Figure 4.10: Database Denker: Accurracy under noise for the dino
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template<class uint>

inline uint zord(uint x, uint y, uint z)

{

uint xx,yy,zz;

uint xyz = x|y|z;

//binary ...01001001001001001001001001001001

static const uint A0=0111111111u;

static const uint a0=(((A0<<27)|A0)<<27)|A0;

xx = (x&a0) | ((y&a0)<<1) | ((z&a0)<<2);

if( (xyz>>1)==0 ) return xx;

static const uint a1=a0<<1;

yy = ((x&a1)>>1) | (y&a1) | ((z&a1)<<1);

if( (xyz>>2)==0 ) return xx|(yy<<3);

static const uint a2=a0<<2;

zz = ((x&a2)>>2) | ((y&a2)>>1) | (z&a2);

//binary ...00111000000111000000111000000111

static const uint B0=07007007;

static const uint b0=(((B0<<27)|B0)<<27)|B0;

x = (xx&b0) | ((yy&b0)<<3) | ((zz&b0)<<6);

if( (xyz>>3)==0 ) return x;

static const uint b3=b0<<3;

y = (xx&b3)>>3 | ((yy&b3)) | ((zz&b3)<<3);

if( (xyz>>6)==0 ) return x|(y<<9);

static const uint b6=b0<<6;

z = (xx&b6)>>6 | ((yy&b6)>>3) | ((zz&b6));

//binary ...11000000000000000000000111111111

static const uint C0=0777;

static const uint c0=(((C0<<27)|C0)<<27)|C0;

xx = (x&c0) | ((y&c0)<<9) | ((z&c0)<<18);

if( (xyz>>9)==0 ) return xx;

static const uint c9=c0<<9;

yy = (x&c9)>>9 | ((y&c9)) | ((z&c9)<<9);

if( (xyz>>18)==0 ) return xx | (yy<<27);

static const uint c18=c0<<18;

zz = ((x&c18)>>18) | ((y&c18)>>9) | ((z&c18));

//binary ...00111111111111111111111111111111

static const uint d0=0777777777;

if((xyz>>27)==0 ) return xx | (yy<<27) | (zz<<54);

else return ~0Lu;

}

Table 4.1: z-index computation in c++. m
(k)
i from eq.4.6 is here denoted

as {a,b,c}{0,3,6,9,18,27} , b
(k)
i from eq.4.7 denoted alternatingly as x,y,z and

xx,yy,zz
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Name dino chicken handy box2 box plug pig
# points 1.27M 0.87M 0.58M 0.66M 1.20M 1.59M 3.84M
Insertion 3.2s 3.8s 1.9s 2.0s 2.3s 4.6s 8.4s

# Invariant sets 12485 14889 8815 8887 9445 22757 49796
Recognition 0.65s 0.44s 0.52s 0.75s 0.67s 0.53s 1.14s

Noise level 1 0.77s 0.50s 0.47s 0.65s 0.69s 0.72s 1.22s
Noise level 7 0.80s 0.52s 0.55s 0.77s 0.78s 0.77s 1.42s

Table 4.2: Times for Object recognition
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Figure 4.11: Database DENKER: Time under noise for the dino
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Figure 4.12: Database 3DRMA: Accurracy
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Figure 4.13: Database 3DRMA: time used for recognition
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Figure 4.14: Accurracy Database GAVAB
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Coming, editors, ISVC (2), volume 5876 of Lecture Notes in Computer
Science, pages 1151–1160. Springer, 2009.

63



64 BIBLIOGRAPHY

[9] Max Langbein, Gerik Scheuermann, and Xavier Tricoche. An efficient
point location method for visualization in large unstructured grids. In
Proc. 8th Int. Worksh. Vision, Modeling, and Visualization, pages 27–
35, 2003.

[10] Evgeni Magid, Octavian Soldea, and Ehud Rivlin. A comparison of
gaussian and mean curvature estimation methods on triangular meshes
of range image data. Computer Vision and Image Understanding,
107(3):139 – 159, 2007.

[11] Gérard Medioni, Chi-Keung Tang, and Mi-Suen Lee. Tensor voting:
Theory and applications. Proceedings of RFIA, Paris, France, 2000.

[12] A.B. Moreno and A.Sanchez. Gavabdb: A 3d face database. In 2nd
COST Workshop on Biometrics on the Internet: Fundamentals, Ad-
vances and Applications, C. Garcia et al (eds): Proc. 2nd COST Work-
shop on Biometrics on the Internet: Fundamentals, Advances and Ap-
plications, Ed. Univ. Vigo, pages 77–82, 2004.
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