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Chapter 1

Introduction

The binomial approach goes back to W.F. Sharpe and J.C. Cox, S.A. Ross and M. Ru-
binstein. It was introduced in [CRR79] as an approximation to the Black-Scholes model,
in the sense that the prices of vanilla options computed in the binomial model converge
to the Black-Scholes formula. It has gained a lot of popularity since, and has become a
widespread tool in option pricing. Due to its simplicity, the binomial model is widely used
to demonstrate the principals of arbitrage opportunities and risk-neutral pricing. However,
in this thesis we concentrate on the binomial approach as a purely numerical method. We
do not consider it as discretization of the continuous-time market, but rather as an approx-
imation of the underlying distribution. This way we are not restricted to the risk-neutral
measure, which gives us more freedom in the construction of the binomial models.

The binomial approach is based on the concept of weak convergence. The discrete-time
model S(n) is constructed so as to ensure convergence in distribution to the continuous
process S. This means that the expectations calculated in the binomial tree can be used
as approximations of the option prices in the continuous model. Note that since we do
not require risk-neutral transition probabilities, the expectations calculated in the discrete
setting are not prices themselves.

Convergence of binomial trees

The binomial method is easy to implement and can be adapted to options with different
types of payout structures, including American options. This makes the approach very
appealing. However, the problem is that in many cases, the convergence of the method is
slow and highly irregular, and even a fine discretization does not guarantee accurate price
approximations. What complicates things even further, is that the convergence behavior is
highly dependent on the specific option considered. This makes it impossible to construct
a binomial tree which would be optimal for all payoff functions.

The reasons for the irregularities in the convergence of lattice methods as well as ways
of overcoming them have been a topic of research for quite some time. There are two main
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sources of error in the binomial method, the discretization error and the payoff error (see
e.g. [DKEB95]). The discretization error naturally arises in any discretization scheme,
since the values are only considered at certain discrete time points. The effect of this
error can be reduced by taking a larger number of points. The payoff error comes from the
structure of the payout function (in [DKEB95] this is referred to as the specification error).
In the lattice methods the values of the underlying asset at each time point are fixed to
certain lattice points. This means that the payoff function of digital or barrier options,
for example, is calculated in the lattice not with a theoretical strike or barrier, but with
a slightly adjusted one, which matches one of the neighboring nodes. Since the adjusted
values vary with the number of time steps, the convergence becomes irregular. This effect
is present also for a larger number of steps, however, the oscillations do become smaller
(see section 2.2). Therefore, this suggests that by controlling the position of the barrier or
the strike, we can get a better convergence pattern.

Various approaches have been offered for different types of options. For digital and vanilla
options, for example, some of the possible solutions can be found in [T99], [CP07], [KM13],
for barrier options see e.g. [BL94] and [R95], for American options see [Lei98] and [KM13].
Of course, these are just a few examples and more literature is available on the topic.
However, even though different methods have been offered, not that many theoretical re-
sults are available. In [DD04] second order expansions are presented for the digital and
vanilla options in the one-dimensional Black-Scholes model. This is an important result,
since it allows a theoretical comparison of different existing models and gives a better un-
derstanding of the asymptotic behavior of binomial models. This information can then
be used to construct advanced binomial trees with a superior order of convergence (see
[CP07] and [KM13]). In the case of barrier options a first order expansion is available in
[G99]. However, the existing expansions in the literature mostly deal with one-dimensional
binomial trees. There are hardly any results on the asymptotic behavior of multinomial
or multidimensional trees. Therefore, in this thesis we present a framework that allows
to construct advanced lattice models in a more general setting. For this purpose we will
apply Edgeworth expansions.

Edgeworth expansions

Edgeworth expansions (see e.g. [Edge1905]) have been introduced as a generalization of
the central limit theorem. They allow to present the distribution function of a normalized
sum as a series of the normal distribution function and its derivatives, therefore, giving a
better approximation than the CLT.

We apply an altered version of the Edgeworth expansion for lattice triangular arrays to
obtain the asymptotics of the various option prices in the binomial model. The advantage
of the Edgeworth expansion approach is that it is valid under very general conditions and
can be extended to higher dimensions as well as multinomial trees.
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Outline of the thesis

Chapter 2 contains an introduction to binomial trees. Here we present the basic defini-
tions of weak convergence and the fundamental theory behind the lattice approach. In the
second part of the chapter we present examples of commonly used trees and discuss some
of the practical issues.

Chapter 3 contains the main theory on Edgeworth expansions. In binomial models we
usually deal with triangular arrays of lattice random vectors. In this case the available
expansions for lattices are not directly applicable. Therefore, the purpose of this chapter
is to present Edgeworth expansions, which are also valid for the binomial tree setting.
Since Edgeworth expansions are based on a Taylor series of the corresponding characteris-
tic functions, we start with some basic theory on Fourier transforms. We then present the
heuristics of the method. The main theoretical results are presented in the final section of
the chapter.

The last two chapters present the applications of Edgeworth expansions to lattice models.
Chapter 4 contains the theory in the one-dimensional case. Here we are able to obtain
a third order expansion for general binomial and trinomial trees. Then advanced models
are constructed for various types of options. For digital and vanilla options a O

(
1
n2

)
or-

der of convergence is achieved. We present a way to obtain asymptotics for the price of
a barrier option and construct an advanced model with a O

(
1

n3/2

)
order of convergence.

In conclusion we discuss the convergence behavior of the Greeks in the Black-Scholes model.

In Chapter 5 we present expansions for multidimensional binomial trees. Here we con-

firm theoretically the O
(

1√
n

)
order of convergence of the distribution function of a mul-

tidimensional tree at maturity to the corresponding normal distribution. Then we obtain

expansions of order O
(

1√
n

3

)
for the standard 2D binomial models and construct advanced

binomial trees for the two-asset digital and the two-asset correlation options with aO
(

1√
n

3

)
order of convergence. We also present advanced binomial models for a multidimensional
setting. Finally, we consider ways of improving the convergence behavior of the decoupling
approach with the Cholesky decomposition (see [KM09]).
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Chapter 2

Fundamentals of the Binomial
Method

In the theory of option pricing one is usually concerned with evaluating expectations under
the risk-neutral measure Q

EQ
(
e−rTg (S (t) , t ∈ [0, T ])

)
, (2.1)

where g is the payoff function of the financial instrument with maturity T , and S is
the underlying. However, in many cases this expectation cannot be calculated explicitly
and numerical methods need to be applied to approximate the desired quantity. Monte
Carlo simulations, numerical methods for PDEs and the lattice approach are the methods
typically employed. In this thesis we will consider the latter approach, with the main focus
on binomial trees.

2.1 Binomial trees in theory

We start with a one-dimensional setting and consider the Black-Scholes model, where the
risk-neutral dynamics of the underlying stock S can be represented as

dS(t) = S (t) (rdt+ σdW (t)) , S (0) = s0,

with the risk-free interest rate r, volatility σ > 0 and Brownian motion W with respect to
the risk-neutral measure Q.

The idea of the lattice approach is to construct a discrete-time process S(n), such that
its linear interpolation converges weakly to the given process S. The expectations cal-
culated in the discrete setting can then be used as approximations for (2.1). However,
before we move on to the construction of S(n) we first present some basic definitions and
properties of the concept of weak convergence. For a detailed coverage of the topic we refer
to [B68].
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2.1.1 Weak convergence

Definition 2.1.1. Let M be a metric space with the Borel σ-field B (M), and let Pn, n ∈ N
and P be probability measures on (M,B (M)). The sequence {Pn}n is said to converge
weakly to P (Pn ⇒ P ), if

lim
n→∞

∫
M

f (x) dPn (x) =

∫
M

f (x) dP (x) ,

for every bounded, continuous real-valued function f on M .

The concept of weak convergence (convergence in distribution) for random elements
is equivalent to the weak convergence of the corresponding distributions. In other words,
given a sequence Xn : (Ωn,Fn, Pn)→ (M,B (M)) and X : (Ω,F , P )→ (M,B (M)) we say

that {Xn}n converges weakly to X
(
Xn

D→ X
)

iff

PnX
−1
n ⇒ PX−1, n→∞,

where PnX
−1
n , PX−1 are probability measures on (M,B (M)) defined as

P(n)X
−1
(n) (A) = P(n) (X ∈ A) , A ∈ B (M) .

Note that the above definition only makes sense if all the Xn and X have the same range,
the underlying probability spaces, on the other hand, may all differ.

Remark 2.1.2. If M = Rk, then weak convergence is equivalent to convergence of the
corresponding distribution functions, i.e.

Pn ⇒ P iff Fn (x)→ F (x) , for each continuity point x of F .

However, if M = C ([0, 1]), i.e we are considering weak convergence of stochastic processes,
then convergence of the finite-dimensional distributions is not enough. In addition we have
to make sure that the sequence {Pn} is tight.

A very useful theorem in the theory of weak convergence is Donsker’s theorem, often
referred to as the functional central limit theorem (see e.g. [KK01], Theorem 4.12).

Theorem 2.1.3 (Donsker’s theorem for triangular schemes). Let ξn1 , . . . , ξnkn , n ∈ N,
kn ∈ N be i.i.d. random variables with zero mean and positive variance σ2

n1
< ∞, and let

Snm =
∑m

l=1 ξnl, s
2
nm = mσ2

n1
, m = 1, . . . , kn, and s2

n = s2
nkn

. Define the process Xn (t),
t ∈ [0, 1] as

Xn(0) = 0,

Xn

(
s2
nm/s

2
n

)
=

1

sn
Snm , m = 1, . . . , kn,

and Xn is linear on the intervals
[
s2
nm−1

/s2
n, s

2
nm/s

2
n

]
. Then, if kn → ∞ and sn → ∞ as

n→∞, Xn converges weakly to a Brownian motion.
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Let us go back to the Black-Scholes model. If we construct a process S(n), that ensures
weak convergence to S, then by the Definition 2.1.1

En
(
f
(
S(n)

))
→ EQ (f (S)) , n→∞,

for all bounded, continuous real-valued functions f . Furthermore, as we will see below, the
statement can be shown to hold for a more general set of functions, which includes most
types of options used in practice.

2.1.2 The model

We now proceed with the construction of the approximating binomial tree. We divide the
time horizon [0, T ] into n time steps of equal length ∆t. For each step k = 1, . . . , n we
define

S
(n)
k = S

(n)
k−1e

αn∆t+σ
√

∆t
∑k
i=1 ξ

(n)
i , S

(n)
0 = s0, (2.2)

where {αn}n is a bounded sequence and for each n ∈ N, ξ
(n)
k , k = 1, . . . , n are i.i.d random

variables such that

ξ
(n)
k =

{
1, with probability pn,
−1, with probability 1− pn.

Therefore, Ωn = {ω = (ω1, . . . , ωn)| ωk = ±1, k = 1, . . . , n} and Pn is the product of the
one-step transition probabilities, i.e.

Pn (ω) = pnu(ω)
n (1− pn)nd(ω) ,

where nu (ω) is the number of up-jumps, i.e. the number of 1’s in the sequence (ω1, . . . , ωn)
and nd (ω) = n− nu (ω) is the number of down-jumps.

Remark 2.1.4. Similar to the binomial model we can also consider m-nomial trees. In this
case, for each time step k = 1, . . . , n, the variables ξ

(n)
k can attain m different values with

appropriate probabilities.

Note that to completely determine the model (2.2) we still have to specify the exact
form of the drift αn and the probability pn. The goal now is to choose these parameters in
such a way that weak convergence is ensured.

Moment-matching conditions

Let µ(n) and σ2(n) be the mean and variance of the one-period log-returns in the model
(2.2), i.e.

µ (n) =
1

∆t
En

(
log

(
S

(n)
k

S
(n)
k−1

)∣∣∣∣∣S(n)
k−1

)
= αn +

1√
∆t
σEn

(
ξ

(n)
1

)
,

σ2(n) =
1

∆t
V arn

(
log

(
S

(n)
k

S
(n)
k−1

)∣∣∣∣∣S(n)
k−1

)
= σ2V arn

(
ξ

(n)
1

)
.

(2.3)
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In order to guarantee weak convergence, µ (n) and σ2(n) need to match the corresponding
log-returns of the continuous process S, at least asymptotically. Therefore, we assume

µ (n) = r − 1

2
σ2 + o (1) , n→∞,

σ2(n) = σ2 + o (1) , n→∞.
(2.4)

Due to Donsker’s Theorem 2.1.3 we have the following theorem.

Theorem 2.1.5. Let S(c,n) be constructed from S(n) by linear interpolation, i.e.

S(c,n) = exp
(

log
(
S

(n)
bt/∆tc

)
+ (t/∆t− bt/∆tc)

(
log
(
S

(n)
bt/∆t+1c

)
− log

(
S

(n)
bt/∆tc

)))
.

Then under the moment-matching conditions (2.4)

S(c,n) D→ S, n→∞.

Furthermore,
En
(
e−rTg

(
S(c,n)

))
→ E (g(S)) , n→∞,

for all continuous almost everywhere payoff functionals g, such that
{
g
(
S(c,n)

)}
n

is uni-
formly integrable.

Note that we consider weak convergence of the continuous time process S(c,n) and not
the binomial tree S(n) directly, since as mentioned before, the approximating sequence and
the limiting process need to have the same image space. For a detailed proof of Theorem
2.1.5 we refer the reader to [M09], Proposition 4 and Proposition 17.

Let us take a closer look at the moment-matching conditions (2.4). What does this actually
mean for the parameters of the binomial tree (2.2) αn and pn?

Proposition 2.1.6. The conditions (2.4) are satisfied iff

pn =
1

2
+
r − 1

2
σ2 − αn
2σ

√
∆t+ o

(
1√
n

)
, n→∞. (2.5)

Proof. Since En

(
ξ

(n)
1

)
= 2pn − 1 and V arn

(
ξ

(n)
1

)
= 4pn (1− pn), (2.4) is equivalent to

αn +
1√
∆t
σ (2pn − 1) = r − 1

2
σ2 + o (1) ,

pn (1− pn) =
1

4
+ o (1) .

The statement of the proposition follows directly. Note that the condition on the variance
is implied by the condition on the mean.

Obviously, (2.5) leaves a degree of freedom in the choice of αn and pn, and there
are infinitely many combinations that satisfy the above proposition. Depending on these
parameters the binomial tree will have different convergence properties. In section 2.2
we present the most typical models used in practice and discuss their advantages and
disadvantages.
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The algorithm

We now use En
(
g
(
S(n)

))
to approximate the price EQ (g (S)). Consider a path-independent

European option, i.e. an option with payoff

g (S (T )) ,

which can only be exercised at maturity. To calculate the expectation in the binomial
model a simple backward induction algorithm can be used.

Step 1: Tree Initialization

– Calculate the possible values of the stock at maturity

S(n)
n (l) = s0e

αnT+σ
√

∆t(2l−n), l = 0, . . . n.

– Calculate the option values at maturity

Vn(l) = g
(
S(n)
n (l)

)
, l = 0, . . . n.

Step 2: Backward Induction

– For each time step i = n − 1, . . . , 0 calculate the value of the option as the
weighted sum of the values of the successor nodes (figure 2.1)

Vi (l) = pnVi+1 (l + 1) + (1− pn)Vi+1 (l) , l = 0, . . . , i.

Step 3: Return e−rTV0 (0).

Figure 2.1: Backward induction for a 2-period binomial tree

The computational effort of the above algorithm is O (n) for the tree initialization and
O (n2) for the backward algorithm, i.e. O (n2) in total (see [M09], Proposition 22). For
a d-dimensional asset pricing problem the computational effort would be O

(
nd+1

)
(see

[Ku08], Lemma 3.2.1).
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Remark 2.1.7. This algorithm can also be adjusted to incorporate path-dependent op-
tions. Depending on the exact payoff structure additional calculations are required in the
backward induction step (see e.g. [M09]).

2.1.3 Binomial trees for American options

One of the main applications of the lattice approach is the valuation of American options.
Unlike European options, American options can be exercised at any time before maturity.
The optimal exercise time is unknown and is usually represented by a random stopping
time τ ∗. This makes calculating prices far more difficult. Closed-form solutions are hardly
ever available, therefore, numerical methods have to be applied in most cases. The advan-
tage of the binomial approach is that with a simple adjustment of the backward induction
step, the algorithm described above can be applied to American options as well.

The price of an American contingent claim with payout function g is given by

sup
τ∈T0,T

E
(
e−rτg (S (τ))

)
,

where T0,T is the set of all stopping times with respect to the natural filtration of W with
values in [0, T ]. There exists an optimal stopping time τ ∗ such that the price can be
represented as

E
(
e−rτ

∗
g (S (τ ∗))

)
.

The approximation of this expectation in the binomial model is given by

En

(
e−rτ

∗
n∆tg

(
S

(n)
τ∗n

))
,

for an optimal stopping time τ ∗n. It has been shown (see [M09] Chapter 2) that a theorem
similar to 2.1.5 also holds for American options.

In order to calculate the expectation in the binomial model we need to check at each
node whether the option should be exercised or not, i.e. at every time step i = n−1, . . . , 0

we have to compare the continuation value En

(
e−r∆tVi+1

∣∣S(n)
i

)
and the early exercise

value g
(
S

(n)
i

)
. The optimal stopping time τ ∗n is then defined as

τ ∗n = min
{
i = 0, . . . , n|Vi = g

(
S

(n)
i

)}
.

The algorithm above can be modified as follows. The tree initialization remains the same.

Step 2: Backward Induction

– For each time step i = n− 1, . . . , 0

Vi (l) = max
{
e−r∆t (pnVi+1 (l + 1) + (1− pn)Vi+1 (l)) , g

(
S

(n)
i (l)

)}
, l = 0, . . . i.

Step 3: Return V0(0).

For more details on American option pricing we refer to [KK01] and [M09].
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2.2 Binomial trees in practice

We now present some of the standard binomial models and mention the issues that usually
arise in practice.

2.2.1 One-dimensional trees

There are numerous different trees available in the literature. Even for the simple Black-
Scholes setting there exist various examples. A comparison of some of the popular methods
can be found in e.g. [J09]. Here we present only the two basic models.

The CRR tree

The binomial model was first introduced in [CRR79] by J. C. Cox, S. A. Ross and M.
Rubinstein. They suggest to construct a tree, which is symmetric in the log-scale around
log(s0), i.e.

αn = 0.

The probability of an up-jump is then chosen as

pn =
1

2
+
r − 1

2
σ2

2σ

√
∆t.

Note that the probability is well-defined only for n large enough. The moments are matched
asymptotically

µ(n) = r − 1

2
σ2,

σ2(n) = σ2 −
(
r − 1

2
σ2

)2

∆t.

The main advantage of the CRR tree is its symmetric construction. As we will see later
on this allows to directly apply some useful results for random walks to the process S(n).

0 1 2 3 4 5 6 7 8 9 10
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(n

) )
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p
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b
a
b
ili
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Figure 2.2: CRR tree with 10 periods
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Indeed, as can be seen in the figure above the nodes are displayed symmetrically around
log(s0). To compensate this structure more probability is assigned to the upper nodes of
the tree (right-hand plot).

The main disadvantage of the model is the oscillatory convergence behavior. Figure 2.3
shows the zig-zag convergence of the CRR tree often referred to as the saw-tooth effect. In
addition, we can also see the so-called even-odd effect, the micro oscillations between even
and odd n. If we only consider even n (green line) or only odd n (red line), these jumps
are not present.
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Figure 2.3: CRR tree for a digital put

The RB tree

In [RB79] R. J. Rendleman and B. J. Bartter introduce a model where the up- and down-
jump have equal probability, i.e.

pn =
1

2
.

The drift is then chosen as

αn = r − 1

2
σ2.

Note that with this choice of parameters the moment-matching conditions (2.4) are satisfied
exactly

µ(n) = r − 1

2
σ2,

σ2(n) = σ2.

Moreover, the equal probabilities prove to be an advantage in the implementation of the
model, since only one multiplication per node is required in the backward induction step,
which speeds up the algorithm.
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Figure 2.4: RB tree with 10 periods

Unlike the previous model the RB tree has a clear upward trend, but more evenly
spread probabilities. The exact shape of the tree as well as the upward or downward trend,
of course, depend on the parameters of the model.

The RB model also suffers from an oscillatory convergence pattern, although in many
cases, the saw-tooth effect is less pronounced than for the CRR tree.
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Figure 2.5: RB tree for a digital put

Remark 2.2.1. Note that in some references this model is also referred to as the Jarrow-
Rudd (JR) tree (see e.g. [LR96] or [Ku08]).

2.2.2 Multidimensional trees

We now consider a general d-dimensional Black-Scholes model, where the dynamics of the
d assets is given by

dSi (t) = Si (t) (rdt+ σidWi (t)) , Si (0) = s0,i, i = 1, . . . , d, (2.6)

where Wi(t) and Wj(t) have correlation ρi,j, i, j = 1, . . . , d, i < j.



14 CHAPTER 2. FUNDAMENTALS OF THE BINOMIAL METHOD

We construct the approximating d-dimensional n-period binomial tree S(n) as follows. For
each time step k = 1, . . . , n

S
(n)
k =

 S
(n)
k,1
...

S
(n)
k,d

 :=

 S
(n)
k−1,1e

αn,1∆t+σ1

√
∆tξ

(n)
k,1

...

S
(n)
k−1,de

αn,d∆t+σd
√

∆tξ
(n)
k,d

 , S
(n)
0 = s0, (2.7)

where {αn,i}, i = 1, . . . , d are bounded sequences and for each n ∈ N, ξ
(n)
k are i.i.d random

vectors, each component taking on the values −1 or 1. In this case

Ωn =
{
ω = (ω1, . . . , ωn)| ωk ∈ {−1, 1}d , k = 1, . . . , n

}
.

At each time step the probability of scenario ωk is P1,n (ωk). The probability measure Pn
is then given as the product of the one-step transition probabilities, i.e.

Pn (ω) =
n∏
k=1

P1,n (ωk) .

As in the one-dimensional case, the drift sequences αn,i, i = 1, . . . , d and the one-step
transition probabilities P1,n need to be chosen such that weak convergence is ensured. Note
that in the multidimensional setting, S(n) has to match not only the mean and variance
of the log-returns of each asset, but also the whole correlation structure. Therefore, the
following moment-matching conditions need to be satisfied

µi (n) = αn,i +
1√
∆t
σEn

(
ξ

(n)
1,i

)
= r − 1

2
σ2
i + o (1) , i = 1, . . . , d,

σ2
i (n) = σ2

i V arn

(
ξ

(n)
1,i

)
= σ2 + o (1) , i = 1, . . . , d,

ci,j (n) =
1

∆t
Covn

(
log

(
S

(n)
k,i

S
(n)
k−1,i

)
, log

(
S

(n)
k,j

S
(n)
k−1,j

)∣∣∣∣∣S(n)
k−1,i, S

(n)
k−1,j

)
= σiσjCovn

(
ξ

(n)
1,i , ξ

(n)
1,j

)
= σiσjρi,j + o (1) , i = 1, . . . , d, i < j.

(2.8)

We now present examples of some well-known multidimensional binomial trees, which are
generalizations of the one-dimensional trees discussed above.

The BEG model

P. P. Boyle, J. Evnine and S. Gibbs introduce in [BEG89] a multidimensional generalization
of the CRR tree in the sense that all the one-dimensional projections coincide with the
CRR tree. Therefore, the parameters of the model are given by

αn,i = 0, i = 1, . . . , d, (2.9)
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and

P1,n (ωk) =
1

2d

(
1 +

d∑
i,j=1,i<j

ρijδi,j (ωk) +
√

∆t
d∑
i=1

δi (ωk)
r − 1

2
σ2
i

σi

)
, (2.10)

where

δi,j (ωk) =

{
1 if ωk,i = ωk,j,
−1 if ωk,i 6= ωk,j,

(2.11)

and

δi (ωk) =

{
1 if ωk,i = 1,
−1 if ωk,i = −1.

For details see [BEG89] and [M09], Chapter 3. The BEG model inherits the properties of
the CRR tree, and is also symmetric in the log-scale. Unfortunately, it also inherits the
irregular convergence behavior, as can be see in the figure below.
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Figure 2.6: The BEG tree for a two-asset digital put

The m-dimensional RB model

Analogously, R. Korn and S. Müller introduce in [KM09] a model, where each of the
components coincides with the RB tree. In this case we have

αn,i = r − 1

2
σ2
i , i = 1, . . . , d, (2.12)

and

P1,n (ωk) =
1

2d

(
1 +

d∑
i,j=1,i<j

ρijδi,j (ωk)

)
, (2.13)

with δi,j defined as in (2.11).
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Figure 2.7: The 2D RB tree for a two-asset digital put

Remark 2.2.2. One of the drawbacks in both models presented above is that for d ≥ 3
the transition probabilities P1,n might not be well-defined for certain parameter settings.
As mentioned in [KM09], model parameters can be found for which the probabilities are
negative for all n ∈ N. As an alternative approach, which overcomes this problem we now
present the decoupling method (see [M09] or [KM09]).

The decoupling approach

The multidimensional trees described above are constructed directly for the process S in
(2.6). As a result, the nodes in the log-scale form a rectangular grid for each time-step
which leads to the convergence behavior described above. In [KM09] a different method is
proposed, where the continuous process S is first transformed to a process Y with indepen-
dent components. An approximating tree is then constructed for Y . Then, by applying a
back-transformation a binomial model for the original process S is obtained. This approach
has the following advantages. First of all, the rectangular grid is destroyed, which leads
to a better convergence pattern. Second, the correlation structure no longer enters the
probabilities, which makes the decoupling approach applicable to any parameter setting.

We now present a more detailed description of the method. Let Σ be the covariance
matrix of log(S), i.e.

Σ =


σ2

1 ρ1,2σ1σ2 · · · ρ1,dσ1σ2

ρ1,2σ1σ2
...

ρ1,dσ1σd · · · σ2
d


Using the decomposition

Σ = GDGT ,

with G ∈ Rm×m and D ∈ Rm×m diagonal, construct the process Y = G−1 log(S) with
independent components. The dynamics of Y is given by

dYj (t) = αjdt+
√
djjdW̄j (t) ,
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where αi =
∑d

i=1 g
(−1)
ji (r − 1

2
σ2
i ), and W̄j, j = 1, . . . d are independent Brownian motions

(see [M09], Proposition 37 or [KM09], Proposition 1). Now, construct the approximating
tree as follows

Y
(n)
k =

 Y
(n)
k−1,1 + α1∆t+

√
d11

√
∆tξ

(n)
k,1

...

Y
(n)
k−1,d + αd∆t+

√
ddd
√

∆tξ
(n)
k,d

 , Y
(n)

0 = log (s0) , (2.14)

with

P1,n (ωk) =
1

2d
.

Note that Y (n) matches the mean and variance of the one-period returns of each component
in Y , and, since all the components are independent,

Y (c,n) D→ Y,

where Y (c,n) is obtained from Y (n) by linear interpolation. The tree for the original process
S is now defined as

S
(n)
k = exp

(
GY

(n)
k

)
, k = 0, . . . , n. (2.15)

Weak convergence for the S-tree is ensured due to the continuous mapping principle (see
e.g. [B68], Theorem 5.1). For a detailed discussion of the approach see [KM09] or [M09].

Remark 2.2.3. The mentioned references consider two types of decompositions. In case of
the spectral decomposition, whereG is an orthogonal matrix andD contains the eigenvalues
of Σ, the tree is referred to as the orthogonal tree. In case of the Cholesky decomposition
Σ = GGT , where G is a lower triangular matrix, the tree is called the Cholesky tree.

Compare the following convergence results for the orthogonal (left-hand side) and
Cholesky (right-hand side) trees.
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Figure 2.8: The decoupling method for a two-asset digital put

Note that for two-asset digital options the orthogonal tree performs much better than
the models presented above, however, the Cholesky tree still has highly oscillatory conver-
gence behavior. This is explained by the fact that with the Cholesky decomposition the
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rectangular grid is only partially destroyed (see e.g. [M09], pp. 143-146). However, the
algorithm for the Cholesky tree is faster than the one for the orthogonal tree, due to the
fewer calculations required for the back transformation (2.15) (see [M09], section 4.4).



Chapter 3

Edgeworth Expansions

In financial mathematics, statistics and probability theory problems often arise that deal
with sums of random variables. The CLT plays an important role here in investigating the
limiting distribution of such sums. However, in many cases we are interested in a more
detailed analysis of the convergence behavior and a better approximation than simply the
normal distribution function.

The idea of Edgeworth expansions goes back to P.L. Chebyshev (see e.g. [GK54]), F.Y.
Edgeworth [Edge1905], C.V.L. Charlier [Ch1906], and others. They propose to expand the
distribution of a sum of random variables in a series of the normal distribution function
and its derivatives. These series and their convergence properties have been thoroughly
studied by H. Cramer. In [BR76] R.N. Bhattacharya and R.R. Rao present numerous
results on the topic, offer a generalization to higher dimensions and a detailed exposition
for lattice random vectors, which will be the main focus of this chapter. We will be using
the notation and following the proofs given in [BR76].

3.1 Introduction

The purpose of this thesis is to investigate the asymptotics of the general binomial model
S(n) in (2.7). Our main concern is the distribution function of S(n) at maturity, i.e.

P
(
S(n)
n ≤ x

)
= P

(
1√
n

n∑
k=1

ξ
(n)
k ≤ yn

)
,

with yn,i =
log

(
xi
s0,i

)
−αn,iT

σi
√
T

, i = 1, . . . , d. Therefore, we are interested in the limit properties

of a sum of triangular array vectors. The ξ(n) are lattice random vectors (see section 3.4.1).
The results on Edgeworth expansions available for this class of distributions mainly deal
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with i.i.d. random vectors, and are not directly applicable here. So, the goal of this chapter
is to justify the Edgeworth expansion also for the binomial tree setting.

Edgeworth expansions are based on a taylor series of the corresponding characteristic
function. This series is then inverted to recover the necessary result for the distribution
function itself. Therefore, we start with a brief introduction of the basic definitions and
properties of moments and characteristic functions. Then, following the main literature on
the topic, we give a heuristic explanation of the approach to get a better understanding of
the intuition behind it. In the last section we present the main theorems.

3.2 The characteristic function: basic definitions and

properties

We will follow the definitions in [BR76].

Definition 3.2.1. The Fourier-Stieltjes transform of a finite signed measure µ is the
function ψµ : Rd → C defined by

ψµ (t) =

∫
Rd
ei〈t,x〉µ (dx) , t ∈ Rd.

If µ has density f with respect to the Lebesgue measure, the ψµ = ψf , where ψf is the
Fourier transform of f . If µ is a probability measure, ψµ is usually referred to as the
characteristic function of µ.

Remark 3.2.2. We will also use the notation ψX to denote the characteristic function of
the probability measure corresponding to the random vector X.

Example 3.2.3. Consider the multidimensional normal distribution Φm,Σ with mean m and
covariance matrix Σ. The density function is given by

φm,Σ (x) =
1

(2π)d/2
√

det Σ
e−

1
2〈x,Σ−1x〉, x ∈ Rd.

In this case the characteristic function is equal to

ψΦm,Σ(t) = ei〈t,m〉−
1
2
〈t,Σt〉, t ∈ Rd.

(See e.g. [BR76], Chapter 5.)

There exists a one-to-one correspondence between finite signed measures and Fourier-
Stieltjes transforms (Uniqueness Theorem, see e.g. [BR76] Theorem 5.1 (i)). If µ is abso-
lutely continuous with respect to the Lebesgue measure, then its density f can be recovered
from ψµ using the following theorem (see [BR76], Theorems 4.1 and 5.1).
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Theorem 3.2.4 (Fourier Inversion Formula). i) If ψµ ∈ L1
(
Rd
)
, then µ is absolutely

continuous with respect to the Lebesgue measure and has a uniformly continuous,
bounded density f ,

f (x) =
1

(2π)d

∫
Rd
e−i〈t,x〉ψµ (t) dt, x ∈ Rk.

ii) Suppose f ∈ L1
(
Rd
)
. Let x ∈ Rd and α = (α1, . . . , αd) be a nonnegative integer

vector. If xαf (x) ∈ L1
(
Rd
)
, then Dαψf exists and

xαf (x) =
(−1)|α|

(2π)d

∫
Rd
e−i〈t,x〉Dαψf (t) dt.

In addition, weak convergence of probability measures on Rd can be characterized in
terms of convergence of their characteristic functions.

Theorem 3.2.5.

i) Let {Pn}n≥1, P be probability measures on Rd. If Pn ⇒ P , then {ψPn}n≥1 converges
pointwise to ψP .

ii) If {ψPn}n≥1 converges pointwise to a function ψ, which is continuous at zero, then
there exists a probability measure P , such that Pn ⇒ P and ψP = ψ.

(see e.g. [BR76] Theorem 5.2)

This suggests that the asymptotic expansions for distribution functions could be de-
rived from the corresponding results for characteristic functions.

Let P be a probability measure on Rd. To obtain an expansion for the characteristic
function we will be using the following results.

Definition 3.2.6. (i) Let ν = (ν1, . . . , νk) be a nonnegative integer vector such that∫
Rd
|xν |P (dx) <∞.

The moment of order ν of P is defined as

µν =

∫
Rd
xνP (dx) .

(ii) For s ∈ R, s ≥ 0 the absolute moment of order s of P is defined as

ρs =

∫
Rd
‖x‖s P (dx) .
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The following theorem characterizes the derivatives of ψP .

Theorem 3.2.7. If ρs < ∞ for some positive integer s, then DαψP exists for every
nonnegative integer vector ν ∈ Rd, |ν| ≤ s, and is equal to

(DνψP ) (t) = (i)|ν|
∫
Rd
xνei〈t,x〉P (dx), t ∈ Rd.

Moreover,

i|ν|µν = (DνψP ) (0) .

(see e.g. [BR76] Section 5).

Using Theorem 3.2.7 and a Taylor expansion for complex-valued functions (see e.g.
[BR76], Corollary 8.2) we get

ψP (t) = 1 +
∑
|ν|≤s

µν
ν!

(it)ν + o (‖t‖s) , t→ 0, (3.1)

if ρs <∞ for some positive integer s. Therefore, we have an expansion for the characteristic
function in terms of the moments of the distribution. However, in the theory of Fourier
transforms it is usually more convenient to work with cumulants, also referred to as semi-
invariants (e.g. [GK54], [P75]). Instead of (3.1) consider the Taylor expansion of the
logarithm of the characteristic function.

logψP (t) =
∑
|ν|≤s

κν
ν!

(it)ν + o (‖t‖s) , t→ 0. (3.2)

Here the coefficients κν are the cumulants of order ν of P , and are given by

i|ν|κν = (Dν logψP ) (0) .

The cumulants κν , |ν| ≤ s, as well as expansion (3.2) exist if ρs < ∞. Here logψP (t) is
the principal branch of the complex logarithm. Note that

κ0 = 0, and κν = µν , |ν| = 1.

Example 3.2.8. Consider once again the normal distribution function Φm,Σ. Since logψΦm,Σ (t)
is quadratic in t all cumulants for |ν| > 2 are equal to zero. For |ν| = 1, 2 we have

κei = mi, i = 1, . . . , d,

and

κei+ej = Σ(i, j), i, j = 1, . . . , d

where ei is the i-th unit vector (see [BR76], pp. 50-51).
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Remark 3.2.9. The main reason why cumulants are usually the preferred choice is their
additivity. Consider the sum X = X1 + · · · + Xn of independent random vectors on Rd,
then

ψX (t) =
n∏
i=1

ψXi (t) ,

and

logψX (t) =
n∑
i=1

logψXi (t) .

Therefore, if Xi, i = 1, . . . , n have finite cumulants of order ν, κν(Xi), then

κν(X) = κν(X1) + · · ·+ κν(Xn).

This is, obviously, not true for moments of higher orders.

The formal identity

log

1 +
∑
|ν|≥1

µν
ν!

(it)ν

 =
∑
|ν|≥1

κν
ν!

(it)ν ,

allows to uniquely express the cumulants in terms of the moments and vice versa. As a
result we have

mν =
∑ 1

q!

ν!

ν1! · · · νq!

q∏
p=1

κνp and

κν =
∑ (−1)q−1

q

ν!

ν1! · · · νq!

q∏
p=1

mνp ,

(3.3)

where the summation is over all q−tuples of nonnegative integer vectors νp, |νp| > 0, such
that

q∑
p=1

νp = ν, q = 1, . . . , |ν| ,

(see e.g. [Sh84], Theorem 12.8).

Example 3.2.10. In the one-dimensional case (3.3) gives

µ2 = κ2 + κ2
1,

µ3 = κ3 + 3κ2κ1 + κ3
1,

µ4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1,

and

κ2 = µ2 − µ2
1,

κ3 = µ3 − 3µ2µ1 + 2µ3
1,

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1,
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For ease of reference we state the following well-known properties of norms and mo-
ments.

Lemma 3.2.11. For any nonnegative integer vector ν ∈ Rd and integers 0 ≤ m1 ≤ m ≤
m2

(i) |xν | ≤ ‖x‖|ν| , x ∈ Rd,

(ii) ‖x‖m ≤ ‖x‖m1 + ‖x‖m2 , x ∈ Rd.

For a random vector X in Rd with ρs <∞, |ν| ≤ s

(iii) |mν | ≤ E |Xν | ≤ ρ|ν|,

(iv) |κν | ≤ cρ|ν|, where the constant c depends only on ν.

(Cf. [BR76], Lemma 6.3 and (9.13))

3.3 Heuristic considerations

Consider the following problem setting. Let X1, . . . , Xn : (Ω,F , P )→ Rd be i.i.d. random
vectors with EX1 = 0, Cov (X1) = V , where V is a positive-definite matrix, and ρs < ∞
for some s ≥ 3. We are interested in the asymptotics of the distribution function Fn,

Fn (x) := P (Sn ≤ x) , x ∈ Rd,

where

Sn =
1√
n

(X1 + · · ·+Xn) .

By the properties of characteristic functions (see e.g. [BR76], Theorem 5.1)

ψSn (t) =
(
ψ 1√

n
X1

(t)
)n

=

(
ψX1

(
t√
n

))n
.

Then by equation (3.2) and taking into account that κν = µν = 0, for |ν| = 1 we have

logψSn (t) = n logψX1

(
t√
n

)
=

s∑
r=1

∑
|ν|=r

κν
ν!

(it)νn−(r−2)/2 + n · o
(∥∥∥∥ t√

n

∥∥∥∥s)

= −1

2
〈t, V t〉+

s−2∑
r=1

∑
|ν|=r+2

κν
ν!

(it)νn−r/2 + n · o
(∥∥∥∥ t√

n

∥∥∥∥s) , t√
n
→ 0.
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If we now fix t we get

ψSn (t) = e−
1
2
〈t,V t〉 exp

 s−2∑
r=1

∑
|ν|=r+2

κν
ν!

(it)νn−r/2 + o
(
n−(s−2)/2

) , n→∞. (3.4)

Now define the functions P̃r (z, {κν}) from the formal identity

1 +
+∞∑
r=1

P̃r (z, {κν})ur = exp


+∞∑
r=1

∑
|ν|=r+2

κn,νz
ν

ν!
ur

 .

Lemma 3.3.1. The functions P̃r are polynomials of degree 3r with coefficients that depend
only on the cumulants κν of order |ν| ≤ r + 2. They can be calculated as

P̃r (z, {κν}) =
r∑

m=1

1

m!

∑
j1,...,jm

( ∑
ν1,...,νm

κν1 · · ·κνm
ν1! · · · νm!

zν1+···+νm

)
, r ≥ 1, z ∈ Rd,

where
∑

j1,...,jm
is the summation over all m-tuples of positive integers (j1, . . . , jm) satisfy-

ing
∑m

i=1 ji = r, and
∑

ν1,...,νm
is the summation over all m-tuples of nonnegative integral

vectors (ν1, . . . , νm) s.t. |νi| = ji + 2, i = 1, . . . ,m.

(See [BR76], Chapter 7).

Example 3.3.2. The first two polynomials are

P̃1 (z, {κν}) =
∑
|ν|=3

κν
ν!
zν ,

P̃2 (z, {κν}) =
∑
|ν|=4

κν
ν!
zν +

1

2!

∑
|ν1|=|ν2|=3

κν1κν2

ν1!ν2!
zν1+ν2 .

We can now write (3.4) as

ψSn (t) = e−
1
2
〈t,V t〉 +

s−2∑
r=1

n−r/2P̃r (it, {κν}) e−
1
2
〈t,V t〉 + o

(
n−(s−2)/2

)
, n→∞, (3.5)

and we have an expansion of the characteristic function of a sum of i.i.d. random vectors
in terms of P̃r (it, {κν}) e−

1
2
〈t,V t〉. The question now is, how can we use (3.5) to get the

corresponding asymptotics for the distribution function?

From example 3.2.3 we know that the first term e−
1
2
〈t,V t〉 is the characteristic function

of the normal distribution Φ0,V . Now define Pr (−φ0,V , {κν}) as the function whose Fourier

transform is P̃r (it, {κν}) e−
1
2
〈t,V t〉, i.e.∫

Rd
ei〈t,x〉Pr (−φ0,V , {κν}) (x) dx = P̃r (it, {κν}) e−

1
2
〈t,V t〉. (3.6)
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By taking the ν-th derivative with respect to x on both sides of the Fourier inversion
formula in Theorem 3.2.4 i) we get∫

Rd
ei〈t,x〉Dνφ0,V (x) dx = (−it)νψΦ0,V

(t) = (−it)νe−
1
2
〈t,V t〉.

Therefore, (3.6) will be satisfied if we set Pr (−φ0,V , {κν}) equal to P̃r (it, {κν}) after sub-

stituting (−1)|ν|Dνφ0,V for each power (it)ν , i.e.

Pr (−φ0,V , {κν}) = P̃r (−D, {κν})φ0,V .

As a result, using Lemma 3.3.1 we get

Lemma 3.3.3. Pr (−φ0,V , {κν}) is a polynomial multiple of φ0,V and can be written as

Pr (−φ0,V , {κν}) =
r∑

m=1

1

m!

∑
j1,...,jm

( ∑
ν1,...,νm

κν1 · · ·κνm
ν1! · · · νm!

(−1)r+2mDν1+···+νmφ0,V

)
,

where the summation is as in Lemma 3.3.1.

Example 3.3.4. If d = 1, then V = σ2 and

P1 (−φ0,σ2 , {κν}) (x) =
κ3

6σ3

(
x3

σ3
− 3x

σ

)
φ0,σ2 (x) .

Finally, define Pr (−Φ0,Vn , κn,ν) as the finite signed measure on Rd whose density is
Pr (−φ0,Vn , κn,ν). By the Lebesgue dominated convergence theorem we have

Pr (−Φ0,V , {κν}) = P̃r (−D, {κν}) Φ0,V .

For a detailed discussion see [BR76], Chapter 7.

We can now state the desired expansion for the distribution function, known as the Edge-
worth expansion

Fn (x) = Φ0,V (x) +
s−2∑
r=1

n−r/2Pr (−Φ0,V , {κν}) (x) + o
(
n−(s−2)/2

)
, n→∞. (3.7)

For a more detailed argumentation see e.g. [BR76], Theorem 20.1 or [GK54], Chapter
45 for the one-dimensional case. Note that expansion (3.7) is only valid under an addi-
tional assumption on the distribution of the vectors Xi, i = 1, . . . , n, the so-called Cramér
condition

lim sup
‖t‖→∞

|ψX1 (t)| < 1, (3.8)

which is satisfied, for example, for absolutely continuous distributions. However, for lattice
distributions (3.8) does not hold, and, therefore, the Edgeworth expansion in the form (3.7)
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is not valid, and additional terms are required.

Let us go back to the context of binomial trees. Assume the one-dimensional RB model.
In this case

Sn =
1√
n

n∑
i=1

ξi,

where the variables ξi are i.i.d. and have two possible values +1 and −1 with probabilities
1
2
. Fn(x) is then purely discontinuous with jumps at points

xm =
m√
n
, where m =

{
0,±2, . . . ,±n, n even,
±1,±3, . . . ,±n, if n odd.

We now compare the relative behaviour of the functions Fn(x) and Φ(x) in a neighborhood
of a discontinuity point xm. By the theorem of de Moivre-Laplace, the jump of Fn at xm

is asymptotically equal to 2√
2πn

e−
1
2
x2
m . Let n be even and consider the interval

(
− 1√

n
, 1√

n

)
around x0. Here the function Φ(x) behaves like 1

2
+ x√

2π
, up to terms of order o

(
1√
n

)
.

In addition, 1
2

(Fn (0−) + Fn (0+)) = Φ (0) = 1
2
. Then, in the vicinity of x0 up to order

o
(

1√
n

)
we have the following graph (see [E45])

Therefore, in the interval
(
− 1√

n
, 1√

n

)
Fn (x)− Φ (x) = − 2√

2πn
S

(
x
√
n

2

)
,

where

S(x) = x− bxc − 1

2
, (3.9)

and bxc denotes the integer part of x. For an expansion at other points the change of the
slope of Φ(x) needs to be taken into account (see [GK54], Chapter 8.43). This suggests,



28 CHAPTER 3. EDGEWORTH EXPANSIONS

that in addition to the right-hand side of (3.7) the asymptotics for the RB tree should

contain terms of the form − 2√
2πn

S
(
x
√
n

2

)
e−

1
2
x2

. The exact expansion for lattice random

vectors is derived in the next section.

Remark 3.3.5. Note that the Edgeworth expansion for absolutely continuous distributions
(3.7) is an expansion in powers of n−1/2 in the classical sense, i.e. with constant coefficients.
In the case of lattice distributions, on the other hand, we have expansion with bounded
coefficients (see [DD04] or [M09]).

3.4 Edgeworth expansions for lattice triangular ar-

rays

3.4.1 Lattice random vectors

We first consider lattice distributions in more detail.

Definition 3.4.1. The discrete subgroup L of Rd is called a lattice if there exist linearly
independent vectors h1, . . . , hd in L such that

L = {m1h1 + · · ·+mdhd| mi ∈ Z, i = 1, . . . , d} .

The set of vectors {h1, . . . , hd} is the basis of L. The volume of the lattice is defined as

D (L) = |Det (h1, . . . , hd)| .

The volume is independent of the choice of the basis and is uniquely determined for
each lattice.

Definition 3.4.2. Let (Ω,F , P ) be a probability space. The distribution of a random
vector X on Rd is said to be a lattice distribution if there exists a x0 ∈ Rd and a lattice L
such that

P (X ∈ x0 + L) = 1. (3.10)

It is clear that one can find various vectors x0 and lattices such that (3.10) holds. Just
consider the possible representations for the values ±1 of the random variables ξ(n) in the
definition of the binomial tree. Therefore, lattice distributions are often characterized in
terms of the unique minimal lattice.

Definition 3.4.3. The lattice L is called the minimal lattice of X in Rd if L satisfies (3.10)
with some x0 ∈ Rd, and for every sublattice L′ ⊂ L

P (X ∈ y0 + L′) < 1, ∀y0 ∈ Rd.

Note that the minimal lattice has the maximal volume D (L) out of all lattices satisfying
(3.10).
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Definition 3.4.4. A random vector X is called degenerate if there exists a hyperplane
H = {x : 〈a, x〉 = c}, a ∈ Rd, c ∈ R, such that P (X ∈ H) = 1.

From now on we assume that X is a nondegenerate lattice random vector, and focus
on the properties of the characteristic function of X

ψX(t) =
∑
α∈L

P (X = x0 + α) ei〈t,x0+α〉.

Note that |ψX | is a periodic function, therefore, the Cramér condition (3.8) is indeed not
satisfied. Consider the set L∗ of periods of |ψX |. Let {h1, . . . , hd} be a basis of L and
{ĥ1, . . . , ĥd} its dual basis, i.e.〈

hi, ĥj

〉
= δi,j, i, j = 1, . . . , d,

where δi,j is Kronecker’s delta. Then L∗ is the lattice defined as

L∗ = {m12πĥ1 + · · ·+md2πĥd| mi ∈ Z, i = 1, . . . , d}.

By the properties of a dual basis the volume of L∗ is given by

D (L∗) =
(2π)d

D (L)
.

Note that L∗ can also be characterized in the following way (see e.g. [BR76], Lemma 21.6)

L∗ = {t : |ψX (t)| = 1} .

We now introduce the fundamental domain F∗ of L∗

F∗ = {t1ĥ1 + · · ·+ tkĥd | |ti| < π ∀j}.

volF∗ = D (L∗) .

The fundamental domain allows to partition the space Rd in the following way

Rd =
⋃
α̂∈L∗

Cl (F∗ + α̂) . (3.11)

In addition F∗ ∩L∗ = {0}, i.e. F∗ doesn’t contain any periods of |ψX |, other than 0, and,
therefore,

|ψX (t)| < 1, t ∈ F∗, t 6= 0.

This is an important property that we will often make use of in the proofs below. Finally,
we state the Fourier inversion formula for lattice random vectors.
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Theorem 3.4.5 (Fourier inversion formula for lattice distributions). Let X be a nondegen-
erate lattice random vector in Rd with lattice L and x0 ∈ Rd, such that P (X ∈ x0 + L) = 1.
Then

P (X = x0 + α) =
D(L)

(2π)d

∫
F∗
e−i〈t,x0+α〉ψX (t) dt,

and

(x0 + α)ν P (X = x0 + α) =
D(L)

(2π)d
(−i)|ν|

∫
F∗
e−i〈t,x0+α〉DνψX (t) dt, α ∈ L.

For details see [BR76], Chapter 5.21.

3.4.2 Local expansions

We now derive Edgeworth expansions for the point masses of a sum of triangular array
lattice random vectors. These results are used in section 3.4.3 to obtain expansions for
the distribution function. Supplementary lemmas, that are used in the proofs below are
presented in section 3.4.4.

Consider a triangular array of lattice random vectors Xn,1, Xn,2, . . . , Xn,n defined on the
probability spaces (Ωn,Fn, Pn), with common minimal lattice Zd s.t.

E (Xn,1) = µn, Cov (Xn,1) = Vn, P
(
Xn,1 ∈ Zd

)
= 1 and

ρn,s+1 = E ‖Xn,1 − µn‖s+1 = O (1) , for some integer s ≥ 2,
(3.12)

where the sequence of positive-definite covariance matrices {Vn} converges to a positive-
definite limit matrix V . For each n ∈ N let Sn be the normalized sum

Sn =
Xn,1 + · · ·+Xn,n − nµn√

n
.

Note that Sn is also a lattice random vector with minimal lattice L = n−1/2Zd and

P
(
Sn ∈ −

√
nµn + L

)
= 1.

Following the notation in [BR76] we define the values attained by Sn as xα,n := 1√
n

(α− nµn) , n ∈
N, α ∈ Zd. Set

pn (xα,n) = P (Xn,1 + · · ·+Xn,n = α) = P (Sn = xα,n) ,

qn,s = n−d/2
s−2∑
r=0

n−r/2Pr (−φ0,Vn , {κn,ν}) ,

where κn,ν is the ν − th cumulant of Xn,1.
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Theorem 3.4.6. Let E(C) =
{
t ∈ Rd : ‖t‖ ≤ C

}
, and F∗ be a fundamental domain of(

Zd
)∗

. Under conditions (3.12), if for all constants C > 0, s.t. F∗ \ E(C) is non-empty,
the characteristic functions ψXn,1 satisfy the condition

NC := sup
{∣∣ψXn,1 (t)

∣∣ : t ∈ F∗ \ E(C), n ∈ N
}
< 1, (3.13)

then

sup
α∈Zd

(1 + ‖xα,n‖s) |pn (xα,n)− qn,s (xα,n)| = O
(
n−(d+s−1)/2

)
, n→∞, (3.14)

and ∑
α∈Zd
|pn (xα,n)− qn,s (xα,n)| = O

(
n−(s−1)/2

)
, n→∞. (3.15)

Proof of Theorem 3.4.6. We will follow the proof of Theorem 22.1 in [BR76].

For each n ∈ N set Yi,n := Xi,n − µn, i = 1, . . . , n. Then ψY1,n (t) = ψX1,n (t) e−i〈t,µn〉

and the characteristic function of Sn can be determined as

ψSn (t) =

(
ψY1,n

(
t√
n

))n
.

Applying the inversion formulas in Theorem 3.4.5 we get

pn (xα,n) =
1

(2π)d nd/2

∫
√
nF∗

ψSn (t) e−i〈t,xα,n〉dt,

and

xβα,npn (xα,n) =
1

(2π)d nd/2
(−1)|β|

∫
√
nF∗

e−i〈t,xα,n〉DβψSn (t) dt, (3.16)

where β is a non-negative integer vector with |β| ≤ s. By Theorem 3.2.4 and the definition
of the functions Pr (3.6) we have

xβα,nqn,s (xα,n) =
1

(2π)d nd/2
(−1)|β|

∫
Rd
e−i〈t,xα,n〉Dβ

(
s−2∑
r=0

n−r/2P̃r (it, {κn,ν}) e−
1
2
〈t,Vnt〉

)
dt.

(3.17)

Since ρn,s+1 = O (1), by Lemma 3.4.11 (ii), there exist a constant ĉ1 and n0 ∈ N, such that

c1Λ−1/2
n λs/(2(s−2))

n ρ−1/(s−2)
n,s ≥ ĉ1, ∀n ≥ n0.

Set
E (ĉ1) =

{
t ∈ Rk : ‖t‖ ≤ ĉ1

}
.
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Note that for all t ∈
√
nE (ĉ1) the assumptions of Lemma 3.4.10 hold for all n ≥ n0.

Now consider the difference
∣∣xβα,n (pn (xα,n)− qn,s (xα,n))

∣∣. Due to equations (3.16) and
(3.17) we have∣∣xβα,n (pn (xα,n)− qn,s (xα,n))

∣∣ =
1

(2π)d nd/2

∣∣∣∣∫√
nF∗

e−i〈t,xα,n〉DβψSn (t) dt

−
∫
Rd
e−i〈t,xα,n〉Dβ

(
s−2∑
r=0

n−r/2P̃r (it, {κn,ν}) e−
1
2
〈t,Vnt〉

)
dt

∣∣∣∣∣
≤ 1

(2π)d nd/2
(I1 + I2 + I3) ,

(3.18)

where

I1 :=

∫
√
nE(ĉ1)

∣∣∣∣∣Dβ

[
ψSn (t)− e−

1
2
〈t,Vnt〉

s−2∑
r=0

n−r/2P̃r (it, {κn,ν})

]∣∣∣∣∣ dt
I2 :=

∫
√
nF∗\

√
nE(ĉ1)

∣∣DβψSn (t)
∣∣ dt

I3 :=

∫
Rd\
√
nE(ĉ1)

∣∣∣∣∣Dβ

[
e−

1
2
〈t,Vnt〉

s−2∑
r=0

n−r/2P̃r (it, {κn,ν})

]∣∣∣∣∣ dt
We will now estimate each of these integrals separately.

By Lemmas 3.4.10 and 3.4.11 (i), there exist constants ĉ2 ans c3, such that for all nonneg-
ative integer vectors β, 0 ≤ |β| ≤ s, for all t ∈

√
nE (ĉ1)∣∣∣∣∣Dβ

[
ψSn (t)− e−

1
2
〈t,Vnt〉

s−2∑
r=0

n−r/2P̃r (it, κn,ν)

]∣∣∣∣∣
≤ ĉ2n

−(s−1)/2
(
‖t‖s+1−|β| + ‖t‖3(s−1)+|β|

)
e−

c3‖t‖
2

4 ,

(3.19)

Then

I1 ≤ ĉ2n
−(s−1)/2

∫
√
nE(ĉ1)

(
‖t‖s+1−|β| + ‖t‖3(s−1)+|β|

)
e−

c3‖t‖
2

4 dt

≤ c11n
−(s−1)/2

∫
Rd
e−

c3‖t‖
2

8 dt
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where c11 = ĉ2 · supt∈Rd

{(
‖t‖s+1−|β| + ‖t‖3(s−1)+|β|

)
e−

c3‖t‖
2

8

}
. Therefore,

I1 = O
(
n−(s−1)/2

)
, n→∞. (3.20)

Now let us consider I3. By Lemma 3.4.12

I3 ≤ c5

∫
Rd\
√
nE(ĉ1)

e−c3‖t‖
2/4dt

≤ c5

(
ĉ1

√
n
)−(s−1)

∫
Rd
‖t‖s−1 e−c3‖t‖

2/4dt,

where the last step holds due to the Chebyshev-Markov inequality (see e.g. [Bau92], Lemma
20.1). Therefore,

I3 = O
(
n−(s−1)/2

)
, n→∞. (3.21)

Finally, we estimate I2. We assume that
√
nE (ĉ1) ⊆

√
nF∗, otherwise, no further cal-

culations are necessary. By Assumption (3.13)

sup
{∣∣ψX1,n (t)

∣∣ : t ∈ F∗ \ E (ĉ1) , n ∈ N
}

= Nĉ1 < 1, (3.22)

Since
∣∣ψYn,1∣∣ =

∣∣ψXn,1∣∣, by applying Lemma 3.4.13 for each n ∈ N we get

I2 ≤ ρn,|β|n
|β|/2

∫
√
nF∗\

√
nE(ĉ1)

∣∣∣∣ψX1,n

(
t√
n

)∣∣∣∣n−|β| dt
= ρn,|β|n

|β|/2nd/2
∫
F∗\E(ĉ1)

∣∣ψX1,n (t)
∣∣n−|β| dt

≤ c12N
n−|β|
ĉ1

n|β|/2+d/2, ∀n ≥ n0.

(3.23)

Since Nĉ1 < 1, N
n−|β|
ĉ1

tends to zero faster than any power of 1/n, as n→∞. Therefore,

I2 = O
(
n−(s−1)/2

)
. (3.24)

From equations (3.18), (3.20), (3.21) and (3.24) we get

sup
α∈L

∣∣xβα,n (pn (xα,n)− qn,s (xα,n))
∣∣ = O

(
n−(d+s−1)/2

)
, n→∞, |β| ≤ s. (3.25)

By Jensen’s inequality

‖x‖s ≤ ds/2−1 (|x1|s + · · ·+ |xd|s) = ds/2−1
∑

β=sei,1≤i≤d

∣∣xβ∣∣ ,
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where ei is the i-th unit vector. Hence, by setting β = (0, . . . , 0), β = (s, 0 . . . , 0), . . . , β =
(0, 0 . . . , s) in (3.25) we get the necessary relation (3.14).

We now consider equation (3.15).∑
α∈Zd
|pn (xα,n)− qn,s (xα,n)|

≤ sup
α∈Zd

[(1 + ‖xα,n‖s) |pn (xα,n)− qn,s (xα,n)|]
∑
α∈Zd

1

(1 + ‖xα,n‖s)
.

By applying (3.14) we get

n(s−1)/2
∑
α∈Zd
|pn (xα,n)− qn,s (xα,n)| ≤ c13n

−d/2
∑
α∈Zd

1

(1 + ‖xα,n‖s)

= c13n
−d/2

∑
α∈Zd−nµn

1(
1 +

∥∥∥ α√
n

∥∥∥s)
(3.11)

≤ c13n
−d/2 sup

‖ξ‖≤ 1√
n
volF∗

∑
α∈Zd

1(
1 +

∥∥∥ α√
n

+ ξ
∥∥∥s)

→
∫
Rd

1

1 + xs
dx, n→∞,

where the last integral converges if s ≥ d+1. Therefore, in this case, (3.15) follows directly
from (3.14). The proof of (3.15) in the general case follows that of Bhattacharya and Rao
pp. 233-236, dealing with the n-dependent parameters in (3.12) as presented above.

Remark 3.4.7. The main difference from the i.i.d. case in the theorem above is the uniform
condition (3.13). It is necessary to ensure that

∣∣ψX1,n

∣∣n → 0, n → ∞ on the fundamental
domain. The question now is how restrictive this condition really is, and how applicable
the theorem is in practice. In general, its verification is not straightforward. However,
following the idea in [KorKu07], we can state a sufficient condition for it, which holds for
multidimensional and multinomial trees.

Lemma 3.4.8. Let ξn,1, . . . , ξn,n ∈ Rd, n ∈ N be a triangular array of lattice random vectors
with a common minimal lattice L and support S =

{
x ∈ Rd

∣∣ px,n := P (ξn,1 = x) > 0
}

,
|S| = m. If for each x ∈ S there exists a constant Kx > 0 such that

px,n ≥ Kx, n ∈ N,

then for all constants C > 0, s.t. F∗ \ E(C) is non-empty

NC := sup
{∣∣ψξn,1 (t)

∣∣ : t ∈ F∗ \ E(C), n ∈ N
}
< 1, (3.26)

Here F∗ is the fundamental domain of L∗ and E(C) is defined as in Theorem 3.4.6.
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Proof. Since S has a finite number of elements, define K := min {Kx, x ∈ S}. Then

ψξn,1 (t) =
∑
x∈S

ei〈t,x〉px,n =
∑
x∈S

ei〈t,x〉 (px,n −K) +
∑
x∈S

ei〈t,x〉K

=
∑
x∈S

ei〈t,x〉 (px,n −K) +Km
∑
x∈S

ei〈t,x〉
1

m
.

Set

ψ (t) :=
∑
x∈S

ei〈t,x〉
1

m
,

which is the characteristic function of a m-nomial random vector that has the same sup-
port S, but assigns an equal probability 1

m
to each attainable value. Note that ψ (t) is

independent of n and for any constant C > 0, δ (C) := |ψ (t)| < 1, for t ∈ F∗ \ E (C).
Then, since px,n ≥ Kx ≥ K, for all x ∈ S,∣∣ψξn,1 (t)

∣∣ ≤∑
x∈S

(px,n −K) +Km |ψ (t)| .

=
∑
x∈S

px,n +Km (δ (C)− 1) = 1−Km (1− δ (C)) := ε (C) .

Since δ (C) < 1, we have
∣∣ψξn,1 (t)

∣∣ ≤ ε (C) < 1 for all n ∈ N and t ∈ F∗\E (C). Therefore,
we have shown (3.26).

3.4.3 Expansions for distribution functions

We now follow the proof of Theorem 23.1 in [BR76] to obtain an Edgeworth expansion for
the distribution function of a sum of triangular array lattice random vectors. However, we
will first need some additional notation.

Consider the sequence of functions Sj, j ≥ 0, Sj : R → R defined by the Fourier se-
ries

Sj (x) =


(−1)j/2−1

∑∞
n=1

2 cos(2nπx)
(2nπ)j

, j even , j > 0

(−1)(j−1)/2
∑∞

n=1
2 sin(2nπx)

(2nπ)j
, j odd,

for noninteger x ∈ R. These functions are periodic with period 1. Sj is continuous for
j ≥ 2, right-continuous for j = 1 and S ′j+1 (x) = Sj (x), j ≥ 0 for all noninteger values x.
Sj can be determined by the j-th Bernoulli polynomial, for example

S1(x) = x− 1

2
,

S2(x) =
1

2

(
x2 − x+

1

6

)
, 0 ≤ x < 1.
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Due to periodicity, for all non-integer x

S1(x) = x− bxc − 1

2
.

Note that this is exactly the value that appeared in equation (3.9) in the heuristic expla-
nation.

In the following let α ∈ Rd be a nonnegative integer vector and x ∈ Rd. Define Sα (x) :
Rd → R as

Sα (x) = Sα1 (x1) · · ·Sαk (xd) . (3.27)

For more details see [BR76], Chapter A.4.

Theorem 3.4.9. Under the conditions of Theorem 3.4.6, the distribution function of Sn
satisfies

sup
x∈Rd

∣∣∣∣∣∣P (Sn ≤ x)−
∑
|α|≤s−2

n−|α|/2 (−1)|α| Sα
(
nµn +

√
nx
)

(DαΦ0,Vn) (x)

− n−1/2
∑
|α|≤s−3

n−|α|/2 (−1)|α| Sα
(
nµn +

√
nx
)

(DαP1 (−Φ0,Vn , {κn,ν})) (x)

− · · · − n−(s−2)/2Ps−2 (−Φ0,Vn , {κn,ν})
∣∣ = O

(
n−(s−1)/2

)
,

(3.28)

where the functions Sα are defined as in (3.27).

Proof. Let

P (Sn ≤ x) =
∑

α∈Zd: xα,n≤x

pn (xα,n)

and
Qn,s (x) :=

∑
α∈Zd: xα,n≤x

qn,s (xα,n)

Since by equation (3.15)

|P (Sn ≤ x)−Qn,s (x)| ≤
∑

α∈Zd: xα,n≤x

|pn (xα,n)− qn,s (xα,n)|

≤
∑
α∈Zd
|pn (xα,n)− qn,s (xα,n)|

= O
(
n−(s−1)/2

)
,

it remains to show (3.28) with P (Sn ≤ x) replaced by Qn,s (x). We will apply the gener-
alized Euler-Maclaurin summation formula (Theorem 3.4.14) to prove the latter statement.
In Theorem 3.4.14 set r = s−1, h = 1√

n
, vn = −

√
nµn and fn =

∑s−2
r=0 n

−r/2Pr (−φ0,Vn , {κn,ν}).
Due to the representation of Pr (−φ0,Vn , {κn,ν}) in Lemma 3.3.3, fn is a Schwartz function
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(see (3.34)) for each n ∈ N.

In this setting Fn =
∑s−2

j=0 n
−j/2Pj (−Φ0,Vn , {κn,ν}) and

Qn,s (x) =
∑

α∈Zd: xα,n≤x

qn,s

(
α− nµn√

n

)
= hd

∑
α∈Zd: hα+vn≤x

f (hα + vn) .

Then by Theorem 3.4.14, for every m > d/2∣∣∣∣∣∣Qn,s (x)−
∑

j(α)<s−1

(−1)|α| h|α|Sα

(
x− v
h

)
(DαFn) (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Qn,s (x)−
∑

j(α)<s−1

(−1)|α| n−|α|/2Sα
(
x
√
n+ µnn

)
Dα

(
s−2∑
j=0

n−j/2Pj (−Φ0,Vn , {κn,ν})

)
(x)

∣∣∣∣∣∣
≤ c (s− 1,m, d)

∑
s−1≤|γ|≤d(s−1)

n−|γ|/2 sup
x∈Rd

((
1 + ‖x‖2)m/2 |Dγfn (x)|

)
(3.29)

Since the right-hand side of (3.29) is independent of x by taking the supremum on both
sides we get

sup
x∈Rd

∣∣∣∣∣∣Qn,s (x)−
∑

j(α)<s−1

(−1)|α| n−|α|/2Sα
(
x
√
n+ µnn

)
×(Dα

s−2∑
j=0

n−j/2Pj (−Φ0,Vn : κn,ν)) (x)

∣∣∣∣∣
≤ c (s− 1,m, d)

∑
s−1≤|γ|≤d(s−1)

n−|γ|/2 sup
x∈Rd

((
1 + ‖x‖2)m/2 |Dγfn (x)|

)
≤ c (s− 1,m, d)n−(s−1)/2

∑
s−1≤|γ|≤d(s−1)

sup
x∈Rd

((
1 + ‖x‖2)m/2 |Dγfn (x)|

)
.

(3.30)

As in the proof of Lemma 3.4.11, there exists a constant c14 s.t.

e−
1
2〈x,V −1

n x〉 ≤ e−
1
2
c14‖x‖2 .

In addition κn,ν = O (1) for |ν| ≤ s, Det(Vn) = O (1) and, therefore, by Lemma 3.3.3

sup
x∈Rd

((
1 + ‖x‖2)m/2 |Dγfn (x)|

)
= O (1) , n→∞,
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for all γ s.t. s− 1 ≤ |γ| ≤ d(s− 1). Relation (3.30) now becomes

sup
x∈Rd

∣∣∣∣∣∣Qn,s (x)−
∑

j(α)<s−1

(−1)|α| n−|α|/2Sα
(
x
√
n+ µnn

)
×Dα

(
s−2∑
j=0

n−j/2Pj (−Φ0,Vn , {κnν})

)
(x)

∣∣∣∣∣
= O

(
n−(s−1)/2

)
.

Since |α| > j (α) for all α ∈ Rd we get the necessary relation (3.28) by omitting from the
above expansion all terms of order n−j/2, j ≥ s− 1, and keeping in mind that the involved
cumulants are bounded.

3.4.4 Supplementary results

We now present some additional lemmas and theorems used in the proofs above.

Lemma 3.4.10. Let P be a probability measure on Rd with zero mean, positive-definite
covariance matrix V , and finite s-th absolute moment ρs for s ≥ 3. Then there exist two
positive constants c1, c2, s.t. for all t ∈ Rd satisfying

‖t‖ ≤ c1n
1/2Λ−1/2λs/(2(s−2))ρ−1/(s−2)

s ,

where Λ and λ are the largest and smallest eigenvalue of V , one has∣∣∣∣∣Dα

[
ψnP

(
t√
n

)
− e−

1
2
〈t,V t〉

s−3∑
r=0

n−r/2P̃r (it, {κν})

]∣∣∣∣∣
≤ c2Λ|α|/2λ−s/2ρs

n(s−2)/2

[
〈t, V t〉(s−|α|)/2 + 〈t, V t〉(3(s−2)+|α|)/2

]
e−

1
4
〈t,V t〉.

Proof. Let B be a symmetric positive-definite matrix, such that B2 = V −1. Define

ηs =

∫
Rd
‖Bx‖s P (dx).

Since ‖B‖ =
∥∥V −1/2

∥∥ = λ−1/2, where λ is the smallest eigenvalue of V , and ‖Bx‖ ≤
‖B‖ · ‖x‖, we have

ηs ≤ λ−s/2ρs.

The statement of the lemma follows from [BR76], Theorem 9.10 and the remark on p. 83.
The matrix norms above are the induced euclidean norms.

Lemma 3.4.11. Let {Vn} be a sequence of matrices that converges to a positive-definite
matrix V . Then the following statements hold.
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(i) There exist positive constants c3, c4 and n0 ∈ N, such that

c3 ‖t‖2 ≤ 〈t, Vnt〉 ≤ c4 ‖t‖2 , ∀n ≥ n0,∀t ∈ Rk.

(ii) If Λn and λn are the smallest and largest eigenvalues of Vn, then

Λn, λ
−1
n = O (1) , n→∞.

Proof. (i) Since V is symmetric,

λ ‖t‖2 ≤ 〈t, V t〉 ≤ Λ ‖t‖2 , ∀t ∈ Rd,

where λ > 0 and Λ > 0 are the smallest and largest eigenvalue of V .

〈t, Vnt〉 = 〈t, Vnt〉 − 〈t, V t〉+ 〈t, V t〉

=
k∑

i,j=1

titj

(
v

(n)
ij − vij

)
+ 〈t, V t〉

(3.31)

Since Vn converges to V , ∀ε > 0 ∃nε, s.t. ∀n ≥ nε

−ε ≤ v
(n)
ij − vij ≤ ε,

and from (3.31) we have

(−ε+ λ) ‖t‖2 ≤ 〈t, Vnt〉 ≤ (ε+ Λ) ‖t‖2 .

(ii) Since ‖Vn‖ = Λn and ‖V −1
n ‖ = 1

λn
, the sequences {Λn} and

{
1
λn

}
converge to Λ and

1
λ
, respectively.

Lemma 3.4.12. Under the conditions (3.12), for any nonnegative integral vector β, 0 ≤
|β| ≤ s, there exist a constant c5 and n0 ∈ N, such that∣∣∣∣∣Dβ

[
e−

1
2
〈t,Vnt〉

s−2∑
r=0

n−r/2P̃r (it, {κn,ν})

]∣∣∣∣∣ ≤ c5e
−c3‖t‖2/4, ∀n ≥ n0,

where c3 is as in Lemma 3.4.11 (i).

Proof.∣∣∣∣∣Dβ

[
e−

1
2
〈t,Vnt〉

s−2∑
r=0

n−r/2P̃r (it, {κn,ν})

]∣∣∣∣∣ ≤
s−2∑
r=0

n−r/2
∣∣∣Dβ

[
P̃r (it, {κn,ν}) e−

1
2
〈t,Vnt〉

]∣∣∣ .
(3.32)
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By applying the product rule, the derivatives in the above equation can be represented as

Dβ
[
P̃r (it, {κn,ν}) e−

1
2
〈t,Vnt〉

]
=
∑

0≤α≤β

c (α)DαP̃r (it, {κn,ν})Dβ−αe−
1
2
〈t,Vnt〉

By Lemmas 3.2.11 (i), (ii) and 3.4.11 (i) we get∣∣∣Dβ−αe−
1
2
〈t,Vnt〉

∣∣∣ ≤ c6

(
1 + ‖t‖|β−α|

)
e−c3‖t‖

2/2.

By Lemma 3.3.1, P̃r (it, {κn,ν}) is a polynomial of degree 3r. Since ρn,s+1 ∈ O(1), by
Lemma 9.5 in [BR76] for 0 ≤ |α| ≤ 3r, r = 0, . . . , s− 2∣∣∣DαP̃r (it, {κn,ν})

∣∣∣ ≤ c7

(
1 + ρ

r(s−3)/(s−2)
n,2

)(
1 + ‖t‖3r−|α|

)
ρr/(s−2)
n,s

≤ c8

(
1 + ‖t‖3r−|α|

)
,

starting from some n ∈ N. Therefore,∣∣∣∣∣Dβ

[
e−

1
2
〈t,Vnt〉

s−2∑
r=0

n−r/2P̃r (it, {κn,ν})

]∣∣∣∣∣ ≤ c9e
−c3‖t‖2/2

s−2∑
r=0

n−r/2

×
∑

0≤α≤min{β,3r}

(
1 + ‖t‖|β−α| + ‖t‖3r−|α| + ‖t‖3r−|α|+|β−α|

)
≤ c10e

−c3‖t‖2/4, ∀n ≥ n0,

where the last inequality holds, since any polynomial multiplied by e−c3‖t‖
2/4 is bounded.

Lemma 3.4.13. Let X1, . . . , Xn ∈ Rd be i.i.d. random vectors with zero mean and finite
s-th moment ρs, and Sn = 1√

n

∑n
i=1Xi. Then for any nonnegative integral vector β ∈ Rd,

|β| ≤ s ∣∣DβψSn (t)
∣∣ ≤ ρ|β|n

|β|/2
(
ψX1

(
t√
n

))n−|β|
, t ∈ Rd.

Proof. By the Leibniz’ formula for differentiation of a product of n functions DβψSn (t) =

Dβ
(
ψX1

(
t√
n

))n
can be expressed as a sum of n|β| terms of the form(

ψX1

(
t√
n

))n−r r∏
j=1

Dβj

(
ψX1

(
t√
n

))
, (3.33)

where 1 ≤ r ≤ |β|, β1, . . . , βr are nonnegative integer vectors s.t. |βj| ≥ 1 for 1 ≤ j ≤
r,
∑r

j=1 βj = β. By Theorem 3.2.7 and Lemma 3.2.11 (iii) each of the derivatives in the
product above can be bounded by∣∣∣∣Dβj

(
ψX1

(
t√
n

))∣∣∣∣ ≤ n−|βj |/2E
∣∣∣Xβj

1

∣∣∣
≤ n−|βj |/2ρ|βj |.
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As a result

r∏
j=1

∣∣∣∣Dβj

(
ψX1

(
t√
n

))∣∣∣∣ ≤ n−(|β1|+···+|βr|)/2ρ|β1| · · · ρ|βr|

≤ n−|β|/2ρ
(|β1|+···+|βr|)/|β|
|β| = n−|β|/2ρ|β|,

where the last inequality holds since ρ
1/s
s is a non-decreasing function (Lemma 6.2(ii),

[BR76]). Therefore, taking into account that
∣∣∣ψX1

(
t√
n

)∣∣∣ ≤ 1 and n− r ≥ n− |β|, we get

∣∣DβψSn (t)
∣∣ ≤ n|β|

∣∣∣∣ψX1

(
t√
n

)∣∣∣∣n−r r∏
j=1

∣∣∣∣Dβj

(
ψX1

(
t√
n

))∣∣∣∣
≤ ρn,|β|n

|β|/2
∣∣∣∣ψX1

(
t√
n

)∣∣∣∣n−|β| .

The generalized Euler-Maclaurin summation formula

In the proof of the Edgeworth expansion for distribution functions we make use of the
following version of the Euler-Maclaurin formula for an integral representation of multidi-
mensional sums (see [BR76], Theorem A.4.3).

Consider the Schwartz space S on Rd of functions all of whose derivatives are rapidly
decreasing, i.e f ∈ S iff f is infinitely differentiable and

sup
x∈Rd

∣∣xβ (Dαf) (x)
∣∣ <∞ (3.34)

for all pairs of nonnegative integer vectors α, β.

Theorem 3.4.14 (Generalized Euler-Maclaurin Formula). Let f ∈ S, v ∈ Rd, and h > 0,
and let r be a positive integer. Define

Λr (x) =
∑
j(α)<r

(−1)|α| h|α|Sα

(
x− v
h

)
(DαF ) (x) , (3.35)

where F is defined as

F (x) =

∫ x1

−∞
· · ·
∫ xd

−∞
f (y) dy, x ∈ Rd,

and for any nonnegative integer vector α ∈ Rd

j (α) =
∑
αj≥2

(αj − 1) , j (α) = 0, if αj < 2 ∀j.
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For every m > d/2 there exists a constant c (r,m, d) such that for all Borel sets A∣∣∣∣∣hd ∑
v+hn∈A

f (v + hn)−
∫
A

dΛr

∣∣∣∣∣ ≤ c (r,m, d)
∑

r≤|γ|≤dr

h|γ|νm (Dγf) , (3.36)

where νm is

νm (φ) = sup
{(

1 + ‖x‖2)m/2 |φ (x)| : x ∈ Rd
}
.



Chapter 4

Asymptotics of One-Dimensional
Tree Models

As we have seen in Chapter 2, one of the main drawbacks of tree-based methods is their
irregular convergence behavior. This issue has been addressed by numerous authors and
different solutions have been offered (see, e.g. [BL94], [R95], [LR96], and [T99]). However,
in order to better understand the source of the problem as well as to be able to compare
existing methods theoretically, one has to consider the asymptotics of the discrete models
([DD04]). Moreover, this information can then be used to construct advanced tree models
with faster or smoother convergence (see [CP07] and [KM13]).

In this chapter we focus on the one-dimensional setting. We offer a general method of
constructing asymptotic expansions for lattices based on an appropriate Edgeworth ex-
pansion, and discuss ways of further improving the convergence behaviour for different
types of options .

4.1 Distributional fit

Consider the one-dimensional Black-Scholes model

dS (t) = S (t) (rdt+ σdW (t)) , S(0) = s0. (4.1)

Recall (see section 2.1.2), that the approximating binomial tree
{
S

(n)
k

}
, k = 1, . . . , n is

constructed as follows

S
(n)
0 = s0,

S
(n)
k = S

(n)
k−1e

αn∆t+σ
√

∆tξ
(n)
k ,

(4.2)

where {αn}n is a bounded sequence and for each n ∈ N, ξ
(n)
k , k = 1, . . . , n are i.i.d random

variables taking on values 1 and −1 with probabilities pn and 1 − pn, respectively. To



44 CHAPTER 4. ASYMPTOTICS OF ONE-DIMENSIONAL TREE MODELS

ensure weak convergence we assume (see (2.4))

µ (n) = r − 1

2
σ2 + o (1) ,

σ2 (n) = σ2 + o (1) .
(4.3)

As mentioned previously, there are various choices for αn and pn, but which is the best
one? It would be very convenient if we could optimize this problem for all types of options
and construct a superior tree for every situation. Unfortunately, it is not that simple. As
we will see below, the optimal αn and pn strongly depend on the type of option considered,
and even though they are derived using the same idea, their exact form will differ.

However, before we consider specific options we would like to focus on the distribution
of the stock price at maturity. Due to (4.3) we know that S(n) converges to S in dis-
tribution, we would now like to see how well it converges, i.e. we are interested in the
discretization error

P
(
S(n)
n ≤ x

)
−Q (S(T ) ≤ x) = P

(
S(n)
n ≤ x

)
− Φ (d2) , (4.4)

where d2 := d2 (x), and

d2 (x) :=
ln
(
x
s0

)
−
(
r − 1

2
σ2
)
T

σ
√
T

. (4.5)

F. Diener and M. Diener in [DD04] have already provided asymptotics for (4.4). How-
ever, their approach is based on an integral representation of binomial sums and has only
been applied to one-dimensional binomial trees. In this section we present an alternative
approach that makes use of an Edgeworth expansion for lattice triangular arrays. The
advantage of this approach is that it can be easily generalized to both multinomial and
multidimensional trees.

Consider the discrete-time stock price at maturity

S(n)
n = s0e

αnT+σ
√
T 1√

n

∑n
k=1 ξ

(n)
k .

Then

P
(
S(n)
n ≤ x

)
= P

 1√
n

n∑
k=1

(
ξ

(n)
k − Eξ

(n)
k

)
≤

ln
(
x
s0

)
− µ (n)T

σ
√
T

 ,

= P

 1√
n

n∑
k=1

(
η

(n)
k − Eη

(n)
k

)
≤

ln
(
x
s0

)
− µ (n)T

2σ
√
T

 ,

where

η
(n)
k =

ξ
(n)
k + 1

2
, k = 1, . . . , n. (4.6)
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We can now apply the Edgeworth expansion for lattice triangular arrays (Theorem 3.4.9)

to the variables η
(n)
k to get an asymptotic expansion of the terminal distribution of the

stock price.

Remark 4.1.1. The change of variables from ξ
(n)
k to η

(n)
k is necessary because of the minimal

lattice condition in Theorem 3.4.9. The variables ξ
(n)
k take values ±1, therefore their

minimal lattice is 2Z. However, after the transformation (4.6), for each n ∈ N, k = 1, . . . , n,

η
(n)
k has a minimal lattice Z and P

(
η

(n)
k ∈ Z

)
= 1. Therefore, Theorem 3.4.9 can be applied

to η
(n)
k , but not directly to ξ

(n)
k . This transformation is not the only possibility, the resulting

expansion, however, will remain the same.

By Theorem 3.4.9 the following asymptotic expansion holds.

Corollary 4.1.2. Let µn = Eη
(n)
1 , σ2

n = V ar η
(n)
1 and κn,ν be the ν-th cumulant of η

(n)
1 .

The process S(n) defined in (4.2) satisfies

P
(
S(n)
n ≤ x

)
= Φ0,σ2

n
(yn)− 1√

n
φ0,σ2

n
(yn)

(
S1 (an) +

κn,3
6σ2

n

(
y2
n

σ2
n

− 1

))
+

1

n
φ0,σ2

n
(yn)

1

σn

(
−yn
σn
S2 (an) +

(
S1 (an)

κn,3
3!

+
κn,4
4!

) 1

σ2
n

(
3yn
σn
− y3

n

σ3
n

))
− 1

n3/2
φ0,σ2

n
(yn)

1

σ2
n

(
S3 (an)

(
y2
n

σ2
n

− 1

)
+
(
S2 (an)

κn,3
3!

+ S1 (an)
κn,4
4!

) 1

σ2
n

(
y4
n

σ4
n

− 6y2
n

σ2
n

+ 3

))
+O

(
1

n2

)
,

(4.7)

where

yn =
ln
(
x
s0

)
− µ (n)T

2σ
√
T

, an = nµn + yn
√
n, (4.8)

for µ(n) is defined as in (2.3), and

S1 (z) = {z} − 1

2
, S2 (z) =

1

2

(
{z}2 − {z}+

1

6

)
,

S3 (z) =
1

6

(
{z}3 − 3

2
{z}2 +

1

2
{z}
)
,

(4.9)

with {z} denoting the fractional part of z.

Proof. By proposition 2.1.6

pn =
1

2
+O

(
1√
n

)
, n→∞, (4.10)
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therefore, the assumptions (3.12) are satisfied for any s and starting from some n ∈ N,
Lemma 3.4.8 is applicable, so the uniform condition (3.13) also holds. Furthermore, by
Lemma 3.3.3, in the one-dimensional case

P1

(
−Φ0,σ2

n
, κn,ν

)
(yn) = −κn,3

3!
D3Φ0,σ2

n
(yn)

=
κn,3
6σ2

n

(
1− y2

n

σ2
n

)
φ0,σ2

n
(yn) ,

P2

(
−Φ0,σ2

n
, κn,ν

)
(yn) =

κn,4
4!

D4Φ0,σ2
n

(yn) +
κ2
n,3

2!(3!)2
D6Φ0,σ2

n
(yn)

=

(
κn,4
4!σ3

n

(
3yn
σn
− y3

n

σ3
n

)
−

κ2
n,3

2!(3!)2σ5
n

(
y5
n

σ5
n

− 10y3
n

σ3
n

+
15yn
σn

))
φ0,σ2

n
(yn) ,

and

P3

(
−Φ0,σ2

n
, κn,ν

)
(yn) =

κn,5
5!

D5Φ0,σ2
n

(yn) +
κn,4κn,3

3!4!
D7Φ0,σ2

n
(yn) +

κ3
n,3

(3!)4
D9Φ0,σ2

n
(yn)

= O

(
1√
n

)
,

since due to (4.10), κn,3, κn,5 = O
(

1√
n

)
, n → ∞. Therefore, by applying Theorem 3.4.9

with s = 5 we get the statement of the Corollary.

4.1.1 Asymptotics of the Normal distribution

Finally, in order to get an expansion for the discretization error P
(
S

(n)
n ≤ x

)
−Φ (d2) we

need to consider the asymptotics of the terms Φ0,σ2
n

(yn) and φ0,σ2
n

(yn).

For a fixed z ∈ R and sequences ε1,n, ε2,n consider the function Φ (zε1,n + ε2,nε1,n). We
know (see e.g. [P75], Theorem I.4.13) that

Φ (zε1,n + ε2,nε1,n)→ Φ (z) , n→∞, iff

ε1,n → 1 and ε2,n → 0, n→∞. (4.11)

The above condition is sufficient to ensure convergence, however if we are interested in the
asymptotic behavior of Φ (zε1,n + ε2,nε1,n) we need stronger assumptions on the errors ε1,n

and ε2,n. Set
εn := z (ε1,n − 1) + ε2,nε1,n.

Then zε1,n + ε2,nε1,n = z + εn and due to (4.11), εn → 0, n→∞. Consider the first order
Taylor expansion of the function Φ (z + εn) at point z

Φ (z + εn) = Φ (z) + φ (z) εn +O
(
ε2
n

)
.
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As we see, the order of convergence of Φ (z + εn) to Φ (z) coincides with that of the error
εn, which in turn is determined by the minimum of the rates of convergence of ε1,n and
ε2,n to 1 and 0, respectively. Since, as can be seen from Corollary 4.1.2, we are interested
in an asymptotic expansion in orders of 1/

√
n we will require the following expansions of

the errors εi,n, i = 1, 2

εi,n = e
(i)
0,n + e

(i)
1,n

1√
n

+ e
(i)
2,n

1

n
+ e

(i)
3,n

1

n3/2
+O

(
1

n2

)
, i = 1, 2, (4.12)

where e
(1)
0,n = 1 and e

(2)
0,n = 0. Then

εn = e1,n
1√
n

+ e2,n
1

n
+ e3,n

1

n3/2
+O

(
1

n2

)
,

with

e1,n = ze
(1)
1,n + e

(2)
1,n,

e2,n = ze
(1)
2,n + e

(2)
2,n + e

(1)
1,ne

(2)
1,n,

e3,n = ze
(1)
3,n + e

(2)
3,n + e

(1)
1,ne

(2)
2,n + e

(1)
2,ne

(2)
1,n.

If we again apply Taylor’s theorem, we get the following 3/2-order expansions

Φ (z + εn) = Φ (z) +
1√
n
φ (z) e1,n +

1

n
φ (z)

(
e2,n −

1

2
ze2

1,n

)
+

1

n3/2
φ (z)

(
e3,n − ze1,ne2,n +

1

6
(z2 − 1)e3

1,n

)
+O

(
1

n2

)
,

(4.13)

φ (z + εn) = φ (z)− 1√
n
φ (z) ze1,n +

1

n
φ (z)

(
−ze2,n +

1

2
(z2 − 1)e2

1,n

)
+

1

n3/2
φ (z)

(
−ze3,n + (z2 − 1)e1,ne2,n +

1

6
(3z − z3)e3

1,n

)
+O

(
1

n2

)
.

(4.14)

Remark 4.1.3. Note that at least a O
(
n−β

)
order expansion for the error is required for a

O
(
n−β

)
expansion of Φ (z + εn).

Now let’s go back to expansion (4.7). The first term is

Φ0,σ2
n

(yn) = Φ

(
yn
σn

)
= Φ

(
d2

1

2σn
+

(
r − 1

2
σ2 − µ (n)

)√
T

σ

1

2σn

)
.

Therefore, if
1

2σn
and r − 1

2
σ2 − µ (n) satisfy (4.12), (4.15)

then by substituting (4.13) and (4.14) into (4.7) we get an asymptotic expansion of

P
(
S

(n)
n ≤ x

)
around Φ (d2) up to order O

(
1
n2

)
.
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Remark 4.1.4. Note that assumption (4.15) is a stronger version of the moment-matching
conditions (4.3).

Remark 4.1.5. We would like to point out once again that the order of convergence of
Φ0,σ2

n
(yn) to Φ (d2) is determined by the minimum of the rates of convergence of µ(n) to

r − 1
2
σ2 and 1

2σn
to 1. If the moments are matched exactly, as in the case of the RB tree,

then Φ0,σ2
n

(yn) coincides with Φ (d2).

Remark 4.1.6. We will not present the exact expansion of P
(
S

(n)
n ≤ x

)
around Φ (d2)

in the general case. The expansion will be calculated separately for each specific model
considered in the following sections by applying Corollary 4.1.2 and the expansions of the
terms on the right-hand side of equation (4.7).

4.1.2 Expansions for trinomial trees

Even though in this work we will be mainly focused on binomial tree models, we would
like to show the application of Edgeworth expansions to trinomial trees and to compare
the obtained results with the ones presented above.

Consider the following discrete-time model
{
S

(n)
k

}
S

(n)
0 = s0,

S
(n)
k = S

(n)
k−1e

αn∆t+λσ
√

∆tξ
(n)
k , k = 1, . . . , n,

(4.16)

where λ > 1 and {αn}n is a bounded sequence. However, at each time step we now allow

jumps to three different values, i.e. for each n ∈ N, ξ
(n)
k , k = 1, . . . , n are i.i.d random

variables s.t.

ξ
(n)
k =


1, with probability p

(u)
n ,

0, with probability 1− p(u)
n − p(d)

n ,

−1, with probability p
(d)
n .

The parameters αn and pn are again chosen such that the moment-matching conditions
(4.3) are satisfied. The distribution of the terminal stock price is calculated as before, i.e.

P
(
S(n)
n ≤ x

)
= P

 1√
n

n∑
k=1

(
ξ

(n)
k − Eξ

(n)
k

)
≤

ln
(
x
s0

)
− µ (n)T

λσ
√
T

 ,

however, in this case the minimal lattice of ξ
(n)
k , k = 1, . . . , n is Z and P

(
ξ

(n)
k ∈ Z

)
= 1.

Therefore, unlike in the binomial model, Theorem 3.4.9 is applicable directly to the vari-
ables ξ

(n)
k and a transformation such as (4.6) is not necessary. As a result we can obtain

the same expansion as in Corollary 4.1.2 with yn =
ln
(
x
s0

)
−µ(n)T

λσ
√
T

, µn = Eξ
(n)
k , σ2

n = V arξ
(n)
k

and κn,ν be the ν-th cumulant of ξ
(n)
1 .
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This seemingly small difference, actually has a large effect on the convergence pattern,
and explains the absence of the even-odd effect (see section 2.2) in trinomial trees. Con-
sider the following table

Model Binomial Trinomial

Minimal lattice 2Z Z

Leading error term S1

(
√
n

ln
(
x
s0

)
−αnT

2σ
√
T

+ n
2

)
S1

(
√
n

ln
(
x
s0

)
−αnT

λσ
√
T

)
Note the additional n/2 term in the binomial tree, which results in a jump of the value
of S1 for even and odd n. Since this term is not present in the trinomial expansion the
even-odd effect does not occur in this case. Compare the convergence behavior of binomial
(left-hand side) and trinomial (right-hand side) trees.
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Figure 4.1: Binomial tree
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Figure 4.2: Trinomial tree with λ =
√

3/2

4.2 Improving the convergence behavior

We will now see how Corollary 4.1.2 can be used to influence the convergence pattern of
one-dimensional binomial trees.

4.2.1 Existing methods in literature

As mentioned in [DD04], the irregularities in the convergence behavior of tree-methods can
be explained by the periodic, n-dependent term S1 (an) in (4.7). Since S1 (an) = {an} − 1

2

does not have a limit as n goes to infinity and oscillates between −1
2

and 1
2
, even large

values of n do not guarantee accurate results. As a solution, various methods have been
offered to improve convergence by controlling the S1 function and with that the leading
error term. However, basically they pursue one of the following goals.
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The first one, see e.g. [T99], is to achieve smooth convergence behavior, so that extrapo-
lation methods can be applied to increase the order of convergence. The second one, see
e.g. [CP07], is to construct the tree such that the leading error term becomes zero, thus
increasing the order of convergence directly.

We now present the above methods in a little more detail. Consider the CRR tree model

S
(n)
k = S

(n)
k−1e

σ
√

∆tξ
(n)
k , k = 1, . . . , n, (4.17)

with risk-neutral transition probabilities pn.

Fix the point x ∈ R. The idea now is to tilt the tree, i.e. add a drift αn for each
n ∈ N, in such a way that the point x always falls onto a fixed position between two neigh-
boring nodes. As we will see shortly, this will also fix the function S1 (an) and ensure that
the leading error term remains constant in n. To be more precise, we want to construct a

tilted tree
{
S

(n)
k,αn

}
, such that

S
(n)
k,αn

= S
(n)
k−1,αn

eαn∆t+σ
√

∆tξ
(n)
k , k = 1, . . . , n,

with risk-neutral transition probabilities pn,αn and an appropriate drift αn.

For any drift αn, the process S
(n)
n,αn takes on the following values

Sn,αn (l) := s0e
αnT+2lσ

√
∆t−σ

√
T
√
n,

where l ∈ {0, . . . , n} denotes the possible values of
∑n

k=1 η
(n)
k , and can be interpreted as

the number of up-jumps in the model. For each n ∈ N we now want to determine the two
nodes, closest to the value x. For this we consider the following equation in a ∈ R

s0e
αnT+2aσ

√
∆t−σ

√
T
√
n = x. (4.18)

Equation (4.18) is solved by

an,αn =
log (x/s0)− αnT

2σ
√

∆t
+
n

2
. (4.19)

We now set ln,αn := ban,αnc, i.e. ln,αn is the number of up-jumps, such that Sn,αn (ln,αn) ≤
x < Sn,αn (ln,αn + 1). The position of x with respect to the two neighboring nodes in the
log-scale can be determined as

cn,αn :=
log (x)− log (Sn,αn (ln,αn))

log (Sn,αn (ln,αn + 1))− log (Sn,αn (ln,αn))
= an,αn − ln,αn = {an,αn} , (4.20)

(compare [M09], Section 2.2.3). Clearly, 0 ≤ cn,αn < 1 for every αn.
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Let us go back to our problem. Our goal is to slightly shift the original CRR tree (4.17),
so that cn,αn , i.e. the relative position of x, becomes constant in n. In other words, the
new drift αn has to satisfy the equation

an,αn = ln,0 + c, (4.21)

for a fixed c, 0 ≤ c < 1. Note that we require ln,αn = ln,0, so that the tree is not shifted too
much and the neighboring nodes have the same number of up-jumps in both the original
and tilted trees. By substituting (4.19) into (4.21) we get the following solution

α∗n =
2σ
√

∆t ({an,0} − c)
T

. (4.22)

The above expression is bounded, therefore, S
(n)
n,α∗n

satisfies the moment-matching condi-
tions, and by Corollary 4.1.2

P
(
S

(n)
n,α∗n
≤ x

)
= Φ (d2)− 2√

n
φ (d2)S1

(
an,α∗n

)
+O

(
1

n

)
. (4.23)

The same expansion can be obtained by the methods presented in [DD04] (see e.g. [KM13]
or [M09]). Note that

S1

(
an,α∗n

)
=
{
an,α∗n

}
− 1

2
= c− 1

2
. (4.24)

Therefore, as mentioned before, by fixing the position of the x to c, we also determine the
term S1.

Chang-Palmer (CP) approach. If x is fixed to the geometric average of the neighbor-
ing nodes Sn,α∗n (ln,0) and Sn,α∗n (ln,0 + 1), i.e. c = 1

2
, we have S1

(
an,α∗n

)
= 0 and expansion

(4.23) becomes

P
(
S

(n)
n,α∗n
≤ x

)
= Φ (d2) +O

(
1

n

)
,

In this case S
(n)
n,α∗n

has a higher order of convergence (see [CP07] or [M09]).

Tian approach. If x is fixed to the lower node Sn,α∗n (ln,0), i.e. c = 0, then S1

(
an,α∗n

)
=

−1
2

and

P
(
S

(n)
n,α∗n
≤ x

)
= Φ (d2) +

1√
n
φ (d2) +O

(
1

n

)
.

In this case the convergence is of the same order, but with a constant leading coefficient.
This means that extrapolation can be applied to obtain the order O

(
1
n

)
, i.e. we consider

the approximation

F̂n(x) =

√
2Fn(x)− Fn/2(x)√

2− 1
= Φ (d2) +O

(
1

n

)
.

(Cf. [T99] or [M09]).
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Remark 4.2.1. In the Tian approach c is chosen equal to 0. However, if we take any other
value, 0 ≤ c < 1, c 6= 1

2
, the procedure will remain the same. The leading coefficient will

be different, but the method still applies.

The methods described above concentrate only on the leading error term allowing
to increase the order of convergence up to O

(
1
n

)
. However, if we also incorporate the

subsequent terms in expansion (4.23), it is possible to further improve the convergence
behavior.

Optimal Drift (OD) model. Instead of the traditional CRR model (4.17) consider the
following construction

S
(n)
k = S

(n)
k−1e

α∆t+σ
√

∆tξ
(n)
k , k = 1, . . . , n, (4.25)

with a constant drift α and risk-neutral transition probabilities pn. The additional param-
eter α gives the necessary flexibility to increase the order of convergence to o

(
1
n

)
for most

parameter settings used in practice. The model above satisfies

P
(
S

(n)
n,α∗n
≤ x

)
= Φ (d2)− 2√

n
φ (d2)S1

(
an,α∗n

)
+

1

n
φ (d2) f(α∗n) +O

(
1

n3/2

)
, (4.26)

where f(α∗n) is a bounded function (cf. expansion (4.36) or [M09], Proposition 9.). We
now proceed as follows.

First, following the CP approach, a new drift α∗n is introduced, so that the leading er-
ror term becomes zero, i.e.

α∗n =
2σ
√

∆t
(
{an,0} − 1

2

)
T

+ α.

Then, we choose the parameter α so that the second error term in expansion (4.26) is
minimized. With the above choice of α∗n, the term f becomes a quadratic function of the
drift α. Therefore, there are two possibilities now.

• If the parabola f intersects the α-axis, then α is chosen from the equation f = 0.
In this case the second error term is also zero and the order of convergence becomes
O
(

1
n3/2

)
.

• If f doesn’t intersect the α-axis, then α is chosen as the vertex of the parabola. In
this case the order of convergence remains O

(
1
n

)
, but it is optimized in the sense

that the leading error term will have the minimal value possible for models of type
(4.25).

Note, however, that in most situations of interest, the OD model will have the improved
rate O

(
1

n3/2

)
. For details see [KM13] or [M09], Proposition 14.

Remark 4.2.2. The mentioned references give the improved order o
(

1
n

)
, however, with

Corollary 4.1.2 this can be stated more precisely as O
(

1
n3/2

)
.
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4.2.2 The Rendleman-Bartter model

As we have seen, most of the methods available in literature of improving convergence of
one-dimensional binomial trees are based on the CRR tree, while very little attention has
been given to the RB tree. However, the RB tree has some very appealing properties, such
as a less pronounced saw-tooth effect compared to the CRR model and a faster backward
induction algorithm due to the constant transition probabilities (see section 2.2). There-
fore, in this section we investigate if it is possible to apply methods similar to that of Tian
and Chang and Palmer to improve the convergence of the RB tree.

The model is defined as follows

S
(n)
k = S

(n)
k−1e

(r− 1
2
σ2)∆t+σ

√
∆tξk , k = 1, . . . , n, (4.27)

with pn = 1
2
.

Let x ∈ R. We now want to tilt the tree such that the relative position of x with re-
spect to the neighboring nodes is fixed, i.e. we consider the model

S
(n)
k,γn

= S
(n)
k−1,γn

e(r−
1
2
σ2)∆t+γn

√
∆t

3
+σ
√

∆tξk , k = 1, . . . , n, (4.28)

with transition probabilities 1/2 and a bounded sequence {γn}. Following the procedure
from the previous section we fix the constant position c, 0 ≤ c < 1, and by the same
arguments as for (4.22) we find

γ∗n =
2σ ({an,0} − c)

T
,

where

an,γn :=
ln
(
x
s0

)
−
(
r − 1

2
σ2
)
T − γnT

√
∆t

2σ
√

∆t
+ n/2.

However, by Corollary 4.1.2 and expansion (4.13), S
(n)
n,γ∗n

satisfies

P
(
S

(n)
n,γ∗n
≤ x

)
= Φ (d2(x))− 1√

n
φ (d2)

(
2S1

(
an,γ∗n

)
+
γ∗nT

σ

)
+O

(
1

n

)
. (4.29)

Therefore, in this case the leading error term of the tilted tree will not be constant. Indeed,

2S1

(
an,γ∗n

)
+
γ∗nT

σ
= 2

{
an,γ∗n

}
− 1 + 2 ({an,0} − c)

= 2 {ban,0c+ c} − 1 + 2 {an,0} − 2c

= 2 {an,0} − 1

= 2S1 (an,0) ,

which coincides with the coefficient in the expansion of the original RB tree (4.27). This
means that fixing the position of x by tilting the tree will lead to the same convergence
behavior. Compare the following results for a cash-or-nothing option with s0 = 100, T = 1,
r = 0.1, σ = 0.25, strike = 100 and payout = 100.
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Figure 4.3: Standard RB tree
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Figure 4.4: Tilted RB tree

Let us look at the problem from a slightly different angle. Consider the expansion
(4.29). In order to improve convergence we need to find, for each n ∈ N, a γ∗n, such that

2S1

(
an,γ∗n

)
+
γ∗nT

σ
= 0

⇔ 2

{
an,0 −

γ∗nT

2σ

}
− 1 +

γ∗nT

σ
= 0

⇔ an,0 −
1

2
=

⌊
an,0 −

γ∗nT

2σ

⌋ (4.30)

The above equation can be solved if an,0 − 1
2

= m, for some m ∈ Z. In this case we can

choose γ∗n to be any value such that γ∗nT
2σ

=
(
−1

2
, 1

2

]
. However, it is clear, that an,0 − 1

2

does not attain integer values for all n, therefore, there is no sequence {γ∗n}, such that the
leading error term in (4.29) vanishes for all n ∈ N. Once again, this confirms that the
convergence behavior of the RB tree cannot be improved by simply changing the drift.

Remark 4.2.3. Note that the above results suggest, that any changes to the drift have to
be balanced out by an appropriate change in the probabilities.

4.2.3 The 3/2 - Optimal model

We now consider a general setting that includes both the RB and CRR tree and show how
convergence can be improved in this wider class of models.

Note that the problem of optimizing the convergence of the CRR tree to a certain or-
der has already been addressed by different authors. The aforementioned OD model of R.
Korn and S. Müller [KM13] allows to improve convergence up to order O

(
1

n3/2

)
and the

method introduced in [L12] for vanilla options can also be adjusted to further improve the
distributional fit, as well. However, these approaches are restricted to risk-neutral proba-
bilities and involve solving quadratic equations, which rules out certain model parameters.
We now present a slightly different approach, that involves only linear equations and is,
therefore, applicable to any parameter setting.
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Consider the following model

S
(n)
k = S

(n)
k−1e

αn∆t+σ
√

∆tξ
(n)
k , k = 1, . . . , n, (4.31)

where

ξ
(n)
k =

{
1, with probability pn
−1, with probability 1− pn

.

and

pn =
1

2
+ c1,n

1√
n

+ c2,n
1

n
+ c3,n

1
√
n

3 + c4,n
1

n2
+O

(
1

n5/2

)
,

αn = k0,n + k1,n
1√
n

+ k2,n
1

n
+ k3,n

1
√
n

3 +O

(
1

n2

)
,

(4.32)

with bounded ci,n, ki,n and

k0,n +
2σc1,n√

T
= r − 1

2
σ2. (4.33)

Note that (4.32)-(4.33) are necessary and sufficient for the moment-matching condition
(4.15) to be satisfied (see also proposition 2.1.6). From Corollary 4.1.2 we have the following
proposition.

Proposition 4.2.4. With an appropriate choice of parameters ci,n, i = 0, . . . , 4 and kj,n
j = 0, . . . , 3 the binomial process S(n) in (4.31) satisfies

P
(
S(n)
n ≤ x

)
= Φ (d2) +O

(
1

n2

)
Proof. We assume the notation of Corollary 4.1.2. Given (4.32) we get the following
dynamics

µ (n) = r − 1

2
σ2 +m1

σ√
T

1√
n

+m2
σ√
T

1

n
+m3

σ√
T

1
√
n

3 +O

(
1

n2

)
,

with

mi =

(
ki,n +

2σci+1,n√
T

) √
T

σ
, i = 1, 2, 3, (4.34)

and

σ2
n = pn − (pn)2 =

1

4
− c2

1,n

1

n
− 2c1,nc2,n

1
√
n

3 +O

(
1

n2

)
.

Therefore, by the Binomial Series Theorem (Taylor series at 0 for (1 + x)α, α ∈ R)

1

2σn
= 1 + 2c2

1,n

1

n
+ 4c1,nc2,n

1
√
n

3 +O

(
1

n2

)
,



56 CHAPTER 4. ASYMPTOTICS OF ONE-DIMENSIONAL TREE MODELS

and as a result, for yn as in (4.8)

yn
σn

= d2−m1
1√
n

+
(
2d2c

2
1,n −m2

) 1

n
+
(
4d2c1,nc2,n −m3 − 2c2

1,nm1

) 1
√
n

3 +O

(
1

n2

)
. (4.35)

Then, by (4.13) and (4.14)

Φ0,σ2
n

(yn) = Φ (d2)− 1√
n
φ(d2)m1 +

1

n
φ(d2)

(
2d2c

2
1,n −m2 −

1

2
d2m

2
1

)
+

1
√
n

3φ(d2)

(
4d2c1,nc2,n −m3 − d2m1m2 +

(
d2

2 − 1
)
m1

(
2c2

1 −
1

6
m2

1

))
+O

(
1

n2

)
,

φ0,σ2
n

(yn) = φ (d2) +
1√
n
φ(d2)d2m1 +

1

n
φ(d2)

(
m2d2 − 2d2

2c
2
1,n +

1

2

(
d2

2 − 1
)
m2

1

)
+O

(
1
√
n

3

)
.

Let µn,ν , ν ∈ Z denote the ν-th moment of η
(n)
1 . Then by (3.3) the cumulants can be

represented as

κn,3 = µn,3 − 3µn,1µn,2 + 2µ3
n,1

= −1

2
c1,n

1√
n
− 1

2
c2,n

1

n
+O

(
1
√
n

3

)
,

κn,4 = µn,4 − 4µn,3µn,1 − 3µ2
n,2 + 12µn,2µ

2
n,1 − 6µ4

n,1

= −1

8
+O

(
1

n

)
.

Substituting the above expansions into (4.7) we get

P
(
S(n)
n ≤ x

)
= Φ (d2)− 1√

n
φ(d2)f1 (αn, pn) +

1

n
φ(d2)f2 (αn, pn)

+
1
√
n

3φ(d2)f3 (αn, pn) +O

(
1

n2

)
,

(4.36)

where

f1 (αn, pn) := m1 + 2S1 (an)

f2 (αn, pn) := −m2 + 2d2c
2
1,n +

2

3
c1,n

(
d2

2 − 1
)

+
d3

2 − d2

12
− d2

2
(m1 + 2S1 (an))2

f3 (αn, pn) := −m3 + 4d2c1,nc2,n +
2

3
c2,n

(
d2

2 − 1
)
− 8S3 (an)

(
d2

2 − 1
)

− 1

6
m1

((
d2

2 − 1
)
m2

1 +
(
d2

2 − 1
)
m1S1 (an) + 4S2 (an)

(
d2

2 − 1
))

− (m1 + 2S1 (an))

(
2c2

1,n

(
1− d2

2

)
+ d2m2 + 2c1,nd2 −

2

3
c1,nd

3
2 −

1

12

(
d4

2 − 6d2
2 + 3

))
.

(4.37)
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The goal now is to choose the coefficients ci,n, ki,n so that fi = 0, i = 1, 2, 3. Clearly, there
are various ways of doing that, since we have more variables than equations.

In [M09] risk-neutral probabilities are considered, therefore, the coefficients ci,n are com-
pletely determined by the drift, and they can’t be chosen freely. In this case only the
coefficients of the drift αn = k0,n + k1,n

1√
n

are chosen. First, the equation f2 (αn, pn) = 0 is

solved, which is quadratic in k0,n. Then the obtained value is substituted into f1 (αn, pn),

and k1,n is chosen such that f1 (αn, pn) = 0. As a result, the order O
(

1√
n

3

)
can be ob-

tained. If we now follow [L12] and add an additional coefficient k3,n, we can also solve the
equation f3 (αn, pn) = 0. Note that with this approach the equation f1 (αn, pn) = 0 has to
be reevaluated with each additional coefficient, and since ki,n, i ≥ 3 depend on k1,n, this
might involve complicated calculations.

Instead, we propose a slightly different approach, where the coefficients of the probabilities
are chosen instead of the drift. This way we are able to avoid quadratic equations, and
hence we are able to increase the order of convergence for any parameter setting.

Set k2,n = k3,n = 0, however the same method holds for any values independent of n.
Now choose c2,n such that f1 (αn, pn) = 0 is satisfied, i.e.

2S1 (an) +

(
k1,n +

2σc2,n√
T

) √
T

σ
= 0

⇔
ln
(
x
s0

)
− k0,nT

2σ
√

∆t
+
n

2
− 1

2
+ c2,n =

 ln
(
x
s0

)
− k0,nT − k1,n

T√
n

2σ
√

∆t
+
n

2


The above equation is solved by

c2,n =
1

2
−

 ln
(
x
s0

)
− k0,nT

2σ
√

∆t
+
n

2

 , (4.38)

and k1,n taking any of the following values

−2σc2,n√
T
− σ√

T
< k1,n ≤ −

2σc2,n√
T

+
σ√
T
. (4.39)

The other terms in (4.36) become

f2 (αn, pn) = −2c3,n + 2d2c
2
1,n +

2

3
c1,n

(
d2

2 − 1
)

+
d3

2 − d2

12
,

f3 (αn, pn) = −2c4,n + 4d2c1,nc2,n +
2

3
c2,n

(
d2

2 − 1
)
,

− 8S3 (an)
(
d2

2 − 1
)
− 1

6

(
d2

2 − 1
) (
m3

1 −m1

)
,
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where we have used S2 (an) = 1
2

(
S2

1 (an)− 1
12

)
(see(4.9)). Therefore, if we set

c3,n = d2c
2
1,n +

1

3
c1,n

(
d2

2 − 1
)

+
d3

2 − d2

24
, (4.40)

and

c4,n = 2d2c1,nc2,n +
1

3
c2,n

(
d2

2 − 1
)
− 4S3 (an)

(
d2

2 − 1
)

− 1

12

(
d2

2 − 1
) (
m3

1 −m1

) (4.41)

all chosen coefficients are bounded, and we get the statement of the proposition.

Remark 4.2.5. Note that the name 3/2-Optimal model refers to the optimized convergence
up to and including order 3/2, in the sense that the corresponding coefficients are set
to zero. In the later sections we will use the name α-Optimal model for an optimized
convergence of order α.

Remark 4.2.6. Note that the coefficient k1,n can be chosen freely, as long as (4.39) is
satisfied. Numerical experiments suggest that the value of k1,n does not influence the

O
(

1
n2

)
convergence behaviour. In this work we will usually choose k1,n = −2σc2,n√

T
, since in

this case m1 = 0, S3 (an) = 0 and, therefore, the values assigned to c3,n and c4,n have a
simpler form and require less computations.

Remark 4.2.7. Other than (4.33), there are also no restrictions on k0,n and c1,n. If we set
k0,n = 0, for example, we are in the CRR setting, if c1,n = 0, then we have the RB tree
extension. Either way, the order of convergence is O

(
1
n2

)
, however, k0,n does influence the

exact convergence pattern. The optimal choice of k0,n is still an open question.

Consider the following plots with the convergence behavior of the 3/2-Optimal RB-
based and CRR-based trees. To verify the order of convergence we will use a log-log plot
(right-hand side), i.e. we plot log(|Fn − Φ(d2)|) against log(n). Since by Proposition 4.2.4

|Fn (x)− Φ(d2 (x))| = c(n)
1

n2
,

for c(n) ∈ O (1), then

log (|Fn (x)− Φ(d2 (x))|) = −2 log(n) + log(c(n)),

and we should see the −2 slope on the graph. Of course, since c(n) is not constant, the
convergence is not smooth, and the graph is not a straight line, but the general trend is
present.
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Figure 4.5: s0 = 95, x = 100, r = 0.1, σ = 0.25, T = 1.

Remark 4.2.8. Since all absolute moments of η
(n)
k are bounded, we can apply Theorem

3.4.9 to retrieve subsequent terms in the asymptotic expansion (4.7). We are then able to
further increase the order of convergence, by adding more terms to the probability. With
the approach described above all equations will be linear, and unlike the method in [L12],
the previous coefficients will remain unaltered.

CRR vs RB We would now like to take a closer look at the distributional fit for different
choices of the coefficient k0,n. Figure 4.5 suggests that the RB-based model gives a slightly
better approximation. However, is this the case for all options? To get a better idea of
the general accuracy of the models we will use two types of errors, the root mean squared
(RMS) error and the root mean squared relative (RMSR) error.

First, we randomly generate a sample of m parameter vectors π = (s0, x, r, σ, T ), following
the procedure described in [BD96], but allowing a slightly wider range for the parameters.

• The initial asset price s0 is fixed to 100,

• the value x is uniformly distributed between 50 and 150,

• the riskless interest rate r is uniformly distributed between 0 and 0.2,

• the volatility σ is uniformly distributed between 0.1 and 0.8,

• the maturity T is chosen uniformly between 0 and 1 years with probability 0.75 and
between 1 and 5 years with probability 0.25.

Note that s0 remains fixed and we only vary x, since we are actually only interested in the
ratio x

s0
and not the values separately. Parameter vectors, for which Φπ (d2(x)) ≤ 10−6 are

then excluded from the sample to ensure a reliable relative error estimate.

For each n ∈ N and every parameter vector π, let επabs (n) and επrel (n) denote the absolute
and relative error, respectively, i.e

επabs (n) = |F π
n (x)− Φπ (d2(x))| ,
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and

επrel (n) =
επabs (n)

Φπ (d2(x))
,

where F π
n and Φπ refer to the distribution functions of the discrete- and continuous-time

models, corresponding to the parameters π. Then

RMS(n) =

√√√√ 1

m

m∑
i=1

(επiabs (n))2,

and

RMSR(n) =

√√√√ 1

m

m∑
i=1

(επirel (n))2.

Due to Proposition 4.2.4, both errors are of order O
(

1
n2

)
. Consider the following conver-

gence behavior of the errors, taken over a sample of m = 1000 parameter vectors, 995 of
which are included. For both errors a maximum of n = 1000 time steps is considered.
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Figure 4.6: RMS(n) error

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

n

R
M

S
R

(n
)

 

 

RB−Optimal

CRR−Optimal

10
2

10
3

10
−5

10
−4

10
−3

10
−2

log(n)

lo
g
(R

M
S

R
(n

))

 

 

RB−Optimal

CRR−Optimal

Order 2

Figure 4.7: RMSR(n) error.

Note that the absolute error has a very similar convergence pattern for both models
(see figure Figure 4.6), however, figure 4.7 suggests, that the CRR-Optimal tree delivers
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better results for the relative error. A smaller relative error implies that the CRR-Optimal
model deals with small values of Φ(d2) better, then the RB model. Let us a take closer
look at the difference in the absolute and relative errors for the RB- and CRR-based trees
for different values of d2.

Figure 4.8: Difference in absolute error

Figure 4.9: Difference in relative error

As can be seen above, depending on the exact value of d2, either the RB - or CRR-
Optimal model delivers a smaller absolute error, the trend being slightly better for RB-
based tree. For deep in-the-money or deep out-of-the-money values the difference is minor.
The relative error, on the other hand, seems to be better for the CRR-based tree only for
very small values of d2, where the absolute error is insignificant.



62 CHAPTER 4. ASYMPTOTICS OF ONE-DIMENSIONAL TREE MODELS

4.3 Expansions for option prices

We will now see how the above results can be applied to improve the convergence behaviour
for specific types of options.

4.3.1 Digital options

An option that pays out a fixed amount G if the value of the underlying asset at maturity
T is below the strike K, is called a digital (cash-or-nothing) put. The payout function of
such options is

G1{S(T )≤K},

and the price is given by

V = Ge−rTΦ (d2 (K)) .

Despite this simple structure and easy closed-form solution, approximation methods for
digital options exhibit extremely irregular convergence behavior, due to the discontinuities
in the payout function. Therefore, methods of improving this convergence are of great
interest.

Figure 4.10: Payout function of a digital put

Proposition 4.3.1. Let V (n) be the price of the cash-or-nothing put option in the discrete
model (4.31). If k0,n, k1,n and ci,n, i = 1, . . . , 4 satisfy (4.33), (4.38)-(4.41), then

V (n) = V +O

(
1

n2

)
, n→∞

Proof. Since

V (n) = Ge−rTP (S(n)
n ≤ K),

the statement is a simple consequence of Proposition 4.2.4, where the strike K is taken as
the point x.
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The algorithm

The coefficients of the drift αn and probability pn need to be calculated once for each n ∈ N.
Therefore, the algorithm presented in section 2.1.2 can be easily adjusted to incorporate
the 3/2 - Optimal model, by adding an extra step in the beginning. As a result, for a given
n ∈ N we have

Step 1: Calculate k0,n, k1,n and ci,n, i = 1, . . . , 4.

Step 2: Tree Initialization (as in Chapter 1).

Step 3: Backward Induction (as in Chapter 1).

Step 4: Return e−rTV0 (0).

Numerical results

Compare the following convergence results for three different cash-or-nothing options.

Parameters n RB tree OD model RB 3/2-Optimal BS value

T = 1 100 41.6411049 42.7287634 42.7233441 42.7233237
K = 100 200 42.6925603 42.7241952 42.7233299
σ = 0.25 500 43.6283356 42.7230029 42.7233229

1000 41.8227457 42.7229920 42.7233232
2000 42.8222727 42.7233872 42.7233238
4000 42.3911188 42.7232924 42.7233237

T = 1 100 0.3002757 0.3384204 0.3442454 0.3446987
K = 80 200 0.3946223 0.3415591 0.3445932
σ = 0.1 500 0.3737622 0.3434433 0.3446817

1000 0.3239081 0.3440710 0.3446940
2000 0.3518514 0.3443847 0.3446977
4000 0.3406525 0.3445417 0.3446984

T = 3 100 7.1617825 6.5563626 6.5649992 6.5650794
K = 100 200 6.6289911 6.5609228 6.5651036
σ = 0.1 500 6.1329162 6.5634040 6.5650608

1000 6.4402779 6.5642490 6.5650794
2000 6.3914729 6.5646637 6.5650788
4000 6.6285242 6.5648714 6.5650794

Figure 4.11: For all options: s0 = 95, r = 0.1 and G= 100.
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Figure 4.13: 3/2 - Optimal model

Note that the 3/2-Optimal model retains an order of convergence 2 even for the out-
of-the-money options. The OD, on the other hand, has a smooth order 1 convergence
(Options 2 and 3) instead of 3/2.

Computational effort The above results compare the convergence patterns of different
methods, however, in order to be able to accurately compare the efficiency of these meth-
ods we have to consider their computational complexity as well. Standard d-dimensional
binomial schemes have a total computational effort (see section 2.1.2)

C (n) = O
(
nd+1

)
.

If the approximation error ε of a method is of order α > 0, i.e. ε = O (n−α), then the
computational effort in terms of the error (computational complexity) can be written as

C (ε) = O
(
ε−

d+1
α

)
,

which means that to decrease the error by 0.1 one would need to increase the computa-
tional effort by 10

d+1
α (=10000 in a standard 1-dimensional binomial scheme).

The 1-dimensional 3/2-Optimal tree involves additional calculations of the coefficients
kj,n, j = 0, 1, ci,n, i = 1, . . . , 4 for each n, however, this contributes only O (1) to the
total computational effort. Therefore, this method also has C (n) = O (n2), and we have
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CRR, RB tree OD model 3/2-Optimal

ε O
(
n−

1
2

)
O
(
n−

3
2

)
(O (n−1)) O (n−2)

C (ε) O (ε−4) O
(
ε−

4
3

)
(O (ε−2)) O (ε−1)

We now compare the computational complexity of the RB, OD and the 3/2-Optimal
models. We will use the RMSR error and the same sampling procedure as described in
section 4.2.3. We will only include those parameter vectors, for which the OD model has

order of convergence O
(

1√
n

3

)
, i.e. we will have to make sure that the discriminant of the

corresponding quadratic equation is greater than or equal to zero. Out of a sample of 2000
simulated options 1656 have been included.
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Figure 4.14: Computational complexity for a maximum of n = 1000 time steps.

Remark 4.3.2. In this section we have only considered digital puts, however, the above
results can be easily adjusted to deal with cash-or-nothing call options as well, i.e. options
that pay a fixed amount if the underlying at maturity is above the strike.

4.3.2 Plain vanilla options

A European put gives the holder the right to sell a share of the underlying stock at maturity
T for a prespecified strike price K ≥ 0. The payout of such an option will be

(K − S(T ))+.

A European call gives the holder the right to buy a share of the underlying stock at maturity
T for a prespecified strike price K ≥ 0, i.e. the payout in this case will be

(S(T )−K)+.



66 CHAPTER 4. ASYMPTOTICS OF ONE-DIMENSIONAL TREE MODELS

Figure 4.15: Payout function of a vanilla put

The prices of the plain vanilla options are given by the well-known Black-Scholes formula
(see e.g. [KK01] Corollary 3.9)

V = δ
(
Ke−rTΦ (δd2 (K))− s0Φ (δd1 (K))

)
,

where δ = 1 for put options and −1 for calls, d2 is defined as in (4.5) and

d1 := d1 (K) := d2 (K)− σ
√
T . (4.42)

Note that our notation is slightly different from the conventional one in order to be in line
with the previous results. We will focus on put options, however the same results can also
be obtained for calls.

The continuous-time formula is based on an appropriate change of measure. We want
to use the same idea also in the discrete-time case. For this we will need the following
theorem.

Theorem 4.3.3 (Discrete change of measure). Consider two probability measures P and
P̃ on a finite sample space Ω, such that P (ω) > 0 and P̃ (ω) > 0 ∀ω ∈ Ω. Let Z be the
Radon-Nikodým derivative of P̃ with respect to P , i.e.

Z (ω) =
P̃ (ω)

P (ω)
, ∀ω ∈ Ω.

Then

(i) P (Z > 0) = 1;

(ii) E (Z) = 1;
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(iii) for any variable Y ,
Ẽ (Y ) = E (ZY ) . (4.43)

(Cf. [S04], Theorem 3.1.1.).

Consider the general binomial model (4.31), where the drift and probabilities satisfy
(4.32). The price of a European put in this model can be written as

V (n) = En

(
e−rT

(
K − S(n)

n

)
1{

S
(n)
n ≤K

})
= e−rTKPn

(
S(n)
n ≤ K

)
− s0En

(
e(αn−r)T+σ

√
T
∑n
k=1 ξ

(n)
k 1{

S
(n)
n ≤K

}) . (4.44)

The expansion of the first term can be obtained directly from Proposition 4.2.4. To get
the dynamics of the second term we want to apply Theorem 4.3.3. If we set

Z = e(αn−r)T+σ
√
T
∑n
k=1 ξ

(n)
k ,

then by equation (4.43) we could write

En

(
e(αn−r)T+σ

√
T
∑n
k=1 ξ

(n)
k 1{

S
(n)
n ≤K

}) = Ẽn

(
1{

S
(n)
n ≤K

}) = P̃n
(
S(n)
n ≤ K

)
,

for the equivalent measure P̃n, and Proposition 4.2.4 is again applicable. However, this
approach only works if E (Z) = 1, otherwise P̃n will not be a well-defined probability mea-
sure. Therefore, it can only be applied in the case of a risk-neutral probability measure Pn,
since this is the unique measure for which the discounted stock price is a martingale, i.e.
E (Z) = 1. Note that this is exactly the procedure that appears in literature (see [CRR79]
or [M09] section 2.5.2.).

In order to handle our more general setting we will need a slight modification. Let

λn,k = e(αn−r)∆t+σ
√

∆tξ
(n)
k , k = 1, . . . , n.

and
Mn = E (λn,1) . (4.45)

We can now define new transition probabilities for ξ
(n)
k , k = 1, . . . , n. Let the new proba-

bilities of an up-jump p̃n and a down-jump q̃n be

p̃n =
e(αn−r)∆t+σ

√
∆tpn

Mn

, (4.46)

and

q̃n =
e(αn−r)∆t−σ

√
∆t(1− pn)

Mn

. (4.47)
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Note that p̃n, q̃n are well-defined, starting from some n ∈ N, and p̃n + q̃n = 1. The new
probability measure P̃n is now defined as

P̃n (ω1, . . . , ωn) = p̃nu(ω1,...,ωn)
n · q̃nd(ω1,...,ωn)

n

=

(
e(αn−r)∆t+σ

√
∆tpn

Mn

)nu(ω1,...,ωn)(
e(αn−r)∆t−σ

√
∆t(1− pn)

Mn

)nd(ω1,...,ωn)

=
n∏
k=1

λn,k (ωk)

Mn

Pn (ω1, . . . , ωn) ,

(4.48)

where ωk ∈ {−1, 1}, k = 1, . . . n, and as defined in section 2.1.2, nu (ω1, . . . , ωn) and
nd (ω1, . . . , ωn) are the number of 1’s and −1’s in the sequence (ω1, . . . , ωn). Therefore, the
Radon-Nikodým derivative of P̃n with respect to Pn is given by

Λn =
n∏
k=1

λn,k
Mn

.

All conditions of Theorem 4.3.3 are satisfied and by equation (4.43) the second term in
(4.44) can be written as

s0En

(
e(αn−r)T+σ

√
T
∑n
k=1 ξ

(n)
k 1{

S
(n)
n ≤K

}) = s0M
n
nEn

(
Λn1

{
S

(n)
n ≤K

})
= s0M

n
n P̃n

(
S(n)
n ≤ K

)
.

As a result

V (n) = e−rTKPn
(
S(n)
n ≤ K

)
− s0M

n
n P̃n

(
S(n)
n ≤ K

)
. (4.49)

Proposition 4.3.4. With an appropriate choice of parameters ki,n, i = 1, 3 and ci,n,
i = 1, 4, the price of a European put option in the binomial model (4.31) satisfies

V (n) = V +O

(
1

n2

)
, n→∞.

Proof. By the proof of Proposition 4.2.4 (equation (4.36))

e−rTKPn
(
S(n)
n ≤ K

)
= e−rTKΦ (d2)− 1√

n
e−rTKφ(d2)f1 (αn, pn) +

1

n
e−rTKφ(d2)f2 (αn, pn)

+
1
√
n

3 e
−rTKφ(d2)f3 (αn, pn) +O

(
1

n2

)
,

(4.50)
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where the functions fi, i = 1, 3 are defined as in (4.37). By the Taylor theorem

e(αn−r)∆T±σ
√

∆T = 1± 1√
n
σ
√
T − 1

n
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√
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√
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3
)
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√
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3
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1,nT −
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12
σ4T 2

)
+

1
√
n

5

(
k3,nT ± σk2,n

√
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3
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√
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3
± 1

2
σ
√
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3
(
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1

3
σ2
√
T
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± 1

48
σ5
√
T

5

)

+O

(
1

n3

)
,

(4.51)

therefore, Mn in (4.45) satisfies

Mn = 1 +
1
√
n

3σ
√
Tm1 +

1

n2

(
σ
√
Tm2 − 2σ2T

(
c1,n +

1

6
σ
√
T

)2

− 1

36
σ4T 2

)

+
1
√
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5

(
σ
√
Tm3 − 4σ2c1,nc2,nT −

2

3
c2,nσ

3
√
T

3
)

+O

(
1

n3

)
,

(4.52)

with mi, i = 1, . . . , 3 as in (4.34). Then from (4.46) - (4.47)

p̃n =
1

2
+ c̃1,n

1√
n

+ c̃2,n
1

n
+ c̃3,n

1
√
n

3 + c̃4,n
1

n2
+O

(
1

n5/2

)
,

q̃n = 1− p̃n,

where

c̃1,n = c1,n +
1

2
σ
√
T ,

c̃2,n = c2,n,

c̃3,n = c3,n − 2σ
√
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1

4
σ
√
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)2

− 1

24
σ3
√
T

3
,

c̃4,n = c4,n − σ2c2,nT − 4σc1,nc2,n

√
T .

Note that under the new measure

µ̃ (n) = k0,n +
2σc̃1,n√

T
+O

(
1√
n

)
(4.33)
= r +

1

2
σ2 +O

(
1√
n

)
,
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and

σ̃2 (n) = σ2 +O

(
1√
n

)
,

for µ̃ (n) and σ̃2 (n) as in (2.3). Therefore, P̃n

(
S

(n)
n ≤ K

)
converges to Φ (d1), and again,

following the proof of Proposition 4.2.4 we get the following expansion

s0P̃n
(
S(n)
n ≤ K

)
= s0Φ (d1)− 1√

n
s0φ(d1)f̃1 (αn, p̃n) +

1

n
s0φ(d1)f̃2 (αn, p̃n)

+
1
√
n

3 s0φ(d1)f̃3 (αn, p̃n) +O

(
1

n2

)
,

(4.53)

where the coefficients f̃i, i = 1, . . . , 3 are defined as in (4.37) with d1 substituted for d2 and
c̃i,n substituted for ci,n, i = 1, . . . , 4. To get the asymptotics of Mn

n consider the binomial
formula

(1 + x)n =
n∑
k

xk
(
n
k

)
= 1 + nx+

n(n− 1)

2
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n(n− 1)(n− 2)

6
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n
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)
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(4.54)

If x = O
(
n−

3
2

)
, then

∑n
k=4 x

k

(
n
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)
= O
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)
. Indeed,
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(
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(
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.

The last expression is convergent, and, therefore, bounded, and we have the necessary
result. If we now substitute (4.52) into (4.54) we get

Mn
n = 1 + a1,n

1√
n

+ a2,n
1

n
+ a3,n

1
√
n

3 +O

(
1

n2

)
, (4.55)
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where

a1,n = σ
√
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√
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(4.56)

Note that the term S1 (an) depends only on the coefficients of the drift αn and not the
probabilities pn or p̃n, therefore, f1 = f̃1, and by substituting (4.50), (4.53) and (4.55) into
(4.49), we get the following dynamics

V (n) = V − 1√
n
s0a1,nΦ (d1) +

1

n
s0

(
φ(d1)

(
f2 − f̃2 + a1,nf̃1
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)
+O

(
1

n2

)
,

(4.57)

where we have used the well-known formula s0φ (d1) = Ke−rTφ (d2). Note that for risk-
neutral transition probabilities Mn = 1, i.e. ai,n = 0 for all i, so the coefficient of the
leading error term in (4.57) becomes zero. However, this is not true for the general case.
Therefore, not every binomial tree automatically delivers an O

(
1
n

)
order of convergence

for vanilla options. We now choose the coefficients ki,n and ci,n, such that the first three
error terms in (4.57) become zero.

First, as in Proposition 4.2.4 we set k2,n = k3,n = 0 and c2,n = 1
2
−
{

ln
(
x
s0

)
−k0,nT

2σ
√

∆t
+ n

2

}
. The

latter ensures that f1 = 0. Note that, unlike the digital option case, this is not necessary
here, i.e. f1 could take on any value, but the above choice simplifies the calculations. Next
we set

k1,n =
2σc2,n√

T
,

so that m1 = a1,n = 0. In this case, taking into account that d2 − d1 = σ
√
T , we get
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If we now set

c3,n =
1

2σ
√
T

(
φ(d1)

Φ(d1)
(f2 − f̃2) + 2σ2T

(
c1,n +

1

6
σ
√
T

)2

+
1

36
σ4T 2

)
,



72 CHAPTER 4. ASYMPTOTICS OF ONE-DIMENSIONAL TREE MODELS

c4,n =
1

2σ
√
T

(
φ(d1)

Φ(d1)

(
f3 − f̃3

)
+ 4σ2c1,nc2,nT +

2

3
c2,nσ

3
√
T

3
)
,

we will get the statement of the proposition.

Remark 4.3.5. Note that, as in Proposition 4.2.4, the parameters k0,n and c1,n can be chosen
freely, as long as condition (4.33) is satisfied.

We now compare the RMS and RMSR errors for k0,n = 0 (CRR setting) and c1,n = 0
(RB setting). We employ the same sampling procedure as in the previous section. Out of
a sample of 2000 generated options, 1966 were included. A maximum step of n = 1000 has
been used.
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Figure 4.16: RMS(n) error
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Figure 4.17: RMSR(n) error

Note that, the CRR-Optimal tree has a lower relative error for vanilla options as well,
which suggests that it performs better than the RB based model for small option prices.
The convergence pattern of the absolute error is practically the same for both methods.

Remark 4.3.6. For the standard RB and CRR models the expected value Mn is not equal
to 1, therefore, conventional methods cannot be used to show the order of convergence.
However, with the method above we see that, since, in both cases, k1,n = c2,n = 0, we have
m1 = 0 and the coefficient of the leading error term in (4.57) disappears. Therefore, we
can prove the O

(
1
n

)
order of convergence of the standard binomial schemes.

Remark 4.3.7 (Advanced methods in literature). The Tian, CP and OD methods are also
applicable for vanilla options.

The Tian and CP approaches are based on fixing the value of S1 (an). However, for
vanilla options, the CP approach doesn’t directly increase the order of convergence. Both
methods result in a constant leading error coefficient and, therefore, have smooth conver-

gence of order O
(

1
n

)
. Extrapolation can then be applied to get a O

(
1√
n

3

)
convergence.

The OD method for vanilla options follows the same procedure as described in the
previous section. The transition probabilities are assumed to be risk-neutral. S1 (an) is
fixed to 0, and k0,n (c1,n) is chosen to solve the quadratic equation f2 − f̃2 = 0. As in

the case with digital options this method delivers an order of convergence O
(

1√
n

3

)
if the
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discriminant of the mentioned quadratic equation is greater than or equal to zero, otherwise
the order remains O

(
1
n

)
. This, of course, puts some restrictions on the parameter setting,

but as mentioned in [M09], p. 100, these restrictions are very weak. For more details on
these methods see [KM13], [M09], [CP07] and [T99].

Numerical results

We now compare the convergence behavior of the Tian method with extrapolation, the
OD method and the 3/2-Optimal method for different types of options.

Parameters n Tian with Extrapolation OD model CRR 3/2-Optimal BS value

T = 1 100 7.4069566 7.4008690 7.4046753 7.4049833
K = 105 200 7.4018715 7.4069738 7.4049790
σ = 0.25 500 7.4045424 7.4048572 7.4049777
r = 0.1 1000 7.4049982 7.4048921 7.4049809

2000 7.4050493 7.4050257 7.4049833
4000 7.4049764 7.4049870 7.4049832

T = 0.2 100 0.00012923 0.00013346 0.00013565 0.00013712
K = 72 200 0.00013937 0.00013533 0.00013680
σ = 0.2 500 0.00013731 0.00013642 0.00013706
r = 0.05 1000 0.00013718 0.00013677 0.00013710

2000 0.00013715 0.00013695 0.00013711
4000 0.00013713 0.00013703 0.00013712

T = 3 100 5.0995900 5.0834292 5.0861481 5.0858511
K = 130 200 5.0877658 5.0841486 5.0859119
σ = 0.1 500 5.0849887 5.0858476 5.0858542
r = 0.1 1000 5.0856365 5.0858300 5.0858518

2000 5.0857252 5.0859012 5.0858515
4000 5.0858305 5.0858640 5.0858512

Figure 4.18: For all options: s0 = 100.
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Figure 4.19: Convergence behavior for even n
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Figure 4.20: 3/2-Optimal model, n even

Note that for the out-of-the-money Option 2 the OD model delivers an order O
(

1
n

)
,

while both the Tian approach with extrapolation and the 3/2-Optimal model have order
O
(

1
n3/2

)
, the latter having a smoother convergence. For Option 1, the 3/2-Optimal model

delivers an error smaller than 10−6 for as few as 200 steps.

Computational effort The computational effort of the Tian (CP) tree is C (n) = O (n2).
If we additionally perform extrapolation

V̂ (n) = 2V (n) − V (n/2),

then the computational effort becomes C (n) = O (n2) +O ((n/2)2) = O (n2), however, the
leading error constant is larger.

As in the case of digital options, the computational effort of the 3/2-Optimal model is
C (n) = O (n2), since the additional calculations contribute only O (1) to the effort.

As a result, for plain vanilla options we have
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CRR, RB Tian, CP (Extrapolation) OD model 3/2 - Optimal

ε O (n−1) O
(
n−

3
2

)
O
(
n−

3
2

)
(O (n−1)) O (n−2)

C (ε) O (ε−2) O
(
ε−

4
3

)
O
(
ε−

4
3

)
(O (ε−2)) O (ε−1)

We now compare the computational complexity of the Tian model with extrapolation,
the OD and the 3/2-Optimal models. As before, we will use the RMSR error and will
only include those parameter vectors, for which the OD model has order of convergence

O
(
n−

3
2

)
. Out of a sample of 2000 simulated options 1928 have been included.
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Figure 4.21: Computational complexity for a maximum of n = 750 time steps.

Note that the OD model and the Tian model with extrapolation do have the same
slope, but due to the additional computations the latter requires a larger effort to obtain
the same precision.

4.3.3 Barrier options

So far we have considered options whose payout depends only on the stock price at maturity.
To conclude this section we would now like to show how to derive asymptotic expansions
and construct advanced binomial trees for path-dependent options, namely barrier options.
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A barrier put (call) option has the same payoff at maturity as the European put (call),
however, whether or not the owner of the option will receive this payoff depends on the
behavior of the whole path of the stock. One distinguishes between knock-in and knock-out
options.

• A knock-in put (call) pays out (K − S(T ))+ ((S(T )−K)+) if the stock price reaches
a certain level (barrier) B before maturity T .

• A knock-out put (call) pays out (K − S(T ))+ ((S(T )−K)+) if the stock price doesn’t
cross the given barrier B before maturity T .

Knock-in(out) options are further subdivided into up-and-in(out) and down-and-in(out)
options, depending on the position of the initial stock price relative to the barrier and
whether the barrier is hit from below (up-and-in(out)) or from above (down-and-in(out)).
The following in-out-parity relations hold for put (call) options with the same maturity,
strike and barrier

VP (C) = V ui
P (C) + V uo

P (C),

VP (C) = V di
P (C) + V do

P (C),
(4.58)

where VP (C) denotes the price of the corresponding vanilla put (call).

We will focus on the price of an up-and-in put. Prices of the other barrier options can be
obtained in a similar manner or using the relations (4.58). The payout of an up-and-in put
is given by

(K − S(T ))+
1{S(t)≥B, for some t∈[0,T ]}.

We assume s0 < B, since otherwise the barrier option becomes a plain vanilla option. Let
K < B, then the price of an up-and-in put is given by (see, e.g. [H06])

V ui
P = Ke−rT

(
B

s0

)µ
Φ (d3)− s0

(
B

s0

)µ+2

Φ (d4) ,

where µ = 2r
σ2 − 1 and

d3 =
log
(
Ks0
B2

)
−
(
r − 1

2
σ2
)
T

σ
√
T

,

d4 = d3 − σ
√
T .

Lattice methods for barrier options have a very irregular convergence behaviour due to the
position of the barrier. This phenomenon as well as possible solutions have been studied
by various authors, see for example [BL94], [DKEB95], [R95], etc. However, not that many
results are available about the approximation error. A first order asymptotic expansion
for binomial trees has been obtained in [G99]. We would now like to apply the Edgeworth
expansion to get second-order asymptotics for binomial.
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Binomial trees for barrier options

Consider the model

S
(n)
k = S

(n)
k−1e

σ
√

∆tξ
(n)
k , k = 1 . . . , n, (4.59)

with the probability of an up-jump

pn =
1

2
+ c1,n

1√
n

+ c2,n
1

n
+ c3,n

1
√
n

3 , (4.60)

where

c1,n =
r − 1

2
σ2

2σ

√
T ,

and c2,n, c3,n are bounded. The price of the up-and-in put in the above model is given by

V ui
n = E

(
e−rT

(
K − S(n)

n

)
1{

max1≤k≤n S
(n)
k ≥B, S

(n)
n ≤K

}) .
Let

aKn =
log
(
K
s0

)
σ
√

∆t
, aBn =

log
(
B
s0

)
σ
√

∆t
, lBn =

⌈
aBn
⌉
.

Then
{
−aBn

}
is the overshoot of the barrier in the discrete model.

Figure 4.22: Dynamics of
∑n

i=1 ξ
(n)
i
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Therefore,
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∑
x≤aKn

E

(
e−rT

(
K − s0e

σ
√

∆t
∑n
i=1 ξ

(n)
i

)
1{

max1≤k≤n
∑k
i=1 ξ

(n)
i ≥aBn ,

∑n
i=1 ξ

(n)
i =x

})

= e−rTK
∑
x≤aKn

P

(
max

1≤k≤n

k∑
i=1

ξ
(n)
i ≥ lBn ,

n∑
i=1

ξ
(n)
i = x

)

− s0

∑
x≤aKn

e−rT+σ
√

∆t·xP

(
max

1≤k≤n

k∑
i=1

ξ
(n)
i ≥ lBn ,

n∑
i=1

ξ
(n)
i = x

) (4.61)

In order to calculate the probabilities in (4.61) we will need the following lemma that makes
use of the reflection principle for a simple random walk.

Lemma 4.3.8. Let Sn := X1 + · · ·+Xn, where Xi are i.i.d, Xi = ±1 with probabilities p
and q. Then

P

(
max

1≤k≤n
Sk ≥ b, Sn = x

)
=


(
p
q

)b
P (Sn = x− 2b) , if x < b

P (Sn = x) , if x ≥ b

. (4.62)

Proof. Let x ≥ b. In this case Sn = x implies max1≤k≤n Sk ≥ b and the statement of the
lemma trivially holds.

Now let x < b. Following [Konst09] we introduce the notation

{(0, 0)→ (n, x)} := {all the paths that start at (0, 0) and end up at (n, x)} .

Every path from (0, 0) to (n, x) has (n+ x) /2 up-moves and (n− x) /2 down-moves, and
the probability of each of these paths is p(n+x)/2q(n−x)/2, if |x| ≤ n, n + x is even, and
0, otherwise. We assume the latter conditions on n and x, since otherwise, both sides of
(4.62) are zero. Then

P

(
max

1≤k≤n
Sk ≥ b, Sn = x

)
= # {(0, 0)→ (n, x)| cross b} p(n+x)/2q(n−x)/2.

By the reflection principle

# {(0, 0)→ (n, x)| cross b} = # {(0, 0)→ (n, 2b− x)} .

Indeed, every path that crosses b and ends up in (n, x) can be reflected starting from the
first hitting point of b to create a path that ends up in (n, 2b−x) and vice versa (see figure
4.23). Therefore,
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Figure 4.23: Reflection principle for a binomial random walk

P

(
max

1≤k≤n
Sk ≥ b, Sn = x

)
=

(
n

n+2b−x
2

)
p(n+x)/2q(n−x)/2

=

(
p

q

)b(
n

n+x−2b
2

)
p(n+x)/2−bq(n−x)/2+b

=

(
p

q

)b
P (Sn = x− 2b) ,

for x ≥ −n+ 2b, otherwise both sides are zero.

Substituting lemma 4.3.8 into (4.61) we get

e−rTK
∑
x≤aKn

P

(
max

1≤k≤n

k∑
i=1

ξ
(n)
i ≥ lBn ,

n∑
i=1

ξ
(n)
i = x

)

= e−rTK

(
p

q

)lBn ∑
x≤aKn

P

(
n∑
i=1

ξ
(n)
i = x− 2lBn

)

= e−rTK

(
p

q

)lBn
P

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)
,
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and with the same change of measure as in (4.48)

s0

∑
x≤aKn

e−rT+σ
√

∆t·xP

(
max

1≤k≤n

k∑
i=1

ξ
(n)
i ≥ lBn ,

n∑
i=1

ξ
(n)
i = x

)

= s0

(
p

q

)lBn ∑
x≤aKn

e−rT+σ
√

∆t·xP

(
n∑
i=1

ξ
(n)
i = x− 2lBn

)

= s0

(
p

q

)lBn
e2lBn σ

√
∆tMn

n P̃

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)
.

As a result

V ui
n = e−rTK

(
p

q

)lBn
P

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)

− s0

(
p

q

)lBn
e2lBn σ

√
∆tMn

n P̃

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)
.

(4.63)

Proposition 4.3.9. With an appropriate choice of coefficients c2,n and c3,n, the binomial
model in (4.59) satisfies

V ui
n = V ui +O

(
1
√
n

3

)
.

Proof.

P

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)
= P

(
1√
n

n∑
i=1

(
η

(n)
i − µn

)
≤ yn

)
,

where η
(n)
i is defined as in (4.6), µn = E

(
η

(n)
i

)
and

yn =
log
(
Kso
B2

)
− µ (n)T

2σ
√
T

−
{
−aBn

}
√
n

.

From (4.60) we get

µ (n) = r − 1

2
σ2 +

2c2,nσ√
T

1√
n

+
2c3,nσ√

T

1

n
,

and following the proof of Proposition 4.2.4 we get

yn
σn

= d3 −
2√
n

({
−aBn

}
+ c2,n

)
+

2

n

(
2d3c

2
1,n − 2c3,n

)
+O

(
1
√
n

3

)
,
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and

P

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)
= Φ (d3)− 2√

n
φ(d3)

({
−aBn

}
+ c2,n + S1 (an)

)
+

2

n
φ(d3)

(
−c3,n + d3c

2
1,n +

1

3
c1,n(d2

3 − 1) +
d3

3 − d3

24
− d3

({
−aBn

}
+ c2,n + S1 (an)

)2
)

+O

(
1
√
n

3

)
,

(4.64)

where an =
log(Ks0

B2 )
2σ
√

∆t
+ n

2
−
{
−aBn

}
.

Similarly

µ̃ (n) = r +
1

2
σ2 +

2c̃2,nσ√
T

1√
n

+
2c̃3,nσ√

T

1

n
,

and

P̃

(
n∑
i=1

ξ
(n)
i ≤ aKn − 2lBn

)
= Φ (d4)− 2√

n
φ(d4)

({
−aBn

}
+ c2,n + S1 (an)

)
+

2

n
φ(d4)

(
−c̃3,n + d4c̃

2
1,n +

1

3
c̃1,n(d2

4 − 1) +
d3

4 − d4

24
− d4

({
−aBn

}
+ c2,n + S1 (an)

)2
)

+O

(
1
√
n

3

)
.

(4.65)

e2lBn σ
√

∆t =

(
B

s0

)2

e2{−aBn}σ
√

∆t

=

(
B

s0

)2(
1 +

1√
n

2σ
√
T
{
−aBn

}
+

1

n
2σ2T

{
−aBn

}2
)

+O

(
1
√
n

3

)
.

(4.66)

(
p

q

)lBn
=

(
B

s0

)µ(
1 +

4√
n

(
c1,n

{
−aBn

}
+ c2,n

log B
s0

σ
√
T

))

+
4

n

c2,n

{
−aBn

}
−

log B
s0

σ
√
T

(
2

3
c3

1,n − c3,n

)
+ 2

(
c1,n

{
−aBn

}
+ c2,n

log B
s0

σ
√
T

)2


+O

(
1
√
n

3

)
.

(4.67)
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The above result was obtained with the help of the built-in function TAYLOR in MATLAB.
Substituting (4.64), (4.65), (4.66), (4.67) and the expansions from the previous section
(4.55) and (4.57) into (4.63), and taking into account s0φ (d4) = Ke−rTφ(d3), we get

V ui
n = V ui − 1√

n

(
c2,ng1,n +

{
−aBn

}
g2,n

)
+

1

n
(g3,n − c3,ng1,n) +O

(
1
√
n

3

)
, (4.68)

where

g1,n = 2σ
√
Ts0

(
B

s0

)µ+2

Φ (d4)− 4V ui log

(
B

s0

)
/(σ
√
T ),

g2,n = 2σ
√
Ts0

(
B

s0

)µ+2

Φ (d4)− 4V uic1,n,

g3,n = σ
√
Ts0

(
B

s0

)µ+2

(φ (d4)h1,n − Φ (d4)h2,n) + 4V uih3,n,

and

h1,n = −2c2
1,n − c1,n

(
σ
√
T +

d3 + d4

3

)
− 1

8
σ2T +

1

4
− d2

3

8
+
d2

4

24
− 2

({
−aBn

}
+ c2,n + S1 (an)

)2

+ 4
({
−aBn

}
+ c2,n

) ({
−aBn

}
+ c2,n + S1 (an)

)
,

h2,n = 2σ
√
T
({
−aBn

}
+ c2,n

)2 − 2σ
√
T (c1,n +

1

6
σ
√
T )2 − 1

36
σ3
√
T

3

+ 8
({
−aBn

}
+ c2,n

)(
c1,n

{
−aBn

}
+ c2,n

log B
s0

σ
√
T

)
,

h3,n = c2,n

{
−aBn

}
−

2 log
(
B
s0

)
3σ
√
T

c3
1,n + 2

(
c1,n

{
−aBn

}
+ c2,n

log B
s0

σ
√
T

)2

.

Therefore, if g1,n 6= 0, then by setting

c2,n = −
{
−aBn

}
g2,n

g1,n

,

c3,n =
g3,n

g1,n

,

we get the statement of the proposition.

Remark 4.3.10. Consider the leading error coefficient in (4.68). Note that g1,n, g2,n are
constant, therefore the oscillatory convergence behavior is due to the overshoot of the
barrier

{
−aBn

}
. The relative position of the strike with respect to the two neighboring

nodes at maturity does not enter into the expression. The strike is only present starting
from the O

(
1
n

)
coefficient in the term S1(an) together with the barrier in quadratic form.

Therefore, the position of the barrier will have a much stronger effect on the convergence
pattern than the position of the strike.
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Numerical results

We now consider the convergence pattern of a specific barrier option.
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Figure 4.24: Up-and-in barrier put: T = 1, r = 0.1, σ = 0.25, s0 = 100, K = 105, B = 120

Remark 4.3.11. Note that in the CRR tree c2,n = 0, therefore, the leading error coefficient
in (4.68) becomes

{
−aBn

}
g2,n, where 0 <

{
−aBn

}
≤ 1. Therefore, the binomial tree will

either overestimate or underestimate the BS price for all n, depending on the sign of g2,n,
as can be seen in the above figures.

CRR vs RB We would now like to compare the convergence behaviour of the CRR and
the RB models for barrier options. As we have seen in the previous chapters the CRR
and RB trees for digital and plain vanilla options have a similar convergence behavior
and no clear preferences can be stated. However, this is not the case for barrier options.
Expansions for the RB tree cannot be obtained with the method described above, since the
reflection principle is directly applicable only to the CRR tree, however, numerical results
show that the RB tree has a much smoother convergence compared to the CRR tree.
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Figure 4.25: Barrier option: T = 1, r = 0.1, σ = 0.25, s0 = 100, K = 110, B = 120

This can be explained by the fact that, since the CRR tree is symmetric around 0 in
the log-scale, the overshoot of the barrier

{
−aBn

}
is the same for each time step. Therefore,



84 CHAPTER 4. ASYMPTOTICS OF ONE-DIMENSIONAL TREE MODELS

with an increase of n, a whole row of nodes becomes out-of-the-money. The RB tree, on
the other hand, is tilted, therefore, this effect is not that pronounced.

Due to the smooth convergence pattern we can apply extrapolation to the RB tree to
increase the order of convergence. As a result we get
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Figure 4.26: Barrier option: T = 1, r = 0.1, σ = 0.25, s0 = 100, K = 110, B = 120

Parameters n CRR tree RB Extrapolation 1-Optimal BS value

T = 1 100 1.0370950 1.2728844 1.3071811 1.3714613
s0 = 100 200 1.1428755 1.3064705 1.3528020
K = 110, B = 120 500 1.2210427 1.3667218 1.3668495
σ = 0.25 1000 1.2248525 1.3608690 1.3671287
r = 0.1 2000 1.3285299 1.3731534 1.3713814

4000 1.3018025 1.3696310 1.3710375

4.4 Approximating the Greeks

In practice numerical methods are used not only to calculate the option price, but also the
sensitivity of the price with respect to the change in the underlying parameters or variables.
These sensitivities are usually referred to as the Greeks, and are used for hedging. The
most common Greeks are

• Delta: ∆ = ∂V
∂s0

;

• Gamma: Γ = ∂∆
∂s0

;

• Theta. Θ = ∂V
∂t

;

• Rho: ρ = ∂V
∂r

;

• Vega: ν = ∂V
∂σ

.



4.4. APPROXIMATING THE GREEKS 85

In this thesis we will consider the ∆, Γ and Θ for European options in the Black-Scholes
model.

The delta represents the change of the option price with changes in the underlying spot
price. It indicates the number of units of the underlying one needs to hold to hedge a short
option position against small movements in the market. For European call (put) options
the delta is given by

∆ = Φ(−d1) (∆ = −Φ(d1)),

where d1 is defined as in (4.42). Therefore, the delta is positive for call options, and nega-
tive for puts. Note that |∆| ≤ 1, approaching zero for out-of-the-money options and 1 for
in-the-money options.

Gamma is a second-order derivative and is also an important tool in hedging. It mea-
sures the sensitivity of an option’s delta to changes in the price of the underlying. For
both call and put options the gamma can be calculated as

Γ =
φ (−d1)

s0σ
√
T
.

Note that at-the-money options have the largest gamma.

Theta is the change in the price with the passage of time. It can be calculated as

Θ = −σs0φ (−d1)

2
√
T

+ δrKe−rTΦ (δd2) ,

with d2 as in (4.5) and δ = 1 for put options and −1 for calls.

We will now discuss how the above values can be approximated using the binomial model.
There are various ways of calculating the above Greeks with the lattice approach. The first
option is a numerical differentiation approach, which requires the construction of additional
trees with shifted initial values to calculate the necessary difference. The drawback of this
method is that it is very time-consuming, and it often leads to inaccurate approximations
of the gamma (see e.g. [PV94]). Another approach is to read off the delta and gamma
directly from the tree by using the values of the option and the stock after the first and
second steps to approximate the derivatives (see e.g. [Hull06]). Let Si,j denote the stock
price at time i∆t with j up-jumps and i− j down-jumps. From Figure 4.27 we get

∆(n) =
V (n) (S1,1)− V (n) (S1,0)

S1,1 − S1,0

,

Γ(n) =

(
V (n) (S2,2)− V (n) (S2,1)

S2,2 − S2,1

− V (n) (S2,1)− V (n) (S2,0)

S2,1 − S2,0

)
2

(S2,2 − S2,0)
,

(4.69)

where V (n) (Si,j) denotes the price of the option calculated at node Si,j.
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Figure 4.27

Theta can then be approximated using the Black-Scholes PDE as

Θ(n) = rV (n) − rs0∆(n) − 1

2
σ2s2

0Γ(n). (4.70)

The problem with this method is that the values of Si,j in (4.69) are taken at time ∆t and
2∆t, although we are supposed to consider change in the stock price without changing the
time. However, this can be neglected by taking a large enough n. Nevertheless we will
consider a different approach, the extended binomial tree method introduced in [PV94].
The idea of the method is to extend the tree two periods before the starting date as in
Figure 4.28.

Figure 4.28



4.4. APPROXIMATING THE GREEKS 87

The delta and gamma can then be calculated from the option and stock values at time
zero.

∆(n) =
V (n) (S0,1)− V (n) (S0,−1)

S0,1 − S0,−1

,

Γ(n) =

(
V (n) (S0,1)− V (n) (S0,0)

S0,1 − S0,0

− V (n) (S0,0)− V (n) (S0,−1)

S0,0 − S0,−1

)
2

(S0,1 − S0,−1)
.

(4.71)

Substituting these values into (4.70) we get an approximation for Θ.

The convergence behavior of ∆(n) and Γ(n) in (4.71) has already been studied in [CHLS11]
for various types of trees. They confirm the O

(
1
n

)
order of convergence for ∆(n) theo-

retically and show that the relative position of the strike with respect to the neighboring
nodes affects the convergence pattern of the greeks as well. In this section we apply the
Edgeworth expansion to not only prove the O

(
1
n

)
rate of convergence for ∆(n), but also

to get the leading error coefficient. We consider only the European put, however, similar
results can also be obtained for the call option.

Proposition 4.4.1. Consider the general binomial model (4.31) with drift and probabilities
as in (4.32) and k1,n = 2σc2,n√

T
. Then ∆(n) in (4.71) for a European put satisfies

∆(n) = ∆ + (φ (d1) δn − Φ (d1) a2,n)
1

n
+O

(
1

n3/2

)
, n→∞, (4.72)

where

δn = 2d2 − f̃2 (0) +
1

4σ
√
T

(
4a2,n + f3 (2)− f3 (−2)−

(
f̃3 (2)− f̃3 (−2)

))
,

with a2,n defined as in (4.56) and f̃2 (0) := f̃2 (αn, pn,m1 = 0), f3 (±2) := f3 (αn, pn,m1 = ±2),
f̃3 (±2) := f̃3 (αn, pn,m1 = ±2), f3 defined as in (4.37) and f̃2, f̃3 as in (4.53).

Proof. Extending the model (4.31) as in Figure 4.28 we get S0,0 = s0, S0,1 = s0e
2σ
√

∆t and

S0,−1 = s0e
−2σ
√

∆t. Following (4.49) we have

V (n)
(
s0e
±2σ
√

∆t
)

= e−rTKPn

(
S(n)
n ≤

K

e±2σ
√

∆t

)
− s0e

±2σ
√

∆tMn
n P̃n

(
S(n)
n ≤

K

e±2σ
√

∆t

)
.

(4.73)

As usual, setting η
(n)
k =

ξ
(n)
k +1

2
, k = 1, . . . , n, µn = E η

(n)
1 and σ2

n = V ar η
(n)
1 , the first term

above becomes

Pn

(
S(n)
n ≤

K

e±2σ
√

∆t

)
= P

(
1√
n

n∑
k=1

(
η

(n)
k − µn

)
≤ y±n

)
,
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where y±n =
ln
(
x
s0

)
−µ(n)T

2σ
√
T

∓ 1√
n
. Then

y±n
σn

= d2 ∓ 2
1√
n

+
(
2d2c

2
1,n −m2

) 1

n
+
(
4d2c1,nc2,n −m3 ∓ 2c2

1,n2
) 1
√
n

3 +O

(
1

n2

)
,

with m2,m3 as in (4.34). Note that the above expansion coincides with (4.35) if m1 is
substituted by ±2, therefore, following (4.36) we get

e−rTKPn

(
S(n)
n ≤

K

e±2σ
√

∆t

)
= e−rTKΦ (d2)− 1√

n
e−rTKφ(d2)f1 (±2) +

1

n
e−rTKφ(d2)f2 (±2)

+
1
√
n

3 e
−rTKφ(d2)f3 (±2) +O

(
1

n2

)
.

Analogously, following (4.53) we get an expansion for the second term in (4.73). Substi-

tuting these expressions into (4.71) and taking into account the Taylor series for e±2σ
√

∆t,
we get the statement of the proposition.

Consider the 3/2-Optimal model from Proposition 4.3.4. Note that despite the O
(

1
n2

)
order of convergence of the Black-Scholes price approximations in the 3/2-Optimal model,
the delta, gamma and theta converge with order O

(
1
n

)
, which is typical for binomial

trees. However, the convergence is smooth, therefore, following [CHLS11] we can use
extrapolation to improve the order of convergence, which delivers results comparable to
those of other advanced tree methods.

Remark 4.4.2. Note that the additional degrees of freedom available in multinomial trees
could be used to improve the order of convergence for the greeks. This is left for future
research.

Numerical results

Compare the convergence behavior of the delta, gamma and theta in the extended CRR
and 3/2-Optimal trees for a European put with T = 1, r = 0.1, σ = 0.25, Strike = 110
and s0 = 100.
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Figure 4.29: Delta, n even
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Figure 4.30: Gamma, n even
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Consider the approximation results for a European put with T = 1, r = 0.1, σ = 0.25,
Strike = 100 and different initial values.
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Figure 4.32: Delta, gamma and theta for n = 50

4.5 Conclusion

In this chapter we have considered applications of the Edgeworth expansions to one-
dimensional tree models in the Black-Scholes setting. We have seen how expansions can
be obtained for digital, vanilla and barrier options, and how these results can be used to
improve convergence behavior.

Once again, we consider the binomial method as a purely numerical approach, and do
not restrict ourselves to the equivalent martingale measure in the binomial setting. This
gives us more freedom in the construction of the advanced trees, as it allows to choose the
probabilities as well as the drift of the tree. Nevertheless, the expansions obtained in the
proofs of the propositions above hold for a very general setting, and can also be applied to
trees under the risk-neutral measure.



Chapter 5

Asymptotics of Multidimensional
Tree Models

Unlike the one-dimensional case, very little theory is available for the multidimensional
setting. Therefore, the goal of this chapter is to provide theoretical results on the asymp-
totic behavior of multidimensional trees, that would allow to compare existing methods
and to develop new ones with superior convergence properties.

We apply Edgeworth expansions to obtain the distributional fit of multi-asset binomial
trees. As an example, we present asymptotic expansions of order O

(
1

n3/2

)
for the 2D BEG

and the 2D-RB models mentioned in section 2.2.2. We then show how advanced trees can
be constructed in the multidimensional case and present models with a O

(
1

n3/2

)
order of

convergence for the two-asset digital and two-asset correlation options. In conclusion we
consider the asymptotics of the decoupling approach.

We will start with a two-dimensional model and consider further generalizations later
on.

5.1 Two-dimensional expansions

We assume a two-dimensional Black-Scholes model:

dSi (t) = Si (t) (rdt+ σidWi (t)) , Si (0) = s0,i i = 1, 2,

where W1(t) and W2(t) are Brownian motions with correlation ρ. As the approximating

binomial model we consider the discrete-time process S
(n)
k , k = 1, . . . , n such that

S
(n)
0 =

(
s0,1

s0,2

)
,

S
(n)
k =

(
S

(n)
k−1,1e

αn,1∆t+σ1

√
∆tξ

(n)
k,1

S
(n)
k−1,2e

αn,2∆t+σ2

√
∆tξ

(n)
k,2

)
,

(5.1)



92 CHAPTER 5. ASYMPTOTICS OF MULTIDIMENSIONAL TREE MODELS

where αn,i, i = 1, 2, are bounded drifts and for each n ∈ N, ξ(n)
k , k = 1, . . . , n are i.i.d.

random vectors such that

ξ
(n)
k =

(
ξ

(n)
k,1 , ξ

(n)
k,2

)
=


(1, 1), with probability p

(uu)
n ,

(1,−1), with probability p
(ud)
n ,

(−1, 1), with probability p
(du)
n ,

(−1,−1), with probability p
(dd)
n .

To ensure weak convergence we assume that the moment matching conditions (2.8) are
satisfied, i.e.

µi (n) = r − 1

2
σ2
i + o (1) , i = 1, 2,

σ2
i (n) = σ2

i + o (1) , i = 1, 2,

c (n) = ρσ1σ2 + o (1) .

(5.2)

5.1.1 Distributional Fit

We now focus on the distributional fit of the process S(n) in (5.1) at maturity. As in the
one-dimensional case, we are interested in the error

P
(
S(n)
n ≤ x

)
−Q (S(T ) ≤ x) = P

(
S(n)
n ≤ x

)
− Φ0,V (d2,1, d2,2) ,

where

d2,i :=
ln
(
xi
s0,i

)
−
(
r − 1

2
σ2
i

)
T

σi
√
T

, i = 1, 2,

V =

(
1 ρ
ρ 1

)
.

At maturity the discrete-time stock price satisfies

S(n)
n =

(
s0,1e

αn,1T+σ1

√
∆t
∑n
k=1 ξ

(n)
k,1

s0,2e
αn,2T+σ2

√
∆t
∑n
k=1 ξ

(n)
k,2

)
.

Set η
(n)
j,i =

(
ξ

(n)
j,i + 1

)
/2, so that η

(n)
j has minimal lattice Z2 with P

(
η

(n)
j ∈ Z2

)
= 1, for

all j = 1, . . . , n. Then

P
(
S(n)
n ≤ x

)
= P

(
S

(n)
n,1 ≤ x1, S

(n)
n,2 ≤ x2

)
= P

(
1√
n

(
n∑
j=1

η
(n)
j,1 − nEη

(n)
1,1

)
≤ yn,1,

1√
n

(
n∑
j=1

η
(n)
j,2 − nEη

(n)
1,2

)
≤ yn,2

)
.

where

yn,i =
ln
(
xi
s0,i

)
− µi(n)T

2σi
√
T

, i = 1, 2. (5.3)

We have the following corollary to Theorem 3.4.9.
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Corollary 5.1.1. Let µn = E
(
η

(n)
1

)
, Vn be the covariance matrix of η

(n)
1 , i.e.

Vn =

(
σ2
n,1 ρnσn,1σn,2

ρnσn,1σn,2 σ2
n,2

)
. (5.4)

and κn,ν be the ν-th cumulant of η
(n)
1 . The binomial process S(n) in (5.1) satisfies

P
(
S(n)
n ≤ x

)
= Φ0,Vn (yn)

− 1√
n

(S1 (an,1)D1Φ0,Vn (yn) + S1 (an,2)D2Φ0,Vn (yn)− P1 (−Φ0,Vn , {κn,ν}) (yn))

+
1

n

[
S1 (an,1)S1 (an,2)D1D2Φ0,Vn (yn) + S2 (an,1)D2

1Φ0,Vn (yn)

+ S2 (an,2)D2
2Φ0,Vn (yn)− S1 (an,1)D1P1 (−Φ0,Vn , {κn,ν}) (yn)

−S1 (an,2)D2P1 (−Φ0,Vn , {κn,ν}) (yn) + P2 (−Φ0,Vn , {κn,ν}) (yn)] +O

(
1
√
n

3

)
,

(5.5)

where yn is defined in (5.3), an = nµn + yn
√
n and

P1 (−Φ0,Vn , {κn,ν}) (u) = −
∑
|ν|=3

κn,ν
ν!

DνΦ0,Vn (u) ,

P2 (−Φ0,Vn , {κn,ν}) (u) =
∑
|ν|=4

κn,ν
ν!

DνΦ0,Vn (u)

+
1

2!

∑
ν1,ν2, |νi|=3

κn,ν1κn,ν2

ν1!ν2!
Dν1+ν2Φ0,Vn (u) ,

Proof. The moment-matching conditions (5.2) are equivalent to

p(uu)
n =

1

4
(1 + ρ) + o (1) , p(ud)

n =
1

4
(1− ρ) + o (1)

p(du)
n =

1

4
(1− ρ) + o (1) , p(dd)

n =
1

4
(1 + ρ) + o (1)

Therefore, Lemma 3.4.8 is applicable and the conditions of Theorem 3.4.9 are satisfied
for all s. Taking s = 4 we have the statement of the corollary. The expressions for
Pi (−Φ0,Vn , {κn,ν}) are obtained from Lemma 3.3.3.

The cumulants κn,ν can be calculated by using their representation (3.3) in terms of
moments. For |ν| = 3 the possible κn,ν are

κn,(3,0) = µn,(3,0) − 3µn(1,0)µn(2,0) + 2µ3
n(1,0),

κn,(0,3) = µn,(0,3) − 3µn(0,1)µn(0,2) + 2µ3
n(0,1),

κn,(2,1) = µn,(2,1) − µn,(0,1)µn,(2,0) − 2µn,(1,1)µn,(1,0) + 2µ2
n,(1,0)µn,(0,1),

κn,(1,2) = µn,(1,2) − µn,(1,0)µn,(0,2) − 2µn,(1,1)µn,(0,1) + 2µ2
n,(0,1)µn,(1,0),
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and for |ν| = 4

κn,(4,0) = µn,(4,0) − 4µn,(3,0)µn,(1,0) − 3µ2
n,(2,0) + 12µn,(2,0)µ

2
n,(1,0) − 6µ4

n,(1,0),

κn,(0,4) = µn,(0,4) − 4µn,(0,3)µn,(0,1) − 3µ2
n,(0,2) + 12µn,(0,2)µ

2
n,(0,1) − 6µ4

n,(0,1),

κn,(3,1) = µn,(3,1) − 3µn,(2,1)µn,(1,0) − µn,(3,0)µn,(0,1) − 3µn,(2,0)µn,(1,1)

+ 6µn,(1,1)µ
2
n,(1,0) + 6µn,(2,0)µn,(1,0)µn,(0,1) − 6µ3

n,(1,0)µn,(0,1),

κn,(1,3) = µn,(1,3) − 3µn,(1,2)µn,(0,1) − µn,(0,3)µn,(1,0) − 3µn,(0,2)µn,(1,1)

+ 6µn,(1,1)µ
2
n,(0,1) + 6µn,(0,2)µn,(0,1)µn,(1,0) − 6µ3

n,(0,1)µn,(1,0),

κn,(2,2) = µn,(2,2) − 2µn,(1,2)µn,(1,0) − 2µn,(2,1)µn,(0,1) − µn,(2,0)µn,(0,2) − 2µ2
n,(1,1)

+ 2µn,(2,0)µ
2
n,(0,1) + 2µn,(0,2)µ

2
n,(1,0) + 8µn,(1,1)µn,(1,0)µn,(0,1) − 6µ2

n,(1,0)µ
2
n,(0,1)

Asymptotics of the Normal distribution and its derivatives

In order to get the expansion of P
(
S

(n)
n ≤ x

)
around Φ0,V (d2) we need to consider the

asymptotics of Φ0,Vn (yn) and its derivatives.

We assume that the drifts and transition probabilities in the model (5.1) are chosen such
that the following expansions hold

µi (n) = r − 1

2
σ2
i + a

(n)
i,1

1√
n

+ a
(n)
i,2

1

n
+O

(
n−3/2

)
,

σ2
n,i =

1

4
+ b

(n)
i,1

1√
n

+ b
(n)
i,2

1

n
+O

(
n−3/2

)
ρn = ρ+ c

(n)
1

1√
n

+ c
(n)
2

1

n
+O

(
n−3/2

)
,

(5.6)

where a
(n)
i,1(2), b

(n)
i,1(2) and c

(n)
1(2) are bounded in n for i = 1, 2. Note that this is a stronger

version of the moment-matching conditions (5.2). From (5.4) the inverse of the covariance
matrix is

V −1
n =

1

1− ρ2
n

(
1

σ2
n,1

− ρn
σn,1σn,2

− ρn
σn,1σn,2

1
σ2
n,2

)
,

and, therefore,

φ0,Vn (u) =
1

2π

1

σn,1σn,2
√

1− ρ2
n

e−
1
2

〈
u, V −1

n u
〉

=
1

2π

1

σn,1σn,2
√

1− ρ2
n

e
− 1

2(1−ρ2n)

(
u2

1
σ2
n,1
− 2ρnu1u2
σn,1σn,2

+
u2

2
σ2
n,2

)
.
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Let us first consider the derivatives of the bivariate normal distribution.

D1Φ0,Vn (y1, y2) =
∂

∂y1

∫ y1

−∞

∫ y2

−∞

1

2π

1

σn,1σn,2
√

1− ρ2
n

e
− 1

2σ2
n,1

u2
1
e
− 1

2(1−ρ2n)

(
u2
σn,2
−ρn u1

σn,1

)2

du2du1

=
1

2π

1

σn,1σn,2
√

1− ρ2
n

e
− 1

2σ2
n,1

y2
1

∫ y2

−∞
e
− 1

2(1−ρ2n)

(
u2
σn,2
−ρn y1

σn,1

)2

du2

=
1

σn,1
φ

(
y1

σn,1

)
Φ

(
y2

σn,2
− ρn y1

σn,1√
1− ρ2

n

)
, y ∈ R2.

We can now use the one-dimensional results (4.13) and (4.14) to get the expansions of the
standard normal distribution and density functions. Due to (5.6) we have

yn,i
σn,i

=
d2,i

2σn,i
+

(
r − 1

2
σ2
i − µi(n)

)
T

σi
√
T

1

2σn,i

= d2,i + h
(n)
i,1

1√
n

+ h
(n)
i,2

1

n
+O

(
n−3/2

)
, i = 1, 2,

(5.7)

where

h
(n)
i,1 := −2d2,ib

(n)
i,1 − a

(n)
i,1

√
T

σi

h
(n)
i,2 := 2d2,i

(
3
(
b

(n)
i,1

)2

− b(n)
i,2

)
+
(

2b
(n)
i,1 a

(n)
i,1 − a

(n)
i,2

) √T
σi

.

Also, by applying the Binomial Series Theorem to (5.6) we get

1√
1− ρ2

n

=
1√

1− ρ2
+ c̃

(n)
1

1√
n

+ c̃
(n)
2

1

n
+O

(
n−3/2

)
, (5.8)

where

c̃
(n)
1 =

ρ√
1− ρ2

3 c
(n)
1 ,

c̃
(n)
2 =

1

2


(
c

(n)
1

)2

+ 2ρc
(n)
2√

1− ρ2
3 +

3ρ2
(
c

(n)
1

)2

√
1− ρ2

5

 ,

and, therefore,

yn,i
σn,i
− ρn yn,jσn,j√
1− ρ2

n

=
d2,i − ρd2,j√

1− ρ2
+ k

(n)
i,1

1√
n

+ k
(n)
i,2

1

n
+O(n−3/2), (5.9)
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with

k
(n)
i,1 :=

hi,1 − ρhj,1 − d2,jc1√
1− ρ2

+ c̃1 (d2,i − ρd2,j)

k
(n)
i,2 :=

hi,2 − ρhj,2 − hj,1c1 − d2,jc2√
1− ρ2

+ c̃1 (hi,1 − ρhj,1 − d2,jc1) + c̃2 (d2,i − ρd2,j)

We now substitute (5.7) and (5.9) into (4.14) and (4.13) to get

DiΦ0,Vn (yn,1, yn,2) = 2φ (di) Φ

(
dj − ρdi√

1− ρ2

)
+

1√
n
l
(n)
i,1 +

1

n
l
(n)
i,2 +O(n−3/2), (5.10)

with

l
(n)
i,1 := 2kj,1 (n)φ (di)φ

(
d2,j − ρd2,i√

1− ρ2

)
− (2hi,1d2,i + 4bi,1)φ (di) Φ

(
d2,j − ρd2,i√

1− ρ2

)

l
(n)
i,2 := 2

(
kj,2 −

1

2

d2,j − ρd2,i√
1− ρ2

k2
j,1 − hi,1dikj,1 − 2bi,1kj,1

)
φ (di)φ

(
d2,j − ρd2,i√

1− ρ2

)

+
((
d2

2,i − 1
)
h2
i,1 − 2d2,ihi,2 − 4bi,1hi,1d2,i + 4

(
3b2
i,1 − bi,2

))
φ (di) Φ

(
d2,j − ρd2,i√

1− ρ2

)
.

In a similar manner one can obtain asymptotic expansions for the following derivatives.

Set αi := αi (yn,i) = yn,i/σn,i, βi,j := βi,j (yn,i, yn,j) =
(
yn,i
σn,i
− ρn yn,jσn,j

)
/
√

1− ρ2
n, i, j = 1, 2.

D1D2Φ0,Vn (yn,1, yn,2) = φ0,Vn (yn,1, yn,2)

=
1

σn,1σn,2
√

1− ρ2
n

φ (α1)φ (β2,1)

=
1

σn,1σn,2
√

1− ρ2
n

φ (α2)φ (β1,2)

D2
1Φ0,Vn (yn,1, yn,2) =

∂2

∂y2
n,1

Φ0,Vn (yn,1, yn,2)

= − y1

σ3
n,1

φ (α1) Φ (β2,1)− ρn

σ2
n,1

√
1− ρ2

n

φ (α1)φ (β2,1)

= − 1

σ2
n,1

φ (α1)

(
yn,1
σn,1

Φ (β2,1) +
ρn√

1− ρ2
n

φ (β2,1)

)

D2
2Φ0,Vn (yn,1, yn,2) = − 1

σ2
n,2

φ (α2)

(
yn,2
σn,2

Φ (β1,2) +
ρn√

1− ρ2
n

φ (β1,2)

)
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Finally, we consider Φ0,Vn (yn).

Φ0,Vn (yn,1, yn,2) =

∫ yn,1

−∞

∫ yn,2

−∞

1

2π

1

σn,1σn,2
√

1− ρ2
n

e
− 1

2(1−ρ2n)

(
u2

1
σ2
n,1
− 2ρnu1u2
σn,1σn,2

+
u2

2
σ2
n,2

)
du2du1

=
1

2π

1√
1− ρ2

n

∫ yn,1/σn,1

−∞

∫ yn,2/σn,2

−∞
e
− 1

2(1−ρ2n)(v
2
1−2ρnv1v2+v2

2)dv2dv1

Set ĥn,i = h
(n)
i,1

1√
n

+ h
(n)
i,2

1
n

+O
(
n−3/2

)
, then by (5.7)

Φ0,Vn (yn,1, yn,2) = Φ0,Vρn

(
d2,1 + ĥn,1, d2,2 + ĥn,2

)
, Vρn =

(
1 ρn
ρn 1

)
.

Therefore, by applying Taylor’s theorem for multivariate functions at the point (ρ, d2,1, d2,2)

and using the relation
∂Φ0,V (x1,x2)

∂ρ
= φ0,V (x1, x2) (see e.g. [Pl54]) we get

Φ0,Vn (yn,1, yn,2) =
∑
|α|≤2

DαΦ0,V (d2,1, d2,2)

α!

(
ρn − ρ, ĥn,1, ĥn,2

)α
+O

(
n−3/2

)
= Φ0,V (d2,1, d2,2) +

1√
n

(
φ0,V (d2,1, d2,2) c

(n)
1 +D1Φ0,V (d2,1, d2,2)h

(n)
1,1 +D2Φ0,V (d2,1, d2,2)h

(n)
2,1

)
+

1

n

(
φ0,V (d2,1, d2,2) c

(n)
2 +

1

2

∂φ0,V (d2,1, d2,2)

∂ρ

(
c

(n)
1

)2

+D1D2Φ0,V (d2,1, d2,2)h
(n)
1,1h

(n)
2,1

+D1Φ0,V (d2,1, d2,2)h
(n)
1,2 +

1

2
D2

1Φ0,V (d2,1, d2,2)
(
h

(n)
1,1

)2

+D1φ0,V (d2,1, d2,2)h
(n)
1,1c

(n)
1

+D2φ0,V (d2,1, d2,2)h
(n)
2,1c

(n)
1 +D2Φ0,V (d2,1, d2,2)h

(n)
2,2 +

1

2
D2

2Φ0,V (d2,1, d2,2)
(
h

(n)
2,1

)2
)

+O
(
n−3/2

)
.

(5.11)

Existing methods in literature

As an example of the application of corollary 5.1.1 we present the expansions for the 2D-RB
and the BEG models.

Proposition 5.1.2 (Dynamics of the 2D-RB model). The 2D-RB process (2.12)-(2.13)
satisfies

P
(
S(n)
n ≤ x

)
= Φ0,V (d2,1, d2,2)

− 1√
n

(
2S1 (an,1)φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
+ 2S1 (an,2)φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

))

+
1

n
f (d2,1, d2,2, S1 (an,1) , S1 (an,2)) +O

(
1
√
n

3

)
,
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where

an,i =
ln
(
xi
s0,i

)
−
(
r − 1

2
σ2
i

)
T

2σi
√

∆t
+
n

2
,

and

f (d2,1, d2,2, S1 (an,1) , S1 (an,2)) = φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)(
1

12

(
d3

2,1 − d2,1

)
− 2S2

1 (an,1) d2,1

)

+ φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)(
1

12

(
d3

2,2 − d2,2

)
− 2S2

1 (an,2) d2,2

)
+ φ0,V (d2,1, d2,2)

(
4S1 (an,1)S1 (an,2)− 2ρS2

1 (an,1)− 2ρS2
1 (an,2)

+
ρ

2
−
ρ(1 + ρ2)(d2

2,1 + d2
2,2)

12(1− ρ2)
+
ρ2d2,1d2,2

3(1− ρ2)

)
.

(5.12)

Proof. We assume the notation of Corollary 5.1.1. The moments (5.2) are matched exactly
by the 2D-RB model,

µn =

(
1

2
,
1

2

)
, Vn =

1

4

(
1 ρ
ρ 1

)
,

κn,ν = 0, |ν| = 3,

κn,(4,0) = κn,(0,4) = −1

8
,

κn,(3,1) = κn,(1,3) = −1

8
ρ,

κn,(2,2) = −1

8
ρ2,

(5.13)

and

D(2,2)Φ0,Vn (yn,1, yn,2) = φ0,V (d1, d2)
16 ((1 + ρ2) d1d2 − ρ (d2

1 + d2
2) + ρ (1− ρ2))

(1− ρ2)2 ,

D(3,1)Φ0,Vn (yn,1, yn,2) = −φ0,V (d1, d2)
16 (1− ρ2 − d2

1 − ρ2d2
2 + 2ρd1d2)

(1− ρ2)2 ,

D(4,0)Φ0,Vn (yn,1, yn,2) = −16ρφ0,V (d1, d2)

(
3d2

1 −
3ρd1(d2 − ρd1)

1− ρ2
− 3− ρ2

1− ρ2
+
ρ2 (d2 − ρd1)2

(1− ρ2)2

)

− 16φ (d1) Φ

(
d2 − ρd2√

1− ρ2

)(
d3

1 − 3d1

)
.

(5.14)

The expressions for D(1,3) and D(0,4) are completely symmetric. Substituting these values
into (5.5) we get the statement of the proposition.
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Proposition 5.1.3 (Dynamics of the BEG model). The BEG process (2.9)-(2.10) satisfies

P
(
S(n)
n ≤ x

)
= Φ0,V (d2,1, d2,2)

− 1√
n

(
2S1 (an,1)φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
+ 2S1 (an,2)φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

))

+
1

n
g (d2,1, d2,2, S1 (an,1) , S1 (an,2)) +O

(
1
√
n

3

)
,

where

an,i =
ln
(
xi
s0,i

)
2σi
√

∆t
+
n

2
,

and

g (d2,1, d2,2, S1 (α1) , S1 (α2))

= φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)(
h

(n)
1,2 +

r − 1
2
σ2

1

3σ1

(d2
2,1 − 1) +

1

12

(
d3

2,1 − d2,1

)
− 2S2

1 (an,1) d2,1

)

+ φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)(
h

(n)
2,2 +

r − 1
2
σ2

2

3σ2

(d2
2,2 − 1) +

1

12

(
d3

2,2 − d2,2

)
− 2S2

1 (an,2) d2,2

)
+ φ0,V (d2,1, d2,2)

(
c

(n)
2 + 4S1 (an,1)S1 (an,2)− 2ρS2

1 (an,1)− 2ρS2
1 (an,2) +

ρ

2
+
ρ2d2,1d2,2

3(1− ρ2)

−
ρ(1 + ρ2)(d2

2,1 + d2
2,2)

12(1− ρ2)
+
ρ
(
r − 1

2
σ2

1

)
(2ρd2,2 − d2,1 (1 + ρ2))

3σ1(1− ρ2)
+
ρ
(
r − 1

2
σ2

2

)
(2ρd2,1 − d2,2 (1 + ρ2))

3σ2(1− ρ2)

)
.

with

c
(n)
2 = ρ

(
r − 1

2
σ2

1

)2

2σ2
1

T + ρ

(
r − 1

2
σ2

2

)2

2σ2
2

T −
(
r − 1

2
σ2

1

) (
r − 1

2
σ2

2

)
σ1σ2

T,

h
(n)
i,2 =

di
(
r − 1

2
σ2
i

)2
T

2σ2
i

, i = 1, 2.

(5.15)

Proof. We assume the notation of Corollary 5.1.1. For the BEG model the coefficients in
(5.6) are

a
(n)
i,j = 0, i = 1, 2, j = 1, 2,

b
(n)
i,1 = 0, b

(n)
i,2 = −

(
r − 1

2
σ2
i

)2

4σ2
i

T, i = 1, 2,

c
(n)
1 = 0, c̃

(n)
1 = 0, h

(n)
i,1 = 0,
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and c
(n)
2 , h

(n)
i,2 , i = 1, 2 are defined as in equation (5.15). Substituting these values into

(5.11) we get

Φ0,Vn (yn,1, yn,2) = Φ0,V (d2,1, d2,2)

+
1

n

(
φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
h

(n)
1,2 + φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
h

(n)
2,2

+φ0,V (d2,1, d2,2) c
(n)
2

)
+O

(
n−3/2

)
The cumulants for |ν| = 3 are

κn,(3,0) = −1

4

(
r − 1

2
σ2

1

)√
∆t

σ1

+O

(
1

n

)
,

κn,(2,1) = −1

4
ρ

(
r − 1

2
σ2

1

)√
∆t

σ1

+O

(
1

n

)
,

and κn,(0,3), κn,(1,2) are completely analogous.

D(3,0)Φ0,Vn (yn,1, yn,2) = 8φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)(
d2

2,1 − 1
)

+ 8ρφ0,V (d2,1, d2,2)

(
2d2,1 −

ρ

1− ρ2
(d2,2 − ρd2,1)

)
+O

(
1√
n

)
D(2,1)Φ0,Vn (yn,1, yn,2) = −8φ0,V (d2,1, d2,2)

d2,1 − ρd2,2

1− ρ2
+O

(
1√
n

)
,

(5.16)

and D(0,3), D(1,2) are symmetric. For |ν| = 4 the cumulants are as in (5.13) up to order

O
(

1√
n

)
, and the derivatives DνΦ0,Vn are as in (5.14) up to order O

(
1√
n

)
. Substituting

the obtained expansions into equation (5.5) we get the statement of the proposition.

5.1.2 Improving the convergence behavior

As in the one-dimensional case we now apply Corollary 5.1.1 to construct an advanced 2D
tree with an O

(
n−3/2

)
order of convergence. We will refer to this tree as the 2D 1-Optimal

tree.

Consider the following binomial model

S
(n)
k =

(
S

(n)
k−1,1e

αn,1∆t+σ1

√
∆tξ

(n)
k,1

S
(n)
k−1,2e

αn,2∆t+σ2

√
∆tξ

(n)
k,2

)
, k = 1, . . . , n, (5.17)

where

αn,i = r − 1

2
σ2
i −

ci,nσi√
T

1√
n
, i = 1, 2 (5.18)
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and

p(uu)
n =

1

4
(1 + ρ) +

c1,n + c2,n + c3,n

4

1

n
+
c4,n + c5,n

4

1
√
n

3 ,

p(ud)
n =

1

4
(1− ρ) +

c1,n − c2,n − c3,n

4

1

n
+
c4,n − c5,n

4

1
√
n

3 ,

p(du)
n =

1

4
(1− ρ)− c1,n − c2,n + c3,n

4

1

n
− c4,n − c5,n

4

1
√
n

3 ,

p(dd)
n =

1

4
(1 + ρ)− c1,n + c2,n − c3,n

4

1

n
− c4,n + c5,n

4

1
√
n

3 ,

(5.19)

for bounded sequences {ci,n}n, i = 1, . . . , 5. These transition probabilities are well-defined,
i.e. they sum up to 1 and lie between 0 and 1 for a sufficiently large n. Moreover, with the
above choice of parameters (5.6) becomes

µi (n) = r − 1

2
σ2
i +

σici+3,n√
T

1

n
, i = 1, 2,

σ2
n,i =

1

4
+O

(
1

n2

)
, ρn = ρ+ c3,n

1

n
+O

(
1

n2

)
.

Therefore, the moment-matching conditions are satisfied and S(n) converges weakly to the
continuous-time process S.

Proposition 5.1.4. With the appropriate choice of the coefficients ci,n, i = 1, . . . , 5, S(n)

in (5.17) satisfies

P
(
S

(n)
n,1 ≤ x1, S

(n)
n,2 ≤ x2

)
= Φ0,V (d2,1, d2,2) +O

(
1
√
n

3

)
.

Proof. In the above model, with yn as in (5.3),

yn,i
σn,i

= d2,i − ci+3,n
1

n
+O

(
1

n2

)
, i = 1, 2,

and by (5.11) we get

Φ0,Vn (yn,1, yn,2) = Φ0,V (d2,1, d2,2) +
1

n

(
φ0,V (d2,1, d2,2) c3,n − φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
c4,n

−φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
c5,n

)
+O

(
1

n2

)
.

Also, since
yn,i
σn,i
− ρn yn,jσn,j√
1− ρ2

n

=
d2,i − ρd2,j√

1− ρ2
+O

(
1

n

)
,
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by (5.10) we have

DiΦ0,Vn (yn,1, yn,2) = 2φ (d2,i) Φ

(
d2,j − ρd2,i√

1− ρ2

)
+O

(
1

n

)
, i, j = 1, 2, i 6= j.

D2
iΦ0,Vn (yn,1, yn,2) = −4d2,iφ (d2,i) Φ

(
d2,j − ρd2,i√

1− ρ2

)
−4ρφ0,V (d2,1, d2,2)+O

(
1

n

)
, i, j = 1, 2, i 6= j.

Since κn,ν = O
(

1
n

)
, |ν| = 3,

P1 (−Φ0,Vn , {κn,ν}) (yn) = O

(
1

n

)
P2 (−Φ0,Vn , {κn,ν}) (yn) =

∑
|ν|=4

κn,ν
ν!

DνΦ0,Vn (yn) +O

(
1

n

)
.

For |ν| = 4 the cumulants are as in (5.13) up to order O
(

1
n

)
, and the derivatives DνΦ0,Vn

are as in (5.14) up to order O
(

1
n

)
. Substituting these results into (5.5) we get the following

asymptotics

P
(
S

(n)
n,1 ≤ x1, S

(n)
n,2 ≤ x2

)
= Φ0,V (d2,1, d2,2)

− 1√
n

(
2S1 (an,1)φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
+ 2S1 (an,2)φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

))

+
1

n

(
φ0,V (d2,1, d2,2) c3,n − φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
c4,n − φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
c5,n

+ f (d2,1, d2,2, S1 (an,1) , S1 (an,2))

)
+O

(
1
√
n

3

)
(5.20)

where

an,i =
ln
(
xi
s0,i

)
−
(
r − 1

2
σ2
i

)
T + ci,nσi

√
∆t

2σi
√

∆t
+
n

2
, i = 1, 2, (5.21)

and f (d1, d2, S1 (an,1) , S1 (an,2)) is defined as in (5.12). If we now set

ci,n = 1− 2

 ln
(
xi
s0,i

)
−
(
r − 1

2
σ2
i

)
T

2σi
√

∆t
+
n

2

 , i = 1, 2, (5.22)
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so that S1 (an,i) = 0, i = 1, 2, and

c3,n = −ρ
2

+
ρ(1 + ρ2)(d2

2,1 + d2
2,2)

12(1− ρ2)
− ρ2d2,1d2,2

3(1− ρ2)
,

c4,n =
1

12

(
d3

2,1 − d2,1

)
,

c5,n =
1

12

(
d3

2,2 − d2,2

)
,

(5.23)

then we have the statement of the proposition.

Remark 5.1.5. Note that the choice of parameters in (5.18) and (5.19) is only one option.
Other combinations of the coefficients ci,n are also possible. However, with the above choice

we are able to avoid division by φ (d2,i) Φ

(
d2,j−ρd2,i√

1−ρ2

)
, which attain very small values for

certain parameter settings, therefore, leading to unstable numerical results.

Remark 5.1.6. By choosing the drifts as in (5.18), we apply a generalized 2D version of
the Chang-Palmer method. Indeed, with ci,n, i = 1, 2 defined in (5.22), by applying (4.20)
and (4.24) to each of the components we get that xi coincides with the geometric average

of the two neighboring nodes of S
(n)
n,i , or alternatively

log
(
S

(n)
n,i (ln,i)

)
+ log

(
S

(n)
n,i (ln,i + 1)

)
2

= log (xi) , (5.24)

where, as usual, ln,i is the largest number of up-moves, s.t. S
(n)
n,i (ln,i) ≤ xi < S

(n)
n,i (ln,i + 1),

i = 1, 2. Note that due to the rectangular grid, (5.24) holds for each component indepen-
dent of the other one, which means that the relative position of x with respect to two rows
of nodes will be fixed.

Remark 5.1.7. Here we have considered a generalization of the 2D-RB model, however,
similar results can also be obtained for the BEG model.

We now compare the distributional fit of the 2D-RB model, the decoupling method
presented in [KM09] and the 2D 1-Optimal tree. To get a better idea of the general
convergence behavior of the methods we consider the RMSR error. We use the same
sampling procedure as in the one-dimensional case, only now we simulate two σ and two
x parameters and we additionally need the correlation coefficient ρ which we choose to
be uniformly distributed between 0.1 and 0.9 with probability 0.75 and between −0.9 and
−0.1 with probability 0.25. As in the one-dimensional case, we omit those parameters,
for which Φ (d2,1, d2,2) ≤ 10−6. Out of a sample of 200 simulated options 196 have been
included.
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Figure 5.1: RMSR(n) error

In the figure above we can see the higher order of convergence of the 2D 1-Optimal
model. The RMSR(n) error for both the 2D-RB and the decoupling approach has a slope
of 1/2, whereas the 2D 1-Optimal model exhibits a 3/2 slope.

Remark 5.1.8. Note that, as in the one-dimensional case, the 2D 1-Optimal model requires
an additional calculation of the coefficients ci,n, i = 1, . . . , 5 for each n ∈ N. However, this
only contributes O (1) to the total computational effort O (n3).

5.1.3 Expansions for two-asset options

We now consider two types of two-asset options and apply the above results to obtain a
better asymptotic behavior of their prices.

Two-asset digital options

A two-asset digital call (put) pays out a fixed amount G if the values of both underlyings
are above (below) given strikes K1, K2. As usual, we will only consider the put option here,
however, similar results can be easily obtained for the call as well. The payout function of
the two-asset digital put is

G1{S1(T )≤K1, S2(T )≤K2},

and the price in the Black-Scholes model is

V = Ge−rTΦ0,V (d2,1, d2,2) ,

where d2,i, i = 1, 2 and the covariance matrix V are defined as in subsection 5.1.1.
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Proposition 5.1.9. Let V (n) be the price of the two-asset digital put in the discrete model
(5.17). If the coefficients ci,n, i = 1, . . . , 5 satisfy (5.22)-(5.23) then

V (n) = V +O

(
1
√
n

3

)
, n→∞.

Proof. Substituting (K1, K2) for (x1, x2), the statement is a direct consequence of Propo-
sition 5.1.4.

Compare the following convergence results for a two-asset digital put with s0 = [12, 12],
r = 0.1, x = [20, 17], σ = [0.2, 0.25], ρ = 0.5, T = 1. The first two figures show the
convergence pattern of the 2D-RB, the 2D 1-Optimal and the orthogonal trees, while the
third one is a log-log plot and gives the rate of convergence.
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Note that the 2D 1-Optimal model also has oscillatory convergence behavior, however,
these oscillations are much smaller compared to the 2D-RB and the orthogonal trees.

The 2D 1-Optimal model matches the first 5 decimal points (see table below) with as
few as 200 time steps, whereas the decoupling approach requires 900 steps to match the
first four decimal points. The 2D-RB tree has highly irregular convergence and doesn’t
provide accurate enough results even with 1000 time steps.
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Parameters n 2D RB tree Orthogonal tree 2D 1-Optimal BS value

s0 = [12, 12] 100 0.7751250 0.779877 0.7794261 0.7794385
r = 0.1 200 0.7690237 0.7791561 0.7794384
x = [20, 17] 300 0.7751430 0.7793718 0.7794362
σ = [0.2, 0.25] 500 0.7800901 0.7791601 0.7794398
ρ = 0.5 700 0.7752795 0.7793661 0.7794380
T = 1 900 0.7762390 0.7795109 0.7794384

1000 0.7777951 0.7794628 0.7794388

Two-asset correlation options

To demonstrate how the change of measure technique presented in subsection 4.3.2 works
in higher dimensions we now consider the two-asset correlation put option. This option
has the payout of a plain vanilla put on one asset, if the other underlying is below a certain
strike at maturity, i.e. the payout function is

(S2 (T )−K2)+
1{S1(T )≤K1}.

The Black-Scholes price is

V = K2e
−rTΦ0,V (d2,1, d2,2)− s0,2Φ0,V (d1,1, d1,2) ,

where d2,i, i = 1, 2 are as in subsection 5.1.1 and

d1,1 = d2,1 − ρσ2

√
T , d1,2 = d2,2 − σ2

√
T .

(See [H06], Chapter 5). The price V (n) in the model (5.17) is

V (n) = En

(
e−rT

(
K2 − s0,2e

αn,2T+σ2

√
∆t
∑n
i=1 ξ

(n)
i,2

)
1{

S
(n)
n,1≤K1, S

(n)
n,2≤K2

})
= e−rTK2Pn

(
S

(n)
n,1 ≤ K1, S

(n)
n,2 ≤ K2

)
− s0,2En

(
e(αn,2−r)T+σ2

√
∆t
∑n
i=1 ξ

(n)
i,2 1{

S
(n)
n,1≤K1, S

(n)
n,2≤K2

}) .
The first term can be directly calculated as in Proposition 5.1.4, whereas for the second
term we will apply a change of measure as in subsection 4.3.2. Let

λn,i = e(αn,2−r)∆t+σ2

√
∆tξ

(n)
i,2 ,
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and Mn = E (λn,1). Consider the change of measure

p̃(uu)
n =

p
(uu)
n e(αn,2−r)∆t+σ2

√
∆t

Mn

,

p̃(ud)
n =

p
(ud)
n e(αn,2−r)∆t−σ2

√
∆t

Mn

,

p̃(du)
n =

p
(du)
n e(αn,2−r)∆t+σ2

√
∆t

Mn

,

p̃(dd)
n =

p
(dd)
n e(αn,2−r)∆t−σ2

√
∆t

Mn

.

These probabilities are well-defined, and the Radon-Nikodým derivative of the new measure
P̃n with respect to Pn is given by

Λn =
n∏
i=1

λn,i
Mn

=
e(αn,2−r)T+σ2

√
∆t
∑n
i=1 ξ

(n)
i,2

Mn
n

.

Therefore, by Theorem 4.3.3 we have

V (n) = e−rTK2Pn

(
S

(n)
n,1 ≤ K1, S

(n)
n,2 ≤ K2

)
− s0,2M

n
n P̃n

(
S

(n)
n,1 ≤ K1, S

(n)
n,2 ≤ K2

)
. (5.25)

Proposition 5.1.10. With the appropriate choice of the coefficients ci,n, i = 1, . . . , 5 the
price of a two-asset correlation put in the model (5.17) satisfies

V (n) = V +O

(
1
√
n

3

)
, n→∞.

Proof. Set c3,n = c4,n = 0. By (5.20) we have

e−rTK2Pn

(
S

(n)
n,1 ≤ K1, S

(n)
n,2 ≤ K2

)
= e−rTK2Φ0,V (d2,1, d2,2)

− 1√
n
e−rTK2

(
2S1 (an,1)φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
+ 2S1 (an,2)φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

))

− 1

n
e−rTK2

(
φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
c5,n − f (d2,1, d2,2, S1 (an,1) , S1 (an,2))

)
+O

(
1
√
n

3

)
,

with f (d1, d2, S1 (an,1) , S1 (an,2)) defined as in (5.12). We now consider the second term in

(5.25). Since p
(· u)
n = 1

2
+ 1

n

c2,n
2

+ 1√
n

3

c5,n
2

, as in (4.52) we get

Mn = 1 +
1

n2

(√
Tσ2c5,n −

σ4
2T

2

12

)
+O

(
1
√
n

5

)
,
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and, therefore,

Mn
n = 1 +

1

n

(√
Tσ2c5,n −

σ4
2T

2

12

)
+O

(
1
√
n

3

)
. (5.26)

Using equation (4.51) the new probabilities are

p̃(uu)
n =

1

4
(1 + ρ) +

1

4
√
n
σ2

√
T (1 + ρ) +

1

4n
(c1,n + c2,n)

+
1

4
√
n

3

(
c5,n + σ2

√
T (c1,n − ρc2,n)− (1 + ρ)

1

3
σ3

2

√
T

3
)
,

p̃(ud)
n =

1

4
(1− ρ)− 1

4
√
n
σ2

√
T (1− ρ) +

1

4n
(c1,n − c2,n)

− 1

4
√
n

3

(
c5,n + σ2

√
T (c1,n − ρc2,n)− (1− ρ)

1

3
σ3

2

√
T

3
)
,

p̃(du)
n =

1

4
(1− ρ) +

1

4
√
n
σ2

√
T (1− ρ)− 1

4n
(c1,n − c2,n)

+
1

4
√
n

3

(
c5,n − σ2

√
T (c1,n − ρc2,n)− (1− ρ)

1

3
σ3

2

√
T

3
)
,

p̃(dd)
n =

1

4
(1 + ρ)− 1

4
√
n
σ2

√
T (1 + ρ)− 1

4n
(c1,n + c2,n)

− 1

4
√
n

3

(
c5,n − σ2

√
T (c1,n − ρc2,n)− (1 + ρ)

1

3
σ3

2

√
T

3
)
.

Then (5.6) becomes

µ̃1 (n) = r − 1

2
σ2

1 + ρσ1σ2 −
1

3n
ρσ1σ

3
2T +O

(
1
√
n

3

)
,

µ̃2 (n) = r +
1

2
σ2

2 +
1

n

σ2√
T

(
c5,n −

1

3
σ3

2

√
T

3
)

+O

(
1
√
n

3

)
,

σ̃2
1 (n) =

1

4
− 1

4n
ρ2σ2

2T +O

(
1
√
n

3

)
,

σ̃2
2 (n) =

1

4
− 1

4n
σ2

2T +O

(
1
√
n

3

)
,

ρ̃n = ρ+
1

2n
ρ(ρ2 − 1)σ2

2T +O

(
1
√
n

3

)
,
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and for yn as in (5.3)

ỹn,1
σ̃n,1

= d1,1 +
1

n

(
1

3
ρσ3

2

√
T

3
+

1

2
d1,1ρ

2σ2
2T

)
+O

(
1
√
n

3

)
,

ỹn,2
σ̃n,2

= d1,2 −
1

n

(
c5,n −

1

3
σ3

2

√
T

3
− 1

2
d1,2σ

2
2T

)
+O

(
1
√
n

3

)
.

Therefore, by (5.11) we get

Φ0,Ṽn
(ỹn,1, ỹn,2) = Φ0,V (d1,1, d1,2)

+
1

n

(
φ0,V (d1,1, d1,2)

1

2
ρ(ρ2 − 1)σ2

2T + φ (d1,1) Φ

(
d1,2 − ρd1,1√

1− ρ2

)(
1

3
ρσ3

2

√
T

3
+

1

2
d1,1ρ

2σ2
2T

)

−φ (d1,2) Φ

(
d1,1 − ρd1,2√

1− ρ2

)(
c5,n −

1

3
σ3

2

√
T

3
− 1

2
d1,2σ

2
2T

))
+O

(
1
√
n

3

)
.

The cumulants for |ν| = 3 are

κn,(3,0) = − 1

4
√
n
ρσ2

√
T +O

(
1

n

)
,

κn,(0,3) = − 1

4
√
n
σ2

√
T +O

(
1

n

)
,

κn,(2,1) = − 1

4
√
n
ρ2σ2

√
T +O

(
1

n

)
,

κn,(2,1) = − 1

4
√
n
ρσ2

√
T +O

(
1

n

)
,

For |ν| = 4 the cumulants are as in (5.13) up to order O
(

1√
n

)
. Using equations (5.14),

(5.16), (5.26) and Corollary 5.1.1 we get the following asymptotics

s0,2M
n
n P̃n

(
S

(n)
n,1 ≤ K1, S

(n)
n,2 ≤ K2

)
= s0,2Φ0,V (d1,1, d1,2)

− 2s0,2√
n

(
S1 (an,1)φ (d1,1) Φ

(
d1,2 − ρd1,1√

1− ρ2

)
+ S1 (an,2)φ (d1,2) Φ

(
d1,1 − ρd1,2√

1− ρ2

))

− s0,2

n

(
φ (d1,2) Φ

(
d1,1 − ρd1,2√

1− ρ2

)
c5,n − Φ0,V (d1,1, d1,2)σ2

√
Tc5,n − f̃ (d1,1, d1,2, S1 (an,1) , S1 (an,2))

)

+O

(
1
√
n

3

)
,

(5.27)
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where an,i, i = 1, 2 are defined as in (5.21) and

f̃ (d1,1, d1,2, S1 (an,1) , S1 (an,2)) =

φ (d1,1) Φ

(
d1,2 − ρd1,1√

1− ρ2

)(
d3

1,1 − d1,1

12
− 2S2

1 (an,1) d1,1 +
1

3
ρσ3

2

√
T

3
+

1

2
d1,1ρ

2σ2
2T +

1

3
ρσ2

√
T (d2

1,1 − 1)

)

+ φ (d1,2) Φ

(
d1,1 − ρd1,2√

1− ρ2

)(
d3

1,2 − d1,2

12
− 2S2

1 (an,2) d1,2 +
1

3
σ3

2

√
T

3
+

1

2
d1,2σ

2
2T +

1

3
σ2

√
T (d2

1,2 − 1)

)
+ φ0,V (d1,1, d1,2)

(
4S1 (an,1)S1 (an,2)− 2ρS2

1 (an,1)− 2ρS2
1 (an,2) +

1

2
ρ(ρ2 − 1)σ2

2T +
ρ2d1,1d1,2

3(1− ρ2)

+
ρ

2
−
ρ(1 + ρ2)(d2

1,1 + d2
1,2)

12(1− ρ2)
+

1

3
ρσ2

√
T (ρd1,1 − d1,2)

)
− Φ0,V (d1,1, d1,2)

σ4
2T

2

12
.

Substituting the above expansions into (5.25) and taking into account that

Ke−rTφ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
= s0,2φ (d1,2) Φ

(
d1,1 − ρd1,2√

1− ρ2

)
,

we get

V (n) = V − 1√
n

2S1(an,1)

(
K2e

−rTφ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
− s0,2φ (d1,1) Φ

(
d1,2 − ρd1,1√

1− ρ2

))
+

1

n

(
K2e

−rTf (d2,1, d2,2, S1 (an,1) , S1 (an,2))− s0,2f̃ (d1,1, d1,2, S1 (an,1) , S1 (an,2))

−s0,2Φ0,V (d1,1, d1,2)σ2

√
Tc5,n

)
+O

(
1
√
n

3

)
.

By setting ci,n, i = 1, 2 as in (5.22) and

c5,n =
K2e

−rTf (d2,1, d2,2, 0, 0)− s0,2f̃ (d1,1, d1,2, 0, 0)

s0,2Φ0,V (d1,1, d1,2)σ2

√
T

,

we have the statement of the proposition.

Compare the numerical results of the 2D RB model, the Orthogonal tree and the 2D
1-Optimal model for a two-asset correlated option with s0 = [12, 12], r = 0.1, K = [15, 17],
σ = [0.2, 0.25], ρ = 0.5, T = 1. The first two plots give the convergence pattern of the
methods, while the third gives the order of convergence.
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Note the y-axis scale in the right-hand side plot above. The 2D 1-Optimal model also
has oscillatory behavior, but on a much smaller scale. From the log-log plot we can see,

that the 2D 1-Optimal model indeed has a higher, O
(

1√
n

3

)
, order of convergence.

Parameters n 2D RB tree Orthogonal tree 2D 1-Optimal BS value

s0 = [12, 12] 100 3.1577028 3.1664811 3.1699286 3.1698672
r = 0.1 200 3.2205542 3.1667005 3.1698499
K = [15, 17] 300 3.1991868 3.1709520 3.1698507
σ = [0.2, 0.25] 500 3.2069667 3.1682395 3.1698460
ρ = 0.5 700 3.1719940 3.1703365 3.1698709
T = 1 900 3.1564813 3.1697090 3.1698745

1000 3.1797558 3.1697243 3.1698660

5.2 Multidimensional generalizations

We now consider a general d-dimensional problem

dSi (t) = Si (t) (rdt+ σidWi (t)) , i ∈ {1, . . . , d} , (5.28)
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where the Brownian motions Wi(t) and Wj(t) have correlation ρi,j, i, j = 1, . . . , d, i < j.
The approximating binomial process is now

S
(n)
k =

 S
(n)
k−1,1e

αn,1∆t+σ1

√
∆tξ

(n)
k,1

...

S
(n)
k−1,2e

αn,2∆t+σ2

√
∆tξ

(n)
k,d

 , k = 1, . . . , n, (5.29)

where {αn,i}, i = 1, . . . , d are bounded sequences, and for each n ∈ N ξ
(n)
k are i.i.d random

vectors s.t.

ξ
(n)
k ∈ {ωk = (ωk,1, . . . , ωk,d)|ωk,i = ±1, i = 1, . . . , d} ,

with the one-step transition probabilities P1,n(ωk). To ensure weak convergence we assume
the following moment-matching conditions (see (2.8))

µi (n) = r − 1

2
σ2
i + o (1) , i = 1, . . . , d,

σ2
i (n) = σ2

i + o (1) , i = 1, . . . , d,

ci,j (n) = σiσjρi,j, i = 1, . . . , d, i < j.

(5.30)

To get the distributional fit in the multidimensional case we again apply the Edgeworth
expansion Theorem 3.4.9.

Corollary 5.2.1. For each n ∈ N let η
(n)
i =

ξ
(n)
i +1

2
, i = 1, . . . , d, µn = E

(
η

(n)
1

)
and

Vn = Cov
(
η

(n)
1

)
. Then the process S(n) in (5.29) satisfies

P
(
S(n)
n ≤ x

)
= Φ0,Vn (yn)− 1√

n

d∑
i=1

S1 (an,i)DiΦ0,Vn (yn)

+
1√
n
P1 (−Φ0,Vn , {κn,ν}) (yn) +O

(
1

n

)
,

(5.31)

where yn,i =
(

ln
(
xi
s0,i

)
− µi(n)T

)
/(2σi

√
T ), i = 1, . . . , d, an = nµn + yn

√
n, and

P1 (−Φ0,Vn , {κn,ν}) (yn) is defined as in Corollary 5.1.1.

Proof. Due to the moment-matching condition (5.30) the assumptions of Theorem 3.4.9
are satisfied for all s. Taking s = 3 we get the statement of the corollary.

Remark 5.2.2. Let V
(i)
n be the covariance matrix Vn, where the 1-st and i-th row and

column are interchanged, and consider the following partition

V (i)
n =

(
σ2
i V

(i)
n,12

V
(i)
n,21 V

(i)
n,22

)
,
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where V
(i)
n,22 is a (d− 1)× (d− 1) matrix and V

(i)
n,21 =

(
V

(i)
n,12

)T
. Further, let y

(i)
n be obtained

from yn by interchanging the first and the i-th component, i.e.
y

(i)
n := (yn,i, yn,2, . . . , yn,i−1, yn,1, yn,i+1, . . . , yn,d). Set

µ(i)
n =

yn,i
σ2
i

V
(i)
n,21, Σ(i)

n = V
(i)
n,22 −

1

σ2
i

V
(i)
n,21V

(i)
n,12.

Then, the derivatives in the above expansion can be written as

DiΦ0,Vn (yn) =
1

σi
φ

(
yn,i
σi

)
Φ
µ

(i)
n ,Σ

(i)
n

(
y

(i)
n,2, . . . , y

(i)
n,d

)
.

Indeed, using the formulas for conditional and marginal densities of the normal distribution
(see e.g. [PP12], Chapter 8.1), for any x ∈ Rd we have

φ0,Vn (x) = φ0,σ2
1

(x1)φ
µ

(1)
n ,Σ

(1)
n

(x2, . . . , xd) . (5.32)

Therefore, for i = 1 the statement is proven. For i ≥ 2 note that

φ0,Vn (x) = φ0,Vn

(
T1,ix

(i)
)

= φ
0,V

(i)
n

(
x

(i)
2 , . . . , x

(i)
d

)
,

where T1,i is the d× d elementary matrix that changes rows 1 and i and x(i) is constructed

as y
(i)
n , i = 1, . . . , d. By applying the same formulas as in (5.32) we get the statement for

all i.

We now construct advanced multi-dimensional trees with anO
(

1
n

)
order of convergence,

which we will refer to as the 1/2-Optimal tree. Following the two-dimensional case we
choose the drifts to be

α
(n)
i = r − 1

2
σ2
i −

ci,nσi√
T

1√
n

with bounded {ci,n}n, i = 1, . . . , d, and the transition probabilities equal to

P1,n (ωk) =
1

2d

(
1 +

d∑
i,j=1,i<j

δi,j (ωk) ρi,j +
1

n

d∑
i=1

δi (ωk) ci,n

)
, (5.33)

where

δi,j (ωk) =

{
1 if ωk,i = ωk,j,
−1 if ωk,i 6= ωk,j,

and

δi (ωk) =

{
1 if ωk,i = 1,
−1 if ωk,i = −1.

for ωk ∈ {−1, 1}d (see also section 2.2.2).
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Proposition 5.2.3. If the drift coefficients ci,n are chosen as

ci,n = 1− 2

 ln
(
xi
s0,i

)
−
(
r − 1

2
σ2
i

)
T

2σi
√

∆t
+
n

2

 , i = 1, . . . , d, (5.34)

then the distribution function of S
(n)
n in (5.29) satisfies

P
(
S

(n)
n,1 ≤ x1, . . . , S

(n)
n,d ≤ xd

)
= Φ0,V (d2,1, . . . , d2,d) +O

(
1

n

)
,

where d2,i =
ln

(
xi
s0,i

)
−(r− 1

2
σ2
i )T

σi
√
T

, i = 1, . . . , d, and V =


1 ρ1,2 · · · ρ1,d

ρ1,2
...
ρ1,d · · · 1

.

Proof. If cn,i is chosen as in (5.34), then S1 (an,i) = 0, i = 1, . . . , d and we are only left with

the O
(

1√
n

)
term P1 (−Φ0,Vn , {κn,ν}) in (5.31). However, for |ν| = 3 the possible cumulants

of the d-dimensional process are

κn,(3,0...,0) = µn,(3,0...,0) − 3µn,(1,0...,0)µn(2,0...,0) + 2µ3
n,(1,0...,0),

κn,(2,1,...,0) = µn,(2,1,...,0) − µn,(0,1,...,0)µn,(2,0,...,0) − 2µn,(1,1,...,0)µn,(1,0,...,0)

+ 2µ2
n,(1,0,...,0)µn,(0,1,...,0),

κn,(1,1,1,...,0) = µn,(1,1,1,...,0) − µn,(1,0,0,...,0)µn,(0,1,1,...,0) − µn,(0,1,0,...,0)µn,(1,0,1,...,0)

− µn,(0,0,1,...,0)µn,(1,1,0,...,0) + 2µn,(1,0,0,...,0)µn,(0,1,0,...,0)µn,(0,0,1,...,0),

(5.35)

and completely symmetric for the other indices. Due to (5.33) we have ∀r, s, q ∈ N

µn,rei =
1

2
+O

(
1

n

)
,

µn,rei+sej =
1

4
(1 + ρi,j) +O

(
1

n

)
,

µn,rei+sej+qek =
1

8
(1 + ρi,j + ρi,k + ρj,k) +O

(
1

n

)
, i, j, k = 1, . . . , d,

where ei is the i-th unit vector. Substituting these expressions into (5.35) we get κn,ν =
O
(

1
n

)
, |ν| = 3, therefore,

P1 (−Φ0,Vn , {κn,ν}) (yn) = O

(
1

n

)
,

and we have the statement of the proposition.
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Remark 5.2.4. Note that the above tree construction inherits the drawbacks of the under-
lying multidimensional RB model, i.e. for d ≥ 3 the probabilities in (5.33) might not be
well-defined for all parameter settings. (For details see e.g. [M09], Chapter 3).

To conclude this section we present numerical results for the 3D-RB tree and the 3D
1/2-Optimal tree introduced above. The first two plots show the convergence pattern, while
the third one confirms the order of convergence. Once again, note that the oscillations of
the 3D 1/2-Optimal tree are much smaller than in the case of the 3D-RB tree.
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Figure 5.2: 3D distributional fit for s0 = [20, 16, 25], r = 0.1, x = [17, 20, 25], σ =
[0.2, 0.25, 0.6], ρ = [0.6, 0.2, 0.4], T = 1

Parameters n 3D RB tree 3D 1/2-Optimal BS value

s0 = [20, 16, 25] 50 0.0695389 0.0760962 0.0761653
r = 0.1 100 0.0650581 0.0761203
x = [17, 20, 25] 150 0.0725303 0.0761657
σ = [0.2, 0.25, 0.6] 200 0.0749387 0.0761678
ρ = [0.6, 0.2, 0.4] 250 0.0795593 0.0761646
T = 1 300 0.0778009 0.0761620

Note that the 3D 1/2-Optimal model exhibits a significant improvement and has a
relative error smaller than 10−4 for 150 time steps.
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5.3 Edgeworth expansions for decoupled processes

In this section we consider the decoupling method introduced in [KM09] (see section 2.2.2).
Numerical experiments suggest that this approach has a better convergence behavior than
the standard multidimensional BEG and RB models. We apply an Edgeworth expansion to
obtain a theoretical justification of this result. We then discuss ways of further improving
the convergence, following the methods described above.

Consider the two-dimensional Black-Scholes model

dSi (t) = Si (t) (rdt+ σidWi (t)) , i = 1, 2, (5.36)

where W1(t) and W2(t) have correlation ρ. Let Y (t) be the decoupled process, i.e. Y (t) =
G−1S (t), t ∈ [0, T ], where G is obtained from the Cholesky decomposition Σ = GGT , i.e.

G =

(
σ1 0

ρσ2

√
1− ρ2σ2

)
.

Recall that in the decoupling approach the binomial tree Y (n) in (2.14) is first constructed
to approximate the process Y with independent components. The tree S(n) for the original
process S is then obtained by a back transformation (2.15), i.e. for k = 1, . . . , n, we have

S
(n)
0 = s0,

S
(n)
k = exp

(
G

(
Y

(n)
k,1

Y
(n)
k,2

))
=

(
S

(n)
k−1,1e

(r− 1
2
σ2

1)∆t+σ1

√
∆tξk,1

S
(n)
k−1,2e

(r− 1
2
σ2

2)∆t+σ2

√
∆t
(
ρξk,1+

√
1−ρ2ξk,2

)
)
,

(5.37)

where ξk are i.i.d. random vectors with P (ξk = ω) = 1
4
, for all ω ∈ {(ω1, ω2)|ωi = ±1, i = 1, 2}.

5.3.1 Distributional fit

Now consider the distributional fit of the process S(n) at maturity.

P
(
S(n)
n ≤ x

)
= P

(
lnS(n)

n ≤ lnx
)

= P
(
GY (n)

n ≤ lnx
)

= P

(
G

1√
n

(
n∑
k=1

ηk − nE (ηk)

)
≤ y

)
,

(5.38)

where ηk,i = (ξk,i + 1) /2 and yi =
ln

(
xi
s0,i

)
−(r− 1

2
σ2
i )T

2
√
T

, i = 1, 2.

Independent processes

We first assume the simplest case, when ρ = 0, i.e. S1 ans S2 are independent. In this case

P
(
S(n)
n ≤ x

)
= P (Y

(n)
n,1 ≤

log x1

σ1

, Y
(n)
n,2 ≤

log x2

σ2

)

= P (Y
(n)
n,1 ≤

log x1

σ1

)P (Y
(n)
n,2 ≤

log x2

σ2

).

(5.39)
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We can now apply Theorem 3.4.9 to each of the components separately.

Proposition 5.3.1. If ρ = 0, then the process S(n) in (5.37) satisfies

P
(
S(n)
n ≤ K

)
= Φ0,I (d2,1, d2,2)

− 2√
n

(
S1

(
n

2
+
d2,1

2

√
n

)
φ (d2,1) Φ (d2,2) + S1

(
n

2
+
d2,2

2

√
n

)
φ (d2,2) Φ (d2,1)

)
+O

(
1

n

)
,

where, as usual, d2,i =
log(

Ki
s0,i

)−(r− 1
2
σ2
i )T

σi
√
T

, and S1(x) = {x} − 1
2
.

Proof. By the 1-D Edgeworth expansion

P

(
Y

(n)
n,i ≤

log xi
σi

)
= Φ (d2,i)−

2√
n
S1

(
n

2
+
d2,i

2

√
n

)
φ (d2,i) +O

(
1

n

)
.

Together with (5.39) this gives the necessary result.

Correlated processes

We now assume correlated Brownian motions in (5.36). In this case a simple decomposition
as in (5.39) is not possible and the 1-D results are not directly applicable. From (5.38) we
have

P
(
S(n)
n ≤ K

)
= P

(
1√
n

(
n∑
k=1

ηk − nE (ηk)

)
∈ A

)
,

where A =
{

(y1, y2) | y1 ≤ d2,1

2
, ρy1 +

√
1− ρ2 y2 ≤ d2,2

2

}
.

Proposition 5.3.2. The process S(n) in (5.37) satisfies

P
(
S(n)
n ≤ K

)
= Φ0,V (d2,1, d2,2)− 2√

n
S1

(
n

2
+
d2,1

2

√
n

)
φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)

− 2√
n
φ (d2,2)

∫ d2,1

−∞

(
ρ√

1− ρ2
S1

(n
2

+
x

2

√
n
)

+ S1

(
n

2
+
d2,2 − ρx
2
√

1− ρ2

√
n

))
φ

(
x− ρd2,2√

1− ρ2

)
dx

+O

(
1

n

)
, n→∞,

(5.40)

where V =

(
1 ρ
ρ 1

)
.
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Proof. By applying the multidimensional Euler-Maclaurin formula (Theorem 3.4.14) with
the Borel set A, and following the proof of Theorem 3.4.9 we get

P
(
S(n)
n ≤ K

)
= Φ0,V (d1, d2)− 1√

n
(Λ1 (A) + Λ2 (A)) +O

(
1

n

)
,

where Λ1, Λ2 are signed measures with distribution functions defined as

Λ1(x1, x2) = S1

(n
2

+
√
nx1

) ∂

∂x1

Φ0,E(x1, x2)

= 2S1

(n
2

+
√
nx1

)
φ(2x1)Φ (2x2) ,

and analogously

Λ2(x1, x2) = S1

(n
2

+
√
nx2

) ∂

∂x2

Φ0,E(x1, x2)

= 2S1

(n
2

+
√
nx2

)
φ(2x2)Φ (2x1) ,

with E =

(
1/4 0
0 1/4

)
. Note, that here we used that P1 (−φ0,Vn , {κν}) = 0, since all the

ν-th cumulants, κν , of ηk are equal to zero for |ν| = 3. Applying integration by parts for
Stieltjes integrals we get

Λ1 (A) = 2

∫ d2,1
2

−∞

∫ d2,2
2 −ρx1√

1−ρ2

−∞
dS1

(n
2

+
√
nx1

)
φ(2x1)Φ (2x2)

= 2

∫ d2,1

−∞
Φ

(
d2,2 − ρx1√

1− ρ2

)
dS1

(n
2

+
√
n
x1

2

)
φ(x1)

= 2S1

(
n

2
+
√
n
d2,1

2

)
φ(d2,1)Φ

(
d2,2 − ρd2,1√

1− ρ2

)

+
2ρ√

1− ρ2
φ(d2,2)

∫ d2,1

−∞
S1

(n
2

+
√
n
x1

2

)
φ

(
x1 − ρd2,2√

1− ρ2

)
dx1,

and

Λ2 (A) = 2

∫ d2,1
2

−∞

∫ d2,2
2 −ρx1√

1−ρ2

−∞
dS1

(n
2

+
√
nx2

)
φ(2x2)Φ (2x1)

= 2φ(d2,2)

∫ d2,1

−∞
S1

(
n

2
+
√
n
d2,2 − ρx1

2
√

1− ρ2

)
φ

(
x1 − ρd2,2√

1− ρ2

)
dx1.

The statement of the proposition follows directly.
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As mentioned in [KM09] (see also section 2.2.2), the reason why the decoupling ap-
proach has a better performance than the usual methods, is that the rectangular grid is
destroyed (or partially destroyed, as with the Cholesky decomposition) due to the transfor-
mation G. This can also be seen in the above expansion. Unlike the 2D-RB (Proposition
5.1.2) or the BEG model (Proposition 5.1.3), the leading error term in the expansion for
the decoupling method does not have a closed form. Instead we have an integral compo-
nent over a sum of two periodic functions S1, whose effect might cancel out, leading to a
better convergence pattern.

Note that a similar expansion can also be shown to hold for the decoupling approach
with a spectral decomposition. However, in this case both terms in the 1√

n
coefficient

will have an integral form. On one hand, this allows even smoother convergence, on the
other hand, however, the absence of a closed formula prevents from further improving the
convergence behavior with the methods described above.

5.3.2 Improving the convergence behavior

We will now demonstrate how the distributional fit of the Cholesky tree can be improved
by controlling the position of the nodes at maturity. We will apply a two-dimensional ver-
sion of the Tian approach, which together with extrapolation provides better convergence
results.

Consider the 2-D Y
(n)
n grid. The in-the-money points are y ∈ A, i.e.

y1 ≤
logK1

σ1

,

ρy1 +
√

1− ρ2y2 ≤
logK2

σ2

.

The idea of the Tian approach would be to tilt the tree in such a way, that the nodes of
the tree coincide with the boundary of the in-the-money region A for every n ∈ N. Since
the region is not rectangular, we cannot simply match two rows of nodes. We can first
match logK1

σ1
with the Y

(n)
n,1 coordinate independent of Y

(n)
n,2 , i.e. match a whole row. Then

the second coordinate can be chosen to match a node with the second boundary, however
this will depend on the value of Y

(n)
n,1 . Based on numerical results we propose to match a

node with

(
logK1

σ1
, 1√

1−ρ2
( logK2

σ2
− ρ logK1

σ1
)

)
, which is equivalent to matching a node in the

S
(n)
n grid to (K1, K2). We now proceed in the usual way. We tilt the tree by introducing

bounded drifts γn,i. For k = 1, . . . , n the tree is now constructed as

Y
(n)
k,i := Y

(n)
k−1,i +

(
αi + γn,i

√
∆t
)

∆t+ ξ
(n)
k,i

√
∆t, i = 1, 2, (5.41)

where ξ
(n)
k,i are independent variables with probabilities pn,i := P

(
ξ

(n)
k,i = 1

)
= 1

2
− γn,i

2
∆t.

The one-step transition probabilities of the vector ξ
(n)
k are defined as the product of the
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corresponding one-dimensional probabilities. With this choice of parameters the moment-
matching conditions (5.2) are satisfied and S(n) converges weakly to S.

The possible values for Y (n) at maturity are

Y
(n)
n,i (li) = Y

(n)
0,i +

(
αi + γn,i

√
∆t
)
T + 2li

√
∆t− n

√
∆t,

where li ∈ {0, . . . , n} is the number of up-jumps in each of the dimensions. To determine
the nodes closest to G−1 log (K) we consider the equations(

Y1 (a1)
Y2 (a2)

)
= G−1 log

(
K1

K2

)
,

which are solved by

aγnn,i =
G−1
i.

(
log(K/s0)−

(
r − 1

2
σ2
)
T
)
− γn,i

√
∆tT

2
√

∆t
+
n

2
, i = 1, 2.

Set
lγnn,i =

⌊
aγnn,i
⌋
,

i.e. lγnn,i is the number of up-jumps, s.t. Y
(n)
i

(
lγnn,i
)
≤ G−1

i. log (K) < Yi
(
lγnn,i + 1

)
. Having

found the four surrounding nodes, we choose γn to match G−1 log

(
K1

K2

)
with the lower

left node. Note that this is just one option, matching other nodes is also possible. Following
section 4.2.1 we set

γn,i :=
2

T

{
a0
n,i

}
. (5.42)

In this case the first summand in the leading error coefficient in expansion (5.40) becomes

constant, equal to 1√
n
φ (d2,1) Φ

(
d2,2−ρd2,1√

1−ρ2

)
. Note that the integral term is still present in

the expansion, however, by correctly choosing the components, we can get a better con-
vergence behavior. To be more precise, the described method is not symmetric, i.e. it
provides a better fit for the first coordinate of S

(n)
n . Therefore, the question is, which of

the two correlated assets to take as the first coordinate?

Consider the leading error term in expansion (5.40).∣∣∣∣∣2S1

(
n

2
+
d2,1

2

√
n

)
φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)∣∣∣∣∣ < φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
∣∣∣∣∣2φ (d2,2)

∫ d2,1

−∞

(
ρ√

1− ρ2
S1

(n
2

+
x

2

√
n
)

+ S1

(
n

2
+
d2,2 − ρx
2
√

1− ρ2

√
n

))
φ

(
x− ρd2,2√

1− ρ2

)
dx

∣∣∣∣∣
<
(
ρ+

√
1− ρ2

)
φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
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Therefore, we propose the following heuristic approach. Take the asset i with the higher

value of φ (d2,i) Φ

(
d2,j−ρd2,i√

1−ρ2

)
as the first component. This way more weight will be given

to the first term and in many cases the second term can be neglected. Now extrapolation
can be applied to speed up convergence. Note that by the above criterion, the asset, which
is more out-of-the-money will be chosen as the first component.

The effectiveness of the method depends on the exact values of φ (d2,i) Φ

(
d2,j−ρd2,i√

1−ρ2

)
as

well as the correlation coefficient ρ. Numerical experiments suggest, that the method
performs better for at-the-money options.

Numerical results

We now compare the method proposed above with and without extrapolation, and the
standard decoupling approach with both Cholesky and spectral decomposition. We con-
sider three different options.
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Figure 5.3: s0 = [12, 12], r = 0.1, x = [20, 17], σ = [0.2, 0.25], ρ = 0.5, T = 1
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Figure 5.4: s0 = [12, 12], r = 0.1, x = [13, 15], σ = [0.2, 0.25], ρ = 0.8, T = 1
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Figure 5.5: s0 = [12, 12], r = 0.1, x = [18, 14], σ = [0.2, 0.25], ρ = 0.5, T = 1

n Cholesky tree Orthogonal tree Cholesky extrapolation BS value

50 0.8581496 0.8608818 0.8630937 0.8614127
100 0.8594436 0.8618970 0.8624206
150 0.8629707 0.8603272 0.8621292
200 0.8618657 0.8611007 0.8619335
300 0.8608183 0.8613391 0.8617172
400 0.8612073 0.8617086 0.8616369

50 0.5221727 0.4882740 0.4736266 0.4784877
100 0.5129303 0.4790018 0.4775078
150 0.5052736 0.4815309 0.4773739
200 0.5018282 0.4811512 0.4779660
300 0.4972109 0.4803988 0.4781373
400 0.4948763 0.4785123 0.4782329

50 0.6173913 0.6146295 0.6222416 0.6222303
100 0.6228891 0.6229835 0.6229239
150 0.6176984 0.6236023 0.6217028
200 0.6224228 0.6218326 0.6220626
300 0.6227290 0.6225625 0.6223870
400 0.6227937 0.6214632 0.6222256
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Note that for at-the-money options (see figure 5.4) the method described above gives
results which are even better than the orthogonal tree. For deep in-the-money options
(figure 5.3), however, there is little improvement.

Remark 5.3.3. The computational effort of the standard decoupling approach is O(n3) (see
[M09], Proposition 44). Due to the extrapolation procedure, the method described above
also requires O(n3), but with a larger constant.

Choosing the correct asset as the first component does indeed influence the convergence
behavior. Consider, for example, the option presented in figure 5.5. Here

φ (d2,1) Φ

(
d2,2 − ρd2,1√

1− ρ2

)
= 0.03,

φ (d2,2) Φ

(
d2,1 − ρd2,2√

1− ρ2

)
= 0.36,

therefore, the second asset needs to be taken as the first component. If this is disregarded,
then we get convergence behavior as in figure 5.6.
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Figure 5.6: s0 = [12, 12], r = 0.1, x = [18, 14], σ = [0.2, 0.25], ρ = 0.5, T = 1

5.4 Conclusion

Edgeworth expansions provide a general method of constructing asymptotic expansions
for the distribution functions of multidimensional trees. This allows to get a better un-
derstanding of the source of irregularity in the convergence of tree methods as well as to
construct advanced models with a higher order of convergence. So far these results have
been applied to European options in the Black-Scholes model, however, possible extensions
to American-type payouts as well as other models could be the topic of further research.



124 CHAPTER 5. ASYMPTOTICS OF MULTIDIMENSIONAL TREE MODELS



Bibliography

[AK94] Amin, K. and Khanna, A. (1994). Convergence of American Option Val-
ues from Discrete-to Continuous-Time Financial Models. Mathematical Fi-
nance, 4:289-304.

[B68] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley &
Sons, New York, US.

[Bau92] Bauer, H. (1992). Maß- und Integrationstheorie. New York: Wiley.

[BD96] Broadie, M. and Detemple, J. (1996). American Option Valuation: New
Bounds, Approximations and a Comparison of Existing Methods. Review of
Financial Studies 9, 4:1221-1250.

[BEG89] Boyle, P.P., Evnine, J. and Gibbs, S. (1989). Numerical Evaluation of Mul-
tivariate Contingent Claims. Review of Financial Studies, 2:241-250.

[BL94] Boyle, P.P. and Lau, S.H. (1994). Bumping Up Against the Barrier with the
Binomial Method. The Journal of Derivatives 1, 4:6-14.

[BR76] Bhattacharya, R.N. and Rao, R.R. (1976). Normal Approximation and
Asymptotic Expansions. Berlin; New York: de Gruyter.

[BW90] Bhattacharya, R.N. and Waymire, E.C. (1990). Stochastic Processes with
Applications. John Wiley & Sons.

[C45] Cramér, H. (1945). Mathematical Methods of Statistics. Princeton University
Press.

[CJM92] Carr, P., Jarrow, R. and Myneni, R. (2007). Alternative Characterizations
of American Put Options. Mathematical Finance 2, 2:87-106.
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